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Traditional queueing theory has relied on

— Lots of independence; Poisson inputs,
— Light tails.

Empirical observations on networks reveal fea-
tures inconsistent with traditional assumptions:

— self-similarity (ss) & long-range dependence
(LRD) of various transmission rates:

packet counts/time in LANS, WANS,
www bits/time (web downloads)

— heavy tails

file sizes,

transmission rates,
transmission durations,
Unix job processing times,
call lengths

Packet interarrival times.



Origins: Bellcore study in early 90’'s revealed
packet counts per unit time exhibit self similarity
and long range dependence.

See Beran et al. (1995); Garrett and Willinger
(1994); Leland et al. (1993); Park and Will-
inger (2000); Willinger et al. (1995a); Crovella
and Bestavros (1997, 1996).

Simple models help to

e Understand origins and effects of long-range
dependence and self-similarity

e Understand connections between

{ SS & LRD } and heavy tails.



Models:

— Superposition of on/off processes (Tagqu
et al. (1997); Mikosch and Stegeman (1999);
Mikosch et al. (1999); Stegeman (1998); Will-
inger et al. (1995b); Heath et al. (1998, 1997);
Jelenkovi¢ and Lazar (1998)),

— Infinite source Poisson model, sometimes
called the M/G/oco input model ( Guerin et al.
(1999); Heath et al. (1999); Jelenkovi¢ and
Lazar (1996); Jelenkovi¢ and Lazar (1999);
Mikosch et al. (1999); Resnick and Rootzén
(2000); Resnick and van den Berg (2000)).

These models lead to the paradigm: heavy
tailed file sizes cause LRD in network traffic.



The infinite node Poisson model:

Infinitely many potential users connected to
single server which processes work at constant
rate r. At a Poisson time point,

— some user begins transmitting work to the
server at constant (ugh!) rate (=1).

— the active user selects a file size from a
heavy tailed distribution.

The good news:

e Fairly flexible and simple.

e [ he aggregate transmission rate at time ¢t is
the number of active users at t.

e T he length of the transmission is random and
heavy tailed.

e T he model offers a simple explanation of
LRD being caused by heavy tailed file sizes.

e The model predicts traffic aggregated over
users and accumulated over time [0,T] is ap-
proximated by either FBM (Gaussian) or stable
Lévy motion (heavy tailed).



The less good news:

e T he model does not fit data all that well.

(a) Constant transmission rate assump-
tion is clearly wrong.

(b) Not all times of transmissions are Pois-
son. Some are machine triggered. (Eg CNN
website)

(c) There is no hope the simple model
can successfully match fine time scale behav-
ior observed below, say, 100 milliseconds which
IS speculated to be multifractal.

RE (b): Note the invariant: behavior associ-
ated with humans acting independently is Pois-
son; behavior associated with machine behav-
ior is not.



Model Inadequacies
Inadequacy 1. Difficult to identify Poisson points.

EXAMPLE: UCB data; http sessions via mo-
dem.

1.0

log sorted data
ACKF

\{\ / i‘\ I
o I "P}\ | \«“U'M!M“ﬂHIW”I”‘}WWWW"M
: o
6 2 4 6 8 fo 0 560 1600 1560 2600
quanties of exponentia lags

Figure: UCB inter-arrival times of requests:

left) qgplot against exponential distribution,rt)

autocorrelation function of interarrival times.
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Inadequacy 2. Model = traffic rates approxi-
mated by either FBM or stable Lévy motion.
In practice, traffic rates not heavy tailed.

POT MLE fitting of Pareto uses McNeil soft-
ware but estimates threshold sensitive.

Table:

Data set v (=1/a)
simM/G/ oo —.13 £+ .03
BUburst 10s —.36 +.13
BUburst 1s .17 += .03
UCB 10s .05 + .18
UCB syn 10s —.60+ .14
Munich lo TX .09 £+ .04
Munich lo RX —.03 £ .05
Munich hi .1s A7 + .12
Munich hi .01s .10 £ .03
Ericsson —.47 + .09
Eri syn 1s —.31+.12

Point estimates for traffic rate tail +

“‘standard deviation”.



Inadequacy 3. Model requires heavy tailed du-
rations to be iid. Often heavy tailed data not
iid and dependence models for heavy tailed
data notoriously difficult.

Coping strategies:
QRE&D method 1: check if sample correlation
function

Sh(x; - XD)(Xign — X)
h=1,2,...,

p(h) =

iIs close to identically 0. How to put meaning
to phrase close to 07 If

(a) If finite variances, Bartlett's formula
provides asymptotic normal theory.

(b) If heavy tailed, Davis and Resnick for-
mula provides asymptotic distributions for p(h).
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Q& D method 2: If data heavy tailed, take
a function of the data (say the log) to get
lighter tail and test. (But this may obscure
the importance of large values.)

QRE&D method 3: Subset method. Split data
into (say) 2 subsets. Plot acf of each half
separately. If iid, pics should look same.

EXAMPLE: Silence: 1026 times between trans-
mission of packets at a terminal.
silence alpha=.6696
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Heavy Tailed ACF

Try to fit black box time series model to the
data. Best available techniques suggest AR(9)

9
Xn =) ¢iXpn_i+ Zn,
i=1
n=09,...,1029 — 9, {Z,} iid.

Estimate the coefficients and a goodness of fit
test for the AR model is:
Q: Are the residuals iid?

A: Nope.
resid[1:400] resid[600:1000]
S
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Inadequacy 4. The traffic data is often not
stationary. For example, there are diurnal cy-
cles.
Q& D Coping Method: Take a slab of the copius
data which looks stationary.

e Rule of thumb: don't take more than 4
hours.

e Should we try to model the cycles?

EXAMPLE: Traffic rates resulting from HT TP
requests to a large server. 24 hours of data

(approx).
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More General Model Specification

1. The k-th transmission begins at M. {4}
IS @ sequence strictly increasing to oo.

2. The size of the file transmitted is J; > 0.

3. A transmission proceeds according to a trans-
mission schedule A.(-).

Ar(t) =the amount of data transmitted
in ¢ time units after the kth
transmission has begun.

Properties of A.(-):

(i) Ar(-) is a non-decreasing cadlag
process

(i) Ap(t) =0, t <0,

(iii) Ar(t) T oo as t 71 oo.

11



The process of interest is cumulative traffic
over [0, t]

X(t) = Z Ar(t —Tp) N Jp..
k=1

Small Time Scale Behavior

For small time scales, we need additional as-
sumptions:

4. {A,} are identically distributed with sta-
tionary increments.

5. The processes Ap(-) are random multifrac-
tals; the multifractal spectrum of Ap(-) is
not degenerated to a single point (ie, there
IS real multifractal behavior.

6. The multifractal spectrum of A.(-) restricted
to any (non-random) interval is non-random.
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Multifractal Background

Holder Exponent: The Holder exponent based
on exponential growth rate of the function «
at t is defined as

log sup |z(u) — x(t)]

uwlu—t|<e

h:(t) :(=Iliminf
+(1) €l0 log €

Rough: In e-nbd of ¢:

lx(u) — xz(t)| ~ eha(t).

Properties:
— hgyy(t) > ha(t) A hy(t) and equality holds if
either

o hy(t) # hy(t) OR
o z(+), y(-) monotone.

— If x, y are non-decreasing:

hao(t) = liminf 129 T &) —z(t =€)
el0 log €
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Multifractal Spectrum: The multifractal spec-
trum of the function x for the Holder exponent
based on exponential growth rate is

dy(a) =dim({t > 0: hg(t) =a}), a€[0,0),

where dim(A) is the Hausdorff dimension of A.

Relating multifractality of transmission sched-
ules to cumulative traffic:

Theorem: If the assumptions (1)—(6) hold,
then with probability 1, dx = dg4,.

Possible explanation for multifractality in ag-
gregate traffic: intermittancy in individual trans-
missions caused by blocking and congestion.

Proof. Sample path analysis.

Example: A.(t) is an increasing Lévy process.
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Large Time Scale Behavior

Additional distributional assumptions:

7. {I'.} is homogeneous Poisson process with
intensity parameter .

8. {(Ar,Jr) : kK > 1} are iid independent of
{Ix}-
Note:

Ly =inf{t : Ap(t) > Jp} = A} (Jp)
—length of k-th transmission

and

Fr(z) = P[Ly1 > z] = P[A1(z) < J1].
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9. Assumption about the joint distribution of
(A1(-), J1):

3 regularly varying function o € RVy,

d proper random process x with stationary
increments, taking values in D[0, oo),

and for each fixed € > O,

1 Jq Ay(T)
P (o(T) L(T) 7S © ]

—w € YP[x € -]

on ID[O, co).

10. Technical: For all v > 0, assume

. 1 J1 L4
lim limsup = P <e—>v| =0.
el0 T—oo Fj(o(T)) |o(T) T

11. Technical: Assume

E[x(1)"*] < o0.
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consequences:

1. x is H-self-similar. (Elaborate methods of
Lamperti, Vervaat, Durrett & Resnick.)

2. x cadlag, ss, non-degenerate implies H > 0.
3. x IS non-decreasing, so H > 1.

4. If H = 1, then x(¢t) = tx(1) is linear and
no interesting structure so exclude.

5. The distribution tail of J; is RV_4:

Fi(z) =1—-Fj(x) ~ 2~ L(x).

6. Cumulative traffic on large time scales looks
like stable Lévy motion. More precisely:
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Theorem. Suppose (1)—(3) and (7)—(11) hold

and define
Yor(t) = X(Tt) b;()\;;tE(Jl)
where
M = ({2 ) @

iIs the usual quantile function. Then we have
Y7 —idi Zay

where Z, is mean 0O, skewness 1, a-stable Lévy
motion.

Sufficient conditions:

(i) J1 and Aq are independent.

(ii) J1 has a tail of index «a.

(iii) A7 is itself a proper H-SS process.
(iv) E[A1(1)7P] < oo for some p > «j.

If A1 is a #-stable Lévy motion, (iii) & (iv) ok.
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How to Prove:

I. The point process

O
M = Z (Mg, A, i)
k=1

IS Poisson with mean measure
Ady X P[A1 € da, J1 € dj]
on (0,00) x Dy x (0, 00).

II. X(T) is a function of M. Write

X(T) = X1(T) + Xo(T),

where

X1(T) =accumulation from transmissions
starting and ending before T,

X1(T) =accumulation from transmissions
starting before T but ending after T.

X->(T) is negligible.
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How to Prove (continued):

III. X1(T) is a functional of M restricted to a
finite region and hence can write

P
xy(1) =* 3w
k=1

where {Wk(T)} iid indep of P(T) which is PO.

IV. Regular variation type condition holds for
tail of Wy

im 7P |[Wi > b (T)w| = w .

T—o0

V. Point process method to get that the Pois-
sonized sum of W's is asymptotically stable.
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