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1. Introduction: Very Heavy Tails.

Attempts to explain network self-similarity focus on heavy tailed trans-
mission times of sources sending data to one or more servers:

P[On-period duration > x] ~ z7".
Reasons for assuming 1 < 3 < 2:

e (Applied) Willinger et al (Bellcore) analyzed 700+ source destina-
tion pairs, and estimated the tail parameter of on-periods. Value
usually in the range (1,2).

e (Theoretical) Mathematical analysis has been based on renewal
theory. Without a finite mean, stationary versions of renewal
processes do not exist and (uncontrolled) buffer content stochastic
processes would not be stable.

BUT
Need for the case 0 < § < 1:
e BU study (Crovella, Bestavros, ...) of file sizes downloaded in
www session over 4 months in 2 labs. In November, 1994 in room

272: B =~ .66.

e Calgary study of file lengths downloaded from various servers
found [’s in the range of 0.4 to 0.6.
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Figure 1: BU File Lengths, Nov 1994, Room 272
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1.1. Summary of the difficulties with the case 0 < 5 < 1.

e Models will not be stable in the conventional senses; normalization CORNELL
necessary to keep control.

e Models will not have stationary versions.

e Some common performance measures which are expressed in terms
of moments, may not be applicable.

e Nervousness about models where moments do not exist.

e Confusion between concepts of unbounded support and infinite
moments. (Normal, exponential, gamma, weibull, ... have un-
bounded support.)



2. Infinite source Poisson model=M/G/cc input model

Notation and concepts:

{T's,n > 1} = times of session initiations; homogeneous Poisson
points on [0, 00) with rate A.
{T,} = session durations; iid non-negative rv’s
with common distribution G(x) satisfying
G(x) ~2PL(z), 0<pB<1;

t
m(t) :/ G(s)ds ~ ct'PL(t) 1 oo; truncated mean function,
0

M (t) = number of active sessions at ¢,

= Z I, <t<r,4m); E(M(E)) = m(t);

n=1

=+# of servers in M/G /oo telephone model.

A(t) = /O t M(s)ds,

= cumulative work inputted in [0, {] assuming unit rate input.
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r = server work rate,
X (t) = content process,
dX(t) = dA(t) — Tl[X(t)>0]dt
T(y) =inf{t > 0: X(¢t) >~}




3. Very Heavy Tails and Gaussian Approximations (Rootzen)
3.1. First order behavior. CORNELL

As T — oo, in probability,

M(T) ~m(T) = T PL(T),
A(T) ~X(T) ~ T'm(T) = cT* P L(T), E——

and as 7 — 00

7(7) ~(2 = B)VEIV ()

where
V(T) = Tm(T) = cT* P L(T)

SO
V(y) = 071/(2—6)[/(7)'




3.2. Second order behavior; Gaussian approximation.

We have M, A, X asymptotically Gaussian.

3.2.1. Approximations for M(-).
As T — o0, in D|0, o0),

Properties of the limit G(-):

e (G(+) is a zero mean, continuous path, self-similar Gaussian process.

e The covariance function C(s,t) of G is

C(s,t)=(svt)y P —|t—s|'" 0<s<t.

BUT
Note

e (G(-) is not stationary,
e (G(+) does not have stationary increments

e G(+) is not a fractional Brownian motion.
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3.2.2. Approximations for A(-).

Integrated version of results for M: As T — oo

. AT — fOT(')m(s)ds oy ¢

Properties of G(-):
o G (+) is a zero mean, continuous path Gaussian process.
e G(-) is self-similar satisfying

N ~

Gle) = BP2GL), e¢>o.
e ((+) has covariance function

s t
C(s,t) = / C(u,v)dudv, 0<s<t.
u=0 Jv=0
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3.2.3. Approximation for X(-).

The only way to get a limit law for X (7) is to allow work rate r to

depend on T'; same philosophy as heavy traffic limits.

Fix y > 0, and set
r=rpr=m(Ty).

Let

Xr(t) = content at Tt when work rate=rr.

Then for t <y,
XT(t) =0

and in D(y, o0)

where cr(+) is given

([ frym@d\ ity
CT(t)—< () ) <m(T) (t y))~

Note G(-) given in approximation for A(.).
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3.3. Tidbit of disscussion

Recall '
input rate = M(T) < m(T)

so to have any hope of balance, need output rate of order m(7"). Write

Tt

Xr(t) = \/ (A(Tt) — A(s) = ro(Tt — 5))

s=0
—\/( A(Ts) —rTT(t—s))

Now proceed:
1. Re-write A(Tt) in terms of Gp(t). Do algebra.
2. To evaluate the sup of the process, take the derivative.

3. Try to set derivative =0. OK, you can’t really do this. Look
for turning point. Dream about what the answer would be if M
replaced by its approximation.

4. Get properties of points where local maxima achieved.

NB: Can neaten things up if assume additionally 2nd order reqular
variation.
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4. Sessions initiated at renewal times. (Mikosch)

4.1. The model.

{Sn,n > 1} = times of session initiations; ordinary renewal process;

So=0, Sy =Y X; {X,} iid;
i=1
X;~ F(z); F(z)=1— F(x) € RV_,
{T,} = session durations; iid non-negative rv’s
with common distribution G(x) satisfying
G(z) € RV_g,
{T,} independent of {S,}.

M (t) = number of active sessions at t,

[o¢]
= E s, <t<S,+T0]
n=1

A = [ Ms)as

= cumulative work inputted in [0, ¢], assuming unit rate input.
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4.2. Cases.

1. COMPARABLE TAILS: 3 = a and F(z) ~ ¢G(x), ¢ > 0, as ¥ —
00.
(a) The distribution tails of X; and T} are essentially the same.
(b) For simplicity, we assume ¢ = 1.
(¢) Kind of stability for M which converges weakly w/o normal-
ization.

2. (G HEAVIER-TAILED:

(a) 0 < B < a < 1or if 3 = a, then F(z)/G(z) — 0 as
x — 00 so that the distribution tail of X is lighter than the
distribution tail of T7.

(b) 0 = § < a < 1 so that the distribution tail of 7} is slowly
varying and thus again heavier than that of Xj.

(a) Implies buildup in the M process.

3. F HEAVIER-TAILED: 3 > « so that the distribution tail of X; is
heavier than the distribution tail of 77.

e Renewal epochs sparse relative to session lengths.

e Of less interest.
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Figure 2: Paths of M; oo = 3 = 0.9 (left); @ = 8 = 0.6 (right).



Figure 3:

sy

Paths of M; (a, 8) = (0.9,0.2) (left); (e, 8) = (0.9,0.4) (right).
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4.3. Warm-up: Mean value analysis for o, 7 < 1.

Obtain asymptotic behavior of E(M(t)) from Karamata’s Tauberian
theorem. Let

U(z) = Z F™(z), x>0, =renewal function.
n=0

Since 0 < a < 1, well known (eg Feller, 1971); as 2 — oo,
U(z) ~ (F(l —a)I'(1+ ) F’(x))_l ~ c(a)x®/Lp(z).

Therefore ( t — 00),

EM(t) = /O U(dz) Gt — z) = /0 G(tg(5 S)WI%‘;) (Gwum)
~c(a) /0 (1—s)Pas*lds % = c’(a)%.
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Conclusions

e Case (1): Comparable tails.

E(M(t)) converges to a constant.

e Case (2): G is more heavy-tailed than F.
EM(t) — oo.

e Case (3): F is more heavy-tailed than G.
EM(t) — 0.

and hence .

M(t) = 0.
so Case (3) may be of lesser interest. (Renewals are sparse relative
to event durations that at any time there is not likely to be an

event in progress.)
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4.4,

)

Summary of results.
Table 1: Limiting behavior of M(t) as t — oc.
Conditions Limit behavior of M(t)

ast — oo
0<a<l M (t) = random limit.
F~G
0<f<axl )
or0<a=p<1land F = o(G) %M(t) = random limit.
0<p<l1 % = constant
E(X1) < 00 M (t)— random centering — Qaussian rv
VtG(t)
— M(t)
0<pf<a= Tosm = constant
E(X;) =0 u1(t)= truncated 1st moment
E(X1) < o0 Stationary version of
E(Ty) < o0 M (-) exists

Focus on the first 2 rows corresponding to o, 5 < 1.
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4.5. Renewal: o, § < 1, comparable tails.

A kind of stability exists for this case since fidi’s of M (¢-) converge in
distribution to a limit.

4.5.1. Preliminaries

Define
N(z) :Z lig, <o) = inf{n: S, > 2} =95"(x), 2 >0.
n=0
= renewal counting function.
Ze(tlmjk) =N = PRM(Leb x v,) on [0,00) x (0,00] :=E
k

Vo(z,00] = 27

Xo(t) =) gk, 20,

t<t

=non-decreasing a-stable Levy motion with Levy measure v,.

b(t) ~ (ﬁ)b (1), t— o0, tF(b(t) ~1:

= quantile function of F'
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Sis CORNELL
=26 X (1), (s — oo),

= renewal epochs are asymptotically stable.

(X7 =X., F(s)N(s) = X ()

00
1
- .
g E 61;5('71) = Xa m M+ [O, OO) Renewal: sessions
n=0




4.6. Comparable tails; o, § < 1.

Define the time change map by
T :D'0,00) x M4 (E) — M, (E)

by
T(x,m)=m

where m is defined by

i) = [[ fatuoymaudo), 1€ CpE),
If m is a point measure with representation m =), €, ,,), then

T(z,m) = Z E(@(mr),yn) -

k
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Steps for analysis

1. in M,(E), as s — oo, regular variation of G equiv to

o0

Z‘E(

k=0

= No = PRM(Leb x 1,).

T,
) b(?) )

w |3

2. Since {Si} is independent of {T}}, get joint convergence in
D[Oa OO) X MP(E)7

S[s.] >
(@ , kzge(,; 5 ) = (Xa Nao)

7b(s)

3. Apply the a.s. continuous function 7"

Sls] i
T< b(S) 726(1;’:(1‘6))) :ZG(S[SWS] Ty =

k=0 ’ k=0 ) e
[e.e]

€ s n, =T (Xa Na) .
=0 (b(s)’b(s))

4. Evaluate on {(u,v) : u < t < u+ v} to get result for M: The
fidi’s of M (t) satisfy as s — oo,

M(st) =Y Lse oy sinmoy = Moo(t) = D Xt <t<Xa i) 4] -
k=0 k

CORNELL

Renewal: sessions




4.7. Case 2: G heavier; o, 3 < 1.

Ingredients for analysis:

1. Recall b(t) is the quantile function of /' and satisfies

sF(b(s)) — 1, (s — o0).

2. Since G € RV_g,

. v
in M, (0, 00], where — denotes vague convergence.

3. Equivalent to previous convergence is

F(b(s)) &
G(b(s)) ;55’5 i

4. Extend by adding time component:

F(b(s))
(b(s)) 25(@7%) = Leb x v3.
k=0

G(b(s)

b(s)
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5. Augment using independence of {7},} and {S,}:

Sis1 F(b(s))
(b(s) "G (b(s)) D e ,bf';p) = (Xa, Leb x v).

k=0

CORNELL

6. Apply the a.s. continuous map 7'; evaluate the result on the
correct region to get result for M: The fidi’ s of M satisfy

F

G

Renewal: sessions

(5) s t — ) PAdX T (u). s — o0
(s)M( t):>/0(t )P dX (u). .



5. Cumulative work process.

Sample results for workload process
t

At) = / M (s)ds.
0

5.1. The case ux < oo, g€ (1,2)

Define the quantile function of G:
1

o(t) ~ (m)g(t), T —

Assume either FF € RV_,,1 < a <2 or 0% < c0.
1. Suppose F' € RV_,, and either
(a) a> for
(b) @ = and F(z) = o(G(x)) or
(c) 0% < .

Set

Ag(u) = o(s)™" (A(su) - su,uT/,uX>, u > 0.

Then (s — 00), s
As() = by Xﬁ() )
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where X3 is a -stable spectrally positive Lévy motion on [0, c0).

2.If F € RV.,, a =3 and F(x) ~ ¢G(z), then (1) holds, where
Xp is (-stable Lévy motion with a skewness parameter.

3. f FERV ,and a < for a = 3 and G(z) = o(F(x)), then, as
s — 00

(b(s) " [A(-8) — 5 () pr/px] = i Xal),

where X, is spectrally negative a-stable Lévy motion.

5.2. «a,f<1.

Case (2) assumptions hold: 0 < # < a < 1 and if a = (3, then
F(s)/G(s) — 0, as s — oco. Then

F(s) t-w)
_(S)A(st) :>/0 ﬁan (u), t>0,

sG
in C[0, c0).
NB: This is the integrated version of the result for M.
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