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Collected network data exhibit properties in-
consistent with traditional queueing models:

e self-similarity (ss) & long-range dependence
(LRD) of various transmission rates:

packet counts/time,
www bits/time

e heavy tails

file sizes,

transmission rates,
transmission durations,
CPU job completion times,
call lengths

Origins: Bellcore study in early 90’'s revealed
packet counts per unit time exhibit self similarity
and long range dependence.




Research Goals:

e Understand origins and effects of long-range
dependence and self-similarity

e Understand some connections between
{ SS & LRD } and heavy tails.

e Begin to understand the effect of network
protocols and architecture.

e Say something useful for the purposes of
capacity planning. (Ambitious!)



The infinite node Poisson model:

Infinitely many potential users connected to
single server which processes work at constant
rate r. At a Poisson time point, some user be-
gins transmitting work to the server at constant
(ugh) rate. The length of the transmission is
random with heavy tailed distribution.

Features:
e Fairly flexible.

e Offers successful explanation of LRD being
caused by heavy tailed job sizes.

e Predicts traffic aggregated over users and ac-
cumulated over time [0,T] is approximated by
either FBM (Gaussian) or stable Lévy motion
(heavy tailed).



e [ he model does not fit the data sets we
examined all that well.

— Constant input rates clearly wrong.

— No hope the model can successfully
match fine time scale behavior observed below,
say, 100 milliseconds.

BROAD ISSUES (BI's):

Bl 1. Problem of time scales: Can Applied Math,
Applied Prob & Statistics make contribu-
tions to data network analysis and planning
in internet time. Maybe not but at least
we can help cause paradigm shifts with ex-
planations which may lag behind develop-
ments.



BI 2. Insider vs Outsider: Do you

(a) Analyze data that is already available,
say on the web (eg, ITA) or that you have
bootlegged by hook or by crook. This is
often what academics (including me) have
done.

Note, for example, the data we
analyzed is NO'T very suitable for testing
the Poisson assumption.

or

(b) Design a network experiment to get the
data you want. This typically requires co-
operative net administrators and hardware
+ software expertise. It may require you
to go beyond your LAN to something of
the scale of World Net, UUNet etc.



BI 3.

BI 4.

How can you discern the influence of net-
work architectures and protocols? How do
you model something like TCP?

Theinternet was designed to be robust and
scalable and there is less emphasis on the
word

optimal.

Can you get a reasonably accurate model
which encourages analysis beyond simula-
tion and experimentation? (Ambitious!)



BI 4. A broad variety of techniques useful:

Applied Probability & Statistics:
Stochastic Processes: FBM, Lévy,
Poisson point process theory,
weak convergence,
heavy tailed analysis,
long-range dependence,
self-similarity & multifractality,
extreme value theory,
estimation methods such as maximum

likelihood, graphical techniques,
time series analysis,
queueing theory.

Applied Math:

wavelets (seem to be the right tool
for examining phenomena on
different time scales),

numerical methods,

design and implementation of
simulation tools,

computing.



BI 5. Black box vs structural modeling: Black
box modeling provides a class of models
with enough parameters to fit a broad va-
riety of data sets. EG: ARMA(p,q) time
series models

p q
Xn= Y ¢iXpn_i+ > 0iZn_;,

where one specifies p, q, ¢'s and 8’s to yield
a model matching the Lo sample moments
of the data. Traditionally {Z,} is white
noise; in a heavy tailed context {Z,} iid
and heavy tailed.

Problems

e Do not get good fits for heavy tailed
data. The only heavy tailed data
that ARMA fit are simulated data
from the ARMA model.

e Even if ARMA fit acceptable, it can-
not provide fundamental insights since
physics and structure ignored.



BI 6.

e Just fitting the data may not be so use-
ful in a rapidly changing world: the next
data set generated from similar mecha-
nisms may be quite different.

Implies:

— More of an emphasis on struc-
tural modeling which incorporates features
of the network,

— Try to use the detailed infor-
mation in packet “headers’.

Two data sets are ancient (internet stan-
dards). Still useful? BU and UCB from
1996.



Some Technical Points

Tech Pt 1: Identify Poisson time points and
validate the choice statistically.

Quick & dirty (Q&D): Check if interpoint
distances are iid (sample acf almost 0) and
exponentially distributed (gg-plots).

QRE&D Rules of Thumb:

e Behavior of lots of humans acting indepen-
dently is often well modelled by a Poisson
process.

e Starting times of machine triggered down-
loads cannot be modelled as Poisson process.



EXAMPLE: UCB data; http sessions via mo-
dem.
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Figure: UCB inter-arrival times of requests:
left) qgplot against exponential distribution,right)
autocorrelation function of interarrival times.



Tech Pt 2: Heavy tails: A rv X has a heavy
(right) tail if

PIX >z] ~27%L(xz), =z — oo.

Ccases:

(i) Very heavy: 0 < a < 1. Mean & variance
infinite (Eg: BU file sizes)

(ii) Heavy: 1 < a < 2. Usual case where mean
finite but variance is infinite.

(iii) Heavy with finite variance: « > 2. Typical
of financial data.

EXAMPLE: BU data: File sizes downloaded in
a web session.
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Figure: Sizes of www downloads; BU experi-
ment: QQ-plot and Hill plot.



For many purposes, do not need to know the
whole distribution but just the tail.

Techniques for deciding when a heavy tailed
model is appropriate:

e Hill plots (modified MLE) and refine-
ments (smoothing the Hill plot, plotting on
different scales)

e qg-plots of the log(order statistics) vs
exponential quantiles.

e Mean residual life plots.

e Extreme value theory techniques such as

— DeHaan moment estimator of 1/«

— Peaks over threshold modeling lead-
ing to fitting of a generalized Pareto distribu-
tion by method of MLE. Splus software avail-
able (free) from McNeil. However, estimates
sensitive to choice of threshold.



Data set v (=1/a)

simM/G /oo —.134+.03
BUburst 10s —.36 1+ .13
BUburst 1s .17 £+ .03
UCB 10s .05+ .18
UCB syn 10s —.60+ .14
Munich lo TX .09 £+ .04
Munich 1o RX —.03 £ .05

Munich hi .1s A7 £ .12
Munich hi .01s .10 £ .03
Ericsson —.47 + .09
Eri syn 1s —31+£.12

Table: Point estimates for traffic rate tail +
“standard deviation’ .

Tech Pt 3. Stable distributions: A particu-
lar class of heavy tailed distributions: Theory
predicts that under certain assumptions, cu-
mulative traffic in [0,T], aggregated over all
users, can be approximated by a stable Lévy
motion (stable marginals).




The density of a stable distribution does not
exist but can estimate parameters (shape, lo-
cation, symmetry) using numerical maximum
likelihood using John Nolan software.

Tech Pt 4. How to check for independence.

Q&D method 1: check if sample correlation
function

STMX = X) (X — X)
h=12 ...

p(h) =
is close to identically 0. How to put meaning

to phrase close to 07 If

(a) If finite variances, Bartlett's formula
provides asymptotic normal theory.

(b) If heavy tailed, Davis and Resnick for-
mula provides asymptotic distributions for p(h).



Q&D method 2: If data heavy tailed, take
a function of the data (say the log) to get
lighter tail and test. (But this may obscure
the importance of large values.)

QR&D method 3: Subset method. Split data
into (say) 2 subsets. Plot acf of each half
separately. If iid, pics should look same.

EXAMPLE: Silence: 1026 times between trans-
mission of packets at a terminal.

Tsplot: silence QQ plot, alpha=.6696
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Heavy Tailed ACF

Try to fit black box time series model to the
data. Best available techniques suggest AR(9)

9
Xn=> ¢iXn_i+ Zn,
i=1
n=29,...,1029 — 9,{Z,} iid.
Estimate the coefficients and a goodness of fit
test for the AR model is:
Q: Are the residuals iid?

A: Nope.
resid[1:400] resid[600:1000]
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Tech Pt 5. Is the data stationary? Usually
not and there are, for example, diurnal cycles.

Q&D Coping Method: Take a slab of the
copius data which looks stationary.
e Rule of thumb: don’t take more than 4
hours.
e Should we try to model the cycles?

Tech Pt 5. Long range dependence. A sta-
tionary Lo sequence {&n,n > 1} has long-range
dependence if

Cov(&n, &ntn) ~ K PL(R), h— oo
for 0 < 3 < 1.

How to test? Q&D method: Sample acf should
not — O quickly.

EXAMPLE: Ericsson—a days worth of http file
transfers to and from a corporate www Erics-
son server; # bytes sent/second.



Tech Pt 6. Hurst exponent and self-similarity.
A process {X(t),t > 0} is H-self-similar (H-ss)
if for any a > 0 (distributional scaling property)

X(a) =% cHX().

Paradigm: FBM is a Gaussian process which
iIs H-ss and having covariance

Cov(By(t), By (s)) = c(t?H 4 s2H _ | — 5|2H)

— Estimates of H given by wavelet regres-
sion method developed by Abry and Veitch.

— Connection between LRD and H-ss: If
{¢n} has LRD, then block averages of ¢'s ap-
proximately increments of FBM (ie, FGN).

— Theory predicts that under certain as-
sumptions, cumulative traffic in [0,T], aggre-
gated over all users, can be approximated by a
FBM.

EXAMPLE: “A picture is worth a thousand
words.” (Willinger)



EXAMPLE:
Munich lo, RX: Wavelet regression esti-
mation of the Hurst exponent.
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Munich lo, T X: Wavelet regression esti-
mation of the Hurst exponent.
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Tech Pt 7. HOlder exponents. For a process
{A(t),t > 0} the HOlder exponent at ¢ (if it
exists) is (7 — 0)

B(A(t+7) — A(D))” = er2Ho®) 4 o(r2Ho(0))

— For FBM: H = Hy(t).

— If empirical estimates reject constancy
of Hyo(-) then have evidence against FBM ap-
proximation.

— Estimate H,(t) using a ratio estima-
tor of Istas based on quadratic variation. This
relies on limit theorem for Gaussian processes:

2H,(0)—11 © k k—1\2 4.
r2Ho(0) 5,;::1()((5)_)((7)) —7 c.



— Empirical evidence exists that on small
time scales (< 100 milliseconds) Hy(t) is not
constant and it is at these time scales where
one must seek the influence of protocols and
network architecture.

— Do we need multifractal processes?

—~

Data set H H,
SimM /G /oo 904+ .01 .88
BUburst 10s .89 + .02 73
BUburst 1s .81 += .01 87
UCB 10s 58 .03 .65

UCB syn 10s 95+ .07 1.36
Munich lo TX .89 £+ .01 .86
Munich 1o RX 97 +£ .01 .85
Munich hi .1s 1.02+ .03 .66
Munich hi .01s .1.03+.04 .56
Ericsson 88+.02 1.21
Eri syn 1s 1.484+ .02 1.51



