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We introduce two statistical methods for estimating vehicle travel time distribu-

tions on a road network, using Global Positioning System (GPS) data recorded

during historical vehicle trips. In the first method, we use a model of the path

taken by each vehicle in the data, the travel time on each road segment in the

network, and the location and speed errors for each GPS observation. In the sec-

ond method, we use a model of the entire travel time of each trip, and include

covariates such as the types of roads traveled and time of day. We estimate the

parameters of both models by Markov chain Monte Carlo methods.

We compare the performance of these methods with two simpler methods,

a recently published method, and commercially available travel time estimates,

using data from ambulance trips in Toronto and simulated data. Our methods

outperform the alternative methods in point and distribution estimation of out-

of-sample trip travel times. Our methods also provide more realistic estimates

than the recently published method of the probability that an ambulance is able

to respond to each intersection in Toronto within a time threshold.

We also consider map-matching, i.e. estimating a vehicle’s path from sparse

and error-prone GPS data, which is an important sub-problem for travel time

estimation. In practice, successive GPS location readings are frequently biased

in the same direction. We introduce a statistical map-matching method that uses

historical vehicle trips to estimate the distribution of GPS location biases.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Travel time estimates for vehicles on a road network are used in navigation sys-

tems, transport policy decisions, and management of vehicle fleets such as taxis,

emergency vehicles, and delivery services [10]. We are motivated particularly

by the emergency medical services (EMS) application. In this context, travel

times are used in algorithms for positioning ambulance bases and parking lo-

cations [7, 20, 23], in ambulance redeployment methods [38], and in ambulance

dispatch decisions [11]. For example, EMS providers prefer to assign the am-

bulance expected to arrive fastest to respond to a new emergency [11], which

requires a travel time estimate for each available ambulance to the emergency

location.

In the EMS context and others, it is also important to capture the uncer-

tainty in the travel time, by estimating the entire travel time distribution, rather

than just the mean travel time [27, 48]. For instance, taking into account un-

certainty in ambulance travel times can improve fleet management decisions

and thereby reduce response times, leading to higher quality care for patients

[12, 40]. Ambulance travel time performance targets are also framed in terms

of the distribution. EMS contracts typically stipulate that the EMS organiza-

tion must respond to a certain fraction of emergencies within a time threshold,

or fines are assessed [13, 36]. Similarly, Pell et al. estimated that improving re-

sponse times from 90% of emergencies within 14 minutes to 90% of emergencies

within 8 minutes would increase the survival rate of out-of-hospital heart attack
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patients from 6% to 8%, on data from Scotland [43].

In Chapters 2 and 3, we introduce and compare two statistical methods

for vehicle travel time distribution estimation, using Global Positioning System

data (GPS) recorded during historical vehicle trips. Our travel time estimation

methods are designed particularly for ambulance data, but are applicable in

other contexts. Indeed, GPS data from smartphones and other navigation de-

vices are increasingly available from many sources, including taxi fleets, deliv-

ery services, and personal vehicles [5]. Unlike other sources of travel time data,

GPS devices do not require instrumentation on the roadway, and therefore have

the prospect of comprehensive network coverage [25].

Raw GPS data are subject to error in location and speed measurements

[64, 65]. Location accuracy is particularly poor in urban canyons, where GPS

satellites may be obscured and signals reflected [9, 36]. Large errors of over

one-hundred meters are not uncommon [5, 9]. Often, GPS data are also sparsely

recorded. Sparsity is introduced to reduce data transmission and storage costs

[41, 46], or to save smart-phone battery life [26]. In some cases, GPS observa-

tions can be as infrequent as every 1-2 kilometers or more [34].

Sparsity and error in GPS readings can make it difficult to reconstruct the

path traversed by a vehicle. Estimating a vehicle path from a set of GPS read-

ings is called the map-matching problem [63]. Map-matching is a popular topic

of current research, because of the explosion in quantity of sparse, error-prone

GPS data [5, 26]. Map-matching is an important sub-problem for travel time es-

timation, because typically we must know the route traveled in each historical

vehicle trip in order to predict travel times. In our first travel time estimation

method, map-matching solutions for each vehicle trip are estimated simultane-

2



ously. In our second estimation method, map-matching solutions are required

as inputs. In Chapter 4, we introduce a statistical map-matching method.

To test our two travel time estimation methods and compare to alternative

methods, we use data provided by Toronto EMS, from the years 2007-2008.

These data consist of GPS observations on ambulance trips, and exhibit spar-

sity and error. GPS readings are typically drawn every 200 meters of travel,

though sometimes the interval is larger or smaller. The Toronto dataset contains

157,283 ambulance trips, and the road network contains 68,272 links (road seg-

ments between neighboring intersections). The large size of this dataset makes

computational efficiency an important consideration for our methods.

1.2 Alternative Travel Time Estimation Methods

First, we review alternative approaches for vehicle travel time estimation.

Hofleitner, Herring, and Bayen [25] and Hofleitner et al. [24] take a traffic flow

perspective, modeling travel times at the network link level. They use a dy-

namic Bayesian network for the unobserved traffic conditions on links and

model the link travel time distributions conditional on the traffic state. Their

method is applied to a subset of the San Francisco road network with roughly

800 links, predicting travel times using taxi fleet data and validating with addi-

tional data sources.

Jenelius and Koutsopoulos [28] propose a framework for estimating vehicle

travel time distributions while incorporating weather, speed limit, and other ex-

planatory factors. They point out that empirical evidence suggests that the link

travel times are strongly correlated, even after conditioning on time of day and
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other explanatory factors [3, 48]. This contrasts with approaches such as Hofleit-

ner et al. [24, 25] and our first method [62], which assume that the link travel

times are independent within a vehicle trip, perhaps conditional on the traffic

state. Jenelius and Koutsopoulos capture correlation using a moving average

specification for the link travel times. Their framework is applied to estimate

travel times for a particular route in Stockholm.

The conditions of these articles differ from our application. They have a

higher density of data for particular times and routes in the network than exists

in our Toronto ambulance data, because ambulance trips are rare compared to

other vehicles. The high density of data allows Hofleitner et al. to model traffic

dynamics directly [24, 25]. Although our data is less dense in time, the size of the

Toronto road network that we use is an order of magnitude larger than in these

articles, and the number of historical vehicle trips is also larger [24, 25, 28, 61].

This leads to different modeling choices and computational challenges.

Research on estimating specifically ambulance travel time distributions has

been done by Budge, Ingolfsson and Zerom [8]. They model ambulance travel

times using a log t-distribution, where the median and coefficient of variation

are either nonparametric or parametric functions of the shortest-path distance

between the start and end locations [32]. These functional forms enable their

method to be flexible but still interpretable. However, the reliance on trip dis-

tance means that their method cannot capture some desired features, such as

faster response times to locations near major roads. We compare travel time

estimation performance with the method of Budge et al. in Chapters 2 and 3.

Aladdini [1] investigated ambulance travel time distributions between spe-

cific start and end locations in Waterloo, Ontario. He found that the travel times

4



were well modeled by lognormal distributions, in contrast to Budge et al., who

observed heavier tails [8]. We also find that the lognormal distribution provides

a good fit (Section 3.3.2). Part of this difference appears to be because Budge et

al. do not condition on the trip location; all trips of the same length are treated

together. We desire to go beyond Aladdini and model travel time distributions

for arbitrary routes. Ambulances are often assigned to new emergencies while

away from their bases [11], and so we need richer information than estimated

response time distributions from several fixed bases.

In addition to these studies, there are also commercially-available travel time

estimates. Specifically, we investigate travel time estimates from TomTom, a

maker of navigation products (Section 3.4). Their travel time estimates are based

on data from TomTom navigation devices, and provide only mean travel times,

and so cannot be used in applications where travel time distributions are re-

quired. Also, their estimates are calculated for standard vehicle speeds, not

“lights-and-sirens” ambulance speeds. However, they are still useful for point

estimation performance comparisons, as long as they are corrected for bias.

TomTom generates travel time estimates using both real-time and historical

GPS information. Other real-time sources of travel information are available, for

example from Google and Waze. In this thesis, we rely on historical ambulance

data. However, as these real-time data sources become more comprehensive

and EMS organizations make use of them, it will likely become beneficial to

integrate real-time and historical data for ambulance travel time estimation. We

discuss this as an area for further study in Chapter 5.
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1.3 Independent Link Estimation Method and Local Methods

We introduce our first vehicle travel time distribution estimation method in

Chapter 2. We use a statistical model on the distribution of GPS location and

speed errors, the path traveled by each vehicle, and the travel time on each net-

work link (Section 2.2). The model combines information from the GPS times,

locations, and speeds observed during each historical vehicle trip with the start

and end times and locations of the trips. To simplify analysis, we assume in-

dependence between the travel times on each link and between all the GPS

speed and location errors. We refer to this method as the Independent Link

(IL) method.

To estimate the parameters of the model, we take a Bayesian perspective

and introduce a Markov chain Monte Carlo method to draw samples from the

posterior distribution of the unknown parameters [55, 56] (Section 2.3). This si-

multaneous estimation allows uncertainty in each parameter (for example, the

path traveled in each trip) to be taken into account in estimating the other pa-

rameters. To sample the path traveled by each vehicle, we introduce a reversible

jump Metropolis-Hastings proposal [21]. The reversible jump proposal is given

in Section 2.3.2 and its validity proven in Section 2.3.7.

We also introduce two local methods using only the GPS locations and

speeds (Section 2.4.1). Each GPS reading is assigned to the nearest link, and

the GPS speeds are used to estimate the travel time distribution for each link.

The local methods are straightforward, requiring no map-matching solutions or

sophisticated modeling, and provide helpful comparisons to our other meth-

ods. Also, they are useful in settings where more sophisticated models require

6



initial speed or time estimates for the roads in a network [34, 60, 61].

In the first local method, we use the harmonic mean of the mapped GPS

speeds to create a point estimate of the travel time. We are the first to propose

this estimator for GPS data, though it is commonly used in the transportation

literature for estimating travel times via speed data recorded by loop detectors

[47, 53, 58]. We show that if the GPS readings are sampled by distance (i.e.

every 200 meters), then this method is unbiased; however if the GPS readings

are sampled by time (i.e. every 10 seconds), then this method overestimates the

mean travel time (Section 2.4.2). This method also naturally produces a travel

time distribution estimate. In the second local method, we assume a parametric

distribution for the GPS speeds on each link, and calculate maximum likelihood

estimates of the distribution parameters, which can be used to obtain point and

distribution estimates of the travel time.

We compare the out-of-sample trip travel time predictive accuracy of the IL

method, the local methods, and the method of Budge et al. on the subregion of

Leaside, Toronto. Point estimates from the IL method outperform the alterna-

tive methods by 1-5% in root mean squared error (RMSE) on the Toronto ambu-

lance data and by 4-8% in RMSE on simulated data (Sections 2.6 and 2.7). We

also introduce an Oracle method to calculate the amount of unavoidable predic-

tion error due to random travel times, even when the true distribution is known

exactly. If the unavoidable error is subtracted, the IL method outperforms the

alternative methods by over 50% in RMSE on the simulated data.

For travel time distribution estimation, we calculate 95% predictive intervals

from each method. Intervals from the IL method on the Toronto ambulance data

are narrower than those from Budge et al., which is desirable. However, only
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85.8% of the observed travel times are contained in the 95% predictive intervals

from the IL method, indicating that the intervals do not capture the full range

of travel time variability. This is probably because the assumption of indepen-

dence between link travel times does not hold in practice [3, 48]. Dependence

between link travel times leads to greater variability in trip travel times.

We also calculate the probability that an ambulance is able to travel from a

start location to each intersection in the Toronto subregion within a specific time

threshold (Section 2.7.4). These probabilities are applied in the EMS travel time

performance targets mentioned above. Visual displays of these probabilities are

called probability-of-coverage maps, and are useful to EMS practitioners [8].

The estimated probabilities from the IL method are higher for locations that

can be reached by fast roads than for locations that are the same distance from

the start location but cannot be reached by fast roads. This behavior cannot be

captured by the method of Budge et al., and so the estimated probabilities from

our method appear more realistic.

Finally, we assess the ambulance path estimates from the IL method as solu-

tions to the map-matching problem (Sections 2.6.3 and 2.7.5). The posterior dis-

tribution from the IL method is able to capture multiple high-probability paths

when the true path is unclear from the GPS data. Path estimates from the IL

method interpolate accurately between widely-separated GPS locations and are

robust to GPS error.
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1.4 Whole Trip Estimation Method

Although our IL method is successful in estimating ambulance travel times on

the Toronto subregion, there is room for improvement in estimation perfor-

mance and computational requirements. The method is computationally inten-

sive, primarily because there are a large number of parameters to be estimated.

Also, the assumption of independence between link travel times leads to travel

time interval estimates that are unrealistically narrow, as discussed above.

We address these difficulties by proposing a statistical model on the whole

travel time for each trip, rather than on the individual link travel times. This

naturally incorporates dependence between link travel times. We refer to this

method as the Whole Trip (WT) travel time estimation method. Like Budge et

al. [8], we estimate the trip travel time via a parametric model, but our model

also incorporates dependence on the route taken and other explanatory factors.

The WT method uses a flexible model of the parameters of the trip travel time

distribution, given total travel times and estimated paths from historical trips

on the network. In order to predict the travel time distribution for a particular

path, the model does not require historical trips that take precisely the same

path. Instead, it uses information from all the historical trips by learning shared

properties like the effects of time of day and types of road traversed.

Specifically, the WT model uses parameters for the unit travel time (inverse

of speed) for each road class (highway, major arterial, etc.) in the network, pa-

rameters for each time bin of the week, and parameters relating the travel time

variability to the distance traveled. These modeling choices are suggested by

exploratory data analysis (Section 3.3.2). For computation, we again take a

9



Bayesian perspective and introduce a Markov chain Monte Carlo method to

estimate the model parameters (Section 3.2.2).

The WT method is more computationally efficient than the IL method. The

number of parameters in the IL method grows with the number of links in the

network, the number of paths in the dataset, and the number of links taken in

each path. The number of parameters in the WT method is invariant to these

quantities. Each parameter must be estimated, and a large number of param-

eters may also increase the number of iterations required to converge to the

limiting distribution of the Markov chain.

However, the WT method does make some modeling simplifications. It does

not estimate map-matching solutions for the historical vehicle trips, but requires

them as inputs. Thus, uncertainty in the path traveled by each vehicle is lost in

the travel time estimation stage. If there is a large amount of uncertainty in some

of the paths, given the GPS data, this could have a negative effect on estimation

performance. In the Toronto ambulance data, the path is clear for many of the

trips, but there are also many trips where at least part of the path is unclear.

Also, the WT method only uses the times of the first and last GPS readings

(after the map-matching inputs are generated); the interior GPS readings are

ignored. This leads to loss of information about individual link travel times

and how the vehicle travels during each trip, compared to the IL method. It is

possible to form a model that includes all the GPS data and also retains some

of the advantages of the WT method, such as dependence between link travel

times. We discuss this as an area for future work in Chapter 5.

We use the WT method to predict travel times for out-of-sample ambulance

trips for the entire Toronto dataset, and compare the prediction accuracy to that
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of Budge et al. [8] and the TomTom estimates (Section 3.5). We consider two

scenarios: (1) where the path traveled for each test trip is assumed known, and

(2) where the path is assumed unknown and estimated via the fastest path in

expected travel time. Point estimates from the WT method outperform Budge

et al. by 3.5% in RMSE under Scenario 1 and by 2.5% under Scenario 2, and

outperform TomTom by 5% under Scenario 2, which is the fairer comparison

because we do not specify the paths traveled when obtaining the TomTom esti-

mates. Performance of both the WT method and Budge et al. improves substan-

tially from Scenario 2 to Scenario 1, indicating that travel time predictions can

be more accurate if the path traveled is specified in advance. For distribution es-

timation, the WT method outperforms Budge et al. by 3% in continuous ranked

probability score [18]. We also compare performance with the IL method on the

subregion of Toronto used in Chapter 2. The WT method performs comparably

to the IL method in point estimation and better in interval estimation.

We also compare the WT method with the method of Budge et al. in terms

of their effect on ambulance fleet management. We select a set of representative

ambulance posts in Toronto, and calculate which ambulance post is estimated

to be the closest in median travel time to each intersection in Toronto, according

to the two methods. We find that 5% of the intersections in the city have dif-

ferent estimated closest posts according to the two methods, and therefore the

methods would recommend that a different ambulance respond to emergencies

at these intersections, if the closest ambulance is dispatched [11]. We also cal-

culate the probability that an ambulance is able to respond within 4 minutes

from the closest post to each intersection in the city. We find substantial dispar-

ities between the two methods; for 10% of the intersections in the city, the two

methods give response probabilities that differ by at least 15%. As in Chapter 2,

11



these disparities appear to arise because our method allows differences in speed

between roads, unlike the method of Budge et al.

1.5 Map-Matching and GPS Location Bias Estimation

In Chapter 4, we introduce a statistical map-matching method. First, we review

recent approaches to map-matching [26, 34, 41, 46]. Most map-matching algo-

rithms return a single best estimate of the path driven by the vehicle [5]. How-

ever, some applications such as route choice models use a set of possible paths

with associated probabilities [5]. Bierlaire, Chen and Newman [5] introduced a

map-matching method that returns a probability for each candidate path. Our

IL method performs map-matching and gives a posterior probability for each

path, as does our map-matching method introduced below.

It has been observed that successive GPS location errors appear to be depen-

dent, in the form of a persistent bias in a particular direction, together with a

smaller independent random noise [31, 66]. Xu et al. observed that the GPS bias

was fairly stable in the short term and changed smoothly on the time-scale of

minutes [66]. There are several reasons why GPS locations are biased. These

include apparent biases due to errors and simplifications in the digital road net-

work [9], such as the typical assumption that roads are sequences of line seg-

ments with no width, and inherent properties of the GPS system, such as atmo-

spheric delay [31] and the use of dead-reckoning in cases where GPS satellites

cannot be observed [66]. GPS bias and random noise have been corrected for

via Kalman filters in the high-frequency GPS setting [31, 66]. However, in map-

matching methods for sparse GPS data, location errors are typically assumed to

12



be independent and normally distributed [5, 26, 33, 34, 36, 62].

In Chapter 4, we first investigate whether the path traversed and the GPS

location bias are identifiable, i.e. whether they can be estimated uniquely given

sufficient data (Section 4.2). In the case where there is no independent error for

each reading, we show that the path and bias are identifiable up to translations

of the path in the road network by a shift vector. However, even if there is no

path in the road network that is a translation of the true path, the true path

and GPS bias may not be distinguishable from alternatives given only a finite

amount of GPS data.

Next, we introduce a statistical map-matching method that models the GPS

location error as the sum of a bias vector for the entire trip and an independent

error for each reading (Section 4.3). We simultaneously estimate map-matching

solutions and the GPS bias and independent error distributions for a dataset of

historical vehicle trips, using Bayesian methods. We compare the Metropolis-

Hastings proposal we use to sample paths on a road network with a similar

method for estimating paths recently introduced by Flötteröd and Bierlaire [14].

We test our map-matching method on the Toronto ambulance data and on

simulated data, comparing the method to a reduced method that does not in-

clude a term for the GPS bias (Sections 4.4 and 4.5). We find that the method that

includes bias outperforms the reduced method on simulated datasets where the

GPS bias is medium-to-large and the independent error is small. The two meth-

ods perform comparably when both types of errors are small, and the reduced

method performs slightly better when the independent errors are large. In real

data, it appears that the independent error is almost always small, and the bi-

ases range from small to large. We also investigate specific types of paths in the
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Toronto ambulance data and the simulated data in which the model including

bias performs better.

1.6 Summary of Remaining Chapters

In Chapter 2, we introduce our IL travel time estimation method and local meth-

ods, and make comparisons to the method of Budge et al. [8] on a subregion of

Toronto. Chapter 2 and material in this Introduction were published in The An-

nals of Applied Statistics [62]. In Chapter 3, we introduce our WT estimation

method, and make comparisons to the IL method, the method of Budge et al.,

and the TomTom estimates on the entire Toronto dataset. This chapter and ma-

terial in this Introduction have been submitted for publication [61]. In Chapter

4, we introduce our map-matching and bias estimation method. This chapter is

a working paper and appears here for the first time [60]. We draw conclusions

and consider areas for future work in Chapter 5.
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CHAPTER 2

TRAVEL TIME ESTIMATION FOR AMBULANCES USING BAYESIAN

DATA AUGMENTATION

2.1 Introduction

Emergency medical service (EMS) providers prefer to assign the closest avail-

able ambulance to respond to a new emergency [11]. Thus, it is vital to have

accurate estimates of the travel time of each ambulance to the emergency loca-

tion. An ambulance is often assigned to a new emergency while away from its

base [11], so the problem is more difficult than estimating response times from

several fixed bases. Travel times also play a central role in positioning bases

and parking locations [7, 20, 23]. Accounting for variability in travel times can

lead to considerable improvements in EMS management [12, 27]. We introduce

methods for estimating the distribution of travel times for arbitrary routes on

a municipal road network, using historical trip durations and vehicle Global

Positioning System (GPS) readings. This enables estimation of fastest paths in

expectation between any two locations, as well as estimation of the probability

an ambulance will reach its destination within a given time threshold.

Most EMS providers record ambulance GPS information; we use data from

Toronto EMS from 2007-2008. The GPS data include locations, timestamps,

speeds, and vehicle and emergency incident identifiers. Readings are stored

every 200 meters (m) or 240 seconds (s), whichever comes first. The true sam-

pling rate is higher, but this scheme minimizes data transmission and storage.

This is standard practice across EMS providers, though the storage rates vary

[36]. In related applications the GPS readings can be even sparser; Lou et al.
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[34] analyzed data from taxis in Tokyo in which GPS readings are separated by

1-2 km or more.

The GPS location and speed data are also subject to error. Location accuracy

degrades in urban canyons, where GPS satellites may be obscured and signals

reflected [9, 36]. Chen et al. [9] observed average location errors of 27 m in parts

of Hong Kong with narrow streets and tall buildings, with some errors over 100

m. Location error is also present in the Toronto data; see Figure 2.1. Witte and

Wilson [65] found GPS speed errors of roughly 5% on average, with largest error

at high speeds and when few GPS satellites were visible.
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Figure 2.1: Left: A subregion of Toronto, with primary roads (black), secondary
roads (gray) and tertiary roads (light gray). Right: GPS data on this region from
the Toronto EMS lights-and-sirens dataset.

Recent work on estimating ambulance travel time distributions has been

done by Budge, Ingolfsson and Zerom [8] and Aladdini [1], using estimates

based on total trip distance and time, not GPS data. Budge et al. proposed mod-
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eling the log travel times using a t-distribution, where the median and coeffi-

cient of variation are functions of the trip distance (see Section 2.4.3). Aladdini

found that the lognormal distribution provided a good fit for ambulance travel

times between specific start and end locations. Budge et al. found heavier tails

than Aladdini, in part because they did not condition on the trip location.

We first introduce two local methods using only the GPS locations and

speeds (Section 2.4.1). Each GPS reading is assigned to the nearest link (the

section of road between neighboring intersections), and the assigned speeds are

used to estimate the travel time for each link. In the first method, we use the har-

monic mean of the mapped GPS speeds to create a point estimator of the travel

time. We are the first to propose this estimator for mapped GPS data, though it

is commonly used for estimating travel times via speed data recorded by loop

detectors [47, 53, 58]. We give theoretical results supporting this approach in

Section 2.4.2. This method also yields interval and distribution estimates of the

travel time. In our second local method, we assume a parametric distribution

for the GPS speeds on each segment, and calculate maximum likelihood esti-

mates of the parameters of this distribution. These can be used to obtain point,

interval, or distribution estimates of the travel time.

In Sections 2.2 and 2.3, we propose a more sophisticated method, modeling

the data at the trip level. Whereas the local methods use only GPS data and the

method of Budge et al. uses only the trip start and end locations and times, this

method combines the two sources of information. We simultaneously estimate

the path driven for each ambulance trip and the distribution of travel times on

each link, using Bayesian data augmentation [55]. For computation, we intro-

duce a reversible jump Markov chain Monte Carlo method [21]. We refer to this
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method as the Independent Link (IL) method, since the model assumes inde-

pendence between link travel times.

We compare the predictive accuracy on out-of-sample trips for the IL

method, the local methods, and the method of Budge et al. on a subregion of

Toronto, using simulated data and real data (Sections 2.6 and 2.7). Since the

methods have some bias due in part to the GPS sampling scheme, we use a

correction factor to make each method approximately unbiased (Section 2.5).

On simulated data, point estimates from the IL method outperform the alter-

native methods by over 50% in root mean squared error, relative to an Oracle

method with the lowest possible error. On real data, point estimates from the

IL method again outperform the alternative methods. Interval estimates from

the IL method are superior to those from the local methods, but appear to be

slightly too narrow to capture the full range of travel time variability.

We also produce probability-of-coverage maps [8], showing the probability

of traveling from a given intersection to any other intersection within a time

threshold (Section 2.7.4). This is the performance standard in many EMS con-

tracts; an EMS organization attempts to respond to, e.g., 90% of all emergencies

within 9 minutes [13]. The estimates from the IL method are more realistic than

those of Budge et al., because they differentiate between equidistant locations

based on whether or not they can be reached by fast roads.

Finally, we assess the ambulance path estimates from the IL method (Sec-

tions 2.6.3 and 2.7.5). Estimating the path driven from a discrete set of GPS

readings is called the map-matching problem [36]. Most map-matching algo-

rithms return a single path estimate [33, 34, 35, 36]. However, the posterior

distribution of the IL method can capture multiple high-probability paths when
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the true path is unclear from the GPS data. Path estimates from the IL method

interpolate accurately between widely-separated GPS locations and are robust

to GPS error.

2.2 Bayesian Formulation

2.2.1 Model

Consider a network of J directed road segments, called links, and a set of I am-

bulance trips on this network. Assume that each trip starts and ends on known

nodes (intersections) dsi and dfi in the network, at known times tsi and tfi . There-

fore the total travel time tfi − tsi is known. In practice, trips sometimes begin or

end in the interior of a link; however, links are short enough that this is a minor

issue; the median link length in the full Toronto network is 111 m, the mean is

162 m, and the maximum is 4613 m. Each trip i has observed GPS readings,

indexed by ` ∈ {1, . . . , ri}, and gathered at known times t`i . GPS reading ` is the

triplet
(
X`
i , Y

`
i , V

`
i

)
, where X`

i and Y `
i are the measured geographic coordinates

and V `
i is the measured speed. Denote Gi =

{(
X`
i , Y

`
i , V

`
i

)}ri
`=1

.

The relevant unobserved variables for each trip i are the following:

1. The unknown path (sequence of links) Ai = {Ai,1, . . . , Ai,Ni
} traveled by

the ambulance from dsi to dfi . The path length Ni is also unknown.

2. The unknown travel times Ti = (Ti,1, . . . , Ti,Ni
) on the links in the path. We

use the notation Ti(j) to refer to the travel time in trip i on link j.

19



We model the observed and unobserved variables {Ai, Ti, Gi}Ii=1 as follows.

Conditional on Ai, each element Ti,k of the vector Ti follows a lognormal dis-

tribution with parameters µAi,k
, σ2

Ai,k
, independently across i and k. We use

the notation Ti,k|Ai ∼ LN
(
µAi,k

, σ2
Ai,k

)
. In the literature, ambulance travel

times between specific locations have been observed and modeled to be log-

normal [1, 2]. Denote the expected travel time on each link j ∈ {1, . . . , J} by

θ(j) = exp
(
µj + σ2

j/2
)
. We use a multinomial logit choice model [39] for the

path Ai, with likelihood

f(Ai) =
exp

(
−C

∑Ni

k=1 θ (Ai,k)
)

∑
ai∈Pi

exp (−C
∑ni

k=1 θ (ai,k))
, (2.1)

where C > 0 is a fixed constant, Pi is the set of possible paths with no repeated

nodes from dsi to dfi in the network, and ai = {ai,1, . . . , ai,ni
} indexes the paths in

Pi. In this model, the fastest routes in expectation have the highest probability,

and the ratio of probabilities between two routes is a function of their difference

in expected travel time.

We assume that ambulances travel at constant speed on a single link in a

given trip. This approximation is necessary since there is typically at most one

GPS reading on any link in a given trip, and thus little information in the data

regarding changes in speed on individual links. Therefore, the true location

and speed of the ambulance at time t`i are deterministic functions loc
(
Ai, Ti, t

`
i

)
and sp

(
Ai, Ti, t

`
i

)
of Ai and Ti. Conditional on Ai, Ti, the measured location(

X`
i , Y

`
i

)
is assumed to have a bivariate normal distribution (a standard assump-

tion [33, 36]) centered at loc
(
Ai, Ti, t

`
i

)
, with known covariance matrix Σ. Simi-

larly, the measured speed V `
i is assumed to have a lognormal distribution with
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expectation equal to sp
(
Ai, Ti, t

`
i

)
and variance parameter ζ2:

(
X`
i , Y

`
i

)∣∣Ai, Ti ∼ N2

(
loc
(
Ai, Ti, t

`
i

)
,Σ
)
, (2.2)

log V `
i

∣∣Ai, Ti ∼ N

(
log sp

(
Ai, Ti, t

`
i

)
− ζ2

2
, ζ2

)
. (2.3)

We assume independence between all the GPS speed and location errors. Com-

bining Equations 2.1-2.3, we obtain the complete-data likelihood

f
(
{Ai, Ti, Gi}Ii=1

∣∣∣{µj, σ2
j

}J
j=1

, ζ2
)

=
I∏
i=1

[
f(Ai)

Ni∏
k=1

LN
(
Ti,k;µAi,k

, σ2
Ai,k

)
(2.4)

ri∏
`=1

[
N2

((
X`
i , Y

`
i

)
; loc

(
Ai, Ti, t

`
i

)
,Σ
)
× LN

(
V `
i ; log sp

(
Ai, Ti, t

`
i

)
− ζ2

2
, ζ2

)]]
.

In practice we use data-based choices for the constants Σ and C (see Section

2.3.6). The unknown parameters in the model are the link travel time parame-

ters
{
µj, σ

2
j

}J
j=1

and the GPS speed error parameter ζ2.

2.2.2 Prior Distributions

We specify independent prior distributions for the unknown parameters, using

µj ∼ N (mj, s
2), σj ∼ Unif (b1, b2), and ζ ∼ Unif (b3, b4), where mj , s2, b1, b2,

b3, b4 are fixed hyperparameters. A normal prior is a standard choice for the

location parameter of a lognormal distribution. We use uniform priors on the

standard deviations σj and ζ [15]. The prior ranges [b1, b2] and [b3, b4] are made

wide enough to capture all plausible parameter values. The prior mean for µj

depends on j, because there are often existing road speed estimates that can be

used to specifymj . Prior information regarding the values s2, b1, b2, b3, b4 is more

limited. We use a combination of prior information and the data to specify all

hyperparameters, as described in Section 2.3.6.
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2.3 Bayesian Computational Method

We use a Markov chain Monte Carlo method to obtain samples from the joint

posterior distribution of all unknowns [51, 56]. Each unknown is updated in

turn, conditional on the other unknowns, via either a draw from the closed-

form conditional posterior distribution or a Metropolis-Hastings (M-H) move.

Estimation of any desired function g
(
ζ2,
{
µj, σ

2
j

}J
j=1

)
of the unknown parame-

ters is done via the Monte Carlo samples
(
ζ2(`),

{
µ

(`)
j , σ

(`)
j

}J
j=1

,
{
A

(`)
i , T

(`)
i

}I
i=1

)
,

taking ĝ = 1
M

∑M
`=1 g

(
ζ2(`),

{
µ

(`)
j , σ

2(`)
j

}J
j=1

)
.

2.3.1 Markov Chain Initial Conditions

To initialize each path Ai, select the middle GPS reading, reading number

bri/2c + 1. Find the nearest node in the road network to this GPS location, and

route the initial path Ai through this node, taking the shortest-distance path to

and from the middle node. To initialize the travel time vector Ti, distribute the

known trip time across the links in the path Ai, weighted by link length. Finally,

to initialize ζ2 and each µj and σ2
j , draw from their priors.

2.3.2 Updating the Paths

Updating the path Ai may also require updating the travel times Ti, since the

number of links in the path may change. Since this changes the dimension of

the vector Ti, we update (Ai, Ti) using a reversible jump M-H move [21]. Calling

the current values
(
A

(1)
i , T

(1)
i

)
, we propose new values

(
A

(2)
i , T

(2)
i

)
and accept
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them with the appropriate probability, detailed below.

The proposal changes a contiguous subset of the path. The length (number

of links) of this subpath is limited to some maximum value K; we specify K in

Section 2.3.5. Precisely:

1. With equal probability, choose a node d′ from the path A(1)
i , excluding the

final node.

2. Let a(1) be the number of nodes that follow d′ in the path. With equal

probability, choose an integer w ∈ {1, . . . ,min
(
a(1), K

)
}. Denote the wth

node following d′ as d′′. The subpath from d′ to d′′ is the section to be

updated (the “current update section”).

3. Consider all possible routes of length up to K from d′ to d′′. With equal

probability, propose one of these routes as a change to the path (the “pro-

posed update section”), giving the proposed path A(2)
i .

Next we propose travel times T
(2)
i that are compatible with A

(2)
i . Let

{c1, . . . , cm} ⊂ A
(1)
i and {p1, . . . , pn} ⊂ A

(2)
i denote the links in the current and

proposed update sections, noting thatm and nmay be different. Recall that Ti(j)

denotes the travel time of trip i on link j. For each link j ∈ A(2)
i \ {p1, . . . , pn},

set T (2)
i (j) = T

(1)
i (j). Let Si =

∑m
`=1 T

(1)
i (c`) be the total travel time of the

current update section. Since the total travel time of the entire trip is known

(see Section 2.2.1), Si is fixed and known as well, conditional on the travel

times for the links that are unchanged by this update. Therefore we must have∑n
`=1 T

(2)
i (p`) = Si. The travel times T (2)

i (p1), . . . , T
(2)
i (pn) are proposed by draw-

ing (r1, . . . , rn) ∼ Dirichlet (αθ(p1), . . . , αθ(pn)) for a constant α > 0 (specified

below), and setting T
(2)
i (p`) = r`Si for ` ∈ {1, . . . , n}. The expected value of
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the proposed travel time on link p` is E
(
T

(2)
i (p`)

)
= Si

θ(p`)∑n
k=1 θ(pk)

. Therefore, the

expected values of the proposed times are weighted by the link travel time ex-

pected values [16]. The constant α controls the variances and covariances of the

components T (2)
i (p`). In our experience α = 1 works well; the constant α can

also be tuned to obtain a desired acceptance rate for a particular dataset [51, 52].

Let N (j)
i be the number of edges in the path A

(j)
i for j ∈ {1, 2}, and let a(2)

be the number of nodes that follow d′ in the path A
(2)
i . We accept the proposal

(A
(2)
i , T

(2)
i ) with probability equal to the minimum of one and

fi

(
A

(2)
i , T

(2)
i , Gi

∣∣∣{µj, σ2
j

}J
j=1

, ζ2
)

fi

(
A

(1)
i , T

(1)
i , Gi

∣∣∣{µj, σ2
j

}J
j=1

, ζ2
) × N

(1)
i min(a(1), K)

N
(2)
i min(a(2), K)

×
Dir

(
T

(1)
i (c1)

Si
, . . . ,

T
(1)
i (cm)

Si
;αθ(c1), . . . , αθ(cm)

)
Dir

(
T

(2)
i (p1)

Si
, . . . ,

T
(2)
i (pn)

Si
;αθ(p1), . . . , αθ(pn)

)Sn−mi , (2.5)

where fi is the contribution of trip i to Equation 2.4 and Dir(x; y) denotes the

Dirichlet density with parameter vector y, evaluated at x. The proposal density

for the travel times T (2)
i (p1), . . . , T

(2)
i (pn) requires a change of variables from the

Dirichlet density. This leads to the factor Sn−mi in the ratio of proposal densities.

In Section 2.3.7, we show that this move is valid since it is reversible with respect

to the conditional posterior distribution of (Ai, Ti).

2.3.3 Updating the Trip Travel Times

To update the realized travel time vector Ti(j), we use the following M-H move.

Given current travel times T (1)
i , we propose travel times T (2)

i .

1. With equal probability, choose a pair of distinct links j1 and j2 in the path
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Ai. Let Si = T
(1)
i (j1) + T

(1)
i (j2).

2. Draw (r1, r2) ∼ Dirichlet (α′θ(j1), α
′θ(j2)). Set T

(2)
i (j1) = r1Si and

T
(2)
i (j2) = r2Si.

Similarly to the path proposal above, this proposal randomly distributes the

travel time over the two links, weighted by the expected travel times θ(j1) and

θ(j2), with variances controlled by the constant α′ [16]. In our experience α′ =

0.5 is effective for our application. It is straightforward to calculate the M-H

acceptance probability.

2.3.4 Updating the Parameters µj, σ2
j , and ζ2

To update each µj , we sample from the full conditional posterior distribution,

which is available in closed form. We have µj
∣∣∣σ2
j , {Ai, Ti}

I
i=1 ∼ N

(
µ̂j, ŝ

2
j

)
, where

ŝ2
j =

[
1

s2
+
nj
σ2
j

]−1

, µ̂j = ŝ2
j

mj

s2
+

1

σ2
j

∑
i∈Ij

log Ti(j)

 ,
the set Ij ⊂ {1, . . . , I} indicates the subset of trips using link j, and nj = |Ij|.

To update each σ2
j , we use a local M-H step [56]. We propose σ2∗

j ∼

LN (log σ2
j , η

2), having fixed variance η2. The M-H acceptance probability pσ

is the minimum of 1 and

σj
σ∗j

1{σ∗j∈[b1,b2]}

(∏
i∈Ij LN

(
Ti(j);µj, σ

2∗
j

)∏
i∈Ij LN

(
Ti(j);µj, σ2

j

) ) LN (σ2
j ; log

(
σ2∗
j

)
, η2
)

LN
(
σ2∗
j ; log

(
σ2
j

)
, η2
) .

To update ζ2, we use another M-H step with a lognormal proposal, with

variance ν2. The proposal variances η2, ν2 are tuned to achieve an acceptance

rate of approximately 23% [52].
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2.3.5 Markov Chain Convergence

The transition kernel for updating the path Ai is irreducible, and hence valid

[56], if it is possible to move between any two paths in Pi in a finite number

of iterations, for all i. For a given road network, the maximum update section

length K can be set high enough to meet this criterion. However, the value of K

should be set as low as possible, because increasing K tends to lower the accep-

tance rate. If there is a region of the city with sparse connectivity, the required

value of K may be impractically large. For example, there could be a single

link of a highway alongside many links of a parallel minor road. Then, a large

K would be needed to allow transitions between the highway and the minor

road. If K is kept smaller, the Markov chain is reducible. In this case, the chain

converges to the posterior distribution restricted to the closed communicating

class in which the chain is absorbed. If this class contains much of the posterior

mass, as might arise if the initial path follows the GPS data reasonably closely,

then this should be a good approximation.

In Sections 2.6 and 2.7, we apply the IL method to simulated data and data

from Toronto EMS, on a subregion of Toronto with 623 links. Each Markov chain

was run for 50,000 iterations (where each iteration updates all parameters), after

a burn-in period of 25,000 iterations. We calculated Gelman-Rubin diagnostics

[17], using two chains, for the parameters ζ2, µj , and σ2
j . Results from a typical

simulation study were: potential scale reduction factor of 1.06 for ζ2, of less than

1.1 for µj for 549 links (88.1%), between 1.1-1.2 for 43 links (6.9%), between 1.2-

1.5 for 30 links (4.8%), and less than 2 for the remaining one link, with similar

results for the parameters σ2
j . These results indicate no lack of convergence.

Each Markov chain run for these experiments takes roughly 2 hours on a
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3.2 GHz workstation. Each iteration of the Markov chain scales linearly in time

with the number of links and the number of ambulance trips: O(J + I), assum-

ing the lengths of the ambulance paths do not grow as well. This assumption is

reasonable, since long ambulance paths are undesirable for an EMS provider. It

is much more difficult to assess how the number of iterations required for con-

vergence changes with J and I , since this would require bounding the spectral

gap of the Markov chain. The full Toronto road network has roughly 110 times

as many links as the test region, and the full Toronto EMS dataset has roughly

80 times as many ambulance trips.

In practice, parameter estimates are updated infrequently and off-line. Once

parameter estimation is done, prediction for new routes and generation of our

figures is very fast. If parameter estimation for the IL method is computation-

ally impractical for the entire city, it can be divided into multiple regions and

estimated in parallel. We envision creating overlapping regions and discarding

estimates on the boundary, to eliminate edge effects (see Section 2.7.1). Dur-

ing parameter estimation, trips traveling through multiple regions would be

divided into portions for each region, as we have done in our Toronto EMS ex-

periments. However, prediction for such a trip can be handled directly, given

the parameter estimates for all links in the city. The fastest path in expectation

may be calculated using a shortest path algorithm over the entire road network,

which gives a point estimate of the trip travel time. A distribution estimate of

the travel time can be obtained by sampling travel times on the links in this

fastest path (see Section 2.7.3).
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2.3.6 Constants and Hyperparameters

There are several constants and hyperparameters to be specified in the IL model.

To set the GPS position error covariance matrix Σ, we calculate the minimum

distance from each GPS location in the data to the nearest link. Assuming that

the error is radially symmetric, that the vehicle was on the nearest link when it

generated the GPS point, and approximating that link locally by a straight line,

this minimum distance should equal the absolute value of one component of the

2-dimensional error, i.e. the absolute value of a random variable E1 ∼ N(0, σ2),

where Σ =
(
σ2 0
0 σ2

)
. Since E(|E1|) = σ

√
2/π, we take σ̂ = Ê(|E1|)

√
π/2, where

Ê(|E1|) is the mean minimum distance of each GPS point to the nearest link in

the data. In the Toronto EMS datasets (see Section 2.7.1), we have Ê(|E1|) =

8.4 m for lights-and-sirens (L-S) data and 7.7 m for standard travel (Std) data,

yielding ΣL-S = ( 111.6 0
0 111.6 ) and ΣStd = ( 92.7 0

0 92.7 ). In the simulated data, a typical

dataset has Ê(|E1|) = 7.3 m for good GPS data and 14.1 m for bad GPS data (see

Section 2.6.1), yielding ΣGood = ( 84 0
0 84 ), and ΣBad = ( 312 0

0 312 ).

The hyperparameters b1, b2, s2, and mj control the prior distributions on the

travel time parameters µj and σ2
j . We set b1 and b2 by estimating the possible

range in travel time variation for a single link. Some links have very consistent

travel times: for example, a link with little traffic and no major intersections

at either end. We estimate that such a link could have travel time above or

below the median time by a factor of 1.1. Taking this range to be a two standard

deviation σj interval (so that 1.1 exp (µj) = exp (µj + 2σj)) yields σj ≈ 0.0477.

Other links have very variable travel times: for example, a link with substantial

traffic. We estimate that such a link could have travel time above or below the

median time by a factor of 3.5, corresponding to σj ≈ 0.6264. Thus, we set
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b1 = 0.0477 and b2 = 0.6264.

We assume there exists an initial travel time estimate τj for each link j. For

example, in Section 2.7 we use previous estimates from Toronto EMS. We expect

this estimate to be typically correct within a factor of two. Thus, we specify mj

and s2 so that the prior distribution for E (Ti,j) is centered at τj and has a two

standard deviation interval from τj/2 to 2τj . This gives

τj = E
(
exp

(
µj + σ2

j/2
))

= exp
(
mj + s2/2

)
E
(
exp

(
σ2
j/2
))
,

τj
2

= exp
(
mj + s2/2− 2s

)
E
(
exp

(
σ2
j/2
))
,

2τj = exp
(
mj + s2/2 + 2s

)
E
(
exp

(
σ2
j/2
))
,

where the final equation is redundant. Therefore,

mj = log

(
τj

E
(
exp

(
σ2
j/2
)))− s2

2
, s =

log(2)

2
.

When τj is not available, as in Section 2.6, the following data-based choice for

τj can be used: find the harmonic mean GPS speed reading in the entire dataset

and convert this speed to a travel time for each road.

Results are very insensitive to the hyperparameters b3 and b4, as long as the

interval [b3, b4] does not exclude regions of high likelihood. This is because the

entire dataset is used to estimate ζ2, unlike for the parameters σ2
j . We fix b3 =

0 and b4 = 0.5. For observed GPS speed V `
i , suppose the true speed at that

moment is v. By Equation 2.3, V `
i ∼ LN (log(v)− ζ2/2, ζ2). If ζ = 0.5, we

estimate by simulation that

E
(∣∣V `

i − v
∣∣)

v
≈ 0.4,

which is much higher than any mean absolute error observed by Witte and Wil-

son [65]. It is not realistic that the speed error could be greater than this.
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The constant C governs the multinomial logit choice model on the path trav-

eled. While the results of the IL method are generally insensitive to moderate

changes in the other constants, changes in the value of C do have a noticeable

effect, so we obtain a careful data-based estimate. Equation 2.1 implies that the

ratio of the probabilities of two possible paths depends on their difference in

expected travel time. For example, let C = 0.1 and consider paths ãi and ȧi from

dsi to dfi , where the expected travel time of ãi is 10 seconds less than the expected

travel time of ȧi. Then path ãi is e ≈ 2.72 times more likely.

We specify C by the principle that for a trip of average travel time, a driver

is ten times less likely to choose a path that has 10% longer travel time. If T̄ is

the average travel time, then by Equation 2.1, this requires

0.1 =
exp

(
−C

(
1.1T̄

))
exp

(
−CT̄

) = exp
(
−0.1CT̄

)
, (2.6)

giving C = − log(0.1)/
(
0.1T̄

)
. For our simulated data, CSim = 0.24.

On the real Toronto data of Section 2.7, we make a small adjustment to pool

information across the lights-and-sirens and standard travel datasets. Observ-

ing that the route choices are very similar in visual inspection of these datasets,

we ensure that the prior distribution on the route taken between two fixed lo-

cations is the same for the L-S and Std datasets. To do this, we combine all

the L-S and Std data to calculate an overall mean L1 trip length LTor
1 (change in

x coordinate plus change in y coordinate) for the Toronto EMS data, which is

LTor
1 = 1378.8m. Let LD1 and TD be the mean L1 length and mean trip time for

each dataset D. We estimate a weighted mean time TDW = TDLTor
1 /LD1 for dataset

D for a trip of length LTor
1 , and use the time TDW to set C by Equation 2.6. This

yields CL-S = 0.211 and CStd = 0.110.
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2.3.7 Reversibility of the Path Update

The path Ai = (Ai,1, . . . , Ai,Ni
) takes values in the finite set Pi. Conditional on

Ai, the vector Ti takes values on the simplex

XNi
,

{
Ti ∈ RNi : Ti,j > 0,

Ni∑
j=1

Ti,j = tfi − tsi

}
,

where tfi −tsi is the known total travel time of trip i. For the reference measure on

XNi
we use (Ni− 1)-dimensional Lebesgue measure on the first Ni− 1 elements

of the vector. Then

(Ai, Ti) ∈ C ,
⋃
A∈Pi

{A} × Xlen(A)

where len(A) is the number of links in A ∈ Pi. We claim that the move for

(Ai, Ti) is reversible with respect to the conditional posterior density of (Ai, Ti)

given the GPS dataG = {Gi′}Ii′=1, the parameters, and the paths and travel times

A[−i], T[−i] for all other trips:

ν(Ai, Ti) , π
(
Ai, Ti

∣∣∣ G,A[−i], T[−i],
{
µj, σ

2
j

}J
j=1

, ζ2
)

∝ fi

(
Ai, Ti, Gi

∣∣∣ {µj, σ2
j

}J
j=1

, ζ2
)
. (2.7)

Since the dimension of the unknown vector Ti depends on Ai, we treat this

as a case of model uncertainty as in Green [21], where the model index k corre-

sponds to the value of Ai ∈ Pi. Our context, which has an uncertain route for

each trip, is slightly different from the context of Green [21], which has a single

uncertain model index k and corresponding parameter vector θ(k). However,

Green’s argument can still be used to show reversibility of a move for (Ai, Ti)

conditional on A[−i], T[−i] and the parameters {µj, σ2
j}Jj=1, ζ

2.

Conditional on A
(1)
i and A

(2)
i , we show that our move from T

(1)
i ∈ X

len
(
A

(1)
i

)
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to T (2)
i ∈ Xlen

(
A

(2)
i

) satisfies the dimension-matching condition of Green [21], Sec-

tion 3.3. We need a bijection between an augmented vector
(
T

(1)
i , u(1)

)
and the

corresponding augmented vector
(
T

(2)
i , u(2)

)
, for some u(1) and u(2). Take u(1) ,(

T
(2)
i (p1), . . . , T

(2)
i (pn)

)
and u(2) ,

(
T

(1)
i (c1), . . . , T

(1)
i (cm)

)
and recall that u(1)

is drawn independently of T (1)
i . Define the bijection h

(
T

(1)
i , u(1)

)
,
(
T

(2)
i , u(2)

)
that simply rearranges the elements of the vector

(
T

(1)
i , u(1)

)
. The absolute value

of the Jacobian of such a transformation is one, because that of the identity trans-

form is one, and rearranging the elements corresponds to permuting the rows

of the Jacobian, which only changes the sign of the determinant. Although for

notational convenience we have included the redundant final elements of the

vectors u(1), u(2), T (1)
i , and T (2)

i , the dimension-matching is on the non-redundant

elements of the vectors; in the notation of Green [21], n1 = N
(1)
i − 1, m1 = n− 1,

n2 = N
(2)
i − 1, and m2 = m− 1.

For a dimension-matching move, the acceptance probability that ensures re-

versibility with respect to a density ν(Ai, Ti) is given by Equation 7 of Green

[21]. It is equal to the absolute value of the Jacobian, times
ν
(
A

(2)
i ,T

(2)
i

)
ν
(
A

(1)
i ,T

(1)
i

) , times the

ratio of the proposal density of the reverse move relative to that of the proposed

move. The probability of proposing a move to A(2)
i , given that the current state

is
(
A

(1)
i , T

(1)
i

)
, is 1

N
(1)
i min{a(1),K}

divided by the number of paths of length ≤ K

from d′ to d′′. The probability of attempting the reverse move is 1

N
(2)
i min{a(2),K}

divided by the number of paths of length ≤ K from d′ to d′′. We propose T (2)
i by

drawing the subvector T (2)
i (j) : j ∈ {p1, . . . , pn} according to the density

1

Sn−1
i

Dir

(
T

(2)
i (p1)

Si
, . . . ,

T
(2)
i (pn)

Si
;αθ(p1), . . . , αθ(pn)

)

on the simplex {Ti ∈ Rn : Ti,j > 0,
∑n

j=1 Ti,j = Si}, with respect to (n − 1)-

dimensional Lebesgue measure. The reverse move, from T
(2)
i ∈ X

len
(
A

(2)
i

) to
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T
(1)
i ∈ Xlen

(
A

(1)
i

), proposes T (1)
i by drawing the subvector T (1)

i (j) : j ∈ {c1, . . . , cm}

according to the density

1

Sm−1
i

Dir

(
T

(1)
i (c1)

Si
, . . . ,

T
(1)
i (cm)

Si
;αθ(c1), . . . , αθ(cm)

)
.

Plugging these quantities into Equation 7 of Green [21] and using our Equation

2.7 gives the acceptance probability in our Equation 2.5.

2.4 Comparison Methods

2.4.1 Local Methods

Here we detail the two local methods outlined in Section 2.1. Each GPS reading

is mapped to the nearest link (both directions of travel are treated together). Let

nj be the number of GPS points mapped to link j, Lj the length of link j, and{
V k
j

}nj

k=1
the mapped speed observations. We assume constant speed on each

link, as in the IL method. Thus, let T kj = Lj/V
k
j be the travel time associated

with observed speed V k
j .

In the first local method, we calculate the harmonic mean of the speeds{
V k
j

}nj

k=1
, and convert to a travel time point estimate

T̂Hj =
Lj
nj

nj∑
k=1

1

V k
j

.

This is equivalent to calculating the arithmetic mean of the associated travel

times T kj . The empirical distribution of the associated times
{
T kj
}nj

k=1
can be used

as a distribution estimate. Because readings with speed 0 occur in the Toronto

EMS dataset, we set any reading with speed below 5 miles per hour (mph) equal
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to 5 mph. This harmonic mean estimator is well-known in the transportation

research literature, where it is called the “space mean speed,” in the context of

estimating travel times using speed data recorded by loop detectors [47, 53, 58].

In Section 2.4.2, we consider this travel time estimator T̂Hj and its relation

to the GPS sampling scheme. We show that if GPS points are sampled by dis-

tance (for example, every 200 m), T̂Hj is an unbiased estimator for the true mean

travel time. However, if GPS points are sampled by time (for example, every

10 s), T̂Hj overestimates the mean travel time. The Toronto EMS dataset uses a

combination of sampling-by-distance and sampling-by-time. However, the dis-

tance constraint is usually satisfied first (see Figure 2.5, where the sampled GPS

points are regularly spaced). Thus, the travel time estimator T̂Hj is appropriate.

In the second local method, we assume V k
j ∼ LN (mj, s

2
j), independently

across k, for unknown travel time parameters mj and s2
j . This distribution on

the travel speed implies that the travel times also have a lognormal distribution:

T kj ∼ LN
(
log(Lj)−mj, s

2
j

)
. We use the maximum likelihood estimators (MLEs)

m̂j =
1

nj

nj∑
k=1

log
(
V k
j

)
, ŝ2

j =
1

nj

nj∑
k=1

(
log
(
V k
j

)
− m̂j

)2
to estimate mj and s2

j . Our point travel time estimator is

T̂MLE
j = E

(
Tj| m̂j, ŝ

2
j

)
= exp

(
log(Lj)− m̂j +

ŝ2
j

2

)
.

This second local method also provides a natural distribution estimate for the

travel times via the estimated lognormal distribution for T kj . Correcting for zero-

speed readings is again done by thresholding, to avoid taking log(0).

Some small residential links have no assigned GPS points in the Toronto

EMS dataset (see Figure 2.1). In this case, we use a breadth-first search [42] to
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find the closest link in the same road class that has assigned GPS points. The

road classes are described in Section 2.6; by restricting our search to links of the

same class we ensure that the speeds are comparable.

2.4.2 Harmonic Mean Speed and GPS Sampling

When estimating link travel times via speed data from GPS readings, as in the

local methods of Section 2.4.1, it is critical whether the GPS readings are sam-

pled by distance (e.g. every 200 m) or by time (e.g. every 10 s). As discussed in

Sections 2.1 and 2.4.1, most EMS providers use a combination of distance and

time sampling. If both constraints are satisfied frequently, this could create a

problem for estimating travel times via these speeds.

In the transportation research literature, speeds are typically recorded by

loop detectors at fixed locations on the road, which means that sampling is done

by distance. In this context, it is well known that the harmonic mean of the

observed speeds (the “space mean speed”) is appropriate for estimating travel

times [47, 53, 58]. Under a simple probabilistic model of sampling-by-distance,

without assuming constant speed, we confirm that the harmonic mean speed

gives an unbiased estimator of the mean travel time. However, we also show

that if the sampling is done by time, the harmonic mean is biased towards over-

estimating the mean travel time.

Consider a set of n ambulance trips on a single link. For convenience, let

the length of the link be 1. Let the travel time on the link for ambulance i be Ti,

and assume that the Ti are iid with finite expectation. Let xi(t) be the position

function of ambulance i, conditional on Ti, so xi(0) = 0 and xi(Ti) = 1. Assume
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that xi(t) is continuously differentiable, with derivative vi(t), the velocity func-

tion, and that vi(t) > 0 for all t. Each trip samples one GPS point. Let V o
i be the

observed GPS speed for the ith ambulance.

First, consider sampling-by-distance. For trip i, draw a random location

ξi ∼ Unif(0, 1) at which to sample the GPS point. This is different from the

example of sampling-by-distance above. However, if the sampling locations are

not random, we cannot say anything about the observed speeds in general (the

ambulances might briefly speed up where the reading is observed, for exam-

ple). Assuming that the ambulance trip started before this link, it is reasonable

to model sampling-by-distance with a uniform random location.

Conditional on Ti, xi(·) is a cumulative distribution function, with support

[0, Ti], density vi(·), and inverse x−1
i (·). Thus, τi = x−1

i (ξi), the random time of the

GPS reading, has distribution function xi(·) and density vi(·), by the probability

integral transform. The observed speed V o
i = vi(τi), so the GPS reading is more

likely to be sampled when the ambulance has high speed than when it has low

speed. This is called the inspection paradox (see e.g. Stein and Dattero [54]).

Mathematically,

E(V o
i |Ti) = E(vi(τi)|Ti) =

∫ Ti

0

vi(t)vi(t)dt ≥

(∫ Ti

0
vi(t)dt

)2

∫ Ti

0
12dt

=
1

Ti
,

by the Cauchy-Schwarz inequality, with strict inequality unless vi(·) is constant.

However, if we draw a uniform time φi ∼ U(0, Ti), then

E(vi(φi) |Ti ) =

∫ Ti

0

vi(t)
1

Ti
dt =

1

Ti
. (2.8)

The inspection paradox has a greater impact in the Toronto Std data than in the

L-S data, because ambulance speed varies more in standard travel.
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Consider estimating the mean travel timeE(Ti) via the estimator T̂H = 1/V̄ o
H ,

where V̄ o
H is the harmonic mean observed speed. We have

E
(
T̂H
)

= E
(
E
(
T̂H
∣∣∣ {Ti}ni=1

))
= E

(
1

n

n∑
i=1

E

(
1

vi(τi)

∣∣∣∣Ti)
)

= E

(
1

n

n∑
i=1

∫ Ti

t=0

1

vi(t)
vi(t)dt

)
= E

(
1

n

n∑
i=1

Ti

)
= E(Ti),

and so it is unbiased.

Next, suppose the sampling is instead done by time. To model this, let τi ∼

Unif(0, Ti) be a random time to sample the GPS point for ambulance i. In this

case, we have

E
(
T̂H
)

= E

(
1

n

n∑
i=1

E

(
1

vi(τi)

∣∣∣∣Ti)
)

≥ E

(
1

n

n∑
i=1

1

E (vi(τi)|Ti)

)

= E

(
1

n

n∑
i=1

1
1
Ti

)
= E(Ti),

by Jensen’s Inequality and Equation 2.8. Again, the inequality is strict unless

vi(·) is constant.

2.4.3 Method of Budge et al.

Budge, Ingolfsson and Zerom [8] introduced a travel time distribution estima-

tion method relying on trip distance. Since the exact path traveled is usually

unknown, the length of the shortest distance path between the start and end lo-

cations is used as a surrogate for the true travel distance. The method relies on

the model ti = m(di) exp [c(di)εi], where ti and di are the total time and distance

for trip i, εi follows a t-distribution with τ degrees of freedom, and m(·) and
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c(·) are unknown functions. In their preferred method, they assume parametric

expressions for the functions m(·) and c(·), and estimate the parameters using

maximum likelihood.

We implemented this parametric method and compared it to a related bin-

ning method. In the binning method, we divide the ambulance trips into bins by

trip distance, and fit a separate t-distribution to the log travel times for each bin.

We then linearly interpolate between the quantiles of the travel time distribu-

tions for adjacent bins, to generate a travel time distribution estimate for a trip

of any distance. On simulated data on the Toronto subregion, the parametric

and binning methods perform very similarly, while on real data on the subre-

gion, the binning method slightly outperforms the parametric method. Thus,

we report only results of the binning method in Sections 2.6-2.7.

2.5 Bias Correction

We use a bias correction factor to make each method approximately unbiased,

because we have found that this improves performance for all methods. There

are several reasons why the methods result in biased estimates, some inherent

to the methods themselves and some due to sampling characteristics of the GPS

data. One source of bias is the inspection paradox in the GPS data, discussed

in Section 2.4.2. The IL method is also biased because of the difference in path

estimation from the training to the test data. On the training data, the IL method

uses the GPS data to estimate a solution to the map-matching problem. On the

test data, the estimated fastest path between the start and end nodes is used, to

imitate the prediction scenario where the route is not known beforehand. This
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leads to underestimation of the true travel times.

Most commonly, bias correction is done using an asymptotic expression for

the bias [6, 29]. We use an empirical bias correction factor, because there is

no analytic expression available. The bias correction factor for each method is

calculated in the following manner. We divide the set of trips from each dataset

randomly into training, validation, and test sets [22]. We fit the methods on

the training data, calculate a bias correction factor on the validation data, and

predict the travel times for the trips in the test data. The data are split into

50% training and 50% validation and test. To use the validation/test data most

efficiently, we do cross-validation: divide the validation/test data into ten sets,

use nine sets for the validation data, the tenth for the test data, and repeat for all

ten cases. For a given validation set of n trips, where the estimated trip travel

times are {t̂i}ni=1 and the true travel times are {ti}ni=1, the bias correction factor is

b =
1

n

(
n∑
i=1

log t̂i −
n∑
i=1

log ti

)
Subtracting this factor from the log estimates on the test data makes each

method unbiased on the log scale. We calculate the bias correction on the log

scale because it is more robust to travel time outliers.

2.6 Simulation Experiments

Next we test the IL method, local methods, and the method of Budge et al. on

simulated data. We compare the accuracy of the four methods for predicting

travel times of test trips. We simulate ambulance trips on the road network of

Leaside, Toronto, shown in Figure 2.1 (roughly 4 square kilometers). This region

has four road classes; we define the highest-speed class to be primary links, the
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two intermediate classes to be secondary links, and the lowest-speed class to be

tertiary links (Figure 2.1). In the Leaside region, a valueK = 6 (see Section 2.3.5)

guarantees that the Markov chain is valid.

2.6.1 Generating Simulated Data

We simulate ambulance trips with true paths, travel times, and GPS readings.

For each trip i, we uniformly choose start and end nodes. We construct the

true path Ai link-by-link. Beginning at the start node, we uniformly choose

an adjacent link from those that lower the expected time to the end node, and

repeat until the end node is reached. This method differs from our Bayesian

prior (see Section 2.2.1), and can lead to a wide variety of paths traveled between

two nodes.

The link travel times are lognormal: Ti,k ∼ LN (µAi,k
, σ2

Ai,k
). To set the true

travel time parameters
{
µj, σ

2
j

}
for link j, we uniformly generate a speed be-

tween 20-40 mph. We draw σj ∼ Unif
(
0.5 log

(√
3
)
, 0.5 log(3)

)
, and set µj so

that the link length divided by the mean travel time equals the random speed.

The range for σj generates a wide variety of link travel time variances. Compar-

isons between the estimation methods are invariant to moderate changes in the

σj range.

We simulate datasets with two types of GPS data: good and bad. The good

GPS datasets are designed to mimic the conditions of the Toronto EMS dataset.

Each GPS point is sampled at a travel distance of 250 m after the previous point.

Straight-line distance between GPS readings is typically 200 m in the Toronto

EMS data, but we simulate data via the longer along-path distance. The GPS

40



locations are drawn from a bivariate normal distribution with Σ = ( 100 0
0 100 ). The

GPS speeds are drawn from a lognormal distribution with ζ2 = 0.004, which

gives a mean absolute error of 5% of speed, approximately the average result

seen by Witte and Wilson [65].

The bad GPS datasets are designed to be sparse and have GPS error consis-

tent with the high error results seen by Chen et al. [9] and Witte and Wilson

[65]. GPS points are sampled every 1000 m. The constant Σ = ( 465 0
0 465 ), which

gives mean distance of 27 m between the true and observed locations, the av-

erage error seen in Hong Kong by Chen et al. [9]. The parameter ζ2 = 0.01575,

corresponding to mean absolute error of 10% of speed, which is approximately

the result from low-quality GPS settings tested by Witte and Wilson [65].

2.6.2 Travel Time Prediction

We simulate ten good GPS datasets and ten bad GPS datasets, as defined above,

each with a training set of 2000 trips and a validation/test set of 2000 trips.

Taking the true path for each test trip as known and using the cross-validation

approach of Section 2.5 to estimate bias correction factors, we calculate point

and 95% predictive interval estimates for the test set travel times using the four

methods. To obtain a gold standard for performance, we implement an Oracle

method. In this method, the true travel time parameters
{
µj, σ

2
j

}
for each link

j are known. The true expected travel time for each test trip is used as a point

estimate. This implies that the Oracle method has the lowest possible root mean

squared error (RMSE) for realized travel time estimation.

We compare the predictive accuracy of the point estimates from the four
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methods via the RMSE (in seconds), the RMSE of the log predictions relative to

the true log times (“RMSE log”), and the mean absolute bias on the log scale

over the test sets of the cross-validation procedure (“Bias M.A.”). We calculate

metrics on the log scale because the residuals on the log scale are much closer

to normally distributed. On the original scale, there are several outlying trips

in the Toronto EMS data (Section 2.7) with very large travel times that heavily

influence the metrics. The bias metric measures how well the bias correction

works. If k ∈ {1, . . . , 10} indexes the cross-validation test sets, where test set k

has nk trips with true travel times t(k)i and estimates t̂(k)i , for i ∈ {1, . . . , nk}, then

Bias (M.A.) =
1

10

10∑
k=1

∣∣∣∣∣ 1

nk

(
nk∑
i=1

log t̂
(k)
i −

nk∑
i=1

log t
(k)
i

)∣∣∣∣∣ . (2.9)

We compare the interval estimates using the percentage of 95% predictive

intervals that contain the true travel time (“Cov. %”) and the geometric mean

width of the 95% predictive intervals (“Width”). Table 2.1 gives arithmetic

means for these metrics over the ten good and bad simulated datasets.

In both dataset types, the point estimates from the IL method greatly outper-

form the estimates from the local methods and the method of Budge et al. The

IL estimates closely approach the Oracle estimates, especially on the good GPS

datasets. In the good datasets, the IL method has 70% lower error than the local

methods in RMSE on the log scale, and 78% lower error than Budge et al., after

eliminating the unavoidable error of the Oracle method. In the bad datasets,

the IL method outperforms the local methods by 70% and Budge et al. by 56%

in log scale RMSE, relative to the Oracle method. The method of Budge et al.

outperforms the local methods on the bad GPS data, while the reverse holds for

the good GPS data.
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Good GPS data (Mean over ten datasets)
Estimation method RMSE (s) RMSE log Bias (M.A.) Cov. % Width (s)

Oracle 15.9 0.183 0.010 - -
IL 16.1 0.187 0.010 95.8 57.2

Local MLE 16.8 0.196 0.010 94.4 56.8
Local Harm. 16.8 0.196 0.010 94.0 56.2
Budge et al. 17.3 0.201 0.011 96.2 67.2

Bad GPS data (Mean over ten datasets)
Estimation method RMSE (s) RMSE log Bias (M.A.) Cov. % Width (s)

Oracle 16.4 0.183 0.012 - -
IL 16.9 0.191 0.013 96.1 60.4

Local MLE 18.1 0.209 0.014 92.3 57.8
Local Harm. 18.1 0.209 0.014 90.9 55.5
Budge et al. 17.9 0.201 0.013 96.2 68.2

Table 2.1: Out-of-sample trip travel time estimation performance on simulated
data.

The IL method also outperforms the other methods in interval estimates. For

the good GPS data, the interval estimates from the IL and local methods are sim-

ilar, while the estimates from the method of Budge et al. are substantially wider,

with slightly higher coverage percentage. For the bad GPS data, the intervals

from the IL method have higher coverage percentage than the intervals from

the local methods, and the intervals from the method of Budge et al. are again

wider, with no corresponding increase in coverage percentage.

2.6.3 Map-Matching Results

Next we assess path estimates from the IL method for representative paths,

shown in Figure 2.2. The GPS locations are shown in white. The starting node is

marked with a cross and the ending node with an X. Each link is shaded in gray

by the marginal posterior probability that it is traversed in the path. Links with

43



probability less than 1% are unshaded. The left-hand path is from a good GPS

dataset, as defined in Section 2.6.1. The IL method easily identifies the correct

path. Every correct link has close to 100% probability, and only two incorrect

detours have probability above 1%. This is typical performance for trips with

good GPS data. The right-hand path is from a bad GPS dataset. The sparsity in

GPS readings makes the path very uncertain. Near the beginning of the path,

there are five routes with similar expected travel times, and the GPS readings

do not distinguish between them, so each has roughly 20% posterior probabil-

ity. The IL method is very effective at identifying alternative routes when the

true path is unclear.
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Figure 2.2: Map-matching estimates for two simulated trips, shaded by the
probability each link is traversed.
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2.7 Analysis of Toronto EMS Data

Next we compare the IL method and alternative methods on the Toronto data.

2.7.1 Data

The Toronto EMS data consist of GPS data and trip information for ambulance

trips with one of two priority levels: lights-and-sirens (L-S) or standard travel

(Std). We address these separately, again focusing on the Leaside subregion of

Toronto. The right plot in Figure 2.1 shows the GPS locations for the L-S dataset.

This dataset contains 1930 ambulance trips and roughly 14,000 GPS readings.

The primary roads tend to have a large amount of data, the secondary roads

a moderate amount, and the tertiary roads a small amount. The Std dataset is

larger (3989 trips), with a similar spatial distribution of GPS locations.

We use only the portion of trips where the ambulance was driving to the

scene of an emergency, and discard trips for which this portion cannot be iden-

tified. We also discard some trips (roughly 1%) that would impair estimation:

for example, trips where the ambulance turned around or where the ambulance

stopped for a long period, not at a stoplight or in traffic. Finally, most of the trips

in the dataset do not begin or end in the subregion, they simply pass through, so

we use the closest node to the first GPS location as the approximated start node,

and the time of the first GPS reading as the start time. Similarly, we use the

last GPS reading for the end node. This produces some inaccuracy of estimated

travel times on the boundary of the region. This could be fixed by applying our

method to overlapping regions and discarding estimates on the boundary.
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2.7.2 Link Travel Time Estimates

Here we report the travel time estimates from the IL method. Toronto EMS

has existing estimates of the travel times, which we use to set the prior {mj}Jj=1

hyperparameters (see Section 2.3.6). These estimates are different for L-S and

Std trips, but are the same for the two travel directions of parallel links. We

have also tested the IL method with the data-based hyperparameters described

in Section 2.3.6 and have observed similar performance. Figure 2.3 shows prior

and posterior speed estimates (length divided by mean travel time) from the

IL method on the L-S dataset. Each link is shaded in gray based on its speed

estimate, so most roads have two shades in the right-hand plot, corresponding

to travel in each direction.

The posterior speed estimates from the IL method are reasonable; primary

links tend to have high speed estimates, and estimated speeds for consecutive

links on the same road are typically similar. Links heading into major inter-

sections (intersections between two primary or secondary roads, as shown in

Figure 2.1) are often slower than the reverse links. In the corresponding figure

for Std data (not shown), the slowdown into major intersections is even more

pronounced. For most links, the posterior estimate of the speed is higher than

the prior estimate, suggesting that the existing road speed estimates used to

specify the prior are underestimates.

There are a few links that have poor estimates from the IL method. For ex-

ample, parallel black links in the top-left corner have poor estimates due to edge

effects. Also, some short interior links have unrealistically high estimates, likely

because there are few GPS points on these links. This undesirable behavior

could be reduced or eliminated by using a random effect prior distribution [16]
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Figure 2.3: Prior (left) and posterior (right) speeds from the IL method, for
Toronto L-S data, in miles per hour (mph).

for roads in the same class, which has the effect of pooling the available data.

2.7.3 Travel Time Prediction

We compare the known travel time of each trip in the test data with the point

and 95% interval predictions from each method. Unlike the simulated test data

in Section 2.6, the true paths are not known. For the IL and local methods, we

assume that the path taken is the fastest path in expectation. This measures

the ability of each method to estimate both the fastest path and the travel time

distributions.

We again use the cross-validation approach of Section 2.5 to estimate bias

correction factors. We resample random training and validation/test sets five
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times, and give arithmetic means of the performance metrics over the five repli-

cations in Table 2.2. We again compare the point estimates from the three meth-

ods on the test data using RMSE, RMSE log, and Bias (M.A.), and compare the

interval estimates using Width and Cov. %. Because the true travel time dis-

tributions are unknown, we cannot use the Oracle method as in Section 2.6.2.

However, we still wish to estimate gold standard performance, so we imple-

ment an Estimated Oracle method, in which we assume that the parametric

model and estimates from the Local MLE method are the truth. We simulate

realized travel times on the fastest path (in expectation, as estimated by the Lo-

cal MLE method) for each test trip, and compare these to the point estimates

from the Local MLE method. To avoid simulation error, we use Monte Carlo

estimates from 1000 simulated travel times for each trip.

L-S data (Mean over five replications)
Method RMSE (s) RMSE log Bias (M.A.) Cov. % Width (s)

Est. Oracle 14.9 0.168 0.018 - -
IL 37.8 0.332 0.025 85.8 75.0

Local MLE 38.4 0.342 0.027 73.3 55.0
Local Harm. 38.5 0.343 0.028 77.5 75.2
Budge et al. 39.8 0.342 0.028 94.5 122.3

Std data (Mean over five replications)
Method RMSE (s) RMSE log Bias (M.A.) Cov. % Width (s)

Est. Oracle 35.2 0.191 0.018 - -
IL 126.8 0.465 0.025 73.0 141.8

Local MLE 129.0 0.480 0.025 58.4 118.6
Local Harm. 129.0 0.480 0.025 64.8 142.8
Budge et al. 127.9 0.475 0.026 94.3 370.8

Table 2.2: Out-of-sample trip travel time estimation performance on Toronto
EMS data.

For the L-S data, the IL method outperforms the method of Budge et al. and

the local methods, suggesting that it is effectively combining trip information

with GPS information. The IL method is roughly 6% better in log scale RMSE,
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after subtracting the error from the Estimated Oracle method. The method of

Budge et al. and the local methods perform similarly. The bias correction is

successful at eliminating bias (there is 2-3% bias remaining).

The IL method substantially outperforms the local methods in interval esti-

mates. The IL method intervals have much higher coverage percentage than the

intervals from the local methods. The method of Budge et al. has higher cover-

age percentage than the IL method; however, the intervals are also wider. The

intervals from the MLE method are narrow and have low coverage percentage.

Therefore, the Local MLE method does not adequately account for travel time

variability, suggesting that the Estimated Oracle method may underestimate the

baseline error. If so, the IL method outperforms the other methods by an even

larger amount, relative to the baseline error.

For the Std data, the IL method outperforms the local methods by roughly

5% in RMSE on the log scale, and outperforms the method of Budge et al. by

3.5%, again relative to the Estimated Oracle error. Point estimates from the

method of Budge et al. slightly outperform the local methods. Interval estima-

tion is less successful for the IL and local methods than for the L-S data, probably

because the Std travel times have more unaccounted sources of variability than

the L-S travel times, such as traffic and time of day.

This region and dataset are generally favorable to the method of Budge et al.

The travel speeds are similar across most roads in this region, which mitigates

the main weakness of the Budge et al. method, namely its inability to distinguish

between fast and slow roads. Also, several particular paths are very common

in the Leaside region, and the Budge et al. method fits the travel time distribu-

tion of these particular paths very closely, leading to relatively high predictive
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accuracy. On the full city the routes would be much more heterogeneous, with

many different routes of roughly the same travel distance, so that a method that

can model the heterogeneity is expected to have a greater advantage.

2.7.4 Probability of Arrival Within a Time Threshold

Next we estimate the probability an ambulance completes its trip within a cer-

tain time threshold [8]. These probabilities are useful for EMS providers (see

Section 2.1). In Figure 2.4, we assume that an ambulance begins at the node

marked with a black X and estimate the probability it reaches each other node

in 150 seconds, following the fastest path in expectation. For the IL method,

these probabilities are calculated by simulating travel times from the posterior

distribution of each link in the route, and using Monte Carlo estimation. The

left-hand figure shows probabilities from the IL method, and the right-hand fig-

ure shows probabilities from the method of Budge et al.

The probabilities for both methods appear reasonable; they are high for

nodes close to the start node and decrease for nodes further away. The prob-

abilities from the IL method appear more realistic than those from Budge et al.,

since nodes on main roads tend to have higher probabilities from the IL method

(for example, traveling south from the start node), whereas nodes on minor

roads far from the start node have lower probabilities from the IL method (see

the bottom-right in each plot). This is because the method of Budge et al. does

not take into account the different speeds of different roads.
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Figure 2.4: Estimates of probability of reaching each node in 150 seconds, IL
method (left), Budge et al. method (right), from the location marked X.

2.7.5 Map-Matching Results

Finally, we assess map-matching estimates from the IL method, for the Toronto

L-S data. Figure 2.5 shows two example ambulance paths from the L-S dataset.

The GPS locations are shown in white; the first reading is marked with a cross

and the last with an X. As in Section 2.6.3, each link is shaded by its marginal

posterior probability, if it is greater than 1%. In the left-hand path, there are two

occasions where the path is not precisely clear from the GPS readings. On both

occasions, roughly 90% of the posterior probability is given to a route follow-

ing the main road, which is estimated to be faster. The final two GPS readings

appear to have location error. However, the fastest path is still given roughly

100% posterior probability, instead of a detour that would be slightly closer to

the second-to-last GPS reading. In the right-hand path, for an unknown reason,
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there is a large gap between GPS points. Most of the posterior probability is

given to the fastest route along the main roads. This illustrates the robustness

of the IL method to sparse GPS data.
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Figure 2.5: Map-matching estimates for two Toronto L-S trips, shaded by the
probability each link is traversed.

2.8 Conclusions

We proposed a Bayesian method, called the Independent Link (IL) method, to

estimate the travel time distribution on any route in a road network. We si-

multaneously estimated the vehicle paths and the parameters of the travel time

distributions. We also introduced two local methods based on mapping each

GPS reading to the nearest link. The first method used the harmonic mean of

the GPS speeds; the second performed maximum-likelihood estimation for a

parametric distribution of travel speeds on each link.
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We compared these three methods to an existing method from Budge et al.

[8]. In simulations, the IL method greatly outperformed the local methods and

the method of Budge et al. in estimating out-of-sample trip travel times, for both

point and interval estimates. The estimates from the IL method remained excel-

lent even when the GPS data had high error. On the Toronto EMS data, the IL

method outperformed the competing methods in out-of-sample point estima-

tion, though interval estimates were slightly narrow. The IL method provided

more realistic estimates of the probability of completing a trip within a time

threshold than the method of Budge et al.

In the next chapter, we consider modifications to the IL model, addressing

several issues. First, we include time-varying travel times, because speeds typ-

ically decrease during rush hour, for example. Applying the IL method sepa-

rately to rush hour and non-rush hour improves performance on standard travel

Toronto data, but has little effect on performance for lights-and-sirens data. Sec-

ond, we modify the IL model to obtain more efficient computation on large road

networks. Third, we investigate information sharing across roads, to improve

estimates on infrequently-used roads. Finally, we incorporate dependence be-

tween link travel times within each trip. This change improves coverage of

interval estimates.

53



CHAPTER 3

LARGE-NETWORK TRAVEL TIME DISTRIBUTION ESTIMATION, WITH

APPLICATION TO AMBULANCE FLEET MANAGEMENT

3.1 Introduction

Predictions of vehicle travel times are necessary for navigation systems, trans-

port policy decisions, and management of vehicle fleets such as taxi and transit

vehicles, emergency vehicles, and delivery services [10]. Travel time predictions

are used not only for vehicle routing, but for traffic management, dispatch de-

cisions, and real-time deployment algorithms for emergency vehicles [7, 10, 27].

In many of these applications it is also important to capture the uncertainty in

the travel time, by predicting the entire travel time distribution rather than just

the expected travel time [48]. For instance, taking into account uncertainty in

the travel time of ambulances to the scene of an emergency can substantially

increase the survival rate of cardiac patients, by improving fleet management

decisions and thus reducing response times [12, 40]. Also, ambulance fleet per-

formance is measured by the fraction of emergency calls for which the response

time is less than a certain threshold [36].

We propose a new method for predicting the distribution of a vehicle travel

time on an arbitrary route in a road network. The prediction depends on the

route and on explanatory variables such as the time of day and day of week.

Our method uses information from historical trips on the network, specifically

the total travel time and estimated path for each trip. In order to predict the

travel time distribution for a particular route, we do not require historical trips

that take precisely the same route. Instead, our statistical approach uses infor-
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mation from all the historical trips by learning shared properties like the effects

of time of day and types of road traversed. The model we use is intuitive and its

parameters are interpretable. Our method is computationally efficient, scaling

effectively to large road networks and large historical trip databases. It is de-

signed for contexts in which the historical trips are sparse in time, so that incor-

poration of traffic flow patterns is infeasible. If data are available more densely

in time, a method incorporating traffic dynamics may be more effective [24, 25].

Further, our method is most useful in contexts where the historical trips are the

most relevant source of information, such as travel time estimation for fleet ve-

hicles, which tend to behave in a consistent manner that can be different from

other types of vehicles. We highlight the context of ambulance fleets, describing

modeling choices motivated by that context, although our model framework is

more generally stated and applicable to other contexts.

The historical trip data used by our method can be obtained from a variety

of sources; most importantly, Global Positioning System (GPS) measurements

from vehicles traveling on the network can be used to estimate the routes trav-

eled by the vehicles, even if the GPS measurements are recorded infrequently

[34, 36, 41, 45, 46]. This source of data is called floating car data or automatic ve-

hicle location data, and is increasingly available for taxi fleets, delivery services,

emergency vehicle fleets, and personal vehicles via GPS-enabled smartphones

or 2-way navigation devices (e.g. Garmin or TomTom). Unlike other sources of

travel time data, it does not require instrumentation on the roadway, and thus

is the only source of data available to estimate travel times that has the prospect

of comprehensive network coverage [25].

There are still few methods available to utilize floating car data for travel
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time distribution prediction. Hofleitner, Herring, and Bayen [25] and Hofleitner

et al. [24] take a traffic flow perspective, modeling at the level of the network

link (a road segment between two intersections). They use a dynamic Bayesian

network for the unobserved traffic conditions on links and model the link travel

time distributions conditional on the traffic state. Their method is applied to

a subset of the San Francisco road network with roughly 800 links, predicting

travel times using taxi fleet data and validating with additional data sources.

In the previous chapter, we introduced our IL method for simultaneous

travel time distribution and path estimation for a set of vehicle trips [62]. Like

Hofleitner et al., we modeled travel times at the link level. We applied the IL

method to estimate ambulance travel times on a subregion of Toronto.

Jenelius and Koutsopoulos [28] propose a framework for estimating the dis-

tribution of travel times while incorporating weather, speed limit, and other

explanatory factors. They point out that approaches such as Hofleitner et al.

and our IL method [24, 25, 62] assume that the link travel times are independent

within a vehicle trip, perhaps conditional on the traffic state. This contrasts with

empirical evidence suggesting that the link travel times are strongly correlated,

even after conditioning on time of day and other explanatory factors [3, 48].

Therefore, they capture correlation using a moving average specification for the

link travel times. Their model is applied to estimate travel times for a particular

route in Stockholm.

In contrast to these approaches, in this chapter we model travel times at the

trip level instead of the link level. This naturally incorporates dependence be-

tween link travel times. For this reason, we refer to our method as the Whole

Trip (WT) method. The vehicle route is taken into account in the specification of
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the trip travel time parameters, such as the median travel time. This trip-level

approach is related to that of Budge, Ingolfsson, and Zerom [8], who model the

travel time distribution for an ambulance trip as a function of shortest-path dis-

tance between the start and end locations. They assume that the log travel time

follows a t-distribution, and propose nonparametric and parametric represen-

tations of the centering and scale parameters, as functions of the shortest-path

distance between start and end locations. Like them we take a regression ap-

proach, but we also incorporate dependence on the route taken, time of day,

and other explanatory factors, justifying our modeling choices empirically.

We use our WT method to predict ambulance travel times for the entire road

network of Toronto. The size of the road network (68,272 links) is an order of

magnitude larger than in previous applications of travel time distribution esti-

mation based on floating car data [8, 24, 25, 28, 62], and the number of historical

vehicle trips (157,283) is also larger than these previous applications. We com-

pare the prediction accuracy of our WT method to that of Budge et al. [8], our

IL method of the previous chapter [62], and a commercial software package for

mean travel time estimation. We also consider the effect of various simplifica-

tions of our WT model, and investigate the accuracy of our model when the

time effect on travel times is artificially inflated.

Finally, we evaluate the effect of using our WT method for ambulance fleet

management, relative to that of Budge et al. [8]. We do this by selecting a set

of representative ambulance posts in Toronto. We calculate which ambulance

post is estimated to be the closest in median travel time to each intersection

in Toronto, and find that many intersections have different estimated closest

posts, according to the two methods. Therefore, the two methods would rec-
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ommend that a different ambulance respond to emergencies at these locations,

if the closest ambulance is dispatched. We also calculate the probability that an

ambulance is able to respond on time (within a specified time threshold) from

the closest post to each intersection of the city. We find substantial differences in

these probabilities between the two methods. As in the previous chapter, these

appear to arise because our WT method captures differences in speeds between

different types of roads, unlike the method of Budge et al.

Commercially-available vehicle travel time estimates typically consist of es-

timated expected travel times rather than distribution estimates, so they cannot

be used for applications that require a travel time distribution, such as ambu-

lance deployment algorithms using simulated travel times. Also, these esti-

mates are calculated for standard vehicle speeds, not “lights-and-sirens” ambu-

lance speeds. However, they are still useful for point estimation performance

comparisons, as long as they are corrected for bias. Specifically, we investigate

travel time estimates from TomTom, a maker of navigation devices.

This chapter is organized as follows. In Section 3.2, we introduce the WT

statistical model and estimation method. In Section 3.3, we introduce the data

from Toronto and highlight the exploratory data analysis that motivates our

modeling choices. We discuss data preprocessing in Section 3.3.1. In Section

3.4, we give details on the estimates from TomTom. In Section 3.5, we discuss

estimation results from the WT method and comparisons with the alternative

methods. We draw conclusions in Section 3.6.
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3.2 Modeling and Estimation

3.2.1 Travel Time Modeling

Consider a road network with links indexed by j ∈ {1, . . . , J} and a set of ve-

hicle trips on that network indexed by i ∈ {1, . . . , I}. Let dj indicate the length

of link j. Assume that each trip i begins and ends at known locations on the

road network (not necessarily at intersections), and that the sequence of links

Ai = {A1
i , . . . , A

ni
i } traversed by trip i is known. Let fij denote the known frac-

tion of link j used by trip i. For interior links in the path Ai, this fraction equals

1; for the first and last links, it captures the fraction of the link actually traversed

during the trip.

In our WT method, the travel time Ti for trip i is modeled with a lognormal

distribution, conditional on the route traveled. Specifically,

Ti |Ai, {fij}j∈Ai
, {dj}j∈Ai

∼ LN

(
µ(i) + log

(
c+

∑
j∈Ai

fijdju(i, j)

)
, σ2(i)

)
(3.1)

conditionally independent across trips i, where the functional forms of µ(i),

u(i, j), and σ2(i) are specified appropriately for the context. This model can be

rewritten as Ti = Ri(c+
∑

j∈Ai
fijdju(i, j)) for a random lognormal multiplicative

factor Ri ∼ LN (µ(i), σ2(i)) capturing the travel time variability and trip-level

effects. The baseline travel time is given by c+
∑

j∈Ai
fijdju(i, j), where the term

u(i, j) is a unit travel time (inverse of speed) for trip i on link j. The product

fijdj is the distance traveled on link j in trip i, so the baseline travel time is a

sum of individual link travel times plus an intercept c > 0. Intersection and

turn effects can also be included in the specification; we do not focus on this

extension because it has a minor effect on predictive accuracy in our application
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to ambulance travel times, since ambulances do not have to obey traffic signals

when traveling at lights-and-sirens speeds.

The intercept c captures, for instance, additional time required to get up to

speed at the beginning of the trip and to slow down at the end. Its inclusion is

similar to the model introduced by Kolesar et al. [32] and used by Budge et al.

[8], in which the travel times depend on the square root of the distance for small

distances, and grow linearly with the distance for large distances. If the linear

part of this model is extrapolated to distance 0, the intercept is positive.

The unit travel time u(i, j) for link j in trip i can depend on explanatory

factors like the road class, speed limit, and whether the road is one-way. Most

simply it can be a link effect, giving the form u(i, j) , uj . However, if there

are links with very few trips, as is the case for ambulance data, this approach

yields noisy estimates of the uj parameters. For the ambulance study, we specify

u(i, j) to depend on the road class, taking u(i, j) , u`(j) where `(j) ∈ {1, . . . , L}

is the road class of link j (highway, arterial road, etc.). Alternatively, the road

network could be partitioned into R geographic regions, using u(i, j) , u`(j),r(j)

for r(j) ∈ {1, . . . , R}, to allow downtown arterial roads to be distinguished from

suburban arterial roads, for example.

The parameters µ(i) and σ2(i) for the trip effect can depend on time, weather,

vehicle type, driver, and other explanatory factors (similarly to Jenelius et al.

[28]). For the ambulance study, we use time bin as an explanatory factor, setting

µ(i) , µk(i) where the week is divided into time bins k ∈ {0, 1, . . . , K} and

µ0 , 0 to ensure model identifiability, i.e. to ensure that each parameter of the

model can be uniquely determined from sufficient data.
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For the ambulance study, we specify the log-scale variance σ2(i) using an ex-

ponential decay model in the total trip distance di ,
∑

j∈Ai
fijdj , as suggested by

exploratory data analysis (Section 3.3.2). Specifically, we take σ2(i) , Me−λdi +δ,

for parameters M > 0, λ > 0, and δ > 0. With this choice, the variance of the

log travel times approaches δ as the trip distance increases, and equals M + δ

for trips of length zero. The parameter λ controls how quickly the variability

decreases towards δ. For our ambulance application, the unknown parameters

in the model are then θ , (c, u1, . . . , uL, µ1, . . . , µK ,M, δ, λ).

3.2.2 Estimation

We use a Bayesian formulation to estimate the parameters of the WT model.

This allows uncertainty in the parameter estimates to be taken into account for

travel time predictions. Predictions are based on the posterior distribution of the

parameters, which is proportional to the prior density (specified below) times

the likelihood function. The likelihood function is equal to the product over

trips i of the lognormal density of Ti as specified in Equation 3.1. We estimate

each parameter and relevant function of the parameters by its posterior mean,

and summarize our uncertainty with a 95% interval estimate, the endpoints of

which are the 0.025 and 0.975 quantiles of the posterior distribution. Computa-

tion of the posterior distribution is done via Markov chain Monte Carlo [56].

For our ambulance application, results are robust to moderate changes in the

prior distributions for the unknown parameters (c, u1, . . . , uL, µ1, . . . , µK ,M, δ, λ),

due to the large volume of data. Results are reported for the following prior dis-
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tributions, with mutually independent parameters:

u` ∼ LN (ν`, ξ
2
u), µk ∼ N (0, ξ2

µ), ` ∈ {1, . . . , L}, k ∈ {1, . . . , K}

c ∼ Unif(0,∞),
√
M ∼ Unif(0,∞),

√
δ ∼ Unif(0,∞), λ ∼ Unif(0,∞).

The constant ν` is a prior estimate of the unit travel time on the log scale,

for road class `. For example, there might be initial speed estimates for each

link in class `, or perhaps known speed limits or recorded GPS speed data. In

such cases, ν` can be set equal to the mean of the log inverse speeds. For the

ambulance study, we use GPS speed data to specify a common ν` for all `. The

constant ξu captures how strongly we believe our prior estimate ν` of the log

unit travel time. We take ξu to be large, allowing the information in the data

to dominate the posterior estimate of u`. Specifically, we set ξu so that there

is roughly 95% prior probability that u` is within a factor of two of eν` , which

corresponds to ξu = (log 2)/2. Similarly, ξµ captures our prior uncertainty in

the value of µk, and by the same argument we set ξµ = (log 2)/2. We have

no prior information about c, M , and δ, so we use uniform priors. Although

these uniform prior distributions are non-integrable, the posterior distribution

is integrable and valid. The uniform priors are on the square root of δ and M ,

because the square roots of these parameters are on the scale of the standard

deviation of the log travel times, and it is more appropriate to put a uniform

prior on a standard deviation than on a variance [15].

To estimate the posterior distribution for each parameter, we use a

Metropolis-within-Gibbs Markov chain Monte Carlo method [56]. Specifically,

we use Metropolis-Hastings (M-H) to update each of the unknown parame-

ters in turn, conditional on the current values of the other unknown param-

eters. For example, to update the parameter u`, we propose a new value
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u∗` ∼ LN (log(u`), ψ
2). The proposed sample is accepted with the appropriate M-

H acceptance probability, which is the minimum of 1 and the following product

of the prior, likelihood, and proposal density ratios:

LN (u∗` ; ν`, ξ
2
u)

LN (u`; ν`, ξ2
u)

LN (u`; log(u∗`), ψ
2)

LN (u∗` ; log(u`), ψ2)

×

∏I
i=1 LN

(
Ti;µk(i) + log

(
c+

∑
j∈Ai

fijdju
∗
`(j)

)
,Me−λdi + δ

)
∏I

i=1 LN
(
Ti;µk(i) + log

(
c+

∑
j∈Ai

fijdju`(j)

)
,Me−λdi + δ

) .
The variance ψ2 is a constant that may be tuned to control the average accep-

tance probability, which theoretical evidence suggests should be roughly 23%

for optimal efficiency [52]. Similarly, we use a lognormal M-H proposal to sam-

ple the parameter c. To sample the parameters µk (k 6= 0), M , λ, and δ, we use a

normal distribution for the proposal.

To obtain the results in this chapter, we ran each Markov chain for 120,000

iterations, including a burn-in period of 20,000 iterations. To assess the Monte

Carlo error, we calculated Monte Carlo standard errors for each of the param-

eter estimates, using batch means [30]. Standard errors are quite low, roughly

1-2% of the parameter estimate for the µk parameters and 0.03-0.2% for the other

parameters. The computation time for each Markov chain iteration scales lin-

early with the number of vehicle trips, for a fixed road network. Each Markov

chain run for these experiments takes roughly 18 hours on a personal computer,

without utilizing parallel computing. Since the likelihood is a product over the

terms for each trip, computation time could be decreased by calculating the

likelihood terms in parallel batches. The Budge et al. nonparametric method

[8] is estimated using maximum (penalized) likelihood [50] and is faster than

our Bayesian implementation. In practice, however, ambulance travel time es-

timates are updated infrequently, so increased computation time is not a severe

drawback [62].
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3.3 Toronto EMS Data

We use our WT method to study ambulance travel times in Toronto, Ontario.

The goal is to estimate the distribution of time required for an ambulance to

drive to the scene of a high-priority emergency, in which case the ambulance

travels at high “lights-and-sirens” speed. The data are provided by Toronto

EMS (Emergency Medical Services), and include all such ambulance trips in

Toronto during the years 2007 and 2008. We analyzed a subset of these data

from the Leaside region of Toronto in the previous chapter [62]; here we estimate

travel times on the entire Toronto road network, which consists of 68,272 links.

The data associated with each trip include the approximate start and end

times and locations of the trip, as well as sparse GPS location and speed read-

ings during the trip. The GPS measurements are stored every 200 meters (m) of

travel or 240 seconds (s), whichever comes first (typically the distance constraint

is satisfied first for lights-and-sirens travel).

Preprocessing the data is a substantial challenge, due to factors such as hu-

man error in recording the start and end times and locations of the trips, the

presence of trips where the ambulance doubled back on itself, and the presence

of GPS measurement error. These challenges and our preprocessing algorithm

are described in Section 3.3.1. After preprocessing we are left with 157,283 am-

bulance trips, having removed 20,443 trips. The median shortest-path distance

between the start and end locations is 2,530 m.

To apply our WT method, we first estimate the path traveled for each ambu-

lance trip, using the sparse GPS data. Many such map-matching methods could

be used [34, 36, 45, 46]; we use a variant of the one introduced in Chapter 4.
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3.3.1 Preprocessing

For each ambulance trip, we have the time the ambulance departed for the emer-

gency (the enroute time), the arrival time, and GPS readings recorded between

those two times. Ideally, we would use the difference between the enroute and

arrival times as the total trip travel time, and use the GPS readings to estimate

the path traveled via a map-matching algorithm. However, the enroute and ar-

rival times are error-prone. They are manually recorded inside the ambulance

by a button push, and sometimes the button is pushed at the wrong time. For ex-

ample, sometimes the button indicating arrival at the scene is not pushed until

after the ambulance departs from the scene. The GPS device continues to record

data, so there will be many consecutive readings with speed 0 in between the

recorded enroute and arrival times, while the ambulance is parked at the scene.

A stylized example of this issue is given in Figure 3.1.

Figure 3.1: A stylized example of the effect of error in recorded enroute and
arrived times.

Instead of using these error-prone enroute and arrival times, we estimate the

start and end locations and times using the GPS data. First, to extract only the

GPS readings where the ambulance was actually driving to the scene, we isolate

the first “traveling block” (defined below) of GPS points, and discard the rest.

Then we take the first and last GPS points of the traveling block as the estimated

start and end locations and times of the trip. Due to GPS measurement error,

these locations are not necessarily on the road network, but the map-matching
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algorithm we use can handle this discrepancy [60].

A traveling block is a maximal consecutive sequence of GPS readings, with

the requirements:

1. Begins and ends with a non-zero GPS speed.

2. Has at least 3 non-zero speed GPS readings.

3. Has no pair of GPS readings (consecutive or otherwise) with:

(a) Timestamps at least 30 seconds apart but with average speed < 0.5

m/s, using straight-line distance.

(b) Timestamps at least 2 minutes apart but with average speed < 2 m/s,

using straight-line distance.

(c) Average speed (straight-line) greater than 100 m/s.

4. Has straight-line distance of at least 400 m between the first and last GPS

readings.

5. Has average speed (based on straight-line distance) between the first and

last GPS readings no greater than 60 m/s.

Each of these requirements are designed to eliminate a certain type of error.

Requirement 1 removes zero-speed GPS readings at the beginning or end of the

trip. Requirement 2 ensures that we can estimate start and end locations for the

trip, with at least one additional GPS reading for path estimation. Requirement

3 ensures that the trip does not have a long stationary period in the middle, as

in Figure 3.1. This requirement also removes trips where the ambulance turned

around, and subsequent GPS readings are very close to each other. While this is

possible behavior, it is unhelpful for response time estimation to include these
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trips. Finally, this requirement also removes trips with severe errors in the GPS

timestamp or location. Occasionally the data contain successive GPS readings

with identical timestamps but different locations, or GPS readings with impos-

sible locations. Requirements 4 and 5 act similarly to Requirement 3, but on the

entire trip. Requirement 4 removes trips where the ambulance turned around

and the first and last GPS reading are very close to each other. Requirement 5

removes rare trips where the GPS locations are shifted by a very large amount

from the true location.

3.3.2 Exploratory Analysis

Here we highlight exploratory analysis of the Toronto EMS data, after trip pre-

processing. Results from this analysis motivate the modeling assumptions de-

scribed in Section 3.2.1 for the ambulance study. After preprocessing, each trip

consists of a sequence of GPS readings. To assist exploratory analysis of the

travel time distribution between any two locations, we map the first and last

GPS readings of each trip to the nearest intersections in the network, to use as

estimated start/end locations (this differs from our travel time model, in which

trips are allowed to start and end in the interior of links). We collect the most

common pairs of start/end intersections for the trips in the dataset; there are 10

start/end pairs with at least 40 trips between them.

Figure 3.2 shows normal quantile-quantile (Q-Q) plots for the log travel

times between the four most common start/end pairs in the dataset. The

shortest-path distance (in meters) between the start and end locations is shown

above each Q-Q plot. Also shown on the Q-Q plots are 95% pointwise confi-
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Figure 3.2: Normal quantile-quantile plots for travel times between the four
most common start/end location pairs in the Toronto EMS dataset.

dence bands, under the null hypothesis that the log travel times are normally

distributed. Only 6% of the observed travel times in the four plots fall outside

the pointwise confidence bands, which suggests that the lognormal assumption

is reasonable (if it is correct then we expect roughly 5% of the observations to fall

outside of the bands). Although nearly all of these points occur on a single one

of these four plots, this is not surprising because the points on a Q-Q plot are

strongly dependent. Similar Q-Q plots can be constructed for the one-hundred

most common start/end pairs, which range in shortest-path distance from 404

to 4,717 meters, and they also suggest lognormal travel times.

We also wish to investigate the variability in travel times for each start/end
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Figure 3.3: Sample variances of log travel times for the 100 most common
start/end location pairs in the Toronto EMS dataset.

location pair. Figure 3.3 shows a scatterplot of the sample variance of the log trip

travel times vs. the shortest-path distance, for the one-hundred most common

start/end pairs. There is a general decreasing trend in the variance, the shape

of which suggests the exponential decay model described in Section 3.2.1. This

is for the log travel times; on the original scale, the variances increase with dis-

tance. We also construct a similar scatterplot where each point represents trips

of a similar distance across the entire city, not just between specific locations.

This plot is given in Figure 3.4. In this case, we again observe a decreasing

trend, but with much less noise than in Figure 3.3. This is consistent with the

results seen by Budge et al., who observed decreasing coefficient of variation of

travel times with increasing distance. The line in Figure 3.4 is a fitted exponen-

tial decay according to the model proposed in Section 3.2.1. The fit is extremely

good. The parameter estimates are M = 0.22, λ = 0.0008, and δ = 0.08. We use

these same estimated parameters in our map-matching method of Chapter 4.
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Figure 3.4: Sample variances of log travel times for Toronto ambulance trips,
binned by shortest-path distance.

3.4 Application of TomTom

TomTom is a maker of navigation products. These products use both historical

travel time averages and real-time traffic information from TomTom devices in

vehicles to provide average travel time estimates between any two locations.

These are intended for use by standard-speed vehicles, not ambulances travel-

ing at lights-and-sirens speed. However, the TomTom estimates still provide a

useful comparison. We report results using their historical average travel time

estimates after adjusting for bias (see Section 3.5.1). Bias adjustment does not

fully account for the differences between the TomTom context and ours; for ex-

ample, intersection effects are much lower for L-S ambulances because they do

not stop for red lights. Thus, our results should not be interpreted as an evalu-

ation of the quality of TomTom’s estimates. On the contrary, the fact that their

estimates are competitive with the other methods (see Section 3.5.1) shows that

standard vehicle data can be useful for predicting L-S travel times.
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3.5 Results

Here we give the results of ambulance travel time estimation using the Toronto

data. We compare our WT method, our IL method introduced in Chapter 2, the

nonparametric method of Budge et al., and the TomTom predictions. For our

WT method, we use seven road classes and four time bins. Class 1 corresponds

to highways, Class 2 to major arterial roads, Classes 3-6 to smaller-sized roads

in decreasing order, and Class 7 to highway on and off-ramps. Time Bin 0, the

baseline bin, corresponds to weekday off-peak times (10 a.m. - 3 p.m., 7-10 p.m.),

Bin 1 to rush hour (6-10 a.m., 3-7 p.m.), Bin 2 to weekend daytime (6 a.m. - 10

p.m.), and Bin 3 to late night (10 p.m. - 6 a.m.). We chose these bins by observing

the change in average GPS speed readings across the week.

We split the ambulance trips randomly into two equal-sized sets, using half

of the data to train the WT and Budge et al. methods, and the other half as test

data for all the methods. Then we reverse the training and test halves. Results

from these two experiments are similar.

u1 u2 u3 u4

0.0353 0.0603 0.0653 0.0779
[0.0343, 0.0363] [0.0600, 0.0606] [0.0648, 0.0659] [0.0769, 0.0791]

u5 u6 u7 µ1

0.1018 0.0712 0.0450 0.0268
[0.0997, 0.1038] [0.0646, 0.0781] [0.0426, 0.0476] [0.0215, 0.0323]

µ2 µ3 c M
-0.0083 -0.0097 25.08 0.2064

[−0.0139,−0.0026] [−0.0150,−0.0044] [24.52, 25.66] [0.1932, 0.2203]

δ λ
0.0576 0.00097

[0.0562, 0.0589] [0.00091, 0.00104]

Table 3.1: Parameter estimates from our WT model, along with 95% intervals
expressing parameter uncertainty.
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First we analyze parameter estimates from the WT method for the first train-

ing set, shown in Table 3.1. The road class parameter estimates appear reason-

able. The estimated unit travel time u1 = 0.0353 s/m for Class 1 (highways)

corresponds to 102 km/hr. For Class 7 (highway on/off ramps), u7 = 80 km/hr.

For Class 2 (major arterial roads), u2 = 60 km/hr. The estimated speeds de-

crease for smaller roads, except for Class 6, the smallest roads. These roads are

relatively uncommon, and the interval estimate is wider for u6 than for the other

parameters, reflecting larger uncertainty in the value of u6.

The rush hour time bin parameter estimate µ1 = 0.0268 corresponds to 2.7%

larger travel times for rush hour, relative to the weekday off-peak bin. The esti-

mates of µ2 and µ3 correspond to roughly 1% smaller travel times for weekend

and late night, relative to weekday off-peak. All these values are close to zero,

indicating that lights-and-sirens ambulance speeds are remarkably consistent

across time bins, in contrast to standard travel speeds (see Section 3.5.3).

Our lognormal model implies that about 95% of trips are predicted to fall

within two standard deviations of the median on the log scale, i.e. within fac-

tors of e−2×SD and e2×SD of the median on the original scale. Thus the variance

estimate δ = 0.0576 implies that for very long trips, about 95% of the travel times

will be within factors of 0.62 and 1.6 of their median travel time. The estimate

M = 0.2064 implies that for very short trips, about 95% of the travel times will

be within factors of 0.36 and 2.8 of their median travel time.
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3.5.1 Travel Time Prediction Comparison

Next we compare the predictive performance for our WT method, several re-

duced versions of the WT method, the nonparametric method of Budge et al.

[8], and the TomTom estimates. Recalling that we use half of the data for train-

ing and the other half for testing and then reverse, here we evaluate the accuracy

of the predicted travel time distribution for trips in the test data. For each test

trip we evaluate the quality of a point estimate of the travel time, the predic-

tive interval estimate, and the distribution estimate using appropriate statistical

measures. For TomTom we only evaluate the quality of the point estimate, since

interval and distribution estimates are not available. For our WT method and

that of Budge et al., we use the median travel time as the point estimate of

travel time. The 95% predictive interval from those methods is taken to be the

estimated 0.025 and 0.975 quantiles of the travel time distribution.

When using the WT method to predict the travel time for the trips in the test

data, we obtain predictions under two scenarios: (1) using the estimated route

taken by the vehicle (based on the GPS data), or (2) not using this information.

Using the estimated route emulates a situation in which we know the route that

the driver will take, for instance if the driver were required to take a route speci-

fied by the dispatcher. Such control over the route could be desirable since then

the route could be optimally selected using the most recent traffic conditions.

However, most ambulance organizations leave the route choice to the driver. To

emulate this situation, in Scenario 2 we predict the travel time without using

the route information (only using the start and end locations of the trip). In this

scenario we obtain an estimated fastest route according to the WT model (as

described in Section 3.5.6), and base our predictions on this route.
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Budge et al. base their travel time predictions on the shortest-path distance

between the start and end locations [8]. In the spirit of Scenario 1, since we have

estimated routes for each ambulance trip, it is natural to extend their method

to use the distance of the estimated route, instead of the shortest-path distance.

Therefore, we obtain predictions from their original method where the train-

ing and test sets both use the shortest-path distance, and the extended method

where the training and test sets both use the estimated route.

We perform bias correction for each estimation method, since bias may be

present for a variety of reasons. For example, bias arises in Scenario 2 because in

this scenario our WT method treats the ambulance paths differently in the train-

ing and test data. For the training trips the estimated route is used, while for

the test trips the fastest route is used, resulting in a tendency to underestimate

travel times. Bias may also be present in each method due to inaccuracies of the

assumed model. The TomTom estimates are severely biased, because they are

intended for vehicles traveling at standard speeds, not lights-and-sirens speeds.

We do bias correction on the log scale via cross-validation as described in the

previous chapter (Section 2.5). Bias correction is done on the log scale to lessen

the impact of outlying travel times.

Results are shown in Table 3.2. We report point estimation performance us-

ing the root mean squared error (RMSE, in seconds) of the point estimate com-

pared to the true time, and using the RMSE of the log predictions compared to

the true log time (“RMSE log”). Due to the inherent variability in travel times,

even a perfect distribution estimate would have RMSE and RMSE log consider-

ably above zero. We report the RMSE log because it is less affected by outlying

travel times than the RMSE. Outliers are present for at least two reasons; first,
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a small number of trips were apparently not driven at typical lights-and-sirens

speeds, although they were recorded as high-priority trips. Second, some trips

have high error in the recorded GPS locations, in which case the estimated path

may be inaccurate.

Estimation method RMSE (s) RMSE log Cov. % Width (s) CRPS (s)
WT, estimated route 72.3 0.298 94.4 218.9 34.6

WT, fastest route 77.7 0.322 93.1 219.7 37.3
WT, 1 var. param. 72.5 0.297 94.1 225.9 35.2

WT, 1 time bin 72.4 0.298 94.4 219.1 34.7
WT, 1 road class 76.8 0.312 94.3 231.0 36.7

Extended Budge et al. 74.9 0.302 94.6 229.1 35.7
Budge et al. 79.7 0.325 94.8 248.1 38.3

TomTom 82.1 0.347 NA NA NA

Table 3.2: Travel time prediction performance for the Toronto EMS lights-and-
sirens data.

To evaluate the interval estimates, Table 3.2 shows the percentage of test

trips where the observed travel time falls in the 95% predictive interval (the

coverage, “Cov. %”), and the geometric mean width of the 95% predictive inter-

vals (“Width”). Coverage close to or above 95% combined with small interval

width is desirable, since it indicates that the predictive distribution is narrowly

concentrated around the true travel time, while reflecting the true variability in

travel times.

Table 3.2 evaluates the quality of the distribution estimates by reporting the

continuous ranked probability score (CRPS) [18]. This is a “strictly proper”

measure of distribution estimation accuracy, meaning that only a perfect dis-

tribution estimate achieves the lowest expected score [19]. If F is the esti-

mated distribution function and x is the observed travel time, CRPS(F ;x) ,∫∞
−∞ [F (y)− 1(y ≥ x)]2 dy, i.e. the integrated square of the difference between F

and the empirical distribution function based on the single observation x [18].
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We report the mean CRPS over the test trips [18]; a lower value corresponds to

better distribution estimates. Even a perfect distribution estimate would yield a

CRPS well above zero, due to the inherent variability of travel times.

In Table 3.2, in addition to reporting the accuracy of our WT method under

Scenarios 1 and 2, and the accuracy of the competing methods, we report the

accuracy of several simplified versions of the WT method under Scenario 1.

This indicates whether the reduced models are as effective as our full WT model

and which aspects of our full model are the most important. We consider the

following reduced models: (a) only one time bin, (b) only one road class, and (c)

only one variability parameter instead of the exponential model.

As seen in Table 3.2, our WT method under Scenario 1 (using the estimated

route) outperforms the Budge et al. method by 8-10% in RMSE, RMSE log, and

CRPS, and outperforms the extended Budge et al. method by 1.5-3.5% in the

same metrics. The WT method’s interval estimates have almost identical cover-

age to those of Budge et al. but are narrower on average, by 12% compared to

the original Budge et al. method and by 4.5% compared to the extended method.

Under Scenario 2, the WT method outperforms the original Budge et al. method

by 2.6% in CRPS and 1-3% in RMSE and RMSE log. The mean predictive inter-

val width from the WT method under this scenario is 11% narrower than that

of Budge et al., though with slightly lower coverage. These performance dif-

ferences are most likely due to our model’s inclusion of different speeds for the

different road classes, as well as time effects.

The WT method outperforms the TomTom estimates by 12-14% in RMSE

and RMSE log under Scenario 1, and by 5-7% in the same metrics under Sce-

nario 2. Scenario 2 is the more natural comparison, because we do not spec-
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ify the route traveled when obtaining the TomTom estimates, instead allowing

TomTom to pick the optimal route. TomTom’s estimates perform respectably,

indicating that after bias correction, standard vehicle data do have predictive

power for lights-and-sirens ambulance trips. In a similar experiment (not re-

ported), we compared the WT method trained on lights-and-sirens data with

the WT method trained on standard speed data, for predicting lights-and-sirens

travel times, on the subregion of Toronto used in Chapter 2. We found a similar

difference in performance as with the TomTom estimates; the model trained on

lights-and-sirens data outperformed the model trained on standard data, which

is not surprising since the test data were lights-and-sirens trips, but the perfor-

mance of the standard data was respectable.

Regarding the reduced versions of the WT model, the method with only one

time bin performs essentially as well in all metrics as the full method. We ex-

plore this observation in more detail in Section 3.5.3. The method with only one

variability parameter performs as well in point estimation but slightly worse

in distribution estimation than the full model. The method with only one road

class performs worse than the full method and the other reduced methods in all

metrics. It appears to be quite important to allow for varying speeds across road

classes. The extended Budge et al. method outperforms our method with one

road class. Both models rely only on travel distance; however, the Budge et al.

method is more flexible than our WT method with one road class, because the

point estimates on the log scale are not restricted to a linear function of distance.
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3.5.2 Comparison to the IL Method

We also compare to our earlier IL method introduced in Chapter 2. The IL

method is more computationally intensive than the WT method because it si-

multaneously estimates the paths traversed and realized link travel times for

the historical trips, as well as the travel time parameters for each link. Because

of this, we cannot apply it to the entire Toronto road network, so we compare

our WT method to the IL method on the subregion of Leaside, Toronto, used

to assess the IL method in Chapter 2. To ensure a fair comparison with previ-

ous results, we do not use the route information for the test trips (i.e., we use

Scenario 2 from Section 3.5.1).

For application to the subregion, we make one minor change to the WT

model introduced in Section 3.2.1. For the prior distribution on the variance pa-

rameter M , we use an exponential distribution with rate 5, instead of a uniform

distribution. Since the dataset has few extremely short trips, posterior estimates

of M are unstable unless we use a prior distribution that prefers smaller val-

ues. Failure to do this can lead to unrealistic travel time predictions for the few

extremely short trips in the dataset.

Results are summarized in Table 3.3. We use the same five resamplings of

training and test sets from the Toronto subregion data as in Chapter 2 (Sec-

tion 2.7.3). The two methods perform roughly the same in terms of RMSE log,

and the IL method performs only slightly better than the WT method in RMSE,

even though the WT method is less computationally intensive. The WT method

also has much better coverage of interval estimates than our IL method. This

is because our IL method assumes independence between the travel times on

different network links, which is unrealistic, as discussed in Section 3.1. Failing
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to take into account the dependence between link travel times leads to underes-

timation of the variability in the total route travel time and thus overly narrow

interval estimates.

Estimation method RMSE (s) RMSE log Cov. % Width (s)
IL, using fastest route 37.8 0.332 85.8 75.0

WT, using fastest route 38.1 0.331 91.3 90.3

Table 3.3: Travel time prediction performance of our WT method and IL method
on the subregion of Leaside, Toronto.

3.5.3 Inflation of Time Effects

In Section 3.5.1, we observed that the inclusion of time effects did not noticeably

improve performance of our WT method on the Toronto EMS data. For ambu-

lance fleets in other municipalities and for non-ambulance contexts, the differ-

ences in travel times across time bins may be greater. For instance, although

the difference in travel speeds between rush hour and non-rush hour on the full

Toronto dataset is only about 4% (obtained by comparing GPS speed readings),

this difference is 8% if one restricts to the Leaside subregion of Toronto, and is

16% for standard speed ambulance data on the Leaside subregion. In this sec-

tion, we artificially inflate the travel times for trips in the rush hour time bin,

to see what effect the inclusion of time bin factors has on performance if the

differences across time bins are larger.

We multiply each trip travel time in the rush hour time bin by an artificial

inflation factor and apply our WT method using both one time bin and four time

bins. The inflation percentages used are 5% (inflation factor 1.05), 10%, and 20%.

The estimated routes from the GPS data are used for the test trips (Scenario 1 in

79



Section 3.5.1). Results are given in Table 3.4. For small rush hour inflation, the

difference between the 4 time bin model and the 1 time bin model is minimal.

However, the difference increases in a nonlinear manner with the increasing

inflation, and becomes fairly large (6%) at 20% inflation. We expect that our WT

method with multiple time bins would show substantial improvement over the

method with one time bin on a dataset where the travel time difference between

rush hour and non-rush hour is 20% or more.

Rush hour inflation percentage
No inflation 5% 10% 20%

WT method, 4 time bins 72.3 73.2 74.2 76.3
WT method, 1 time bin 72.4 73.9 75.9 81.0

Table 3.4: Travel time prediction performance (RMSE), with rush hour travel
time inflation.

3.5.4 Closest Ambulance Post Comparison

In this section and the next, we consider the effect of using different travel time

distribution estimates on ambulance fleet management. We assume a set of lo-

cations of available ambulances, and calculate which ambulance is estimated to

be closest in terms of median travel time to each intersection in the city, accord-

ing to our WT method and the Budge et al. method. If the two methods estimate

different ambulances to be closest to a particular intersection, this would lead

an ambulance dispatcher to assign different ambulances to respond to an emer-

gency at that intersection, if the policy is to dispatch the closest ambulance [11].

We select a set of twenty-five representative ambulance post locations in

Toronto, by examining the empirical distribution of start locations of ambulance

trips (after data preprocessing), and choosing commonly-occurring locations.
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These ambulance posts are chosen to illustrate and compare the travel time es-

timates from our method and the Budge et al. method, and are not indicative of

actual ambulance coverage of Toronto EMS.

For our WT method, we define the closest post to an intersection to be the

one with the smallest estimated median travel time. This corresponds to Sce-

nario 2 from Section 3.5.1, since we do not know the route that the ambulance

will take. For the Budge et al. method, we use the closest post in shortest-

path distance. Typically this coincides with the closest post according to median

travel time, since their method models median travel time as a function of only

shortest-path distance. However, it is not guaranteed since Budge et al. do not

restrict the function to be increasing in distance, and for the Toronto data the

estimated function does have small non-monotonic fluctuations.

In Figure 3.5, black points mark the intersections that are estimated to be

closest to different posts, according to our WT method and the Budge et al.

method. Light gray points represent the remaining intersections. The ambu-

lance post locations are shown as black X’s. Roughly 5% of the intersections in

the city are estimated to be closest to different posts. Typically, only intersec-

tions that are roughly halfway between two posts have a chance to be marked.

Therefore, if the number of ambulance posts were higher, it is likely we would

see even more intersections marked. By comparison, roughly 10% of the inter-

sections in the city are closest to different posts according to straight-line dis-

tance and shortest-path distance. Therefore, the 5% we observe comparing the

WT method and the Budge et al. method is fairly large.
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Figure 3.5: Intersections (shown in black) where the closest ambulance post dif-
fers when estimated by our WT method and the Budge et al. method, with post
locations shown as X’s.

3.5.5 Probability of Arrival Within a Time Threshold

In this section, we calculate the probability that an ambulance is able to reach

each intersection in the city within a time threshold, given a set of currently

available ambulance locations and a travel time distribution estimate for any

path. Visual displays of these probabilities are called probability-of-coverage

maps, and are useful to EMS practitioners [8]. We use the same set of twenty-

five representative ambulance posts and the same methods for estimating the

closest post to each intersection as in the previous section.

In Figure 3.6, we plot the probability that an ambulance arrives at each inter-
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Figure 3.6: Probability of arriving at each intersection in Toronto from the closest
ambulance post within 4 minutes, estimated by our WT method.

section in Toronto from the closest ambulance post within 4 minutes, according

to our WT method. Each intersection is shaded in gray according to this proba-

bility, where darker points correspond to higher probability. The post locations

are shown as white X’s. The probability of arrival is very high for intersections

near the closest post and becomes lower for intersections farther away.

The arrival probabilities from our WT method do not decrease solely as

a function of travel distance from the closest post, but also incorporate road

speeds. This becomes clear in the top panel of Figure 3.7, where we plot the

differences between the arrival probabilities for our method and the Budge et

al. method. The black points represent intersections where our method gives
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at least 15% higher probability of arrival within 4 minutes than the Budge et

al. method does. Thus, there is a substantial predictive difference between the

two distributions for these intersections. The medium grey points represent in-

tersections where the Budge et al. method gives at least 15% higher probability

than our method does. The light gray points represent all other intersections.

The ambulance post locations are again shown as black X’s.

Figure 3.7: Differences in the estimated probability of arriving within 4 minutes,
between our WT method and that of Budge et al.

Most of the intersections that are close to an ambulance post do not differ by

15% or more according to the two methods, because arrival probabilities from

both methods are high. Similarly, intersections that are far from all ambulance

posts also differ by less than 15%. On the other hand, many of the intersections

that are at an intermediate distance to the closest ambulance post differ in ar-
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rival probability by 15% or more. In fact, this is true for roughly 10% of all the

intersections in the city. Many of the points where the probability from the WT

method is at least 15% higher are on or near highways, particularly Highway

401, which is visible in Figure 3.7 as a sequence of black points running hori-

zontally across the middle of the city. The highway road class speed estimate

is high, so the method predicts better coverage when a highway can be used.

There is another large collection of black points at the left edge of the figure that

are close to Highway 427.

Many of the intersections where the Budge et al. probability is at least 15%

higher are in residential areas where there is no direct path following highways

or major arterial roads. For example, there are no major roads traveling from

an ambulance post to the collection of gray points near location (-10000, -7000).

Similarly, there is no direct route from an ambulance post to the collection of

gray points near location (-5000, 7000). Though there are major arterial roads in

the area, it would require a detour to use one. There are smaller roads that take

more direct routes, but they have slower speed estimates.

3.5.6 Fastest Path Estimation

Here we describe the fastest path estimation for our WT method under Sce-

nario 2 of Section 3.5.1. As noted in Section 3.3.1, the recorded start and end

times for the ambulance trips are error-prone, so the first and last GPS readings

in the first traveling block of the trip are used for the start and end times and

locations. Since these two locations are not necessarily on the road network, to

estimate the fastest path we first find the two nearest links to these GPS loca-
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tions, and use the nearest points on these links as possible start/end locations.

These links typically correspond to the two travel directions of the nearest road.

For each of the four start/end location pairs, we calculate the fastest path in me-

dian travel time. Of these four possible paths, we use the one with the smallest

median travel time as the estimated path. This method ensures that we obtain

a reasonable path for each trip, which can begin or end in the interior of a link,

and is not hampered by choosing the “wrong direction” of the nearest link.

3.6 Conclusions

We introduced a parametric model for estimating the distribution of vehicle

travel times between any locations in a city. This method, called the WT method,

is computationally tractable for large road networks and large datasets of vehi-

cle trips, and is particularly useful when travel time data for individual roads

in the city are sparse. The model parameters are interpretable, and include ef-

fects for the roads traveled by the vehicle and trip-level effects such as time of

day. We used a Bayesian formulation and Markov chain Monte Carlo method

to estimate the model parameters.

We tested the method on a large dataset of ambulance trips from Toronto. Ex-

ploratory analysis of the data indicated that the distribution of ambulance travel

times between two fixed locations is well modeled by a lognormal distribution,

with variability parameter depending on travel distance. These observations in-

fluenced our modeling choices. We compared travel time predictions from the

WT method with predictions from a method published by Budge et al. [8] and

commercially-available estimates from TomTom. We found that the WT method
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outperformed the alternative methods in both point estimation and distribution

estimation. We also compared the WT method with the IL method from Chapter

2 on a subregion of Toronto, and found that the WT method performed almost

as well in point estimation and better in interval estimation.

We also investigated several reduced versions the WT method, to determine

which features were the most important. The largest benefit came from the

inclusion of parameters for each road class in the city, compared to a model

with only one road class. However, there was little benefit in performance from

adding multiple time bins across the week vs. a single time bin. In the Toronto

dataset, the ambulance travel times do not vary substantially across the day

and week, even during rush hour. Because other cities or datasets may be more

variable in time, we performed an additional set of experiments by artificially

inflating the difference in travel times between time bins. We found that if the

travel times during rush hour were increased by at least 20%, then time bin

factors provided a substantial benefit to estimation.

Finally, we investigated operational differences for ambulance fleet manage-

ment from using the WT vs. Budge et al. methods. We fixed a set of repre-

sentative ambulance posts in Toronto, and calculated the closest post to each

intersection in the city, according to travel time estimates from each methods.

We found that the two methods estimated 5% of the intersections in the city to

be closest to different posts, which could lead to different dispatch decisions for

emergencies at these intersections. We also calculated the probability that an

ambulance arrives at each intersection in the city within 4 minutes, responding

from the closest post. We found that for 10% of the intersections in the city, the

two methods gave arrival probabilities that differed by more than 15%.
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CHAPTER 4

A MONTE CARLO METHOD FOR MAP-MATCHING, WITH GPS BIAS

ESTIMATION

4.1 Introduction

Map-matching refers to the problem of estimating the sequence of roads trav-

eled by a vehicle from a set of locations and times recorded during the trip, for

example by a Global Positioning System (GPS) device [63]. Map-matching is

performed both on-line, where an estimated path is constructed as GPS read-

ings are obtained [41], and off-line, where the path is estimated after the fact

[67]. Map-matching is difficult particularly when the GPS data are sparse and

error-prone. Error in GPS location observations can sometimes be very large

[5, 9], on the order of 100 meters or more. Sparsity is often introduced to reduce

data transmission and storage costs [41, 46]. Interest in map-matching tech-

niques for sparse data is currently very high, because there is an explosion in

the amount of this type of data available, from smartphones and GPS devices in

taxis, ambulances, and other vehicles [5, 26].

There have been a large number of methods proposed for both on-line and

off-line map-matching. Map-matching algorithms typically integrate geomet-

ric considerations, such as the distance of each GPS reading to the nearby links

(road segments), with topological information, such as the length and charac-

teristics of candidate paths, to create an overall rating for each candidate path,

and choose the path with the highest rating [57]. Probabilistic models [5, 26] and

Bayesian inference [44, 62] are also used. For general reviews and discussion,

see Quddus, Ochieng, and Noland [45], and Wei et al. [59].
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Recently, Bierlaire, Chen and Newman [5] introduced a map-matching

method that returns a probability for each candidate path. Other recent off-line

methods have been introduced by Lou et al. [34], who combine the geometric

and topological methods introduced above with speed and time considerations

and Rahmani and Koutsopoulos [46], who generalize and improve the method

of Lou et al. We discuss these methods in more detail in Section 4.3.1. Recent on-

line methods have been introduced by Miwa et al. [41], who use geometric and

probabilistic considerations and investigate the possibility of using the empiri-

cal distribution of GPS location errors, and Hunter, Abbeel, and Bayen [26], who

use a Conditional Random Field framework to integrate path selection models

with probabilistic information about the GPS readings.

It has been observed that successive GPS location errors appear to be de-

pendent, in the form of a persistent bias in a particular direction [31, 66]. Xu et

al. observed that the GPS bias was fairly stable in the short term and changed

smoothly on the time-scale of minutes [66]. There are several reasons why the

locations have persistent bias. First, the digital road network is modeled as a

collection of line segments with no width, which can cause up to several meters

of apparent error. The road network may also contain errors that can lead to

bias, such as roads that are missing or incorrectly defined as being one-way. In-

herent GPS errors can also lead to bias, such as atmospheric delay [31] and the

use of dead-reckoning in cases where GPS satellites cannot be observed [66].

Persistent GPS bias and random noise have been studied and corrected for

via Kalman filters in the high-frequency GPS setting, notably by Kim, Jee, and

Lee [31] and Xu et al. [66]. However, in probabilistic map-matching methods for

sparse GPS data, the GPS errors are typically assumed to be independent and
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normally distributed [5, 26, 34, 36, 62]. Hunter et al. [26] noted that it would be

interesting to consider the exponential distribution as a more robust alternative.

In this chapter, we first investigate whether the path traveled and GPS lo-

cation bias are identifiable, i.e. whether they can be uniquely determined given

sufficient data. Assuming that there is no independent GPS error, we show that

the path and GPS bias are identifiable up to translations of the path in the road

network. However, even in cases where there is no alternative path in the road

network that is a translation of the true path, the true path and bias may not be

distinguishable from alternatives given only a finite amount of GPS data.

Next, we investigate whether directly modeling the GPS bias can lead to

improvements in map-matching performance for sparse data. Given a set of

historical vehicle trips, we introduce a map-matching model where the GPS

error consists of a bias vector, which is unchanging for all readings in a trip, plus

an independent error for each reading. We treat the unknown path traveled and

bias for each trip as missing data. We assume that the bias magnitude follows

an exponential distribution with unknown mean, and that the independent GPS

error for each reading also follows an exponential distribution with unknown

mean. Thus there are two estimation problems to solve: (1) estimating the path

and bias vectors for each historical trip, and (2) estimating the parameters of

the bias and independent error distributions. We introduce a Bayesian model

to estimate solutions to these two problems simultaneously. After estimating

solutions to the two problems for the historical data, we can also estimate paths

and biases for new vehicle trips by taking point estimates for the parameters of

the bias and independent error distributions.

We use a Metropolis-within-Gibbs framework to estimate the missing data
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and unknown error parameters [56]. To draw samples of the path for each ve-

hicle trip, we use the local Metropolis-Hastings (M-H) proposal introduced in

Chapter 2. The problem of sampling paths on a road network via a Markov

chain was recently addressed by Flötteröd and Bierlaire [14]. They form a M-H

proposal by selecting a portion of the path to update, and re-routing that portion

through a new node. We compare our method with theirs in Section 4.3.1.

Our Bayesian method gives posterior probabilities for each candidate path,

as in Bierlaire, Chen and Newman [5] and our Chapter 2 [62]. This is particu-

larly useful in applications that do not require a single path estimate, such as

route choice models [5]. Unlike Bierlaire, Chen and Newman, we do not use a

uniform prior distribution on the path traveled, but use the missing data model

to capture the fact that faster paths are preferred. We model the path via a multi-

nomial logit choice model on the expected travel time [39, 62].

We test our map-matching method on ambulance trips from Toronto and on

simulated data on the same road network. We compare our method to a reduced

method where there is no model of the GPS location bias, only independent GPS

errors. We give evidence on the Toronto ambulance data that the GPS error has

substantial persistent bias. We find that the full method with both GPS bias and

independent error outperforms the reduced method in true and false positive

rates on simulated data. We also discuss specific types of paths from the real

and simulated data where the full model performs better.

This chapter is organized as follows. In Section 4.3, we introduce our map-

matching model and estimation method. In Section 4.4, we perform experi-

ments on the Toronto ambulance data, highlighting exploratory analysis in Sec-

tion 4.4.1 and assessing the results of map-matching in Section 4.4.2. In Section
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4.5, we compare the full and reduced models in experiments on simulated data.

We draw conclusions in Section 4.6.

4.2 GPS Bias and Error Identifiability

In this section, we consider whether the path traveled and GPS location bias are

identifiable, i.e. whether they can uniquely be determined given sufficient GPS

data. Assume that there is no independent GPS error, only unchanging bias

for all readings in a trip. We show that the path and bias are identifiable up to

translations of the path in the road network. If there are two paths in the road

network that differ by a translation vector, then the path and bias are unidenti-

fiable. However, this is the only circumstance that leads to unidentifiability.

To make this precise, we first give basic definitions of a link, road network,

and path. A link is a piecewise linear curve in R2, made up of a finite number

of closed, finite length line segments in R2, intersecting at their endpoints. This

is the standard definition that is used in practice [46]. A road network is a finite

collection of links and intersections between them, where links intersect only at

their overall endpoints. A path is a closed, continuous, piecewise linear curve

made up of a sequence of links in a road network. A path need not begin or end

at intersections; the first and last links in the path may be used only fractionally.

Denote a path P translated by a vector b as P + b = {z + b|z ∈ P}. Let µP,b

denote the uniform measure on the translated path P +b. Precisely, for a set A ∈

B, where B is the Borel σ-algebra on R2, define µP,b(A) = λ(A∩(P +b))/λ(P +b),

where λ(S) is the 1-dimensional Lebesgue measure of a curve S [49].
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We have defined a map from a parameter space of paths and bias vectors

to the uniform measures on piecewise linear curves in R2, i.e. a parametrization

g : (P, b)→ µP,b. We now consider whether this parametrization g is identifiable.

A parametrization is unidentifiable if different values of the parameters map to

the same probability measure [4], i.e. in our case if there are (P, b) and (P ∗, b∗)

with (P, b) 6= (P ∗, b∗) but µP,b(A) = µP ∗,b∗(A) for all A ∈ B.

Lemma 4.2.1. Fix a road network. If there are two paths P and P ∗ such that

P = P ∗ + v for a vector v 6= 0, then the parametrization g is unidentifiable.

Proof. Fix any bias vector b ∈ R2 and consider the translated path P + b and

measure µP,b. Since the translated path P + b = P ∗ + b + v, we must have

µP,b(A) = µP ∗,b+v(A) for all A ∈ B. Therefore since (P, b) 6= (P ∗, b + v), the

parametrization g is unidentifiable.

In practice, if paths can begin and end in the interior of links, as we allow,

then the parametrization g will always be unidentifiable. To show this, take any

link in the road network and any line segment S that is part of that link. Let P

be a continuous portion of S, but not all of S, and let P ∗ be a different portion

of S of the same length as P . Then P = P ∗ + v for some v 6= 0, and so the

parametrization g is unidentifiable by Lemma 4.2.1.

The lack of identifiability shown in Lemma 4.2.1 is restricted to paths that

are translations of each other. We formalize this in Lemma 4.2.2.

Lemma 4.2.2. The parametrization g is identifiable up to translations between

paths. That is, for paths and biases (P, b) and (P ∗, b∗) such that (P, b) 6= (P ∗, b∗)

and µP,b(A) = µP ∗,b∗(A) for all A ∈ B, we must have P + b = P ∗ + b∗.

93



Proof. Take any (P, b) 6= (P ∗, b∗) such that P + b 6= P ∗ + b∗. Without loss of

generality, assume that there exists y ∈ R2 such that y ∈ P + b but y 6∈ P ∗ + b∗.

Since paths are closed, there must be a neighborhood D ∈ B with y ∈ D but

D ∩ (P ∗ + b∗) = ∅, and so µP ∗,b∗(D) = 0. However since paths are continuous,

µP,b(D) > 0. Thus, we cannot have µP,b(A) = µP ∗,b∗(A) for all A ∈ B.

For clarity, we consider examples in Figure 4.1. In the left panel, two possible

paths P and P ∗ are shown by dotted lines, with corresponding bias vectors b and

b∗ shown as dashed lines. Example GPS readings from the distribution µP,b are

shown as black dots, with corresponding locations on P and P ∗ as white dots.

The path P ∗ is a translation of P , and so µP,b(A) = µP ∗,b∗(A) for all A ∈ B. The

path and bias cannot be distinguished between alternatives (P, b) and (P ∗, b∗).

●

●

●

● ●

● ●

● ●

● ●

● ●

● ●

P P*

b b*

● ●● ●● ● ●● ●● ●●● ●●

P P*

b b*

● ●● ●●●● ● ●● ● ● ● ●●● ●●● ●

P

b

Figure 4.1: Stylized examples with GPS location bias, but not independent error.

Next, consider the top example in the right panel of Figure 4.1. The path P

travels part of the way along the road and the path P ∗ travels the same distance

but translated by a vector. The biases b and b∗ are again shown as dashed lines.

Since P ∗ is a translation of P , GPS locations sampled from µP,b (shown as small

black dots) again cannot distinguish between (P, b) and (P ∗, b∗).
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Finally, consider the bottom path in the right panel of Figure 4.1. The path P

now encompasses the entire road between the two intersections. Assume that

there is no other road in the network traveling in the same direction that is at

least as long as this road, so there is no path P ∗ that is a translation of P . In this

case, (P, b) uniquely determines the distribution µP,b.

There may be an alternative path and bias that cannot be distinguished from

the true ones, given a finite number of GPS readings, even if there is no alter-

native path that is a translation of the true path. For example, again consider

the bottom path in the right panel of Figure 4.1. For any finite sample of GPS

readings from the uniform distribution µP,b, there will not be readings with true

locations exactly at either of the intersections. Therefore P will be indistinguish-

able from any other path along this road that is at least as long as the maximum

distance between observed GPS locations. However, for any alternative path

P ∗ on this road, if we sample repeatedly from µP,b, with probability 1 we will

eventually find two GPS readings that are separated by a distance larger than

the length of P ∗, and will conclude that P ∗ is impossible.

We believe the results in this section can be extended to the case where there

is bivariate independent GPS location error as well as bias, given conditions on

the independent error distribution. Formalizing this is a matter of current work.

4.3 Modeling and Estimation

In this section, we introduce a statistical model and estimation method for map-

matching, given a set of historical vehicle trips. We treat the unknown path trav-

eled and GPS bias for each trip as missing data. We use a Bayesian approach to
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estimate the missing data and the parameters of the GPS bias and independent

error distributions simultaneously. Thus, we obtain a posterior distribution on

the path traveled for each trip in the historical dataset, the unchanging GPS bias

for each trip, and the GPS bias and error distribution parameters.

To obtain a point estimate of the path driven for each trip, we use the max-

imum a-posteriori (MAP) estimate, i.e. the most common path in the posterior

samples. The posterior distribution over paths gives us an understanding of the

uncertainty in the path estimate for each trip. For example, we can compare the

posterior probability of the MAP estimate with the posterior probability of the

next most likely path. Sometimes the MAP estimate is far more likely than all

other paths, but sometimes this ratio is close to 1. The marginal posterior prob-

abilities for each link are also useful, as we saw in the examples of Sections 2.6.3

and 2.7.5, because they can highlight which portions of the path are uncertain.

4.3.1 Map-Matching Model

Here we introduce the statistical model used in our map-matching method. We

use a model that assesses the same characteristics of potential map-matching so-

lution paths as the models used by Lou et al. and Rahmani et al. [34, 46]. Lou et

al. emphasized that a map-matching solution should use geometric, topological,

and temporal considerations. Abstractly, we summarize these three concerns as

follows. The estimated path should be:

1. Close to the GPS locations.

2. Short in length and reasonable for a driver to follow.

96



3. Similar in speed to average speeds for the roads used.

In Lou et al., these characteristics were captured by:

1. A normal distribution on the distance between each GPS location and its

candidate point (a possible true location on the road network), indepen-

dently across GPS readings.

2. For each pair of consecutive GPS readings, the ratio of the Euclidean dis-

tance between candidate points and the length of the shortest-distance

path between candidate points.

3. A cosine distance function to compare the average speed on the shortest-

distance path between candidate points to a typical speed for that road.

These three components were combined by Lou et al. into a rating for each can-

didate path. Rahmani et al. [46] used a similar but more general model, allowing

the rating for a candidate path to be an arbitrary function of the characteristics

of the path, for example the overall length or expected travel time, the number

of left or right turns, or the type of roads used.

Our statistical model on the path traveled and GPS observations assesses the

same three characteristics. We use:

1. An exponential distribution for the magnitude of the unknown GPS bias,

with a uniform random direction, and an exponential distribution on the

remaining distance for each reading to the nearest location on the path.

2. A multinomial logit choice model for the unknown path traveled, as a

function of the expected travel time. Paths with shorter expected travel

times have higher probabilities (see Section 2.2.1).
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3. A lognormal distribution for the travel time between successive GPS ob-

servations, with mean equal to the expected travel time on the roads be-

tween the GPS observations.

We now give the details of this model. Consider a road network with J

links, where link j has length d(j), and a set of I vehicle trips on this network

to be map-matched. The only data for each trip are GPS observations. In par-

ticular, we do not know the start and end times or locations. The start and

end locations can be anywhere on the road network, not necessarily at intersec-

tions. This corresponds to the setting of our Toronto data in Chapter 3. Path

i has GPS data Gi =
{
Z`
i , t

`
i

}mi

`=1
, where mi is the number of GPS observations,

Z`
i =

(
X`
i , Y

`
i

)
is the location of reading `, and t`i is the timestamp. We do not

assume any other GPS information. Speed and heading observations are also

useful for map-matching, but they are not always available [41].

The unknown path traveled and GPS bias are treated as missing data. De-

note the path traveled in trip i as Ai =
{
A1
i , . . . , A

Ni
i

}
, where Ni is the number

of links traversed in the path. The path Ai follows a multinomial logit choice

model, as described below. Denote the bias vector Bi = {Ri, θi}, with magni-

tude Ri and direction θi. The bias magnitude Ri follows an exponential distri-

bution, Ri ∼ Exp(1/µB), parameterized by the mean µB, and the direction θi

follows a uniform distribution, θi ∼ Unif(0, 2π).

We assume that the true location of the vehicle at time t`i is the closest point

on the path to the bias-removed location Z`
i − Bi, with the restriction that the

GPS readings must occur in their observed sequence. The distance D`
i between

the bias-removed location Z`
i − Bi and the closest point on the path follows an

exponential distribution: D`
i ∼ Exp (1/µE), parameterized by the mean µE . The
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assumption of the closest point on the path is discussed below.

Next, we denote between-GPS times ∆t`i = t`+1
i − t`i , for ` = 1, . . . ,mi − 1.

We also define expected between-GPS times {e`i}
mi−1
`=1 , given the path Ai, in the

following manner. First, we assume there is an expected travel time τ(j) for

each link j in the network. We discuss how these can be obtained in Section

4.3.5. Suppose GPS readings ` and `+ 1 were generated from links Ai,p and Ai,q.

Then the expected travel time between the GPS readings is

e`i = (1− f(Api , `))τ(Api , `) +

(
q−1∑

k=p+1

τ(Aki )

)
+ f(Aqi , `+ 1)τ(Aqi ) + c`LpL + c`RpR,

where f(Api , `) and f(Aqi , ` + 1) are the fraction of the length of links Ai,p and

Ai,q before the true locations for readings ` and ` + 1. The terms c`LpL and c`RpR

are turn penalties, where c`L is the number of left (resp. right) turns between

readings ` and ` + 1, and pL is the penalty (in seconds) for a left (resp. right)

turn. The penalties pL and pR are discussed in Section 4.3.5.

The between-GPS travel time ∆t`i follows a lognormal distribution with

mean e`i . Specifically, ∆t`i ∼ LN
(
log(e`i)− σ2

i`/2, σ
2
i`

)
. The variance parameter

σ2
i` is a function of the distance traveled between readings ` and ` + 1, which is

denoted ∆d`i = (1− f(Api , `)) d(Api ) +
(∑q−1

k=p+1 d(Aki )
)

+ f (Aqi , `+ 1) d(Aqi ). We

describe how σ2
i` is estimated in Section 4.3.5.

For the model of the missing path data Ai, we use a multinomial logit choice

model on the expected travel time [39]. This gives probability

π(Ai) =
exp

{
−C

(
(1− f(A1

i , 1))τ(A1
i ) +

(∑Ni−1
k=2 τ(Aki )

)
+ f

(
ANi
i ,mi

)
τ(A1

i )
)}

∑
ai∈Pi

exp
{
−C

(
(1− f(a1

i , 1))τ(a1
i ) +

(∑ni−1
k=2 τ(aki )

)
+ f(ani

i ,mi)τ(a1
i )
)} ,

where as above f(Aki , `) denotes the fraction of link Aki before the true location

of GPS reading `, the set Pi contains all possible paths between the start and
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end location of trip i, and C > 0 is a positive constant. There is a subtlety with

Pi, because the start and end links are not assumed known and can change. We

resolve this issue by taking a set of possible actual start and end links. We do

not have to evaluate the denominator of π(Ai), because we only calculate the

ratio of priors for two alternative paths.

This results in the following complete-data likelihood for the missing data

{Ai, Bi}Ii=1 and GPS data {Gi}Ii=1, given the GPS error parameters µB and µE :

L
(
{Ai, Bi, Gi}Ii=1

∣∣µB, µE) =
I∏
i=1

[
π(Ai)Exp (Ri; 1/µB)

mi∏
`=1

Exp
(
D`
i ; 1/µE

)
×

mi−1∏
`=1

LN
(
∆t`i ; log(e`i)− σ2

i`/2, σ
2
i`

)]
. (4.1)

To complete the Bayesian model, we require prior distributions on the GPS

error parameters µB and µE . We use improper uniform priors. We find that the

choice of prior for these parameters, whether improper or proper (for example,

an exponential distribution), makes little difference in estimation.

The other constants and parameters in the model are not estimated in a

Bayesian manner, but are assumed fixed and known. These include σ2
i,` for each

trip i and GPS reading ` ∈ {1, . . . ,mi − 1}, the turn penalties pL and pR, and the

multinomial logit choice model constant C. We discuss how these parameters

are set in Section 4.3.5.

Finally, we discuss the assumption that the GPS reading was generated at

the closest point on the path to the bias-removed GPS location. Without this

assumption, it is necessary to estimate where the vehicle is at all times, in order

to calculate the GPS location error. This is difficult for sparse data. Our IL

method from Chapter 2 does estimate the observed travel time on each link [62].

100



Combined with the assumption of constant speed across the link, this gives an

estimate of the vehicle’s position at all times. However, the model is complex

and computationally challenging. The other alternative to estimating link travel

times is to assume a travel model (i.e. a speed profile) that determines where the

vehicle is on the path at all times. However, if the vehicle does not follow the

travel model closely, then the inferred GPS errors can be inaccurate.

We use a Metropolis-within-Gibbs framework to estimate the posterior dis-

tribution over the missing data and unknown parameters, given the GPS data

{Gi}Ii=1. After initializing the unknowns, we iteratively update each unknown,

conditional on the other unknowns, via Metropolis-Hastings sampling. The re-

sulting Markov chain has state space
{
{Ai, Bi}Ii=1 , µB, µE

}
. First we describe

how each unknown is initialized, and then describe how they are updated in

the Markov chain.

4.3.2 Initializing the Path and GPS Parameters

First we describe how we initialize the missing data {Ai, Bi}Ii=1 and the param-

eters µB and µE . The initial sample for the path Ai is actually quite important,

because if the initial sample is very far from the GPS data, there may be a long

transient period before the Markov chain is able to transition close to the GPS

data, if it is able to transition there at all (see Section 4.3.3). Therefore, we ini-

tialize the path to be close to the GPS readings, using the following method.

1. Select every rth GPS reading to route the initial path through. The choice

of r depends on the frequency of the GPS readings. The thinned GPS read-

ings should not be so far apart that the local sampling cannot move be-
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tween the initial path and the true path. However, using more GPS points

also increases the initialization time and leads to more opportunities to

map a point to the wrong links (for example if it has large location error).

We use r = 3 for experiments.

2. Map each selected GPS reading to the s closest links. For each of these

links, find the shortest distance path to each of the four closest links to the

next selected GPS reading. Therefore there are s2 shortest paths. Repeat

for all adjacent (thinned) GPS readings and take the initial path to be the

shortest-distance path in this new graph from the first GPS reading to the

last GPS reading [37]. We use s = 5 for experiments. Alternatively, we

could map each reading to all the links within a certain distance.

To initialize the parameters µB and µE , we calculate the mean distance of the

GPS locations to the closest link in the road network, over the trip dataset. We

initialize µB and µE both equal to this mean distance. We could also initialize

µB and µE randomly, for example with mean equal to this distance. The initial

value does not appear to be important in the estimation of these parameters. To

initialize the observed biasBi = {Ri, θi} for each trip i, we takeRi ∼ Exp(1/µB),

using the initialized value of µB, and take θi ∼ Unif(0, 2π).

4.3.3 Updating the Paths

To update the path sample for trip i, we use a Metropolis-Hastings (M-H) pro-

posal. The method used to propose a new path is the same as the one we intro-

duced in Chapter 2, though the interpretation and acceptance rate are different,

because the statistical model is different. Specifically, we uniformly choose an
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node v1 from the pathAi, excluding the final node. Let r be the number of nodes

following v1 in the path. We draw a random integer j ∼ Unif(1,min{r,K}) and

denote the jth node following v1 as v2. We then collect all the routes between

v1 and v2 in the road network of length at most K, of which the current route

between v1 and v2 must be one, and uniformly propose a new route from this

set to be a change to the path, giving proposed path A∗i . We accept A∗i as the

new path with the appropriate M-H acceptance probability, which equals

pMH =
L (A∗i , Bi, Gi|µB, µE) π(A∗i )

L (Ai, Bi, Gi|µB, µE) π(Ai)

Ni min(r,K)

N∗i min(r∗, K)

where π and L are the prior and likelihood functions defined in Section 4.3.1,

Ni is the number of links in the path Ai, and N∗i and r∗ are the corresponding

values to Ni and r for the proposed path.

Since the start and end locations of the trip are unknown, we also must be

able to update the estimated start and end nodes of the path. On its surface this

proposal does not allow this, because only an interior portion of the path can

be changed. However, the start and end nodes can be changed if we append a

dummy start and end node to the beginning and end of the path, and connect

these nodes with dummy links to all the nodes near to the first and last GPS

readings. Then the above update on the path will allow the real start and end

nodes to change between the nearby nodes to the first and last GPS readings. To

select the set of nearby nodes, we take the five nearest links to the first and last

GPS readings. Alternatively, we could use all the links within a certain distance

from the first and last readings.

As we observed in Section 2.3.5, the Markov chain generated by this pro-

posal is irreducible if it is possible to move between any possible paths between

the (dummy) start and end node in a finite number of steps [62]. The road net-
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work and the maximum update length K determine whether this is possible.

It is advisable to keep K as small as possible, because the acceptance rates de-

crease with K. It may be impractical for K to be large enough for the Markov

chain to be irreducible for all possible trips [62]. However, the decrease in ac-

ceptance rate as K grows is slower than in Chapter 2, because we do not have

to update link travel times. When proposing many new link travel times in a

single update in Chapter 2, the acceptance rate becomes low because often one

(or more) link travel times is very unlikely in its distribution. We use K = 10 in

this chapter, as opposed to K = 6 in Chapter 2.

Finally, we compare the proposal discussed here to the one introduced by

Flötteröd and Bierlaire [14]. The proposals are similar, in that both change an

interior portion of the path between two nodes v1 and v2. The proposals differ

in that we restrict the number of links between v1 and v2 to be at most K and

uniformly choose a new route to replace it. Flötteröd and Bierlaire also denote

a current middle node v3 between v1 and v2, and choose a new middle node v∗3

via a distribution on nodes in the road network, and route the proposed path

through this new middle node, using fastest paths from v1 to v∗3 and v∗3 to v2.

Since the reverse transition is impossible if the current routes from v1 to v3 and

v3 to v2 are not fastest paths, they do not propose a new path in these cases.

Unlike in Flötteröd and Bierlaire’s method, proposals are always possible in

our method from any state. However, our Markov chain is reducible if the in-

teger K is too small. Another difference is that we do not require any fastest

paths to be precomputed and stored or computed at each iteration. Precomput-

ing and storing fastest paths is memory-intensive if the road network is large,

while computing fastest paths at every iteration can be computationally inten-
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sive. Finally, Flötteröd and Bierlaire do not consider cases where the start and

end locations of the vehicle are unknown.

4.3.4 Updating the GPS Error Parameters and Observations

Next we describe how we update the GPS bias vectors Bi = {Ri, θi} and the

bias and error parameters µB and µE . Again we use Metropolis-Hastings pro-

posals. For the bias magnitude Ri for trip i, we use a lognormal proposal

R∗i = LN (log(Ri), ξ
2
B) with fixed variance ξ2

B. We accept R∗i with the appropri-

ate M-H acceptance probability. The ratio of likelihoods in the M-H acceptance

probability (see Equation 4.1) for the proposed and current states reduces to

L(Ai, {R∗i , θi}, Gi|µB, µE)

L(Ai, {Ri, θi}, Gi|µB, µE)
=

Exp(R∗i ; 1/µB)
∏mi

`=1 Exp
(
D`∗
i ; 1/µE

)
Exp(Ri; 1/µB)

∏mi

`=1 Exp
(
D`
i ; 1/µE

) ,
where the distance D`

i between the bias-removed GPS location Z`
i − Bi and the

nearest point on the path also changes to become D`∗
i , since the bias changes.

To update the bias direction θi, we use a normal proposal modulo 2π, i.e. take

Wi ∼ N (θi, ξ
2
θ), where ξ2

θ is the proposal variance, and take θ∗i = Wi mod 2π.

The likelihood ratio reduces to

L(Ai, {Ri, θ
∗
i }, Gi|µB, µE)

L(Ai, {Ri, θi}, Gi|µB, µE)
=

∏mi

`=1 Exp
(
D`∗
i ; 1/µE

)∏mi

`=1 Exp
(
D`
i ; 1/µE

) ,
where the proposed values D`∗

i are determined by θ∗i .

For the mean GPS bias magnitude µB and mean GPS remaining error µE , we

also use lognormal proposals. For µB, the ratio of likelihoods reduces to

L({Ai, Bi, Gi}Ii=1

∣∣∣µ∗B, µE)

L({Ai, Bi, Gi}Ii=1

∣∣∣µB, µE)
=

∏I
i=1 Exp(Ri; 1/µ∗B)∏I
i=1 Exp(Ri; 1/µB)

,
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while for µE , the ratio of likelihoods reduces to

L({Ai, Bi, Gi}Ii=1

∣∣∣µB, µ∗E)

L({Ai, Bi, Gi}Ii=1

∣∣∣µB, µE)
=

∏I
i=1

∏ni

`=1 Exp(Ei`; 1/µ∗E)∏I
i=1

∏ni

`=1 Exp(Ei`; 1/µE)
.

The variances for the four proposals given in this section can be tuned to achieve

a desired acceptance rate [52].

4.3.5 Fixing the Constants

Here we describe how we fix the constants C, pL, pR, {{σ2
i,`}

mi−1
`=1 }Ii=1, and

{τ(j)}Jj=1. Recall that σ2
i,` is a function of the estimated distance ∆d`i between

GPS readings ` and ` + 1 in trip i. In previous work, we observed that the vari-

ance of travel times on the log scale is larger for short trips than for long trips,

and that the log scale variance follows a roughly exponential decay in the trip

distance (Section 3.3.2). Although full trip travel times likely behave differently

than portions of trips of the same length, because of speed-up and slow-down

effects, it is reasonable to use the analysis for full trips in Toronto to estimate a

value for σ2
i,` (travel time variability for a portion of the trip). We use the same

exponential decay model as in Chapter 3, and obtain σ2
i,` = Me−νD

`
i + δ, where

M = 0.22, ν = −0.0008, δ = 0.08. These values were calculated in Section 3.3.2

and are kept fixed for all experiments in this chapter.

The expected link travel times τ(j) can be taken from prior knowledge or a

travel time estimation method. For example, given GPS speed data, the local

travel time estimation methods introduced in Chapter 2 can be used to provide

a straightforward estimate of τ(j). We use previous travel time estimates for

each link provided by The Optima Corporation. We fix the turn penalties to
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reasonable values for ambulance trips, namely pL = 10 seconds and pR = 5

seconds. We have experimented with higher turn penalties (pL = 20 seconds

and pR = 10, for example) but found slightly worse results in general, although

higher turn penalties could be helpful in certain cases (see Sections 4.4 and 4.5).

Finally, we set C for each dataset according to the principle that for a trip of

average duration, a path with typical travel time 10% longer should be 10 times

less likely [62]. This yields values ranging from C = 0.11 and C = 0.14 for the

various simulated and real datasets tested.

4.4 Toronto Ambulance Data Experiments

In this section and the next, we describe map-matching experiments on ambu-

lance data from Toronto and on simulated data on the Toronto road network.

We evaluate the performance of the map-matching method introduced in Sec-

tion 4.3. We compare this method to a method where there is no GPS bias,

only independent error, but with all other characteristics of the model the same.

We refer to the method with both GPS bias and independent error as the full

method, and the method with only independent error as the reduced method.

4.4.1 Toronto Data

In this section, we use data from ambulances in Toronto, collected from 2007-

2008. There are 157,235 trips in this dataset, each consisting of a sequence of

GPS observations. Unfortunately, we do not have ground truth paths traveled

for these trips. Preprocessing for this dataset was discussed at length in Sec-
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tion 3.3.1. We also define a 3x3 kilometer region of downtown Toronto for spe-

cial study, because the GPS location error appears more severe there. There are

15,482 trips with at least one GPS reading in this downtown region.

First we highlight exploratory data analysis on the GPS errors in the Toronto

dataset and the downtown region in particular. To obtain initial estimates of the

distribution of GPS errors, we calculate the distance from each GPS location to

the nearest link in the road network. The “Whole city” and “Downtown” rows

of Table 4.2 show various quantiles of this distribution for the entire dataset and

the downtown region.

Quantile 0.25 0.5 0.75 0.9 0.99 0.999
Whole city (m) 2.2 4.8 8.3 12.6 70.1 2193

Exp(1/6.41) 1.8 4.4 8.9 14.8 29.5 44.3
Downtown (m) 2.7 6.0 13.3 27.1 64.7 165.6

Exp(1/10.53) 3.0 7.3 14.6 24.2 48.5 72.6

Table 4.1: Quantiles of distributions of GPS distance (in meters) to nearest link,
together with quantiles from related exponential distributions.

First, we observe that there are many extremely large GPS errors, especially

in the non-downtown portion of the dataset. In order to estimate the GPS error

distribution, it is probably best simply to remove trips that have extremely large

errors, for example 500 meters (m) or more, because in these cases we probably

will not be able to estimate the path correctly. The downtown region has larger

error than the entire city in general, having median 6.0 m compared to 4.8 m,

but not in the right tail. Most readings in both datasets have reasonably small

distance; the 0.9 quantile is 12.5 m for the whole city and 26.7 m for downtown.

We also report quantiles for exponential distributions, where the mean of

each exponential distribution equals the mean of the corresponding GPS dis-
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tance distribution, truncated at 100 m. The exponential distributions are a good

fit for the body of the distribution, but have lighter tails than the GPS distance

distributions. As observed in Section 4.1, GPS errors are often assumed to be

bivariate normal. The Rayleigh distribution is the magnitude of a symmetric

bivariate normal distribution, but is a much worse fit to these data than the

exponential. Assuming that the GPS errors are bivariate normal does not lead

the closest-distance distribution to be Rayleigh in any case, because the closest

distance is typically smaller than the error magnitude. In the case of a straight,

infinitely long road, the closest distance equals one component of the bivariate

normal error, i.e. a folded normal [62]. A folded normal distribution is also a

worse fit to these data than the exponential.

4.4.2 Map-Matching Results

We now consider results of our full and reduced map-matching methods on the

Toronto ambulance data. We sample 500 trips at random from the downtown

region and the non-downtown region to be map-matched. We report posterior

mean estimates for the full and reduced methods on these samples in Table 4.2.

Full model Reduced model
Dataset µB µE µE

Downtown trips 32.7 8.3 17.9
Non-downtown trips 15.6 5.4 9.0

Table 4.2: Posterior mean parameter estimates from the full and reduced map-
matching models on Toronto sample datasets.

First we discuss a potential issue of the information-sharing for estimating

the GPS distribution error used by our methods. For the results in Table 4.2,
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we removed three trips from the non-downtown dataset that our method was

not able to map-match correctly. If we do not remove these three trips, the pa-

rameter estimates from the full model for the non-downtown dataset are much

larger: µB = 18.7 m and µE = 17.2 m, because the three trips have very large

inferred GPS errors. In cases where the map-matching fails, typically either the

trip actually does have very high GPS error, or our initialization method (Sec-

tion 4.3.2) fails to find a path reasonably close to the GPS readings.

To protect against this undesirable behavior, it is advisable first to remove

trips with very high GPS errors, and also to evaluate the results of the Markov

chain to find other trips with very poor map-matching estimates. These trips

typically have very high estimated biases or estimated remaining independent

GPS errors. Using a heavy-tailed distribution in our model instead of an expo-

nential could also mitigate this issue, and is an area of current work.

From the estimates of µB and µE in Table 4.2, the full model appears to as-

sign the bulk of the GPS error to be bias, rather than the independent error.

We are interested in whether this is a true feature of the data or an artifact of

our model. To test this, we use the map-matching estimates from the reduced

model, so there is no direct preference for estimated paths that include GPS bias,

and calculate the signed distance from each GPS location to the nearest link in

the estimated path, with the restriction that the GPS readings must occur in their

observed sequence. The sign of the distance refers to whether the GPS location

is to the right or left of the estimated path. We use signed distance so that GPS

locations on opposite sides of the road are known to have different biases. For

this analysis, we ignore the first and last GPS readings in each trip, because the

ends of the trip are typically the most difficult to map-match (see below), and
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therefore can give misleading information about the GPS bias.
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Figure 4.2: Scatterplots of the absolute value of the trip mean GPS signed dis-
tances vs. the trip signed distance standard deviations. Top: Non-downtown
Toronto, Bottom: Downtown Toronto. Left: Values from the true trip data,
Right: The same trips with randomly sampled GPS errors.

In Figure 4.2, we plot the absolute value of the mean signed distance for each

trip on the x-axis vs. the standard deviation of the signed distances for each trip

on the y-axis. The top plots are from the non-downtown dataset and the bot-

tom plots are from the downtown dataset. The left plots show the values as
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calculated in the previous paragraph. The right plots show values for sampled

GPS errors for each trip. For trip i, having mi GPS readings, we independently

sample mi − 2 values from the empirical distribution of signed GPS distances

for the whole dataset (subtracting 2 to be consistent with ignoring the first and

last readings), and calculate the absolute value of the mean and the standard

deviation for these samples. This illustrates the relation between mean signed

distance and standard deviation if the GPS errors are independent. A few out-

liers are left off of each plot.

The figure for the downtown true data is quite different than the figure for

the downtown sampled data. The observed trip standard deviations are typ-

ically lower in the true data than in the sampled data; the median true s.d. is

8.3 m while the median sampled s.d. is 21.9 m. Thus the errors typically have

lower variability across a given trip than they would if drawn independently.

The figures for the non-downtown trips appear more similar, but again the true

standard deviations are smaller in general than the sampled values; the median

true s.d. is 3.6 m while the median sampled s.d. is 6.8 m. This is evidence that

the trips in the real data do in fact show persistent GPS bias.

It is also interesting to note that the practice of driving on the right side of

the road is apparent in the non-downtown dataset. Driving on the right corre-

sponds to a positive signed distance, since the distance is calculated to the road

centerline, and the median signed distance for the non-downtown dataset is 2.8

m. However, the median signed distance for the downtown data is only 0.9

m. There may be more trips in the non-downtown region on multi-lane roads

where the bias induced by driving on the right is large. We observe similar

results with other larger sets of trips from the Toronto dataset, so we do not
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believe that this is an artifact of the dataset samples used here.

Finally, we consider six example trips from the downtown dataset, and ana-

lyze the differences in their map-matching estimates from the full model and the

reduced model. The trips are chosen for their interest and therefore have larger

GPS location error than many other trips. However they are typical in that the

location error appears to be predominately consistent bias. We have seen almost

no examples of trips in either the downtown or non-downtown dataset where

the independent error appears to be more substantial than the bias.

The six example trips are shown in Figure 4.3. The first GPS reading is shown

as a solid circle and the rest as open circles. The estimated path from the full

model is shown as a solid line, and the estimated path from the reduced model

as a dashed line. As mentioned above, most of the GPS readings are separated

by 200 m, although sometimes the distance is larger or smaller than this, for

example in the top-left and bottom-left figures.

These trips show three situations where the full model appears to outper-

form the reduced model. First, there are cases where the reduced model takes a

route that is closer to some GPS locations, but is longer in expected travel time

or requires more turns than the route taken by the full model. Second, there

are cases where the reduced model takes a route that is farther away from some

GPS readings than the full model, but is shorter and perhaps uses fewer turns.

Third, the full model often appears to estimate the beginning or end of the path

more effectively.

The top two paths are examples of the first situation. The reduced model

takes a detour or extra turns to get closer to the GPS readings, and the paths
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Figure 4.3: Six example ambulance paths from the downtown Toronto dataset.
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from the reduced model appear incorrect. These two paths could likely be esti-

mated correctly by alternative map-matching techniques to our full model. For

example, larger turn penalties would give less incentive for the reduced model

to make these extra turns, and a stronger preference towards short trips would

discourage the detour. However, these modifications would hinder the reduced

model in the second situation. The middle-left path is an example of this situ-

ation. It is not perfectly clear what the true route is. However, the full model

finds a path where the bias appears to be very consistent. The path taken is

an odd one, but there are other examples in the dataset where the ambulance

clearly turns around or takes other odd paths. We see more examples of the

second situation in the simulated data of Section 4.5.

These first two situations are opposites. The reduced model appears to make

some errors choosing paths that are too long and close to the GPS readings and

other errors choosing paths that are too short and far from the GPS readings.

Therefore, it appears that tuning the parameters of the distributions assumed

by the reduced model for GPS location error and the multinomial logit choice

model prior, i.e. adjusting the tradeoff between short paths and paths closer to

the GPS readings, will not be able to fix all errors. Modeling the bias directly

can therefore be useful.

The middle-right path is an example of the third situation. Near the begin-

ning of the path, the estimated bias allows the full method to choose a route

that is farther from the first GPS reading than the route chosen by the reduced

method, but which appears to be correct, given the very consistent bias. This

is a common situation. The beginning and end of the path are typically more

difficult to estimate than the middle, because the constraints imposed by the
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other GPS locations in the path are only on one side, and therefore there can be

multiple reasonable routes. Using GPS heading information could be an alter-

native way to distinguish the correct path in some examples like this, but this

information is not always available [41].

In the bottom-left path, even though there is consistent bias, both models

appear to estimate the path correctly. This is another common situation. In the

bottom-right path, the reduced model appears to estimate the path correctly,

while the full model does not. The GPS bias appears to change dramatically

after the fourth GPS reading, becoming much smaller. Attempting to maintain

a more constant bias, the full model takes an incorrect detour. Examples of this

type are rare, but they can lead to map-matching errors by the full model.

4.5 Simulated Data Experiments

In this section, we describe results with simulated data on the downtown

Toronto road network. These experiments are useful because there is ground

truth path data, which allows us to assess map-matching performance, and also

because we are able to vary the characteristics of the GPS location error, to com-

pare the full method and the reduced method in a range of settings. There

are two other frameworks for testing map-matching methods that have been

used in the literature. The first is to use a set of real ambulance trips where the

true paths are known by a non-GPS method. Typically these datasets are gen-

erated specifically for the map-matching experiment, and therefore are fairly

small [46]. A second framework is to take GPS data from trips where the true

paths are not known, and manually map-match them [41]. Depending on the
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magnitude of GPS error, this may not be possible to do perfectly.

4.5.1 Generating Simulated Data

First we describe how our simulated data is generated. To use as the true path

for each trip, we use a map-matching estimate from a variant of our reduced

method for a trip from the real Toronto ambulance dataset. We use a different

set of 500 trips from the downtown Toronto dataset than used in Section 4.4.2.

Using a map-matching estimate as the true path ensures that the simulated path

is fairly close to a real path traveled by a vehicle. It is important to make the

simulated paths realistic, because map-matching performance may depend on

the shape of the paths.

Given the simulated path for trip i, we draw a lognormal random variable to

be the true trip duration Ti. The model we use to do this is the one introduced in

Chapter 3 (Section 3.2.1). The mean and variance of the lognormal distribution

depend on the distance traversed on each link, on estimated speeds for each

road class, and other parameters. We use the estimated parameter values from

the results in Table 3.1.

To simulate GPS data, we need the location of the vehicle at each time.

We achieve this by drawing link travel times, given the trip travel time Ti,

and assuming that the vehicle moves at constant speed across each link. We

use a Dirichlet distribution to distribute the total travel time across the links

in the path. Specifically, again denote the true path as Ai =
{
A1
i , . . . , A

Ni
i

}
and let τ(Aji ) be the expected travel time on link Aji . We obtain τ(Aji ) from

the travel time model in Section 3.2.1. Define f(j) = τ(Aji )/
∑Ni

j=1 τ(Aji ) to be
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the fraction of the expected trip travel time on link Aji . Then draw a vector

p ∼ Dirichlet(ηf(1), . . . , ηf(Ni)), where η is a constant, and set the travel time

for each link Aji equal to pjTi. This gives expected travel time for link Aji equal

to τ(Aji ), because E(pj) = f(j). The constant η controls the variances of the link

travel times; a larger η gives smaller variances [16]. We set η = 50.

Given the path traversed and link travel times, we generate simulated GPS

observations using the same procedure as in Chapter 2 (Section 2.6.1), which

is to sample GPS readings at fixed travel distances along the path. Specifi-

cally, we draw a new GPS reading every time the vehicle travels 250 meters

(m). This value is used because GPS readings in the Toronto data are typically

separated by 200 m in straight-line distance. Our simulated GPS readings are

somewhat sparser in general than the data used by Bierlaire, Chen, and New-

man [5], which was recorded every 10 seconds, because 250 m in 10 seconds

would correspond to 56 miles per hour. The time of the GPS reading is the time

at which the vehicle was at the corresponding location.

The GPS readings have location error. We vary the characteristics of the

simulated location error widely, to compare our full and reduced models in a

range of situations. We intentionally use distributions for the GPS error that do

not match the distributions assumed in our model. Some of the datasets have

larger error than appears to be common in the real Toronto data. However,

there are some trips with very high error in the Toronto data, so we wish to

assess map-matching performance on a large number of trips of this type.

We consider four types of location error. In the first type, there is only

GPS bias, not independent error. The bias is simulated by drawing a uni-

form random direction θ ∼ Unif(0, 2π) and a uniform random magnitude
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R ∼ Unif(0,M). We create four different datasets by varying the maximum

M , taking M ∈ {20, 50, 100, 200} meters. In the second dataset type, there is

both GPS bias and independent error. The GPS bias again contains a uniform

direction and magnitude, but the independent error is drawn from a bivari-

ate normal distribution, N(0,Σ), where Σ =
(
σ2 0
0 σ2

)
. We make three different

datasets, each with large bias (M = 100) and independent error varying from

small to large, taking σ ∈ {8, 20, 50} meters. In the third dataset type, there is

only independent error, again drawn from a bivariate normal. We report results

from one dataset of this type, with σ = 50 m.

In the fourth dataset type, again there is only GPS bias, but the bias is al-

lowed to change in the middle of the trip. For each reading in the trip, begin-

ning with the first reading, we draw a new bias vector (both magnitude and

direction) with probability p and keep the previous bias vector with probability

1− p. Therefore, the number of consecutive readings with the same bias follows

a geometric distribution with mean (1− p)/p. We report results for two datasets

of this type, both with p = 0.2, and with M ∈ {50, 200}. These datasets mimic

the situation we occasionally see in real trips, where the bias appears to shift in

the middle of the trip, as in the bottom-right example in Figure 4.3.

4.5.2 Map-Matching Results

Here we discuss results of the full and reduced models on the simulated datasets

introduced in Section 4.5.1. First we report posterior mean estimates for the

parameters µB and µE for the full model and µE for the reduced model, shown

in Table 4.3. The rows of the table correspond to the ten simulated datasets
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with varying GPS location error introduced above. The first four rows are the

datasets with only bias, the next three rows the datasets with both bias and

independent error, the eighth row the dataset with only independent error, and

the final two rows the datasets with bias that can change at each reading.

Full model Reduced model
GPS error distribution µB µE µE

Unif(0,20) 13.9 0.2 7.1
Unif(0,50) 29.7 1.5 29.7

Unif(0,100) 51.8 2.8 35.7
Unif(0,200) 86.5 28.0 73.8

Unif(0,100) + N(0,8) 49.5 8.4 37.8
Unif(0,100) + N(0,20) 49.9 18.4 47.6
Unif(0,100) + N(0,50) 59.1 54.3 62.8

N(0,50) 49.0 56.0 56.6
Unif(0,50), p=0.2 26.4 10.9 19.0
Unif(0,200), p=0.2 72.8 53.3 72.2

Table 4.3: Parameter estimates from the full and reduced map-matching meth-
ods on simulated datasets.

In the first three datasets, the full model is able to determine correctly that the

location error is predominantly bias, since the estimates for µE are very small. In

the fourth dataset, which has very large bias, the full model incorrectly estimates

a fairly large independent error distribution (µE = 28.0), but the bias magnitude

distribution is still larger. The estimated mean biases for these four datasets are

also roughly correct; since the simulated bias magnitude is Unif(0,M), the mean

is M/2, which is close to the estimate of µB in each case.

The reduced method also estimates the mean error of the first four datasets

fairly well. Since the independent error is measured from the GPS location to the

closest point on the path, it is smaller than the true error magnitude. How much

smaller depends on the curvature of the road. For an infinitely long, straight

road, the distance to the nearest point corresponds to one component of the
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two-dimensional error [62]. For error with an independent, uniform angle, the

mean of one component of the error is 2/π times the mean magnitude, equaling

0.637M/2 or {6.4, 15.9, 31.8, 63.7} for the first four datasets.

In the next three datasets, there is large bias and a range of independent

error from small to large. Again the full model is able to recover the relative

magnitudes of GPS bias and independent error reasonably correctly. In the eight

dataset, where there is only large independent error, the full model is not able

to identify that there is no bias, but gives both µB and µE large values. In the

final two datasets, the full method similarly gives µB and µE fairly large values.

Next we assess map-matching performance of the two methods on each sim-

ulated dataset. We use the true positive and false positive rates (TPR and FPR)

introduced by Rahmani et al. [46]. These are:

TPR =
d(Esti ∩ Truei)

d(Truei)
, FPR =

d(Esti − Truei)
d(Truei)

,

where d(S) denotes the total length (distance) of a set of links S, Esti is the esti-

mated path for trip i, and Truei is the true path for trip i. Together these mea-

sures provide a good evaluation of map-matching performance, whereas one

measure by itself might give an incomplete view [46]. For example, a method

that assigns every path to take all links would trivially obtain 1 for the true pos-

itive rate, but would also have very high false positive rate. Alternatively, the

number of links can be used instead of the distance. We also calculated false

and true positive rates for only the interior links in the path, since the beginning

and end of the path are typically the most difficult to estimate. Both methods

perform better on the interior links than on the whole path. However, compar-

isons between the two methods are similar with either of these changes, so we

only report the standard error rates defined in Equation 4.5.2.
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Full model Reduced model
GPS error distribution TPR FPR TPR FPR

Unif(0,20) 0.935 0.017 0.934 0.012
Unif(0,50) 0.922 0.029 0.884 0.037

Unif(0,100) 0.904 0.050 0.844 0.070
Unif(0,200) 0.739 0.184 0.677 0.202

Unif(0,100) + N(0,8) 0.889 0.062 0.841 0.078
Unif(0,100) + N(0,20) 0.873 0.055 0.824 0.066
Unif(0,100) + N(0,50) 0.786 0.110 0.788 0.103

N(0,50) 0.789 0.093 0.820 0.073
Unif(0,50), p=0.2 0.911 0.031 0.909 0.025
Unif(0,200), p=0.2 0.736 0.162 0.734 0.148

Table 4.4: Map-matching error rates on simulated datasets.

The error rate results are given in Table 4.4. Both methods perform well on

the first dataset, where there is small bias and no independent error. For the

other three datasets with only bias, the full model performs substantially better

in TPR (4-6% higher) and slightly better in FPR. In the fifth and sixth datasets,

with large bias and small-to-medium independent errors, the full model still

performs substantially better in TPR (5% higher).

On the other hand, the full model performs worse on the eighth dataset (3%

lower TPR and 2% higher FPR), where there is only large independent error.

The two models perform comparably on the dataset with large bias and large

independent error (the seventh dataset), and on the datasets where the bias can

change (the ninth and tenth datasets). Extending the model to allow the bias to

change during the path is an interesting area for further research.

Finally, in Figure 4.4 we examine six example paths from the third simulated

dataset, which has Unif(0, 100) bias magnitude and no independent error. As in

the examples in Section 4.4, the path estimated by the full model is shown as a

solid line and the path estimated by the reduced model as a dashed line. The
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first GPS reading is again shown by a solid circle and the rest by open circles.

The true path in the simulated data is now shown by a wide gray line.

We see similar behavior in these figures to the paths from real data analyzed

in Section 4.4. The same three situations where the full model outperforms the

reduced model arise: (1) where the reduced model takes a longer (in expected

time) route to get closer to the GPS readings, (2) where the reduced model take a

shorter route farther away from the GPS readings, and (3) where the full model

is more successful in estimating the beginning and end of the path.

The top-left figure is an example of the second and third situations. The

reduced method travels straight instead of turning at the beginning of the path,

and also takes an incorrect turn that shortens the end of the path but is farther

from the second-to-last GPS reading. The full model makes a mistake at the end

of the path, but estimates the rest correctly. In the top-right figure, the reduced

method again takes a shorter route that is farther from the GPS readings. In both

figures, the reduced method ends the path earlier than it should, also to shorten

the path. This is a common situation. Even if the path continued for another

link, the inferred error would be fairly high, and so shortening the path appears

to be more desirable. Only the portion of the final link up to the closest point

to the final GPS reading would be counted in expected travel time calculations

(see Equation 4.3.1), but this still adds a reasonable amount to the path.

The middle-left figure shows an interesting case. The reduced model makes

one major mistake, taking a horizontal route that is closer than the true route to

the third-to-last GPS reading. Only a knowledge of the persistent bias allows the

full model to estimate this path correctly. It is difficult to think of an alternative

type of map-matching method that would achieve this, without incorporating
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Figure 4.4: Six example paths from the simulated dataset with bias magnitude
Unif(0,100).
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dependence between the GPS location errors.

In the middle-right figure, the ambulance turns around. This is not a very

common situation in real data, but does occur. The reduced method turns much

earlier than it should. This error arises because the independent exponential er-

ror distribution is quite large. Unfortunately, some large errors that are incorrect

may be tolerated. In some cases, a sharp density like the exponential (i.e. giving

very small GPS errors a high density compared to larger errors) mitigates this

behavior, but it does not in this case. It would be interesting to assess the effect

of using a heavy-tailed distribution on this behavior.

The bottom two figures are examples of the identifiability issues discussed

in Section 4.2. In the bottom-left figure, the path chosen by the full method

is a translation of the true path, so the path and bias are not identifiable. The

full model chooses the incorrect path because it leads to slightly smaller bias.

This figure is also an example of the first situation above, because the reduced

method takes extra turns to get closer to the GPS readings. The bottom-right

figure is slightly different. Because of the odd angles in the true path, there is

no alternative path that is a translation of the true path, and so the path and

bias are identifiable. However, both models incorrectly estimate a shorter path.

Given the path estimated by the full model, the second GPS reading is inferred

to have some independent error. This is acceptable to the full method because

its model allows both bias and independent error.
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4.6 Conclusions

We considered the problem of map-matching sparse and error-prone GPS data

with a persistent bias in GPS locations for all GPS readings in a trip, and poten-

tially also independent location errors for each GPS reading. We observed from

empirical evidence that persistent bias is a major component of GPS location

error for ambulance trips recorded in Toronto.

First we considered whether the vehicle path and GPS location bias are iden-

tifiable, i.e. whether they can be uniquely determined given sufficient data. For

the case with only unchanging bias and no independent error, we showed that

the path and bias are identifiable up to translations of the path by a vector.

We introduced a statistical map-matching method where the GPS location

error is modeled with an unchanging bias for the entire trip plus an additional

independent error for each reading. We used a Bayesian model and computa-

tional method to estimate the paths traveled for an entire dataset of trips and the

parameters of the GPS error distributions simultaneously. We tested our map-

matching method on the data from ambulances in Toronto. We compared the

full model with both GPS location error types to a reduced method with only

independent location error between GPS readings. We found that the full model

provided more realistic path estimates for three different types of example trips.

We also compared the two models on realistic simulated datasets of trips

with a wide variety of GPS location error characteristics. We calculated true and

false positive rates, in terms of fraction of path length correctly estimated, for

map-matching performance on the simulated data. We found that the full model

outperformed the reduced model by 4-6% in true positive rate on datasets where
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the GPS bias was medium-to-large and the independent error was zero-to-

medium. The two models performed comparably on datasets with low bias

and independent error and on datasets with bias that was allowed to change in

the middle of the trip. The reduced model performed slightly better on a dataset

with only large independent error.

We are currently investigating using a heavy-tailed distribution for the GPS

location bias and independent errors, which could more accurately match the

empirical distribution of GPS errors, and could mitigate other issues arising in

this chapter. It would also be interesting to investigate models allowing the bias

to change during the trip. This appears to happen only in a small fraction of real

trips, but when it occurs it can lead to map-matching errors from our model.
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CHAPTER 5

CONCLUSIONS

In this chapter, we draw overall conclusions and consider areas for further

work. We introduced two statistical methods for estimating vehicle travel time

distributions, using Global Positioning System (GPS) data recorded during his-

torical vehicle trips. In Chapter 2, we introduced our Independent Link (IL)

method, using a model of the path taken by each vehicle in the data, the travel

time on each link (road segment) in the network, and the GPS location and

speed errors. We assumed independence between link travel times, and esti-

mated the parameters of the model via a Markov chain Monte Carlo method.

We compared the performance of the IL method with two simpler local meth-

ods and a recently published method from Budge et al. [8], using simulated data

and data from ambulances in Toronto, on a subregion of Toronto. We found that

the IL method outperformed the alternative methods in travel time point esti-

mation. However, its interval estimates appeared unrealistically narrow.

In Chapter 3, we introduced our Whole Trip (WT) estimation method, using

a model of the entire travel time of each trip, and including covariates such as

the types of roads used and time of day. We again estimated the parameters of

the model via a Markov chain Monte Carlo method. Modeling at the trip level

allowed us to capture dependence between link travel times. The WT method

also included fewer parameters and was more computationally efficient than

the IL method. However, the WT model did lose some information compared

to the IL model, because it ignored the interior GPS readings in each trip, once

the path taken by the vehicle was estimated as a model input.

We compared the performance of the WT method with the method of Budge
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et al. and commercially available travel time estimates from TomTom, using a

large dataset of ambulance trips on the road network of Toronto. We found that

the WT method outperformed the alternative methods in point and distribution

estimation of travel times. We also found that the WT method outperformed the

IL method in distribution estimation and was comparable in point estimation.

We also compared in the WT method and the method of Budge et al. in their

effect on ambulance management decisions, using a set of representative am-

bulance posts in Toronto. For each intersection in Toronto, we calculated which

post was estimated to be the closest, according to the two methods. The two

methods differed on closest posts for 5% of the intersections in the city, and

so the methods could lead to different ambulance dispatch decisions for emer-

gencies at those intersections. The two methods also differed substantially in

estimating the probabilities an ambulance is able to reach each intersection in

the city within a time threshold, responding from the closest post.

We also considered the map-matching problem, i.e. estimating a vehicle’s

path from a sequence of GPS readings. Our IL method simultaneously es-

timated map-matching solutions along with travel time distributions, and

showed robustness to sparsity and locations errors in GPS readings. Our WT

method required map-matching estimates for each historical vehicle path as

inputs. In Chapter 4, we introduced a statistical map-matching method, mo-

tivated by the observation that successive GPS readings tend to exhibit con-

sist location biases. We observed that this method outperformed an alternative

method that did not model GPS location bias, using simulated data with loca-

tion bias and example trips from the Toronto ambulance data.

Finally, we discuss possible future research directions. First, it would be
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interesting to explore extensions to the WT model, for example using nonpara-

metric methods. The assumption that the baseline travel time is a sum of link

travel times plus an intercept (Equation 3.1 of Section 3.2.1) could be relaxed.

Also, the trip effect could interact with the unit travel times for each link. For

example, this could allow the time of day parameters to vary for different road

classes or regions of a city.

Second, we observed that the WT method outperformed the IL method in

distribution estimation for trip travel times, because the IL method’s assump-

tion of independence between link travel times led to unrealistically narrow

travel time intervals. However, the WT method ignored the interior GPS read-

ings in each trip. To use the interior GPS readings, we need a model of the

movement of each vehicle during the trip. A possible extension is to model the

trip travel time and also the link travel times, conditional on the trip travel time.

For example, the trip travel time could be modeled by a lognormal distribution,

which could be distributed across the links in the path by a Dirichlet distribu-

tion. Because such a model would need to estimate realized link travel times

for each historical trip, it is likely to be computationally difficult. However, it

would be interesting to compare its performance with the IL and WT methods.

Third, there is a wealth of real-time traffic information that is currently col-

lected via smartphones and other navigation devices. For example, TomTom

generates travel time predictions using both historical and real-time data. We

tested TomTom’s real-time predictions of travel times, but found that they did

not perform as well as their historical data for estimating travel times for the

Toronto ambulance data. This is not surprising, since the Toronto ambulance

trips are historical. We should not expect real-time information from 2013 to
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have any benefit for predicting historical data, even if the data are from the

same time of day, for example.

However, EMS organizations make many real-time decisions about ambu-

lance fleet management [11, 38], and real-time data could potentially be very

useful for making these decisions. The real-time data would likely be for stan-

dard speed vehicles, not ambulances, because real-time data depends on traffic

conditions at a very detailed level, and ambulance trips are comparatively rare.

Thus there is again the difficulty that travel time distributions for these two

cases are quite different, as we discussed in Chapter 3. However, it may be

possible to combine historical ambulance data, historical standard speed data,

and real-time standard speed data to obtain more accurate travel time estimates

than can be made from historical ambulance data alone.
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