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1. Multidimensional Heavy Tails.

Consider a vector X = (X(1), . . . , X(d)) where

• The components may be dependent.

• The components are each univariate heavy tailed.

Big issue: How to model the dependence?

• The tail indices (α’s) for each component are typically different
in practice.

• Parametric (use MLE) vs semi-parametric (use asymptotic the-
ory).

– Parametric will fail goodness of fit with large data sets.

– Semi-parametric will have difficult asyptotic theory.

• Stable and max-stable distributions indexed by measures on the
unit sphere–large classes and why should even the marginals be
correct? Parametric sub-families may be ad hoc.

• Copula methods.
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1.1. Example.

Internet traffic:
Consider

F = file size,

L = duration of transmission,

R = throughput = F/L.

All three, are seen empirically to be heavy tailed.

Two studies:

• BU

• UNC

What is the dependence structure of (F,R, L)?
Since F = LR, the tail parameters (αF , αR, αL) cannot be arbitrary.
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Note for BU measurements, we have the following empirical estimates:

α α̂F α̂R α̂L

estimated value 1.15 1.13 1.4

Two theoretical possibilities:

• If (L,R) have a joint distribution with multivariate regularly vary-
ing tail but are NOT asymptotically independent then (Maulik,
Resnick, Rootzen (2002))

α̂F =
α̂Lα̂R

α̂L + α̂R

= .625 6= 1.15.

• If (L,R) obey a form (not the EVT version) of asymptotic inde-
pendence, (Maulik+Resnick+Rootzen; Heffernan+Resnick)

tP [
(
L,

R

b(t)

)
∈ ·] v→ G× αx−α−1dx

then
αF = αR

∧
αL

and in our example

1.15 ≈ 1.13
∧

1.4.
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For two examples

• BU: Evidence seems to support some form of independence for
(R,L).

• UNC: Conclusions from Campos, Marron, Resnick, Jeffay (2005);

– Large values of F tend to be independent of large values of
R.

⇒ Large files do not seem to receive any special consideration
when rates are assigned.
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BuL vs BuR:

Data processed from the original 1995 Boston University data; 4161
file sizes (F) and download times (L) noted and transmission rates (R)
inferred. The data consists of bivariate pairs (R,L).
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2. Multivariate Regular Variation.

2.1. Standard Case

A fct U : Rd
+ 7→ R+ is mult reg varying if

U(tx)

U(t1)
→ λ(x) 6= 0,

for x ≥ 0, x 6= 0. Then ∃ ρ and

λ(tx) = tρλ(x),

and U(t1) ∈ RVρ.

Usually there is a sequential equivalent version: ∃ bn →∞ such that

U(bnx)

n
→ λ(x).
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Application to distributions: For simplicity, let Z,Zn, n ≥ 1 be
iid, range=Rd

+ and common df F . A regularly varying tail means

1− F (tx)

1− F (t1)
→ ν([0,x]c),

for some Radon measure ν. However, it is awkward to deal with mult
df’s and better to deal with measures.

Let

E =[0,∞]d \ {0}
ℵ ={x ∈ E : ‖x‖ = 1},

R =‖Z‖, Θ =
Z

‖Z‖
∈ ℵ.

The following are equivalent and define multivariate heavy tails or
regularly varying tails.
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1. ∃ a Radon measure ν on E such that

lim
t→∞

1− F (tx)

1− F (t1)
= lim

t→∞

P
[

Z1

t
∈ [0,x]c

]
P
[

Z1

t
∈ [0,1]c

]
=cν

(
[0,x]c

)
,

some c > 0 and for all points x ∈ [0,∞)\{0} which are continuity
points of ν([0, ·]c).

2. ∃ a function b(t) →∞ and a Radon measure ν on E such that in
M+(E)

tP
[ Z1

b(t)
∈ ·
] v→ ν, t→∞.

3. ∃ a pm S(·) on ℵ and b(t) →∞ such that

tP[
( R1

b(t)
,Θ1

)
∈ ·] v→ cνα × S

in M+(
(
(0,∞]× ℵ

)
, where c > 0 and

να(x,∞] = x−α.

4. ∃ bn →∞ such that in Mp(E)
n∑

i=1

εZi/bn ⇒ PRM(ν).
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5. ∃ a sequence bn →∞ such that in
Mp((0,∞]× ℵ)

n∑
i=1

ε(Ri/bn,Θi) ⇒ PRM(cνα × S).

These conditions imply that for any sequence k = k(n) →∞ such that
n/k →∞ we have

6. In M+

(
E
)
,

1

k

n∑
i=1

εZi/b(n
k ) ⇒ ν (*)

1

k

n∑
i=1

ε(Ri/b(n/k),Θi) ⇒ (cνα × S). (**)

and (6) is equivalent to any of (1)–(5), provided k(·) satisfies
k(n) ∼ k(n+ 1).

Ignore fact b(·) unknown:
→ LHS of Eqn (*) is a consistent estimator of ν.
→ From (**), consistent estimator of S is∑n

i=1 ε(Ri/b(n/k),Θi)[1,∞]× ·)∑n
i=1 εRi/b(n/k)[1,∞]

.
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But:

• This theoretical formulation is for the standard case.

– Problematic for applications. If we norm each component by
the same b(t) ⇒ marginal tails same; ie components on the
same scale:

P[Z(i) > x] ∼ cijP[Z(j) > x], cij > 0, x→∞.

– Standard case almost never happens in practice.

• How to transform to the standard case in practice?

– Simple minded: Hope 1 − F(i)(x) ∼ x−αi for all i and then
power up. BUT: Must estimate α’s. YECH!

– Use ranks method (Huang, 1992; de Haan & de Ronde).
BUT: Lose independence among observations.
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The ranks method:

Given d-dimensional random vectors {X1, . . . ,Xn} where

X i = (X
(1)
i , . . . , X

(d)
i ), i = 1, . . . , n,

define the (anti)-ranks for each component: Comparing the

jth components, X
(j)
1 , . . . , X

(j)
n , the anti-rank of X

(j)
i is

r
(j)
i =

n∑
l=1

1
[X

(j)
l ≥X

(j)
i

]

= # jth components ≥ X
(j)
i .

Replace each X i by

X i 7→
(
1/r

(j)
i , j = 1, . . . , d

)
.
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Rank method–UNC

Steps:

• Transform (F,R) data using rank method.

• Convert to polar coordinates.

• Keep 2000 pairs with biggest radius vector.

• Compute density estimate for angular measure S.

Plot: Density estimates with various amounts of smoothing+jitter plot
(green) of angles.

Full disclosure: These types of plots can be rather sensitive to choice
of threshold.
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2.2. Simplifying assumptions

For theory, proceed assuming

• Standard case.

• One dimensional marginals F(i), i = 1, . . . , d are the same.

• d = 2 (just for ease of explanation).
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3. Significance of limit measure

The limit measure ν controls the (asymptotic) dependence structure:
The distribution F of Z1 possesses asymptotic independence if either

1. ν
(
(0,∞)

)
= 0 so that ν concentrates on the axes;

OR

2. S concentrates on {(1, 0), (0, 1)}.

This definition designed to yield

• As n→∞
n∨

i=1

Zi

bn
⇒ (Y (1), Y (2)),

where (Y (1), Y (2)), are independent Frechet distributed.

• Probability of 2 components being simultaneously large is negli-
gible: For d = 2:

lim
t→∞

P[Z(2) > t|Z(1) > t] → 0.
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3.1. Why asymptotic independence creates problems.

• Estimators of various parameters may behave badly under asymp-
totic independence; eg, estimator of the spectral measure S. Es-
timators may be asymptotically normal with an asymptotic vari-
ance of 0 (oops!).

• Estimators of probabilities given by asymptotic theory may be
uninformative.
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Scenario: Estimate the probability of simultaneous non-compliance.

Supppose Z = (Z(1), Z(2)) = concentrations of different pollutants.

Environmental agencies set critical levels t0 = (t
(1)
0 , t

(2)
0 ) which not

be exceeded. Imagine simultaneous non-compliance creates a health
hazard. Worry about

[ health hazard ] = [Z > t0] = [Z(j) > t
(j)
0 ; j = 1, 2].

Assume only regular variation with unequal components. Then for the
probability of non-compliance, we estimate

P [Z(1) > t
(1)
0 , Z(2) > t

(2)
0 ] =P [

Z(j)

b(j)(n
k
)
>

t
(j)
0

b(j)(n
k
)
; j = 1, 2]

≈k
n
ν

((( t
(1)
0

b(1)(n
k
)
,
t
(2)
0

b(2)(n
k
)

)
,∞

])
= 0

since ν has empty interior by asymtotic independence.

This is not helpful!!
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4. Hidden Regular Variation.

A submodel of asymptotic independence.

The random vector Z has a distribution possessing hidden regular vari-
ation if

1. Regular variation on the big cone E = [0,∞]2 \ {0}:

tP[
Z

b(t)
∈ ·] v→ ν,

AND

2. Regular variation on the small cone (0,∞]2: ∃ a non-decreasing
function b∗(t) ↑ ∞ such that

b(t)/b∗(t) →∞

and ∃ a measure ν∗ 6= 0 which is Radon on E0 = (0,∞]2 and such
that

tP [
Z

b∗(t)
∈ ·] v→ ν∗ = hidden measure

on the cone E0.

Then there exists α∗ ≥ α such that b∗ ∈ RV1/α∗ .
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Consequences:

• With the right formulation,

Second order regular variation + asy indep

⇒ hidden regular variation

⇒ asymptotic independence.

• Means for every s ≥ 0, s 6= 0,
∨d

i=1 s
(i)Z(i) has distribution with

a regularly varying tail of index α and for every a ≥ 0,a 6= 0,∧d
i=1 a

(i)Z(i) has a regularly varying distribution tail of index α∗.

• In particular, hidden regular variation means both Z(1)∨Z(2) and
Z(1) ∧Z(2) have regularly varying tail probabilities with indices α
and α∗. Note

η = 1/α∗ = coefficient of tail dependence

(Ledford and Tawn (1996,1997)).

• Define on ℵ ∩ E0

S∗(Λ) = ν∗{x ∈ E0 : |x| ≥ 1,
x

|x|
∈ Λ}

called the hidden angular measure.
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Sub-model (cont)–Two Examples:

Example 1: d = 2; independent random quantities B,Y ,U with

P [B = 0] = P [B = 1] = 1/2

and Y = (Y (1), Y (1)) is iid with

P [Y (1) > x] ∈ RV−1

and

b(t) =
( 1

P [Y (1) > ·]

)←
(t) ∈ RV1.

Let U have multivariate regularly varying distribution on E and
∃α∗ > 1, b∗(t) ∈ RV1/α∗ , ν∗ 6≡ 0,

tP [
U

b∗(t)
∈ ·] → ν∗ 6= 0.

Define
Z = BY + (1−B)U

which has hidden regular variation, and the property

S∗(ℵ0) := ν∗{x ∈ E0 : ‖x‖ > 1} <∞.
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Example 2: d = 2, define

ν∗
(
[x,∞]

)
=
(
x(1)x(2)

)−1
.

Define Z = (Z(1), Z(2)) iid and Pareto distributed with

P [Z(1) > x] = x−1, x > 1, i = 1, 2.

Set
b(t) = t, b∗(t) =

√
t,

so that b(t)/b∗(t) →∞. Then on E

tP [
Z

b(t)
∈ ·] →v ν,

ν(E0) = 0, and on E0

tP [
Z

b∗(t)
∈ ·] →v ν∗,

and
S∗(ℵ0) := ν∗{x ∈ E0 : ‖x‖ > 1} = ∞.
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How dense are these 2 examples?

Need for a concept of multivariate tail equivalence: Sppse

0 ≤ Y ∼ F ; 0 ≤ Z ∼ G.

Say F,G (or Y and Z) are tail equivalent on cone C if there exists
b(t) ↑ ∞ such that

tP [Y /b(t) ∈ ·] = tF (b(t)·) v→ ν

and
tP [Z/b(t) ∈ ·] = tG(b(t)·) v→ cν

for c > 0, Radon ν 6= 0 on C.
Write

Y
te(C)∼ Z.
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5. Characterizations.

Mixture Characterization; S∗ is Finite

Assume finite hidden angular measure: Sppse Z ∼ F is multivariate
regularly varying on

E := [0,∞]d \ {0}, scaling b(t),

E0 := (0,∞]d, scaling b∗(t), b(t)/b∗(t) →∞,

b ∈ RV1/α, b∗ ∈ RV1/α∗ , α ≤ α∗.

Then F is tail equivalent on both the cones E and E0 to a mixture
distribution

Z
te(C)∼ 1[I=0]V +

d∑
i=1

1[I=i]Xiei.

Here ei; i = 1, . . . , d are the usual basis vectors.
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Remarks on the characterization:

Z
te(C)∼ 1[I=0]V +

d∑
i=1

1[I=i]Xiei.

•
∑d

i=1 1[I=i]Xiei concentrates on the axes, has no hidden regular
variation, and the marginal distributions (of the Xi) have scaling
function b(t),

• V mult reg varying on E (not E0–this is the effect of finite ν∗) with
scaling function b∗(t); tails of V are lighter than those of the com-

pletely asymptotically independent distribution
∑d

i=1 1[I=i]Xiei.

• Conversely: if F tail equivalent to a mixture as above, b(t)/b∗(t) →
∞, then F is multivariate reg varying on E and E0 with finite hid-
den angular measure and with scaling functions b, b∗.
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Mixture Characterization; S∗ is Infinite

Assume infinite hidden angular measure. Sppse Z ∼ F mult regularly
varying on

E := [0,∞]d \ {0}, scaling b(t),

E0 := (0,∞]d, scaling b∗(t), b(t)/b∗(t) →∞,

b ∈ RV1/α, b∗ ∈ RV1/α∗ , α ≤ α∗.

Then F is tail equivalent on both the cones E and E0 to a mixture
distribution

Z = 1[I=0]V +
d∑

i=1

1[I=i]Xiei.

Remarks and notes on the infinite case:

• V is only guaranteed to be reg varying on E0; index is α∗ .

• If the reg variation of V can be extended to E, then the 1-dim
marginals have heavier tails of index ≤ α∗.

• BUT: do not have a useful criterion for when reg var on E0 can
be extended to E.
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6. Can We Detect Hidden Regular Variation?

Example 1: Simulation.

5000 pairs of iid Pareto, α = 1; α∗ = 2. Hillplot for rank transformed
data taking minima of components.
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Example 2: UNC Wed (F,R).

QQ plot of rank transformed data using 1000 upper order statistics for
UNC Wed (F,R); α = 1 and α̂∗ = 1.6.
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6.1. Estimating ν∗.

The hidden measure ν∗ has a spectral measure S∗ defined on ℵ0, the
unit sphere in E0:

S∗(Λ) := ν∗{x ∈ E0 : ‖x‖ > 1,
x

‖x‖
∈ Λ}.

S∗ may not necessarily be finite.

We estimate S∗ rather than ν∗.
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Estimation procedure (Heffernan & Resnick) for estimating ν∗:

1. Replace the heavy tailed multivariate sample Z1, . . . ,Zn by the
n vectors of reciprocals of anti-ranks 1/r1, . . . , 1/rn, where

r
(j)
i =

n∑
l=1

1
[Z

(j)
l ≥Z

(j)
i ]

; j = 1, . . . , d; i = 1, . . . , n.

2. Compute normalizing factors

mi =
d∧

j=1

1

r
(j)
i

; i = 1, . . . , n,

and their order statistics

m(1) ≥ · · · ≥ m(n).

3. Compute the polar coordinates {(Ri,Θi); i = 1, . . . , n} of

{(1/r(j)
i ; j = 1, . . . , d); i = 1, . . . , n}.

4. Estimate S∗ using the Θi corresponding to Ri ≥ m(k).
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Details:

• If ν∗ is infinite, let ℵ0(K) be compact subset of ℵ0.

– For d = 2 where ℵ can be parameterized as ℵ = [0, π/2] and
ℵ0 = (0, π/2), set ℵ0(K) = [δ, π/2− δ] for some small δ > 0.

• Then ∑n
i=1 1[Ri≥m(k),Θi∈ℵ0(K)]εΘi∑n

i=1 1[Ri≥m(k),Θi∈ℵ0(K)]

⇒ S0

(
·
⋂
ℵ0(K)

)
.

• If ν∗ is finite, we can replace ℵ0(K) with ℵ0.
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Example.

UNC (F,R), April 26. Asymptotic independence present. Since S∗

may be infinite, we restricted estimation to the angular interval interval
[0.1,0.9] instead of all of [0, 1]. All plots show the hidden measure to
be bimodal with peaks around 0.2 and 0.85.
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7. Conditional models.

Other form of asymptotic independence (Maulik, Resnick, Rootzen):

nP [
(
X,

Y

b(n)

)
∈ ·] v→ G× να (1)

on [0,∞]× (0,∞] where G is a pm on [0,∞) and

να(x,∞] = x−α, x > 0.

Equivalent: Y has a regularly varying tail and

P [X ≤ x|Y > t]
t→∞−→ G(x).

Heffernan & Tawn models:

P [
X − β(t)

α(t)
≤ x|Y = t]

t→∞−→ G(x).

With Jan Heffernan: Meld 2 approaches. Reformulate as

tP
[(X − β(t)

α(t)
,
Y − b(t)

a(t)

)
∈ ·
]

v→ µ

where µ satisfies non-degeneracy assumptions.
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7.1. Basic Convergence

Assume 2 dimensions and

tP
[(X − β(t)

α(t)
,
Y − b(t)

a(t)

)
∈ ·
]

v→ µ(·), (2)

in M+

(
[−∞,∞]× (−∞,∞]

)
, and non-degeneracy assumptions:

1. for each fixed y, µ
(
(−∞, x]× (y,∞]

)
is not a degenerate distrib-

ution function in x;

2. for each fixed x, µ
(
(−∞, x]× (y,∞]

)
is not a degenerate distrib-

ution function in y,

Observations:

• The Basic Convergence (2) implies

tP
[Y − b(t)

a(t)
) ∈ ·

]
v→ µ
(
[−∞,∞]× (·)

)
,

so P [Y ∈ ·] ∈ D(Gγ), for some γ ∈ R.

• The Basic Convergence (2) implies the conditioned limit

tP
[X − β(t)

α(t)
≤ x|Y > b(t)

]
→ µ

(
[−∞, x]× (0,∞]

)
.
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• WLOG can assume Y is heavy tailed and reduce the basic con-
vergence to standard form:

tP [
[(X − β(t)

α(t)
,
Y

t

)
∈ ·
]

v→ µ (3)

in M+([−∞,∞]× (0,∞]) (with a modified µ).

• Suppose (X, Y ) are regularly varying on [0,∞]2 \ {0}.

– With no asymptotic independence, Basic Convergence auto-
matically holds.

– With asymptotic independence, Basic Convergence is an ex-
tra assumption.
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7.2. More reduction.

More remarks:

• A convergence to types argument implies variation properties of
α(·) and β(·): Suppose (X, Y ) satisfy the standard form condition
(3). ∃ two functions ψ1(·), ψ2(·), such that for all c > 0,

lim
t→∞

α(tc)

α(t)
= ψ1(c), lim

t→∞

β(tc)− β(t)

α(t)
→ ψ2(c).

locally uniformly.

• ∃ important cases where ψ2 ≡ 0 (bivariate normal).
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• Can sometimes also standardize the X variable so that

tP
[β←(X)

t
≤ x,

Y

t
> y
]
→ µ

(
[−∞, ψ2(x)]× (y,∞]

)
. (4)

When?? Short version: When µ is not a product measure.

– µ = H × ν1 iff ψ1 ≡ 1 (α(·) is sv) and ψ2 ≡ 0.

– If β(t) ≥ 0 and β← is non-decreasing on the range of X, then
(4) is possible iff µ is NOT a product.

– A transformation of X allows one to bring the problem to the
previous case.

• If we have X ≥ 0 and both regular variation on C2 = [0,∞]2 \{0}

tP
[( X

a′(t)
,
Y

t

)
∈ ·
]

v→ ν∗

and (4):

tP
[β←(X)

t
≤ x,

Y

t
> y
]
→ µ

(
[−∞, ψ2(x)]× (y,∞]

)
on C1 = [0,∞] × (0,∞], then we have a form of hidden regular
variation since

C1 ⊂ C2.
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7.3. Form of the limit.

Assume µ is not a product and can standardize X

tP
[β←(X)

t
≤ x,

Y

t
> y
]
→ µ

(
[0, ψ2(x)]× (y,∞]

)
= µ∗([0, x]× (y,∞])

on C1 = [0,∞]× (0,∞]. This is standard regular variation on the cone
C1 so

µ∗(cΛ) = c−1µ∗(Λ).

∃ spectral form: Let

‖(x, y)‖ = x+ y, ℵ = {(w, 1− w) : 0 ≤ w < 1}

and
µ∗{x : ‖x‖ > r,

x

‖x‖
∈ A} = r−1S(A),

where S is a measure on [0, 1).
Conclude: Can write µ∗[0, x]× (y,∞] as function of S and get charac-
terization of the class of limit measures.
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7.4. Random norming.

When both variables can be standardized

tP
[(β←(X)

Y
,
Y

t

)
∈ ·
]
→ G× ν1

in M+([0,∞]× (0,∞]) where

ν1(x,∞] = x−1, G(x) =

∫
[0, x

1+x
]

(1− w)S(dw).



Heavy Tails–≥ 2 dim

Mult Reg Var

Asymptotic Indep

Hidden reg var (HRV)

Characterize HRV

Detecting HRV

Conditional models

Medical Care

Title Page

JJ II

J I

Page 40 of 42

Go Back

Full Screen

Close

Quit

8. Medical Care in Copenhagen

What to expect if you have a knee problem in Copenhagen:
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