
Mathematical Programming Lecture 3
OR 630 Fall 2006 August 31, 2006
adapted from notes written by Éva Tardos

Recall the following definitions from last class. In a covering problem, you are given sets, S1, . . . , Sm,
all subsets of {1, . . . , n} for some n. The covering problem is to select as few elements as possible
so that at least one element is selected in each set. We can formulate this covering problem as an
integer program, i.e., a linear program where the variables are required to be integer. We will
have variables xi associated with element i = 1, . . . , n, and the constraints will be

min
n∑

i=1

xi

xi ≥ 0 for each i = 1, . . . , n (fractional covering problem)∑

i∈Sj

xi ≥ 1 for each j = 1, . . . ,m

Note that in an optimum solutions we will have xi ≤ 1 for each i (as otherwise replacing xi by
min(1, xi) gives a better solution. So an integer solution has values 0 and 1. Think of the elements
i with xi = 1 as selected, and those with xi = 0 as not selected. (This is also sometimes called the
hitting set problem.)
Instead of the integer covering problem we will consider here the fractional covering problem, i.e.,
the LP given above.
Note that a fractional covering problem is an LP with a 0-1 matrix A of the form min(1x : Ax ≥ 1),
where 1 denotes the vector with all coordinates 1. Any LP of this form is a fractional covering
problem: the elements correspond to the columns of A, and the rows define the sets, set Sj contains
all elements where row j has a 1.
We take the linear programming dual of this problem using the method to take duals of linear
programs of general form that was discussed at the end of last lecture. The variables of the dual
correspond to the rows of the primal matrix. In our case variables correspond to the sets.

max
m∑

j=1

yj

yj ≥ 0 for each j = 1, . . . ,m (fractional packing problem)
∑

j:i∈Sj

yj ≤ 1 for each i = 1, . . . , n

To understand the meaning of this linear program, we will first consider the integer solutions to
this dual LP. Note that no variables can be above 1 due to the constraints. So the integer version
of this linear program selects a maximum number of sets (i.e., the sets with Sj that have yj = 1),
subject to constraints. The constraints require that the sets selected must be disjoint: for each
element i the number of sets selected that contains i is at most 1. This problem is traditionally
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called the integer set packing problem (we want to pack as many disjoint sets as possible). The
linear program is then named the fractional set packing problem.

Lemma 1 The fractional set packing and fractional set covering problems are duals of each other.

Next, we will derive a famous theorem from networks, the max flow-min cut theorem, from LP
duality. For now, the maximum flow problem will be formulated as follows. (Note that this is not
the traditional formulation, but is equivalent to it. Later in the semester we will show that they
are equivalent.)
The maximum flow problem is defined by a directed graph G, and two distinguished nodes, s and
t. The graph has directed edges, e = vw, which connect from a vertex v to another vertex w. Note
that the edges are directed, i.e., an edge e = vw going from v to w is different from an edge e = wv
from w to v.
We formulate the maximum flow problem as a linear program where the variables correspond to
paths from s to t. For each such path, P , we will have a variable xP . Note that this is an unusual
formulation, as there can be exponentially many paths in a graph; our LP can have very many
variables. For now, do not worry about this. We will only need the duality theorem, which is true
no matter how many variables we have.
For the linear programming formulation, we will use P to denote paths from s to t and use e to
denote edges of the graph; we let E denote the set of all edges, and let P denote the set of all paths
from s to t. The constraints express that for each edge e, at most one path can be selected using
edge e:

max
∑

P∈P
xP

xP ≥ 0 for each path P ∈ P∑

P :e∈P

xP ≤ 1 for each edge e ∈ E

Note that the flow problem is exactly a packing problem, where the elements are edges of the graph,
and the sets are the paths from s to t. In the integer packing problem, we want to find as many
disjoint paths from s to t as possible.
From the above general discussion of packing and covering problems, we know that the dual of this
packing problem is a covering problem with the paths as sets and the edges as elements:

min
∑

e∈E

ze

ze ≥ 0 for each edge e ∈ E∑

e∈P

ze ≥ 1 for each path P ∈ P

For the maximum flow problem defined above, we define a cut as a set S of nodes that contains s
and does not contain t. The edges in the cut are those edges that leave S, i.e., edges e = vw where
v is in S and w is not. Note that every cut gives an integer solution to the dual of the maximum
flow problem by setting ze = 1 if e leaves set S, and 0 otherwise. All paths from s to t must leave
set S at some point, hence they must contain at least one edge with ze = 1. (Note that a path can
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leave S more than once, assuming it entered S again in between the two). Hence, this dual variable
assignment is dual-feasible.
This implies that each cut defines an integer solution to the dual LP, and the value of this solution
is the number of edges leaving the cut. For a cut S, let n(S) denote the number of edges leaving
the cut. The minimum cut problem is to find the cut S with n(S) as small as possible. We saw
that cuts are integer solutions to this LP, so the LP minimum, min

∑
e∈E ze, is at most the size of

the minimum cut.

Lemma 2 The maximum flow value is at most the minimum cut value.

Proof. This is easy to see directly, but also follows from weak duality: all cut values are values of
dual feasible solutions, and so are upper bounds on the maximum flow value. Hence, the maximum
flow value is upper bounded by the minimum cut value.

We will use LP duality to prove that the maximum flow is equal to the minimum cut. To do this
we need some observations and definitions. Let z be the optimal dual vector in what follows.
Let cost(s, v) for a node v mean the minimum, over all s to v paths P , of the sum of the optimal
dual variable values for the edges on that path:

cost(s, v) = mins→v path P

∑

e∈P

ze.

We will consider the following sets Sρ = {v : cost(s, v) ≤ ρ}. The following observations will be
useful.

• The constraints in the linear program require that cost(s, t) ≥ 1.

• From this, we get that, for each ρ < 1, we have that t �∈ Sρ.

• For each ρ ≥ 0, we have that s ∈ Sρ. This is true essentially by definition. The empty path
from s to s has no edges, so the sum of z values along the edges is an empty sum, and hence
has value 0.

So far, we see that Sρ defines a cut for each 0 ≤ ρ < 1. In addition, we will need the following
inequality, which is often referred to as the triangle inequality:

Lemma 3 For each edge e = vw, we have that cost(s,w) ≤ cost(s, v) + ze,

Proof. The inequality follows from the fact the path from s to w consisting of the minimum-cost
path from s to v followed by edge e has cost exactly cost(s, v) + ze. The cost(s,w) is the minimum
cost of a path from s to w (and is actually smaller than the right-hand side if there are shorter
paths to w than this one.)

We want to show that there exists a value of ρ such that the corresponding cut Sρ is sufficiently
small. What we need to prove the theorem is to show exhibit a cut of value at most

∑
e∈E ze. We

will do this by selecting one of the cuts Sρ at random, by selecting ρ uniformly at random from the
interval [0, 1). The value of this cut is a random variable, and we will show that its expected value
is at most

∑
e∈E ze, and hence there must exist one such cut that achieves this bound.
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We want to compute the expected number of edges leaving the cut Sρ. To compute this expectation,
first consider the probability that a given directed edge e = vw leaves the randomly selected cut
Sρ. Edge e = vw leaves Sρ if and only if v is in Sρ and w is not in Sρ. This happens if and
only if cost(s, v) ≤ ρ < cost(s,w). If cost(s, v) ≥ cost(s,w), then the edge e = vw does not leave
any of the sets Sρ. If cost(s, v) < cost(s,w), then the probability that edge e leaves the randomly
selected Sρ is exactly cost(s,w) − cost(s, v). Note that, by the triangle inequality, we get that
cost(s,w) − cost(s, v) ≤ ze; hence the probability that edge e leaves the selected set is at most ze.
Now, we compute the expected number of edges leaving the set. We can do this by introducting
an indicator variable I(e, ρ), which is equal to 1 if e leaves Sρ, and is 0 otherwise. Then, we have
that

n(Sρ) =
∑

e∈E

I(e, ρ).

By the linearity of expectation (that is, the expectation of a sum is the sum of the expectations),
the expected value of n(Sρ) is equal to the sum, over all edges e ∈ E, of the expectation of I(e, ρ).
Since I(e, ρ) is a 0-1 random variable, its expectation is equal to the probability that this variables
is equal to 1; that is, the probability that edge e leaves the cut Sρ, which is exactly what we
bounded above.

E(n(Sρ)) =
∑

e∈E

Pr(e leaves set Sρ) ≤
∑

e

ze.

Now, we just put the pieces together as we expected, to prove the max flow-min cut theorem. So
far, we know that the max flow is at most the min cut. From LP duality, we also know that the
max flow value is the same as the value of the optimum LP dual value:

∑
e ze. Then, to show that

max flow = min cut, we need to find a cut, S, such that n(S) ≤ ∑
e ze.

By the standard definition of the expectation, if the expected number of edges leaving the randomly
selected cut Sρ is at most

∑
e ze then at least one of the cuts that contribute to this expectation

must have value at most the expectation, and hence at most
∑

e ze. This is the cut we needed, and
so the proof is complete.
Recall that cuts induce integer solutions to the dual LP; so we now proved that the dual LP always
has integer optimum solutions. In fact, the primal linear program, the maximum flow problem,
also has integer optimum solutions. We will see this later when we talk more about graphs and
flows. I do not know of a direct LP based proof of the integrality of the primal.

Our next topic is to understand the relation between a geometric and algebraic interpretation of
linear programming. We will also use geometry to give a math proof of the strong duality theorem.
Section 17 of Chvátal gives a short introduction to this topic.
We will consider the feasible region of a set of inequalities. Given a set of inequalities we define the
feasible region as P = {x : Ax ≤ b}. Today we will consider two equivalent definition of a vertex of
this region. One definition is geometric, one is algebraic, and we will show that they are equivalent.

Lemma 4 For a point x̂ ∈ �n, we define A= to consist of the rows of A where aix̂ = bi, and let
b= denote the corresponding coordinates of b. The following two conditions are equivalent:
(a) For each direction y ∈ �n, if x̂ + y and x̂ − y are both in P , then y = 0.
(b) The matrix A= has rank n.
A point x̂ satisfying these conditions is called a vertex of P .

We will prove this lemma next class.
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