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1. Introduction

Measurements on data networks exhibit features surprising by the stan-
dards of classical queueing and telephone network models.

Measurements often consist of data giving bit-rate or packet rates:
Select window resolution of (for example)

• 10 seconds • 1 second

• 10 milliseconds • 1 millisecond

• . . . • . . .

and count number of bits or packets in adjacent windows or slots.

Significant examples:

• Willinger et al. (1997)

• Duffy et al. (1993)

• Leland et al. (1993)

• Willinger et al. (1995)
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1.1. BUT:

1. Theoretical attempts to create models to explain the empirical ob-
servations concentrate on large time scales and cumulative traffic
over large time intervals.

See

• Taqqu et al. (1997)

• Konstantopoulos and Lin (1998)

• Heath et al. (1998)

• Levy and Taqqu (2000)

• Mikosch et al. (2002)

• Maulik and Resnick (2003)

• Kaj and Taqqu (2004)

2. For such models, it is difficult to find agreement with many exist-
ing data sets (Guerin et al. (2003)).
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2. Stylized facts

Many network data sets exhibit distinctive properties, which in analogy
with empirical finance, we term stylized facts .

2.1. First list:

1. Heavy tails abound for such things as

• file sizes,

• transmission rates,

• transmission durations.

(See Arlitt and Williamson (1996), Leland et al. (1994), Maulik
et al. (2002), Resnick (2003), Resnick and Rootzén (2000), Will-
inger (1998), Willinger and Paxson (1998), Willinger et al. (1998).)

2. The number of bits or packets per slot exhibits long range depen-
dence across time slots (eg, Leland et al. (1993), Willinger et al.
(1995). There is also a perception of self-similarity as the width
of the time slot varies across a range of time scales exceeding a
typical round trip time.

3. Network traffic is bursty with rare but influential periods of very
high transmission rates punctuating typical periods of modest ac-
tivity.
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3. Burstiness

Burstiness, a somewhat vague concept, is an important feature of traf-
fic:

• Introduces sudden peak loads to the network.

• Important for design

• Important for quality of service.

Attempts to understand this phenomenon empirically:

• α/β decomposition of users (Sarvotham et al. (2005)) where

– α-users transmit large files at very high rate and

– β-users transmit the rest.

• Alternative language creates a dichotomy between mice and ele-
phants (Azzouna et al. (2004)) depending on whether a file is
typical or very large.
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3.1. Burstiness: Stylized facts

Some stylized facts suggested by the stimulating empirical study (Sar-
votham et al. (2005)) include:

• Large files over fast links contribute to α-traffic. The α-component
consitutes a small fraction of total workload but is responsible for
burstiness. Often a single dominent high-rate connection causes
a burst.

• Most of the dependence structure across time slots is carried by
the β-traffic. The long range dependence structure of the β-traffic
approximates that of the complete traffic.

• The quantity of traffic in a time window is distributionally ap-
proximated by the normal distribution when there is high levels
of aggregation across users and heavy loading. Furthermore, β-
traffic is much more likely to appear Gaussian than α-traffic.
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Figure 1: (a) Bytes-per-time arrival process at 500ms aggregation level for the Beta
component of the traffic using thresholding scheme on Auck-2. Note its Gaussian
character. (b) Similar Alpha component. Note its bursty character. (Quoted from
Sarvotham et al. (2005) without permission.)
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4. Approach to modeling

Suppose sessions characterized by

• Initiation times {Γk} where

{Γk} ∼ Poisson, rate λ.

• Mark of Γk:

(Fk, Lk, Rk) = (file, duration, rate ).

• Look at A(kδ, (k + 1)δ], the work inputted in (kδ, (k + 1)δ].

• Approximation as δ → 0? Will need λ = λ(δ) ↑ ∞ (a la heavy
traffic limit theorems).

• Compute dependence measure across different slots.

Will this explain the stylized facts?
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4.1. Difficulties

1. What is a reasonable assumption for the joint distribution of
(F, L, R). Statistical studies somewhat inconclusive but point to-
ward the following possibilities:

• F, R independent?

• L, R independent?

• Mixture of the 2 cases?

• Some asymptotic form of independence?

– Undoubtedly, no pair of (F, L, R) is truly independent.

– Statistical evidence points to asymptotic independence of
some sort.

– BUT: Is asymptotic independence worth the cost in com-
plexity? Temporarily, at least, we decided no.

2. The concept of burstiness has no precise definition.
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Big Bill Broonzey on deciding
that a song was a folk song:

I never heard
a horse sing it.
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4.2. Assessing dependence structure of (F, L, R).

Consider

F = file size,

L = duration of transmission,

R = throughput = F/L.

All three, are seen empirically to be heavy tailed:

P [F > x] =x−αF LF (x)

P [L > x] =x−αLL(x)

P [R > x] =x−αRLR(x).

Two studies:

• BU

• UNC

What is the dependence structure of (F, R, L)?

Since F = LR, the tail parameters (αF , αR, αL) cannot be arbitrary.
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Note for BU measurements, we have the following empirical estimates:

α α̂F α̂R α̂L

estimated value 1.15 1.13 1.4

Two theoretical possibilities:

• If (L, R) have a joint distribution with multivariate regularly vary-
ing tail but are NOT asymptotically independent then (Maulik
et al. (2002))

α̂F =
α̂Lα̂R

α̂L + α̂R

= .625 6= 1.15.

• If (L, R) obey a form (not the EVT version) of asymptotic inde-
pendence, (Heffernan and Resnick (2005), Maulik et al. (2002))

tP [
(
L,

R

b(t)

)
∈ ·] v→ FL(·)× αx−αR−1dx

then
αF = αR

∧
αL

and in our example

1.15 ≈ 1.13
∧

1.4.
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For two examples

• BU: Evidence seems to support some form of independence for
(R,L).

• UNC: Conclusions from Campos et al. (2005);

– Large values of F tend to be independent of large values of
R.

– Large files do not seem to receive any special consideration
when rates are assigned.

– A form of asymptotic independence for F, R seems appropri-
ate.

• Not a consistent pattern (visible to naked eye).
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BuL vs BuR Scatterplot:

Data processed from the original 1995 Boston University data; 4161
file sizes (F) and download times (L) noted and transmission rates (R)
inferred. The data consists of bivariate pairs (R,L).
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Rank method–UNC

Steps:

• Transform (F,R) data using rank method.

• Convert to polar coordinates.

• Keep 2000 pairs with biggest radius vector.

• Compute density estimate for angular measure S.

Plot: Density estimates with various amounts of smoothing+jitter plot
(green) of angles.

Full disclosure: These types of plots can be rather sensitive to choice
of threshold.
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5. Model & Results

Assume:

• Sessions begin: {Γk}, homogeneous Poisson rate λ.

• For the k-th session, independently attach iid marks (Fk, Rk, Lk);
F, R independent, heavy tailed; F = LR,

F ∼ G(x) R ∼ FR(x).

• 1 < αF , αL, αR < 2; finite means, infinite 2nd moments.

• Distribution tail of L given by

F̄L(l) ∼ E
(

1

R

)αF

Ḡ(l),

provided assume (Breiman (1965))

E
[

1

R

]αF +η

< ∞,

for some η > 0.

• Time slots (kδ, (k + 1)δ], k = 0,±1,±2, . . . }.
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• Limiting procedure shrinks the observation windows (δ → 0). To
get limit, increase the arrival rate λ = λ(δ) of sessions.

• Heavy traffic limit theorem philosophy; move through a family of
models indexed by δ as δ ↓ 0. Choice of λ:

λ(δ) =
1

δF̄R(δ−1)
.

• Since 1 < αR < 2, this choice of λ guarantees

λ(δ) =
1

δαR+1LR(δ−1)
→∞ and δλ(δ) =

1

δαRLR(δ−1)
→∞.

• Seek limit behavior of

A(δ) := {A(kδ, (k + 1)δ],−∞ < k < ∞}

where

A(kδ, (k + 1)δ] = work inputted in time (kδ, (k + 1)δ],

as

– δ → 0, OR

– δ is fixed and we study Cov(A(0, δ], A(kδ, (k+1)δ]) as k →∞
to seek LRD.
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5.1. Basic Technique

1. The counting function of the points {(Γk, Rk, Lk, Fk)}

N =
∑

k

ε(Γk,Rk,Lk,Fk) (1)

on R× [0,∞)3 is Poisson random measure with mean measure

λdsP [(R1, L1, F1) ∈ (dr, dl, du)] =: µ#(ds, dr, dl, du) (2)

remembering F1 ‖ R1 and L1 = F1/R1.

2. For a region A ⊂ R× [0,∞)3 with µ#(A) < ∞,

N
∣∣∣
A
(·) =

P A∑
i=1

εξi
(·)

where

PA ∼PO(µ#(A))

{ξi} ∼ iid
(µ#

∣∣∣
A
(·)

µ#(A)

)
.
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5.2. Limits for A(0, δ].

R>0,1 ={(s, r, l, u) : 0 < s ≤ δ, 0 < s + l ≤ δ},
R>0,2 ={(s, r, l, u) : 0 < s ≤ δ, s + l > δ},
R<0,1 ={(s, r, l, u) : s < 0, 0 < s + l ≤ δ},
R<0,2 ={(s, r, l, u) : s < 0, s + l > δ}.

A>0,1(δ) =
∑

k

RkLk1[(Γk,Rk,Lk,Fk)∈R>0,1)],

A>0,2(δ) =
∑

k

Rk(δ − Γk)1[(Γk,Rk,Lk,Fk)∈R>0,2)],

A<0,1(δ) =
∑

k

Rk(Lk + Γk)1[(Γk,Rk,Lk,Fk)∈R<0,1)],

A<0,2(δ) =
∑

k

Rkδ1[(Γk,Rk,Lk,Fk)∈R<0,2)].
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Express A(0, δ) =: A(δ) as the sum of 4
independent contributions:

A(δ) =A>0,1(δ) + A>0,2(δ)

+ A<0,1(δ) + A<0,2(δ).

Behavior of the rv’s A(·)(δ) is as follows:

• A<0,1(δ)
d
= A>0,2(δ);

• A<0,2(δ) does not converge weakly without scaling and with cen-
tering and scaling converges to a Gaussian rv;

• A>0,2(δ), suitably centered, converges weakly to an infinitely di-
visible rv with finite variance and whose Lévy measure has a reg-
ularly varying tail with index −(αF + αR), where αF + αR > 2.

• A>0,1(δ) converges in distribution to a compound poisson random
variable;
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5.3. Method for region R>0,2.

Each of the 4 terms is a compound Poisson sum and therefore it is
possible to compute the chf. For example,

E
(
eiθA>0,2(δ)

)
= exp

{∫ ∞

s=0

(eiθs − 1)ν>0,2
δ (ds)

}
. (3)

where

ν>0,2
δ (ds) =(ν>0,2

δ )′(s)ds = Ḡ(s)
(∫ ∞

r=s

r−1µδ(dr)
)
ds

µδ(dr) :=
FR(δ−1dr)

F̄R(δ−1)
.

Proceed:

• Let δ → 0.

• For region > 0, 2,
ν>0,2

δ → ν>0,2
0 ,

where ν>0,2
0 is a Lévy measure.

• Center to get A>0,2(0, δ]−m>0,2(δ) converges to id distribution.
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5.4. Method for region R<0,2.

We conclude

EeiθA<0,2(δ) = exp{
∫ ∞

0

(eiθr − 1)ν<0,2
δ (dr)}

where

ν<0,2
δ (dr) = E(F )r−1Ḡ0(r)µδ(dr), Ḡ0(r) =

∫ ∞

r

Ḡ(v)

E(F )
dv

µδ(dr) =
FR(δ−1dr)

F̄R(δ−1)
Ḡ0 ∈ RV−(αF−1)

Proceed:

• Let δ → 0.

• For region R<0,2,
ν<0,2

δ → ν<0,2
0 ,

where ν<0,2
0 is NOT a Lévy measure. Hint: should not expect id

limit.

• Center and scale to get

A<0,2(0, δ]−m(δ)

a(δ)
⇒ N(0, 1).
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The growth rate of a(δ) is given by

a2(δ) =E(F )

∫ 1

0

rḠ0(r)µδ(dr)

∼E(F )

∫ 1

0

rµδ(dr)

=(const)
1

δ−1F̄R(δ−1)

∼E(F )E(R)
(δ−1)(αR−1)

LR(δ−1)

→∞.
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6. Dependence across time slots.

Analyze cumulative input A(kδ, (k + 1)δ]
similarly to A(0, δ] using shifted regions.

But what about dependence structure between

A(0, δ] and A(kδ, (k + 1)δ]?
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6.1. Dependence for δ → 0.

For any non-negative integer k, as δ → 0, in Rk+1,

1

a(δ)

[
A(0, δ]
A(δ, 2δ]

...
A(kδ, (k + 1)δ]

−
{

2

∫ 1

0

vḠ(v)

∫ ∞

r=v

r−1µδ(dr)dv

−
∫ 1

0

E(F )Ḡ0(r,∞]µδ(dr)
}

1
1
...
1


]

⇒


X∞(0)
X∞(1)

...
X∞(k)


where the limiting sequence

X∞ = (X∞(k),−∞ < k < ∞}

is Gaussian with
Corr(X∞(0), X∞(k)) = 1.
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Reason

• Four regions contribute
to both A(0, δ] and
A(kδ, (k + 1)δ].

• Region R22 contributes
the Gaussian compo-
nent to both A(0, δ]
and A(kδ, (k + 1)δ].

• Common component

AR22(0, δ] = AR22(kδ, (k + 1)δ] =
∑

(Γk,Lk,Rk,Fk)∈R22

Rkδ.

• The scaling necessary to balance the contribution of R22 kills the
asymptotically id contributions from the other 3 regions.
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Conclude

The high frequency limit process obtained by letting δ → 0, has a
degenerate dependence structure.
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6.2. Dependence for fixed δ between slots.

For fixed δ > 0, as k →∞,

Cov(A(0, δ], A(kδ, (k + 1)δ]) ∼(constant)Ḡ0(k)

∼(constant)k−(αF−1)LF (k),

where

(constant) ∼
∫ ∞

0

r2−αF µδ(dr).

Thus the stationary sequence

{A(kδ, (k + 1)δ],−∞ < k < ∞}

exhibits long range dependence. Note:∫ ∞

0

r2−αF µδ(dr)
δ→0→ ∞.
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Method

We thus have

Cov(A(0, δ],A(kδ, (k + 1)δ])

=Cov(AR11(0, δ], AR11(kδ, (k + 1)δ])

+ Cov(AR12(0, δ], AR12(kδ, (k + 1)δ]

+ Cov(AR22(0, δ], AR22(kδ, (k + 1)δ])

+ Cov(AR21(0, δ], AR21(kδ, (k + 1)δ]).

The dominant term comes from the region R22; other terms of smaller
order.

Reason

Cov(AR22(0, δ],AR22(kδ, (k + 1)δ])

=Var(AR22(0, δ])

=

∫ ∞

0

rḠ0((k + 1)r)µδ(dr).
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7. Summary.

Stylized Facts Model

1. heavy tails 1. Built in

2. LRD across slots 2. Lag k cov ∼ cḠ0(k); δ fixed

3. Bursty 3. Traffic from regions R<0,1∪>0,2∪>0,1

id and compound Poisson
with reg varying tails

4. Cumulative traffic per slot 4.
(
A(0, δ]− (centering(δ)

)
/a(δ)

∼ N(0, 1)
d
≈ N(0, 1)

5. Dependence carried by 5. Cov from id pieces smaller
β-traffic order than from Gaussian piece.
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