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The goal of a stochastic root-finding algorithm is to locate a point x∗ such that

g(x∗) = 0 for a given function g that can only be observed with noise. In this thesis

we investigate the performance of the Probabilistic Bisection Algorithm (PBA),

which is a one-dimensional stochastic root-finding algorithm motivated by the well-

known bisection search method. In each step, the PBA queries the function g

as to whether the root lies to the left or right of a prescribed point x. Due to

observational noise, the answer to each query has probability 1 − p(x) of being

incorrect. To account for such possibilities of incorrect observations, the algorithm

updates in each iteration a probability density that represents, in some sense,

one’s belief about the true location of the root x∗. The PBA was first introduced

in Horstein (1963) under the setting where p(·) is constant and known. While the

method works extremely well in this case, very little is known to date about its

theoretical properties or potential extensions beyond the current setting for p(·).

The first part of this thesis provides several key findings about the PBA

where p(·) is constant and known. Collectively, they lead to the first main

conclusion that the expected absolute residuals of successive search results con-

verge to 0 at a geometric rate.

In the second part, we consider the case where p(·) is unknown and varies with x.

At each query point, the function g is evaluated repeatedly until a lower bound

on the probability of obtaining a correct updating signal is achieved. We first



construct a true confidence interval for x∗ and prove that its length converges to 0

in the number of query points at a geometric rate. Next, we show that, provided

a reasonable conjecture holds, the PBA can be used to construct a sequence of

estimators (X̂T )T such that the expected absolute residuals E[|X̂T − x∗|] converge

to 0 at the rate O(T−1/2+ε) for any ε > 0, where T is the number of overall

function evaluations. This rate is only slightly slower than O(T−1/2), which is the

well-established upper bound on the convergence rate of stochastic root-finding

problems.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

A root of a function g : Rd1 → Rd2 is a point x∗ ∈ Rd1 such that g(x∗) = 0.

Locating roots of a given function has always been a fundamental problem in

mathematics. For example, solving a system of equations is a root-finding problem.

Meanwhile, in unconstrained optimization, both global and local extreme points

of an objective function f must be roots of its gradient g = ∇f (given the gradient

exists everywhere).

Stochastic root-finding refers to problems where the value of the function g

can only be estimated via certain procedures, such as a stochastic simulation. For

example, when evaluating g at a point x the response might be g(x) + ε, where

ε is some stochastic noise term with zero mean. This type of problems appear

routinely in many application areas, including sequential statistics (e.g., Robbins

and Monro, 1951; Kiefer and Wolfowitz, 1952; Frees and Ruppert, 1990), simulation

optimization (e.g., Fu et al., 2005), machine learning (e.g., Bottou, 2004), financial

engineering (e.g., Ehrlichman and Henderson, 2007; Cont and Kukanov, 2012), risk

management (e.g., Dunkel and Weber, 2010), etc.

In this thesis, we analyze and extend the Probabilistic Bisection Algo-

rithm (PBA) for one-dimensional stochastic root-finding problems (d1 = d2 = 1).

In contrast to popular stochastic root-finding algorithms based on steepest-descent

methods (see, for example, survey papers Lai, 2003 or Pasupathy and Kim, 2011,

as well as references within), the PBA derives its search mechanism from the
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well-known bisection method. At each iteration, the algorithm queries the func-

tion g at a prescribed point x in an attempt to determine whether the root x∗

lies to the left or to the right of x. While the stochastic nature of the function

evaluations results in incorrect responses with probability 1 − p(x), the PBA ac-

counts for such observational noise by updating after each iteration a probability

density function on the domain of g, which represents, in some sense, one’s current

belief of the true location of x∗. The median of this density provides an estimate

of x∗ as well as the next query point. The PBA was first introduced in Horstein

(1963) under the setting where p(·) is constant and known. Although the algorithm

works extremely well for this specific class of stochastic root-finding problems (see,

for example, Castro and Nowak, 2008a), very little is known about its theoretical

properties or how it might be extended to cover cases where p(·) is nonconstant

and unknown.

In Chapter 2 of this thesis we use a Bayesian approach to prove a set of conver-

gence results under the setting where p(·) is constant and known. To this end, we

assume that the root is a realization of a random variable X∗ with positive density

over the domain of g. The updating procedure of the PBA, in turn, corresponds to

proper Bayesian updating, and techniques from Bayesian analysis can be used to

investigate the convergence behavior of the algorithm. More specifically, we show

1. that the PBA is optimal in reducing expected posterior entropy;

2. that Xn → X∗ almost surely as n → ∞, where (Xn)n corresponds to the

sequence of medians generated by the PBA;

3. that the expected absolute residuals E[|Xn−X∗|] converge to 0 at a geometric

rate.
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The last result constitutes the main conclusion of Chapter 2. It shows that

when p(·) is known and constant, the rate of convergence for the PBA is faster

than any polynomial rate and comparable to that of the noise-free bisection search,

that is, O(2−n)1.

As the PBA with known and constant p(·) has only limited applications

in stochastic root-finding, we consider in Chapter 3 a more generalized setting

where p(·) is unknown and varies with x. In this case, the updating procedure of

the PBA no longer corresponds to proper Bayesian updating. Consequently, we

rely on frequentist methods to analyze the algorithm’s performance, which assumes

that the root x∗ is a fixed unknown value in the domain of g.

Since p(·) is now unknown to us, in order to carry out the updating proce-

dure of the PBA, we first construct a new direction signal Z̃(x) by evaluating the

underlying function g several times at any prescribed point x. While this signal

will be correct only with probability p̃(x), whose exact value remains unknown, we

are able to specify a useful lower bound on p̃(·) that can be used in the updating

procedure. Meanwhile, the construction of Z̃(x) naturally introduces two time

scales into the existing algorithm, namely, a macro time n counting the number

of updating steps and a wall-clock time T counting the total number of function

evaluations. We denote with (Xn)n the sequence of measurement points in macro

time, and, with a slight abuse of notation, write (XT )T to denote the sequence of

measurement points in wall-clock time. The main results in Chapter 3 show

1. that Xn → x∗ almost surely as n → ∞, and XT → x∗ almost surely as

T →∞;

1f(x) = O(g(x)) means that lim supx→∞ |f(x)/g(x)| < ∞, and f(x) = o(g(x)) means that
limx→∞ |f(x)/g(x)| = 0.
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2. that a (1 − α)-confidence interval for x∗ can be constructed, whose length

converges to 0 at a geometric rate in macro time;

3. that, based on (Xn)n, a sequence of estimators (X̂n)n can be constructed

that converges to x∗ at a geometric rate in macro time;

4. that, in wall-clock time, the sequence of absolute residuals (|XT − x∗|)T
converges to 0 at a rate slower than O(T−1/2);

5. that, based on (XT )T , a sequence of estimators (X̂T )T can be constructed

such that E[|X̂T − x∗|] = O
(
T−1/2+ε

)
for any ε > 0, given a reasonable con-

jecture on the sample paths of (XT )T holds true. This conjecture states that

the expected absolute residuals of the measurement points (Xn)n defined by

the PBA converge to 0 at a geometric rate in macro time.

As the main competitor of the PBA, Stochastic Approximation (SA) algorithms

can at times attain a convergence rate of O(T−1/2) in terms of convergence in

distribution. While the asymptotic convergence rate of the PBA might be slightly

worse than that of SA-type algorithms, it provides the user with more information

on the location of the root in the form of a true confidence interval. In addition,

we demonstrate empirically that the convergence behavior of the PBA is robust to

the choice of input parameters, whereas finite-time as well as asymptotic behavior

of SA-type algorithms strongly depends on a chosen tuning sequence. For these

reasons, the PBA provides a very appealing way of solving stochastic root-finding

problems both from the theoretical and the practical point of view, and is a novel

alternative to SA-type algorithms.

The outline of the thesis is as follows. In Chapter 1, we introduce the stochastic

root-finding problem and provide some background material on SA-type algorithms

and the PBA. In Chapter 2, we prove a set of theoretical properties for the PBA

4



where p(·) is constant and known. In Chapter 3, we extend our analysis of the

algorithm to the case when p(·) is unknown and varies with x. In Chapter 4, we

conduct a series of numerical studies and compare the empirical performance of

the PBA to that of its main competitors. In Chapter 5, we conclude and discuss

possible future research directions, including the extension to higher dimensional

problems.

The following abbreviations are used throughout the remaining part of the

thesis: iid for independent and identically distributed, pdf for probability density

function, cdf for cumulative distribution function, PBA for Probabilistic Bisection

Algorithm, SA for Stochastic Approximation and DP for dynamic program. In

addition, we use 1{·} to denote the indicator function, which is 1 if the argument

is true and 0 otherwise, and log(·) refers to the natural logarithm.

1.2 The Stochastic Root-Finding Problem

In this section, we present the formulation of the stochastic root-finding problem

considered in this thesis and show that for a large class of such problems O(T−1/2)

is an upper bound on the rate of convergence.

A stochastic root-finding problem considers an unknown function g : Rd1 → Rd2 ,

whose value can only be estimated at each prescribed point x ∈ Rd1 . The goal is

to locate a set S∗ ⊆ Rd1 such that g(x) = 0 for all x ∈ S∗. A general form of the

problem where d1 = d2 = d is given in Pasupathy and Kim (2011) as follows:

5



• Given: A procedure that generates, for any x ∈ D ⊂ Rd, an estimator

Gm(x) of the function g : D → Rd such that Gm(x)
d→ g(x) as m→∞2.

• Goal: Find a root x∗ ∈ D of g, that is, find x∗ such that g(x∗) = 0, assuming

one exists.

For the purpose of this thesis, we focus on the case where d1 = d2 = 1. While

extensions to higher-dimensional problems are also important for many applica-

tions, their analysis is beyond the scope of this thesis and is deferred to future

research. In addition, we assume that D = [0, 1], which can be generalized to any

one-dimensional stochastic root-finding problem on an interval through appropri-

ate scaling and shifting.

Throughout this thesis we assume that there exists a unique x∗ ∈ [0, 1] such

that g(x) > 0 for all x < x∗ and g(x) < 0 for all x > x∗ (though it is not

necessarily the case that g(x∗) = 0). At any given point x, an evaluation of the

function g yields Y (x) = g(x) + ε, where ε is a stochastic noise term with zero

median and independent of x and previous function evaluations. The assumption

of zero median is rather unusual for stochastic root-finding problems, which usually

assume that the noise term has zero mean. But, as will become clear later, the

zero median assumption is required for the PBA to locate x∗. Of course, if the

noise distribution is symmetric then the assumption of zero median is equivalent

of the standard zero mean assumption. We further make the assumption that ε

has a probability density function, which is not necessary for all presented results

but convenient (in fact, it is often sufficient if ε has a density around the median).

To locate x∗, we evaluate the function g at a set of points (Xn)n, which

are chosen sequentially based on information obtained from previous function

2The notation
d→ stands for convergence in distribution.
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evaluations. Let (Yn(Xn))n be the corresponding results from the function evalu-

ations; Fn = σ(Xm, Ym(Xm) : 0 ≤ m ≤ n) be the σ-algebra generated by (Xn)n

and (Yn(Xn))n; and F−1 be the trivial σ-algebra. Based on information contained

in Fn, a practitioner needs to make the following decisions for all n ∈ N0
3:

1. What is the current best estimate X̂n for x∗, where X̂n is an Fn-measurable

random variable.

2. At which point Xn+1 should one evaluate the function g during the next

iteration, where Xn+1 is again an Fn-measurable random variable.

A set of rules used to generate the above decisions is called a policy π, where

the set of all policies is denoted by Π. If a policy does not take into account any

newly acquired information for its decision-generating process it is called a passive

sampling policy. An example is the policy that evaluates the function g over [0, 1]

uniformly at random for all n ∈ N0. In contrast, if a policy always takes into

account all information available at hand when making its decisions (that is, Xn+1

is Fn-measurable, but not Fn−1-measurable), it is called a fully-sequential or active

sampling policy. For most applications, active sampling schemes usually outper-

form passive sampling schemes. See, for example, Castro and Nowak (2008b) for

a discussion on active versus passive sampling for stochastic root-finding problems

on a discretized domain. Both the PBA and the popular SA-type algorithms are

fully-sequential policies.

When applying a stochastic root-finding algorithm, the user effectively chooses

a specific policy π ∈ Π. If the maximal number of function evaluations is limited

to some n ∈ N a possible selection criterion would be to find a policy whose

3We use the notation N0 = N ∪ {0}.
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performance is close to

inf
π∈Π

Eπ
[
|X̂n −X∗|

]
, (1.1)

where

Eπ
[
|X̂n −X∗|

]
=

∫ 1

0

Eπ
[
|X̂n − x∗|

]
P0(dx∗),

is the expectation over (Xm, Ym(Xm) : 0 ≤ m ≤ n) with respect to the probability

measure induced by the policy π and a prior probability distribution P0 over x∗

(this includes the case of a fixed point x∗ by setting P0 as a point mass at x∗). In

general, it is very difficult, if not impossible, to find a policy that solves the above

optimization problem. As a result, it is helpful to produce a relative ordering on

the set of available policies, where policy π1 outperforms policy π2 if and only

if Eπ1
[|X̂n − X∗|] < Eπ2

[|X̂n − X∗|]. While this average performance of absolute

residuals is one possible criterion for comparing the performances of two different

policies, the task itself remains challenging as other performance measures should

also be considered along with different input scenarios and underlying assumptions.

See Waeber et al. (2010, 2012a) for a detailed description on how policies can

be compared efficiently combining various performance measures in the case of

Ranking and Selection procedures.

Nevertheless, in this thesis we will mostly focus on the performance measure

Eπ[|X̂n −X∗|], and especially its convergence rate as n→∞. For this it is infor-

mative to first specify general upper bounds on this rate. The optimal convergence

rates of deterministic root-finding algorithms for the function g naturally provide

such bounds for stochastic root-finding algorithms, since the noise in the observa-

tions will generally slow down any algorithm. For any fixed point x∗, the residuals

|Xn − x∗| of the noise-free bisection algorithm converge to 0 at a rate Ω(2−n)4

4f(x) = Ω(g(x)) means that lim infx→∞ |f(x)/g(x)| > 0.
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and hence the expected residuals of the PBA are not expected to converge faster.

As we will see, the expected absolute residuals of the PBA attain a geometric

rate of convergence in the number of measurement points (macro time), that is,

E[|X̂n −X∗|] = O(C−n) for some C > 1. We then use simulated data to estimate

the constant C for the case when p(·) ≡ p is constant and known, and observe that

indeed C ↑ 2 as p ↑ 1.

In wall-clock time T , that is, the total number of function evaluations, the rate

might be significantly worse. In fact, for many stochastic root-finding problems

Ω(T−1/2) is an upper bound on the rate of convergence for the expected absolute

residuals. To see this, assume there exists a stochastic root-finding algorithm that,

for a large class of functions g, noise distributions ε, and fixed points x∗, is able to

produce sequences (X̂T )T such that E[|X̂T − x∗|] = o(T−1/2). To be competitive

this large class should at least include the simple linear function g(x) = x∗ − x

and the case when ε ∼ N(0, 1). For this function, YT (XT ) = (x∗ −XT ) + εT and

(YT (XT ) + XT ) = x∗ + εT . Therefore, YT (XT ) + XT ∼ N(x∗, 1) independently of

the chosen search sequence (XT )T . If now indeed E[|X̂T −x∗|] = o(T−1/2), then the

estimator X̂T generated by the stochastic root-finding algorithm is asymptotically

more efficient for locating x∗ than the sample mean of (Yi(Xi) +Xi)
T
i=0. This con-

tradicts the asymptotic efficiency of the sample mean for normal random variables

(see, for example, Theorem 10.1.12 in Casella and Berger, 2002).

These two upper bounds on the rate of convergence, Ω(2−n) in terms of macro

time and Ω(T−1/2) in terms of wall-clock time, already give an indication how

different the convergence behavior can be in these two time scales. More specifi-

cally, when p(·) is constant then the convergence behaviors in the two time-scales

are similar, whereas when p(x) → 1/2 as x → x∗ the convergence is much slower
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in wall-clock time. In Section 3.6, we make the analogy that the former case

corresponds to a stochastic root-finding problem with a discontinuity at x∗ and

the latter case corresponds to the problem where g is continuous at x∗.

1.3 Stochastic Approximation

In their seminal paper, Robbins and Monro (1951) introduced the Stochastic Ap-

proximation (SA) algorithm to solve stochastic root-finding problems. This al-

gorithm uses an iterative search scheme similar to deterministic steepest-descent

methods, such as the Newton-Raphson algorithm. Starting with an initial estimate

X0 ∈ D of x∗ the SA algorithm proceeds for n = 0, 1, 2, . . .

Xn+1 = ΓD(Xn + anYn(Xn)), (1.2)

where ΓD(x) is the projection to the feasible set D and (an)n is a tuning sequence.

The SA algorithm does not differentiate into two time scales as the PBA does,

that is, n = T . Over the past 60+ years schemes based on (1.2) have been

studied extensively. See, for example, the monograph Kushner and Yin (2003)

for an in-depth analysis of SA algorithms. Such SA-type algorithms are the main

competitors for any stochastic root-finding algorithm, including the PBA.

Most theoretical results regarding SA-type algorithms specify conditions on the

function g, the noise term ε, and the tuning sequence (an)n in order to attain the

convergence rate O(n−1/2)5, and even attempt to optimize the limiting constant.

For example, it is known that if

5Where the convergence is in distribution, not in L1-norm.
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(i) the underlying function g satisfies g′(x∗) < 0;

(ii) the tuning sequence (an)n satisfies nan → c for some c > 0; and

c > −1/(2g′(x∗));

(iii) the noise term ε satisfies E[ε] = 0 and E[ε2] <∞;

then n1/2(Xn − x∗)
d→ N(0, V1), where V1 > 0 is a variance term depending

on (an)n, g′(x∗) and the variance of ε; see Kushner and Yin (2003), Chapter

10, for a proof. Assumptions (i) and (iii) constitute reasonable assumptions for

many applications, whereas, Assumption (ii) is hard to verify in practice, since

it depends on the (unknown) derivative of g at the root x∗. To overcome this

assumption, Polyak (1990) and Ruppert (1991) suggest considering the averaging

sequence Xn = 1
n+1

∑n
i=0 Xi of the iterates Xi as an estimator of x∗. This method

is referred to as Polyak-Ruppert averaging. Polyak and Juditsky (1992) show that

if Assumptions (i) and (iii) hold, and additionally

(ii)’ the tuning sequence (an)n satisfies an = O(n−δ) for some δ ∈ (1/2, 1),

then n1/2
(
Xn − x∗

) d→ N(0, V2), where V2 only depends on g′(x∗) and the variance

of ε.

Even though SA-type algorithms are often able to attain the optimal asymp-

totic rate of convergence (at least in terms of convergence in distribution), for

real-world applications they can be unsatisfactory for several reasons:

- They only provide a point estimate of x∗ without specifying any further

probabilistic guarantee on the accuracy of this estimate, such as provided

by a confidence interval. Hsieh and Glynn (2002) suggest restarting the SA
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algorithm several times to achieve, based on a central limit argument, at

least an approximate confidence interval for x∗.

- They do not provide the user with a rule that stops the algorithm once a

close estimate of x∗ is found (also referred to as a stopping rule).

- Without further adjustments, they may lack robustness since the acquired

information is reflected only in the current measurement point Xn. For exam-

ple, when the noise distribution has heavy tails, a single extreme observation

of ε can divert the path of (Xn)n far from x∗.

- The choice of tuning sequence usually lacks an intuitive interpretation. While

the tuning sequence’s effect on the asymptotic behavior is well-understood,

its choice also heavily influences the algorithm’s finite-time behavior. For

example, a poorly chosen tuning sequence can cause the algorithm to require

a long time until the optimal asymptotic rate of convergence is attained.

In order to improve finite-time properties, recent SA-type algorithms adjust

the tuning sequence based on the observed search progress (see, for example,

Broadie et al., 2011). While this approach might work well in practice, it

requires a significant amount of work from the user.

As we will show, the PBA might have a slightly slower asymptotic rate of conver-

gence than SA-type algorithms, but it is able to overcome the above drawbacks to

some extent.

To finish this section we make a final remark regarding the special case when

the function g is discontinuous at x∗. While this case has not been covered ex-

tensively in the literature, there exist several real-world applications in which it

appears naturally. For example, this case arises in simulation-optimization prob-

lems where the underlying optimization problem has a discrete domain, but, by
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means of linear interpolation of the objective function, is solved as a continuous

optimization problem. Lim (2011) proves that in this case, under modest technical

assumptions, the expected absolute residuals of SA-type algorithms converge to 0

at a rate O(T−1). While this rate is faster than the usual optimal rate O(T−1/2),

the PBA is able to outperform SA-type algorithms in this case significantly since

its expected absolute residuals converge to 0 at a geometric rate (see Proposition 11

in Section 3.6). This geometric rate, however, is at the moment only shown for

one-dimensional problems, whereas the asymptotic rate for SA-type algorithms is

also known to hold for higher-dimensional problems.

1.4 The Probabilistic Bisection Algorithm

In this section, we introduce the PBA as originally stated in Horstein (1963). In the

next section, we show how the PBA can be used to solve more general stochastic

root-finding problems than the ones considered in Horstein (1963).

The deterministic bisection algorithm halves the search space in every itera-

tion based on whether the sign of the function evaluation is positive or negative.

Applying such a method directly to a stochastic root-finding problem will fail al-

most surely, as a single wrong sign will divert the search from the right path. To

account for noise the PBA instead updates a probability density at each step re-

flecting one’s current belief about the location of x∗ and its policy is to always

measure at the median of this distribution. More specifically, the PBA takes a

prior density f0 that is positive on [0, 1] and a constant pc ∈ (1/2, 1) (also denote

qc = 1− pc) as input parameters and then, for n = 0, 1, 2, . . ., iterates as follows:
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1. Determine the next measurement point: Xn = F−1
n (1/2), where Fn is the cdf

of fn. Note that Xn is uniquely defined since fn is a density with domain

[0, 1].

2. Query the function g at the point Xn, to obtain the random variable

Zn = sign(Yn(Xn)) ∈ {−1,+1}, and define Zn = +1 if Yn(Xn) = 0.

3. Update the density:

if Zn(Xn) = +1, then fn+1(y) =

{
2pcfn(y), if y ≥ Xn,

2qcfn(y), if y < Xn,
(1.3)

if Zn(Xn) = −1, then fn+1(y) =

{
2qcfn(y), if y ≥ Xn,

2pcfn(y), if y < Xn.
(1.4)

The updating of the density is very natural: Querying at the point Xn divides

the posterior distribution into two regions. The posterior probability mass in the

region where x∗ is believed to be, as indicated by the noisy function evaluation, is

increased and the probability mass in the other region, where x∗ is believed not to

be, is decreased. Furthermore, at each iteration the median Xn provides a point

estimate of the root x∗. Figure 1.1 shows a sample path of the density fn after

n = 0, 1, 2, 3, 50, 100 for pc = 0.6 and f0 being the uniform distribution over [0, 1].

The PBA discards information of the observed value Yn(Xn) since it only con-

siders the observed sign. This may seem counterproductive, because the size of

Yn(Xn) might contain additional information about the location of the root x∗. As

we will see, however, this makes a Bayesian-motivated update tractable, and the

resulting algorithm produces a more robust estimator of x∗, especially when the

noise ε is heavy-tailed.
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Figure 1.1: The density fn at time points n = 0, 1, 2, 3, 50, 100 on a sample
path with input parameters pc = 0.6 and f0 = 1{x ∈ [0, 1]}.
The piecewise constant line depicts the posterior density fn. The
point x∗ is shown on the top of the figures and Xn is shown on the
x-axis. Above every plot the query point Xn and the observed
(noisy) sign Zn(Xn) are given. Here, the probability of observing
a correct sign is pc = 0.6, and is independent of the measurement
point Xn. The posterior density appears to converge to a point
mass at x∗ and the sequence Xn seems to converge to x∗.

15



Let us now discuss the input parameters f0 and pc. If some prior knowledge

about the root is known, this can be reflected in the prior distribution f0, otherwise

the uniform distribution over [0, 1] provides a natural choice. In order to discuss

the parameter pc, define for x ∈ [0, 1] the function

p(x) =

{
P (Z(x) = +1) , if x < x∗,

P (Z(x) = −1) , if x ≥ x∗,

which corresponds to the probability of observing a correct sign when the function g

is evaluated at the point x. Later, we also use the function q(·) = 1−p(·). If p(·) ≡ p

is constant and known, which is the setting Horstein (1963) considered, then Bayes’

rule states that pc should be chosen as p in order to obtain a proper Bayesian

updating for the posterior density process (fn)n (see Lemma 8 in Appendix A for

a formal proof of this). For the remainder of the current section we discuss this

setting. In Section 1.5 we then show how the PBA can be used efficiently when

p(·) varies with x and is unknown.

The setting of p(·) constant and known corresponds to the case when g is a step

function with a single jump at x∗, and the noise distribution as well as the jump

height are known. While this only covers a small set of possible stochastic root-

finding problems, there exist real-world applications where this setting applies,

including

1. Transmission over a noisy channel with noiseless feedback (Horstein, 1963):

A real number x∗ ∈ [0, 1] should be transmitted from a sender to a receiver.

Only one bit of information (0’s or 1’s) can be sent at each iteration and

the signal is sometimes wrong due to corruption by noise. In addition, a

noiseless feedback loop informs the sender of what has been recorded by

the receiver after each iteration. In this setting, the PBA can be used to
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efficiently transmit the number x∗.

2. Boundary detection with an airborne radar (Castro and Nowak, 2008a): An

airplane equipped with a scanner flies over a pre-determined geographical

area several times to locate an edge such as a coast line. At each pass-

over, the scanner receives an input as to whether the scanned point is water

surface or solid ground but the signal can be wrong. The PBA can be used

to determine which point should be scanned at each time so that a good

estimate of the edge can be obtained.

3. Zone-detection on a hard disk (Zangenehpour, 1993): A hard disk stores each

block of data in one of the disk’s several zones, which have different transfer

rates. The performance of a filesystem can be improved by accounting for

such differences explicitly, but in order to do so, one must be able to identify

where each zone begins and ends on the disk. Reading a small collection of

data at any location of the disk provides a noisy observation of the transfer

rate, and thus the zone identity of that section. The PBA can then efficiently

determine the exact zone borders.

Discretized versions of the PBA, which divide the domain [0, 1] into a finite

number of intervals, have been studied extensively (Burnashev and Zigangirov,

1974; Rivest et al., 1980; Pelc, 1989; Feige et al., 1994; Karp and Kleinberg, 2007;

Ben-Or and Hassidim, 2008; Castro and Nowak, 2008a,b; Nowak, 2008, 2009).

However, very little is known about the original PBA with continuous search space

[0, 1]. Castro and Nowak (2008a) conclude in their review paper: “The Probabilis-

tic Bisection Algorithm seems to work extremely well in practice, but it is hard to

analyze and there are few theoretical guarantees for it, especially pertaining error

rates of convergence.”
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In Chapter 2 we provide such convergence guarantees for the PBA when

p(·) ≡ p. The proof techniques rely on a Bayesian analysis of the updating pro-

cess, and for this we assume that the root is an absolutely continuous random

variable with density f0, denoted X∗ (as opposed to x∗, which denotes the root as

a fixed unknown value). The main result of this chapter shows that the expected

absolute residuals E[|Xn − X∗|] converge to 0 at least at a geometric rate, that

is, there exists a constant c > 1 such that E[|Xn − X∗|] = o(c−n). This implies

that for the case p(·) ≡ p the rate of convergence of the PBA is faster than any

polynomial rate and is hence comparable to the rate of the noise-free bisection

search, which is O(2−n). A consequence of this main result is that the PBA is a

consistent method for locating X∗, that is, the sequence (Xn)n generated by the

PBA converges almost surely to X∗.

The most popular discretized version of the PBA is called the BZ algorithm

(Burnashev and Zigangirov, 1974). The algorithm splits the search domain [0, 1]

into a finite number of intervals, and aims to locate the interval that contains the

point X∗. It is known (Burnashev and Zigangirov, 1974) that the BZ algorithm

converges geometrically in the number of points queried when p(·) is constant.

Our results confirm that a similar rate of convergence holds for the original PBA

(without discretization), and effectively closes a gap between the theoretical under-

standings of the original continuous-space algorithm and that of the corresponding

discrete-space version. Although the PBA and the BZ algorithm are conceptually

similar, the proof techniques used to analyze the PBA are quite different from the

proof techniques usually used to study the BZ algorithm. Such new proof tech-

niques become necessary because the BZ algorithm only samples at breakpoints of

the pre-defined intervals, whereas the PBA can sample on the whole domain [0, 1].
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There are two reasons for preferring the PBA over the BZ algorithm. First, the

PBA is a consistent algorithm, in the sense that it maintains a best estimate Xn of

the sought-after point X∗, and Xn converges to X∗ almost surely as n→∞ (see

Corollary 2 in Section 2.3.2). The BZ algorithm, on the other hand, requires a

pre-specified precision (the discretization grid), beyond which no better accuracy

can be expected. Since the sequence of estimates Xn does not converge to X∗ al-

most surely the BZ algorithm is not consistent. While one can specify any strictly

positive precision, this precision must be specified in advance, which can be in-

convenient. Although it might be possible to modify the BZ algorithm to make it

consistent, for example, by refining the discretization grid during a run, no such

extension has been considered in the literature to the best of our knowledge. The

second reason for preferring the PBA to the BZ algorithm is that its implemen-

tation is easier (see also Castro and Nowak, 2008a,b). For example, at each step

the BZ algorithm requires an additional coin flip to decide which endpoint of the

interval containing the median should be queried next. Such “splitting” between

the discretization points is not necessary for the PBA.

In addition to the main convergence results, we show that the PBA is optimal

in reducing the expected posterior entropy. This result has been proven recently

in Jedynak et al. (2012) using concepts from information theory, in particular, the

mutual information of the responses (Zn(Xn))n and X∗. In Chapter 2, we adopt a

more direct approach, showing that the PBA minimizes expected posterior entropy

using fewer concepts from information theory. To do so, we formulate a dynamic

program corresponding to the objective of expected posterior entropy, and solve

this dynamic program analytically.

The results of Chaper 2 form a journal paper (Waeber et al., 2012b), which is
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currently under review at the SIAM Journal on Control and Optimization.

1.5 The Probabilistic Bisection Algorithm for General

Stochastic Root-Finding Problems

In this section, we show how the PBA as introduced in the previous section can

be applied to problems where p(·) varies with x and is unknown.

A first relaxation where p(·) is observable but varies with x has been analyzed

in Waeber et al. (2011). In this case, the PBA updating given by equations (1.3)

and (1.4), where at each step the constant pc is replaced by p(Xn), can be used

to locate x∗. This updating, however, no longer corresponds to proper Bayesian

updating, since a probabilistic model on the function p(·) would also be needed.

Nevertheless, such a variation of the PBA can still be used as a heuristic. While this

heuristic provides a consistent method for locating x∗, it hinges on the assumption

that p(·) is observable at each step.

Let us now consider the case where p(·) varies with x and is not observable. In

order to use an updating method as given by (1.3) and (1.4), it is potentially not

necessary to know the value of p(·) exactly. Instead, it might be enough to specify

a useful lower bound on p(·) (that is, a lower bound larger than 1/2). This lower

bound can then serve as the constant pc in the updating procedure.

For many stochastic root-finding problems, namely when g(x)→ 0 as x→ x∗,

it follows that p(x) → 1/2 as x → x∗ (since our setting assumes a constant noise

distribution with zero median). So a lower bound on p(·) that is bounded away from

1/2 does not exist. To overcome this, at each iteration we replace the sign Zn(Xn)
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with a new signal Z̃n(Xn) which has probability 1 − p̃(·) of being incorrect. By

construction of Z̃n(Xn) it further holds that p̃(x) ≥ pc for all x ∈ [0, 1] \ {x∗},

where pc ∈ (1/2, 1) is a constant chosen by the user. The signal Z̃n(Xn) and the

constant pc can then be used in the updating equations (1.3) and (1.4).

Before we explain in detail how to construct this signal Z̃n by the means of

statistical tests of power one let us first introduce a reparameterization of the

stochastic root-finding problem. Consider an arbitrary point x ∈ [0, 1] \ {x∗}, and

define s(x) = P (Z(x) = +1) as well as

g̃(x) = 2s(x)− 1. (1.5)

The function g̃(x), which assumes value in the range [−1, 1] reformulates the orig-

inal stochastic root-finding problem, that is, g̃(x) > 0 if g(x) > 0 and g̃(x) < 0 if

g(x) < 0. A sufficient condition for the existence of a one-to-one relationship be-

tween g and g̃ is that the noise distribution has a density and zero median. Hence,

under this assumption g̃(x) is continuous at x if and only if g(x) is continuous at x.

Now, we provide details on the construction of the signal Z̃(x) at a prescribed

point x ∈ [0, 1]. By evaluating the function g at x several times, we can observe a

sequence of signs (Zi(x))i with E[Zi(x)] = g̃(x). The corresponding simple random

walk Sm(x) =
∑m

i=1 Zi(x) has drift g̃(x) ∈ [−1, 1] and the goal becomes to detect

whether the drift of Sm(x) is positive or negative. Sequential tests of power one

provide a powerful tool to decide whether the drift θ of a random walk satisfies

the hypothesis θ < θ0 versus θ > θ0 for some value θ0 (for our setting θ = g̃(x) and

θ0 = 0).

Such a test of power one for the simple random walk Sm(x) is defined by a

positive sequence (ki)i and a stopping rule N(g̃(x)) = inf{m ∈ N : |Sm(x)| ≥ km}.

The test decides that the drift is positive if SN(g̃(x))(x) ≥ kN(g̃(x)), that the drift is
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negative if SN(g̃(x))(x) ≤ −kN(g̃(x)) and does not make a decision if N(g̃(x)) = ∞.

Furthermore, for a chosen confidence parameter γ ∈ (0, 1) such a test satisfies

P(N(g̃(x)) < ∞) ≤ γ if g̃(x) = 0 and P(N(g̃(x)) < ∞) = 1 if g̃(x) 6= 0. In Ap-

pendix B, we provide details on the construction of tests of power one for different

noise distributions, as well as results on the expected hitting time E[N(g̃(x))].

If more information on the noise distribution is known, for example, if it is

known that ε ∼ N(0, 1), then a test of power one for this known noise distribution

can be used, that is, to detect wether the drift of the random walk
∑m

i=1 Yi(x) is

positive or negative. While the finite-time properties of a test designed for a specific

noise distribution might outperform a test based only on the signs, the asymptotic

behavior between these two tests is usually comparable (see asymptotic results

in Appendix B). For this reason, and since it is difficult in practice to verify a

specific noise distribution ε, we recommend to use the test of power one for the

simple random walk Sm(x) =
∑m

i=1 Zm(x). This approach is rather robust with

respect to the noise distribution as it only requires that the noise distribution has

zero median.

Assume now that the PBA measures at some point Xn 6= x∗ at the

(n+ 1)st iteration. The random walk Sn,m = Sn,m(Xn) =
∑m

i=1 Zn,i(Xn) is ob-

served until the test of power one terminates. Denote with Nn = Nn(g̃(Xn)) the

stopping time of the power one test which is almost surely finite (since Xn 6= x∗),

and define the new signal

Z̃n(Xn) =

{
+ 1, if Sn,Nn > 0,

− 1, if Sn,Nn < 0.
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Furthermore,

P
(
Z̃n(Xn) = +1

∣∣∣ g̃ < 0
)

= P (Sn,Nn > 0, Nn <∞ | g̃(Xn) < 0)

= P

(
Nn∑
i=1

Zn,i(Xn) > 0, Nn <∞
∣∣∣∣∣ g̃(Xn) < 0

)

≤ P

(
Nn∑
i=1

Zn,i(Xn) > 0, Nn <∞
∣∣∣∣∣ g̃(Xn) = 0

)

≤ γ/2, (1.6)

where the first inequality follows by a sample path argument and the second in-

equality by the property that P(Nn <∞|g̃(Xn) = 0) ≤ γ and since Sn,m(Xn) is a

symmetric random walk if g̃(Xn) = 0. An analogous argument shows that

P
(
Z̃n(Xn) = −1

∣∣∣ g̃(Xn) > 0
)
≤ γ/2. (1.7)

So, for x ∈ [0, 1] \ {x∗}, with

p̃(x) =


P
(
Z̃n(x) = +1

)
, if x < x∗,

P
(
Z̃n(x) = −1

)
, if x > x∗,

it holds that p̃(x) ≥ 1−γ/2 for all x ∈ [0, 1]\{x∗}. Define the constant pc = 1−γ/2

and it follows that p̃(x) ≥ pc for all x 6= x∗, where pc ∈ (1/2, 1) is a chosen constant

(since one can choose γ ∈ (0, 1) in the construction of the test of power one).

It remains to discuss the case when Xn = x∗. In this case the test of power one

might not terminate and the event Z̃n(x∗) is not necessarily defined (the search

algorithm might stall). From a theoretical point of view this is not convenient

since the sequence (Xn)n is in this case not well-defined for all n ∈ N0. In practice,

the stalling of the algorithm can be desirable since in this case the point x∗ has

successfully been located (this, however, is difficult to justify since its impossible

test whether Nn =∞). But, the event that Xn = x∗ for any finite n is very unlikely
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in practice. Consider, for example, the case that x∗ is a realization of a random

variable with a positive density on [0, 1]: Then the probability that Xn = x∗ for any

n ∈ N is zero, since Xn can only assume values on a set of cardinality 2n. For the

above theoretical and practical reasons, from now on we assume that Xn 6= x∗ for

all n ∈ N0 almost surely and as a consequence the sequence (Xn)n is well-defined.

Using the PBA with signals (Z̃n(Xn))n instead of (Zn(Xn))n introduces two

time scales, namely, the macro time n corresponding to the number of different

measurement points (Xn)n and the wall-clock time T counting the total number

of function evaluations.

Intuitively, the closer the current measurement point Xn is to x∗, the closer

p(Xn) is to 1/2, and the longer the test of power one requires to terminate.

In fact, it holds that limg̃(x)→0 E[N(g̃(x))] = ∞. Moreover, the expected hit-

ting time increases at a faster rate than O(g̃(x)−2) as g̃(x) → 0, that is,

limg̃(x)→0 g̃(x)2E[N(g̃(x))] =∞ (see Appendix B for details). So, if g, and thus g̃,

are continuous at x∗ then the number of function evaluations between two macro

iterations is likely to become very large, which explains the discrepancy between

the convergence behaviors in the two time scales.

In Chapter 3, we provide convergence results for the PBA in terms of macro

and wall-clock time, leading to the main conclusion that the asymptotic rate of

convergence of an estimator based on the PBA might be slightly slower than the

optimal rate O(T−1/2). But, given a reasonable conjecture holds true, we show

that there exists a sequence of averaged estimators based on the PBA (similar to

Polyak-Ruppert averaging) for which the expected absolute residuals converge to 0

at a near-optimal rate O(T−1/2+ε) for any ε > 0. Empirical examples (presented

in Chapter 4) suggest that the asymptotic rate of convergence of such averaged
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estimators in fact is comparable to the asymptotic rate of convergence of SA-type

algorithms. In addition, we show that the PBA provides the simulation analyst

with useful information on the location of x∗, such as a true confidence interval

and a stopping rule once a sufficiently close estimate of x∗ is located. Furthermore,

the PBA provides a robust and novel alternative to SA-type algorithms.
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CHAPTER 2

CONSTANT AND KNOWN PROBABILITY OF CORRECT

RESPONSES

2.1 Introduction

In this chapter, we provide convergence guarantees for the PBA when p(·) is con-

stant, that is, the sign of a function evaluation is incorrect with probability 1− p,

where p is a constant in (1/2, 1). The main result shows that, ifX∗ is the realization

of an absolutely continuous random variable with density f0, then the expected

absolute residuals E[|Xn −X∗|] of the measurement points generated by the PBA

converge to 0 at least at a geometric rate, that is, there exists a constant c > 1

such that E[|Xn − X∗|] = o(c−n). This implies that the rate of convergence of

the bisection search with noisy responses is faster than any polynomial rate and is

hence comparable to the rate of the noise-free bisection search, which is O(2−n).

Since we are considering residuals under the expectation operator, our result pro-

vides an average-case performance guarantee for the PBA. A consequence of this

main result is that the PBA is a consistent method to locate X∗. This means that

the sequence (Xn)n generated by the PBA converges almost surely to X∗.

In addition to the main convergence results, we show that the PBA is optimal

in reducing the expected posterior entropy. This result has been proven recently

in Jedynak et al. (2012) using concepts from information theory, in particular,

the mutual information of the responses (Zn(Xn))n and X∗. In this chapter, we

adopt a more direct approach, showing that the PBA minimizes expected posterior

entropy using fewer concepts from information theory. To do so, we formulate a

dynamic program corresponding to the objective of expected posterior entropy,
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and solve this dynamic program analytically.

The outline of this chapter is as follows. Section 2.2 shows optimality in terms

of minimizing expected posterior entropy, whereas Section 2.3 presents and proves

the main convergence result of this chapter.

2.2 Optimality in Reducing the Expected Posterior En-

tropy

The result that the PBA is optimal in reducing the expected posterior entropy

has recently been proven in Jedynak et al. (2012) using the mutual information

of the noisy function evaluations (Zn(Xn))n and X∗. In Appendix A, we provide

a different and more direct proof of this result that borrows fewer concepts from

information theory. This proof relies solely on the dynamic programming principle.

The optimality result, stated in Theorem 1 (see below), uses the entropy to

measure the information content of the density fn. For a random variable ψ with

density f the entropy is defined as H(f) = E[− log2 f(ψ)]. The entropy is the pre-

dominant measure of uncertainty in information theory, see, for example, Cover

and Thomas (1991). Using this measure of uncertainty and given a fixed simula-

tion budget N ∈ N, the optimality analysis seeks a policy π that minimizes the

expected entropy of the posterior distribution at time N . Here, a policy refers

to the allocation rule of the measurements X0, . . . , XN , where Xn+1 has to be

Gn-measurable, and Gn = σ (Xm, Zm(Xm) : 0 ≤ m ≤ n) is the σ-algebra generated

by the measurement points (Xn)n and noisy responses (Zn(Xn))n, and G−1 is the

trivial σ-algebra. A generic policy is denoted π and the space of all possible policies
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is denoted Π. This optimization problem can be solved using a dynamic program-

ming (DP) approach. The value function of the DP for fixed N ∈ N is

Vn(fn) = inf
π∈Π

Eπ[H(fN)|fn], for n = 0, 1, . . . , N. (2.1)

Any policy π induces, together with the input density f0 and the parameter p, a dis-

tribution on (Xi, Zi(Xi))
N−1
i=0 and through it a distribution on the sequence of pdfs

(fi)
N
i=0. It is under this distribution that Eπ is taken, and any policy π∗ attaining

the infimum is called optimal, that is, Eπ∗ [H(fN)|f0] = infπ∈Π Eπ[H(fN)|f0].

The value function (2.1) satisfies Bellman’s recursion,

Vn(fn) = inf
π∈Π

Eπ[Vn+1(fn+1)|fn] = inf
x∈[0,1]

E[Vn+1(fn+1)|Xn = x, fn], (2.2)

where the last equation follows from the fact that the control of a policy π ∈ Π is

the point at which to evaluate the function. The DP formulated in (2.1) can be

solved explicitly.

Theorem 1. For N ∈ N, the PBA, which always measures at the median of fn, for

n = 0, . . . , N − 1, minimizes the expected entropy of the density fN . Furthermore,

the expected posterior entropy at time N using the PBA is

Vn(fn) = E[H(fN)|fn]

= H(fn)− (N − n)(1 + p log2 p+ (1− p) log2(1− p)), (2.3)

for n = 0, . . . , N .

The key step in the proof of Theorem 1 is the analysis of the knowledge-

gradient policy to the DP formulated in (2.1). A knowledge-gradient policy is a

policy that acts optimally if there is only one measurement remaining, that is,

when n = N − 1. See Frazier et al. (2008) for more details on knowledge-gradient
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policies. For this knowledge-gradient policy the value attained by the infimum is

equal to the entropy of fn minus an additional amount which may be interpreted

as the maximum information content of a single measurement. The fact that

this amount does not depend on fn is important in proving that the knowledge-

gradient policy in fact is the optimal policy in general when more than just one

measurement is remaining. The next proposition shows that the PBA is indeed

the knowledge-gradient policy for the problem stated in (2.1).

Proposition 1. For any N ∈ N,

inf
x∈[0,1]

E[VN(fN)|XN−1 = x, fN−1]

= inf
x∈[0,1]

E[H(fN)|XN−1 = x, fN−1]

= H(fN−1)− p log2 p− (1− p) log2(1− p)− 1,

and the infimum is achieved by choosing XN−1 to be the median of fN−1.

We provide proofs of Theorem 1 and Proposition 1 in Appendix A.

2.3 Geometric Rate of L1-Convergence

In this section we present and prove the main result of this chapter, which is that

the expected absolute residuals of the PBA converge to 0 at a rate o(c−n) for

some c > 1. This, in particular, implies that the asymptotic rate of convergence

is faster than any polynomial rate and is comparable to the rate of convergence of

the noise-free bisection algorithm which has rate O(2−n). Such a geometric rate

of convergence is known to hold for discretized versions (e.g., the BZ algorithm)

of the PBA; see Burnashev and Zigangirov (1974), Castro and Nowak (2008a,b).

But, to the best of our knowledge, it is a new result for the original PBA.
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Theorem 2. There exists a constant c(p) > 1 such that E[|Xn−X∗|] = o(c(p)−n),

where (Xn)n is the sequence of query points generated by the PBA.

Before developing the proof of Theorem 2, we first discuss the constant c(p),

introduce some simplified notation and provide a sketch of the proof.

The constant c(p) can be any fixed value in the open interval (1, C(p)), where

log(C(p)) is the smaller solution to the quadratic equation (2.5) given in Lemma 1

(see below). For the most part, it suffices to know that C(p) is a constant only

depending on the parameter p, and that C(p) > 1. From the rate of convergence

of the noise-free bisection algorithm we know that C(p) ≤ 2. In fact, C(p) is

often much smaller than 2 and is usually quite close to 1. This, however, does

not necessarily imply that the rate of convergence of the PBA is much slower (in

terms of the constant c(p)) than the rate of convergence of the noise-free bisection

algorithm since our result only provides a lower bound on the rate of convergence.

We leave for future work the problem of identifying the exact rate of convergence,

but the empirical results in Chapter 4 (Section 4.1.1) supports our expectation that

the true rate C̃(p), that is, the constant C̃(p) such that E[|Xn −X∗|] ∼
(
C̃(p)

)−n
,

satisfies C̃(p) ↑ 2 as p ↑ 11.

We now introduce some simplified notation. Define q = 1 − p and

D(p) = (log(2p) + log(2q))/2. The fact that D(p) < 0 for p ∈ (1/2, 1) will be

important in the upcoming proofs. From now on we will often simply write c, C,

and D when the context allows it and keep in mind that all these constants only

depend on the parameter p. We further denote by Pn(·) the probability measure

defined by the density fn, and by En[·] the expectation under this measure.

1Here, the notation g(x) ∼ f(x) means that limx→x0
f(x)/g(x) = a for some constant a > 0.
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Sketch of Proof of Theorem 2. The proof of Theorem 2 consists of two major

steps. Each is formulated in the next subsection as a separate proposition. In

Proposition 5 we show that the stochastic process
(
cnEn[|X∗ −Xn|]

)
n

converges

to 0 in probability. We then show the uniform integrability of this process in

Proposition 6, and Theorem 2 follows from the fact that a sequence of uniformly

integrable random variables converges in L1 if and only if it converges in probability.

The key to prove these two propositions is to analyze the stochastic process(
En[|X∗ −Xn|]

)
n
. We now give an intuitive outline why this process converges at

a geometric rate. All the arguments are made precise in the next subsection.

Using integration by parts it holds that

En[|X∗ −Xn|] =

∫ 1

0

Pn(|X∗ −Xn| > h) dh

≤ h+ Pn(|X∗ −Xn| > h),

for any h ∈ (0, 1). The inequality holds since Pn(|X∗ − Xn| > h) ≤ 1 and is

decreasing in h. It is then enough to show that the process Pn(|X∗ − Xn| > h)

converges to 0 at a geometric rate and consider the case h → 0. Fix for now an

h ∈ (0, 1). At time n there exists an integer Kn such that Xn ∈ [(Kn − 1)h,Knh)

and

Pn(|X∗ −Xn| > h) ≤ Pn(X∗ ∈ [0, (Kn − 1)h)) + Pn(X∗ ∈ [Knh, 1]).

We then focus on the process (An)n, where An = Pn(X∗ ∈ [0, (Kn − 1)h)) (the

analysis of the process Pn(X∗ ∈ [Knh, 1]) follows analogously). After querying the

function at Xn the quantity An is multiplied by either 2p or 2q. Also, since Xn

is the median of fn, either multiplication happens with probability 1/2. If we

(for now) ignore the fact that Kn depends on n then An behaves like a geometric
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random walk with drift eD and hence converges to 0 at a geometric rate. This is the

basic argument why the geometric rate of convergence holds. Most of the proof is

then devoted to the fact that Kn depends on n and is a stochastic process itself. It

turns out that An is not a true geometric random walk (which can already be seen

since An is always smaller than 1/2), but that An can be dominated by a collection

of dependent geometric random walks and each of these random walks has drift eD.

Using this dominating argument and results from random walk theory we can then

show that the geometric rate of convergence indeed holds for P(|Xn−X∗| > h). By

letting h→ 0 this geometric rate also holds for En[|Xn−X∗|], and for E[|Xn−X∗|]

by applying the tower property of conditional expectations.

2.3.1 Proof of the Geometric Rate of Convergence

We start with a lemma which is an application of random walk theory. This lemma

defines the constant C and will also be useful for later proofs.

Lemma 1. Let p ∈ (1/2, 1), q = 1− p, and (Rn)n be a random walk with starting

point R0 ≤ log(1/2) and iid increments (ψn)n, that is, Rn = R0 +
∑n

j=1 ψj, with

increment distribution P(ψj = log(2p)) = P(ψj = log(2q)) = 1/2. Then

P
(
eRn > C−n/2

)
≤ C−2n, (2.4)

for all n ∈ N. Here, C = eũ, where ũ is the smaller solution to(
u+D

log(2p)− log(2q)

)2

− u = 0. (2.5)

Furthermore, ũ > 0.

Equation (2.5) is a quadratic equation and it is possible to write down an
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explicit formula for C. However, the explicit form of C is cumbersome and not

informative, hence is omitted. The proof of Lemma 1 is given in Appendix A.

The next result, which studies the stochastic process An = Pn(X∗ ∈ [0, a)) for

some a ∈ [0, 1], is a first key ingredient to show the geometric rate of convergence.

Define a ∧ b = min{a, b} and a ∨ b = max{a, b}.

Proposition 2. Let C be the constant defined in Lemma 1. For a ∈ [0, 1] define

An = Pn(X∗ ∈ [0, a)) =
∫ a

0
fn(y)dy. Then

P(An ∧ (1− An) > C−n/2) ≤ C−2n,

for all n ∈ N.

Proof. The claim holds trivially for a = 0 or a = 1 since for all n ∈ N the

probability measure Pn(·) has a density.

Now fix an arbitrary a ∈ (0, 1) and consider the stochastic process (An)n. If

An ≤ 1/2, then Xn ≥ a and An will be either multiplied by 2p or 2q in the

next iteration, behaving like an iteration of a geometric random walk. If, on

the other hand, An > 1/2 then Xn ∈ [0, a) and An does not behave like an

iteration of a geometric random walk anymore, but (1−An) does. We next make

this argument precise. To simplify notation we take logarithms and consider the

process (log(An))n. The stochastic driver of this process is the sequence of noisy

signs (Zn(Xn))n. If we condition on the available information up to time n, then,

by Lemma 8 given in Appendix A, η(Xn) = P(Zn(Xn) = +1|Gn−1) = 1/2 for

the PBA. Moreover, the only random source that drives the stochastic process

(Zn+1(Xn+1)|Gn)n is the sequence (Qn)n, a sequence of iid Bernoulli(p) random

variables that determines whether the sign is correct or not, hence the sequence

(Zn+1(Xn+1)|Gn)n is itself a sequence of independent random variables. At time n,
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the random variable log(An+1)|Gn can be constructed as follows: if log(An) ≤

log(1/2), then

log(An+1)|Gn = log(An) +

{
log(2q), if Zn(Xn) = +1,

log(2p), if Zn(Xn) = −1,

and if log(An) > log(1/2), then

log(1− An+1)|Gn = log(1− An) +

{
log(2p), if Zn(Xn) = +1,

log(2q), if Zn(Xn) = −1.

Now consider the process Mn = log(An) ∧ log(1 − An). The only times when

the dynamics of (Mn)n are different from a random walk is when it crosses the

boundary log(1/2), that is, when there is a switch from the process (log(An))n to

the process (log(1 − An))n in the definition of (Mn)n. To overcome this difficulty

we construct a true random walk (Sn)n that is coupled with (Mn)n and dominates

(Mn)n.

We first define the coupling sequence

Wn =

{
Zn(Xn), if log(An) > log(1/2),

−Zn(Xn), if log(An) ≤ log(1/2),

and then the process

Sn+1 = Sn +

{
log(2p), if Wn = +1,

log(2q), if Wn = −1,

for n ∈ N and starting point S0 = M0. The process (Sn)n is a random walk with

iid increments (ξn)n and P(ξn = log(2p)) = P(ξn = log(2q)) = 1/2.

The processes (Mn)n and (Sn)n have the same starting point and are driven by

the same sequence of random variables (Wn)n. Assume that M0 = log(1 − A0),
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and define τ = inf {n ≥ 1 : 1− An ≥ 1/2} (if M0 = log(A0) then the definition

of τ and the following arguments can be adapted accordingly). For n < τ it holds

that Mn = Sn. At time τ the processes log(1−An)n and (Sn)n increase by log(2p).

On the other hand, the process (Mn)n switches from being defined by log(1−An)

to being defined by log(An) and may increase or decrease, that is,

Mτ −Mτ−1 = log(Aτ )−Mτ−1 ≤ log(1− Aτ )−Mτ−1 = Sτ − Sτ−1,

and henceMτ ≤ Sτ . (See Figure 2.1.) After time τ this argument carries over in the

following sense: Each time (Sn)n decreases by log(2q), then also (Mn)n decreases

by log(2q). However, when (Sn)n increases by log(2p) then (Mn)n increases by a

quantity smaller than or equal to log(2p) (the increase might also be negative). It

follows that Mn ≤ Sn, and hence An ∧ (1− An) ≤ eSn for all n ∈ N. Then

P(An ∧ (1− An) > C−n/2) ≤ P(eSn > C−n/2) ≤ C−2n,

where the last inequality follows from Lemma 1 since (Sn)n is a random walk as

considered in that lemma.

We can now use the previous result to bound the probability of observing a

large posterior probability mass away from the current best estimate Xn.

Proposition 3. Let C be the constant defined in Lemma 1. Then

P(Pn(|Xn −X∗| > h) > C−n) ≤ h−1C−2n

for all h ∈ (0, 1) and n ∈ N.

Proof. Fix an arbitrary h ∈ (0, 1) and denote K = bh−1c. Define intervals

I(k) = [(k − 1)h, kh) for k = 1, . . . , K and I(K + 1) = [Kh, 1]. These K + 1 inter-

vals are pairwise disjoint and cover the domain [0, 1]. Further define the stochastic
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ln(1/2)

n

M0 = S0

τ1 2

Sτ

Mτ Sn

Mn

· · · · · ·

Figure 2.1: The process (Sn)n (circles) dominates the process (Mn)n
(squares) for all n ∈ N. The process (Sn)n is a random walk
with negative drift, so by the law of large numbers Sn → −∞
almost surely as n → ∞, as indicated by the arrow at the right
side of the figure. (Both processes are defined in discrete time.
We draw a dashed line between time steps for better visibility.)

processes

An(k) = Pn
(
X∗ ∈

k⋃
j=1

I(j)

)
,

for k = 1, . . . , K + 1 and the trivial process An(0) = 0 for all n ∈ N.

At time n ∈ N let Kn be the index such that Xn ∈ I(Kn). Then

Pn(|Xn −X∗| > h) ≤ Pn(X∗ ∈ [0, (Kn − 1)h)) + Pn(X∗ ∈ [Knh, 1])

= An(Kn − 1) + (1− An(Kn))

= [An(Kn − 1) ∧ (1− An(Kn − 1))]

+ [An(Kn) ∧ (1− An(Kn))] ,

where the last equation holds since Xn ∈ I(Kn) implies An(Kn − 1) ≤ 1/2

and 1− An(Kn) ≤ 1/2. The index Kn is a random variable taking values
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in {1, . . . , K + 1}, hence

Pn(|Xn −X∗| > h) ≤ max
k∈{1,...,K+1}

(
[An(k − 1) ∧ (1− An(k − 1))]

+ [An(k) ∧ (1− An(k))]
)

≤ max
k∈{1,...,K}

2 [An(k) ∧ (1− An(k))] ,

since An(0) = 0 and An(K + 1) = 1 for all n ∈ N. Then

P(Pn (|Xn− X∗| > h) > C−n)

≤ P
(

max
k∈{1,...,K}

2 [An(k) ∧ (1− An(k))] > C−n
)

≤ P
(

max
k∈{1,...,K}

[An(k) ∧ (1− An(k))] > C−n/2

)

= P

 K⋃
k=1

{
[An(k) ∧ (1− An(k))] > C−n/2

}
≤

K∑
k=1

P
(
[An(k) ∧ (1− An(k))] > C−n/2

)
≤ KC−2n.

The last inequality follows by Proposition 2 since the processes (An(k))n are exactly

of the form required for that proposition. Note that K = bh−1c ≤ h−1 and the

claim follows.

The next proposition provides an upper bound on P
(
cnEn[|Xn −X∗|] > ε

)
for

ε > 0 and large n. This result is the last step before we can prove convergence in

probability and uniform integrability of the stochastic process
(
cnEn[|Xn−X∗|]

)
n
,

and is also interesting by itself. It provides a large deviation result for the stochastic

process
(
cnEn[|Xn − X∗|]

)
n
. In contrast to Theorem 2, it provides a finite-time

guarantee for large n ∈ N, instead of an asymptotic convergence guarantee.
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Proposition 4. Let C be the constant defined in Lemma 1, c ∈ (1, C) and ε > 0.

Then

P
(
cnEn[|Xn −X∗|] > ε

)
≤ C−n, for n ≥ 0 ∨ Ñ(ε, c, C),

where

Ñ(ε, c, C) =
log(2/ε)

log(C/c)
. (2.6)

Proof. Fix n ≥ 0 ∨ Ñ(ε, c, C). Consider

cnEn[|Xn −X∗|] = cn
∫ 1

0

Pn(|Xn −X∗| > h) dh,

which follows from integration by parts of the right-hand side. The random func-

tion Pn(|Xn −X∗| > h) is non-increasing in h and Pn(|Xn −X∗| > h) ≤ 1 for all

h ∈ (0, 1). Then for any h ∈ (0, 1)

cnEn[|Xn −X∗|] ≤ cn (h+ (1− h)Pn(|Xn −X∗| > h))

≤ cn (h+ Pn(|Xn −X∗| > h)) .

So we can choose h = C−n ∈ (0, 1) and get

cnEn[|Xn −X∗|] ≤ cn
(
C−n + Pn

(
|Xn −X∗| > C−n

))
.

Note that on the event {Pn(|Xn −X∗| > C−n) ≤ C−n}:

cnEn[|Xn −X∗|] ≤ cn
(
2C−n

)
= 2(c/C)n ≤ ε,

where the last inequality follows since n ≥ Ñ(ε, c, C).

Then

P(cnEn[|Xn −X∗|] ≤ ε) ≥ P(Pn(|Xn −X∗| > C−n) ≤ C−n)

and

P(cnEn[|Xn −X∗|] > ε) ≤ P(Pn(|Xn −X∗| > C−n) > C−n) ≤ C−n,

where the last step follows by Proposition 3.
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Now we are ready to prove convergence in probability and uniform integrability

of the process
(
cnE[|Xn −X∗|]

)
n

and with that prove Theorem 2.

Proposition 5. Let C be the constant defined in Lemma 1. Then

En[|Xn −X∗|] = op(c
−n)

for all c ∈ (1, C)2.

Proof. Choose arbitrary c ∈ (1, C), which exists since C > 1. Fix ε > 0.

Then, by Proposition 4, P(cnEn[|Xn − X∗|] > ε) ≤ 2C−n for large n, that is,

for n > Ñ(ε, c, C). Thus,

lim
n→∞

P
(
cnEn[|Xn −X∗|] > ε

)
= 0,

which holds for any chosen ε > 0, and hence
(
cnEn[|Xn−X∗|]

)
n

converges to 0 in

probability.

Proposition 6. Let C be the constant defined in Lemma 1. Then the stochastic

process
(
cnEn[|Xn −X∗|]

)
n

is uniformly integrable for all c ∈ (1, C).

Proof. By definition a sequence of random variables (Yn)n is uniformly integrable

if supn∈N E
[
|Yn|1{|Yn| > t}

]
→ 0 as t→∞.

Choose arbitrary c ∈ (1, C) and consider Ñ(1, c, C) = (log 2)/(log(C/c)), which

is strictly positive (the function Ñ(ε, c, C) is defined in Proposition 4). Note that

Ñ(t, c, C) ≤ Ñ(1, c, C) for t ≥ 1. Define T (c, C) = cÑ(1,c,C) > 1 and consider

arbitrary t ≥ T (c, C) > 1. It follows that P
(
cnEn[|Xn − X∗|] > t

)
= 0 for

n ≤ Ñ(1, c, C), since En[|Xn − X∗|] ≤ 1 and cn ≤ t for n ≤ Ñ(1, c, C). By

Proposition 4, P
(
cnEn[|Xn − X∗|] > t

)
≤ C−n for n ≥ Ñ(1, c, C) ≥ Ñ(t, c, C).

2f(x) = op (g(x)) means f(x)/g(x)→ 0 in probability as x→∞.
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Hence P
(
cnEn[|Xn − X∗|] > t

)
≤ C−n for all n ∈ N and all t > T (c, C). Using

En[|Xn −X∗|] ≤ 1 shows that for all n ∈ N0,

E
[
cnEn[|Xn −X∗|]1{cnEn[|Xn −X∗|] > t}

]
≤ cnE

[
1{cnEn[|Xn −X∗|] > t}

]
= cnE

[
1{cn > t}1{cnEn[|Xn −X∗|] > t}

]
= cn1{cn > t}P

(
cnEn[|Xn −X∗|] > t

)
≤ cn1{cn > t}C−n = (c/C)n 1{n > logc t}.

Now we take on both sides the supremum over n ∈ N0:

sup
n∈N0

E
[
cnEn[|Xn −X∗|]1{cnEn[|Xn −X∗|] > t}

]
≤ sup

n∈N0

(c/C)n 1{n > logc t}

= (c/C)logc t,

and uniform integrability follows by letting t go to +∞.

Proof of Theorem 2. By Propositions 5 and 6 we can choose an arbitrary constant

c ∈ (1, C) such that the sequence
(
cnEn[|Xn−X∗|]

)
n

converges to 0 in probability

and is uniformly integrable. Then

E [cnEn [|Xn −X∗|]]→ 0, as n→∞,

since convergence in probability and uniform integrability is a necessary and suffi-

cient condition for convergence in L1; see, for example, Theorem 4.5.2 in Durrett

(2005). Finally, by the tower property of conditional expectation, cnE[|Xn−X∗|] =

E[cnEn[|Xn −X∗|]] and hence E[|Xn −X∗|] = o(c−n).
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2.3.2 Consistency and Robustness

Almost immediate consequences of the preceding analysis are that the posterior

absolute residuals converge to 0 almost surely and that the posterior density fn

converges to a point mass at X∗. Hence the PBA is a consistent method for

locating X∗.

Theorem 3. En[|Xn −X∗|]→ 0 almost surely as n→∞.

Corollary 1. With probability one the posterior distribution Fn converges weakly

to a point mass at X∗, that is, limn→∞ Fn(x) = 1{x ≥ X∗} for all x 6= X∗ almost

surely.

Corollary 2. The sequence of medians (Xn)n generated by the PBA converges to

X∗ almost surely, that is, P(limn→∞Xn = X∗) = 1.

The proofs of Theorem 3 and Corollaries 1 – 2 are provided in Appendix A.

As a final remark, we show that in some cases the geometric rate of convergence

shown in Theorem 2 still holds even if the density of the average-case performance

measure is different from the density used in the updating process of the PBA.

Suppose that the random variable X∗ has a density g0 on [0, 1] and let (Xn)n

be the sequence of medians generated by the PBA using some other initial prior

density f0 (which has to be positive on [0, 1]). Then a sufficient condition that

the geometric rate of convergence of the expected absolute residuals still holds

is that the likelihood ratio between g0 and f0 is bounded, that is, there exists a
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constant L ∈ R such that g0(x)/f0(x) ≤ L for all x ∈ [0, 1]. In this case,

E[|Xn −X∗|] =

∫ 1

0

g0(x)E
[
|Xn − x|

∣∣ X∗ = x
]
dx

=

∫ 1

0

f0(x)
g0(x)

f0(x)
E
[
|Xn − x|

∣∣ X∗ = x
]
dx

≤ L

∫ 1

0

f0(x)E
[
|Xn − x|

∣∣ X∗ = x
]
dx = LE

[
|Xn −X∗f |

]
,

where X∗f ∼ f0, and thus Theorem 2 implies E[|Xn − X∗|] = o(c−n). In the case

that the performance measure has an unbounded likelihood ratio with respect to

f0, for example, when g0 is a point mass at a given point, it remains an open

research question whether or not the geometric rate of convergence still holds.

(See also Conjecture 2 in Section 3.5.)

This concludes the discussion of the case when p(·) is constant and known. In

the next chapter we analyze the behavior of the PBA when p(·) is unknown and

varies with x.

42



CHAPTER 3

VARYING AND UNKNOWN PROBABILITY OF CORRECT

RESPONSES

3.1 Introduction

In the previous chapter, we analyzed the PBA under the setting where the prob-

ability p(·) of obtaining a correct sign at every iteration is constant and known.

While these are realistic assumptions for some real-world applications, such as sig-

nal transmission over a noisy channel (Horstein, 1963) and edge detection (Castro

and Nowak, 2008a), they do not hold for many stochastic root-finding problems. In

Section 1.5, we demonstrated how tests of power one can be used so that the PBA

updating remains reasonable even when p(·) is nonconstant and unknown. In the

current chapter, we investigate the convergence behavior of this modified PBA via

a frequentist approach, where the root x∗ is a fixed unknown value in [0, 1]. Several

key results including consistency, finite-time confidence intervals and asymptotic

rates of convergence are provided.

Recall from Section 1.5 that, when p(·) is nonconstant and unknown, at each

measurement point Xn a signal Z̃n(Xn) is constructed by means of the test of

power one (if the context allows it, we write Z̃n). For each n ∈ N, this signal has

probability p̃(Xn) of being correct. As long as Xn 6= x∗ we have that p̃(Xn) ≥ pc,

where pc is an input parameter chosen by the user. Both, Z̃n(Xn) and the constant

pc can then be used in the updating equations of the PBA, that is, (1.3) and (1.4).

Since the test of power one requires a random number of function evaluations at

each step (denoted Nn(g̃(Xn)) or simply Nn), it effectively introduces two time

scales to the modified PBA, namely, a macro time scale counting the number of
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PBA iterations, and a wall-clock time scale counting the total number of function

evaluations T . By definition, Tn =
∑n

i=0Ni represents the total wall-clock time

across the first (n+ 1) iterations.

To better understand the modified PBA, we first study in Sections 3.2–3.5 its

behavior in macro time. As shown in Theorem 2, when p(·) ≡ pc, the expected

absolute residuals of the PBA converge to 0 at a geometric rate in macro time

when X∗ ∼ f0. The same result holds also for fixed values x∗ ∈ B, where B is a

set of Lebesgue measure one. While it may seem natural to have at least a similar

rate of convergence in macro time when p̃(·) ≥ pc instead of p(·) ≡ pc, it becomes

challenging to turn this intuition into a rigorous proof. First of all, the proof of

Theorem 2 cannot be extended to the case p̃(·) ≥ pc easily as it relies heavily on

a symmetric random walk argument that only holds when p(·) ≡ pc. Moreover,

when p̃(·) ≥ pc, the PBA no longer guarantees a proper Bayesian updating. To

avoid creating a separate probabilistic model for p̃(·), which is a prerequisite for

the construction of true Bayesian dynamics when p̃(·) ≥ pc, we adopt a frequentist

approach to prove a set of results similar to those in Theorem 2. In addition,

we show how for any finite n ∈ N a true confidence interval of the root x∗ can

be specified, providing a useful finite-time guarantee. More specifically, the main

results in macro time show

1. that for any n ∈ N and α ∈ (0, 1) an interval Jn(α) ⊆ [0, 1] can be constructed

such that P(x∗ ∈ Jn(α)) ≥ 1 − α; moreover the length of Jn(α) converges

to 0 at a geometric rate;

2. that a point of maximum posterior density, that is, XM
n ∈ argmaxx∈[0,1] fn(x),

is an estimator of x∗ whose expected absolute residuals converge to 0 at a

geometric rate.
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To show these results we will use the following set of standing assumptions:

Assumption A. (i) x∗ is a fixed and unknown point in [0, 1];

(ii) Xn 6= x∗ for any n ∈ N0;

(iii) f0(x) = 1[0,1](x), that is, the PBA starts with a uniform prior density;

(iv) p̃(x) ≥ pc for all x 6= x∗, where pc ∈ (1/2, 1) is an input parameter chosen

by the user, and p̃(x) is the probability of receiving a correct signal Z̃(x)

when using a test of power one at the measurement point x ∈ [0, 1] \ {x∗}.

We further use the notation q̃(·) = 1 − p̃(·) and qc = 1 − pc. Moreover,

P(N(x) <∞) = 1 for all x 6= x∗, where N(x) is the stopping time of the test

of power one.

Assumption (ii) is necessary in order for the sequence (Xn)n to be well-defined.

If for some finite n we actually measure exactly at the root, that is, Xn = x∗, then

the test of power one has a positive chance of never terminating and no further

measurement Xn+1 is taken. As discussed in Section 1.5, this is a very unlikely

event in practice. More precisely, for any fixed constant pc, this can only happen

for x∗ ∈ E(pc), where E(pc) is a set of Lebesgue measure 0. One way to ensure

that (ii) holds with probability one is to extend the starting interval from [0, 1]

to [0, 1 + δ], where δ is chosen uniformly at random from the interval [0, ε], for

some ε > 0. If the PBA queries at a point in (1, 1 + δ] then return Z̃n(Xn) = −1,

indicating that the root is further to the left.

Assumption (iii) is not necessary for most presented results, but convenient. If

a different distribution f0 is used as a input density for the PBA, then all presented

results still hold as long as infx∈[0,1] f0(x) > 0 (but the proofs would have to be

modified accordingly).
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In Section 3.6, we then analyze the PBA in wall-clock time. If the function g, of

which we want to locate the root x∗, is continuous at x∗, then the test of power one

requires more function evaluations the closer the measurement point Xn is to x∗. In

other words, as the sequence (Xn)n generated by the PBA updating approaches the

sought-after point x∗ the test of power one slows down the rate in wall-clock time

significantly. We show that the sequence (Xn)n fails to achieve the optimal rate of

convergence in wall-clock time, that is, O(T−1/2), but, that an averaging-scheme

of the measurement points (Xn)n, similar to Polyak-Ruppert averaging, recovers

a near-optimal rate of convergence. The proof of this last statement requires that

a reasonable conjecture holds true. While we provide empirical evidence that the

conjecture holds, a formal proof is still missing. Furthermore, empirical results

suggest that such an averaging of the sequence (Xn)n might even recover the same

asymptotic rate of convergence as SA-type algorithms. See Chapter 4 for details

on the numerical results. The main results regarding the convergence behavior of

the PBA in wall-clock time show

1. that the measurement points defined by the PBA converge to 0 at a rate

that is slower than O(T−1/2), that is, the sequence
(
|Xn − x∗|(Tn)1/2

)
n

is

not tight, where Tn =
∑n

i=0Ni is the wall-clock time as a function of macro

iterations;

2. that, if there exists an r > 0 such that E[|Xn − x∗|] = O(e−rn),

then an estimator X̂n based on the PBA can be constructed such that

E[(Tn)1/2−ε|Xn − x∗|] = O(1) for any ε > 0.

The rest of this chapter is organized as follows. In Section 3.2, we show that

the PBA provides a consistent estimator for the setting considered. In Section 3.3,

we introduce and analyze the construction of the confidence interval for x∗. In
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Section 3.4, we extend this construction to provide sequential confidence intervals,

which are sequences of intervals that contain x∗ for all n ∈ N with high probability.

In Section 3.5, we analyze the asymptotic rate of convergence of the PBA in macro

time. In Section 3.6, we investigate the asymptotic rate of convergence in wall-clock

time.

3.2 Consistency

The main result of this section shows that the PBA using tests of one provides a

consistent method for locating the root x∗.

Theorem 4. Suppose that Assumption A in Section 3.1 holds. Let (Xn)n be the

sequence of measurement points of the PBA in macro time. Then Xn → x∗ almost

surely as n→∞.

Proof. We first show, in Lemma 2 below, that if intervals A and B are such that

A lies completely to the left of B and B lies completely to the left of x∗, then the

stochastic process

Vn =
µn(A)

µn(B)
(3.1)

is a supermartingale. Here, µn(·) denotes the probability measure defined by the

pdf fn. We then show (Lemma 3) that this implies that the conditional dis-

tribution νn of µn, that is, µn restricted to [0, x∗] and normalized by µn([0, x∗]),

converges weakly to a distribution ν almost surely. Furthermore, ν([x∗−ε, x∗]) > 0

for any ε > 0 almost surely. These facts are then used to show (Lemma 4) that

lim infn→∞Xn ≥ x∗ almost surely.
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A symmetric argument on the interval [x∗, 1] (omitted) shows that

lim supn→∞Xn ≤ x∗ almost surely. Therefore Xn → x∗ as n → ∞ almost

surely.

We denote by G̃ = (G̃n)n≥−1 the filtration generated by the measurement

points (Xn)n and signals Z̃n observed so far, that is, G̃n = σ
(
Xm, Z̃m : 0 ≤ m ≤ n

)
for n ≥ 0 and G̃−1 is the trivial σ-algebra.

Lemma 2. Let A be the interval [a1, a2) and B be the interval [b1, b2], where

0 ≤ a1 < a2 ≤ b1 < b2 ≤ x∗ and consider the process Vn = µn(A)/µn(B). Then

(Vn+1)n≥0 is a supermartingale with respect to the filtration G̃.

Proof. We redefine B = [b1, b2) and prove the supermartingale property under this

modified definition. This implies the originally stated result since µn({x∗}) = 0

for all n, and is convenient because now all points of B lie strictly to the left of

the root.

Consider arbitrary n ∈ N0. Since Vn is G̃n−1 measurable, the only property that

requires verification is the supermartingale inequality, that is, E
[
Vn+1|G̃n−1

]
≤ Vn.

If Xn ≥ b2 or Xn < a1, then Vn+1 = Vn so E[Vn+1|G̃n−1] = Vn on this event.

If Xn ∈ A, and cn =
∫ Xn

a1
µn(dx), dn =

∫ a2
Xn
µn(dx), then, conditional on G̃n−1,

Vn+1 =


2qccn+2pcdn

2pcµn(B)
, with probability p̃(Xn),

2pccn+2qcdn
2qcµn(B)

, with probability q̃(Xn).
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Since pc < 1 it follows that Vn > 0 for all n ∈ N0, and therefore

E
[
Vn+1

Vn

∣∣∣∣G̃n−1

]
=
p̃(Xn)

pc

[
qccn + pcdn
µn(A)

]
+
q̃(Xn)

qc

[
pccn + qcdn
µn(A)

]
=

1

µn(A)

[
qc
pc
p̃(Xn)cn + p̃(Xn)dn +

pc
qc
q̃(Xn)cn + q̃(Xn)dn

]
=

1

µn(A)

[(
qc
pc
p̃(Xn) +

pc
qc
q̃(Xn)

)
cn + dn

]
.

It remains to show that the factor multiplying cn is smaller than 1. To that end,

qc
pc
p̃(Xn) +

pc
qc
q̃(Xn) =

q2
c p̃(Xn) + p2

c q̃(Xn)

pcqc

=
q2
c p̃(Xn) + p2

c(1− p̃(Xn))

pcqc

=
p2
c − (p2

c − q2
c )p̃(Xn)

pcqc

=
p2
c − (pc − qc)(pc + qc)p̃(Xn)

pcqc

=
p2
c − (pc − qc)p̃(Xn)

pcqc
≤ 1, (3.2)

where the last inequality holds since p̃(Xn) ≥ pc, and it would hold with equality

if p̃(Xn) = pc. Hence E[Vn+1|G̃n−1] ≤ Vn on the event that Xn ∈ A.

If a2 ≤ Xn < b1, that is, the median lies between A and B then, conditional on

G̃n−1,

Vn+1

Vn
=


qc
pc
, with probability p̃(Xn),

pc
qc
, with probability q̃(Xn),

and

E
[
Vn+1

Vn

∣∣∣∣G̃n−1

]
=
qc
pc
p̃(Xn) +

pc
qc
q̃(Xn) ≤ 1

as shown in (3.2). Hence E[Vn+1|G̃n−1] ≤ Vn on the event that a2 ≤ Xn ≤ b1.
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Finally, if Xn ∈ B, and cn =
∫ Xn

b1
µn(dx), dn =

∫ b2
Xn
µn(dx), then, conditional

on G̃n−1,

Vn+1

Vn
=


qcµn(B)
qccn+pcdn

, with probability p̃(Xn),

pcµn(B)
pccn+qcdn

, with probability q̃(Xn),

and

E
[
Vn+1

Vn

∣∣∣∣G̃n−1

]
= µn(B)

(
p̃(Xn)qc

qccn + pcdn
+

q̃(Xn)pc
pccn + qcdn

)
= µn(B)

(
p̃(Xn)qc(pccn + qcdn) + q̃(Xn)pc(qccn + pcdn)

pcqcc2
n + q2

ccndn + p2
ccndn + pcqcd2

n

)
= µn(B)

(
p̃(Xn)qcpccn + p̃(Xn)q2

cdn + q̃(Xn)pcqccn + q̃(Xn)p2
cdn

pcqc(c2
n + d2

n) + (q2
c + p2

c)cndn

)
= µn(B)

(
pcqccn + dn(p̃(Xn)q2

c + q̃(Xn)p2
c)

pcqc(c2
n + d2

n) + (q2
c + p2

c)cndn

)
= µn(B)

(
cn + dn(p̃(Xn) qc

pc
+ q̃(Xn)pc

qc
)

c2
n + 2cndn + d2

n − 2cndn + (q2c+p2c)
pcqc

cndn

)

= µn(B)

(
cn + dn(p̃(Xn) qc

pc
+ q̃(Xn)pc

qc
)

(cn + dn)2 + (qc−pc)2

pcqc
cndn

)
≤ 1,

where the last inequality follows from (3.2) and the fact that µn(B) = cn + dn.

Here, equality does not hold even if p̃(Xn) = pc unless either cn or dn is 0, that

is, unless Xn is equal to one of the endpoints of the interval B. Hence also

E[Vn+1|G̃n−1] ≤ Vn on the event that Xn ∈ B and this completes the proof.

Lemma 3. Let νn(·) = µn(· ∩ [0, x∗])/µn([0, x∗]) be the conditional probability dis-

tribution to the left of x∗. Then νn(·) converges weakly to a probability measure ν(·),

where ν([x∗ − ε, x∗]) > 0 for any ε > 0, almost surely.

Proof. Let x ∈ (0, x∗) and define the interval A(x) = [0, x) and the interval B(x) =

[x, x∗). Then, by Lemma 2, the process (µn(A(x))/µn(B(x))n is a supermartin-

gale and the martingale convergence theorem implies that µn(A(x))/µn(B(x))
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converges almost surely to a finite-valued random variable R(A(x)) say. Define

D(x) ⊆ Ω to be the set of sample paths where

νn(A(x), ω) =
µn(A(x), ω)

µn(A(x), ω) + µn(B(x), ω)
→ R(A(x), ω)

R(A(x), ω) + 1

as n → ∞ holds, then D(x) is a set of probability one. (We have used the fact

that µn has a density for all n so that one can include or exclude the endpoints of

intervals at will.)

Let Q[0, x∗] be the set of rational numbers in the interval [0, x∗] and let A =

{A(x) : x ∈ Q[0, x∗]}. Since A consists of a countable number of sets, it follows

that νn(A(x), ω) → R(A(x), ω)/(R(A(x), ω) + 1) for all x ∈ Q[0, x∗] and for all ω

in the set D of probability one, where

D =
⋂

x∈Q[0,x∗]

D(x).

Fix ω ∈ D. The sequence of probability measures (νn(·, ω))n is trivially tight

since the measures are all defined on the bounded interval [0, x∗]. Let νa(·, ω) and

νb(·, ω) denote two weak limits of subsequences of (νn(·, ω))n. These probability

measures agree on the class A since the full sequence νn(A, ω) converges to R(A, ω)

for all A ∈ A . But the family of intervals A is a π-system that generates the

Borel field on [0, x∗], and is therefore a separating class (Billingsley, 1999, p. 9).

Therefore νa(·, ω) = νb(·, ω). Define ν(·, ω) to be the common limiting measure.

Prohorov’s theorem (Billingsley, 1999, p.59) then shows that νn(·, ω) converges

weakly to ν(·, ω). This holds for all ω ∈ D, a set of probability one, hence the first

part of the claim follows.

It remains to show that ν([x∗ − ε, x∗]) > 0 for any ε > 0, almost surely.

Let ε ∈ (0, x∗) be fixed and define A = [0, x∗ − ε), B = [x∗ − ε, x∗]. Lemma 2 then
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implies that

P
(

lim sup
n→∞

νn(B) = 0

)
= P

(
lim inf
n→∞

νn(A)

νn(B)
=∞

)
= P

(
lim inf
n→∞

µn(A)

µn(B)
=∞

)
= 0.

But νn converges to ν weakly as n → ∞ almost surely and B is closed, so that

ν(B) ≥ lim supn→∞ νn(B) > 0 almost surely (see Theorem 2.1, p. 16 of Billingsley

(1999)). Hence ν(B) > 0 almost surely.

Lemma 4. It holds that lim infn→∞Xn ≥ x∗ almost surely.

Proof. Suppose that lim infn→∞Xn < x∗ on a set of positive probability. Fix a

sample path ω within this set that also belongs to the set of probability one where

the properties of Lemma 3 hold. Let ε > 0 be such that Xn < x∗−ε infinitely often

and consider the set A = [x∗ − ε, x∗]. By Lemma 3 it holds that νn(A)→ ν(A) as

n→∞ and ν(A) > 0. Let η > 0, ε′ > 0 and N ∈ N such that νn(A) ≥ η and

|νn(A)− ν(A)| < ε′, (3.3)

for all n ≥ N .

Consider the updating of νn(A) at a time n ≥ N where also Xn < x∗ −

ε (such an n always exists since Xn < x∗ − ε infinitely often). At this time,

νn(A) ≥ η and νn([0, Xn])) ≥ µn([0, Xn]) ≥ 1/2. Let us outline how this will lead

to a contradiction: Since the conditional distribution νn has a “large” amount

of probability mass to the left and right of the measurement point Xn it follows

that, independently of the outcome of Z̃n, the updated distribution νn+1 differs

significantly from the distribution νn in the sense that |νn(A)− ν(A)| < ε′ cannot

hold for n and n+ 1, contradicting (3.3).

Let us now make this argument precise by considering the exact updating

procedure of νn. Since µn([0, Xn]) = 1/2 it follows that νn([0, Xn]) > 1/2 and
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trivially it also holds that νn([0, Xn]) ≤ 1. Thus, since pc > qc,

qc
pc
νn([0, Xn]) + νn([Xn, x

∗]) ≤ 1− pc − qc
pc

, and (3.4)

pc
qc
νn([0, Xn]) + νn([Xn, x

∗]) ≥ 1 +
pc − qc

2qc
. (3.5)

Now define δ = min{(pc − qc)/pc, (pc − qc)/(2qc)} and let ε′ > 0 be smaller than

δν(A)/(2 + δ) (such an ε′ > 0 always exists since ν(A) > 0). Since νn(A)→ ν(A),

there exists an N > 0 such that for all n ≥ N ,

|νn(A)− ν(A)| < ε′. (3.6)

Let n ≥ N be such that Xn < x∗−ε, which exists since by assumption Xn < x∗−ε

infinitely often. If the signal at the (n+1)st iteration is negative, that is, Z̃n = −1,

then

νn+1(A) =
µn+1(A)

µn+1([0, x∗])

=
2qcµn(A)

2pcµn([0, Xn]) + 2qcµn([Xn, x∗])

=
νn(A)

pc
qc
νn([0, Xn]) + νn([Xn, x∗])

.

From (3.5), the denominator is bounded below by 1 + δ, and so

νn+1(A) ≤ νn(A)

1 + δ
≤ ν(A) + ε′

1 + δ
≤ ν(A)− ε′

because of the way we chose ε′, and this contradicts (3.6).

If, on the other hand, the signal at the (n + 1)st iteration is positive, that is,

Z̃n = +1, then

νn+1(A) =
2pcµn(A)

2qcµn([0, Xn]) + 2pcµn([Xn, x∗])

=
νn(A)

qc
pc
νn([0, Xn]) + νn([Xn, x∗])

.
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From (3.4), the denominator is bounded above by 1− δ, so that

νn+1(A) ≥ νn(A)

1− δ ≥
ν(A)− ε′

1− δ ≥ ν(A) + ε′

because of the way we chose ε′, and this again contradicts (3.6). So irrespective

of the outcome of Z̃n we arrive at a contradiction. Hence lim infn→∞Xn < x∗ can

only hold on a set of probability 0.

3.3 Confidence Intervals

As shown in the previous section, the PBA provides a consistent method for lo-

cating the root x∗ ∈ [0, 1]. For a stochastic root-finding method to be successful in

practice, however, more is needed. It is important that the root x∗ (or a close esti-

mate of it) is found with as few function evaluations as possible. Since x∗ can take

any real value in [0, 1], finding the root x∗ exactly in finite time seems impossible,

raising the question: Can we provide a statistical guarantee, such as a confidence

interval, on the location of the root after n function evaluations?

Surprisingly, no stochastic root-finding algorithm exists—to the best of our

knowledge—that provides the simulation analyst with such a guarantee. One

method of constructing at least approximate confidence intervals for stochastic

root-finding problems is to restart the search algorithm several times and then use

a central limit theorem approximation of x∗; see Hsieh and Glynn (2002). Whereas

this method might work well in practice, no strict guarantees on the coverage prob-

ability can be provided. In this section, we show that the PBA provides not only

a point estimate of x∗ after n observed signals, but also a true confidence inter-

val for x∗. Moreover, the width of of this confidence interval converges to 0 at a

geometric rate in macro time.
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Let
(
X(i)

)n
i=0

denote the order statistics of the query points (Xi)
n
i=0, that is,

X(0) ≤ X(1) ≤ · · · ≤ X(n), and denote the intervals defined by
(
X(i)

)n
i=0

as Ii,n for

i = 0, . . . , n+ 1. These are at most n+ 2 non-empty intervals (it can be less than

n+2 intervals if the algorithm measures at the same point more than once). These

intervals are

I0,n =
[
0, X(0)

)
,

Ii,n =
[
X(i−1), X(i)

)
, for i = 1, . . . , n, and

In+1,n =
[
X(n), 1

]
.

Let us denote the height of the (piecewise constant) density fn on the ith interval

by hn(Ii,n), for i = 0, . . . , n+ 1. We also use the notation d = d(pc) = pc log(2pc) +

qc log(2qc) and β = β(pc) = log(pc/qc). Later, the fact that d(pc) > 0 for all

pc ∈ (1/2, 1) will be important.

Let α ∈ (0, 1) and define

bn = bn(α) = bn(α, pc) = nd(pc)− n1/2(−1/2 log(α/2))1/2β(pc); (3.7)

the intervals

Ĩi,n(α) =

{
Ii,n, if hn(Ii,n) > ebn(α),

∅, otherwise;

the set Gn(α) =
⋃n+1
i=0 Ĩi,n(α), which consists of all points in [0, 1] whose density fn

is above ebn at time n; and the interval

Jn(α) = conv(Gn(α)), (3.8)

which is the convex hull of the set Gn(α). The next proposition shows that the set

Gn(α) (the interval Jn(α)) provides a (1 − α/2)-confidence set (interval) for the

sought-after point x∗.
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Proposition 7. Suppose that Assumption A in Section 3.1 holds and α ∈ (0, 1).

Then, for all n ∈ N0,

P(x∗ /∈ Jn(α)) ≤ P(x∗ /∈ Gn(α)) ≤ α/2.

Proof. First note that Gn(α) ⊆ Jn(α), since Jn(α) is the convex hull of Gn(α), and

so it is sufficient to show that P(x∗ /∈ Gn(α)) ≤ α/2.

Assume first that p̃(·) ≡ pc. Consider the random variable An = fn(x∗). By

definition of the set Gn(α), it holds that

P(x∗ /∈ Gn(α)) = P(An ≤ ebn),

and it is enough to show that P(logAn ≤ bn) ≤ α/2. The random variable An is a

product of iid random variables, that is, An =
∏n

i=1(2pc)
Ci(2qc)

1−Ci , where Ci = 1

if the signal Z̃i−1 at the ith iteration of the PBA is correct and 0 otherwise (C is

mnemonic for “correct”). By taking logarithms we get logAn =
∑n

i=1 ξi, where

ξi = log(2pc) if Ci = 1 and ξi = log(2qc) otherwise, and P(ξi = log(2pc)) = pc and

P(ξi = log(2qc)) = qc. Then

P (logAn ≤ bn) = P

(
n∑
i=1

ξi ≤ bn

)

= P

(
n−1

n∑
i=1

ξi − d ≤ n−1bn − d
)

≤ exp

(
−2

(bn/n− d)2n

β2

)
, (3.9)

which follows by Hoeffding’s inequality1. The claim follows by the definition of bn

given in (3.7).

1Let X1, . . . , Xn be iid bounded random variables, that is, P(Xi ∈ [a, b]) = 1. Then for the
empirical mean X = n−1

∑n
i=1 Xi the inequality P

(
X−E[X] ≥ t

)
≤ exp

(
−2t2n(b−a)−2

)
holds

when t ≥ 0. See Hoeffding (1963).
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Now consider the case where p̃(·) ≥ pc. Again, we consider the random variable

logAn = log
(
fn(x∗)

)
. This random variable is no longer a sum of iid random

variables, but stochastically dominates a random variable that is a sum of iid

random variables as defined in the previous case. More precisely, it holds that

logAn
d∼ ∑n

i=1 ξi (the notation
d∼ stands for equality in distribution), and the

random variables (ξi)i are defined by

ξi =

{
log(2pc), if Ui ≤ p̃(Xi−1),

log(2qc), otherwise,

where (Ui)i is a sequence of iid U(0, 1) random variables. Use pathwise the same

sequence (Ui)i to also define

φi =

{
log(2pc), if Ui ≤ pc,

log(2qc), otherwise.

By construction,
∑n

i=1 φi ≤
∑n

i=1 ξi. Thus,

P(x∗ /∈ Gn) = P(logAn ≤ bn)

= P

(
n∑
i=1

ξi ≤ bn

)
≤ P

(
n∑
i=1

φi ≤ bn

)
≤ α/2,

where the last inequality follows as in the case where p(·) ≡ pc.

Such a true confidence interval Jn(α) is only useful if its size decreases as n

increases. As an extreme example, the trivial interval [0, 1] will always provide

a true confidence interval. The next proposition shows that the length of the

confidence interval Jn(α) converges to 0 at a geometric rate with high probability.

The proof requires that the input parameter satisfies pc ≥ 0.85, but we conjecture

that the result should hold for any pc > 1/2, which is supported by empirical

results in Chapter 4.
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Proposition 8. Suppose that Assumption A in Section 3.1 holds and let

pc ∈ [0.85, 1). Then d− qcβ > 0. If α ∈ (0, 1) and r ∈ (0, d− qcβ), then

P(|Jn(α)| > e−rn) ≤ α/2, (3.10)

for all n ≥ N1, where

N1 = N1(α, r, pc) = 2 log(2/α)

(
β

d− r − qcβ

)2

∈ R. (3.11)

Proof. For the moment assume that d − qcβ > 0 for pc ∈ [0.85, 1). At the end of

the proof we show that this is indeed true. Also, choose arbitrary r ∈ (0, d− qcβ)

and α ∈ (0, 1). In this proof we often just write Jn instead of Jn(α).

Consider fixed n ≥ N1. Let An = inf Jn and Bn = sup Jn be the endpoints of

the interval Jn
2. We define the event B = {|Jn| > e−rn}, which is, by definition of

the interval Jn, equal to

B =
{

(Bn − An) > e−rn, fn(An) ≥ ebn , fn(Bn−) ≥ ebn
}
.

Then

B ⊆ {f̂n < ern}, (3.12)

where f̂n = infx∈Jn fn(x) is the lowest posterior density in the interval Jn. To

verify this, assume there exists a sample path in B with f̂n ≥ ern, then, on this

sample path,∫ Bn

An

fn(y)dy ≥ (Bn − An)f̂n ≥ (Bn − An)ern > e−rnern = 1,

which is a contradiction to fn being a probability density function.

Now consider a fixed sample path ω ∈ B. Define

Xf̂ = inf
{
x ∈ Jn : fn(x) ≤ f̂n

}
2We use the standard convention that sup ∅ = −∞ and inf ∅ = +∞.
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to be the leftmost point with the lowest posterior density in Jn. Since n ≥ N1,

it holds that rn < bn (see, for example, proof of Lemma 5), and consequently

Xf̂ /∈ Gn(α), that is, f̂n < ebn . Thus Xf̂ /∈ {0, 1}, instead Xf̂ was a previous

query point and hence Xf̂ 6= x∗ by Assumption A(ii). Furthermore, the density fn

needs to increase from f̂n up to ebn to the right and left of Xf̂ because otherwise

Xf̂ /∈ Jn.

Assume now that Xf̂ < x∗, the arguments (omitted) for the case Xf̂ > x∗ hold

analogously. In this case an increase of the density from f̂n at Xf̂ to at least ebn at

An can only occur when incorrect signals were observed in the interval [An, Xf̂ ].

More specifically, consider the dynamics of the density at points An and Xf̂ during

all previous n iterations separately. First, for all Xi /∈ [An, Xf̂ ] the densities at An

and Xf̂ were multiplied by the same factor independent of the observed signal, for

i = 0, 1, . . . , n− 1. So, to achieve a difference in the density at these two points it

is necessary that previous measurement points fell into the interval [An, Xf̂ ]. Next,

consider the measurements Xi ∈ [An, Xf̂ ] for i = 0, 1, . . . , n − 1. On these events

the density at An was multiplied by 2pc if Z̃i = −1, which is an incorrect signal

since Xf̂ < x∗, and the density at the point Xf̂ was multiplied by 2qc. Thus, the

density at An increases by a factor pc/qc relative to the density at Xf̂ for each

incorrect response in the interval [An, Xf̂ ]. Each correct signal in [An, Xf̂ ], on the

other hand, decreases the density at An relative to the density at Xf̂ by a factor

qc/pc. This shows, in order for the density to grow from f̂n at the point Xf̂ to at

least ebn at the point An there must have been at least Hn incorrect replies in the

interval [An, Xf̂ ] up to time n, where Hn needs to satisfy

(pc/qc)
Hn f̂n ≥ ebn . (3.13)

If Wn denotes the total number of incorrect replies up to time n (W is mnemonic
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for “wrong”) then naturally Wn ≥ Hn and the bound (3.13) implies that

(pc/qc)
Wn f̂n ≥ ebn , (3.14)

which needs to hold for all ω ∈ B. This bound is not very tight, since it ignores the

positive effects of correct responses in the interval [An, Xf̂ ] as well as the fact that

incorrect responses can occur outside of this interval. Nevertheless, it is sufficient

for the current proof.

Bounds (3.12) and (3.13) show that, for all sample paths in B,

(pc/qc)
Wnern ≥ (pc/qc)

Wn f̂n ≥ ebn

(pc/qc)
Wn ≥ ebn−rn

Wn ≥
bn − rn

log(pc/qc)
=
bn − rn

β
,

and since this holds for every sample path in B it follows that

B ⊆
{
Wn ≥

bn − rn
β

}
. (3.15)

In order to prove the statement we show that the probability of the event on

the right-hand side in (3.15) is smaller than α/2. If W ∼ Binomial(n, qc) then W

stochastically dominates Wn, that is

P(Wn ≥ x) ≤ P(W n ≥ x), for all x ∈ R,

and hence

P(|Jn| > e−rn) = P(B) ≤ P
(
Wn ≥

bn − rn
β

)
≤ P

(
W n ≥

bn − rn
β

)
≤ α/2,

where the last step follows by Lemma 5 (below).

It remains to show that d− qcβ > 0 for all pc ∈ [0.85, 1). For this consider the
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function

v(p) = d(p)− (1− p)β(p)

= p log(2p) + (1− p) log(2(1− p))− (1− p) log(p/(1− p))

= (2p− 1) log p+ log 2 + 2(1− p) log(1− p).

Then

(1) v(p∗) = 0 for some p∗ > 0,

(2) v′(p) = 2 log p− 2 log(1− p)− p−1, and v′(p∗) > 0,

(3) v′′(p) = 2p−1 + (1− p)−1 + p−2 > 0 for all p ∈ [0, 1],

hence v is a convex function that is positive at 0.85 > p∗ ≈ 0.8455 and has

positive slope at p∗, which implies that v(p) > 0 for all p > p∗ (see Figure 3.1).

For notational convenience the statement of the proposition requires pc ≥ 0.85,

instead of the weaker condition pc ≥ p∗.
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Figure 3.1: The function v(p) = d(p)− (1− p)β(p) is convex with one root
at 0 and the other root p∗ at approximately 0.8455, thus v(p) > 0
for all p ≥ 0.85.
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Lemma 5. Let p ∈ [0.85, 1), q = 1 − p, d = p log(2p) + q log(2q), β = log(p/q),

r ∈ (0, d− qβ), α ∈ (0, 1), bn as defined in (3.7), and Wn ∼ Binomial(n, q). Then

P
(
Wn ≥

bn − rn
β

)
≤ α

2
(3.16)

for all n ≥ N1, where N1 is defined by (3.11) with qc replaced by q.

The proof of Lemma 5 is provided in the Appendix A.

The next theorem combines Propositions 7 and 8 into one statement. The proof

is a direct application of Boole’s inequality and is omitted.

Theorem 5. Suppose that Assumption A in Section 3.1 holds. Let pc ∈ [0.85, 1),

r ∈ (0, d− qcβ) and α ∈ (0, 1). Then

P
(
x∗ ∈ Jn(α), |Jn(α)| ≤ e−rn

)
≥ 1− α

for all n ≥ N1, where N1 is defined by (3.11).

3.4 Sequential Confidence Intervals and Stopping Rules

In this section we construct sequential confidence intervals for the root x∗. These

are intervals (Kn(α))n such that x∗ is contained in the whole sequence with high

probability. In order to achieve this, we again locate the process An = fn(x∗), but,

instead of using Hoeffding’s bound for a fixed n ∈ N0, we now use a statistical test

of power one for Bernoulli trials (see Appendix B for details on such tests of power

one). This test of power one is performed on the density fn(x) for every x ∈ [0, 1]

in macro time and is not to be confused with the test of power power one used at

each iteration of the PBA producing the signal Z̃n.
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Let α ∈ (0, 1) and define

an = an(α) = an(α, pc) = nd(pc)− n1/2

[
−1/2 log

(
α

n+ 1

)]1/2

β(pc), (3.17)

and

Ĩsi,n(α) =

{
Ii,n, if hn(Ii,n) > ean(α),

∅, otherwise.

Let Ln(α) =
⋂n
j=0

⋃j+1
i=0 Ĩ

s
i,n and Kn(α) = conv(Ln(α)). The sequence of intervals

(Kn(α))n is decreasing, that is, K0(α) ⊇ K1(α) ⊇ K2(α) ⊇ · · · . Thus, if the

sequence (Kn(α))n at some time n fails to contain x∗, then from this time onwards

the sequence (Kn(α))n will not be able to locate x∗ anymore. But, this event

can only happen with at most probability α/2. Such decreasing and sequential

behavior is not guaranteed by the confidence intervals (Jn(α))n defined in the

previous section, which provide the statistical guarantee only for a fixed n.

Proposition 9. Suppose that Assumption A in Section 3.1 holds and α ∈ (0, 1).

Then

P (x∗ /∈ Kn(α) for some n ≥ 1) ≤ P (x∗ /∈ Ln(α) for some n ≥ 1) ≤ α/2. (3.18)

Proof. By construction Ln(α) ⊆ Kn(α) for all n ∈ N and so it is sufficient to show

that P(x∗ /∈ Ln(α) for some n ≥ 1) ≤ α/2.

Assume first that p̃(·) ≡ pc. Consider the stochastic process (An)n, where

An = fn(x∗). Then, by the definition of the set Ln(α),

P(x∗ /∈ Ln(α) for some n ≥ 1) = P(An ≤ ean for some n ≥ 1),

and it is enough to show that P(logAn ≤ an for some n ≥ 1) ≤ α/2. Let Cn be

the number of correct signals up to time n. Then

Cn =
logAn − n log 2qc

β
, (3.19)
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and Cn ∼ Binomial(n, pc). By definition of an in (3.17) and kn in (B.5) (replace α

with α/2),

{logAn ≤ an for some n ≥ 1} = {Cn − pc ≤ −kn for some n ≥ 1} (3.20)

⊆ {|Cn − np| ≥ kn for some n ≥ 1}

and the claim for the case p̃(·) ≡ pc follows by the construction of the

test of power one for Bernoulli random variables, which guarantees that

P (|Cn − np| ≥ kn for some n ≥ 1) ≤ α/2 (see Appendix B).

Now assume that p̃(·) ≥ pc. Then Cn is not necessarily a Binomial(n, pc) ran-

dom variable anymore, but pathwise dominates a Binomial(n, pc) random variable.

More precisely, it holds that Cn
d∼∑n

i=1 ψi, and the random variables (ψi)i are de-

fined by

ψi =

{
1, if Ui ≤ p̃(Xi−1),

0, otherwise,

where (Ui)i is a sequence of U(0, 1) random variables. Use pathwise the same

sequence (Ui)i to also define

ϕi =

{
1, if Ui ≤ pc,

0, otherwise.

By construction,
∑n

i=1 ϕi ≤
∑n

i=1 ψi. Then, using (3.20), it follows that

P (logAn ≤ an for some n ≥ 1) = P (Cn − npc ≤ −kn for some n ≥ 1)

= P

(
n∑
i=1

ψi − npc ≤ −kn for some n ≥ 1

)

≤ P

(
n∑
i=1

ϕi − npc ≤ −kn for some n ≥ 1

)

≤ α

2
,

where the last inequality follows as in the case when p̃(·) ≡ pc.
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Analogous to the confidence intervals (Jn(α))n, the sequential confidence in-

tervals (Kn(α))n are only useful when their lengths converge to 0 reasonably fast.

The next proposition shows that (|Kn(α)|)n converges to 0 at a geometric rate

with high probability.

Proposition 10. Suppose that Assumption A in Section 3.1 holds. Let pc ∈

[0.85, 1), r ∈ (0, d− qcβ) and α ∈ (0, 1). Then there exists a constant N2 ∈ N such

that

P(|Kn(α)| > e−rn for some n ≥ N2) ≤ α/2.

Proof. Proposition 8 shows that d − qcβ > 0 for pc ≥ 0.85, so fix

arbitrary r ∈ (0, d− qcβ).

Analogous to the proof of Proposition 8 it follows that

P
(
|Kn(α)| > e−rn

)
≤ P

(
Wn ≥

an − rn
β

for some n ≥ 1

)
≤ P

(
W n ≥

an − rn
β

for some n ≥ 1

)
,

where Wn is the number of incorrect signals observed up to time n and

W n ∼ Bernoulli(n, qc), and

P
(
W n ≥

an − rn
β

for some n ≥ 1

)
≤ P

(
W n ≥

an − rn
β

for some n ≥ N2

)
≤ α

2
,

where the second inequality follows by Lemma 6 (below).

Lemma 6. Let p ∈ [0.85, 1), q = 1 − p, d = p log(2p) + q log(2q), β = log(p/q),

r ∈ (0, d− qβ), α ∈ (0, 1), an as defined in (3.17) and Wn ∼ Binomial(n, q). Then

there exists a constant N2 ∈ N such that

P
(
Wn ≥

an − rn
β

for some n ≥ N2

)
≤ α

2
.
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The proof of Lemma 6 is provided in Appendix A.

Similarly to Theorem 5, the next theorem combines the previous two propo-

sitions into one statement. The proof is again a direct application of Boole’s

inequality and is omitted.

Theorem 6. Suppose that Assumption A in Section 3.1 holds. Let pc ∈ [0.85, 1),

α ∈ (0, 1) and r ∈ (0, d− qcβ). Then there exists a constant N2 ∈ N such that

P
(
x∗ ∈ Kn(α), |Kn(α)| ≤ e−rn for all n ≥ N2

)
≥ 1− α.

Often a user of a stochastic root-finding algorithm is interested in how much

simulation effort is needed to achieve a certain confidence in the algorithm’s output.

For example, it would be convenient if the user could specify an accuracy δ > 0

as well as a confidence parameter α ∈ (0, 1), and the search algorithm would ter-

minate automatically as soon as it locates an estimate X̂n that is contained in a

δ-ball of x∗ with at least probability 1−α. Proposition 9 provides exactly a method

for achieving this. Let X̂n be the midpoint of Kn(α) after n PBA iterations. If

τ = inf {n ≥ 1 : |Kn(α)| ≤ 2δ} then Proposition 9 implies that

P
(
|X̂τ − x∗| > δ

)
≤ α/2.

Proposition 10 furthermore shows that if pc ∈ [0.85, 1) then, for r ∈ (0, d− qcβ),

P
(
τ ≤ − log 2δ

r
∧N2

)
≤ α

2
.

For fixed r, pc and α, N2 is a fixed constant, and

P
(
τ ≤ − log 2δ

r

)
≤ α

2
, as δ → 0.

This provides a probabilistic guarantee that the PBA returns, in geometric time,

an estimate X̂τ that is inside of a δ-ball of x∗.
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3.5 Asymptotic Rate of Convergence in Macro Time

In the previous sections, we showed that the PBA provides finite-time guaran-

tees in the form of true confidence intervals for x∗. While this is an exciting new

development for stochastic root-finding algorithms, it is also important to better

understand the asymptotic behavior of the PBA. The results from previous sec-

tions (Theorem 2, 5 and 6) suggest that the PBA produces an estimator X̂n that

converges towards x∗ at a geometric rate in macro time. We now confirm this

explicitly.

One simple estimator that achieves this convergence rate is choosing a point

of maximum posterior density at each iteration, that is, XM
n ∈ argmaxx∈[0,1] fn(x).

Such a point XM
n always exists, though is usually not unique, in which case we can

choose a point at random out of the set of possible candidates. To determine XM
n

it is not necessary to construct the confidence interval Jn(α), which can save com-

putational power if a user is only interested in a quickly converging point estimator

of x∗.

Theorem 7. Suppose that Assumption A in Section 3.1 holds and pc ∈ [0.85, 1).

For any r > 0 satisfying ( √
2rβ

d− r − qcβ

)2

< 1, (3.21)

the following convergence properties hold:

(a) There exists a set B ⊆ Ω of probability one, such that for all ω ∈ B there

exists N(ω) ∈ N such that x∗ ∈ Jn(e−rn)(ω) for all n ≥ N(ω), that is,

P
(

lim
n→∞

1
{
x∗ ∈ Jn(e−rn)

}
= 1
)

= 1;

(b) E [|Jn(e−rn)|] = O(e−rn);
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(c) ern|Jn(e−rn)| → 0 almost surely as n→∞;

(d) For every n ∈ N, let X̂n be an arbitrary point in Jn(e−rn), then E[|X̂n−x∗|] =

O(e−rn);

(e) ern|X̂n − x∗| → 0 almost surely as n→∞;

(f) For every n ∈ N, let XM
n ∈ argmaxx∈[0,1] fn(X), then E[|XM

n −x∗|] = O(e−rn);

(g) ern|XM
n − x∗| → 0 almost surely as n→∞.

Proof. Part (a): By Proposition 7 it holds that P(x∗ /∈ Jn(e−rn)) ≤ e−rn for all

n ∈ N, hence
∑∞

n=0 P (x∗ /∈ Jn(e−rn)) ≤ ∑∞n=0 e
−rn < ∞ and, by the Lemma of

Borel-Cantelli, it follows that

P
(

lim
n→∞

1{x∗ ∈ Jn(e−rn)} = 0
)

= 0.

Part (b): By the law of total probability,

E[|Jn(e−rn)|] = E
[
|Jn(e−rn)|

∣∣|Jn(e−rn)| ≤ e−rn
]
P
(
|Jn(e−rn)| ≤ e−rn

)
+ E

[
|Jn(e−rn)|

∣∣|Jn(e−rn)| > e−rn
]
P
(
|Jn(e−rn)| > e−rn

)
≤ e−rn + P

(
|Jn(e−rn)| > e−rn

)
,

which follows by the trivial bounds P(·) ≤ 1 and |Jn(e−rn)| ≤ 1. It remains to

show that

P
(
|Jn(e−rn)| > e−rn

)
≤ e−rn (3.22)

for all n ≥ N3(r), where N3(r) ∈ N is a constant depending on r (we often just

write N3). Since pc ∈ [0.85, 1) and r < (d − qcβ) Proposition 8 shows that (3.22)

holds for all n ≥ N1(e−rn, r, pc), where N1 is defined by (3.11). Consequently, to
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show that there exists a constant N3 such that (3.22) holds for all n ≥ N3 it is

sufficient to show that N1(e−rn, r, pc) grows slower than n in n, that is,

lim sup
n→∞

N1(e−rn, r, pc)

n
< 1. (3.23)

Using the definition of N1,

N1(e−rn, r, pc)

n
=

2 log(2/e−rn)
(

β
d−r−qcβ

)2

n

=
2 log 2

(
β

d−r−qcβ

)2

n
+ 2r

(
β

d− r − qcβ

)2

,

and (3.23) holds if

2r

(
β

d− r − qcβ

)2

< 1,

which is assured by the assumption that r > 0 satisfies (3.21).

Part (c): Let r∗ > r′ > r > 0 be three constants satisfying (3.21). Then, as

seen in the proof of part (b), it holds that P(|Jn(e−r
′n)| > e−r

′n) ≤ e−r
′n for large

n ≥ N3. Also, |Jn(e−rn)| ≤ |Jn(e−r
′n)| for all n ∈ N. Hence, for n ≥ N3,

P
(
|Jn(e−rn)| > e−r

′n
)
≤ P

(
|Jn(e−r

′n)| > e−r
′n
)
≤ e−r

′n

P
(
|Jn(e−rn)| > ern−rn−r

′n
)
≤ e−r

′n

P
(
ern|Jn(e−rn)| > e−(r′−r)n) ≤ e−r

′n.

Now consider arbitrary ε > 0 and define Nε = log(1/ε)/(r′ − r). Then

P
(
ern|Jn(e−rn)| ≥ ε

)
≤ e−r

′n

for all n ≥ Nε ∨N3. Therefore,

∞∑
n=1

P
(
ern|Jn(e−rn)| > ε

)
≤ Nε ∨N3 +

1

1− e−r <∞.
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By the Lemma of Borel-Cantelli it follows that P
(
ern|Jn(e−rn)| > ε i.o.

)
= 0. Since

ε > 0 was chosen arbitrarily the claim follows.

Part (d): Note that
{
|X̂n − x∗| ≤ e−rn

}
⊆
{
|Jn(e−rn)| ≤ e−rn, x∗ ∈ Jn(e−rn)

}
,

and Theorem 5 shows that

P
(
|X̂n − x∗| ≤ e−rn

)
≥ 1− e−rn, (3.24)

for n ≥ N1(e−rn, r, pc). As seen in the proof of part (b), there exists a constant N3

such that (3.24) holds for all n ≥ N3. Then, for all n ≥ N3,

E
[
|X̂n − x∗|

]
= E

[
|X̂n − x∗|

∣∣|X̂n − x∗| ≤ e−rn
]
P
(
|X̂n − x∗| ≤ e−rn

)
+ E

[
|X̂n − x∗|

∣∣|X̂n − x∗| > e−rn
]
P
(
|X̂n − x∗| > e−rn

)
≤ e−rn + e−rn,

where we use the trivial bounds |X̂n − x∗| ≤ 1 and P(·) ≤ 1.

Part (e): Let r∗ > r′ > r > 0 be three constants satisfying (3.21). Then, as

seen in the proof of part (d),

P
(
|X̂n − x∗| > e−r

′n
)
≤ e−r

′n, (3.25)

for all n ≥ N3. By the same arguments as in part (c) the claim follows.

Parts (f) and (g): Note that XM
n ∈ Jn(α) for all α ∈ (0, 1) and hence (f) and

(g) follow immediately by (d) and (e).

This shows that the PBA produces an estimator X̂n that converges to x∗ at a

geometric rate. This estimator, however, is not equal to Xn, that is, the median

of the posterior density fn. Although Theorem 2 and 7 as well as empirical results

suggest that the sequence of medians (Xn)n also converges to x∗ at a geometric
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rate in macro time, there does not exist a formal proof of this result at the moment,

and we state it as a conjecture.

Conjecture 1. Suppose that Assumption A in Section 3.1 holds. Denote with

(Xn)n the sequence of medians defined by the PBA. Then there exists r > 0 such

that E[|Xn − x∗|] = O(e−rn).

At first sight, Conjecture 1 does not seem relevant since Theorem 7 already

provides a simple estimator, namely XM
n , that converges to x∗ at a geometric

rate. However, when investigating the rate of convergence in wall-clock time in

the following section, the difference between XM
n and Xn will be rather significant

as the number of function evaluations required by the test of power one between

two macro iterations and, in turn, the convergence rate in wall-clock time, strongly

depends on the location of the actual measurement pointXn. Furthermore, altering

the PBA in such a way that it always evaluates the function g at XM
n instead of

the median Xn will not provide a useful stochastic root-finding algorithm as this

variation mimics noise-free bisection search and a single wrong signal Z̃n leads the

search astray.

As a final remark, the proof of a slightly weaker conjecture on the sample

path behavior of (Xn)n would be sufficient to provide useful convergence results in

wall-clock time.

Conjecture 2. Suppose that Assumption A in Section 3.1 holds. Denote

with (Xn)n the sequence of medians defined by the PBA. For r > 0 define

Mr =
∑∞

i=0 1{|Xi − x∗| > e−ri}. Then there exists r > 0, such that E[Nr] <∞.

Let us show that Conjecture 1 implies Conjecture 2. By Conjecture 1 there

exists r > 0 and constant N4 such that E[|Xn − x∗|] ≤ e−rn for all n ≥ N4.
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Consider 0 < r′ < r. Then

E
[
Mr′
]

= E

[
∞∑
i=0

1
{
|Xi − x∗| > e−r

′i
}]

=
∞∑
i=0

P
(
|Xi − x∗| > e−r

′i
)

≤
∞∑
i=0

er
′iE
[
|Xi − x∗|

]
≤

N4−1∑
i=0

er
′i +

∞∑
i=N4

er
′ie−ri <∞,

where the first inequality follows by Markov’s inequality, the second inequality by

the trivial bound E[|Xi − x∗|] ≤ 1 and the third by the condition that 0 < r′ < r.

3.6 Asymptotic Rate of Convergence in Wall-Clock Time

In this section we study the rate of convergence of the PBA in wall-clock time,

that is, Tn =
∑n

i=0Ni, where Ni is the stopping time of the test of power one used

to generate the signal Z̃i(Xi).

The convergence behavior of the PBA in wall-clock time strongly depends on

the form of the function g, especially its behavior at the root x∗. In Section 3.6.1

we first investigate the rate of convergence when the function g is discontinuous at

the root x∗. In Section 3.6.2 we then consider the case when g(x)→ 0 as x→ x∗.

Recall, there is a strong relationship between the functions g and g̃ and we always

assume that if a property (such as a linear growth condition, or continuity) holds

for g, then it also holds for g̃, and vice versa.
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3.6.1 The Case where g(x) is Discontinuous at x∗

The case where g(x) has a discontinuity at x∗ appears in settings such as edge

detection (Castro and Nowak, 2008a) or in simulation-optimization problems with

nonsmooth objective functions. For the latter case, Lim (2011) shows that an

SA algorithm (under modest technical assumptions) produces estimates of x∗ that

satisfy E[|XT − x∗|] = O(T−1). We show in Corollary 3 that—at least for the

one-dimensional case—this rate is geometric when using the PBA. To this end,

we extend Theorem 7 to show that the length of the confidence intervals J(e−rn)

converges to 0 at a geometric rate in wall clock time as well.

Proposition 11. Suppose that Assumption A in Section 3.1 holds. Let

pc ∈ [0.85, 1), and r > 0 such that (3.21) holds. If there exists c > 0 such

that |g(x)| ≥ c for all x 6= x∗, then there exists r′ > 0 such that the sequence(
|Jn(e−rn)|er′Tn

)
n

is tight, where Jn(e−rn) is the (1 − e−rn)-confidence interval of

x∗ defined by (3.8).

Proof. First note that the condition |g(x)| > c for all x 6= x∗ implies that |g̃(x)| > c′

for all x 6= x∗ where c′ > 0 is some constant, since the noise distribution has a

density and 0 median.

Consider a measurement point Xi and assume that g̃(Xi) > 0 (if g̃(Xi) < 0 the

arguments follow analogously). DefineN1
i = inf{m ≥ 1 : Si,m ≥ km} (this stopping

time differs from Ni as it only considers exits through the upper boundary), where

the boundary (km)m is defined in (B.6), and

N c
i = inf

{
m ≥ 1 : Si,m − 2

m∑
j=1

Qj ≥ 2kn

}
,

where (Qj)j is a sequence of independent Bernoulli((g̃(Xi) − c′)/2) random
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variables. By construction, Ni ≤ N1
i ≤ N c

i for all i ∈ N0 and it follows that

Tn ≤
n∑
i=0

N c
i . (3.26)

Note that (N c
i )i forms an iid sequence of random variables, each corresponding to

an independent first hitting time of the upper boundary (km)m by a simple random

walk with drift c. Furthermore, E[N c
i ] < ∞ (see, for example, Theorem 4.5.1 in

Gut, 2009).

Let ε > 0 and define N5 large enough such that

P
(
|Jn(e−rn)| < e−rn

)
≥ 1− ε/2, (3.27)

for all n ≥ N5 (such an N5 always exists as shown in (3.22)). Next, choose

0 < r′ < r/E[N c
i ], which always exists since r > 0 and 0 < E[N c

i ] < ∞. The

bound (3.26) implies that

P
(
|Jn(e−rn)|er′Tn ≤ 1

)
≥ P

(
|Jn|er

′∑n
i=0N

c
i ≤ 1

)
,
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then, by the law of total probability and for arbitrary n ≥ N5,

P
(
|Jn(e−rn)|er′

∑n
i=0N

c
i ≤ 1

)
= P

(
|Jn(e−rn)|er′

∑n
i=0N

c
i ≤ 1

∣∣∣|Jn(e−rn)| < e−rn
)
P
(
|Jn(e−rn)| < e−rn

)
+ P

(
|Jn(e−rn)|er′

∑n
i=0N

c
i ≤ 1

∣∣∣|Jn(e−rn)| ≥ e−rn
)
P
(
|Jn(e−rn)| ≥ e−rn

)
≥ P

(
|Jn(e−rn)|er′

∑n
i=0N

c
i ≤ 1||Jn(e−rn)| < e−rn

)
(1− ε/2) (by (3.27))

≥ P
(
e−rner

′∑n
i=0N

c
i ≤ 1

)
(1− ε/2)

= P

(
−rn+ r′

n∑
i=0

N c
i ≤ 0

)
(1− ε/2)

= P

(
r′

n∑
i=0

N c
i ≤ rn

)
(1− ε/2)

= P

(
1

n

n∑
i=0

N c
i ≤

r

r′

)
(1− ε/2)

≥ P

(
1

n

n∑
i=0

N c
i ≤ E[N c

i ] + δ

)
(1− ε/2),

where δ = r/r′ − E[N c
i ] > 0. By the strong law of large numbers, there ex-

ists N6 ∈ N such that P(n−1
∑n

i=0N
c
i ≤ E[N c

i ] + δ) ≥ (1 − ε/2) for all n ≥ N6

(even though the denominator is n instead of (n + 1) the bound still holds since

E[N c
i ] <∞). Now, for n ≥ N5 ∨N6, it holds that

P
(
|Jn(e−rn)|er′Tn ≤ 1

)
≥ (1− ε/2)(1− ε/2) > 1− ε, (3.28)

(here we assume that ε < 1, but if ε ≥ 1 then the bound (3.28) holds trivially) and

hence lim infn→∞ P(|Jn|(e−rn)er
′Tn ≤ 1) > 1 − ε. Since this holds for any chosen

ε > 0 the sequence (|Jn(e−rn)|er′Tn)n is tight.

As an almost immediate consequence, (XM
n )n, that is, a sequence of points with

maximum posterior density, converges to x∗ at a geometric rate in wall-clock time

if g is discontinuous at x∗.
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Corollary 3. Assume the same setting as in Proposition 11.

(a) Let X̂n be an arbitrary point in Jn(e−rn). Then there exists r′ > 0 such that(
|X̂n − x∗|er′Tn

)
n

is tight;

(b) Let XM
n ∈ argmaxx∈[0,1] fn(x). Then there exists r′ > 0 such that(

|XM
n − x∗|er

′Tn
)
n

is tight.

Proof. Part (a): In the proof of Proposition 11, replace (3.27) by

P(|X̂n − x∗| < e−rn) ≥ 1− ε/2,

for all n ≥ N7 (such a constant N7 always exists as shown in (3.24)). By the same

arguments given in the proof of Proposition 11 the claim follows.

Part (b): As XM
n ∈ Jn(α) for all α ∈ (0, 1), the claim follows by (a).

3.6.2 The Case where g(x) is Continuous at x∗

We now consider the case where g(x), and in turn g̃(x), are continuous at x∗, that

is, g(x)→ 0 and g̃(x)→ 0 as x→ x∗. We believe this to be the dominant setting

in applications, and hence the more important of the two cases.

Using the PBA with power one tests in this setting results in complex behavior

arising from the fact that the power one test requires more samples the closer to x∗

we are measuring. Let θ denote the drift of a simple random walk and N(|θ|) the

stopping time of the corresponding test of power one. A sample path argument

shows that E[N(|θ|)] is decreasing in |θ|, and it can be shown that E[N(|θ|)]→∞

as |θ| → 0. More precisely, Farrell (1964) shows that for any test of power one for
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the hypothesis θ > 0 versus θ < 0 it holds that limθ→0 |θ|2E[N(|θ|)] =∞ (as long

as the noise distribution belongs to the exponential family). So, in wall-clock time

the sequence (Xn)n slows down dramatically as g(Xn) → 0, posing the following

question: What kind of rate of convergence can we still achieve in this setting?

To at least partly answer the above question we first show that (Xn)n converges

to x∗ at a rate that is slower than O(T
−1/2
n ), that is, the PBA fails to achieve the

same asymptotic rate of convergence as optimal SA-type algorithms are able to

attain. While this result is somewhat discouraging, we then show that by averaging

the samples (Xn)n a sequence of estimators can be constructed whose expected

absolute residuals converge at an asymptotic rate that is only slightly slower than

the optimal O(T
−1/2
n ) rate. This result, however, assumes that Conjecture 2 as

stated in Section 3.5 is true.

Theorem 8. Suppose that

(i) g̃(x) is bounded away from 0, when x is bounded away from x∗;

(ii) there exists an ε > 0 and a constant c > 0, such that |g̃(x)| ≤ c|x − x∗| for

all x ∈ (x∗ − ε, x∗ + ε);

(iii) (Xn)n is a sequence of random variables in [0, 1] such that P(Xn 6= x∗) = 1

for all n ∈ N and

Xn → x∗ almost surely as n→∞;

(iv) at each measurement point Xn a test of power one is used to construct the

signal Z̃n(Xn) and Nn denotes the hitting time of the corresponding test of

power one.

Let Tn =
∑n

i=0 Ni be the total simulation budget spend up to and including the

(n+ 1)st measurement point. Then the sequence
(
|Xn − x∗|(Tn)1/2

)
n

is not tight.
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In order to prove this theorem we need to better understand the distribution

of the hitting time Nn, especially as Xn approaches x∗. More specifically, we need

to be able to say something about P(m ≤ Nn) as m → ∞ and n → ∞. The

next lemma (Farrell, 1964) provides the necessary insight into the distribution

of Nn. Let us motivate its statement intuitively. The hitting time Nn(|g̃(Xn)|)

of the test of power one depends on the drift of the random walk Sn,m(Xn), that

is, g̃(Xn). Since Xn → x∗ and g̃(x) → 0 as x → x∗, the sequence of hitting

times (Nn(Xn))n behaves pathwise like a sequence (N(θn))n, where θn → 0. In

other words, providing a statement on P(m ≤ Nn(Xn)) is, in some sense, equivalent

of providing a statement on P(m ≤ N(θn)) for an arbitrary sequence that satisfies

θn → 0 as n→∞. Next, if m is very small and n very large, then it is reasonable

that P(m ≤ N(θn)) ≥ 1 − γ, since P(m ≤ N(0)) ≥ 1 − γ and θn → 0 as n → ∞.

Based on this observation it is now possible to make n(m) a function of m that

satisfies n(m)→∞ as m→∞ (in fact, n(m) converges to∞ much faster than n),

such that

lim inf
m→∞

P
(
m ≤ N(θn(m))

)
≥ 1− γ.

Lemma 7 (Farrell, 1964). Let Sn(θ) =
∑n

i=1 ξi(θ) be the random walk with incre-

ments (ξi)i and the distribution of the increments (ξi)i belongs to the exponential

family. Let N(θ) = inf{n ≥ 1 : Sn(θ) ≥ |kn|} be the stopping variable of a test of

power one of the hypothesis θ > 0 versus the alternative θ < 0, where (kn)n is the

curved boundary of this test, such that P(N(0) <∞) = γ < 1. Let 0 < ρ < 1, and

(θn)n be a sequence such that 0 < θn ≤ ρkn/n for all n ≥ n0, where n0 ∈ N is a

constant, then

lim inf
n→∞

P(n ≤ N(θn)) ≥ 1− γ.

Now, we are ready to provide the proof of Theorem 8.
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Proof of Theorem 8. Since (|Xn − x∗|2Tn) ≥ (|Xn − x∗|2Nn) it is enough to show

that (|Xn − x∗|2Nn)n is not tight. Let D ⊆ Ω be the set of probability one where

limn→∞Xn = x∗ and Xn 6= x∗ for all n ∈ N. Such a set exists by Theorem 4 and

Assumption (iii). Then, by assumption (ii), for every ω ∈ D there exists N ε(ω)

such that |Xn− x∗|c ≥ |g̃(Xn)| for all n ≥ N ε(ω). Hence it is enough to show that

the sequence (g̃(Xn)2Nn)n is not tight.

For ω ∈ D it holds that |g̃(Xn)(ω)| → 0 as n → ∞ and |g̃(Xn)(ω)| > 0 for all

n ∈ N. Choose 0 < ρ < 1 and let (mi(ω))i and (qi(ω)i) be integer sequences such

that mi(ω)→∞ and qi(ω)→∞ as i→∞, and such that

ρkmi(ω)

mi(ω)
≥ |g̃(Xqi(ω))(ω)| ≥ ρkmi(ω)+1

mi(ω) + 1
, (3.29)

where (kn)n is the curved boundary of the test of power one used at each iteration.

Then, by (3.29) and the fact that limn→∞ n
1/2kn =∞ (this is a necessary condition

for the test of power one, since otherwise P(N(0) < ∞) = 1 by the law of the

iterated logarithm),

lim
i→∞

(mi(ω) + 1)1/2|g̃(Xqi(ω))(ω)| =∞. (3.30)

So, for arbitrary M > 0 there exists N8(ω) such that mi(ω)(g̃(Xqi(ω)))
2 > M , and

hence

mi ≥
M

(g̃(Xqi(ω)))2
, (3.31)

for all i ≥ N8(ω). This implies that for i ≥ N8(ω)

P
(
Nqi >

M

(g̃(Xqi))
2

∣∣∣∣ |g̃(Xqi)|
)

(ω) ≥ P
(
Nqi ≥ mi

∣∣ |g̃(Xqi)|
)
(ω), (3.32)

which follows since we make the right-hand side in the conditional probability

larger and hence reduce this probability.
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Therefore, for almost every ω ∈ D,

P
(
g̃(Xqi)

2Nqi > M
∣∣ |g̃(Xqi)|

)
(ω) = P

(
Nqi >

M

(g̃(Xqi))
2

∣∣∣∣ |g̃(Xqi)|
)

(ω),

and (3.32) shows that

lim inf
i→∞

P
(
g̃(Xqi(ω))

2Nqi(ω) > M
∣∣ |g̃(Xqi(ω))

)
≥ lim inf

i→∞
P
(
Nqi(ω) ≥ mi

∣∣ |g̃(Xqi(ω))|
)
.

Recall that Lemma 7 shows that

lim inf
i→∞

P
(
Nqi ≥ mi

∣∣ |g̃(Xqi)|
)
(ω) ≥ 1− γ > 0.

Since this holds for almost all ω ∈ D, it follows that

lim inf
i→∞

P((g̃(Xqi))
2Nqi > M) > 1− γ,

and hence lim infn→∞ P((g̃(Xn))2Nn > M) > 1−γ. Since M was chosen arbitrarily

and γ < 1 it follows that (g̃(Xn)2Nn)n is not tight.

The geometric rate of convergence for the PBA is shown in terms of the width

of the confidence interval Jn(e−rn), respectively, XM
n , in Theorem 7. Theorem 8,

on the other hand, shows that
(
|Xn − x∗|(Tn)1/2

)
n

is not tight, where Xn is the

median of the posterior density. As it is not necessarily the case that the me-

dian Xn falls into the confidence interval Jn(e−rn) at every iteration, the next

proposition shows that
(
|Jn(αn)|(Tn)1/2

)
n

cannot be tight either. Whether the

sequence
(
|X̂n − x∗|(Tn)1/2

)
n
, where X̂n is an arbitrary point in Jn(αn) and the

sequence
(
|XM

n − x∗|(Tn)1/2
)
n
, are tight or not is still an open question.

Proposition 12. Consider r > 0 such that (3.21) holds. Under the same setting

as in Theorem 8 the sequence (|Jn(e−rn))|(Tn)1/2)n is not tight.
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Proof. In this proof we write Jn instead of Jn(e−rn). Assume that (|Jn|(Tn)1/2)n

is tight. Then, by the same arguments as in the proof of Theorem 8 this implies

that

P(lim inf
n→∞

|Jn|2Nn =∞) = 0.

Further, the proof of Theorem 8 shows that there exists a set D1 ⊆ Ω with

positive probability mass on which lim infn→∞(Xn − x∗)2Nn = ∞. This implies

that for all ω ∈ D1, there exists N9(ω) ∈ N such that |Jn| < |Xn − x∗| for all

n ≥ N9(ω).

Next, Proposition 7 part (a) shows that on a set of probability one, say D2,

limn→∞ 1{x∗ ∈ Jn} = 1 holds. So, for every ω ∈ D2 there exists N10(ω) such that

x∗ ∈ Jn for all n ≥ N10(ω).

Consequently, (1) x∗ ∈ Jn(ω) and (2) Xn(ω) ∈ Jn(ω) for all n ≥ N11(ω) =

N9(ω) ∨ N10(ω) and ω ∈ D3 = D1 ∩D2 (the set D3 has positive probability). In

other words, no more measurements are taken inside of the interval Jn after time

N11(ω) and the interval Jn contains from time N11(ω) onwards the sought-after

point x∗.

Based on the above observations we now construct a contradiction to Xn → x∗

almost surely. For this, recall how the interval Jn is constructed: at time N11(ω)

it is a union of a finite number of disjoint intervals defined by the measurement

points (Xi)
N11(ω)−1
i=0 and exactly one such interval contains x∗. Let us denote this

interval that contains x∗ at time N11(ω) as I∗(ω). Now, consider what can happen

to this interval from time N11(ω) onwards:

(a) The whole interval I∗(ω) cannot leave the set Jn(α), since otherwise (1) would

be violated,
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(b) The interval I∗(ω) cannot shrink further, since such a shrinking would require

that Xn ∈ I∗(ω) violating (2) (since I∗(ω) ⊆ Jn).

Finally, (a) and (b) imply that for all n ≥ N11(ω):

(i) |I∗(ω)| > 0 stays constant, and x∗ is in the interior of I∗. (Since, by Assump-

tion A(ii), x∗ cannot be on the endpoints of I∗ which correspond to previous

measurement points. If one of the endpoints is either 0 or 1, then we allow

that x∗ = 0 or x∗ = 1 can occur.)

(ii) Xn /∈ I∗.

Since this holds for all ω ∈ D3, which is a set of positive probability, this contradicts

Xn → x∗ almost surely (Theorem 4).

The last two propositions show that if we consider the sequence (Xn)n or the

sequence of confidence intervals (Jn)n we cannot recover the optimal rate of con-

vergence O(T
−1/2
n ). But, an averaging of the sequence (Xn)n, similar to Polyak-

Ruppert averaging for SA algorithms (Polyak, 1990; Ruppert, 1991), might be

helpful for improving the asymptotic rate of convergence.

For the PBA a natural averaging estimator of x∗ would beXT = 1/Tn
∑n

i=0NiXi.

Intuitively, such an averaging estimator is very appealing, since the estimator is

likely to spend a lot of time at measurement points close to x∗, and hence the

average should be dominated by such points.

Analyzing such an estimator seems to be extremely challenging, and it is still an

open question if this averaging (or any other averaging scheme) is able to recover

the same asymptotic convergence rate as SA-type algorithms are able to attain,
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that is, O(T−1/2) in terms of convergence in distribution. Empirical experiments

show that this might be the case; see Chapter 4.

The next theorem shows that, under mild assumptions on the underlying func-

tion g, respectively, g̃, a slightly different averaging scheme can be used to almost

recover this rate of convergence, that is, the expected absolute residuals converge

at the rate O
(
T
− 1

2
+ε

n

)
for any ε > 0 (which also implies convergence in distri-

bution at this rate). This theorem, however, assumes that Conjecture 2 holds,

something that is still an open question.

Theorem 9. Suppose that

(a) Assumption A in Section 3.1 holds;

(b) Conjecture 2 in Section 3.5 is true, that is, there exists a constant r > 0 such

that E [Mr] <∞, where

Mr =
∞∑
i=0

1
{
|Xi − x∗| > e−ri

}
;

(c) there exists a constant k > 0, such that |g̃(x)| ≥ k|x− x∗| for all x ∈ [0, 1].

For ε > 0 define

X̂n(ε) =
1∑n

i=0N
1
2
−ε

i

n∑
i=0

N
1
2
−ε

i Xi. (3.33)

Then E
[
|X̂n(ε)− x∗|T

1
2
−ε

n

]
= O(1).

Assumption (c) is formulated in terms of g̃, but for reasonable noise distribu-

tions it translates to a similar assumption on the function g. This assumption is

necessary such that g̃(x) is not too “flat” around the root x∗, which is considered
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a difficult case for stochastic root-finding problem in terms of asymptotic con-

vergence behavior. Similar assumptions are needed to prove rate of convergence

results for SA-type algorithms, for example, they often assume that g′(x∗) 6= 0 (see

discussion in Section 1.3).

Proof. The claim follows trivially if ε ≥ 1/2 by the fact that |X̂n(ε)− x∗| ≤ 1. So

assume that 0 < ε < 1/2 and define γ > 0 and δ < 1/2 such that

δ =
1

2(1 + γ)
=

1

2
− ε. (3.34)

It is sufficient to show that lim supn→∞ E
[
|X̂n(ε)− x∗|T δn

]
<∞.

Observe that∣∣∣X̂n(ε)− x∗
∣∣∣T δn

=

(∣∣∣X̂n(ε)− x∗
∣∣∣1/δ Tn)δ

=

∣∣∣∣∣ 1∑n
i=0 N

δ
i

n∑
i=0

N δ
iXi − x∗

∣∣∣∣∣
1/δ

Tn

δ

=

∣∣∣∣∣ 1∑n
i=0 N

δ
i

n∑
i=0

N δ
i (Xi − x∗)

∣∣∣∣∣
1/δ

Tn

δ

=

( 1∑n
i=0N

δ
i

)1/δ
∣∣∣∣∣
n∑
i=0

N δ
i (Xi − x∗)

∣∣∣∣∣
1/δ

Tn

δ

≤

( 1∑n
i=0 N

δ
i

)1/δ
(

n∑
i=0

N δ
i |Xi − x∗|

)1/δ

Tn

δ

≤

( 1

(
∑n

i=0Ni)
δ

)1/δ( n∑
i=0

N δ
i |Xi − x∗|

)1/δ

Tn

δ

,
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since ‖x‖l ≥ ‖x‖1 for 0 < l < 1. Then, by the definition of Tn,

=

( n∑
i=0

N δ
i |Xi − x∗|

)1/δ
δ

=
n∑
i=0

N δ
i |Xi − x∗|,

and therefore

E
[∣∣∣X̂n(ε)− x∗

∣∣∣T δn] ≤ E

[
n∑
i=0

N δ
i |Xi − x∗|

]

= E

[
n∑
i=0

E
[
N δ
i |Xi − x∗|

∣∣ G̃i−1

]]
,

where the last equality follows by the tower property of the conditional expectation.

Recall that G̃n is the σ-algebra generated by the measurement points (Xi)
n
i=0 and

the signals (Z̃i)
n
i=0 for n ∈ N0, and G̃−1 is the trivial σ-algebra. The remainder of

the proof shows that the limit superior of the right-hand side is bounded.

As before denote with N(θ) the stopping time of the test of power one for a

simple random walk with drift θ and curved boundary (kn)n given in (B.6) (this

corresponds to the test used to generate the signals (Z̃n)n). As discussed in (B.7),

this test satisfies

lim sup
θ→0

E [N(θ)] θ−2 log(|θ|−1) <∞.

Therefore, there exists a constant θ̃ > 0 such that

E[N(θ)] ≤
{
θ̃−(2+γ), if |θ| > θ̃,

|θ|−(2+γ), if 0 < |θ| ≤ θ̃.
(3.35)

Let r̄ > 0 such that E[Mr̄] < ∞ (which exists by Assumption (b)) and consider

r ∈ (0, r̄), then

E

[
∞∑
i=0

1
{
k|Xi − x∗| > e−ri

}]
<∞. (3.36)
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Recall that k is the slope of a lower linear bound on |g̃(x)|, see Assumption (c).

For every fixed realization ω ∈ Ω define three disjoint index sets:

I1
n(ω) =

{
i ∈ {0, . . . , n} : k|Xi(ω)− x∗| > θ̃

}
I2
n(ω) =

{
i ∈ {0, . . . , n} : Xi(ω) /∈ I1

n(ω), k|Xi(ω)− x∗| > e−ri
}

I3
n(ω) =

{
i ∈ {0, . . . , n} : Xi(ω) /∈ I1

n(ω), k|Xi(ω)− x∗| ≤ e−ri
}
.

Then

n∑
i=0

E
[
N δ
i |Xi − x∗|

∣∣ G̃i−1

]
(ω) =

3∑
j=1

n∑
i=0

E
[
N δ
i |Xi − x∗|1{i ∈ Ijn}

∣∣ G̃i−1

]
(ω), (3.37)

and we show that the limit superior of the expectation is finite for each of the three

outer summands on the right-hand side separately.

Consider the first summand in (3.37). Then, for almost every ω ∈ Ω,

n∑
i=0

E
[
N δ
i |Xi − x∗|1{i ∈ I1

n}
∣∣ G̃i−1

]
(ω) ≤

n∑
i=0

E
[
N δ
i 1{i ∈ I1

n}
∣∣ G̃i−1

]
(ω)

≤
n∑
i=0

E
[
Ni1{i ∈ I1

n}
∣∣ G̃i−1

]
(ω), (3.38)

where the first inequality follows by the trivial bound |Xn−x∗| ≤ 1 and the second

inequality by the fact that δ < 1/2. Note that 1{i ∈ I1
n} is G̃i−1-measurable, and

it holds that E[Ni1{i ∈ I1
n}|G̃i−1] ≤ θ̃−(2+γ), which follows by Assumption (c) and

(3.35). Therefore

n∑
i=0

E
[
Ni1{i ∈ I1

n}
∣∣ G̃i−1

]
(ω) ≤

n∑
i=0

1{i ∈ I1
n}E

[
Ni1{i ∈ I1

n}
∣∣ G̃i−1

]
(ω)

≤
n∑
i=0

1{i ∈ I1
n}θ̃−(2+γ)(ω). (3.39)

Combining (3.38) and (3.39) shows that, for almost all ω ∈ Ω,

n∑
i=0

E
[
N δ
i |Xi − x∗|1{i ∈ I1

n}
∣∣ G̃i−1

]
(ω) ≤

n∑
i=0

1{i ∈ I1
n}θ̃−(2+γ)(ω),
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and taking expectations on both sides yields

E
[ n∑
i=0

E
[
N δ
i |Xi − x∗|1{i ∈ I1

n}
∣∣ G̃i−1

]]
≤ θ̃−(2+γ)E

[
|I1
n|
]
.

Now let ñ ∈ N be such that e−rn < θ̃ for all n ≥ ñ, then |I1
n| ≤ ñ + Mr for all

n ∈ N, and hence E[|I1
n|] ≤ ñ+ E[Mr] for all n ∈ N, which shows that

lim
n→∞

E[|I1
n|] <∞, (3.40)

since E[Mr] <∞ by Assumption (b). This shows that

lim sup
n→∞

E
[ n∑
i=0

E
[
N δ
i |Xi − x∗|1{i ∈ I1

n}
∣∣ G̃i−1

]]
<∞,

that is, the limit superior of the expectation of the first summand in (3.37) is

bounded.

Consider the second summand in (3.37). Since 1{i ∈ I2
n} and Xi are G̃i−1-

measurable it holds that, for almost all ω ∈ Ω,

n∑
i=0

E
[
N δ
i |Xi − x∗|1{i ∈ I2

n}
∣∣ G̃i−1

]
(ω)

=
n∑
i=0

1{i ∈ I2
n}|Xi − x∗|E

[
N δ
i 1{i ∈ I2

n}
∣∣ G̃i−1

]
(ω)

≤
n∑
i=0

1{i ∈ I2
n}|Xi − x∗|E

[
Ni1{i ∈ I2

n}
∣∣ G̃i−1

]δ
(ω), (3.41)

which follows by Jensen’s inequality. Next,

E
[
Ni1{i ∈ I2

n}
∣∣ G̃i−1

]
= E

[
N(|g̃(Xi)|)1{i ∈ I2

n}
∣∣ G̃i−1

]
≤ E

[
N(k|Xi − x∗|)1{i ∈ I2

n}
∣∣ G̃i−1

]
,

which follows by Assumption (c) and the fact that E [N(|θ|)] is non-increasing in

the drift |θ|, which can be seen by a sample path argument. By definition of the

set I2
n it holds that k|Xi − x∗|1{i ∈ I2

n} ≤ θ̃, and (3.35) shows that

E
[
Ni1{i ∈ I2

n}
∣∣ G̃i−1

]
≤ (k|Xi − x∗|)−(2+γ).
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Combining this with (3.41) yields

n∑
i=0

E
[
N δ
i |Xi − x∗|1{i ∈ I2

n}
∣∣ G̃i−1

]
(ω)

≤
n∑
i=0

1{i ∈ I2
n}|Xi − x∗| (k|Xi − x∗|)−δ(2+γ) (ω)

= k−δ(2+γ)

n∑
i=0

1{i ∈ I2
n}|Xi − x∗|1−δ(2+γ)(ω) (3.42)

≤ k−δ(2+γ)|I2
n|(ω), (3.43)

where the last inequality follows by the trivial bound |Xi−x∗| ≤ 1 and the fact that

1− δ(2 +γ) > 0. Since |I2
n| ≤Mr for all n ∈ N it follows that E[|I2

n|] ≤ E[Mr] <∞

for all n ∈ N and so

lim
n→∞

E
[
|I2
n|
]
<∞. (3.44)

Now taking expectations on both sides in (3.43), and since (3.44) holds, it follows

that the limit superior of the expectation of the second summand in (3.37) is

bounded.

It remains to show that the limit superior of the expectation of the third term

in (3.37) is bounded as well. By the same derivation as for the second summand,

it holds that, for almost all ω ∈ Ω,

n∑
i=0

E
[
N δ
i |Xi − x∗|1{i ∈ I3

n}
∣∣ G̃i−1

]
(ω) ≤ k−δ(2+γ)

n∑
i=0

1{i ∈ I3
n}|Xi − x∗|1−δ(2+γ),

see (3.42). Define σ = 1− δ(2 + γ) > 0. For i ∈ I3
n it holds that k|Xi− x∗| ≤ e−ri,
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therefore

n∑
i=0

E
[
N δ
i |Xi − x∗|1{i ∈ I3

n}
∣∣ G̃i−1

]
(ω) ≤ k−δ(2+γ)

n∑
i=0

(
e−ri/k

)σ
= k−δ(2+γ)−σ

n∑
i=0

e−rσi

≤ k−δ(2+γ)−σ
∞∑
i=0

e−rσi

= k−δ(2+γ)−σ 1

1− e−rσ .

Taking expectations on both sides shows that also the limit superior of the expec-

tation of the third summand in (3.37) is bounded, which finishes the proof.

This concludes our the theoretical analysis of the PBA in the context of stochas-

tic root-finding problems. In the next chapter, we provide numerical results which

analyze empirically the convergence behavior in macro time as well as in wall-clock

time for different test functions g.
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CHAPTER 4

NUMERICAL RESULTS

In this chapter, we present a series of numerical results based on Monte-Carlo

simulations in order to empirically investigate the performance of the PBA for

different scenarios. In addition to empirically confirming some of the previous

results, we also provide evidence for some of the stated conjectures as well as a

direct comparison of the PBA and SA-type algorithms.

We assume that X∗ ∼ U(0, 1). While conditioning on a specific realization

of X∗ covers the frequentist setting, we are mostly interested in an average-case

performance, such as the behavior of E[|Xn − X∗|] as n → ∞. In all empirical

examples we start the PBA with a uniform prior distribution f0.

This chapter is organized as follows. In Section 4.1 we analyze the convergence

behavior of the residuals and confidence intervals of the PBA for the p(·) constant

and known case. In Section 4.2 we extend the analysis to the more realistic case

when p(·) is nonconstant and unknown, and compare five stochastic root-finding

algorithms (thee PBA-type algorithms and two SA-type algorithms) on four dif-

ferent test functions. We also provide a sensitivity analysis as well as a discussion

of confidence intervals in wall-clock time.
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4.1 Convergence Behavior in Macro Time

4.1.1 Absolute Residuals

Let us discuss the residuals |Xn −X∗| of the PBA for the setting when the prob-

ability of a correct sign is constant and known, that is, p(·) ≡ pc.

Figure 4.1 shows ten sample paths and the estimated mean and median path

of 10,000 simulated runs where pc = 0.70, where X∗ = 0.6647. We have displayed

the y-axis in log-scale to investigate the rate of convergence. If the rate of con-

vergence is indeed geometric in n then the sample paths should be linear under

this transformation. The geometric convergence can be observed for the mean and

median paths as well as, to some extent, for each single sample path. This figure

also shows that the mean sample path is dominated by a few bad sample paths:

Out of the ten chosen sample paths only one is clearly above the mean sample path

and the median sample path significantly outperforms the mean sample path. The

histogram of the 10,000 residuals for n = 100 shown in Figure 4.2 confirms this.

Before further discussing the empirical behavior of the PBA, let us quickly

discuss a challenge that arises when implementing the PBA with finite floating

point arithmetic. When starting with a uniform prior it is sufficient to keep track

of an ordered list containing the measurement points (Xn)n and the corresponding

heights of the density (hn)n between the measurement points. At each iteration the

median of fn is determined and inserted in this sorted list, and, after observing the

sign, the heights (hn)n are updated according the PBA. Finding the median and

updating the heights can fail due to the finite precision of floating point arithmetics

when measurement points in (Xn)n become very close to each other (within 10−15).
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Figure 4.1: The estimated mean (thick solid blue) and median (thick dashed
red) path of 10,000 simulated runs together with ten individual
sample paths of the PBA, where p(·) ≡ 0.7. To analyze the
geometric rate of convergence behavior the y-axis is shown in
log-scale.
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Figure 4.2: Histogram of 10,000 residuals Xn −X∗ at time n = 100. About
90% of all samples are extremely close to the sought-after point
X∗, but a few sample paths are still far away.
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This failure in the updating arises more quickly for large values of pc since in this

case the measurement points (Xn)n approach X∗ very quickly. In the presented

examples, sample paths are discarded once the computational accuracy fails (the

density fn does not integrate to one anymore). This, however, introduces an

upwards bias in the estimation of E[|Xn−X∗|] for large n since a discarded path has

usually located X∗ with very high precision. While a more robust implementation

of the algorithm would potentially improve the estimation results, the current

results are sufficient to provide insight into the behavior of the PBA.

Figures 4.3 and 4.4 show the rate of convergence of the mean and median

path for different parameters pc. Here, for every sample run the root X∗ is an

independent realization of a U(0, 1) random variable. We use linear regression to

estimate the slope of log(E[|Xn − X∗|]), where the range of n is chosen to avoid

issues due to numerical precision. To be specific, for every pc we let Nu be the

largest n such that not more than 25% of all sample path have been eliminated due

to computational inaccuracy. In order to account for the asymptotic convergence

behavior we let N l = b0.5Nuc and use samples n ∈
{
N l, N l + 1, . . . , Nu

}
for the

linear regression estimation. The fitted lines (thin black lines) are also shown in

Figures 4.3 and 4.4. Figure 4.5 shows the estimated rate r and C = er as a function

of pc for the mean and median paths together with the lower bound on this rate

proven in Theorem 2. The trivial upper bound r = log 2 implied by the noise-free

bisection search is also shown. The right-hand side plot confirms the intuition that

C ↑ 2 as pc ↑ 1 for the median as well as the mean sample path of the expected

residuals.
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Figure 4.3: Estimated expected residuals E[|Xn − X∗|] for X∗ ∼ U(0, 1)
and parameters pc = 0.55, 0.65, 0.75, 0.85, 0.95 (thick lines) with
fitted lines (thin black lines). The normal approximation 95%-
confidence intervals are also given (dashed). For large pc and
large n the estimation becomes less reliable due to computa-
tional accuracy conflicts—for some values the lower bound on
the approximate confidence interval even became negative, a not
uncommon effect when estimating small positive quantities.
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Figure 4.4: Estimated median of |Xn−X∗| for X∗ ∼ U(0, 1) and parameters
pc = 0.55, 0.65, 0.75, 0.85, 0.95 (thick lines) with fitted lines (thin
black lines). The 20% and 80% quantiles are also given (dashed).
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a function of pc. This assumes that E[|Xn − X∗|] ∼ e−rn and
F−0.5(|Xn − X∗|) ∼ e−rn, where F is the distribution function
of |Xn − X∗|. The lower bound on r as proven in Theorem 2
(and defined in Lemma 1) is also given. (Here, the notation
g(x) ∼ f(x) means that limx→x0 f(x)/g(x) = a for some constant
a > 0.)
Right Plot: The rate C = er as a function of pc.

4.1.2 Confidence Intervals

Let us now focus on the confidence intervals introduced in Sections 3.3–3.4 in

macro time. Figure 4.6 shows the upper and lower bound of the 95%-confidence

interval Jn(α) (left plot) and Kn(α) (right plot) for pc = 0.7, X∗ = 0.2994 and

α = 0.05. Recall that the interval Jn(α) is only a confidence interval for a fixed

n, but not for the whole sample path, whereas the sequence of intervals (Kn(α))n

is a sequential confidence interval, that is, x∗ ∈ Kn(α) for all n ∈ N with high

probability. In this sample path, the value x∗ never leaves either interval sequence,

(Jn(α))n or (Kn(α))n, but only the sequence (Kn(α))n provides the probabilistic

guarantee for this to happen. By definition Kn(α) ⊇ Kn+1(α) for all n ∈ N. In

contrast, this is not necessarily true for the sequence (Jn(α))n as the length of

Jn(α) may increase, as can be observed in Figure 4.6.
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Figure 4.6: A sample path of the confidence interval (Jn(α))n and the se-
quential confidence interval (Kn(α))n. Here, pc = 0.7, α = 0.05
and X∗ = 0.2994.

The sample paths in Figure 4.6 show that after some initial period the lengths

of these confidence intervals decrease rapidly. Also, this initial period is signifi-

cantly longer for the intervalsKn(α). Theorems 5 and 6 prove that for pc ≥ 0.85 the

asymptotic rate of convergence of the sequence (|Jn(α)|)n and (|Kn(α)|)n is geomet-

ric. Figures 4.7 and 4.8 show the estimated mean and median paths of (|Jn(α)|)n
for different parameters pc (the behavior for the sequence (|Kn(α)|)n is similar,

hence omitted). Again the y-axis is displayed in log-scale and the linear behav-

ior of the paths indicate a geometric rate of convergence for all tested values pc,

giving credence to the conjecture that the geometric rate holds for all parameters

pc > 1/2.

The mean and median path of
(
|Jn(α)|

)
n

show an interesting zig-zag behavior.

This can be explained: The length of the confidence intervals is determined by the

measurement points (Xn)n, which, for a fixed value pc, assume values on a pre-

defined grid that is independent of X∗. While the noisy signs (Zn(Xn))n, which

depend on X∗, determine the sample path on this grid, the length of the confidence
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intervals is determined by the fixed grid of possible values that (Xn)n can attain,

depending on pc. This is especially apparent for small n, leading to a zig-zag

pattern in the sample paths of
(
|Jn(α)|

)
n
.

Finally, it is informative to estimate the true cover probabilities of the confi-

dence intervals (Jn(α))n. Figure 4.9, which displays the estimates of the coverage

probabilities for α = 0.05 and α = 0.2, shows that the actual cover probability of

the confidence interval is significantly higher than the required level 1 − α. This

difference is mostly due to the use of Hoeffding’s bound in the construction of the

interval Jn(α), see (3.9).

4.2 Convergence Behavior in Wall-Clock Time

4.2.1 Absolute Residuals

After investigating the PBA for the setting when p(·) ≡ pc, which corresponds to

the performance in macro time, let us now turn our attention to the convergence

behavior of the PBA in wall-clock time. We also provide a direct comparison of

the PBA to popular SA-type algorithms for a set of functions g.

In all examples the stochastic noise is assumed to be standard normal, that is,

ε ∼ N(0, 1), and at each measurement point the PBA performs a test of power

one with curved boundary (kn)n for the standard normal noise distribution, given

by (B.3). Using a test of power one only using the signs (Zn(Xn))n instead of the

actual noisy function evaluations (Yn(Xn))n will lead to very similar convergence

behavior in this case, see discussion in Section 1.5.
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Figure 4.7: Estimated expected lengths E[|Jn(α)|] for X∗ ∼ U(0, 1),
α = 0.05, and parameters pc = 0.55, 0.65, 0.75, 0.85, 0.95 (thick
lines) with fitted lines (thin black lines). The normal approxima-
tion 95%-confidence intervals are also given (dashed). Again, for
large large pc and large n the estimation becomes less reliable.
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Figure 4.8: Estimated median of |Jn(α)| for X∗ ∼ U(0, 1), α = 0.05, and
parameters pc = 0.55, 0.65, 0.75, 0.85, 0.95 (thick lines) with a
fitted lines (thin black lines). The 20% and 80% quantiles are
also given (dashed).
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Figure 4.9: Estimated cover probabilities of the (1− α)-confidence interval
Jn(α) for α = 0.05 (left plot) and α = 0.2 (right plot).

Let us first compare the sample path behavior of the PBA and the SA.

Figure 4.10 shows two sample paths of the PBA (top plots) and two sample paths

of the SA algorithm (bottom plot) for the test function g(x) = X∗ − x. Here,

we chose an = 1/n and X0 = 0 for the SA, and pc = 0.6 for the PBA as input

parameters. In contrast to the SA, which measures at a different point at each

iteration, the PBA only changes its current measurement point when “enough”

information is collected on the location of X∗. In these examples the total number

of function evaluations (wall-clock time) is 106, whereas the PBA only uses about

20 macro iterations. If Xn of the PBA is close to x∗ the test of power one requires

a very long time to decide whether the root is further to the left or right of Xn.

Such stalling behavior, is observable as long flat lines in the sample paths and can

be desirable since in these cases Xn usually corresponds to a good estimate of X∗.

Figure 4.11 (top) shows ten sample paths of the PBA and the estimated mean

and median path based on 1,000 sample paths; Figure 4.11 (bottom) displays the

same for the SA algorithm. For the SA algorithm, it is known that, under some

technical assumptions, (T 1/2(XT −X∗))T is a tight sequence (see Pasupathy and
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Figure 4.10: Two sample paths of the PBA (top) and two sample paths of the
SA (bottom) for two different roots X∗ (which are realization
of U(0, 1) random variables). These plots show the different
sampling concepts of the two algorithms: In contrast to the
SA algorithm, which changes its measurement location at every
iteration, the PBA only changes its measurement location once
a strong enough signal regarding the location of X∗ has been
received. The x-axis is shown in log-scale for better visibility.

Kim, 2011; Kushner and Yin, 2003, Chapter 10, for details), whereas for the PBA

this does not hold (see Theorem 8). The fact that the PBA converges asymptot-

ically slower than the SA algorithm can already be observed in Figure 4.11, but

will become more obvious in Figure 4.14 (below) where the estimated mean paths

of the two algorithms are shown on the same graph.

The histograms of the residuals for T = 100, 000 are given in Figure 4.12.

For SA-type algorithms it is known that, under some technical assumptions, the
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1,000 simulated path for the PBA (top) and SA algorithm (bot-
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limiting distribution of (Xn − X∗) is normally distributed (see Pasupathy and

Kim, 2011), which can be observed in Figure 4.12 (right plot). The histogram in

Figure 4.12 (left plot) suggests that a similar result does not hold for the PBA

since the distribution of the residuals seems to have a quite long and flat tail.
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Figure 4.12: The histograms of the residuals |Xn−X∗| for the PBA and SA
algorithm after T = 100, 000 function evaluations.

We now use the performance measure E[|X̂T −X∗|] to compare five stochastic

root-finding algorithms, each of which defines a sequence of estimators X̂T , on four

different test functions. The algorithms are:

1. PBA: After T function evaluations the best estimate of X∗ is given by XT ,

which corresponds to the current measurement point. Here, pc is a tuning

parameter. We chose pc = 0.95.

2. PBA-averaging: After T function evaluations the best estimate of X∗ is given

by the time-weighted average of the medians generated by the PBA, that is,

X̂T =
1

T

(
n−1∑
i=0

NiXi + (T −
n−1∑
i=0

Ni)Xn

)
,

where (Xn)n is the sequence of medians generated by the PBA. Here, pc is a

tuning parameter. We chose pc = 0.95.
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3. PBA-ε-averaging: After T function evaluations the best estimate of X∗ is

given by the transformed time-weigted average as given by (3.33) in Theo-

rem 9, that is,

X̂T =
1

T

(
n−1∑
i=0

N
1
2

+ε

i Xi + (T −
n−1∑
i=0

Ni)
1
2

+εXn

)
,

where the denominator is

T =
n−1∑
i=0

N
1
2

+ε

i +

(
T −

n−1∑
i=0

Ni

) 1
2

+ε

.

The sequence (Xn)n corresponds to the medians generated by the PBA. Here,

pc and ε > 0 are tuning parameters. We chose pc = 0.95 and ε = 10−3.

4. SA: After T function evaluations the best estimate of X∗ is given by XT ,

where (Xi)i is the sequence of measurement points generated via

Xi+1 = Γ[0,1](Xi + aiYi(Xi)), (4.1)

where Γ[0,1] is the projection on the interval [0, 1] and ai = c/i; see Section 1.3

for details. Here, c and X0 are tuning parameters. We chose c = 1 and

X0 = 0.5.

5. Polyak-Ruppert averaging: After T function evaluations the best estimate of

x∗ is

X̂T =
1

T

T∑
i=1

Xi,

where (Xi)i is a sequence generated by (4.1), where now ai = c/iδ and

δ ∈ (1/2, 1). Here, c, δ and X0 are tuning parameters. We chose c = 1,

δ = 0.8 and X0 = 0.5.

All the above input parameters were chosen based on a sensitivity analysis, with

details provided in the next section.
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The four test functions are:

1. The piecewise constant function:

g1(x) = 0.31{x ≤ X∗ − 0.2}+ 0.21{x ≤ X∗}

− 0.11{x > X∗} − 0.31{x > X∗ + 0.2}; (4.2)

see Figure 4.13. This test function is motivated by simulation-optimization

problems on a discrete domain, which can be solved by linear interpolation

of the objective function between feasible points; see Lim (2011).

0 0.5 1

−0.5

0

0.5

n
X*

Test Function g
1
(x), X* = 0.63236

Figure 4.13: The test function g1 as given in (4.2).

2. The linear function:

g2(x) = X∗ − x. (4.3)

This test function corresponds to a “simple” function on which any stochastic

root-finding algorithm should perform reasonably well.

3. The exponential function:

g3(x) = exp (2(X∗ − x))− 1. (4.4)
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Due to the curvature this function appears to be more difficult for root-

finding than the linear function (4.3). Such curvature usually introduces a

bias in the finite-time estimation of x∗, since a measurement to the left of

X∗ causes a faster move towards the right, compared to a movement induced

by a measurement to the right of X∗. Therefore, the algorithms (SA-type as

well as PBA-type algorithms) tend to spend more time to the right of X∗.

4. The cubic function:

g4(x) = (X∗ − x)3, (4.5)

this function is considered very difficult for stochastic root-finding algorithms

since g′(X∗) = 0. Although PBA and SA are still able to produce consis-

tent estimators of X∗ in this case, the rate of convergence results do usually

not hold anymore. Specifically, Assumption (i) for SA-type algorithms in

Section 1.3 and Assumption (c) in Theorem 9 for the PBA are violated. Al-

though in most applications we would not encounter g′(X∗) = 0, it is never-

theless informative to test stochastic root-finding algorithms on such difficult

functions for which the convergence behavior is not yet well-understood.

Figure 4.14 provides a direct comparison of the five considered stochastic root-

finding algorithms for each test function separately.

The comparison of the algorithms on this set of test functions leads to some

interesting observations, such as:

- When the function g indeed has a discontinuity at X∗, the PBA (without

averaging) significantly outperforms SA-type algorithms as well as PBA-type

algorithms that use averaging.

- When the function g is continuous, then SA-type algorithms seem to provide

105



10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−20

10
−15

10
−10

10
−5

10
0

T

E
[|X

T
 −

 X
*|

]

Wall−Clock Time
 Test Function g

1
(x), X* ~ U(0,1), MC = 1000

 

 
PBA
PBA−avg
PBA−ε−avg
SA
PR

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

T

E
[|X

T
 −

 X
*|

]

Wall−Clock Time
 Test Function g

2
(x), X* ~ U(0,1), MC = 1000

 

 
PBA
PBA−avg
PBA−ε−avg
SA
PR

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

T

E
[|X

T
 −

 X
*|

]

Wall−Clock Time
 Test Function g

3
(x), X* ~ U(0,1), MC = 1000

 

 
PBA
PBA−avg
PBA−ε−avg
SA
PR

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−2

10
−1

10
0

T

E
[|X

T
 −

 X
*|

]

Wall−Clock Time
 Test Function g

4
(x), X* ~ U(0,1), MC = 1000

 

 
PBA
PBA−avg
PBA−ε−avg
SA
PR

Figure 4.14: The estimated path E[|X̂T − X∗|] for test functions g1, . . . , g4

and for the five described stochastic root-finding algorithms.
Here, ε ∼ N(0, 1). For better visibility the x- and y-axes are
displayed in log-scale. We use 1,000 independent sample runs
to estimate these paths, and the relative error is always smaller
than 5%.
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slightly better performance in terms of E[|X̂n − X∗|] than PBA-type algo-

rithms. This is not surprising since SA-type algorithms tend to achieve the

optimal rate, given the tuning sequences was chosen appropriately.

- Of the three tested PBA-type algorithms, the performance of PBA-averaging

seems to be the best when g is continuous at X∗ and even seems to recover the

optimal rate of convergence O(T−1/2). This can be observed as the slope of

its performance path seems to be very similar to the slope of the performance

path of SA-type algorithms.

4.2.2 Sensitivity Analysis

In this section we test the sensitivity of the performance measure E[|X̂n−X∗|] with

respect to the input parameters of the different stochastic root-finding algorithms.

We will not provide details for all test functions and parameters, but instead just

highlight some general behavior.

We consider the linear test function g2(x) = X∗−x. Figure 4.15 shows the effect

of the input parameter pc on the performance of the three PBA-type algorithms,

whereas Figure 4.16 shows the effect of the input parameter c on the performance of

the two SA-type algorithms. Here, we fix the other input parameters as ε = 10−3,

δ = 0.8 and X0 = 0.5.

These figures indicate that the performance of the PBA is robust towards the

choice of the tuning parameter pc, as long as it is reasonably large, say larger than

pc ≥ 0.65. The performance of the SA algorithm, on the other hand, is more

affected by the choice of the tuning sequence, as its performance may become in-

ferior when the tuning sequence is chosen small, for example, c = 0.1. In this case
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Figure 4.15: The performance of the PBA, PBA-averaging and PBA-ε-
averaging for a set of different input parameters pc. The test
function is g2(x) = X∗ − x. Here, we chose ε = 10−3 for the
PBA-ε-averaging method. We see that the performance is sta-
ble with respect to the input parameter pc, as long as it is not
too close to 1/2. We use 1,000 independent sample runs to esti-
mate these paths, and the relative error is always smaller than
5%.
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Figure 4.16: The performance of the SA and Polyak-Ruppert algorithms
for a set of different input parameters c. The test function is
g2(x) = X∗− x. Here, we chose δ = 0.8 for the Polyak-Ruppert
algorithm and X0 = 0.5 as the starting point for all tested
algorithms. If c is chosen too small for the SA algorithm, then
the optimal rate of convergence might not be achieved. Also,
the normalizing constant of the limiting behavior depends on
the chosen tuning sequence. We use 1,000 independent sample
runs to estimate these paths, and the relative error is always
smaller than 5%.

Assumption (ii) given in Section 1.3 is violated, that is, c < −1/(2g′(X∗)). As pre-

viously discussed in Section 1.3, the dependency on this assumption is removed by

the Polyak-Ruppert averaging method. Even though the optimal rate is achieved,

when the tuning sequence that is too large, SA-type algorithms show suboptimal

convergence behavior in terms of the limiting constant.
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4.2.3 Confidence Intervals

As a last empirical experiment we analyze the performance of the confidence inter-

val Jn(α) introduced in Section 3.3 in wall-clock time, and compare its performance

to the performance of approximate confidence intervals generated by SA-type al-

gorithms.

Hsieh and Glynn (2002) suggest restarting the SA algorithm several times to

construct at least approximate confidence intervals of the root X∗. Here, we use

100 independent runs of the SA algorithm (an = 1/n and X0 = 0.5) and then,

for any fixed n, use these 100 estimates to generate an approximate confidence

interval of X∗. We assume a total simulation budget of 107 samples, therefore

each individual run of the SA algorithm consists of 105 function evaluations. We

have also used the same approach to construct confidence intervals for the Polyak-

Ruppert averaging estimator (using δ = 0.8).

The PBA, on the other hand, does not require repeatedly restarting and hence

can use all 107 function evaluations of one single sample path to construct a true

confidence interval. Figure 4.17 shows the average width of the confidence intervals

based on the PBA (pc = 0.95), as well as the average width of the approximate con-

fidence intervals based on the SA-type algorithms. Here, we use 250 independent

samples to estimate the average widths.

From Figure 4.17 it becomes obvious that the width of the confidence intervals

based on the PBA cannot compete with the width of the approximate confidence

intervals based on SA-type algorithms. The reason being that the PBA only allows

a few macro iterations and then stalls at an estimate very close to X∗. While

such a close point estimate of X∗ is desirable, it prevents the algorithm from
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Figure 4.17: The estimated width of the true 95%-confidence intervals based
on the PBA, as well as the estimated width of the approximate
95%-confidence intervals based on the SA algorithm and the
Polyak-Ruppert averaging algorithm. For better visibility the x-
and y-axes are shown in log-scale. Here, we use 250 independent
samples to estimate the widths of the confidence intervals and
the relative error is always smaller than 5%.

evaluating further measurement points and the confidence interval will not decrease

any further. We have tested several other input parameters pc and confidence levels

α, but the general behavior remains the same. In order to achieve more macro

iterations, and with this improve the quality of the confidence intervals, one could

measure at different points than the median of the density fn, such as quantiles,

or realizations of a random variable with density fn. Further investigation of this

approach is left for future research.

Finally, it is informative to consider the estimated coverage probabilities of

the confidence intervals; see Figure 4.18. In all 250 sample runs the point X∗

never leaves the confidence intervals defined by the PBA, whereas the coverage

probability of the SA-type algorithms is alarming bad for small T , but slowly

converges to the required confidence level 1− α. This comparison shows the main
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difference between the two approaches of confidence intervals: the PBA generates

a true (but conservative) confidence interval for all T ∈ N, whereas the SA-type

algorithms provide approximate confidence intervals, which will contain the root

X∗ only as T →∞.
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Figure 4.18: The estimated coverage probabilities of the 95%-confidence in-
tervals based on the PBA as well as for the approximate 95%-
confidence intervals based on SA-type algorithms. We used 250
independent sample runs to estimate these quantities. The PBA
produces conservative confidence intervals that provide a statis-
tical guarantee for every T ∈ N, whereas the SA-type algorithms
produces confidence intervals that are only valid as T →∞. For
better visibility the x-axis is displayed in log-scale.
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CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

In this thesis we have provided a thorough analysis and discussion of the Proba-

bilistic Bisection Algorithm (PBA) for the one-dimensional stochastic root-finding

problem. Since this algorithm is based on a bisection approach, it is conceptually

very different from existing stochastic root-finding algorithms that mimic steepest-

descent algorithms. The PBA was introduced in Horstein (1963), but very little

has been known about its theoretical properties. We have shown several key results

for the PBA, such as consistency and rate of convergence for different stochastic

root-finding settings. In summary, if the function g (for which one wants to find a

root) has a discontinuity at the root x∗ then the sequence of estimators generated

by the PBA converges to x∗ at a geometric rate, and therefore significantly out-

performs existing stochastic root-finding algorithms. If g is continuous at x∗, then,

assuming a certain conjecture holds, an “averaged” estimator based on the PBA

converges to x∗ at a near-optimal rate. In addition to these asymptotic properties,

we have shown that the PBA also provides the simulation analyst with finite-time

guarantees on the location of x∗, such as a confidence interval. To the best of our

knowledge, this is the first stochastic root-finding method that provides such a

guarantee.

The presented results directly pose two important questions regarding the PBA

that are left for future research:

1. Does the Conjecture 1 or the weaker Conjecture 2 indeed hold? While these

conjectures seem very reasonable based on intuitive arguments and numerical

examples, formal proofs of them are still missing. The correctness of the

second conjecture is needed for the proof of Theorem 9 to hold, which in turn
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shows that an averaging-scheme attains a near-optimal rate of convergence

for general stochastic root-finding problems.

2. Does the time-weighted average of the medians, that is, X̂T = 1
T+1

∑T
i=0Xi,

where (Xi)i are the measurement points of the PBA in wall-clock time, indeed

converge to x∗ at the known optimal rate O(T−1/2) as the empirical examples

suggest? If the answer is positive, the asymptotic performance of the PBA

can directly compete with the asymptotic performance of popular SA-type

algorithms, and one would want to develop a finer understanding of the

rate of convergence of the algorithm through the multiplicative constant in

O(T−1/2).

From a larger perspective there exist several important future research

directions regarding the PBA, including:

1. Analyzing different sampling schemes based on the PBA updating. The

original PBA states that at each step the function g should be evaluated

at the median of the density fn, and that the median in turn also provides

a good approximation of x∗. Therefore, the PBA always tries to measure

as close as possible to x∗. Such a sampling scheme is reasonable if the

probability of a correct sign p(·) is constant, which is the setting the PBA

originally was designed for. But when p(·) varies with x—especially when

limx→x∗ p(x) = 1/2—then the test of power one is likely to require many func-

tion evaluations the closer the current measurement points is to x∗. In this

case it might be beneficial to measure at a different point than the median,

such as at a quantile of the density fn or at the realization of a random

variable with probability density fn.

2. Investigating the robustness of the PBA. One of the drawbacks of SA-type
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algorithms is that they may lack robustness, for example, when the noise

distribution has heavy tails. The PBA, which maintains a posterior density

on the location of the root x∗, is more robust with respect to extreme noise

observations. This advantage of the PBA over SA-type algorithms seems to

merit further investigation.

3. Analyzing the rate of convergence with respect to overall time. Our mea-

sure of wall-clock time keeps track of the number of function evaluations.

While this is a reasonable measure for many applications it would be also

informative to account for the overall time of the algorithm on a human time

scale. For example, updating the posterior density of the PBA requires signif-

icantly more work than an updating step of SA-type algorithms. In contrast,

there is also a cost associated with switching the measurement point x (as

discussed, for example, in Hong and Nelson, 2005) and SA-type algorithms

will be slowed by their frequent switching, whereas the PBA only switches

sporadically. Furthermore, the evaluation of the function g might require a

varying amount of work depending on the prescribed point x. All the above

considerations affect the rate of convergence of the algorithm on a human

time scale, and it is important to compare stochastic root-finding algorithms

under this perspective as well.

4. Extending the PBA to higher dimensions. The method of centers of grav-

ity, developed independently in Levin (1965) and Newman (1965), general-

izes noise-free bisection (in the optimization setting) to higher dimensions.

Nemirovski and Yudin (1983) provide a discussion of complexity and effi-

ciency results of the method of centers of gravity and the subsequent ellipsoid

method for deterministic optimization problems. A similar multivariate ex-

tension of the PBA seems plausible. Major challenges are proper updating,
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the tracking of the posterior density, as well as the introduction of multidi-

mensional tests of power one. A multivariate extension, however, would be

very useful for many applications, including simulation optimization.
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APPENDIX A

ADDITIONAL RESULTS AND PROOFS

The following lemma provides the Bayesian updating for the case when p(·) is

constant and known, that is, p(·) ≡ p for some constant p ∈ (1/2, 1). For this, let

Gn = σ (Xm, Zm(Xm) : 0 ≤ m ≤ n) be the σ-algebra generated by the measurement

points (Xi)
n
i=0 and signs (Zi(Xi)

n
i=0 and G−1 be the trivial σ-algebra.

Lemma 8. The domain of the prior density function f0 is [0, 1]. Assume that

p(·) ≡ p, for some constant p ∈ (1/2, 1) and that q = 1 − p. The sequence of

posterior densities (fn)n is given by the following iterative process, where x is a

point in the interior of fn at which the function g is called at step n.

If Zn(x) = +1, then fn+1(y) =

{
η(x)−1pfn(y), if y ≥ x,

η(x)−1(1− p)fn(y), if y < x,
(A.1)

if Zn(x) = −1, then fn+1(y) =

{
(1− η(x))−1(1− p)fn(y), if y ≥ x,

(1− η(x))−1pfn(y), if y < x,
(A.2)

where η(x) = P(Zn(x) = +1|Gn−1) = (1− Fn(x))p + Fn(x)(1− p) and Fn denotes

the cdf of the density fn.

Proof. Conditional on X∗ and Gn−1, the random variable Zn(x) assumes the

value +1 with the following probabilities:

P(Zn(x) = +1|X∗ ≥ x,Gn−1) = p,

P(Zn(x) = +1|X∗ < x,Gn−1) = 1− p.

The conditional distribution of the event {Zn(x) = +1} given Gn−1 is then
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computed as

P(Zn(x) = +1|Gn−1)

= P(X∗ ≥ x|Gn−1)P(Zn(x) = +1|X∗ ≥ x,Gn−1)

+ P(X∗ < x|Gn−1)P(Zn(x) = +1|X∗ < x,Gn−1)

= (1− Fn(x))p+ Fn(x)(1− p) = η(x), (A.3)

where the first equation follows from the law of total probability. The result now

follows from Bayes’ rule. That is, on the event {Zn(x) = +1} we have

fn+1(y) =
P(Zn(x) = +1|Gn−1, X

∗ = y)fn(y)

P(Zn(x) = +1|Gn−1)

=

{
η(x)−1pfn(y), if y ≥ x,

η(x)−1(1− p)fn(y), if y < x.

The expression (A.2) for fn+1(y) on the event {Zn(x) = −1} is derived similarly.

Proof of Proposition 1. The definition of entropy and the tower property of con-

ditional expectation imply

E
[
H(fN)

∣∣XN−1 = x, fN−1

]
= E

[
− log2 fN(X∗)

∣∣XN−1 = x, fN−1

]
.

Using the updating equations described in Lemma 8 for the query XN−1 = x we

can decompose the random variable − log2 fN(X∗)|XN−1 = x, fN−1 into a sum of
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three terms for both possible outcomes of ZN−1(XN−1):

If ZN−1(XN−1) = +1, then

− log2 fN(X∗)|XN−1 = x, fN−1

= − log2 fN−1(X∗)− log2 η(x)−1 −
{

log2 p, if X∗ ≥ x,

log2(1− p), if X∗ < x,

if ZN−1(XN−1) = −1, then

− log2 fN(X∗)|XN−1 = x, fN−1

= − log2 fN−1(X∗)− log2(1− η(x))−1 −
{

log2(1− p), if X∗ ≥ x,

log2 p, if X∗ < x.

By the linearity of the expectation operator we can calculate the expected value

of each of the three terms separately. The first term is independent of ZN−1(XN−1)

and simply recovers the entropy at time N − 1,

E
[
− log2 fN−1(X∗)

∣∣XN−1 = x, fN−1

]
= H(fN−1).

To evaluate the second term we use the fact that P(ZN−1(x) = +1|fN−1) =

(1−FN−1(x))p+FN−1(x)(1−p) = η(x) as was shown in (A.3). And the expectation

of the second term is

E
[
1{ZN−1(x) = +1} log2 η(x) + 1{ZN−1(x) = −1} log2(1− η(x))

∣∣fN−1

]
= η(x) log2 η(x) + (1− η(x)) log2(1− η(x)).

The third term is equal to log2 p when the sign ZN−1(XN−1) is correct and

log2(1− p) otherwise. This is independent of the measurement point x. Hence the

expectation of the third term equals −p log2 p − (1 − p) log2(1 − p). Combining

these three terms together and noting that the first and third terms do not depend
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on the measurement location x yields

inf
x∈[0,1]

E[H(fN)|XN−1 = x, fN−1] = H(fN−1)− p log2 p− (1− p) log2(1− p)

+ inf
x∈[0,1]

[η(x) log2 η(x) + (1− η(x)) log2(1− η(x))] .

The inner expression over which we take the infimum depends on x only

through η(x), the probability of observing ZN−1(x) = +1, which can take values

in [0, 1]. Consider the function η log2 η+ (1− η) log(1− η), which is strictly convex

and has a global minimum at η = 1/2. Further η(x) = 1/2 when FN−1(x) = 1/2,

which shows that the optimal choice of x is the median of the pdf fN−1. Finally,

combining all three terms yields

E[H(fN)|FN−1(XN−1) = 1/2, fN−1] =

H(fN−1)− p log2 p− (1− p) log2(1− p)− 1,

and this finishes the proof.

Proof of Theorem 1. We show for each n = 0, 1, . . . , N that the value function

is as claimed in (2.3), and that the median achieves the minimum in Bellman’s

recursion (2.2). This is sufficient to show the claim.

We proceed by backward induction on n. The value function clearly has the

claimed form at the final time, n = N . Now, fix any n < N and assume that the

value function is of the form claimed for n+ 1. Then Bellman’s recursion and the
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induction hypothesis show that

Vn(fn)

= inf
x∈[0,1]

E
[
Vn+1(fn+1)

∣∣Xn = x, fn
]

= inf
x∈[0,1]

E
[
H(fn+1)− (N − n− 1)(1 + p log2 p+ (1− p) log2(1− p))

∣∣Xn = x, fn
]

= inf
x∈[0,1]

E
[
H(fn+1)

∣∣Xn = x, fn
]
− (N − n− 1)(1 + p log2 p+ (1− p) log2(1− p)).

Finally, Proposition 1 shows that the infimum is achieved at the median

inf{x : Fn(x) ≥ 1/2}, and that the resulting value is

Vn(fn) = H(fn)− (N − n)(1 + p log2 p+ (1− p) log2(1− p)),

as stated in the theorem.

Proof of Lemma 1. Let us first focus on the definition of C. The reason for defin-

ing C in this way will become clear towards the end of the proof. Consider the

function

U(u) =

(
u+D

log(2p)− log(2q)

)2

,

and note that

1. U is convex and non-negative;

2. U(|D|) = 0, because D < 0.

These two properties imply that there exists a unique ũ ∈ (0, |D|) such that

U(ũ) = ũ. Then define C = eũ and consequently 1 < C < e|D|.
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Now we return to the random walk (Rn)n. For any n ∈ N,

P
(
eRn > C−n/2

)
= P

(
Rn > log(C−n/2)

)
= P

(
R0 +

n∑
j=1

ψj > log(2−1C−n)

)

≤ P

(
log(1/2) +

n∑
j=1

ψj > log(1/2)− n logC

)

= P

(
n∑
j=1

ψj > −n logC

)

= P

(
n∑
j=1

ψj − nD > −n logC − nD
)

= P
(
ψn −D > − logC −D

)
,

where ψn = n−1
∑n

j=1 ψj and E[ψj] = (log(2p) + log(2q))/2 = D. The incre-

ments ψj are iid and bounded, and C < e|D| which implies that − logC −D > 0,

so we can apply Hoeffding’s bound1:

P
(
eRn > C−n/2

)
≤ exp

(
−2

(
logC +D

log(2p)− log(2q)

)2

n

)
.

Now by definition of C(
logC +D

log(2p)− log(2q)

)2

= logC,

and hence P(eRn > C−n/2) ≤ C−2n, which holds for any chosen n ∈ N.

Proof of Theorem 3. Consider arbitrary ε > 0. Proposition 4 shows that

P
(
cnEn[|Xn −X∗|] > ε

)
≤ C−n for n > N̂ = 0 ∨ Ñ(ε, c, C), then

∞∑
n=0

P
(
cnEn[|Xn −X∗|] > ε

)
≤ N̂ +

C−N̂+1

C − 1
<∞.

1Let X1, . . . , Xn be iid bounded random variables, that is, P(Xi ∈ [a, b]) = 1. Then for the
empirical mean X = n−1

∑n
i=1 Xi the inequality P

(
X−E[X] ≥ t

)
≤ exp

(
−2t2n(b−a)−2

)
holds

when t ≥ 0. See Hoeffding (1963).
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By the lemma of Borel-Cantelli it follows that P
(
cnEn[|Xn −X∗|] > ε i.o.

)
= 02.

Since this holds for any ε > 0 it follows that cnEn[|Xn − X∗|] → 0, and hence

En[|Xn −X∗|]→ 0, almost surely as n→∞.

Proof of Corollary 1. Let E be the set of probability one where the convergence

En[|Xn −X∗|] → 0 holds. For a sample path ω ∈ E it holds that the probability

measure of |Xn−X∗| converges weakly to a point mass at 0 (since L1-convergence

implies convergence in distribution), which is equivalent of Pn(·)(ω) converging

weakly to a point mass at X∗(ω).

Proof of Corollary 2. Consider a sample path ω ∈ E, where E is the set of proba-

bility one on which limn→∞ Fn(x) = 1{x ≥ X∗} holds. Then for any ε > 0 it holds

that limn→∞ Fn(X∗ − ε) = 0 and limn→∞(1 − Fn(X∗ + ε)) = 0, and hence there

exists an N(ε) ∈ N such that Fn(X∗ + ε)− Fn(X∗ − ε) > 0.5 for all n > N(ε)(ω).

By definition of the median it follows that Xn ∈ (X∗− ε,X∗+ ε) for all n > N(ε).

Since this holds for any ε > 0 it follows that Xn → X∗ as n→∞ on this sample

path, and hence Xn → X∗ almost surely as n→∞.

Proof of Lemma 5. As shown in the proof of Proposition 8, d − qβ > 0. Now

consider arbitrary r ∈ (0, d− qβ), n ≥ N1 and α ∈ (0, 1). Then

P
(
Wn ≥

bn − rn
β

)
= P

(
1

n
Wn − q ≥

bn/n− r
β

− q
)

= P
(

1

n
Wn − q ≥ t

)
,

(A.4)

where we defined

t =
bn/n− r − qβ

β
.

2i.o. stands for infinitely often, that is, {cnEn[|Xn −X∗|] > ε i.o.} =
⋂∞

n=0

⋃∞
j=n{cjEj [|Xj −

X∗|] > ε}.
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In order to use Hoeffding’s bound we need that t > 0, indeed

t =
d− n−1/2

(
−1

2
log(α/2)

)1/2
β − r − qβ

β

=
d− r − qβ

β
− n−1/2

(
−1

2
log(α/2)

)1/2

≥ d− r − qβ
β

− d− r − qβ
(2 log(2/α))1/2

(
−1

2
log(α/2)

)1/2

=
d− r − qβ

β
− d− r − qβ

2β
> 0,

where the second last inequality follows since n ≥ N1. Applying Hoeffding’s in-

equality3 to (A.4) shows that

P
(
Wn ≥

bn − rn
β

)
≤ exp(−2t2n).

It remains to show that exp(−2t2n) ≤ α/2, that is, tn1/2 ≥ ((1/2) log(2/α))2,

indeed,

tn1/2 =
bn/n− r − qβ

β
n1/2

=
d− n−1/2 (−(1/2) log(α/2))1/2 β − r − qβ

β
n1/2

=

(
d− r − qβ

β

)
n1/2 −

(
−1

2
log(α/2)

)1/2

≥
(
d− r − qβ

β

)
(2 log(2/α))1/2

(
β

d− r − qβ

)
−
(
−1

2
log(α/2)

)1/2

= (2 log(2/α))1/2 −
(

1

2
log(2/α)

)1/2

=

(
1

2
log(2/α)

)1/2

,

where the inequality follows since n ≥ N1.

Proof of Lemma 6. Let (kn)n be the curved boundary for the test of power one

for Bernoulli random variables as defined in (B.5) where γ is replaced with α/2.

3Let X1, . . . , Xn be iid bounded random variables, that is, P(Xi ∈ [a, b]) = 1. Then for the
empirical mean X = n−1

∑n
i=1 Xi the inequality P

(
X−E[X] ≥ t

)
≤ exp

(
−2t2n(b−a)−2

)
holds

when t ≥ 0. See Hoeffding (1963).
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Then, by construction of this test,

P (|Wn − nq| ≥ kn for some n ≥ 1) ≤ α/2,

and

{|Wn − nq| ≥ kn for some n ≥ 1} ⊇ {Wn − nq ≥ kn for some n ≥ 1}

= {Wn ≥ kn + nq for some n ≥ 1} .

To finish the proof it remains to show that there exists a constant N2 such that

kn + nq ≤ an − rn
β

, (A.5)

for all n ≥ N2. Using the definitions of (an)n given in (3.17) (use pc = p) and (kn)n

given in (B.5) (use γ = α/2), the condition (A.5) is equivalent to(
βq − d+ r

β

)
n+ 2

[
−1

2
log

(
α

n+ 1

)]1/2

n1/2 ≤ 0,

for all n ≥ N2. Since r < d− qβ such a constant N2 always exists.
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APPENDIX B

TESTS OF POWER ONE

In this appendix we provide additional details from statistical tests of power

one, also referred to as tests with curved boundaries. See, Robbins (1970) and

Siegmund (1985), Chapter 4, for in-depth discussions of such tests.

Let (ξn(θ))n be an iid sequence of random variables with mean E[ξi(θ)] = θ. The

goal of a test of power one is to decide whether the hypothesis θ < θ0 or the alterna-

tive θ > θ0 holds. Such a test observes the random walk Sn(θ) =
∑n

i=1(ξi(θ)− θ0)

until

N(θ) = inf{n ≥ 1 : Sn(θ) ≥ |kn|}, (B.1)

where (kn)n is an increasing positive sequence, also referred to as a curved bound-

ary. When N(θ) <∞, the test decides that θ < θ0 if SN(θ) < 0 and decides θ > θ0

if SN(θ) > 0; and when N(θ) =∞ it does not provide a decision. Such a test needs

to satisfy the following properties:

P (N(θ0) <∞) ≤ γ, and

P (N(θ) <∞) = 1, for all θ 6= θ0,

where γ ∈ (0, 1) is a confidence parameter. Often, the second property follows

immediately by the law of large numbers, whereas the first property needs more

justification. An elegant method of verifying the first property is by means of a

likelihood ratio argument, initially introduced in Ville (1939). (See also Wald, 1947

and Robbins, 1970.)

Proposition 13 (Ville, 1939). Suppose that under P for each n ≥ 1 the random

variables ξ1, . . . , ξn have a pdf ρn with respect to a σ-finite measure λ(n) on the Borel

sets of an n-dimensional metric space, and that P′ is any other joint probability
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distribution of the sequence (ξn)n such that ξ1, . . . , ξn have a pdf ρ′n with respect to

the same measure λ(n). Define the likelihood ratio Ln = ρ′n/ρn when gn > 0. Then,

for any γ ∈ (0, 1),

P (Ln ≥ 1/γ for some n ≥ 1) ≤ γ. (B.2)

Proof (Ville, 1939; Robbins, 1970). Let N = inf{n ≥ 1 : ρ′n ≥ ρn/γ}, then

P (ρn = 0 for some n ≥ 1), and

P (Ln ≥ 1/γ for some n ≥ 1) = P (N <∞)

=
∞∑
i=1

∫
(N=n)

ρndλ
(n)

≤ γ
∞∑
i=1

∫
(N=n)

ρ′ndλ
(n) = γ · P′(N <∞) ≤ γ.

Let us list the explicit constructions of the boundary (kn)n for three different

distributions of (ξn(θ))n that are used in this thesis.

1. Normal Distribution (Robbins, 1970; Siegmund, 1985): Assume that

(ξ(θ)n)n is a sequence of iid N(θ, 1) random variables and denote with

Pθ(·) the corresponding probability measure. Here, we test the hypothe-

sis θ < 0 versus θ > 0. Consider the normal mixture distribution of the form

P′(·) =
∫∞
−∞ Pθ(·)φ(x)dx, where φ(x) is the standard normal pdf. Then

Ln =

∫ ∞
−∞

exp(xSn −
1

2
nx2)φ(x)dx,

and the stopping time defined in Proposition 13 is equal to (B.1), where

kn = ((n+ 1)[log(n+ 1)− 2 log γ])1/2 . (B.3)

2. Bernoulli Distribution (Robbins, 1970): Assume that (ξ(θ)n)n is a sequence

of iid Bernoulli(θ) random variables and denote with Pθ(·) the corresponding
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probability measure. Here, we test the hypothesis θ < θ0 versus θ > θ0.

Consider the uniform mixture of Bernoulli distributions with parameter

0 < x < 1, that is, P′(x1, . . . , xn) =
∫ 1

0
x
∑n

i=1 xi(1 − x)n−
∑n

i=1 xidx. Using

the construction from Proposition 13 a test of power one is defined by the

stopping rule

N(θ) = inf

{
n ≥ 1 :

(
n

Bn

)
θBn

0 (1− θ0)n−Bn ≤ γ

n+ 1

}
, (B.4)

where Bn =
∑n

i=1 ξi(θ). Applying Hoeffding’s bound to
(
n
Bn

)
θBn

0 (1− θ0)n−Bn

defines a test of power with stopping rule as given in (B.1), where

kn = (n (log(n+ 1)− log 2− log γ) /2)1/2 . (B.5)

3. Simple Random Walk: Assume that (ξn(θ))n is a sequence of iid random vari-

ables with distribution P (ξi = +1) = (1 + θ)/2 and P (ξi = −1) = (1− θ)/2,

for θ ∈ [−1, 1]. We use the test designed for Bernoulli random variables

to test the hypothesis θ < θ0 against the alternative θ > θ0. In this case

Sn(θ) = 2S̃n(θ) − n, where S̃n(θ) is a random walk with Bernoulli incre-

ments, and hence the stopping rule (B.1) where

kn = (2n (log(n+ 1)− log 2− log γ))1/2 , (B.6)

defines a test of power one for the simple random walk with increments

ξ ∈ {−1,+1}.

While the method of likelihood ratios as given in Proposition 13 provides tests

of power one, these are not necessarily optimal tests. The performances of different

tests of power are usually compared by the expected stopping time as a function

of θ, especially as θ → θ0. To this end, Robbins and Siegmund (1974) and Lai

(1977) (Theorem 1, Example 1) show that the expected hitting time of a test with
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curved boundary of the form O
(
(n log n)1/2

)
(which includes tests defined by (B.3),

(B.5) and (B.6)) satisfies

E[N(θ)] ∼ (θ − θ0)−2 log(|θ − θ0|−1), as θ → θ0
1. (B.7)

This result is intuitive, since one would expect that a test of power one on average

requires more samples than a fixed-sized hypothesis test of θ = θ0 versus θ = θ1,

which requires, under mild assumptions on the noise distribution, O(|θ1 − θ0|−2)

samples. The above tests are not asymptotically optimal since

E[N(θ)] ∼ (θ − θ0)−2 | log | log |θ − θ0|||, as θ → θ0, (B.8)

is an optimal rate for the expected hitting time of a test of power one when the

increment distribution belongs to the exponential family (Farrell, 1964). For some

noise distribution there exist explicit curved boundaries (kn)n that achieve this

optimal rate, which are of the form

kn ∼ (2n(log log(n+ e) + c log log log(n+ ee)))1/2 , as n→∞, (B.9)

for some c > 3/2. Such optimal tests, however, are difficult to calibrate to a

required confidence level γ and only hold for large n, that is, the stopping time

assumes the form N = inf{n ≥ n1 : |Sn| ≥ kn} for some large constant n1 ∈ N.

See Farrell (1964), Robbins and Siegmund (1974) and Lai (1977) for proofs and

discussions of the above results.

Although optimal tests of power one may perform slightly better asymptoti-

cally, the tests defined by the simpler boundaries (B.3), (B.5) and (B.6) are suffi-

cient for the presented results in this thesis. The potential improvement of using

optimal tests, as well as the investigation of nonasymptotic behavior of different

tests of power one, are both promising topics for future research.

1Here, the notation g(x) ∼ f(x) means that limx→x0 f(x)/g(x) = a for some constant a > 0.
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