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Software

1. Xtremes: Package accompanying Reiss &
Thomas book. Menu driven, easy to use.
Some programming capability. Many nice
data sets. Project under long term devel-
opment.

2. McNeil Splus module EVIS: Module cre-
ated for Splus by Alexander McNeil avail-
able free at
http://www.math.ethz.ch/mcneil/.
Versions for windows or unix. Profession-
ally done. Requires some version of Splus
or Splus2000. Easy to extend within the
Splus environment.



Extreme Value Analysis

Build models where principle features of inter-
est extremes, not central values.

Problem: How to make inferences well beyond
the range of the data~?

Examples.

1. T-year flood. Project Neptune in Nether-
lands had goal to reassess height of the Dutch
dikes. The 10,000 year floot is the height
u10000 Such that the expected time between
exceedances of uigggo is 10,000 years. Must
estimate
Fo(l— ) = F (),
10,000 10,000

where F' is the distribution of the maximal
height per year. If we had, say, 100 years
worth of data, ujpgggg would be well outside
range of data and could not be estimated non-

parametrically using say the empirical cdf.
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Examples (cont).

2. VAR-value-at-risk. Let

St = price of asset at ¢

and define log-returns as

Ry =109 .5t — log S;_1.
Stylized facts:

Mg hypothesis
Volatility
Heavy tails
{R:} has minimal correlation
but {|R¢|} and {R?} have LRD.

The loss variable is the “loss’ expressed in pos-
itive units:

St — Sol, if S —Sp <0,

Li = —(S;—Sp) =
t = =(5=50) {—|St—So|, if S¢ — So > O.



So if Ly is negative, there is a profit. The
value-at-risk parameter VaR(T,q) for the pe-
riod T is the gth quantile of the loss distribu-
tion defined by

P[Ly < VaR(T,q)] = q.
How to compute: Define

T

Fp(z) = P[— ) _ R; <],
t=1

and
VaR(T,q) = V0<1 — e_FF(Q)).

For ¢ = 0.999 say, there is only prob .0001
of losses exceeding VaR(T, q) over a time span
length 7T'. Must estimate very large quantile.

3. Expected shortfall. If the loss exceeds VaR,
by how much??



Compute
E(Ly|Ly > VaR(T,q)),
or
E(LT — VaR(T, q)|Lt > VaR(T, q)).
If Lt has distribution F', then

Y F(dz)
E(L7|Ly > VaR(T,q)) = /\/aR(T,q)xF’(VaR(T, 5y

4. CaR: Capital-at-risk. This is the maxi-
mal amount which may be invested so that a
potential loss exceeds a given limit with given
small probability. Given [ and g, CaR(T,q,l) is
the initial capital Sg satisfying

¢ = P[Ly < 1] = P[CaR(T, g, 1)(1—eXi=1Fi) <[]

and it turns out
[ [

CaR(T,q,l) = N ———.
TaD =TT Fr@ ™ 7o)
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Basic Theory
Two inference methods for extremes:

1. Exceedances. Exceedance sequence = par-
tial duration series or PDS. Analysis using ex-
ceedances is called the peaks over threshold or
POT method.

2. Maxima. Method of yearly maxima. Se-
quence of maxima called the annual maxima

series or AMS.

Suppose X4q,...,X, are iid with common dis-
tribution F(x) and define

n
Mn i \/ X’L — maX{Xl, « o ,Xn}.

=1

The distribution of My:
P[Mp < z] =P[X; < =z,..., Xn < 7]
=P[X; <z]--- P[Xn < 7]
=F"(x).



Maxima

Say F € D(G) if there exist scaling constants
an, > 0 and centering constants b, € R such
that as n — o
My, — by,

an

P| < z] = F"(anx + bn) = G(x)

(DofA)
for all x such that 0 < G(z) < 1, where we also
must assume that G is a proper distribution
whose probability mass is not concentrated at
one point.

Remarks. (1) Importance? Sppse Xq,...,Xn
are iid with common (unknown or partly known)
distribution F. We need the distribution of M,,.
Write

F"(anx + bn) ~ G(x),

or changing variables y = anx + bn,

F™(y) ~ G(y — b").

an



So if F™ unknown or hard to compute, instead
deal with a location/scale family of distribu-
tions.

Remarks. (2) DofA holds for most F's (for

some G): {normal, log-normal, weibull, gamma,
exponential, Gumbel}, {log-gamma, pareto, sta-
ble, Frechet}, uniform.

Remarks. (3) Caution: the rate of conver-
gence in DofA can vary enormously.

Remarks. (4) Caution: The iid assumption
may not be sensible?



The method of yearly maxima: Suppose for
the i-th “year” we have observations (claims,
water levels, financial exposures)

X](i), 17=1,...,m,

producing ‘“yearly” maxima

7y (8)

— Z W
Y; = \/ Xj ,t1=1,...,n.

J=1
Perhaps X]@, r=1,...,n;9 =1,...,m is not
observed or not retained. Must make infer-
ences based on observed maxima over n years
Yi» 1 <1< n.

If the X's ~ F', then the maxima
Y1,Y5,...,Y,,

are a random sample size n from F™(xz) and
an approximate random sample from G((y —
bm)/am), @ location and scale family.

But: What is G?
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Class of Extreme Value Distributions

If F € D(G), then G is one of the types of
the following classes of distributions called the
extreme value distributions:

(i) Gumbel or EVO class with an exponential
tail:

Go(x) = exp{—e™*}, =z €eR

(ii) Frechet or EV1 class with a heavy tail and

which is bounded below:

e~ T ifz>0,a>0

G — bl bl bl
1,a(2) {o, if 2 < 0.

(iii) Weibull or EV2 class which is bounded above:

e_|x|_a

: if <0, <O,

Q —
2,0(2) {1, if £ > 0.
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Extreme value densities: EVO, EV1, EV2.
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Von Mises Parametrization

Various names: von Mises parameterization,
v-parameterization and Jenkinson parameteri-
zation.

Set v = 1/a, which is sometimes called the ex-
treme value (shape) parameter. Without wor-
rying about location and scale for the time be-
ing, define for v € R,

Gy(z) = e_(l_l'vx)_lM, 1+ ~vx > 0.

When ~v = 0, write
im (1 4+ ~z) Y7 =2,
~v—0

and so

Go(z) = exp{—e™"}, z€ER,
the Gumbel distribution. Set

x —_—
G’Y,,LI,,O'(:U) — G’Y( 'u,)7

o)
and we get a 3-parameter family dependent on

shape, location and scale.
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Note

1. v > 0= heavy tail, support =(—%,oo)

G (x) ~ ar;_l/v, T — 00.

2. v = 0 = exponential tail, support =(—o0, c0)

Gy(z) ~e™*, x— oo.
3. v < 0 = bounded above, support =(—oo, ﬁ).

Moral: The assumption F € D(G) is mild and
robust. Almost all text book F's satisfy this
assumption. G is one of the extreme value
distributions. If you need to fit a distribution
to an annual maxima series, try fitting the 3-
parameter family G~ u,0 by MLE.
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Exceedances

Pick level v and observations bigger than u are
the exceedances. Names:

u =level, threshold,
priority level, retention level.

If {Xn} iid ~ F, exceedance times {t;,j > 1}
defined by

T1 =inf{j21:Xj>u}
7-2=inf{j>7-1:Xj>u}

Tr = inf{j > Tp_1 - Xj > u}
{Xr;,J > 1} = exceedances
{Xr; —u,j > 1} = excesses.

In reinsurance, excesses correspond to XL-treaty
excesses of loss.
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Distribution theory: {XTj,j > 1} iid and

P[Xr; > z] =F(z) .= P[X1 > | X1 > u]
. {F(x) for x > u,

F(u)’
1, for x < w.
=dX1|X]_ > Uu.

Theorem. If FF € D(G), Q = —log (G, then as

n — OO

P[X ) < anz + bn] =W (x)
T
J

_ )0, if Q(z) > 1,
C|1-Q(x), ifQz) <1.
Since G =EV distribution, we get the follow-

ing possibilities for types of limiting exceedance
distributions corresponding to Gg, G1 o, G2 o
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1. Exponential distribution (GPO):

Wo(z) =1—-¢%, x>0.

2. Pareto distribution (GP1):

Wialx)=1-2"% a>0,z>1.

3. Beta distribution (GP2)

Wooa(z) =1—|z|7% «a<0,-1<z<0.

Von Mises parameterization of
GP distributions

Write for v € R the shape parameter family

Qy(z) = (1 +~2)77, 149z >0,
with the understanding that

Qo(x) = e *.
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Define

Wrle) = {o, if Qy(z) > 1.

=1—-¢e¢% x>0,v=0.
=1—(1—|—’y:c)_1/7, x>0, v>O0.

1
=1—(1—|—’y:c)_1/7, 0<x<m, v < 0.

Three parameter GP family depending on
location=u, scale=c, shape=x:

r— M

W77H7J(x) — W’Y( o )

Note v = 1/a > 0 corresponds to heavy tails.
Cases:

a > 2 = finite variance
1 < o < 2 = infinite variance, finite mean,
a < 1 = infinite variance, infinite mean.
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1 GP2, gamma=-1
GP0, gamma=0
05 +
P1,’ gamma=1
1 2 3 4

Generalized Pareto densities: GPO, v = 0; GP1,yv =
1 (Pareto); GP2, vy = —1 (uniform).
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Empirical CDF & Quantiles

The gth order quantile of a distribution F(x)
IS

F (q)=inf{s: F(s) >q}, 0O0<g<1.

Let Xq,...,Xy iid ~ F(x), F unknown or partly
known. Define for x € R empirical cdf

_ 1 2
Fn(z) =— ) 1(—00,2)(Xj)
j=1

=% of observations < z.

Then F,(z) — F(z) uniformly in £ as n — oo.
So

Fu(z) ~ F(z)

and expect
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Define order statistics

Xl:n < X2:n <--- S Xn:n.

For0<g<1

vab_(Q) — X[nq]:n
is an estimator of F*(gq). When does this
make sense?

Example. Goal: estimate the 100 year flood

1 99
FC(l— —)=F"(—
(=100’ (100’

with 100 data points? According the the previ-
ous prescription, we use Xgg9-190 the 2nd largest
order statistic.
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Reminder: F¥(q) = X[pq:n-

Goal: estimate 1000 year flood with 100 data
points:

1 999
FC(l-— ) =F (") = F*(.999
(1 - 1000’ ({000’ (:999)
with n = 1007 Then ¢ = .999, ng = 99.9 and

[99.9] = 100;
estimate is X100:-100, the largest observation.

Goal: estimate 10,000 year flood based on 100

observations:
1
F(1 — )y = F( 9999
10,000 10,000
and ¢ = .9999, ng = 99.99, [nq| = 100

estimate still sample max.

) = F(.9999)

This is not very clever.

Conclusion: Estimating extreme quantiles be-
yond the range of the data is not sensible using
this (non-parametric) method based on order
statistics. Extrapolate beyond data range us-
ing EVT.
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Diagnostics & Estimation

Some useful techniques:

0. Quick check of iid assumption with TS plot
and ACF plot.

1. MLE estimation in 3-parameter model.

2. QQ plot as diagnostic or confirmatory tech-
nique. Is the data heavy tailed? For a correct
model, empirical quantiles (of E,(z)) plotted
vs model quantiles should yield an approximate
straight line.

3. Variant of QQ plot: mean excess plot; re-
quires finite mean.

4. Hill plot and variants for heavy tailed anal-
YSIS.

5. Quantile estimation using the fitted model
tail.
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Case Study: S&P 500

Standard & Poors 500 stock market index:

daily data from July 1962 to December 1987;

no corrections for weekends or other market

closures. Log-Returns were computed by
returns = diff(log(S&P).

Return process: S&P 500 Series : returnsp

I I I I I I I I
0 1000 2000 3000 4000 5000 6000 0 10 2 30
Lag

Time series plot of S&P 500 return data
(left) and the autocorrelation function (right).
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Although the log-returns do not exhibit much
correlation, this is not true for (log-returns)?
and |(log-returns)|:

Series : (diff(log(sp)))"2 Series : abs(diff(log(sp)))

AC
AC

N | N
| | ‘H‘
o) |‘||‘I.|I PRI RS AT W o) ‘HHHHHHHH|HH““HHH|
o o
T T T T T
10 20

I I B
T
0 10 20 30 0
Lag Lag

30

The autocorrelation function of the squared
returns (left) and the autocorrelation function
of the absolute values of the returns.
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Are the tails of the log-return process heavy?
QQ-plotting.

Left: positive returns, k = 200, slope estimate
of a = 3.61.

Right: abs(returns[returnsj0]), k¥ = 150, a =
3.138.

QQ-plot, Positive Returns QQ plot for lower tail

ted data

uantiles of exponential uantiles of exponential
q p q p
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Hill, altHill and smooHill plots of the two
tails.

Upper row: right tail, alt on log scale, smooth-
ing: r = 8.

Lower row: left tail, alt on log scale, smooth-
ing: r = 8.

Hill plot AltHill AltsmooHill
o o =
= = =
£ £ £ =
= = =
number of order statistics theta theta

H plo AltH AltsmooH
E 7 - £
= = B

tttttt



Summary of estimates: Estimates of a from
various methods. Gains if one can do estima-

tion in a restricted family (a > 0).

Note the

sensitivity of the estimates to the choice of k.

Est'r k & Cl MSE
QQ 200 3.61
100 3.63
Hill(GP1) | 200 3.45 [2.9,4.0] 0.07
100 3.81 [3.2,4.7] 0.16
Mom(GP) | 200 5.277 [3.0,35.9] 142
100 4.26 [-11.2,23.9] 1914
MLE(GP) | 200 5.85 [-29.3,44.9] 1149
100 4.32 [-23.2,45.6] 1137

Right tail.
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Estimator k Q ClI

QQ 150 3.138
100 2.98

Hill(GP1) 150 3.387 2.90,4.04]
100 3.48 2.85,4.26]

Moment(GP) | 150 2.774 [2.096,7.02]
100 2.415 (1.83,7.27]

MLE(GP) 150 3.25 [2.002,8.457]
100 2.75 [1.462,13.914]

Left tail.
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VaR Calculation—left tail quantile.

Estimator k Q qg = .99 gq=.999

Hill(GP1) 150 3.387 .0214 .0423
100 3.48 .0214 .0415

Moment(GP) | 150 2.774 .0217 .046
100 2.415 .0214 0457

MLE(GP) 150 3.25 .0214 .0425
100 2.75 .0212  .0425

Comparing quantiles of the return distribution’s
left tail giving the approximation to VaR.
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Case Study: Danish Fire Data

danish.all=total loss per event for claims 1980-
1990 in 1985 krone; 2492 |osses.
danish—=exceedances over 1 million krone; 2156

losses.

Danish Data

W B 0 K

MMMMMMM

o 500 1000 1500 2000

0

QO Danish

quantiles of exponential

Tsplot and QQ-plot of Danish data.

QO Danish.all

log Sored data
log Sorted data

quantiles of exponential

Parfit Danish

QQ-plot Danish.all; parameter estimate gives
a = 1.38 (infinite variance).
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Hill plots. The QQ & Hill plots so stable, un-
derlying distribution close to Pareto. Confirms
estimate a ~ 1.4.

danel : Hill plot
2000 540 359 267 220 193 172 157 142 126 112

=0.95)
2.5

2.0

15

Hill estimate of shape (alpha) (ClI, p

1.0

15 65 123 189 255 321 387 453 519 585 651 717 783 849 915 981 1056

Number of order statistics / exceedances of a threshold
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Independence? Sample acf: Exploratory, in-
formal method for testing for independence
based on the sample autocorrelation function
ﬁ(h) where

SE (X = X) (X — X)
ZZ{":l(Xt — X)Q .

Note variance is infinite so mathematical cor-

relations do not exist. However, when {X,}

iid, heavy tailed (Davis and Resnick (1985a)),

1, ifh=0,
0, ifh=£0.

p(h) =

lim p(h) =

n—oo

and for h > 0, p(h), suitably scaled, has a limit
distribution corresponding to the ratio of 2 sta-
ble random variables.

Obtain quantiles of the limit distribution; form
CI for p(h). Get magic window acf plot.
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ACF

95% Confidence Band

0.2

0.1

-0.1

-0.2

Lag

95% confidence band for the acf of the Danish

loss data.
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QQ-plot for exceedances so straight that hope
gpd fits well:

black=fitted gpd; a = 1.39, 0 = 1.06,
red—=empirical

Fitted CDF vs empirical

1 2 3 4 S

Fitted Density vs kernel density est
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Finale
From here can

— calculate mean excess of loss
— calculate quantiles
— evaluate sensitivity to choice of threshold

Conclusion: EVT offers

e a useful tool for extreme tail and quantile
estimation beyond the range of the data.

e a technique with sound theoretical basis

e good fits

e potential reduction in ad hoc techniques
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BUT!!

e Model uncertainty

e parameter uncertainty

e sensitivity to choice of threshold or choice
of number of upper order statistics

e when estimating beyond the range of the
data, some religious conviction is helpful;

e dependencies (= clustering) should be taken
into account in more subtle analyses

T hanks.



