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1. Multidimensional Heavy Tails.

Consider a vector X = (XM, ..., X@) where

e The components may be dependent.

e The components are each univariate heavy tailed.
Big issue: How to model the dependence?

e The tail indices (a’s) for each component are typically different
in practice.

e Parametric (use MLE) vs semi-parametric (use asymptotic the-
ory).
— Parametric will fail goodness of fit with large data sets.

— Semi-parametric will have difficult asyptotic theory.

e Stable and max-stable distributions indexed by measures on the
unit sphere—large classes and why should even the marginals be
correct? Parametric sub-families may be ad hoc.

e Copula methods.

Heavy Tails—> 2 dim




1.1. Example.

CORNELL

Internet traffic:
Consider

Heavy Tails=> 2 dim
F = file size,
L = duration of transmission,
R = throughput = F/L.

All three, are seen empirically to be heavy tailed.

Two studies:
e BU
e UNC

What is the dependence structure of (F, R, L)?
Since F' = LR, the tail parameters (ap, ag, ar) cannot be arbitrary.




Note for BU measurements, we have the following empirical estimates:

a dF dR ay,
estimated value | 1.15 | 1.13 | 1.4

Heavy Tails—> 2 dim

Two theoretical possibilities:

e If (L, R) have a joint distribution with multivariate regularly vary-
ing tail but are NOT asymptotically independent then (Maulik,
Resnick, Rootzen (2002))

i = L 695 £ 1.15.
ar + ag
e If (L, R) obey a form (not the EVT version) of asymptotic inde-
pendence, (Maulik+Resnick+Rootzen; Heffernan+Resnick)

i) €] G xar

tP[(L, oD

then
ap = R /\ Qg

and in our example

1.15 ~ 1.13/\ 1.4.




For two examples

CORNELL

e BU: Evidence seems to support some form of independence for
(R, L).

e UNC: Conclusions from Campos, Marron, Resnick, Jeffay (2005);

Heavy Tails—> 2 dim

— Large values of F' tend to be independent of large values of
R.

= Large files do not seem to receive any special consideration
when rates are assigned.




BulL vs BuR:

Data processed from the original 1995 Boston University data; 4161
file sizes (F) and download times (L) noted and transmission rates (R)
inferred. The data consists of bivariate pairs (R,L).

bulL vs buR

buR
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2. Multivariate Regular Variation.

2.1. Standard Case

A fet U : R% — R, is mult reg varying if

Ultx)
U(t1)

for @ > 0, x # 0. Then 3 p and

Mult Reg Var

— Ax) #0,

Atx) = tP N x),

and U(t1) € RV,
Usually there is a sequential equivalent version: 3 b, — oo such that

U(b,x)

— AMx).



Application to distributions: For simplicity, let Z,Z,,n > 1 be
iid, mngezRﬂlr and common df F. A reqularly varying tail means

1 — F(tx)

TR — ([0, z]°),

for some Radon measure v. However, it is awkward to deal with mult
df’s and better to deal with measures.

Let
E =[0, 00]"\ {0}
R={z €E: ] =1},
Z

The following are equivalent and define multivariate heavy tails or
regularly varying tails.

Mult Reg

Var




1. 3 a Radon measure v on E such that

— P[ZL ¢ [0, x|
lim L - F(tz) = lim [Zt 0, 2]
t—oo 1 — F(t1) t—c0 P[ZL € [0,1]]

=CV ([0, :13]6) s Mult Reg Var

some ¢ > 0 and for all points € [0, 00)\{0} which are continuity
points of (][0, -|°).

2. 3 a function b(t) — oo and a Radon measure v on E such that in
M (E)

t]P’[éE-]iu, t — 0.

b(t)
3. Japm S(-) on X and b(t) — oo such that
R v
ﬂP[(th),G)l) €=, xS

in M (((0,00] x R) , where ¢ > 0 and

Vo(,00] = 7.

4. 3 b, — oo such that in M,(E)

n

> ez, = PRM(v).

=1




5. 3 a sequence b, — oo such that in
Mp((07 OO] X N)

ZG(Ri/bn,@i) = PRM(CVa X S)

i=1 Mult Reg Var

These conditions imply that for any sequence k = k(n) — oo such that
n/k — oo we have

6. Tn M, (E),

1 n
D DR g
=1

1 n
z > e ppinsm0n = (cva x 9). (**)
=1

and (6) is equivalent to any of (1)—(5), provided k(-) satisfies
k(n) ~ k(n+1).

Ignore fact b(-) unknown:
— LHS of Eqn (*) is a consistent estimator of v.
— From (**), consistent estimator of S is

Z?:l G(Ri/b(n/k)aei)[:[? OO] X )
i1 €Ri/b(n/k)[1, 0]




But:

e This theoretical formulation is for the standard case.

Mult Reg Var

— Problematic for applications. If we norm each component by
the same b(t) = marginal tails same; ie components on the
same scale:

P[Z® > 2] ~ ¢;;P[ZY) > 2], ¢;; >0, © — oo
— Standard case almost never happens in practice.

e How to transform to the standard case in practice?
— Simple minded: Hope 1 — Fi;)(z) ~ 2~ for all i and then
power up. BUT: Must estimate a’s. YECH!

— Use ranks method (Huang, 1992; de Haan & de Ronde).
BUT: Lose independence among observations.




The ranks method:

Given d-dimensional random vectors { X, ..., X ,} where
Xi:(Xi(l)’_..,Xi(d)), /i:lj'..’fn/7

define the (anti)-ranks for each component: Comparing the

Jth components, Xl(j), e ,Xr(bj), the anti-rank of XI(J) is
i) _v
T, = ]_ o o
i ; [XZ(J)ZXI(J)]
= # jth components > Xi(j).

Replace each X; by

X, (19, j=1,....4d).

Mult Reg

Var




Rank method-UNC
Steps:

e Transform (F,R) data using rank method.

Mult Reg Var

e Convert to polar coordinates.
e Keep 2000 pairs with biggest radius vector.

e Compute density estimate for angular measure S.

Plot: Density estimates with various amounts of smoothing+jitter plot
(green) of angles.

Full disclosure: These types of plots can be rather sensitive to choice
of threshold.
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Angle, 6 * (2/n)
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2.2. Simplifying assumptions
For theory, proceed assuming

e Standard case.

Mult Reg Var

¢ One dimensional marginals F(;), 2 = 1,...,d are the same.

e d =2 (just for ease of explanation).




3. Significance of limit measure

The limit measure v controls the (asymptotic) dependence structure:
The distribution F' of Z possesses asymptotic independence if either

1. v((0,00)) = 0 so that v concentrates on the axes;

OR

Asymptotic Indep

2. S concentrates on {(1,0), (0,1)}.

This definition designed to yield

e Asn — o0
n

Z;
2t (v y®
\/ bn ( 9 )7

i=1
where (Y1) Y ) are independent Frechet distributed.

e Probability of 2 components being simultaneously large is negli-
gible: For d = 2:

lim P[Z® > t|ZM > t] — 0.

t—o00



3.1. Why asymptotic independence creates problems.

e Estimators of various parameters may behave badly under asymp-
totic independence; eg, estimator of the spectral measure S. Es-
timators may be asymptotically normal with an asymptotic vari-
ance of 0 (oops!).

Asymptotic Indep

e Estimators of probabilities given by asymptotic theory may be
uninformative.




Scenario: Estimate the probability of simultaneous non-compliance.

Supppose Z = (ZW),Z?) = concentrations of different pollutants.

Environmental agencies set critical levels t, = (t((]l) ,téz)) which not
be exceeded. Imagine simultaneous non-compliance creates a health
hazard. Worry about

[ health hazard | = [Z > to] = [Z9) > ¢{); j =1,2].

Assume only regular variation with unequal components. Then for the
probability of non-compliance, we estimate

7(5) +9)
o > o
b@(%) ~ U(%)

k )t
R—U ; —],00| | = 0
n <<(b(1)(%) b(2)(E))

since v has empty interior by asymtotic independence.

This is not helpful!!

Pz > 1), 2 > 1] =P j=1,2]

CORNELL
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4. Hidden Regular Variation.

A submodel of asymptotic independence.

The random vector Z has a distribution possessing hidden reqular vari-
ation if

1. Regular variation on the big cone E = [0, 00]? \ {0}: Hidden reg var (HRV)

v

Z
tPl— €] =,

b(t)
AND

2. Regular variation on the small cone (0,00]*: 3 a non-decreasing
function b*(t) T oo such that

b(t)/b*(t) — o0

and 3 a measure v* # 0 which is Radon on E° = (0, co]? and such

that
Z

Pl

€ -] % v* = hidden measure

on the cone E°.

Then there exists a* > « such that b* € RV} /q-.




Consequences: o L
e With the right formulation,

Second order regular variation + asy indep ez = 2 el
Mult Reg Var

= hidden regular variation

R Asymptotic Indep
= asymptotic independence.

e Means for every s > 0, s # 0, V7, 502 has distribution with Characterize HRY
a regularly varying tail of index « and for every a > 0,a # 0, Detecting HRV
/\f:1 aDZ® has a regularly varying distribution tail of index a*. Conditional models

Medical Care

e In particular, hidden regular variation means both Z()v Z) and
ZW A Z® have regularly varying tail probabilities with indices a
and o*. Note

n = 1/a, = coefficient of tail dependence
(Ledford and Tawn (1996,1997)).
e Define on RN E°

S*(A) = v {z € E°: |z| > 1, ;—| e A}

called the hidden angular measure.



Sub-model (cont)-Two Examples:
Example 1: d = 2; independent random quantities B, Y ,U with
P[B=0]=PB=1]=1/2
and Y = (Y, YM) is iid with
PlYW > z] € RV,

and
1

b(t) = (W)(—(t) € RV,

Let U have multivariate regularly varying distribution on E and
Ja* > 1, b*(t) € RVijax, v* #0,

U ‘

Define
Z =BY +(1-B)U

which has hidden regular variation, and the property

SN =z cE |z > 1} <. |

Hidden reg var (HRV)




Example 2: d = 2, define
v ([x, 00]) = (x(l)a:@))_l.
Define Z = (ZW, Z?) iid and Pareto distributed with

PZW >gl=27t) z>1,i=1,2

Hidden reg var (HRV)

Set

b(t) =t, b () = V1,
so that b(t)/b*(t) — oco. Then on E

VA
tP|— €] =" v,

b(t)

v(E%) = 0, and on E°

VA
tP|

p <

and

SN =1 {x e E : |lz| > 1} = c0.




How dense are these 2 examples?

Need for a concept of multivariate tail equivalence: Sppse
0<Y~F;, 0<Z~G.

Say F,G (or Y and Z) are tail equivalent on cone C if there exists
b(t) T oo such that Hidden reg var (HRV)

tP[Y /b(t) € -] = tF(b(t):) = v

and

tP[Z/b(t) € | = tG(b(t)) = ev

for ¢ > 0, Radon v # 0 on C.
Write

te(C)

Y Z.




5. Characterizations.

Mixture Characterization; S* is Finite

Assume finite hidden angular measure: Sppse Z ~ F' is multivariate
regularly varying on

E := [0, 00]%\ {0}, scaling b(t),
Eo := (0, c0]?, scaling b*(¢), b(t)/b*(t) — oo,
be RViq, b ERVl/a*, a<a’.

Then F' is tail equivalent on both the cones E and Eq to a mixture
distribution

d
te(C
Z f(V) 1[[:()]V + Z 1[[:i]Xiei.

=1

Here e;;1 =1,...,d are the usual basis vectors.

CORNELL
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Remarks on the characterization:

CORNELL

d
te(C)
Z'~ l—qV + Z L=y Xie;. Heavy Tails=> 2 dim

i=1 Mult Reg Var

d _ :
e > ¢ 1y—iXie; concentrates on the axes, has no hidden regular Asymptotic Indep

variation, and the marginal distributions (of the X;) have scaling Hidden reg var (HRV)
function b(t),

. .. . . Detecting HRV
e V mult reg varying on E (not Eq—this is the effect of finite v*) with

scaling function b*(¢); tails of V' are lighter than those of the com-
pletely asymptotically independent distribution Z?Zl I=gXie;.

Conditional models

Medical Care

e Conversely: if F tail equivalent to a mixture as above, b(t)/b*(t) —
o0, then F' is multivariate reg varying on E and E, with finite hid-
den angular measure and with scaling functions b, b*.




Mixture Characterization; S* is Infinite

Assume infinite hidden angular measure. Sppse Z ~ F mult regularly
varying on

E := [0, 00]"\ {0}, scaling b(t),
Ey := (0, 00]%, scaling b*(t), b(t)/b*(t) — oo,
bERVl/a, b*Eva/a*, a<a.

Then F is tail equivalent on both the cones E and [E; to a mixture
distribution

d
Z =1V + Z L=y Xie;.
i=1

Remarks and notes on the infinite case:
e V is only guaranteed to be reg varying on [Eg; index is a* .

e If the reg variation of V' can be extended to [E, then the 1-dim
marginals have heavier tails of index < a*.

e BUT: do not have a useful criterion for when reg var on E; can
be extended to E.

CORNELL

Heavy Tails—> 2 dim
Mult Reg Var
Asymptotic Indep
Hidden reg var (HRV)
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6. Can We Detect Hidden Regular Variation?

Example 1: Simulation.

5000 pairs of iid Pareto, o = 1; a, = 2. Hillplot for rank transformed
data taking minima of components.

Threshold
00008360 0.0000206 0.0000146 0.0000119 0.0000103

3.0 35

.5
1

alpha (CI, p =0.95)
2

20

-

15

15 9416 22340 38439 50538 64637 78736 92835
Order Statistics

CORNELL
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Example 2: UNC Wed (F,R).

QQ plot of rank transformed data using 1000 upper order statistics for
UNC Wed (F,R); @ =1 and &, = 1.6.

wedF , wedR: alphastar=1.6, k=1000

log sorted data

T T T
4 (=] a8 10

quantiles of exponential

CORNELL

Detecting HRV



6.1. Estimating v*.

The hidden measure v* has a spectral measure S* defined on Ny, the
unit sphere in Eg:

xTr

SN = € B ol > 1 g

€ A}

S* may not necessarily be finite.

We estimate S* rather than v*. Bt (RY




Estimation procedure (Heffernan & Resnick) for estimating v*:

1. Replace the heavy tailed multivariate sample Z4,..., Z,, by the
n vectors of reciprocals of anti-ranks 1/ry,...,1/r,, where

r? :Zl[zfj)zz§j>]§ j=1dii=1,0n
=1

2. Compute normalizing factors

3. Compute the polar coordinates {(R;,®;);7=1,...,n} of

(]

4. Estimate S* using the ®; corresponding to I; > myy).

Detecting HRV




Details:
e If v* is infinite, let No(K') be compact subset of Ny.

— For d = 2 where X can be parameterized as X = [0, /2] and
Ny = (0,7/2), set Ro(K) = [, 7/2 — §] for some small § > 0.
e Then

n
i=1 1[Ri2m(k),@i€N0(K)]€@i

= So(-[ | Ro(K)).

> et YRizm @exno(50)]

e If v* is finite, we can replace No(K) with Ry.

CORNELL

Detecting HRV



Example.

UNC (F,R), April 26. Asymptotic independence present. Since S*
may be infinite, we restricted estimation to the angular interval interval
[0.1,0.9] instead of all of [0,1]. All plots show the hidden measure to
be bimodal with peaks around 0.2 and 0.85.

r=m[ 10001 remE 11601
= =
= = Detecting HRV
=] =
: . U g -] U
B 5 o
= =
T v w T T v T v o T
ce oa o4 oce ow o ce ez oa ce ow e
wim e wiaar
r=m[ 1200 ) r=m[ 1260 ]
= - = -
B B
& - =
B ¥ =4
= =
= - = -
= s




7. Conditional models.

Other form of asymptotic independence (Maulik, Resnick, Rootzen):

7mmx£%)e+LGX% (1)

on [0, 00] x (0, 00] where G is a pm on [0, 00) and

Vo(z,00] =27 > 0.

Conditional models

Equivalent: Y has a regularly varying tail and

t—o0

PIX <zlY > t] — G(x).

Heffernan & Tawn models:

<H£&§Q§ﬂY=ﬂT§Gu)

With Jan Heffernan: Meld 2 approaches. Reformulate as

Pl ) <

where p satisfies non-degeneracy assumptions.




7.1. Basic Convergence

Assume 2 dimensions and

O RV

in M, ([—00, 00] x (—00,0]), and non-degeneracy assumptions:

1. for each fixed y, pu((—o0,z] X (y,00]) is not a degenerate distrib-
ution function in x;

2. for each fixed z, pu((—o0, 2] x (y, <)) is not a degenerate distrib-
ution function in ¥,

Observations:
e The Basic Convergence (2) implies
Y —b(t)
a(t)
so P[Y € ] € D(G,), for some 7 € R.

tP[ ) € ] = p([—00,00] x (),

e The Basic Convergence (2) implies the conditioned limit

X —p5()

2| o(0)

<alY > b(t)] — n([~o00, 2] x (0, 0)).

Conditional models




e WLOG can assume Y is heavy tailed and reduce the basic con-
vergence to standard form:

X -0t Y v
1 olt) F) e )
in M ([—o0,00] x (0,00]) (with a modified ).
e Suppose (X,Y) are regularly varying on [0, c0]? \ {0}.

— With no asymptotic independence, Basic Convergence auto-
matica,lly hOldS, Conditional models

— With asymptotic independence, Basic Convergence is an ex-
tra assumption.




7.2. More reduction.
More remarks:

e A convergence to types argument implies variation properties of
a(-) and G(-): Suppose (X,Y) satisfy the standard form condition
(3). 3 two functions 1, (+), ¥a(-), such that for all ¢ > 0,

i 209) _ di(e),  lim Blte) - B(t)

e all) ol

— 1hy(c).

locally uniformly.

e T important cases where 1) = 0 (bivariate normal).

Conditional models




e Can sometimes also standardize the X variable so that

[T < Y] (oo @) < rse]). (@

When?? Short version: When g is not a product measure.

—p=Hxuv iff v =1 (af) is sv) and ¥, = 0.

— If B(t) > 0 and B is non-decreasing on the range of X, then
(4) is possible iff x4 is NOT a product.

— A transformation of X allows one to bring the problem to the
previous case.

e If we have X > 0 and both regular variation on Cy = [0, o0]?\ {0}

PG ] =

and (4):

tp[ﬂ*_mgxé

t > y| = n(l=00. Ya(@)] x (y.o0)

on Cy = [0,00] x (0,00], then we have a form of hidden regular
variation since

C) C Cs.

Conditional models




7.3. Form of the limit.

Assume p is not a product and can standardize X

[T <0 X ) (0,4 (3 00]) = ([0, (1, 9])

on C = [0, 00] x (0, 00]. This is standard regular variation on the cone

4 so
fre(ch) = ¢ (A).
3 Spectral form: Let Conditional models
[@yll=r+y, N={(w,1-w):0<w<1}
and z
pe{ -zl >, Tal] € A} =r715(4),

where S is a measure on [0, 1).
Conclude: Can write p.[0, x] X (y, 0] as function of S and get charac-
terization of the class of limit measures.




7.4. Random norming.

When both variables can be standardized

LR P

in M, ([0, 00] x (0, 00]) where

vi(z,00] =27, G(x) = / (1 —w)S(dw).

Conditional models




8. Medical Care in Copenhagen

What to expect if you have a knee problem in Copenhagen:

CORNELL
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