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1. Introduction

• The conditional (multivariate) extreme value model (CEV).

– What is it?

Short, slightly crude answer (more later): (X, Y ) satisfy a
conditional extreme value model if

∗ Y is in a domain of attraction of an extreme value distri-
bution and

∗ ∃α(t) > 0, β(t) ∈ R such that

P
[X − β(t)

α(t)
∈ ·
∣∣∣Y > t

]
⇒ H(·),

for a non-degenerate distribution H. Given Y is large,
the distribution of X is approximately the type of H.

– How is it positioned vis a vis usual theory? What is its rela-
tionship to usual multivariate EVT and theory of multivariate
regular variation.

– Is it really applicable? (Early days. Hopefully. Maybe...yea.)
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– Can we detect when the model is appropriate and plausible
for a data set? (We think so and this is promising. See Hillish,
Pickandsish, Kendall’s tau plots later.)

• Problems with traditional multivariate EVT.

– Usual formulation of multivariate EVT has the observation
vectors X1, . . . ,Xn iid random vectors in Rd and each com-
ponent of the d-dimensional vector X i should be in a one
dimensional domain of attraction.

May not be true. See QQ plot later.

– Even if traditional theory’s assumptions satisfied, may have
asymptotic independence which hinders sensible estimates.

• So CEV model applicable if either

– Not all components of a vector are in a domain of attraction.

– Multivariate EVT applies but asymptotic independence pre-
vents sensible estimates of the probability of risk events and
a supplementary assumption of CEV useful.
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2. Background: Regular variation on cones.

Regular variation is a unifying idea providing a common framework for
several theories.

Suppose CONE is a cone centered at 0:

x ∈ CONE ⇒ tx ∈ CONE, t > 0.

Suppose Z∗ is a random vector. Z∗ has a regularly varying distribution
in standard form on CONE if

tP
[Z∗
t
∈ ·
]

v→ ν∗(·), in M+(CONE).

Here M+(CONE) all Radon non-negative measures on CONE. A
Radon measure is finite on compact sets.
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2.1. Different cones ⇒ different theories.

CONE Application

E = [0, ∞] \ {0} multivariate extreme value theory

E0 = (0, ∞] hidden regular variation,
coefficient of tail dependence;

Eu = [0,∞]× (0,∞] Conditioned limit theorems when
one component is extreme.

[−∞, ∞] \ {0} weak conv to stable laws

Table 1: Theories stemming from standard multivariate regular variation on dif-
ferent cones.
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The different cones have different compacta and hence Radon means
something different on each space.
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2.2. Consequences of the regular variation definition.

Recall the definition of standard regular variation:

tP
[Z∗
t
∈ ·
]

v→ ν∗(·), in M+(CONE).

• For our cones, a scaling argument ⇒

ν∗(t·) = t−1ν∗(·), t > 0.

• Translated scaling property via polar coordinates transform:

x
T7→
(
‖x‖, x

‖x‖

)
and we get

ν∗ ◦ T−1 = ν1 × S(·)
where

ν1(r,∞] = r−1, r > 0,

S is a measure on the unit sphere intersection CONE.

Depending on the cone, S is finite (pm) or not.
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3. Warmup: EVT, the cone E = [0,∞] \ {0} and reg-
ular variation.

3.1. Formulate the domain of attraction problem in multivariate
EVT

Central issue in multivariate EVT: Given X1, . . . ,Xn iid random vec-
tors in Rd with common distribution F .

3.1.1. Problems:

• When do there exist

a(n) = (a(1)(n), . . . , a(d)(n)) ∈ Rd
+, b(n) = (b(1)(n), . . . , b(d)(n)) ∈ Rd,

and a probability distribution G such that [DOA]

P [
( n∨
j=1

Xj − b(n)
)
/a(n) ≤ x] = F n(a(n)x + b(n))

= P [
( n∨
j=1

X
(i)
j − b(i)(n)

)
/a(i)(n) ≤ x(i); i = 1, . . . , d]→ G(x)?

(1)

• What is the family of possible limits G?
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• For a given G how do you characterize a(n) and b(n)?

• For a given G in the family of possible limits, what properties
does F have to satisfy in order for (1) to hold.

If (1) holds, we say F is in the domain of attraction of G and
write F ∈MDA(G).

• The important message: X is in the domain of attraction of the
multivariate EV distribution G(x) iff ∃ monotone transforma-
tions b(i)(t), i = 1, . . . , d (satisfying limiting properties) such that

Z∗ =
(
(b(i))←(X(i)), i = 1, . . . , d

)
is standard regularly varying on E = [0,∞] \ {0}. Thus

X =
(
b(i)(Z∗(i)), i = 1, . . . , d

)
.
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3.1.2. Harvest some quick facts.

• From (1), we take logarithms to get

n
(
1− F

(
a(n)x + b(n)

))
→ − logG(x), (G(x) > 0).

Re-write this as

nP
{[X1 − b(n)

a(n)
≤ x

]c}
→ − logG(x),

or [DOA≡Measure]

nP
[X1 − b(n)

a(n)
∈ ·
]

v→ ν(·), (2)

where
ν([−∞,x]c) = − logG(x).

The measure ν is called the exponent measure of G or the limit
measure, since

G(x) = exp{−ν([−∞,x]c)}.

• Equivalently ([DOA≡POT])

P

[
X1 − b(n)

a(n)
∈ ·

∣∣∣∣∣ ∪di=1 [X
(i)
1 > b(i)(n)]

]
v→ ν(·), (3)
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• Joint convergence implies marginal convergence (marginal [DOA]):

F n
i

(
a(i)(n)x(i) + b(i)(n)

)
→ Gi(x

(i)), (n→∞).

– So if we know how to find normalizing constants in one di-
mension, we can find them in d-dimensions.

• Finding the limiting properties of b(i)(n), a(i)(n):

– Take -log in (marginal [DOA]) and instead of − logFi put
1− Fi; take reciprocals to get

1

n

1

1− Fi
(
a(i)(n)x(i) + b(i)(n)

)
→ 1

− logGi(x)
.

Invert to get(
1

1−Fi

)←
(ny)− b(i)(n)

a(i)(n)
→
( 1

− logGi

)←
(y).

Identify

b(i)(t) =
( 1

1− Fi

)←
(t),

and then

b(i)(ty)− b(i)(t)
a(i)(t)

→
( 1

− logGi

)←
(y), t→∞.
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4. Standardization

Standardization is the process of marginally transforming

X 7→ Z∗

so that the distribution of Z∗ is standard regularly varying on a cone
CONE: For some Radon measure ν∗(·)

tP
[Z∗
t
∈ ·
]

v→ ν∗(·), in M+(CONE).

For EVT,
CONE = E = [0,∞] \ {0}.

In general, depending on the cone, this says one or more components
of Z∗ are asymptotically Pareto. For the EVT case, each is asymptot-
ically Pareto.
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4.1. Theoretical advantages of standardization:

• Standardization is analogous to the copula transformation but is
better suited to studying limit relations (Klüppelberg and Resnick,
2008).

• In Cartesian coordinates, the limit measure has scaling property:

ν∗(t · ) = t−1ν∗(·), t > 0.

• The scaling in Cartesian coordinates allows transformation to po-
lar coordinates to yield a product measure: An angular measure
exists allowing characterization of limits:

ν∗{x : ‖x‖ > r,
x

‖x‖
∈ Λ} = r−1S(Λ),

for Borel subsets Λ of the unit sphere in CONE.

• For EVT, S is a finite measure (wlog taken to be a pm) but when
CONE = Eu, S is NOT necessarily finite.

• See de Haan and Resnick (1977), Resnick (1987), Mikosch (2005,
2006), de Haan and Ferreira (2006), Resnick (2007).
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4.2. How to Standardize?

Theoretical formulations in EVT often assume the standard case.

• Standard case almost never happens in practice.

• A vector which is standard regularly varying has each component
having the same (asymptotically equivalent) tail.

How to transform to the standard case in practice?

• In heavy tail analysis, the simplest method: Hope 1 − F(i)(x) ∼
x−αi for all i and then power up.
BUT: Must estimate α’s.

• More generally, for EVT: estimate marginals (somehow; POT?)
and transform using the marginals.
BUT: Difficult to quantify the error made when estimating marginal

distributions.

• Use ranks method (de Haan and de Ronde (1998), de Haan and
Ferreira (2006), Huang (1992), Resnick (2007)).

BUT: Lose independence among observations; probably lose effi-
ciency in favor of robustness.
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5. Asymptotic Independence in EVT

If (X, Y ) is in a bivariate domain of attraction of a multivariate extreme
value distribution G(x, y),

tP
{[X − β(t)

α(t)
≤ x,

Y − b(t)
a(t)

≤ y
]c}
→ − logG(x, y), t→∞,

then asymptotic independence of (X, Y ) means the above plus

tP
[X − β(t)

α(t)
> x,

Y − b(t)
a(t)

> y
]
→ 0, t→∞.

This says, (de Haan and Ferreira, 2006, Resnick, 1987)

• The probability of both X and Y being biggish is smallish.

• Componentwise maxima (normalized) of iid samples of (X, Y ) are
asymptotically distributed as a product measure.

• The limit measure concentrates on lines; for example, if Z∗ ∈ Rd
+

has a standard regularly varying distribution, then asymptotic
independence means

tP [
Z∗

t
∈ · ] v→ ν∗(·)

where
ν∗{x ∈ E : x(i) ∧ x(j) > 0, some i, j} = 0.
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5.1. Examples

5.1.1. Asymptotic independence with Pareto marginals:

Let U ∼ U(0, 1) and

(X, Y ) =
( 1

U
,

1

1− U

)
.

Then (X, Y ) has a standard regularly varying distribution which pos-
sesses asymptotic independence.

5.1.2. Multivariate normal with correlations less than 1.

If (X, Y ) are normal with ρ(X, Y ) < 1, then asy indep holds.

5.2. Conclusion.

Asymptotic independence has little to do with

• independence

• rational nomenclature.
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5.3. Why asymptotic independence creates problems.

• Estimators of various parameters may behave badly under asymp-
totic independence; eg, estimator of the spectral measure S. Es-
timators may be asymptotically normal with an asymptotic vari-
ance of 0 (oops!).

• Estimators of risk probabilities given by asymptotic theory may
be uninformative.

Scenario: Estimate the probability of simultaneous non-compliance.

Supppose Z = (Z(1), Z(2)) = concentrations of different pollutants.

Environmental agencies set critical levels t0 = (t
(1)
0 , t

(2)
0 ) which not

be exceeded. Imagine simultaneous non-compliance creates a health
hazard. Worry about

[ health hazard ] = [Z > t0] = [Z(j) > t
(j)
0 ; j = 1, 2].

Asymptotic independence might lead one to report an estimate one
does not believe:

P [ health hazard ] = P [Z > t0] = 0.
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6. Conditional EV model.

CEV model applicable if either

• Not all components of a vector are in a domain of attraction.

• Multivariate EVT applies but asymptotic independence prevents
sensible estimates of the probability of risk events and a supple-
mentary assumption of CEV useful.
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Auckland

http://pma.nlanr.net/traces/long/auck2.html

• Packets transmitted to and from Auckland server; measure: packet
size, arrival time, source & destination IP address, port numbers,
Internet protocol.

• Cluster packets into e2e sessions. Definition: cluster packets with
same source and destination IP address such that delay between
2 successive packets in a cluster is less than a threshold (≤ 2
seconds).

• Compute

– F = # bytes in a session.

– L = duration of a session.

– R = average rate associated to a session; defined to be F/L.

The variable R does not appear to be in a domain of attraction and
resists characterization of its distribution. Hence difficult to decide on
the joint distribution of (F,L,R).

http://pma.nlanr.net/traces/long/auck2.html
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Figure 1: QQ plot for R; quantiles of exponential vs quantiles of log R.
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6.1. Conditional EV models; antecedents.

• Heffernan & Tawn models (Heffernan and Tawn, 2004):

P
[X − β(t)

α(t)
≤ x|Y = t

]
→ G(x), t→∞. (4)

• Alternate approaches to asymptotic independence consider

P [X ≤ x|Y > t]→ G(x), t→∞,

which comes from

tP [
(
X,

Y

t

)
∈ ·]→ H × ν1

where H is a pm, ν1(x,∞] = x−1, x > 1. See Maulik et al. (2002).

• With Jan Heffernan, meld 2 approaches (Heffernan and Resnick,
2007) and reformulate as

tP
[(X − β(t)

α(t)
,
Y − b(t)
a(t)

)
∈ ·
]

v→ µ

where µ satisfies non-degeneracy assumptions. This relates to
regular variation on the cone Eu.
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6.2. Basic Convergence (d = 2)

Given a random vector (X, Y ) with

FY (x) := P [Y ≤ x] ∈MDA(Gγ),

and ∃ b(·) ∈ R, a(·) > 0 such that for some γ ∈ R, as t→∞,(
P
[Y − b(t)

a(t)
≤ x

])t

→ Gγ(x) = exp{−(1 + γx)−1/γ}, t→∞.

Further assume ∃ β(·) ∈ R, α(·) > 0 and a Radon measure µ such that

tP
[(X − β(t)

α(t)
,
Y − b(t)
a(t)

)
∈ ·
]

v→ µ(·), (5)

in M+

(
[−∞,∞]× (−∞,∞]

)
, and where µ is non-null and satisfies

non-degeneracy conditions: for each fixed y ∈ {x : (1 + γx)−1/γ > 0},

1. µ
(
(−∞, x] × (y,∞]

)
is not a degenerate distribution function in

x;

2. µ
(
(−∞, x]× (y,∞]

)
<∞.
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6.3. Observations:

• The Basic Convergence (5) implies the conditioned limit

P
[X − β(t)

α(t)
≤ x

∣∣∣Y > b(t)
]
→ µ

(
[−∞, x]× (0,∞]

)
,

where the limit is assumed to be a proper probability distribution
in x.

• WLOG can assume Y is heavy tailed and reduce the basic con-
vergence to a more standard form:

tP [
[(X − β(t)

α(t)
,
Y ∗

t

)
∈ ·
]

v→ µ∗(·) (6)

in M+([−∞,∞]× (0,∞]) (µ∗ is modified from µ). For instance,

Y ∗ = b←(Y ) and b(t) =
( 1

1− FY

)←
(t).
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• Suppose (X, Y ) ∈MDA(G).

– With no asymptotic independence in the EVT sense, Basic
Convergence automatically holds and in this case

DOA⇒ Basic Convergence.

– With asymptotic independence in EVT sense, Basic Conver-
gence with the same normalizing constants fails because non-
degeneracy conditions fail. BUT, Basic Convergence with
different normalizing constants could still hold.
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Example

Let X and Z be iid Pareto(1) random variables and define

Y = X2 ∧ Z2.

Then in E and Eu check convergence on representative relatively com-
pact sets:

• In M+(E), asymptotic independence (E = [0,∞] \ {0}):

tP
[(

X

t
,
Y

t

)
∈ ([0, x]× [0, y])c

]
→ 1

x
+

1

y
, x ∨ y > 0.

• In M+(Eu) (Eu = [0,∞]× (0,∞]):

tP
[(

X

t1/2
,
Y

t

)
∈ [0, x]×(y,∞]

]
→ 1

y
− 1
√
y
× 1

x ∨√y
, x ≥ 0, y > 0,

or in standard form,

tP
[(

X2

t
,
Y

t

)
∈ [0, x]×(y,∞]

]
→ 1

y
− 1
√
y
× 1√

x ∨√y
, x ≥ 0, y > 0.
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6.4. Other Consequences.

• A convergence to types argument implies variation properties of
α(·) and β(·): Suppose (X, Y ∗) satisfy the condition (6). ∃ two
functions ψ1(·), ψ2(·), such that for all c > 0,

lim
t→∞

α(tc)

α(t)
= ψ1(c), lim

t→∞

β(tc)− β(t)

α(t)
→ ψ2(c). (7)

locally uniformly.

• This means

α(·) ∈ RVρ, ρ ∈ R and ψ1(c) = cρ, c > 0.

• ∃ important cases where ψ2 ≡ 0 (bivariate normal). However, if
ψ2 6≡ 0, then ( (Geluk and de Haan, 1987, page 16), Bingham
et al. (1987))

ψ2(x) =

{
k (xρ−1)

ρ
, if ρ 6= 0, x > 0,

k log x, if ρ = 0, x > 0,
(8)

for k 6= 0.
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6.5. When can both components in the basic convergence be
standardized to get regular variation on Eu?

• Can sometimes also standardize the X variable so that

tP
[β←(X)

t
≤ x,

Y ∗

t
> y
]

= tP
[X∗
t
≤ x,

Y ∗

t
> y
]

→µ∗
(
[−∞, ψ2(x)]× (y,∞]

)
=µ∗∗

(
[−∞, x]× (y,∞]

)
(t→∞), (9)

giving standard regular variation on Eu.
When?? Short version: When and only when µ∗ (or µ) is not a
product measure (Das and Resnick, 2008).

– When is µ∗ a product measure?

Answer: µ∗ = H × ν1 iff ψ1 ≡ 1 (α(·) is sv) and ψ2 ≡ 0.

– If you can standardize, how do you do it?

∗ One answer: If β(t) ≥ 0 and β← is non-decreasing on the
range of X, then (9) is possible (provided µ is NOT a
product).

∗ If the condition β(t) ≥ 0 and β← is non-decreasing fails,
then a transformation of X allows one to reduce the prob-
lem to the previous case.



Intro

Regular Variation

EVT & E

Standardization

Asy indep EVT

Conditional models

Consistency

Detection

Finale

Title Page

JJ II

J I

Page 28 of 42

Go Back

Full Screen

Close

Quit

6.6. Form of the limit.

6.7. Case 1. Assume µ is not a product.

Then can standardize X and for the case that β(t) ≥ 0 and β(t) ↑

tP
[β←(X)

t
≤ x,

Y ∗

t
> y
]

= tP
[X∗
t
≤ x,

Y ∗

t
> y
]

→µ∗
(
[0, ψ2(x)]× (y,∞]

)
= µ∗∗([0, x]× (y,∞]), (t→∞)

on [0,∞] × (0,∞]. This is standard regular variation on the cone
[0,∞]× (0,∞] so

µ∗∗(tΛ) = t−1µ∗∗(Λ), t > 0.

∃ angular measure: Let

‖(x, y)‖ = x+ y, ℵ = {(w, 1− w) : 0 ≤ w < 1}

and
µ∗∗{x : ‖x‖ > r,

x

‖x‖
∈ A} = r−1S(A),

where S is a measure on ℵ or [0, 1).
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Warning:
S does not have to be finite

but to guarantee

P [
X∗

t
≤ x|Y ∗ > t]→ H∗∗(x) = µ∗∗([0, x]× (1,∞])

is proper pm, need ∫
[0,1)

(1− w)S(dw) = 1. (10)

Conclusions for Case 1:

• Can write µ∗∗([0, x]× (y,∞]) as function of S and get character-
ization of the class of limit measures.

• Hence, limit measures µ∗∗ are in 1-1 correspondence with class of
measures on [0, 1) satisfying (10).

• Alternatively, a scaling argument gives class of µ∗∗ with following
description:

µ∗∗([0, x]× (y,∞]) = y−1H∗∗(
x

y
), (x, y) ∈ [0,∞]× (0,∞]

for any proper prob distribution H∗∗.
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6.8. Case 2: Assume µ is a product.

Any measure of the form

µ∗∗([0, x]× (y,∞]) = y−1H∗∗(x),

for a prob distribution H∗∗ is a possible limit.

End of story for Case 2.
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7. Consistency

• In practice, should one condition on X or Y ?

• What if one could do either?

Then the distribution is in the domain of attraction of an EV distri-
bution.

Conclusion: So the conditioned limit theory is only different than clas-
sical EVT if we assume we can condition only on one variable but not
on the other.
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8. Detecting when the model is appropriate

Estimators to help us decide if this model consistent with the data:

• Hillish (Hill-like).

• Pickandsish (suggested by the Pickands estimator of the EV in-
dex).

• Kendall’s tau.

Rank based methods bypass need to estimate centering and scaling
functions:
Notation:

(X1, Y1), . . . , (Xn, Yn); iid bivariate sample.

Y(1) ≥ . . . Y(n); order statistics of Y ’s in decreasing order.

X∗i , 1 ≤ i ≤ n; X∗i is the X-variable corresponding to Y(i);

concomitant of Y(i).

Rk
I , 1 ≤ i ≤ k ≤ n; Rank of X∗i among X∗1 , . . . , X

∗
k ;

often write Ri = Rk
i .

X∗1:k ≤ X∗2:k ≤ . . . X∗2:k; The order statistics in increasing order

of X∗1 , . . . , X
∗
k .
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Assume Basic Convergence:

tP

[(X1 − β(t)

α(t)
,
Y1 − b(t)
a(t)

)
∈ ·

]
→ µ(·), t→∞.

Leads to
1

k

n∑
i=1

ε(
Xi−β(n/k)

α(n/k)
,
Yi−b(n/k)
a(n/k)

)(·)⇒ µ(·),

as n→∞ and k = k(n)→∞ and k/n→ 0.
Assume the distribution of Y1 is in MDA(Gγ). Scaling and weak con-
vergence arguments yield

µ∗n
(
[0, x]× (y,∞]

)
:=

1

k

k∑
i=1

ε(
Ri
k
, k+1
i

)([0, x]× (y,∞])

⇒µ∗
(
(−∞, H←(x)]× (y,∞]

)
,

for 0 < x < 1 and y > 1; γ is the EV index for Y and

H(x) = µ
(
[−∞, x]× (0,∞]

)
,

assumed to be a pm, and

µ∗
(
[−∞, x]× (y,∞]

)
= µ

(
[−∞, x]× (

yγ − 1

γ
,∞]

)
.
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8.1. Hillish estimator.

Define

Hk,n =
1

k

k∑
j=1

log
k

Rk
j

log
k

j
.

Then, as n→∞, k →∞, k/n→ 0,

Hk,n
P→ I∗

where

I∗ =

∫ ∞
1

∫ ∞
1

µ∗
(
[−∞, H←(

1

x
)]× (y,∞]

)dx
x

dy

y
.

Method:

Use
µ∗n
(
[0, x]× (y,∞]

)
⇒ µ

(
[0, x]× (y,∞]

)
and integrate to limit.
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Detect product measure.

If µ is product measure then

Hk,n
P→ 1 = I∗,

and otherwise
Hk,n

P→ I∗ 6= 1.

8.2. Pickandsish estimator.

Based on ratios of differences of order statistics of the concomitants.
Let 0 < p < 1.

Rp =
X∗pk:k −X∗pk/2:k/2

X∗pk:k −X∗pk/2:k

.

Then

Rp
P→ H←(p)(1− 2ρ)− ψ2(2)

H←(p)−H←(p/2)
.
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Data example1: e2e sessions; (R,L) top and (R,F) bot-
tom
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Figure 2: Pickandsish, Hillish, Kendall for (top) Auckland (R,L)–yech–and (bot-
tom) (R,F)–not bad.
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Data example 2

• Model 0: X is N(0, 1), Y is Pareto(1); X ⊥⊥ Y . Theoretically
Pickandsish, Rp = 0, Hillish, H = 1, Kendalls tau, K = 0.

• Model 1: X and Z are Pareto(1), X ⊥⊥ Z, Y = X2 ∧Z2. Theoret-

ically Pickandsish, Rp = −3(
√

(2)− 1) Hillish, H = 0.5.
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Figure 3: Pickandsish, Hillish, Kendall for (top) model0 and (bottom) model 1.
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9. Final thoughts

• How practical is all this?

• When should you try to use this theory rather than EVT or to
supplement EVT. Need a couple of earth shaking examples.

• It would be nice to prove the Hillish and Pickandsish estimators
are asymptotically normal or else think about bootstrap CI’s.

• Crucial pact with the devil: We avoided having to estimate α(·),
β(·), a(·), b(·) by switching to the rank based methods. BUT

H(x) = µ
(
[−∞, x]× (0,∞]

)
appears in the limits and H(x) is, of course, unknown. Oy!

We are thinking about all this.
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