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Monte Carlo simulation is widely used in many fields. Unfortunately, it usually

requires a large amount of computer time to obtain even moderate precision so it

is necessary to apply efficiency improvement techniques. Adaptive Monte Carlo

methods are specialized Monte Carlo simulation techniques where the methods

are adaptively tuned as the simulation progresses. The primary focus of such

techniques has been in adaptively tuning importance sampling distributions to

reduce the variance of an estimator. We instead focus on adaptive methods based

on control variate schemes. In this dissertation we introduce two adaptive control

variate methods where a family of parameterized control variates is available, and

develop their asymptotic properties.

The first method is based on a stochastic approximation scheme for identifying

the optimal choice of control variate. It is easily implemented, but its performance

is sensitive to certain tuning parameters, the selection of which is nontrivial. The

second method uses a sample average approximation approach. It has the advan-

tage that it does not require any tuning parameters, but it can be computationally

expensive and requires the availability of nonlinear optimization software.

We include implementations of the methods and numerical results for two ap-

plications. These results suggests that the adaptive methods outperform the näıve

approach as long as the parameterization of the control variate is carefully chosen.
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Chapter 1

Introduction
Monte Carlo simulation is widely used in many fields. Unfortunately, it usually

needs a large amount of computational effort in order to obtain sufficiently accurate

results, especially, for large-scale or complex systems.

The effectiveness of Monte Carlo simulation is closely related to the variance of

the simulation estimators. When the variance of the estimators is high, the results

may become unacceptably inaccurate. The computational load of simulation has

motivated an interest in Monte Carlo methods for reducing the variance of simula-

tion estimators. If we can reduce the variance of an estimator without disturbing

its expectation, we can obtain more accurate estimates.

The control variate method is one of the most effective and widely used vari-

ance reduction techniques in Monte Carlo simulation [Rubinstein, 1986, Law and

Kelton, 2000]. In this dissertation, we develop adaptive Monte Carlo methods

for estimating the expected performance measure of stochastic systems based on

control variate schemes, and study the asymptotic properties of these procedures.

Suppose that one wishes to estimate EX, where X is a real-valued random variable.

Suppose also that {Y (θ) : θ ∈ Θ} is a parametric collection of random variables

such that EY (θ) = 0 for any θ in the parameter set Θ. Then one can estimate EX

by a sample average of i.i.d. replications of X − Y (θ), and the parameter θ can be

selected so as to minimize the variance of X − Y (θ). This method can be viewed

as a parameterized variance reduction technique, where Y (θ) serves as a control

variate. We propose adaptive procedures to tune the parameter θ for improving

efficiency as the simulation progresses. This idea of adaptive control variates is

1
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also considered in the context of steady-state simulation.

Our interest in this problem stems from several application areas. One of these

is the problem of pricing financial derivatives. When the payoff of a derivative se-

curity is path dependent, or the model of the dynamics of the underlying assets is

complex or high dimensional, it is often necessary to price via simulation [Glasser-

man, 2004]. An extended example in this paper (see Sections 2.1 and 3.2) shows

that one can apply adaptive control variate methods to improve the efficiency of

simulations in pricing certain financial derivatives.

A second example arises in the simulation analysis of multiclass processing

networks. When these networks are heavily loaded, simulation estimators can

suffer from large variance, and so some form of variance reduction is needed. The

simulation estimators developed in Henderson and Meyn [1997, 2003] give large

variance reductions, but have the same asymptotic rates of growth in the variance

as the näıve estimator; see Meyn [2003]. One way to potentially improve on these

results is to develop parameterized estimators.

A third class of examples arises in the problem of estimating the “expected

cost to absorption” in a Markov chain. This problem has received a great deal

of attention because of its applications in radiation transport problems; see, e.g.,

Kollman et al. [1999], Baggerly et al. [2000], Fitzgerald and Picard [2001].

The common thread underlying these applications is that they involve the sim-

ulation of a Markov process. This allows us to construct a parameterized family of

control variates using “approximating martingales”. Henderson and Glynn [2002]

show how to define approximating martingales for a variety of performance mea-

sures for Markov processes. The idea is to use the simpler approximating process

to construct a zero mean martingale for the original process. Once we have a pa-
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rameterized class of control variates at hand, we then need a procedure for selecting

a control from within the class.

1.1 Adaptive Monte Carlo Methods

Adaptive Monte Carlo methods are designed to adaptively tune simulation esti-

mators as the simulation progresses, with the purpose of improving efficiency. One

needs to have a good understanding of the structure of the system being simulated

in order to appropriately apply adaptive methods.

Most of the work on adaptive Monte Carlo methods has been devoted to adap-

tively tuning importance sampling schemes. Importance sampling has been used

in various applications to accelerate simulation by minimizing the variance of the

simulation estimator; see, e.g. Al-Qaq et al. [1995], Rubinstein and Melamed

[1998] for queueing and reliability models and Vázquez-Abad and Dufresne [1998],

Su and Fu [2000], Arouna [2003] for pricing financial derivatives, where stochas-

tic approximation is used to tune the change of measure. Another way to tune

importance sampling estimators is to select optimal importance sampling distribu-

tions via the cross entropy method; see Rubinstein [1999]. Adaptive importance

sampling is primarily used for rare event simulation. For a review of its uses in

this area, see Hsieh [2002], and for applications to option pricing see Glasserman

and Staum [2001]. Kollman et al. [1999] discuss adaptive importance sampling

in Markov chains and apply it to radiation transport problems. They provide an

adaptive sampling algorithm that converges exponentially to the zero variance so-

lution. Juneja and Shahabuddin [2006] is an excellent and up-to-date reference for

importance sampling in general.

A limited amount of work has been done on adaptive control variates. Hen-
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derson and Simon [2004] develop an adaptive control variate method for finite-

horizon simulations. They give conditions under which adaptive control variate

estimators converge at an exponential rate. One of the key assumptions there is

the existence of a “perfect” control variate, i.e., a parameter value θ∗ such that

var(X − Y (θ∗)) = 0. For the applications we have in mind, this assumption is

unlikely to hold. Bolia and Juneja [2005] use the martingale control variates devel-

oped in Henderson and Glynn [2002], as we do, but they only work with the case

of linearly parameterized controls. Maire [2003] expresses the estimation problem

as an integration problem over the unit hypercube, and uses the expansion of the

integrand for an approximate orthonormal basis as a control variate. An iterative

procedure estimates the coefficients of the expansion so that the variance of each

estimated coefficient has a polynomial decay. The residual terms are not estimated

iteratively, and therefore, in general, the convergence rate of the procedure cannot

exceed the canonical rate. Henderson et al. [2003] develop adaptive control vari-

ate schemes for Markov chains in the steady-state setting. They use a stochastic

approximation procedure for tuning control variate estimators developed in Tadić

and Meyn [2004] and provide conditions for minimization of an approximation of

the steady-state variance.

In this dissertation, we focus on adaptive methods based on control variate

schemes. The main contribution of this dissertation is to develop adaptive con-

trol variate methods for finite-horizon simulation when non-linearly parameterized

control variables are available, and to provide conditions under which the adaptive

estimators are consistent. To the best of our knowledge, this is the first application

of stochastic approximation and sample average approximation methods in this set-

ting. We also explore adaptive control variate methods for steady-state simulation
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based on sample average approximation. We also discuss some implementation

issues relevant to the practical use of these adaptive methods.

In general, it will be the case that the optimal variance v(θ∗) is positive a.s.

Consequently, the rates of convergence for our proposed estimators are typically

the canonical n−1/2 rate, where n is proportional to the computational effort, as

evidenced by central limit theorems. This precludes the exponential rates of con-

vergence that are demonstrated in Henderson and Simon [2004]. However, we do

briefly consider the case of a perfect control variate in the linearly-parameterized

case in Section 2.2. This section sheds further light on the perfect control variate

case treated in Henderson and Simon [2004], taking a somewhat different approach

to constructing an estimator.

1.2 Review of Simulation Optimization Methodologies

In this section we briefly review some simulation optimization methodologies re-

lated to our work. Consider the following optimization problem:

min
θ∈Θ

f(θ) = E[f(θ, ξ)], (1.2.1)

for some random variable ξ and parameter θ ∈ Θ, where Θ ∈ R
p is a set of permis-

sible values of the parameter θ. We assume that the function f(θ) is differentiable,

and can only be evaluated by Monte Carlo simulations. How does one compute an

(approximate) minimizer of (1.2.1)? Since (1.2.1) is a stochastic optimization prob-

lem, standard stochastic optimization algorithms can be applied. In particular, we

consider gradient-based stochastic optimization methods.

There exist several different approaches for estimating the gradient of the func-

tion f . The main ones are finite differences, e.g., L’Ecuyer and Perron [1994],
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likelihood ratio methods, e.g., Glynn [1990], and conditional Monte Carlo, e.g.,

[Fu and Hu, 1997]. For our adaptive control variate algorithms, we chose the

method of infinitesimal perturbation analysis (IPA). The idea of IPA is simply to

take ∇θf(θ, ξ), the gradient of f(θ, ξ) for fixed ξ, as an estimate of ∇θf(θ). If

∇θf(θ, ξ) is uniformly dominated by an integrable function of ξ, then the gradient

and expectation operators can be exchanged. This yields an unbiased estimator

[Glasserman, 1991, L’Ecuyer, 1995]. IPA is usually highly efficient when it is valid

(i.e., yields an unbiased gradient estimator). Unfortunately, there are many ap-

plications where IPA is not valid. In many cases, f(θ, ξ) can be replaced by a

smoother alternative, and then IPA can be used.

Stochastic approximation (SA) is a class of methods used to solve differentiable

simulation optimization problems. The procedure is analogous to the steepest de-

scent gradient search method in deterministic optimization, except here the gradi-

ent does not have an analytic expression and must be estimated. Since the basic

stochastic algorithms were introduced by Robbins and Monro [1951] and Kiefer

and Wolfowitz [1952], a huge amount of work has been devoted to this area. See

Kushner and Yin [2003] for asymptotic properties of the various SA algorithms.

The SA algorithms are easy to implement, and have been used in many areas. Fu

[1990] and L’Ecuyer and Glynn [1994] studied the SA method with IPA gradient

estimation and applied it to the optimization of the steady-state mean of a single

server queue. The SA method is widely used in adaptive importance sampling to

find an optimal importance sampling distribution [Vázquez-Abad and Dufresne,

1998, Su and Fu, 2000, Arouna, 2003].

Another standard method to solve the problem (1.2.1) is that of sample av-

erage approximation (SAA). This method approximates the original simulation
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optimization problem (1.2.1) with a deterministic optimization problem. One can

use the sample average 1
N

∑N
i=1 f(θ, ξi) based on an i.i.d. random sample ξ1, .., ξN

as an approximation of the expected value f(θ) for any θ. Once the sample is

fixed, the sample average function becomes deterministic. Consequently, the SAA

problem becomes a deterministic optimization problem, and one can solve it using

any convenient optimization algorithm. The algorithm can exploit the IPA gradi-

ents, which are exact gradients of the sample average 1
N

∑N
i=1 f(θ, ξi). Plambeck

et al. [1996] used a SAA method with IPA gradient estimates for solving convex

performance functions in stochastic systems and gave extensive computational re-

sults. The optimization of SAA problems has also been well studied in simulation

[Robinson, 1996, Rubinstein and Shapiro, 1993, Chen and Schmeiser, 2001]. For

an introduction to this approach, see Shapiro and Homem-de-Mello [2000], Shapiro

[2003].

1.3 Dissertation Outline

In Chapter 2 we study adaptive methods based on control variate schemes in a

finite-horizon setting. We assume that a family of mean zero parameterized control

variates is available. When the parameterization is linear, we can appeal to the

standard theory of (linear) control variates. Identifying the θ that minimizes the

variance is straightforward in this case, because the variance is a convex quadratic

in θ. It is possible to construct perfect (zero-variance) control variates in certain

settings [Henderson and Glynn, 2002, Henderson and Simon, 2004], and we explore

the asymptotic behavior of the linear control variate estimators in this case. In

general, one can obtain a zero-variance estimator with a finite number of samples,

N. The distribution of N has an exponentially decaying tail.
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When the parameterization is nonlinear, the problem is not so straightforward.

Under some pathwise differentiability and moment conditions, the variance of the

control variate estimator X−Y (θ) becomes a differentiable function in the parame-

ter θ. Once we have a differentiable variance function on hand, we apply simulation

optimization algorithms to search for the optimal values of the parameter θ. We

propose two adaptive procedures that tune the parameter θ while estimating EX,

and study the large-sample properties of these procedures.

The first of our procedures is based on a stochastic approximation scheme. At

iteration k, several independent replications of X − Y (θk−1) are generated, condi-

tional on the parameter choice θk−1 from the previous iteration. The sample mean

and the gradient (with respect to θ) of the sample variance are then computed,

and the parameter θk−1 is updated to θk in a stochastic approximation step. This

procedure is easily implemented and performs well with appropriately chosen step

sizes. But the selection of the step size is nontrivial, and has a strong impact on

the finite-time performance of the algorithm.

The second procedure is based on the theory of sample average approximation.

In an initial stage, a random sample is generated and a sample variance function is

defined with the generated sample. The sample variance function is deterministic

in terms of the parameter θ, and the optimal value of θ that minimizes this sample

variance function is determined using a non-linear optimization solver. Then one

makes a “production run” using the value of θ returned in the first stage. The initial

optimization can be computationally expensive when compared with one step of

the stochastic approximation procedure. However, sample average approximation

does not require tuning parameters beyond the choice of runlength, and for very

long simulation runs, a vanishingly small fraction of the effort is required in the
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initial optimization.

In Chapter 3 we examine the performance of the adaptive control variate meth-

ods discussed in Chapter 2 applied to two examples. It is important to find a good

parameterization for the control variate Y (θ) to obtain an efficient control variate

estimator. The control variate Y (θ) should approximate the random variable X

reasonably well and at the same time the computational expense brought by in-

troducing the control variate should be moderate. We describe how to construct

control variate estimators using martingale approximation, and choose good pa-

rameterizations for the control variates in the context of our examples. We also

discuss the implementation of our methods.

In Chapter 4 we turn our attention to steady-state simulations. We assume that

the underlying stochastic process possesses regenerative structure. A wide class

of discrete-event simulations is regenerative [Glynn, 1994, Henderson and Glynn,

2001]. The regenerative process enjoys asymptotic properties which provide a

clean setting for simulation output analysis. Under mild regularity conditions, a

regenerative process satisfies a law of large numbers and a central limit theorem,

and consistent estimators for the steady-state mean and time average variance can

be obtained [Glynn and Iglehart, 1993, Glynn and Whitt, 2002]

We explore adaptive control variate methods for estimating steady-state perfor-

mance measures based on the sample average approximation technique. The pro-

cedures exploit the regenerative structure of the underlying stochastic processes.

The quantities computed over the regenerative cycles are one-dependent identi-

cally distributed random variables, so the sample average approximation method

for terminating simulations in Chapter 2 can be extended to this setting. To de-

fine the sample average approximation problem, we consider time average variance
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estimators based on a regenerative method. Under mild regularity assumptions,

the control variate estimator based on the regenerative method is consistent and

the sample average approximation problem converges to the true problem.

Unless otherwise stated, all vectors are column vectors and all norms are Eu-

clidean. Suffixes can either indicate different instances of a random vector or

components of a single vector, with the context clarifying what is intended.



Chapter 2

Adaptive Control Variate Methods for

Finite-Horizon Simulation
In this chapter we study adaptive methods based on control variate schemes for

the case in which parameterized control variates are available. Suppose that we

wish to estimate EX, where X is a real-valued random variable. Suppose also

that EY (θ) = 0 for any θ ∈ Θ, where Θ is a parameter set. Then X − Y (θ) is

an unbiased estimator for µ, where Y (θ) serves as a control variate, and one is

free to select the parameter θ so as to minimize the variance of X − Y (θ). When

the parameterization is linear, identifying the θ that minimizes the variance is

straightforward because the variance is a convex quadratic in θ [Law and Kelton,

2000]. In the nonlinearly parameterized case, the problem is not so straightforward.

We propose two adaptive procedures that tune the parameter θ while estimating

EX.

Our motivating example for this chapter is the problem of pricing barrier op-

tions. Section 2.1 sketches some of the main ideas in pricing barrier options us-

ing adaptive control variates. We explore the linearly parameterized case in Sec-

tion 2.2, which is precisely that of standard control variate theory. We then turn

to the more complicated nonlinear-parameterization case. First, in Section 2.3 we

outline the general problem and discuss gradient estimation. In Section 2.4 we

explore an approach based on stochastic approximation, and then in Section 2.5

we study the sample average approximation approach .

11
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2.1 A Motivating Example

In this section, we describe the problem of pricing barrier options and explain

how parameterized controls can be found. Our goal in this section is not to de-

velop the most efficient known estimators for pricing barrier options, but rather to

demonstrate the adaptive control variate methodology in a familiar, but nontrivial,

setting, and bring out some of the practical issues involved in applications. We will

return to this example in Section 3.2 and describe the results of some simulation

experiments.

2.1.1 Pricing Barrier Options

A barrier option is a derivative security that is either activated (knocked-in) or

extinguished (knocked-out) when the price of the underlying asset reaches a certain

level (barrier) at any time during the lifetime of the option; see, e.g., Glasserman

[2004].

The price of the underlying stock at time t is denoted by S(t), for t ≥ 0.

Suppose that the underlying stock price is monitored at discrete times ti = i∆t, i =

0, 1, 2, . . . , l, where T is the (deterministic) expiration date of the option and ∆t =

T/l is the time between consecutive monitoring dates. For notational convenience,

let Si denote the underlying stock price at the ith monitoring point (i.e., S(ti)).

Assume that the initial stock price S0 takes a value in an interval H and the

barrier is the boundary of H . When the stock price crosses the barrier, the option

is knocked out and the payoff is zero. If the option has not been knocked out by

time T , then the payoff at time T is (Sl − K)+, where K > 0 is the strike price.
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Hence, the option payoff depends on the complete path {Si, i = 0, . . . , l}. Define

τ = inf{n ≥ 0 : Sn /∈ H} and

Ai = 1{τ>i}, i = 0, . . . , l.

Then Ai is the indicator that determines whether the option is alive at time ti or

not. We assume that the market is arbitrage free. Then the price of a knock-out

call option is given by

e−rT E[Al(Sl − K)+],

where r is the (assumed constant) risk-free interest rate and the expectation is

taken under the risk-neutral measure. Since the discount factor e−rT is constant,

pricing the option reduces to estimating the expected payoff with the initial stock

price x, i.e., estimating

E[Al(Sl − K)+|S0 = x].

2.1.2 Construction of Martingale Control Variates

Assume that the underlying stock price process {S(t) : t ≥ 0} is a (time homoge-

neous) Markov process. Then {Sn : n = 0, 1, 2, . . .}, where Sn is the stock price

at time tn = n∆t, is a discrete time Markov chain on the state space [0,∞). For

i = 0, 1, . . ., define

U∗(x, i) =















E[Ai(Si − K)+|S0 = x], if x ∈ H , and

0 if x = 0 or x /∈ H ,

so that U∗(x, i) is the expected payoff of the option with the initial stock price x

and maturity ti. Our goal is to estimate U∗(x, l).

We now describe the martingale that serves as a control variate, drawing from

the general results of Henderson and Glynn [2002, Section 4]. Let S̃i = SiAi,
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for i ≥ 0. Then {S̃n : n ≥ 0} is a Markov process on the state space S = H ∪

{0} (assuming that S0 ∈ H ∪ {0}). For a real-valued function f : S → R, let

P (x, ·)f(·) = E[f(S̃1)|S̃0 = x], provided that the expectation exists. Let U :

S × {0, 1, . . . , l − 1} → R be a real-valued function with U(0, ·) = 0 and for

1 ≤ n ≤ l let

Mn(U) =

n
∑

i=1

[U(S̃i, l − i) − P (S̃i−1, ·)U(·, l − i)],

provided that the conditional expectations in this expression are finite. Then

it is straightforward to show that (Mn(U) : 1 ≤ n ≤ l) is a martingale and

Ex(Ml(U))) = 0 for any U , provided that the usual integrability conditions hold,

where Ex denotes expectation under the initial condition S̃0 = x. Therefore,

U∗(x, l) can be estimated via i.i.d. replications of

(S̃l − K)+ − Ml(U), (2.1.1)

with S̃0 = x, where Ml(U) serves as a control variate.

But how should we select the function U? Our notation suggests that U = U∗

would be a good choice, and this is indeed the case. To see why, note that for all

x ∈ S and i > 0,

U∗(x, i) = E[Ai(Si − K)+|S0 = x]

= E[(S̃i − K)+|S̃0 = x],

= E[E[(S̃i − K)+|S̃1, S̃0 = x]|S̃0 = x]

= E[U∗(S̃1, i − 1)|S̃0 = x]

=

∫

S
U∗(y, i − 1)P (x, dy)

= P (x, ·)U∗(·, i − 1),
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where P is the transition probability kernel of {S̃n : n ≥ 0}. It follows that

Ml(U
∗) =

l
∑

i=1

[U∗(S̃i, l − i) − U∗(S̃i−1, l − (i − 1))]

= U∗(S̃l, 0) − U∗(S̃0, l)

= (S̃l − K)+ − U∗(x, l).

Hence, if U = U∗, then the estimator (2.1.1) of E[Al(Sl − K)+|S0 = x] has zero

variance.

So it is desirable that U ≈ U∗. Suppose that U(x, i) = U(x, i; θ), where

θ ∈ Θ ⊆ R
p is a p−dimensional vector of parameters.

Remark 1. In our general notational scheme, X is the payoff (S̃l − K)+ at time

T = l∆t, EX is the expected payoff U∗(x, l), and Y (θ) is Ml(U(·, ·; θ)).

A linear parameterization arises if

U(x, i; θ) =

p
∑

k=1

θ(k)Uk(x, i),

where Uk(·, ·) are given basis functions, k = 1, . . . , p. In this case, for 1 ≤ n ≤ l,

Mn(U) =
n
∑

i=1

[

p
∑

k=1

θ(k)Uk(S̃i, l − i) − P (S̃i−1, ·)
p
∑

k=1

θ(k)Uk(·, l − i)

]

=

p
∑

k=1

θ(k)

[

n
∑

i=1

Uk(S̃i, l − i) − P (S̃i−1, ·)Uk(·, l − i)

]

=

p
∑

k=1

θ(k)Mn(Uk), (2.1.2)

so that the control Mn(U) is simply a linear combination of martingales correspond-

ing to the basis functions Uk, k = 1, . . . , p. In this sense, the linearly parameterized

case leads us back to the theory of linear control variates. Notice that recomputing

the control for a new value of θ is straightforward – one simply reweights the pre-

vious values of the martingales corresponding to the basis functions. We further

investigate the linear control variate case in Section 2.2.
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The situation is more complicated when U(x; θ) arises from a nonlinear param-

eterization. An example of such a parameterization with p = 4 is given by

U(x, i; θ) = θ(1)xθ(2) + θ(3)x + θ(4).

Now Y (θ) is a nonlinear function of a random object Y (the path (S̃i : 0 ≤ i ≤ l))

and a parameter vector θ. It is difficult to recompute the value of X − Y (θ) when

θ changes. Essentially one needs to store the sample path of the chain, explicitly

or implicitly, in order to be able to do this.

For nonlinear parameterizations, we need a method for selecting a good choice

of θ. This is the subject of Section 2.3, 2.4 and 2.5. We will return to this barrier

option pricing example in Section 3.2.

2.2 The Linear Case

The theory of linear control variates is very well understood; see, for example,

Glynn and Szechtman [2002] or Glasserman [2004] for detailed treatments. The

standard theory does not cover the perfect (zero-variance) control variate case, so

after a brief review of the key ideas we discuss this case in some detail.

2.2.1 Linear Control Variate

Suppose that

Y (θ) =

p
∑

i=1

θ(i)C(i),

where C(i) is a real-valued square-integrable random variable with EC(i) = 0 for

each i = 1, . . . , p. This is the standard multiple control variates setting. Let θ

and C be the corresponding column vectors in R
p, so that Y (θ) = θT C, where
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xT denotes the transpose of the matrix x. Assuming that the covariance matrix

Λ = cov(C, C) is nonsingular, the optimal choice of weights θ∗ is

θ∗ = Λ−1β,

where β = cov(X, C) is a column vector whose ith component is cov(X, C(i)),

i = 1, . . . , p. Since θ∗ involves moment quantities that are generally unknown, it

can be estimated using the sample analogue

θn = Λ−1
n βn

where

βn =
1

n

n
∑

j=1

XjCj − X̄nC̄n and

Λn =
1

n

n
∑

j=1

CjC
T
j − C̄nC̄T

n .

Here {(Xj , Cj) : j ≥ 1} are i.i.d. replicates of the vector (X, C), and X̄n and C̄n

are the usual sample means of the first n observations.

Since Λ is nonsingular and Λn → Λ as n → ∞ element-wise, it follows that Λn

is also nonsingular for sufficiently large n, so that the estimator θn is well-defined

for sufficiently large n. The corresponding estimator for µ = EX is

µn = X̄n − θT
n C̄n.

One can show that µn satisfies a central limit theorem of the form

√
n(µn − µ) ⇒ σN(0, 1), (2.2.1)

where ⇒ denotes convergence in distribution, N(0, 1) is a normal random variable

with mean 0 and variance 1 and σ2 = var(X − Y (θ∗)). One can develop an
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alternative estimator for θn that exploits the fact that EC = 0. This will not

change the central limit theorem (2.2.1); see Glynn and Szechtman [2002].

Hence, if σ2 > 0, the estimator µn converges to µ at the canonical rate n−1/2

as is well known. In the case where σ2 = 0 the central limit theorem (2.2.1) shows

that the convergence is faster than the canonical rate, but the exact asymptotic

behaviour is not as clear. The next section explores this case in more detail.

2.2.2 Exponential Convergence

It is possible to construct perfect (zero-variance) control variates in certain set-

tings [Henderson and Glynn, 2002, Henderson and Simon, 2004]. Of course, as

mentioned in the introduction, the perfect-control-variate case is unlikely to arise

in the applications we have in mind. Nonetheless, partly to provide another per-

spective on the results of Henderson and Simon [2004] and partly for completeness,

we outline the asymptotic behavior of µn in this case.

Let

Xn =





















X1

X2

...

Xn





















and Cn =





















1 C1(1) C1(2) · · · C1(p)

1 C2(1) C2(2) · · · C2(p)

...
...

...
. . .

...

1 Cn(1) Cn(2) · · · Cn(p)





















be the column vector of observations of X and the matrix with jth row containing

a 1 together with CT
j .

Define N = inf{n ≥ 1 : Cn has full column rank}. Proposition 2.2.2 below

shows that N is almost surely finite when Λ is nonsingular and

µN = X̄N − θT
N C̄N = µ

almost surely. Hence, if we know that a perfect control exists, then we can continue
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the simulation until time N and report X̄N − θT
N C̄N as an estimate of µ that is

almost-surely correct. Therefore, in the case when a perfect control variate exists,

the controlled estimator gives the exact answer in finite time.

It will typically be the case that N = p + 1 a.s. However, in certain situations

N may be random.

Example 1. Suppose that with probability 0.5, C(1) is uniformly distributed on

the interval (−1, 1) and C(2) = C(1) − 1, and with probability 0.5, C(1) and

C(2) are independent uniform random variables on (−1, 1) and (0, 2) respectively.

Suppose further that X = 2C(1) + C(2) + µ. Then with probability 0.5n, Ci(2) =

Ci(1) − 1 for i = 1, . . . , n. Hence, P (N = 3) = 7/8 and for n ≥ 4, P (N = n) =

(1/2)n. At time N , and not before, we learn the exact coefficients of the linear

function that defines X. This then gives µ. If X = 2C(1) + C(2) + µ except at,

say, C = (1, 1) then the linear relationship still holds with probability 1. However,

now µN equals µ only with probability 1, and not on all sample paths.

In this example N has an exponential tail. This observation is true in general

assuming only second moments on X and C. Before stating this result precisely

we need a lemma.

Lemma 2.2.1. The matrix Cn has full column rank if and only if Λn is positive

definite.

Proof. It is well-known (e.g., Rice [1988, p. 477]) that Cn has full column rank if

and only if CT
nCn is nonsingular. Define

Σn =
1

n

n
∑

i=1

CiC
T
i .
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Then

CT
nCn =







1 1 . . . 1

C1 C2 . . . Cn



























1 CT
1

1 CT
2

...
...

1 CT
n





















= n







1 C̄T
n

C̄n Σn






. (2.2.2)

Premultiplying CT
nCn by the nonsingular elementary matrix

B =







1 0

−C̄n I







where I is the p × p identity matrix, we obtain

BCT
nCn = n







1 C̄T
n

0 Λn






,

which is nonsingular if and only if Λn is nonsingular.

We can now state the main result of this section.

Proposition 2.2.2. Suppose that X ∈ R and C ∈ R
p have finite second moments,

EC = 0, Λ = cov(C, C) is positive definite and X = CT θ∗ + µ a.s. Then N, as

defined above, is finite a.s., µN = µ a.s., and N has an exponentially decaying tail,

i.e., P (N > n) ≤ arn for some a > 0 and r < 1.

Proof. From Lemma 2.2.1, N can be alternatively defined as

inf{n ≥ 1 : Λn is nonsingular}. (2.2.3)

Since Λn converges elementwise to Λ under the second moment assumption almost

surely, it follows that N is finite almost surely.
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Next, X = CT θ∗ + µ a.s., and so

Xn = Cn







µ

θ∗






(2.2.4)

almost surely, for any n ≥ 1. The relation (2.2.4) also holds at time N , since

P






XN 6= CN







µ

θ∗












=

∞
∑

n=1

P






Xn 6= Cn







µ

θ∗






, N = n







≤
∞
∑

n=1

P






Xn 6= Cn







µ

θ∗













= 0.

Taking (2.2.4) at time N and premultiplying by CT
N , we then get

CT
NXN = CT

NCN







µ

θ∗






a.s.

If we use the representation (2.2.2) to expand out this relation, we find that

X̄N = µ + C̄T
Nθ∗ and (2.2.5)

1

N

N
∑

i=1

CiXi = C̄Nµ + ΣNθ∗ (2.2.6)

almost surely. From (2.2.5), C̄T
Nθ∗ = X̄N − µ a.s., so that

C̄N C̄T
Nθ∗ = C̄NX̄N − C̄Nµ a.s. (2.2.7)

Adding (2.2.6) and (2.2.7) and rearranging, we then see that

ΛNθ∗ = βN a.s.,

so that

θ∗ = Λ−1
N βN = θN a.s.
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It follows from this relation and (2.2.5) that

µN = X̄N − C̄T
NθN = µ a.s.

as claimed.

To prove the exponentially decaying tail property, note that Cn has full column

rank if and only if at least p + 1 of the vectors C1, . . . , Cn are affinely independent

[Bazaraa et al., 1993, p. 36]. Since Λ is nonsingular, it follows that there exist p+1

affinely-independent points c1, . . . , cp+1 contained in the support of C1. Now let

ǫ > 0 be such that the open balls B(ci, ǫ) centered at ci with radius ǫ are disjoint,

and moreover if xi ∈ B(ci, ǫ) for all i = 1, . . . , p+1, then {x1, . . . , xp+1} are affinely

independent. Let τi = inf{k : Ck ∈ B(ci, ǫ)}, and let N ′ = maxi τi. Then at least

p+1 of C1, . . . , CN ′ are affinely independent, and so CN′ is nonsingular. It follows

that N ≤ N ′. Furthermore, P (C1 ∈ B(ci, ǫ)) > 0 since ci is contained in the

support of C1. Hence, each τi is a geometric random variable and therefore N ′ has

a geometric tail. Since N ≤ N ′ this gives the result.

2.3 The Nonlinear Case: Preliminaries

Suppose that Y (θ) = h(Y, θ) is a nonlinear function of a random element Y and

a parameter vector θ ∈ Θ ⊂ R
p. Let H denote the support of the probability

distribution of (X, Y ), i.e., H is the smallest closed set such that P ((X, Y ) ∈

H) = 1. Let H2 be the set

{y : ∃x with (x, y) ∈ H},

i.e., the set of y values that appear in H . We assume the following:

Assumption A1 The parameter set Θ is compact. For all y ∈ H2, the real-

valued function h(y, ·) is C1 (i.e., continuously differentiable) on U , where U
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is a bounded open set containing Θ.

Assumption A2 The random variable X is square integrable. Also, for all θ ∈ U ,

EY 2(θ) < ∞ and EY (θ) = Eh(Y, θ) = 0.

For convenience we define X(θ) = X − Y (θ). Define

v(θ) = varX(θ) = var(X − Y (θ))

to be the variance of the estimator as a function of θ. As before, our overall goal is

to estimate EX. Our intermediate goal is to identify θ∗ which minimizes v(θ) over

θ ∈ Θ. In general we cannot expect to find a closed form expression for θ∗ as in the

linear case, and so we approach this problem from the point of view of stochastic

optimization. Regardless of which stochastic optimization method we adopt, we

need to impose some structure in order to make progress. We now develop some

machinery that will allow us to conclude that v(·) is differentiable.

Assumption A3 For all y ∈ H2, h(y, ·) is Lipschitz on U , i.e., there exists C(y) >

0 such that for all θ1, θ2 ∈ U ,

|h(y, θ1) − h(y, θ2)| ≤ C(y) ‖θ1 − θ2‖,

where ‖ · ‖ is a metric on R
p. Therefore,

sup
θ∈U

∣

∣

∣

∣

∂h(y, θ)

∂θ(j)

∣

∣

∣

∣

≤ C(y)

for all y ∈ H2 and j = 1, . . . , p.

Remark 2. Recall that a C1 function is Lipschitz on a compact set. If h(y, ·) is

C1 on R
p (or on an open set containing the closure of U), then A3 is immediate.



24

To establish the required differentiability we use the following result on In-

finitesimal Perturbation Analysis (IPA) from L’Ecuyer [1995]. Let f(θ) = Ef(θ, ξ)

for some random variable ξ whose distribution does not depend on θ. The basic

idea in IPA is to take ∇θf(θ, ξ), the gradient of f(θ, ξ) for fixed ξ, as an estimate of

∇θf(θ). This yields an unbiased estimator if the gradient and expectation can be

exchanged. The following theorem gives sufficient conditions for the interchange

to be valid. Since each component of the gradient can be dealt with separately,

there is no loss of generality if we assume for the purposes of this theorem that

p = 1.

Theorem 2.3.1. [L’Ecuyer, 1995] Let θ0 ∈ Υ, where Υ is an open interval, and

let H be a measurable set such that P (ξ ∈ H) = 1. Suppose that for every z ∈ H,

there is a D(z), where D(z) is at most countable, such that

(i) ∀z ∈ H, f(·, z) is continuous everywhere in Υ,

(ii) ∀z ∈ H, f(·, z) is differentiable everywhere in Υ\D(z),

(iii) there exists a function φ : H → [0,∞) such that

sup
θ∈Υ\D(z)

|f ′(θ, z)| ≤ φ(z)

∀z ∈ H with Eφ(ξ) < ∞, and

(iv) f(θ, ξ) is almost surely differentiable at θ = θ0, i.e.,

P

(

ξ ∈
{

z : f ′(θ0, z) = lim
δ→0

f(θ0 + δ, z) − f(θ0, z)

δ

})

= 1.

Then f(·) is differentiable at θ = θ0, and

f ′(θ0) = Ef ′(θ0, ξ).
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An unbiased gradient estimator can be obtained by noting that the sample

variance of i.i.d. observations is an unbiased estimator of the variance, so that

under A2, and for any m ≥ 2,

v(θ) = EV (m, θ) := E
1

m − 1

m
∑

i=1

(Xi(θ) − X̄m(θ))2

= E
m

m − 1

(

1

m

m
∑

i=1

X2
i (θ) − X̄2

m(θ)

)

, (2.3.1)

where (X1, Y1), . . . , (Xm, Ym) are i.i.d. replications of (X, Y ) and

X̄m(θ) =
1

m

m
∑

j=1

Xj(θ),

for all θ ∈ U . (We include the terms h(Yj, θ) in the sample average X̄m(θ) even

though we know that they have zero mean, because they reduce variance.) As-

sumption A1 implies that for each (x, y) ∈ H , x − h(y, ·) is a C1 function on U .

This provides the pathwise differentiability of V (m, θ) on U . We also need some

integrability conditions.

Assumption A4 E

(

C(Y )

[

1 + sup
θ∈U

|X(θ)|
])

< ∞, where C(Y ) appears in A3.

We can construct an unbiased gradient estimator from (2.3.1) as

gm(θ0) = ∇V (m, θ0)

=
1

m − 1

m
∑

i=1

∇θ(Xi(θ) − X̄m(θ))2

∣

∣

∣

∣

∣

θ=θ0

=
−2

m − 1

m
∑

i=1

(Xi(θ) − X̄m(θ))∇θ

(

h(Yi, θ) −
1

m

m
∑

j=1

h(Yj , θ)

)∣

∣

∣

∣

∣

θ=θ0

.

Proposition 2.3.2. If A1 - A4 hold then v(·) is C1 on U and for θ0 ∈ U ,

g(θ0) := ∇θv(θ)|θ=θ0

= Egm(θ0) (2.3.2)



26

Proof. We apply Theorem 2.3.1 to the sample variance V (m, θ) component by

component. Consider the jth component, for some j = 1, . . . , p. The only condi-

tion that requires explicit verification is that ∂V (m, θ)/∂θ(j) is dominated by an

integrable function of (X,Y) = ((Xi, Yi) : 1 ≤ i ≤ m). We have that

∂V (m, θ)

∂θ(j)
=

m

m − 1

(

−1

m

m
∑

i=1

2Xi(θ)
∂h(Yi, θ)

∂θ(j)
+ 2X̄m(θ)

1

m

m
∑

i=1

∂h(Yi, θ)

∂θ(j)

)

.

(2.3.3)

The first term in the parentheses in (2.3.3) is integrable by A4. For the second

term, we apply A3 and split the sums to obtain

∣

∣

∣

∣

∣

X̄m(θ)
1

m

m
∑

i=1

∂h(Yi, θ)

∂θ(j)

∣

∣

∣

∣

∣

≤ 1

m2

m
∑

i=1

sup
θ∈U

|Xi(θ)|C(Yi) +
1

m2

m
∑

i=1

∑

k 6=i

sup
θ∈U

|Xi(θ)|C(Yk). (2.3.4)

If E supθ∈U |Xi(θ)| is finite then A4 implies integrability of this bound and the

proof will be complete. Fix θ0 ∈ U . By A3,

|X1(θ)| ≤ |X1| + |h(Y1, θ)|

≤ |X1| + |h(Y1, θ0)| + |h(Y1, θ) − h(Y1, θ0)|

≤ |X1| + |h(Y1, θ0)| + C(Y1)‖θ − θ0‖.

But ‖θ−θ0‖ is bounded on the bounded set U , and so supθ∈U |X1(θ)| is integrable.

So under the assumptions A1 - A4, the variance function v(θ) is continuously

differentiable in θ ∈ U , and we have an IPA-based unbiased gradient estimator at

our disposal. We are now equipped to attempt to minimize v(θ) over θ ∈ Θ.
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2.4 The Stochastic Approximation Method

Stochastic approximation is a class of stochastic optimization methods used to solve

problems with differentiable objective functions. In the presence of nonconvexity

the algorithm may only converge to a local minimum. The general form of the

algorithm is a recursion where an approximation θn for the optimal solution is

updated to θn+1 using an estimator gn(θn) of the gradient g(θn) of the objective

function evaluated at θn. For a minimization problem, the recursion is of the form

θn+1 = ΠΘ(θn − angn(θn)), (2.4.1)

where ΠΘ denotes a projection of points outside Θ back into Θ, and {an} is a

sequence of positive real numbers such that

∞
∑

n=1

an = ∞ and

∞
∑

n=1

a2
n < ∞. (2.4.2)

We use IPA to obtain gn(θn), as discussed in the previous section.

Our stochastic approximation algorithm for finding θ∗ and estimating EX is

as follows. Let m ≥ 2 be a fixed positive integer.

In Section 2.4.1, we give conditions under which the stochastic approximation

estimator µn is consistent and a central limit theorem is satisfied. We propose

several estimators for the asymptotic variance in the central theorem, which pro-

vides a way to estimate a confidence interval for µ. Section 2.4.2 shows that under

additional conditions θn converges to some random variable θ∗ a.s. as n → ∞.
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Initialization: Choose θ0.

For k = 1 to n

Generate the i.i.d. sample (Xk,i, Yk,i) ∼ (X, Y ), i = 1, ..., m, independent

of all else.

Compute

Ak(θk−1) =
1

m

m
∑

i=1

[Xk,i − h(Yk,i, θk−1)],

gk−1(θk−1) =
−2

m − 1

m
∑

i=1

[Xk,i − h(Yk,i, θk−1) − Ak(θk−1)]

∇θ

[

h(Yk,i, θ) −
1

m

m
∑

j=1

h(Yk,j, θ)

]∣

∣

∣

∣

∣

θ=θk−1

and

θk = ΠΘ(θk−1 − ak−1gk−1(θk−1)).

Next k

Set µn = n−1
∑n

k=1 Ak(θk−1).

Figure 2.1: The stochastic approximation algorithm

2.4.1 Asymptotic Properties of the Stochastic Approxima-

tion Estimator

We first show consistency of the estimator µn. We apply the following martingale

strong law of large numbers which can be found in Liptser and Shiryayev [1989,

p. 144]. Let (Fn : n ≥ 0) be a filtration, i.e. an increasing sequence of σ-fields.

Theorem 2.4.1 (Liptser and Shiryayev 1989). Let (Mn,Fn : n ≥ 0) be a square-

integrable martingale with M0 = 0. Let (Ln : n ≥ 0) be nondecreasing in n with

Ln ∈ Fn for all n. Define

Vn =
n
∑

k=1

E((Mk − Mk−1)
2|Fk−1)
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and assume that

∞
∑

n=1

Vn+1 − Vn

(1 + Ln)2
< ∞ a.s. and P (L∞ = ∞) = 1,

where L∞ = limn→∞ Ln. Then

Mn

Ln
→ 0 a.s.

Let Fn = σ{(Xk,i, Yk,i) : 1 ≤ k ≤ n, 1 ≤ i ≤ m} be the sigma field containing

the information from the first n steps of the stochastic approximation algorithm.

Let F0 be the trivial sigma field and θ0 be any deterministic guess for θ∗. (If θ0

is not deterministic then we can extend F0 appropriately, so there is no loss of

generality in this convention.)

Proposition 2.4.2. Assume A1-A4. Then µn → µ a.s. as n → ∞.

Proof. For k ≥ 1 and n ≥ 1, define

ζk(θk−1) = Ak(θk−1) − µ and

Mn =

n
∑

k=1

ζk(θk−1).

Then

µn = µ +
Mn

n
,

and hence it suffices to show that Mn/n → 0 a.s. as n → ∞.

Define M0 = 0. Since E(ζk(θk−1)|Fk−1) = 0 for all k ≥ 1, (Mn,Fn : n ≥ 0) is a

martingale. Moreover, for all n ≥ 1,

E(M2
n) =

n
∑

k=1

var(Ak(θk−1))

=

n
∑

k=1

1

m
E(v(θk−1)) < ∞,
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where the finiteness follows from the fact that v(·) is continuous on the compact

set Θ and therefore bounded. Define Ln = n for all n ≥ 0 and

Vn =
n
∑

k=1

E((Mk − Mk−1)
2|Fk−1) =

n
∑

k=1

E(ζ2
k(θk−1)|Fk−1) =

1

m

n
∑

k=1

v(θk−1).

Then P (L∞ = ∞) = 1 and

∞
∑

n=1

Vn+1 − Vn

(1 + Ln)2
=

1

m

∞
∑

n=1

v(θn)

(1 + n)2
≤ supθ∈Θ v(θ)

m

∞
∑

n=1

1

(1 + n)2
< ∞ a.s.

Therefore, by Theorem 2.4.1, Mn/n → 0 a.s. as n → ∞.

Remark 3. The proof of Proposition 2.4.2 is based on the square integrability

of X1(·) and the continuity of v(·) on Θ. The square-integrability condition may

seem too strong. But if θk → θ∗ a.s. as k → ∞ for some random variable θ∗ that

takes on countably many values, then under the Lipschitz continuity of h(y, ·) and

finite first moment conditions, µn is still strongly consistent.

We now assess the rate of convergence of µn through a central limit theorem. We

use the following martingale central limit theorem which can be found in Liptser

and Shiryayev [1989, p. 444]. A martingale difference sequence (ξk,n,Fk,n : n ≥

1, 1 ≤ k ≤ n) is a collection of mean-zero random variables ξk,n and filtrations

(Fk,n : k = 1, . . . , n) such that ξk,n is measurable with respect to Fk,n for all n ≥ 1

and 1 ≤ k ≤ n, and E(ξk,n|Fk−1,n) = 0 for all n ≥ 1 and k = 1, . . . , n. Here we

have adopted the convention that F0,n is the trivial sigma field for all n ≥ 1, so

that θ0 is a deterministic approximation for θ∗.

Theorem 2.4.3 (Liptser and Shiryayev 1989). Assume that (Fk,n : 1 ≤ k ≤ n, n ≥

1) is nested, i.e., Fk,n ⊆ Fk,n+1, for all k ≤ n, n ≥ 1. Let η2 be a G-measurable

random variable where

G ⊆ σ (∪n≥1Fn,n) .
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Let Z be a random variable with characteristic function

E(eitZ) = E exp

(

−t2

2
η2

)

, t ∈ R,

so that Z is a mixture of mean-zero normal random variables. Let (ξk,n,Fk,n :

n ≥ 1, 1 ≤ k ≤ n) be a martingale difference sequence with E(ξ2
k,n) < ∞, for all

n ≥ 1, 1 ≤ k ≤ n. Assume that

(i)
∑n

k=1 E(ξ2
k,nI(|ξk,n| > δ)|Fk−1,n) → 0 in probability, for all δ ∈ (0, 1],

(ii)
∑n

k=1 E(ξ2
k,n|Fk−1,n) → η2 in probability, and

(iii)
∑⌊ncn⌋

k=1 E(ξ2
k,n|Fk−1,n) → 0 in probability

for a certain sequence (cn)n≥1 with cn ↓ 0, ncn → ∞ as n → ∞. Then

Sn =
n
∑

k=1

ξk,n ⇒ Z

as n → ∞, where ⇒ denotes convergence in distribution.

The central limit theorem below assumes that θn converges to some random

variable θ∗ a.s. Establishing this result requires some care, so we state our main

results assuming that this convergence holds and then give sufficient conditions for

the convergence of θn. The theory does not require that θ∗ be a minimizer of v(θ)

over Θ although we would certainly prefer this to be the case. Before stating the

central limit theorem we need another assumption. Let

E = {ω : θk(ω) → θ∗(ω) as k → ∞}

so that P (E) = 1 and let

Γ = {θ∗(ω) = lim
k→∞

θk(ω) : ω ∈ E} ⊆ Θ

be the set of limiting values of θk.
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Assumption A5 For any γ ∈ Γ, there is a neighbourhood N (γ) of γ such that

the collection {X2(θ) : θ ∈ N (γ)} is uniformly integrable.

Remark 4. A set of sufficient conditions for A5 is A1-A3 and EK2(Y ) < ∞.

Theorem 2.4.4. Assume A1-A5 and that θn → θ∗ for some random variable θ∗

a.s. as n → ∞. Let Z be a random variable with characteristic function

E(eitZ) = E exp

(

−t2

2
v(θ∗)

)

, t ∈ R,

i.e., Z = v1/2(θ∗)N(0, 1) is a mixture of mean-zero normal random variables. Then

√
mn(µn − µ) ⇒ Z

as n → ∞.

Proof. To show the central limit theorem we apply Theorem 2.4.3. Let

ξk,n =

√
m(Ak(θk−1) − µ)√

n

so that

√
mn(µn − µ) =

n
∑

k=1

ξk,n.

As in Proposition 2.4.2, (ξk,n,Fk,n : n ≥ 1, 1 ≤ k ≤ n) is a martingale difference

sequence with Eξ2
k,n = Ev(θk−1)/n < ∞, where Fk,n = Fk for all n. Fix δ > 0 and

let

Wn =

n
∑

k=1

E(ξ2
k,nI(|ξk,n| > δ)|Fk−1,n).

If ζk(θk−1) = Ak(θk−1) − µ, then

Wn =
m

n

n
∑

k=1

E[ζ2
k(θk−1)I(ζ2

k(θk−1) > nδ2/m)|Fk−1,n]

=
m

n

n
∑

k=1

E[ζ2
k(θk−1)I(ζ2

k(θk−1) > nδ2/m)|θk−1].
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For any θ ∈ Θ, let ζ(θ) = 1
m

∑m
j=1(Xj −h(Yj , θ)−µ), where (X1, Y1), . . . , (Xm, Ym)

are i.i.d. replications of (X, Y ), independent of (Xk,i, Yk,i), i = 1, . . . , m, k ≥ 1.

Then

Wn =
m

n

n
∑

k=1

f(θk−1, nδ2/m),

where

f(θ, b) = E[ζ2(θ)I(ζ2(θ) > b)].

Let ω ∈ E be fixed, and let γ = θ∗(ω). Assumption A5 ensures that the

collection (ζ2(θ) : θ ∈ N (γ)) is uniformly integrable and so for all ǫ > 0, there exists

Kǫ > 0 such that f(θ, Kǫ) ≤ ǫ for all θ ∈ N (γ). Fix ǫ > 0. Let n1 = n1(ω) ≥ 1 be

such that θn(ω) ∈ N (γ) for all n ≥ n1 and let n2 ≥ 1 be such that nδ2/m ≥ Kǫ

for all n ≥ n2. Let n∗ = max{n1, n2} + 1. Then

Wn =
m

n

n
∑

k=1

f(θk−1, nδ2/m)

=
m

n

n∗

∑

k=1

f(θk−1, nδ2/m) +
m

n

n
∑

k=n∗+1

f(θk−1, nδ2/m)

≤ m

n

n∗

∑

k=1

f(θk−1, 0) +
m

n

n
∑

k=n∗+1

f(θk−1, Kǫ).

Hence

0 ≤ lim sup
n→∞

Wn ≤ 0 + lim sup
n→∞

m

n

n
∑

k=n∗+1

ǫ = mǫ.

Since ǫ and ω ∈ E were arbitrary, we conclude that Wn → 0 as n → ∞ a.s.

The second and third conditions of Theorem 2.4.3 are easily dealt with. We

see that

n
∑

k=1

E(ξ2
k,n|Fk−1) =

n
∑

k=1

m

n
E((Ak(θk−1) − µ)2|Fk−1) =

1

n

n
∑

k=1

v(θk−1) → v(θ∗)
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as n → ∞ a.s., since {θk} converges a.s., and v is continuous. For the third

condition, let cn = n−1/2. Then

⌊ncn⌋
∑

k=1

E(ξ2
k,n|Fk−1) =

1

n

⌊n1/2⌋
∑

k=1

v(θk−1) ≤
n1/2 supθ∈Θ v(θ)

n
→ 0

as n → ∞. The central limit theorem is therefore a consequence of Theorem 2.4.3.

Hence we see that the stochastic approximation estimator µn satisfies a strong

law and central limit theorem as n → ∞. It will almost invariably be the case

that v(θ∗) > 0 a.s. so that the rate of convergence of µn is the canonical rate

n−1/2. This is the best that can be hoped for with the Monte Carlo nature of the

estimation procedure we used.

Recall that our motivation for choosing m > 1 was to obtain an unbiased

gradient estimator with low variance. This additional averaging of m terms in

each step of the algorithm does not slow convergence, at least to first order, in the

sense that the variance of the estimator and the limiting variance that appear in

the central limit theorem are each reduced by a factor of m. Therefore the choice

of m ≥ 2 is essentially immaterial from the central-limit-theorem point of view. Of

course, these are large sample results, and it may be beneficial to carefully choose

m in small samples. We do not explore that possibility here.

In the rather special case where v(θ∗) = 0 a.s. the central limit theorem

above still holds in the sense that
√

n(µn − µ) ⇒ 0 as n → ∞. The rate of

convergence is then faster than n−1/2, and its exact nature depends on the rate at

which θn → θ∗ a.s. We do not explore this case further here, because we believe

that the case v(θ∗) = 0 a.s. is unlikely to arise in the applications we have in mind.

See Henderson and Simon [2004] for an exploration of increased convergence rates
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when θ∗ is constant and v(θ∗) = 0.

The central limit theorem suggests a confidence interval procedure, provided

that the variance can be estimated. Suppose that θk → θ∗ a.s. for some fixed

θ∗ ∈ Θ, so that the variance appearing in the central limit theorem is deterministic

and equal to v(θ∗). To estimate v(θ∗) we can use any one of the three estimators

S2
n =

1

mn − 1

n
∑

k=1

m
∑

i=1

(Xk,i(θk−1) − µn)2 ,

Ŝ2
n =

1

n

n
∑

k=1

(

1

m − 1

m
∑

i=1

(Xk,i(θk−1) − Ak(θk−1))
2

)

, and (2.4.3)

S̃2
n =

m

n − 1

n
∑

k=1

(Ak(θk−1) − µn)2.

The estimator S2
n is the sample variance using all mn samples, Ŝ2

n is the average of

the sample variances of m terms in each iteration, and S̃2
n is m times the sample

variance of the averages computed at each iteration. The following proposition

shows that all three estimators are strongly consistent, so they can be used to

construct asymptotically valid confidence intervals.

Proposition 2.4.5. Assume A1-A4 and that θn converges to some fixed θ∗ ∈ Θ

a.s. Then

(i) S2
n, Ŝ2

n, S̃2
n → v(θ∗) as n → ∞ a.s.

(ii) Assume also A5, and that v(θ∗) > 0. Then

√
nm(µn − µ)

ηn
⇒ N(0, 1)

as n → ∞, where ηn can be Sn, Ŝn or S̃n.
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Proof. For part (i), write

S2
n =

1

nm − 1

n
∑

k=1

m
∑

i=1

X2
k,i(θk−1) −

nm

nm − 1
µ2

n

=
1

nm − 1

n
∑

k=1

m
∑

i=1

X2
k,i(θ

∗) − nm

nm − 1
µ2

n (2.4.4)

+
1

nm − 1

n
∑

k=1

m
∑

i=1

(X2
k,i(θk−1) − X2

k,i(θ
∗)) (2.4.5)

By the SLLN and Proposition 2.4.2,

1

nm − 1

n
∑

k=1

m
∑

i=1

X2
k,i(θ

∗) − nm

nm − 1
µ2

n → E(X2
1 (θ∗)) − µ2 = v(θ∗)

as n → ∞ a.s. Therefore it suffices to show that the last term in (2.4.5) converges

to 0 a.s. as n → ∞.

Since θk → θ∗ as k → ∞ a.s., for any given ǫ > 0, there exists a random N

such that for all k ≥ N, ‖θ∗ − θk‖ < ǫ a.s. Then

1

nm − 1

n
∑

k=1

m
∑

i=1

(X2
k,i(θk−1) − X2

k,i(θ
∗))

≤ 1

nm − 1

n
∑

k=1

m
∑

i=1

|Xk,i(θk−1) − Xk,i(θ
∗)| |Xk,i(θk−1) + Xk,i(θ

∗)|

≤ 2

nm − 1

n
∑

k=1

m
∑

i=1

C(Yk,i) sup
θ∈U

|Xk,i(θ)|‖θk−1 − θ∗‖

≤ 2

nm − 1

N
∑

k=1

m
∑

i=1

C(Yk,i) sup
θ∈U

|Xk,i(θ)|‖θk−1 − θ∗‖ (2.4.6)

+
2

nm − 1

n
∑

k=N+1

m
∑

i=1

C(Yk,i) sup
θ∈U

|Xk,i(θ)|ǫ (2.4.7)

Now, (2.4.6) converges to 0 a.s. as n → ∞ since N is finite. A4 implies that

C(Y1) supθ∈U |X1(θ)| is integrable and hence the SLLN ensures that

2

nm − 1

n
∑

k=N+1

m
∑

i=1

C(Yk,i) sup
θ∈U

|Xk,i(θ)|ǫ → 2ǫE

(

C(Y1) sup
θ∈U

|X1(θ)|
)

as n → ∞ a.s. Since ǫ is arbitrary, (2.4.7) converges to 0 a.s. as n → ∞.
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Essentially the same argument can be applied to Ŝn and S̃n. We omit the

details.

Part (ii) is an immediate consequence of Part (i) and the converging together

lemma (e.g., Chung [1974, p. 93]).

Under the conditions of Proposition 2.4.5(ii), an asymptotic 100(1− α)% con-

fidence interval for µ is

[

µn − z
ηn√
nm

, µn + z
ηn√
nm

]

,

where ηn can be Sn, Ŝn or S̃n and z is chosen such that P (−z ≤ N(0, 1) ≤ z) =

1 − α.

But which variance estimator should we use? Some insight into this question

can be obtained by assuming that θk = θ∗ for all k, and then considering the

second-order behavior of the variance estimators as given by central limit theorems.

This case is easier to analyze than the general case because the Xk,i(θ
∗)s are i.i.d.

random variables.

Proposition 2.4.6. Suppose that θk = θ∗ for all k ≥ 0. Suppose that EX4(θ∗) <

∞. Then

√
mn(S2

n − v(θ∗)) ⇒ σN(0, 1),

√
mn(Ŝ2

n − v(θ∗)) ⇒ σ̂N(0, 1), and

√
mn(S̃2

n − v(θ∗)) ⇒ σ̃N(0, 1)
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as n → ∞, where

σ2 = E[X1(θ
∗) − µ]4 − v2(θ∗),

σ̂2 = E[X1(θ
∗) − µ]4 − m − 3

m − 1
v2(θ∗), and

σ̃2 = E[X1(θ
∗) − µ]4 + (2m − 3)v2(θ∗).

Proof. First consider S2
n. Notice that the Xk,i(θ

∗)s are i.i.d. Therefore

√
nm

(

S2
n(θ

∗) − v(θ∗)
)

=
√

nm

(

1

nm − 1

n
∑

k=1

m
∑

i=1

X2
k,i(θ

∗) − nm

nm − 1
µ2

n − v(θ∗)

)

=
√

nm

(

1

nm

n
∑

k=1

m
∑

i=1

X2
k,i(θ

∗) − µ2
n − v(θ∗) + op((nm)−1/2)

)

.

Let g(x, y) = x − y2. Then

1

nm

n
∑

k=1

m
∑

i=1

X2
k,i(θ

∗) − µ2
n − v(θ∗) = g(

1

nm

n
∑

k=1

m
∑

i=1

X2
k,i(θ

∗), µn) − g(E(X2
1 (θ∗)), µ).

By the delta method,

√
nm

(

g(
1

nm

n
∑

k=1

m
∑

i=1

X2
k,i(θ

∗), µn) − g(E(X2
1(θ

∗)), µ)

)

⇒ σN(0, 1),

where

σ2 = ∇g
(

E[X1(θ
∗)]2, µ

)T
cov(X2

1 (θ∗), X1(θ
∗))∇g

(

E(X2
1 (θ∗)), µ

)

= E(X4
1 (θ∗)) − 4µE(X3

1 (θ∗)) + 8µ2E(X2
1 (θ∗)) − [E(X2

1 (θ∗))]2 − 4µ4

= E(X1(θ
∗) − µ)4 − v2(θ∗).

The central limit theorem for Ŝ2
n follows from the ordinary central limit theo-

rem. We get

√
nm(Ŝ2

n(θ∗) − v(θ∗)) ⇒ σ̂N(0, 1),
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where

σ̂2 = m var

(

1

m − 1

m
∑

i=1

(X1,i(θ
∗) − A1(θ

∗))2

)

= m
1

m

(

E(X1(θ
∗) − µ)4 − m − 3

m − 1
E(X1(θ

∗) − µ)2

)

= E(X1(θ
∗) − µ)4 − m − 3

m − 1
v2(θ∗).

(The second equality above requires some algebra.)

The proof of the central limit theorem for S̃2
n follows essentially the same ar-

gument that we used for S2
n and is omitted.

Notice that σ̃2 > σ2, σ̂2 for m ≥ 2, so on that basis we prefer either S2
n or Ŝ2

n to

S̃2
n. The difference between σ2 and σ̂2 is much smaller and vanishes as m grows.

So the choice between these estimators essentially comes down to computational

convenience, so long as m is large enough. We used Ŝ2
n in our experiments.

2.4.2 Convergence of the Stochastic Approximation Algo-

rithm

We now give conditions under which θn converges to some random variable θ∗ a.s.

as n → ∞. Theorem 2.4.7 below is an immediate specialization of Kushner and

Yin [2003, Theorem 2.1, p. 127]. We first need some definitions.

A box B ⊂ R
p is a set of the form

B = {x ∈ R
p : a(i) ≤ x(i) ≤ b(i), i = 1, . . . , p},

where a(i), b(i) ∈ R and a(i) ≤ b(i), i = 1, . . . , p. For x ∈ B define the set C(x) as

follows. For x in the interior of B, C(x) = {0}. For x on the boundary of B, C(x)

is the convex cone generated by the outward normals of the faces on which x lies.
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A first-order critical point x of a C1 function f : B → R satisfies

−∇f(x) = z for some z ∈ C(x).

A first-order critical point is either a point where the gradient ∇f(x) is zero, or

a point on the boundary of B where the gradient “points towards the interior of

B”. Let S(f, B) be the set of first-order critical points of f in B. We define the

distance from a point x to a set S to be

d(x, S) = inf
y∈S

‖x − y‖.

The projection y = ΠBx is a pointwise projection defined by

y(i) =























a(i) if x(i) < a(i),

x(i) if a(i) ≤ x(i) ≤ b(i), and

b(i) if b(i) < x(i),

for each i = 1, . . . , p.

Let (Gn : n ≥ 0) be a filtration, where the initial guess θ0 is measurable with

respect to G0, and Gn (an estimate for the gradient of f at θn) is measurable with

respect to Gn+1 for all n ≥ 0.

Theorem 2.4.7. Let B be a box in R
p and f : R

p → R be C1. Suppose that for

n ≥ 0, θn+1 = ΠB(θn − anGn) with the following additional conditions.

(i) The conditions (2.4.2) hold.

(ii) supn E‖Gn‖2 < ∞.

(iii) E[Gn|Gn] = ∇f(θn) for all n ≥ 0.

Then,

d(θn, S(f, B)) → 0
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as n → ∞ a.s. Moreover, suppose that S(f, B) is a discrete set. Then, on almost

all sample paths, θn converges to a unique point in S(f, B) as n → ∞.

Notice that the point in S(f, B) that θn converges to can be random. We can

apply Theorem 2.4.7 in our context, but first we need one more assumption.

Assumption A6 The random variables X, K(Y ) and Y (θ0), for some fixed θ0 ∈

Θ, all have finite fourth moments.

Remark 5. When A1-A3 and A6 hold, EY 4(θ) is bounded in θ ∈ Θ.

Corollary 2.4.8. Let Θ be a box in R
p and suppose A1 - A4, A6 hold. Then

d(θn, S(v, Θ)) → 0 as n → ∞ a.s. Moreover, suppose that S(v, Θ) is a discrete

set. Then, on almost all sample paths, θn converges to a unique point in S(v, Θ)

as n → ∞.

Proof. The only condition of Theorem 2.4.7 that needs verification is the condition

supn E‖Gn‖2 < ∞. In our case, Gn = gn(θn), and

‖gn(θn)‖2 ≤ sup
θ∈Θ

‖gn(θ)‖2.

But the distribution of gn(θ) does not depend on n, so the result follows if

sup
θ∈Θ

E‖g1(θ)‖2 < ∞.

The argument is similar to the one used in Proposition 2.3.2 and is omitted. It is

this argument that requires the stronger moment assumption A6.

Corollary 2.4.8 does not ensure that θn converges to a deterministic θ∗ as n →

∞. For that we need to impose further conditions. One simple condition is that

the set of first-order critical points S(v, Θ) consists of a single element θ∗. This

condition is unlikely to be easily verified in practice.
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We will see in Chapter 3 that the stochastic approximation procedure works

well so long as the step size parameters of the procedure are chosen appropriately.

However, the selection of the parameters is a nontrivial problem. Various proce-

dures have been developed where the step size parameters are adaptively updated

as the number of iterations n grows [Ruppert, 1985]. But with any stochastic

approximation procedure, it can be still difficult to select good values for these

parameters. For this reason we also consider a second estimator based on quite a

different approach.

2.5 The Sample Average Approximation Method

The stochastic approximation method above estimates the parameter θ∗ that solves

the optimization problem

P : min
θ∈Θ

v(θ)

and the target mean µ simultaneously. An alternative is a two-phase approach

where we first compute an estimate θ̂ of θ∗, and in a second phase estimate µ using

µ̂n =
1

n

n
∑

i=1

[Xi − h(Yi, θ̂)]. (2.5.1)

If θ̂ is a deterministic approximation for θ∗, then the ordinary strong law and

central limit theorem immediately apply. In general, however, θ̂ will be a random

variable that depends on sampling in the initial phase. This is the case in the

sample average approximation (SAA) method that we now adopt [Shapiro, 2003].

Let m ≥ 2 be given and suppose that we generate, and then fix, the random

sample (X̃1, Ỹ1), (X̃2, Ỹ2), . . . , (X̃m, Ỹm). For a fixed θ, the sample variance of

(X̃i(θ) : 1 ≤ i ≤ m) is

V (m, θ) =
m

m − 1

(

1

m

m
∑

i=1

X̃2
i (θ) − X̄2

m(θ)

)

, (2.5.2)
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where

X̄m(θ) =
1

m

m
∑

i=1

X̃i(θ).

The SAA problem corresponding to P is

Pm : min
θ∈Θ

V (m, θ),

i.e., we minimize the sample variance. Once the sample is fixed, the SAA problem

can be solved using any convenient optimization algorithm. The algorithm can

exploit the IPA gradients derived earlier, which are exact gradients of V (m, θ).

In our implementation we used a quasi-Newton procedure that exploits the IPA

gradients.

The term “sample average approximation” may seem inappropriate because

the function V (m, ·) in (2.5.2) is not a sample average. It is, instead, a nonlinear

function of sample averages. But the standard theory for sample average approx-

imation is readily extended to this setting, and we give the extensions that we

require below. So the term is not unreasonable and we retain it.

Let θ̂m be a first-order critical point for the problem Pm obtained from the first

phase. In the second phase, we then estimate µ via the sample average (2.5.1),

using θ̂m in place of θ̂. Our sample average approximation algorithm for estimating

µ is given in Figure 2.2.

In Section 2.5.1 we show that the sample average approximation estimator µ̂n

satisfies a strong law and central limit theorem. These results require a little care,

because θ̂m is a random variable. We show in Section 2.5.2 that the set of first-

order critical points for the SAA problem Pm converges to the set of first-order

critical points for the original problem with probability 1 as the sample size m

gets large. The optimal choice of m is an important issue from an implementation
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The first stage: Choose a positive integer m ≥ 2.

Generate the i.i.d. sample (X̃i, Ỹi) ∼ (X, Y ), i = 1, . . . , m.

For a fixed θ, define

V (m, θ) = m
m−1

(

1
m

∑m
i=1 X̃2

i (θ) − ( 1
m

∑m
i=1 X̃i(θ))

2
)

,

where X̃i(θ) = X̃i − h(Ỹi, θ).

Find θ̂m, a first order critical point for the problem

minθ∈Θ V (m, θ).

The second stage:

Generate the i.i.d. sample (Xj, Yj) ∼ (X, Y ), j = 1, . . . , n, independent of the sample

(X̃i, Ỹi), i = 1, . . . , m.

Compute µ̂n = n−1
∑n

j=1 Xj − h(Yj , θ̂m).

Figure 2.2: The sample average approximation algorithm

standpoint. Section 2.5.3 provides an approximate form for the optimal m when

the computational budget is fixed. The behaviour of the optimal m depends on

the characteristics of the original optimization problem.

2.5.1 Asymptotic Properties of the Sample Average Ap-

proximation Estimator

The results in this section are based on a uniform version of the strong law of large

numbers (ULLN). The following proposition, which appears as Proposition 7 in

Shapiro [2003], provides conditions for ULLN. We say that f(y, θ) is dominated by

an integrable function f(·) if Ef(Y ) < ∞ and for every θ ∈ Θ, |f(Y, θ)| ≤ f(Y )

a.s.
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Proposition 2.5.1 (Shapiro 2003). Suppose that for every y ∈ H2, the function

f(y, ·) is continuous on (the compact set) Θ, and f(y, θ) is dominated by an inte-

grable function. Then Ef(Y, θ) is continuous as a function of θ ∈ Θ and

sup
θ∈Θ

∣

∣

∣

∣

∣

1

n

n
∑

i=1

f(Yi, θ) − Ef(Y, θ)

∣

∣

∣

∣

∣

→ 0

as n → ∞ a.s.

We can now state a version of the strong law and central limit theorem for the

case where θ̂ is random. There is no need for θ̂ to be a solution of Pm; it can be

any random variable taking values in Θ. To emphasize the dependence of µ̂n on θ

we write µ̂n(θ).

Theorem 2.5.2. Suppose that A1-A3 hold, that EK(Y ) < ∞, and that the

samples used in constructing θ̂ are independent of those used in computing µ̂n.

Then µ̂n(θ̂) → µ as n → ∞ a.s., and

√
n(µ̂n(θ̂) − µ) ⇒ v1/2(θ̂)N(0, 1)

as n → ∞, where N(0, 1) is independent of θ̂.

Proof. For the strong law note that

|µ̂n(θ̂) − µ| ≤
∣

∣

∣

∣

∣

1

n

n
∑

i=1

(Xi − µ)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

n

n
∑

i=1

h(Yi, θ̂)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

1

n

n
∑

i=1

(Xi − µ)

∣

∣

∣

∣

∣

+ sup
θ∈Θ

∣

∣

∣

∣

∣

1

n

n
∑

i=1

h(Yi, θ)

∣

∣

∣

∣

∣

. (2.5.3)

The first term in (2.5.3) converges to 0 as n → ∞ by the strong law of large

numbers. The second term converges to 0 by an application of Proposition 2.5.1.

For the central limit theorem, first note that conditional on θ̂, µn is an average

of i.i.d. random variables with finite variance. Hence the ordinary central limit
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theorem ensures that for each fixed x ∈ R,

P
(√

n(µ̂n(θ̂) − µ) ≤ x | θ̂
)

→ Φ

(

x

v1/2(θ̂)

)

1{v(θ̂)>0} + 1{x≥0}1{v(θ̂)=0} (2.5.4)

as n → ∞, where Φ is the distribution function of a normal random variable

with mean 0 and variance 1, and 1{·} is an indicator function. The dominated

convergence theorem ensures that we can take expectations through (4.2.14), and

so

P (
√

n(µ̂n(θ̂) − µ) ≤ x)

→ E

[

Φ

(

x

v1/2(θ̂)

)

1{v(θ̂)>0} + 1{x≥0}1{v(θ̂)=0}

]

= P (v1/2(θ̂)N(0, 1) ≤ x)

for all x ∈ R, which is the desired central limit theorem.

Hence the strong law and central limit theorem continue to hold in the case

where θ̂ is random. In particular, if we first solve, or approximately solve, Pm to

get θ̂m, and then compute µn(θ̂m), then the resulting estimator is “well behaved”

as the number of samples n gets large.

Now, as the computational budget gets large, one would naturally want to

eventually zero in on a fixed θ∗ that solves P using some vanishing fraction of the

budget, and use the remainder of the budget to estimate µ. This can be modelled

by assuming that m = m(n) is a function of n such that m(n) → ∞ as n → ∞. In

this case, µ̂n(θ̂m(n)) behaves the same as µ̂n(θ∗) as n → ∞, at least to first order.

Theorem 2.5.3. Suppose that θ̂m(n) → θ∗ as n → ∞ a.s., for some random

variable θ∗. Suppose further that A1 - A3 hold and the samples used in computing

θ̂m(n) are independent of those used to compute µ̂n for every n. Then µ̂n(θ̂m(n)) → µ
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as n → ∞ a.s. If, in addition, EK2(Y ) < ∞, then

√
n(µ̂n(θ̂m(n)) − µ) ⇒ v1/2(θ∗)N(0, 1)

as n → ∞.

Proof. The proof of the strong law is very similar to the analogous result in the

previous section and is therefore omitted. To prove the central limit theorem, note

that

√
n(µ̂n(θ̂m(n)) − µ) =

√
n(µ̂n(θ∗) − µ) +

√
n(µ̂n(θ̂m(n)) − µ̂(θ∗))

= D1,n − D2,n, say.

Notice that θ∗ is independent of the samples used to compute µ̂n for every n. By

Theorem 4.2.4, it suffices to show that

D2,n =
1√
n

n
∑

j=1

[h(Yj, θ̂m(n)) − h(Yj, θ
∗)] ⇒ 0

as n → ∞.

Chebyshev’s inequality ensures that for any fixed ǫ > 0

P (|D2,n| > ǫ) ≤ ǫ−2ED2
2,n

=
1

nǫ2

n
∑

j=1

E[h(Yj, θ̂m(n)) − h(Yj, θ
∗)]2 (2.5.5)

=
1

ǫ2
E[h(Y1, θ̂m(n)) − h(Y1, θ

∗)]2. (2.5.6)

Now, [h(Y1, θ̂m(n)) − h(Y1, θ
∗)]2 → 0 as n → ∞ a.s. Moreover,

[h(Y1, θ̂m(n)) − h(Y1, θ
∗)]2 ≤ K2(Y1) ‖θ̂m(n) − θ∗‖2. (2.5.7)

The normed term in (2.5.7) is bounded, and so the dominated convergence theorem

implies that (2.5.6) converges to 0 as n → ∞.
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2.5.2 Convergence of the Solutions of the Sample Average

Approximation Problem

Theorem 2.5.3 requires that the sequence of the first-stage solutions {θ̂m} converges

to a random variable θ∗ as m → ∞ a.s. If the problem P has a unique optimal

solution θ∗, and θ̂m solves the problem Pm exactly, then, as in Shapiro [2003], this

requirement would follow using standard arguments and an extension of a uniform

law of large numbers to nonlinear functions of means. (Recall from (2.5.2) that

V (m, θ) is essentially a nonlinear function of sample means, rather than a sample

mean itself.) However, the best that we can hope for from a computational point

of view is that θ̂m is a first-order critical point for the problem Pm. So, to obtain

convergence to a fixed θ∗, we first prove convergence of first-order critical points

to those of the true problem P. Our next result extends Theorem 3.1 in Bastin

et al. [2007] for sample averages to nonlinear functions of sample averages.

Let f(θ, ξ) be a R
d-valued function of θ ∈ Θ ⊂ R

p and a random vector ξ and

let f̄(θ) = Ef(θ, ξ). Let

f̄m(·) =
1

m

m
∑

i=1

f(·, ξi)

denote a sample average of m i.i.d. realizations of the function f(·, ξ). Suppose

that g(x) is a real-valued C1 function of x ∈ D ⊂ R
d, where D is an open set

containing the range of f̄ and f̄m for all m. We seek conditions under which the

first-order critical points of g ◦ f̄m = g(f̄m(·)) on Θ converge to those of g ◦ f̄ .

Theorem 2.5.4. Consider the functions defined immediately above. Let H denote

the support of the probability distribution of ξ. Suppose that Θ is convex and

compact, the samples ξ1, . . . , ξm are i.i.d. and

(i) for all ξ ∈ H, f(·, ξ) = (f1(·, ξ), . . . , fd(·, ξ)) is C1 on an open set containing
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Θ,

(ii) the component functions fi(θ, ξ) (i = 1, . . . , d) are dominated by an integrable

function, and

(iii) the gradient components ∂fi(θ, ξ)/∂θ(j) are dominated by an integrable func-

tion (i = 1, . . . , d, j = 1, . . . , p).

Let θ̂m be a first-order critical points of g ◦ f̄m on Θ, i.e., θ̂m ∈ S(g ◦ f̄m, Θ). Then

d(θ̂m, S(g ◦ f̄ , Θ)) → 0 as m → ∞ a.s.

Proof. If d(θ̂m, S(g ◦ f̄ , Θ)) 6→ 0, then by passing to a subsequence if necessary, we

can assume that for some ǫ > 0, d(θ̂m, S(g ◦ f̄ , Θ)) ≥ ǫ for all m ≥ 1. Since Θ is

compact, by passing to a further subsequence if necessary, we can assume that θ̂m

converges to a point θ∗ ∈ Θ. It follows that θ∗ 6∈ S(g ◦ f̄ , Θ). On the other hand,

by Proposition 2.5.1, f̄m(θ̂m) → f̄(θ∗) and ∇θf̄m(θ̂m) → ∇θf̄(θ∗) as m → ∞ a.s.

Since Θ is convex, each θ̂m satisfies the first order condition

〈g′(f̄m(θ̂m))∇θf̄m(θ̂m), u − θ̂m〉 ≥ 0, for all u ∈ Θ, a.e.

Taking the limit as m → ∞, we obtain that

〈g′(f̄(θ∗))∇θf̄(θ∗), u − θ∗〉 ≥ 0, for all u ∈ Θ, a.e.

Therefore, θ∗ ∈ S(g ◦ f̄ , Θ) and we obtain a contradiction.

We now obtain the following corollary.

Corollary 2.5.5. Suppose that A1-A4 hold, Θ is convex and EK2(Y ) < ∞.

Then d(θ̂m, S(v, Θ)) → 0 as m → ∞ a.s.
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Proof. If g(x, y) = x − y2, then

V (m, θ) =
m

m − 1

(

1

m

m
∑

i=1

X2
i (θ) − X̄2

m(θ)

)

=
m

m − 1
g

(

1

m

m
∑

i=1

X2
i (θ),

1

m

m
∑

i=1

Xi(θ)

)

.

Notice that

S(V (m, ·), Θ) = S(g

(

1

m

m
∑

i=1

X2
i (·), 1

m

m
∑

i=1

Xi(·)
)

, Θ),

i.e., the sets of first-order critical points of these two functions coincide.

By the proof of Proposition 2.3.2 and Remark 4,

X(θ), X2(θ),
∂h(Y, θ)

∂θ(j)
and 2X(θ)

∂h(Y, θ)

∂θ(j)

are all dominated by an integrable function (i = 1, . . . , p). By Theorem 2.5.4, it

follows that

d(θ̂m, S(g(EX2(·), EX(·)), Θ)) = d(θ̂m, S(v, Θ)) → 0

as m → ∞.

Corollary 2.5.5 shows that θ̂m converges to the set of first-order critical points

of v as m → ∞. This does not guarantee that the sequence {θ̂m} converges almost

surely, as was the case for stochastic approximation. In general we cannot guaran-

tee this because when there are multiple critical points, the particular critical point

chosen depends, among other things, on the optimization algorithm that is used.

Of course, a simple sufficient condition that ensures convergence is the existence

of a unique first-order critical point. This condition is clearly difficult to verify in

practice.
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2.5.3 Allocation of Computational Budget

The limiting results in the previous two sections establish that our procedure is

a sensible one. However, these results do not shed light on how much effort to

devote to searching for θ∗ versus how much to allocate to the “production run”

that estimates µ. The computational effort required to compute θ̂m and µ̂n(θ̂m)

for a given θ̂m is approximately proportional to m and n. Letting m = m(c) and

n = n(c) be functions of the total computational budget c we therefore have

α1m(c) + α2n(c) ≈ c,

for some constants α1 and α2. Without loss of generality we assume that α1 = α > 1

and α2 = 1.

Now, m(c) and n(c) must satisfy m(c), n(c) → ∞ as c → ∞ to ensure that

θ̂m(c) → θ∗ and µ̂n(c)(θ̂m(c)) → µ. The mean squared error of µ̂n(θ̂m) is then

mse(µ̂n(θ̂m)) = var(µ̂n(θ̂m)) =
1

n
Ev(θ̂m).

We wish to determine m that minimizes n−1Ev(θ̂m), where n = c−αm. We proceed

heuristically as follows.

The asymptotic behaviour of the optimal solution θ̂m of the approximation

problem (Pm) provides a guideline for determining the optimal m. Suppose that

assumptions A1-A4 hold. In addition, assume that for all y ∈ H2, h(y, ·) is C2 (i.e.,

twice continuously differentiable) on U and that ∇2
θh(y, ·) is uniformly dominated

by an integrable function. Then, under some uniform integrability conditions,

v(·) is a C2 function on U . If Θ is convex, the problem P has a unique optimal

solution θ∗, and the Hessian matrix ∇2v(θ∗) is positive definite, then θ̂m tends to

θ∗ at a stochastic rate of order m−1/2 [Shapiro, 1993]. Under additional uniform

integrability conditions, E‖θ̂m − θ∗‖ = O(m−1/2). From the second order Taylor
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approximation to v(θ̂m), and using the continuity of the Hessian matrix ∇2v(·),

we obtain

v(θ) − v(θ∗) ≤ λ‖θ − θ∗‖2, (2.5.8)

for all θ in a convex compact neighborhood W of θ∗ and for some constant λ which

depends on the eigenvalues of ∇2v(θ), θ ∈ W. Therefore, we expect that

E[v(θ̂m)] − v(θ∗) = O(m−1).

Assume that E[v(θ̂m)]− v(θ∗) ∼ γ
m

, for some constant γ. Then the asymptotically

optimal m∗ is

m∗ ≈ argmin

{

1

n
E(v(θ̂m)) =

v(θ∗)m + γ

m(c − αm)
: 1 ≤ m ≤ c

α

}

=

√

(γα)2 + γαv(θ∗)c − γα

αv(θ∗)
. (2.5.9)

The expression (2.5.9) is asymptotically (i.e., as c → ∞) of the form m ≈ R
√

c,

where

R =

√

γ

αv(θ∗)
.

Thus we see that the optimal choice of m∗ is of the order
√

c. The coefficient R

provides some insight. When α is large, solving the approximation problem (Pm) is

expensive, so we trade off some computational accuracy for more production runs.

Similarly, if the optimal variance v(θ∗) is large, then it is not worth spending too

much effort finding θ∗. From (2.5.8), we can view γ as a measure of the curvature of

v(·) at θ∗. Therefore, if the curvature is high, then we invest more effort in finding

θ∗.



Chapter 3

Numerical Results
In this chapter we examine the performance of the adaptive control variate methods

discussed in Chapter 2 on two examples. In Section 3.1 we consider a problem

of estimating accrued costs till absorption for discrete time Markov chains on a

finite state space. We describe how to construct control variate estimators for the

Markov chains and discuss implementation details of the stochastic approximation

and sample average approximation algorithms. In Section 3.2 we return to the

barrier call option example presented in Section 2.1. We discuss how to choose a

good parameterization for the control variate estimators and address the properties

and implementation issues of our methods. Section 3.3 contains some concluding

remarks.

We use the terms näıve, SA and SAA to represent the estimators obtained

through näıve Monte Carlo estimation, the stochastic approximation method and

the sample average approximation method, respectively.

3.1 Accrued Costs Prior to Absorption

The objective of this example is to demonstrate the feasibility of our methods

rather than to provide a comprehensive comparison. In Section 3.1.1 we describe

our example, estimating accumulated cost till absorption, and in Section 3.1.2 we

discuss the implementation of our methods. The results in Section 3.1.3 show that

both adaptive methods outperform a näıve approach.

53
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3.1.1 Construction of Martingale Control Variates

Let Z = (Zn : n ≥ 0) be a discrete time Markov chain on the finite state space

S = {0, 1, . . . , d}. Suppose that Z reaches the absorbing state 0 almost surely

starting from any Z0 > 0, and let T = inf{n ≥ 0 : Zn = 0} be the time till

absorption. Let f : S → R be a given cost function. Define

µ(x) = E

(

T−1
∑

k=0

f(Zk)|Z0 = x

)

(3.1.1)

for all x ∈ S − {0} and set µ(0) = 0, so that µ is the expected cost accrued until

absorption. If we view f and µ as column vectors, then µ satisfies

µ = f + Pµ,

where P is the transition matrix of Z, and we take f(0) = 0. Suppose that µ is

unknown and that we wish to estimate it.

Now we show how to define an approximating martingale control variate for µ.

Let u : S → R be a real-valued function on the state space S with u(0) = 0, and

for n ≥ 0 let

Mn(u) = u(Zn) − u(Z0) −
n−1
∑

j=0

[(P − I)u](Zj),

where I is the identity matrix. Then (Mn(u) : n ≥ 0) is the well-known Dynkin

martingale; see, e.g., Karlin and Taylor [1981, p. 308]. The optional sampling

theorem ensures that ExMT (u) = 0 for any u, where Ex denotes expectation

under the initial condition Z0 = x. Therefore, one can estimate µ(x) via i.i.d.

replications of
[

T−1
∑

k=0

f(Zk)

]

− MT (u),

where Z0 = x and MT (u) serves as a parameterized control variate. In our general

notational scheme, X is the accrued cost till absorption and Y (θ) is MT (u), where
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u depends on a parameter θ as described below. By (3.1.1),

T−1
∑

k=0

f(Zk) − MT (µ) = µ(x)

and hence, if u = µ, then we have a zero-variance estimator.

So it is desirable to find a good choice of the function u. Suppose that u(x) =

u(x; θ), where θ ∈ Θ ⊆ R
p is a p−dimensional vector of parameters. A linear

parameterization arises if

u(x; θ) =

p
∑

i=1

θ(i)ui(x),

where ui(·) are given basis functions, i = 1, . . . , p. In this case,

Mn(u) = u(Zn; θ) − u(Z0; θ) −
n−1
∑

j=0

[(P − I)u](Zj; θ)

=

p
∑

i=1

θ(i)ui(Zn) −
p
∑

i=1

θ(i)ui(Z0) −
n−1
∑

j=0

[(P − I)

p
∑

i=1

θ(i)ui](Zj)

=

p
∑

i=1

θ(i)

[

ui(Zn) − ui(Z0) −
n−1
∑

j=0

[(P − I)ui](Zj)

]

=

p
∑

i=1

θ(i)Mn(ui) (3.1.2)

so that Mn(u) is simply a linear combination of martingales corresponding to the

basis functions ui, i = 1, . . . , p. Therefore, the control variate

Y (θ) =

p
∑

i=1

θ(i)MT (ui)

is simply a linear combination of zero-mean random variables. In this sense, the

linearly parameterized case leads us back to the theory of linear control variates.

The situation is more complicated when u(x; θ) arises from a nonlinear param-

eterization. An example of such a parameterization is given by

u(x; θ) = θ(1)xθ(2),
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where p = 2. In this case, Y (θ) is a nonlinear function of a random object Y (the

Markov chain Z) and a parameter vector θ.

In Section 3.1.2 and Section 3.1.3, we focus on the case where u(·; θ) is non-

linearly parameterized and apply our adaptive methods to select a good choice of

θ and estimate µ.

3.1.2 Implementation

We first verify that A1-A6 in Chapter 2 are satisfied. Let u(·; θ) be given, where

u(0; θ) = 0 for all θ ∈ Θ. Let MT (u(θ)) = −u(x; θ) −∑T−1
j=0 (P − I)u(Zj; θ) under

some fixed initial state Z0 = x. Then X(θ) = X − MT (u(θ)) is an estimator of

µ(x). Let V = (0, V (1), . . . , V (d))⊤, where V (j) =
∑T−1

k=0 I(Zk = j) is the number

of visits to state j before absorption. Then

X(θ) =
T−1
∑

j=0

f(Zj) + u(x; θ) +
T−1
∑

j=0

[(P − I)u(θ)](Zj)

= u(x; θ) +
T−1
∑

j=0

[(P − I)(u(θ) − µ)](Zj)

= u(x; θ) +
d
∑

k=0

V (k)[(P − I)(u(θ) − µ)](k)

= u(x; θ) + V ⊤(P − I)(u(θ) − µ).

To verify that A1-A6 are satisfied we proceed as follows. First suppose that Θ

is convex and compact, that there exists a bounded open set U such that Θ ⊂ U ,

and that u(y; ·) : U → R is C1 and Lipschitz for all y ∈ S (these assumptions are

all satisfied in our particular example below). Since S is finite and U is bounded,

there exists a K > 0 such that for all θ1, θ2 ∈ U and y ∈ S,

|u(y; θ1) − u(y; θ2)| ≤ K‖θ1 − θ2‖,



57

and {u(y; θ), ∂
∂θ(i)

u(y; θ) : θ ∈ U , y ∈ S, i = 1, . . . , p} are uniformly bounded, i.e.

C = sup
θ∈U ,y∈S,i=1,...,p

{

|u(y; θ)|,
∣

∣

∣

∣

∂u(y; θ)

∂θ(i)

∣

∣

∣

∣

}

< ∞.

Moreover, for any θ1, θ2 ∈ U ,

|MT (u(θ1)) − MT (u(θ2))| ≤ |u(x; θ1) − u(x; θ2)|

+
T−1
∑

j=0

|[(P − I)(u(θ1) − u(θ2))](Zj)|

≤ K‖θ1 − θ2‖ + T‖P − I‖ ‖u(θ1) − u(θ2)‖

≤ K‖θ1 − θ2‖ + T‖P − I‖ · dK‖θ1 − θ2‖.

For any θ ∈ U ,

|X(θ)| ≤ |u(x; θ)| + |V ⊤(P − I)(u(θ) − µ)|

≤ |u(x; θ)| + ‖V ⊤(P − I)‖ ‖(u(θ) − µ)‖

≤ C + dT‖(P − I)‖(dC + ‖µ‖),

and similarly,

| ∂

∂θ(i)
X(θ)| ≤ | ∂

∂θ(i)
u(x; θ)| + |V ⊤(P − I)(

∂

∂θ(i)
u(θ) − µ)|

≤ C + dT‖(P − I)‖(dC + ‖µ‖).

Since all of these bounds depend only on the random variable T , which has a

finite moment generating function in a neighborhood of 0, we can easily verify

that assumptions A1-A6 are satisfied.

For the simulation experiment, we use the “random walk” transition matrix P
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given by

P =



































1 0 0 0 . . . 0 0 0

q(1) 0 p(1) 0 . . . 0 0 0

0 q(2) 0 p(2) . . . 0 0 0

...
. . .

. . .
...

0 0 0 0 . . . q(d − 1) 0 p(d − 1)

0 0 0 0 . . . 0 1 0



































,

where q(i) > 0 for all i = 1, . . . , d − 1. We take

u(y; θ) = θ(1)yθ(2),

where θ = (θ1, θ2) ∈ Θ, Θ = {x ∈ R
2 : a(j) ≤ x(j) ≤ b(j), j = 1, 2} and

a(j) ≥ 0, j = 1, 2. Then u(y; ·) is C1 for all y ∈ S and the moment generating

function of T is defined in a neighborhood of 0. We took d = 30 and f(x) = 1, so

that the random variable X = T is the time till absorption in state 0.

In the stochastic approximation algorithm, we took m = 100 and

ak =
e

A + kα
,

where e, A > 0 and α ∈ (1/2, 1] are tunable constants. This form of the gain

sequence is advocated in Spall [2003]. We used the average of the sample variances

of m terms in each step as an estimator of v(θ∗). For the SAA estimator, we

first replicated m = 100 samples. We obtained θ̂m by applying a quasi-Newton

method with a linesearch (supplied as part of the MATLABTM package) using IPA

gradients to solve the sample average approximation problem Pm. As an estimator

of the variance v(θ̂), we used the sample variance of X(θ̂) over n replicates, where

θ̂ is viewed as fixed, in the sense of Theorem 4.2.4.
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3.1.3 Simulation Results

The values Vnäıve , VSA and VSAA are, respectively, the estimated variances obtained

from the näıve, SA and SAA estimators. We used the same CPU time for all three

estimators for a given initial state x to allow a fair comparison.

Example 2. In this example, we let p(x) = .25 and θ0 = (1, 1). Table 3.1 shows

that the SAA estimators outperform the SA estimators, and the SA estimators

outperform the naive estimator. A problem with the SA estimator is that it is

very sensitive to the step size parameters ak and the initial point θ0. We performed

preliminary simulations with this method, tuning the parameters heuristically until

reasonable performance was observed. A contour plot of the variance surface as

a function of θ for initial state x = 15 appears in Figure 3.1. We see that the

function is not convex, but appears to have a unique first-order critical point, so

that we can expect convergence of the parameter estimates to θ∗. In the plot, this

appears to be the point (2, 1).

Table 3.1: Estimated squared standard errors in Example 2

x CPU time (sec) Vnäıve /VSA Vnäıve /VSAA

5 16.8 19 2.6 E+10

10 20.2 21 2.9 E+10

15 21.8 32 8.9 E+10

20 25.8 23 6.4 E+11

25 28.6 5.0 3.6 E+3

30 29.8 1.9 91
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Figure 3.1: Contour Plot of v(·) for Example 2 with initial state x = 15 and

runlength 1000

Remark 6. If the simulation run length n is long enough, then from Theo-

rems 2.4.4 and 2.5.3 we would expect the SA and SAA estimators to be fairly

similar in performance.

Example 3. In this example, p(x) = .0001 + .4998/x and θ0 = (2, 1). The results

are given in Table 3.2 and are similar to those of Example 2. The SAA estimator

outperforms the other estimators, but not by as large a margin.

3.2 Pricing Barrier Options

In this section we return to the discretely monitored barrier call option example

presented in Section 2.1. Selecting a good parameterization is crucial to obtaining

efficient control variate estimators. We discuss how to find a good parameterization

in practice with this example and address issues which arise in the application of

our methods.
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Table 3.2: Estimated squared standard errors in Example 3

x CPU time (sec) Vnäıve /VSA Vnäıve /VSAA

5 15.5 6.4 3.4 E+3

10 17.0 9.5 85

15 17.6 14 57

20 19.5 2.1 44

25 21.2 7.3 37

30 21.8 2.6 36

3.2.1 Implementation

We assume that under the risk-neutral measure, the underlying stock price {S(t) :

t ≥ 0} is governed by the dynamics

dS(t)

S(t)
= rdt + σdW (t), (3.2.1)

where (W (t) : t ≥ 0) is a standard Brownian motion, the risk-free interest rate

r and volatility σ are constants and S0 is fixed; see Glasserman [2004] for more

about this model. In order to simulate the price process, we generate independent

replications of the stock price using the form

Si = Si−1 exp
(

(r − σ2/2)∆t + σ
√

∆tZi

)

, i = 1, . . . , l,

where Z1, . . . , Zl are i.i.d. standard (mean 0 and variance 1) normal random vari-

ables.

We consider a double barrier knock-out call option. Let Hl and Hu denote the

lower and upper barrier levels, respectively, and S = [Hl, Hu] ∪ {0}. Then S̃i is

defined as S̃i = 1{τ>i}Si, where τ = inf{n ≥ 0 : Sn < Hl or Sn > Hu}. Suppose
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that U(·, ·; θ) is given, where U(0, ·; > θ) = 0 for all θ ∈ Θ. Let

Ml(U(θ)) =
l
∑

i=1

U(S̃i, l − i; θ) − P (S̃i−1, ·)U(·, l − i; θ)

under some fixed initial state S̃0 = x. Then X(θ) = (S̃l − K)+ − Ml(U(θ)) is an

estimator of U∗(x, l) = Ex[(S̃l − K)+].

In order to obtain an efficient estimator X(θ), it is important to find a good

parameterization for the function U(x, i; θ). The function should approximate the

expected payoff U∗(x, i) reasonably well and at the same time should enable the

computation of the control variate Ml(U(θ)) with a moderate amount of computa-

tional effort. To get a sense of how to choose the parameterization, we estimated

the expected payoff function U∗(·, ·). (In general, one needs at least some idea of

how this function behaves in order to choose an effective parameterization.) Fig-

ure 3.2 displays surface plots of the estimated expected payoff function U∗(x, i).

For any fixed i = 1, .., l − 1, U∗(x, i) initially increases as x increases. But as x

approaches the upper barrier Hu, U∗(x, i) reaches a maximum and then decreases.

For each fixed i, U∗(·, i) is nearly concave, at least for the higher levels of volatility

in Figure 3.2. Let our parameterization have the form

U(x, i; θ) =































0 if x = 0,

(x − K)+ if i = 0, and

θ4(i−1)+1x
θ4(i−1)+2 + θ4(i−1)+3x + θ4i if i = 1, 2 . . . , l − 1 and x 6= 0,

where θ = (θ1, θ2, . . . , θ4(l−1)) ∈ Θ, Θ = {y ∈ R
4(l−1) : a(j) ≤ y(j) ≤ b(j), j =

1, 2, . . . , 4(l−1)} and a(j) ≥ 0, j = 1, 2, . . . , 4(l−1). (Parameterizations that better

fit the true value function are certainly possible, but we wanted to get a sense of how

well we could do with very simple parameterizations.) Then U(x, i; ·) : R
4(l−1) → R

is C1 for all (x, i) ∈ S × {0, 1, . . . , l − 1} and U(·, i; ·) : (0 ∞) × R
4(l−1) → R is
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C1 for all i ∈ {0, 1, . . . , l − 1}. Details on both the verification of A1-A6, and the

computation of the control variate Ml(U(θ)) are given in Appendix.
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Figure 3.2: Surface plots of the estimated expected payoff U∗(x, i). Upper left:

σ = .4, l = 6 and barriers at Hl = 75 and Hu = 115. Upper right: σ = .6, l = 6

and barriers at Hl = 80 and Hu = 105. Lower: σ = .6, l = 6 and barriers at

Hl = 85 and Hu = 100.
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3.2.2 Simulation Results

We examine the performance of the proposed estimators relative to the standard

Monte Carlo technique. We assume that the annual drift ν is 5% and the initial

stock price S0 is 90. The option has K = S0 and maturity T = .25. Tables 3.3 -

3.5 report numerical results for options with various volatilities, monitoring dates

and barriers. In the stochastic approximation algorithm, we took m = 500 and

used (2.4.3) as an estimator of v(θ∗). For the SAA estimator, we first replicated

m = 500 samples. We obtained θ̂m by applying a quasi-Newton method to solve

the sample average approximation problem Pm. We allocate 10% of the CPU time

on this optimization stage. As an estimator of the variance v(θ̂), we used the

sample variance of X(θ̂) over n replicates.

In Tables 3.3 - 3.5, the “SA ratio” denotes the ratio of the sample variance of

(S̃l − K)+ to the estimated variance obtained from the SA estimator, both based

on mn samples. Similarly, the “SAA ratio” is the ratio of the sample variance

(S̃l − K)+ to that of X(θ̂m) for given θ̂m, both over n replicates. So “SA ratio”

and “SAA ratio” present the variance reduction ratios without considering the

computational effort of computing the control variates and estimating θ∗. The

fourth and sixth columns in Tables 1 - 3 show that both the SA and SAA estimators

produce a significant variance reduction. Comparing the two columns, we see

that the SAA estimators outperform the SA estimators. A problem with the SA

estimator is that it is very sensitive to the step size parameters ak and the initial

point θ0. We performed preliminary simulations with this method, tuning the

parameters heuristically until reasonable performance was observed.

The values Vnäıve , VSA and VSAA are, respectively, the estimated variances

obtained from the näıve, SA and SAA estimators using the same CPU time. These
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estimated variances provide a fair comparison among the three estimators. The

fifth and seventh columns in Tables 1-3 show that in most cases the SAA estimators

outperform both the SA and näıve estimators. The SA estimators outperform the

näıve estimators in the cases with barriers at Hl = 80 and Hu = 105, and with

barriers at Hl = 85 and Hu = 100. But when Hl = 75 and Hu = 115, we do

not observe an apparent advantage in variance reduction with the SA estimators

compared to the näıve estimators. In this last case, under a fixed computational

budget, the SA estimators do not achieve a sufficient variance reduction to outweigh

the computational effort to compute the control variates and estimate θ∗. However,

if the simulation run length n is long enough then from Theorems 2.4.4 and 2.5.3

we would expect the SA and SAA estimators to be fairly similar in performance.

We see that our adaptive methods work better for σ = .6 than for σ = .4.

In fact, the best performance for the SAA method is obtained with σ = .6 and

barriers at Hl = 80 and Hu = 105. Both the SA and SAA methods show the

worst performance with σ = .4 and barriers at Hl = 75 and Hu = 115. These

results show that finding a good parameterization is crucial to obtaining an efficient

estimator. As observed in Figure 3.2, for each fixed i, U∗(·, i) is nearly concave

for high volatilities so our parameterization works well. (When θ4(l−i)+1 < 0 and

θ4(l−i)+2 > 1, U(·, i; θ) is concave.) However, when the gap between the two barriers

is wide and the volatility is low, the option has low knock-out probability and hence,

as i decreases, the shape of the function U∗(x, i) closely resembles the shape of

the payoff (x − K)+. Therefore our parameterization does not approximate the

expected payoff function well, and as a consequence our methods do not show

satisfactory performance in this case.

In most cases the variance reduction ratio decreases as the number of monitor-
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ing dates l increases. One explanation for this is that as l increases, the number

of parameters in the control variate increases, and so more effort is required in the

optimization stage.

Table 3.3: Estimated variance reduction ratio: Hl = 75 and Hu = 115

Volatility Frequency of CPU time SA Vnäıve /VSA SAA Vnäıve /VSAA

monitoring (sec) ratio ratio

σ = .4 l = 3 374 23 3.5 96 19

l = 6 1839 3.3 0.26 25 2.7

l = 12 7846 4.2 0.20 3.6 0.24

σ = .6 l = 3 189 49 8.2 543 112

l = 6 1599 5.4 0.51 76 10

l = 12 5716 6.3 0.36 9.1 0.72

3.3 Concluding Remarks

The two adaptive estimation procedures developed in Chapter 2 have somewhat

complementary characteristics. The stochastic approximation scheme has a low

computational effort per replication, but typically requires some tuning of the gain

sequence to achieve satisfactory performance. The sample average approximation

method is more robust, but can be computationally expensive in the initial opti-

mization phase.

The simulation experiments in this chapter should be viewed as a demonstration

of the feasibility of the two methods rather than a comprehensive comparison. The

sample average approximation method outperforms the stochastic approximation

scheme and the näıve approach. In most cases the stochastic approximation scheme
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Table 3.4: Estimated variance reduction ratio: Hl = 80 and Hu = 105

Volatility Frequency of CPU time SA Vnäıve /VSA SAA Vnäıve /VSAA

monitoring (sec) ratio ratio

σ = .4 l = 3 90 33 5.7 179 39

l = 6 731 13 1.3 65 8.5

l = 12 5651 2.0 0.12 9.8 0.83

σ = .6 l = 3 94 170 30 1058 238

l = 6 1180 45 5.8 158 27

l = 12 1611 12 1.1 25 3.0

Table 3.5: Estimated variance reduction ratio: Hl = 85 and Hu = 100

Volatility Frequency of CPU time SA Vnäıve /VSA SAA Vnäıve /VSAA

monitoring (sec) ratio ratio

σ = .4 l = 3 129 84 15 142 33

l = 6 915 63 8.7 146 27

l = 12 1337 15 1.5 27 3.6

σ = .6 l = 3 87 119 23 174 45

l = 6 238 245 42 387 83

l = 12 508 28 3.8 9.0 1.6
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outperforms the näıve approach, but not always. The computational expense per

replication brought by introducing the adaptive control variate is justified only

when a sufficient reduction in variance is achieved. A good parameterization is

essential in this regard. In choosing parameterizations, it is helpful to have some

knowledge or intuition about the form of the true value functions.



Chapter 4

Adaptive Control Variate Methods for

Steady-State Simulation
In Chapter 2 we developed adaptive control variate techniques for finite-horizon

simulations. We now turn our attention to the steady-state case. In this chapter we

discuss adaptive control variate methods for estimating steady-state performance

measures when the underlying stochastic processes possess regenerative structure.

The procedure is similar to the one used for terminating simulations in Chapter

2. We confine our attention to the sample average approximation technique for

tuning the control variate parameter, and we develop adaptive estimators based

on a regenerative method.

Let X = (Xn : n ≥ 0) be a discrete time stochastic process on a state space S,

and let f : S → R be a real-valued function defined on the state space S. Under

very general conditions, {f(Xn) : n ≥ 0} satisfies a law of large numbers (LLN),

so there exists a constant α for which

1

n

n−1
∑

i=0

f(Xi) → α (4.0.1)

as n → ∞ a.s. Our task is to estimate the constant α, which is called the steady

state mean of f. The natural estimator for α is the time average

αn =
1

n

n−1
∑

i=0

f(Xi).

Under additional conditions, the process X and the function f satisfy a central

limit theorem (CLT), so there exists a positive constant σ for which

n1/2(αn − α) ⇒ σN(0, 1)

69
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as n → ∞, where N(0, 1) denotes a normal random variable having mean 0 and

variance 1. The constant σ2 is called the time-average variance constant (TAVC).

Suppose that h(·; θ) : S → R is a real-valued function of x ∈ S for any param-

eter vector θ ∈ Θ, where Θ is a parameter set. Suppose also that for all θ ∈ Θ,

1

n

n−1
∑

i=0

h(Xi; θ) → 0 (4.0.2)

as n → ∞ a.s. Then, the time average

αn(θ) =
1

n

n−1
∑

i=0

[f(Xi) − h(Xi; θ)]

is a strongly consistent estimator for α. Here n−1
∑n−1

i=0 h(Xi; θ) serves as a control

variate. Let σ2(θ) denote the TAVC arising in the assumed-to-hold CLT for αn(θ),

i.e.,

n1/2(αn(θ) − α) ⇒ σ(θ)N(0, 1).

Now we are free to choose the parameter θ that minimizes the TAVC σ2(θ).

A natural question is where the control variate comes from. Many applications

involve the simulation of an appropriate Markov process. We briefly describe

how to define control variates in Markov process simulation, drawing from the

general results of Henderson and Glynn [2002, Section 6]. Suppose that X = (Xn :

n ≥ 0) is a positive Harris recurrent discrete-time Markov chain with stationary

probability measure π. Suppose that π|f | ,
∫

S
|f(x)|π(dx) < ∞. By the strong

law αn → α = πf a.s. as n → ∞.

Let u : S → R be a real-valued function on the state space S, and for n ≥ 1 let

αn(u) =
1

n

n−1
∑

i=0

[f(Xi) +

∫

S

u(y)P (Xi, dy) − u(Xi)]

=
1

n

n−1
∑

i=0

[f(Xi) + (P − I)u(Xi)],
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where I is the identity operator and P is the transition probability kernel of X.

Observe that if u is π integrable, then (P − I)u is π integrable, and π[(P − I)u] =

[πP − π]u = [π − π]u = 0. So by the strong law, αn(u) → α a.s. as n → ∞.

Then how do we select the function u? Consider Poisson’s equation,

(P − I)u(x) = −(f(x) − α), ∀x ∈ S. (4.0.3)

Suppose that u∗ is a solution to (4.0.3). Then αn(u∗) is a zero-variance estimator

of α. So it is desirable that u ≈ u∗. Suppose that u(x) = u(x, θ), where θ ∈ Θ is a

parameter vector. Then

αn(θ) =
1

n

n−1
∑

i=0

[f(Xi) + (P − I)u(Xi; θ)]

and 1
n

∑n−1
i=0 (P − I)u(Xi; θ) serves as a parameterized control variate.

When the parameterization is linear, we can appeal to the theory of linear

control variates in steady-state simulation. The variance of αn(θ) is then a convex

quadratic in θ. We can identify the value of θ that minimizes this variance, and

then estimate it from the simulation. Loh [1994] examines this problem using both

regenerative and batch means methods. In the nonlinearly parameterized case, the

problem is not so straightforward, as we already saw in the finite-horizon setting.

Fortunately, the steady-state case involves many of the same ideas that we used for

finite-horizon simulation in Chapter 2. An adaptive control variate scheme for the

steady-state setting using stochastic approximation was developed in Henderson

et al. [2003]. We instead focus on the sample average approximation method to

estimate the optimal value of θ. We assume that the underlying stochastic process

is regenerative, and exploit its regenerative structure.

The asymptotic properties of the regenerative method provide a clean setting

for simulation output analysis. The idea is to identify random times at which the
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process probabilistically restarts, and use these regeneration points to obtain valid

point and interval estimates for the steady-state mean. For an overview of this

method, see Shedler [1993].

Regenerative structure is present in a wide class of discrete-event simulations.

It is well known that regeneration times can be easily identified in the setting of

irreducible positive recurrent discrete state space Markov chains, for example. It

has also been shown that “well-posed” simulations of general state-space Markov

chains (GSSMC) exhibit regenerative structure [Glynn, 1994]. However, identifi-

cation of the corresponding regeneration times is non-trivial in general.

A widely used model for a discrete-event simulation is a generalized semi-

Markov process (GSMP) [Shedler, 1993, Haas, 1999, Henderson and Glynn, 2001].

One can rigorously define the GSMP through a related GSSMC. Therefore, a

GSMP with a well-posed GSSMC naturally possesses regenerative structure. If a

GSMP has a “single state,” then the regeneration times can be easily identified and

the standard regenerative method can be applied to analyze the simulation output.

However, most discrete-event simulations do not have a single state, and then it

becomes very difficult to determine the regenerative cycle boundaries. Haas [1999]

provides conditions on the building blocks of a GSMP under which a strong law

and a functional central limit theorem hold. Then the batch means method can be

used to obtain a point estimate and a confidence interval for the steady-state mean

even when the GSMP does not have a single state. Henderson and Glynn [2001]

discuss the state of the art of regenerative methods for general discrete-event sim-

ulation, and examine the issue of identifying regeneration times from a practical

standpoint.

The remainder of this chapter is organized as follows. We start in Section
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4.1 by describing the regenerative structure of stochastic processes, and reviewing

the regenerative method. Under mild regularity conditions, a regenerative process

satisfies a LLN and a CLT. Also, we can obtain strongly consistent estimators

for the steady-state mean and TAVC. In Section 4.2, we provide conditions under

which the the TAVC function σ2(θ) is differentiable and explore the use of sample

average approximation to identify the optimal parameter value θ∗ that minimizes

σ2(θ). In Section 4.3 we consider the regenerative and batch means approaches

to estimate σ2(θ), and then provide conditions under which the sample average

approximation problem converges to the true problem.

4.1 Regenerative Processes

Let X = (Xn : n ≥ 0) be a discrete time stochastic process on a state space S. For

a strictly increasing sequence of non negative finite random times T = {T (k) : k ≥

0}, define the random cycles of the process X by Yk = {Xn : T (k−1) ≤ n < T (k)},

k ≥ 1. We say that X is classically regenerative if there exists such a sequence T

with the property that the sequence of cycles {Yk : k ≥ 1} is independent and

identically distributed. The random times T = {T (k) : k ≥ 0} are said to be

regeneration times for the process X, where T (0) is the first regeneration time.

If the sequence of cycles {Yk : k ≥ 1} is identically distributed but 1-dependent,

then X is called 1-dependent regenerative. Any well-posed steady-state simulation

has either independent or 1-dependent regenerative structure [Glynn, 1994]. The

theory of classical regenerative processes has been extensively studied, and much

of this theory can be extended to the setting of 1-dependent regenerative processes.

Throughout this chapter, we assume that the stochastic process X is a 1-

dependent regenerative process with regeneration times T (0) = 0 < T (1) < · · · .
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Since T (0) = 0, the first cycle starts at time 0. This initial condition can be

relaxed, but for convenience we restrict our attention to this initial case. Denote

the kth cycle length by τk = T (k) − T (k − 1), k ≥ 1 and let

Fk =

T (k)−1
∑

i=T (k−1)

f(Xi), k ≥ 1,

for some real-valued function f defined on the state space S. For example, f(s)

can be viewed as a reward (or cost) when in state s. Then Fk is the reward (or

cost) accumulated over the kth cycle and {Fk : k ≥ 1} is 1-dependent and iden-

tically distributed. The following theorem gives a LLN and CLT for regenerative

processes.

Theorem 4.1.1. Let X = (Xn : n ≥ 0) be a 1-dependent regenerative process

with state space S and let f : S → R. Suppose that E(|F1| + τ1) < ∞, and define

Zk = Fk − ατk for k ≥ 1. Then

(i) the strong law

αn → α =
EF1

Eτ1
(4.1.1)

holds as n → ∞ a.s.

(ii) Moreover, if EZ2
1 < ∞, then the central limit theorem (CLT)

n1/2(αn − α) ⇒ σN(0, 1) (4.1.2)

holds, in which case,

σ2 =
EZ2

1 + 2EZ1Z2

Eτ1
.

The proof is nearly identical to the classically regenerative case given in Glynn

and Iglehart [1993], and so we omit it here. Theorem 4.1.1 shows that the behavior
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of a regenerative process in a cycle determines the asymptotic behavior of the

process.

The expression for σ2 in Theorem 4.1.1 suggests the following variance estima-

tor for σ2 :

σ̂2
n =

1

n

l(n)−1
∑

k=1

[Z2
k(n) + 2Zk(n)Zk+1(n)],

where Zk(n) = Fk − αnτk and l(n) = sup{k ≥ 0 : T (k) ≤ n} is the number of

completed regenerative cycles by time n. The next theorem shows that σ̂2
n is a

consistent estimator for σ2 when the CLT (4.1.2) holds.

Theorem 4.1.2. Assume that the conditions in Theorem 4.1.1 hold. Then

σ̂2
n ⇒ σ2

as n → ∞, where ⇒ denotes weak convergence. Furthermore, if E(F 2
1 + τ 2

1 ) < ∞,

then σ̂2
n is strongly consistent, that is, σ̂2

n → σ2 as n → ∞ a.s.

The proof follows as in Glynn and Iglehart [1993], and so is omitted. In Section

4.3, we will use the regenerative variance estimator σ̂2
n in the development of the

sample average approximation method.

4.2 Sample Average Approximation Method for Steady-

State Simulation

Suppose that h(·; θ) : S → R is a real-valued function of x ∈ S for any parameter

vector θ = (θ(1), θ(2), . . . , θ(p)) ∈ Θ ⊂ R
p, where Θ is a parameter set. Suppose

also that for all θ ∈ Θ,

1

n

n−1
∑

i=0

h(Xi; θ) → 0 (4.2.1)
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as n → ∞ a.s. Define

αn(θ) =
1

n

n−1
∑

i=0

[f(Xi) − h(Xi; θ)].

If the corresponding moment conditions in Theorem 4.1.1 hold, then

n1/2(αn(θ) − α) ⇒ σ(θ)N(0, 1)

as n → ∞, for each θ ∈ Θ. Our goal is to find θ∗ that solves the optimization

problem

P : min
θ∈Θ

σ2(θ),

where the TAVC σ2(θ) is well-defined for any θ ∈ Θ.

We follow a similar procedure to the one used in the finite-horizon setting, first,

imposing some structure on the problem to obtain a differentiable TAVC function

σ2(·). We define the key random variables associated with regenerative cycles. For

any fixed parameter value θ and k ≥ 1, define

Hk(θ) =

T (k)−1
∑

i=T (k−1)

h(Xi; θ),

Wk(θ) =

T (k)−1
∑

i=T (k−1)

|h(Xi; θ)|,

Zk(θ) = (Fk − Hk(θ)) − ατk, and

σ2(θ) =
EZ2

1 (θ) + 2EZ1(θ)Z2(θ)

Eτ1
.

We assume the following conditions.

Assumption B1 The parameter set Θ is compact and for all x ∈ S, the function

h(x, ·) is C1 on U , where U is a bounded open set containing Θ. Moreover,

EH1(θ) = 0 for any θ ∈ U .

Assumption B2 The moment conditions E(τ 2
1 + F 2

1 ) < ∞, and EW 2
1 (θ0) < ∞

for some fixed θ0 ∈ U , hold.
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Assumption B3 For all x ∈ S, h(x; ·) is Lipschitz on U , i.e., ∃c(x) > 0 such that

for all θ1, θ2 ∈ U ,

|h(x; θ1) − h(x; θ2)| ≤ c(x)‖θ1 − θ2‖,

where ‖ · ‖ is a metric on R
p. Therefore,

sup
θ∈U

∣

∣

∣

∣

∂h(x; θ)

∂θ(j)

∣

∣

∣

∣

≤ c(x)

for all x ∈ S and j = 1, . . . , p. Define Ck =
∑T (k)−1

i=T (k−1) c(Xi), k ≥ 1 and

assume that EC2
1 < ∞.

Remark 7. Suppose that U(θ) is a random variable for each θ ∈ U . We say that

U(·) is dominated by an integrable random variable Ũ if EŨ < ∞ and for every

θ ∈ U , |U(θ)| ≤ Ũ a.s. Under B2 and B3, H1(·)2 is dominated by an integrable

random variable, and hence so is Z2
1(·). To see why, note that for any θ ∈ U ,

H2
1 (θ) = [H1(θ0) + (H1(θ) − H1(θ0))]

2

≤ 2H2
1 (θ0) + 2(H1(θ) − H1(θ0))

2

≤ 2W 2
1 (θ0) + 2C2

1‖θ − θ0‖2.

But U is bounded, and hence ‖θ − θ0‖2 is bounded.

Proposition 4.2.1. Assume that B1-B3 hold. Then σ2(·) is C1 on U and

∇θσ
2(θ) =

E∇θZ
2
1(θ) + 2E∇θ(Z1(θ)Z2(θ))

Eτ1

.

Proof. It suffices to show that EZ1(·) and EZ1(·)Z2(·) are C1 on U and the gradi-

ent and expectation can be exchanged. We apply Theorem 2.3.1 to Z1(θ) and

Z1(θ)Z2(θ) component by component. Consider the jth component, for some

j ∈ {1, . . . , p}. The only condition that requires explicit verification is that
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∂Z1(θ)/∂θ(j) and ∂Z1(θ)Z2(θ)/∂θ(j) are dominated by an integrable function of

X. With probability 1,

∂Zk(θ)

∂θ(j)
= − ∂

∂θ(j)





T (k)−1
∑

i=T (k−1)

h(Xi; θ)



 = −
T (k)−1
∑

i=T (k−1)

∂h(Xi; θ)

∂θ(j)
, k ≥ 1.

Hence,

∣

∣

∣

∣

∂Z2
1 (θ)

∂θ(j)

∣

∣

∣

∣

= 2

∣

∣

∣

∣

∣

∣

∂

∂θ(j)





T (1)−1
∑

i=0

h(Xi; θ)



Z1(θ)

∣

∣

∣

∣

∣

∣

≤ 2C1|Z1(θ)| and (4.2.2)

∣

∣

∣

∣

∂(Z1(θ)Z2(θ))

∂θ(j)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∂

∂θ(j)





T (1)−1
∑

i=0

h(Xi; θ)



Z2(θ)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∂

∂θ(j)





T (2)−1
∑

i=T (1)

h(Xi; θ)



Z1(θ)

∣

∣

∣

∣

∣

∣

≤ C1|Z2(θ)| + C2|Z1(θ)|. (4.2.3)

By B3 and Remark 7, the right hand sides of equations (4.2.2) and (4.2.3) are

dominated by an integrable function.

We now introduce the sample average approximation (SAA) procedure to solve

the problem P. The procedure exploits the regenerative structure of the under-

lying stochastic processes. The quantities computed over the regenerative cycles

are one-dependent identically distributed random variables, so the sample average

approximation method for terminating simulations in Chapter 2 can be extended

to this setting. Suppose that we have a sample path X̃0, X̃1, . . . , X̃m and that

V (m, θ) is an estimate for σ2(θ) based on X̃0, X̃1, . . . , X̃m. We will discuss specific

choices of variance estimator V (m, θ) in Section 4.3. Then the SAA to problem P

is

Pm : min
θ∈Θ

V (m, θ).
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Let θ̂m be a solution for problem Pm, perhaps obtained by using some deter-

ministic nonlinear optimization algorithm. Then in a second phase, α is estimated

using

αn(θ̂m) =
1

n

n−1
∑

i=0

[f(Xi) − h(Xi; θ̂m)],

where the samples X0, X1, . . . , Xn−1 are independent of X̃0, X̃1, . . . , X̃m.

The asymptotic theory for finite-horizon simulation can be extended to this set-

ting by analyzing simulation outputs via regenerative cycles. We split the sample

average αn(θ̂m) into two parts: A random sum of 1-dependent identically dis-

tributed random variables, and a remainder term that converges to zero a.s. To

show that αn(θ̂m) satisfies a SLLN and CLT, we first need the following Propo-

sition 4.2.2, a uniform version of the strong law for a random number of samples

and a following lemma.

Proposition 4.2.2. Suppose that {Ui(θ) : i ≥ 1} is a κ-dependent stationary

sequence of random variables for any θ ∈ Θ, where Θ is a compact parameter

set. Let {l(n) : n ≥ 1} be a family of random indices such that l(n)/n → λ a.s

as n → ∞ for some λ < ∞. Suppose that Ui(·) is continuous on Θ w.p.1 and

dominated by an integrable random variable for all i ≥ 1. Then

sup
θ∈Θ

∣

∣

∣

∣

∣

∣

1

n

l(n)
∑

i=1

Ui(θ) − λEU1(θ)

∣

∣

∣

∣

∣

∣

→ 0 (4.2.4)

as n → ∞ a.s.

Proof. Observe that

sup
θ∈Θ

∣

∣

∣

∣

∣

∣

1

n

l(n)
∑

i=1

Ui(θ) − λEU1(θ)

∣

∣

∣

∣

∣

∣

= sup
θ∈Θ

∣

∣

∣

∣

∣

∣

1

n

l(n)
∑

i=1

[Ui(θ) − EU1(θ)] − Rn(θ)

∣

∣

∣

∣

∣

∣
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≤ l(n)

n
sup
θ∈Θ

∣

∣

∣

∣

∣

∣

1

l(n)

l(n)
∑

i=1

[Ui(θ) − EU1(θ)]

∣

∣

∣

∣

∣

∣

+ sup
θ∈Θ

|Rn(θ)|, (4.2.5)

where

Rn(θ) = E[U1(θ)]

(

λ − l(n)

n

)

.

Since U1(θ) is dominated by an integrable random variable, the second term in

(4.2.5) converges to 0 a.s. as n → ∞. So it suffices to show that the first term in

(4.2.5) converges to 0 a.s. as n → ∞.

Now, EU1(·) is continuous by Lebesque’s Dominated Convergence Theorem

(LDCT). Moreover, for all θ ∈ Θ, 1
m

∑m
i=1 Ui(θ) → EU1(θ) a.s. as m → ∞, and

l(n) → ∞ a.s. as n → ∞. First, we will show that supθ∈Θ

∣

∣

1
m

∑m
i=1 Ui(θ) − EU1(θ)

∣

∣

→ 0 as m → ∞ a.s. Then by Theorem 2.1 in [Gut, 1988] (p.10),

sup
θ∈Θ

∣

∣

∣

∣

∣

∣

1

l(n)

l(n)
∑

i=1

Ui(θ) − EU1(θ)

∣

∣

∣

∣

∣

∣

→ 0

as n → ∞ a.s.

We follow the proof of Proposition 7 in Shapiro [2003]. Choose a point θ̄ ∈ Θ,

a sequence γk of positive numbers converging to zero, and define Vk := {θ ∈ Θ :

||θ − θ̄|| ≤ γk} and

δi
k := sup

θ∈Vk

|Ui(θ) − Ui(θ̄)|, for i ≥ 1.

Note that δi
k, i ≥ 1 are κ-dependent identically distributed random variables. Since

U1(·) is continuous w.p.1 and dominated by an integrable random variable on Θ,

by LDCT we have that

lim
k→∞

E[δ1
k] = E[ lim

k→∞
δ1
k] = 0. (4.2.6)

Note that

sup
θ∈Vk

∣

∣

∣

∣

∣

1

m

m
∑

i=1

Ui(θ) −
1

m

m
∑

i=1

Ui(θ̄)

∣

∣

∣

∣

∣

≤ 1

m

m
∑

i=1

δi
k. (4.2.7)
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By the LLN, the right hand side of (4.2.7) converges to E[δ1
k] a.s. as m → ∞. To-

gether with (4.2.6) this implies that for any given ε > 0, there exist a neighborhood

W of θ̄ such that w.p.1 for sufficiently large M,

sup
θ∈W∩Θ

∣

∣

∣

∣

∣

1

M

M
∑

i=1

Ui(θ) −
1

M

M
∑

i=1

Ui(θ̄)

∣

∣

∣

∣

∣

< ε.

Since Θ is compact, there exists a finite number of points θ1, θ2, . . . , θJ ∈ Θ and cor-

responding neighborhoods W1, . . . , WJ covering Θ such that w.p.1 for sufficiently

large M,

sup
θ∈Wj∩Θ

∣

∣

∣

∣

∣

1

M

M
∑

i=1

Ui(θ) −
1

M

M
∑

i=1

Ui(θj)

∣

∣

∣

∣

∣

< ε, j = 1, . . . , J. (4.2.8)

Furthermore, since EU1(·) is continuous on Θ, these neighborhoods can be chosen

in such a way that

sup
θ∈Wj∩Θ

|E[U1(θ)] − E[U1(θj)]| < ε, j = 1, . . . , J. (4.2.9)

Again by the LLN, w.p.1 for M large enough,
∣

∣

∣

∣

∣

1

M

M
∑

i=1

Ui(θj) − E[U1(θj)]

∣

∣

∣

∣

∣

< ε, j = 1, . . . , J. (4.2.10)

By (4.2.8)-(4.2.10), w.p.1 for M large enough

sup
θ∈Θ

∣

∣

∣

∣

∣

1

M

M
∑

i=1

Ui(θ) − E[U1(θ)]

∣

∣

∣

∣

∣

< 3ε.

Lemma 4.2.3. Suppose that U1, U2, . . .are independent and identically distributed

nonnegative random variables with EU1 < ∞. Then Un/n → 0 as n → ∞ a.s. and

hence

max
1≤i≤n

Ui/n → 0.

as n → ∞ a.s.
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The proof is as in Durrett [1999], so is omitted.

We can now state a version of the strong law and central limit theorem for the

case where θ̂ is random.

Theorem 4.2.4. Suppose that B1-B3 hold, and that the samples used in con-

structing θ̂ are independent of those used in computing αn(θ̂) for every n. Then

αn(θ̂) → α as n → ∞ a.s., and

√
n(αn(θ̂) − α) ⇒ σ(θ̂)N(0, 1)

as n → ∞, where N(0, 1) is independent of θ̂.

Proof. For the strong law note that

|αn(θ̂) − α| ≤
∣

∣

∣

∣

∣

1

n

n−1
∑

i=0

(f(Xi) − α)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

n

n−1
∑

i=0

h(Xi, θ̂)

∣

∣

∣

∣

∣

≤ |αn − α| + sup
θ∈Θ

∣

∣

∣

∣

∣

1

n

n−1
∑

i=0

h(Xi, θ)

∣

∣

∣

∣

∣

. (4.2.11)

The first term in (4.2.11) converges to 0 as n → ∞ by the LLN (4.1.1). For the

second term, we have

sup
θ∈Θ

∣

∣

∣

∣

∣

1

n

n−1
∑

i=0

h(Xi, θ)

∣

∣

∣

∣

∣

≤ sup
θ∈Θ

∣

∣

∣

∣

∣

∣

1

n

l(n)
∑

k=1

Hk(θ)

∣

∣

∣

∣

∣

∣

+ Rn, (4.2.12)

where

Rn = sup
θ∈Θ





1

n

T (l(n)+1)−1
∑

i=T (l(n))

|h(Xi, θ)|



 .

The first term in (4.2.12) converges to 0 by Proposition 4.2.2. Note that

Rn ≤ sup
θ∈Θ





1

n

T (l(n)+1)−1
∑

i=T (l(n))

|h(Xi, θ0)| + c(Xi)||θ − θ0||.





≤ Wl(n)+1(θ0)

n
+

Cl(n)+1

n
sup
θ∈Θ

||θ − θ0||. (4.2.13)
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The results in Lemma 4.2.3 also hold for a 1-dependent sequence of stationary

random variables. Therefore,

max
1≤k≤n+1

Wk(θ0)/(n + 1) and max
1≤k≤n+1

Ck/(n + 1) → 0

as n → ∞ a.s. Since l(n) + 1 ≤ n + 1 and Θ is bounded, (4.2.13) converges to

0. This completes the proof of the strong law. We now turn to the central limit

theorem.

By Theorem 4.1.1, for each fixed t ∈ R,

P
(√

n(αn(θ̂) − α) ≤ t | θ̂
)

→ Φ

(

t

σ(θ̂)

)

I(σ(θ̂) > 0) + I(t ≥ 0)I(σ(θ̂) = 0)

(4.2.14)

as n → ∞, where Φ is the distribution function of a normal random variable with

mean 0 and variance 1 and I(·) is an indicator function. LDCT ensures that we

can take expectations through (4.2.14), and so

P (
√

n(αn(θ̂) − α) ≤ t)

→ E

[

Φ

(

t

σ(θ̂)

)

I(σ(θ̂) > 0) + I(t ≥ 0)I(σ(θ̂) = 0)

]

= P (σ(θ̂)N(0, 1) ≤ t)

for all x ∈ R, which is the desired central limit theorem.

Next, we study the asymptotic behavior of αn(θ̂m) as the computational budget

gets large. Assume that m = m(n) is a function of n such that m(n) → ∞ as

n → ∞. If θ̂m(n) → θ∗ in probability as n → ∞, then αn(θ̂m(n)) behaves the same

as αn(θ∗), asymptotically as n → ∞.

Theorem 4.2.5. Suppose that θ̂m(n) → θ∗ as n → ∞ in probability, for some

random variable θ∗. Suppose further that B1 - B3 hold and the samples used in
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computing θ̂m(n) are independent of those used to compute αn(θ̂m(n)) for every n.

Then αn(θ̂m(n)) → α as n → ∞ a.s., and

√
n(αn(θ̂m(n)) − α) ⇒ σ(θ∗)N(0, 1)

as n → ∞, where N(0, 1) is independent of θ∗.

Proof. The strong law can be proved exactly as in the proof of Theorem 4.2.4. To

prove the central limit theorem, note that

√
n(αn(θ̂m(n)) − α) =

√
n(αn(θ∗) − α) +

√
n(αn(θ̂m(n)) − αn(θ∗))

= D1,n + D2,n, say.

Notice that θ∗ is independent of the samples used to compute αn for every n. By

Theorem 4.2.4, D1,n ⇒ σ(θ∗)N(0, 1) as n → ∞. Thus, it suffices to show that

D2,n =
1√
n

n−1
∑

i=0

[h(Xi, θ̂m(n)) − h(Xi, θ
∗)] ⇒ 0

as n → ∞. Let us write

D2,n =
1√
n

l(n)+2
∑

k=1

[Hk(θ̂m(n)) − Hk(θ
∗)]

− 1√
n

T (l(n)+2)−1
∑

i=n+1

[h(Xi, θ̂m(n)) − h(Xi, θ
∗)]

= D3,n − Rn.

Observe that

|Rn| ≤ 1√
n

T (l(n)+2)−1
∑

i=n+1

|h(Xi, θ̂m(n)) − h(Xi, θ
∗)|

≤ 1√
n

T (l(n)+2)−1
∑

i=n+1

c(Xi)||θ̂m(n) − θ∗||

≤ 1√
n

(Cl(n)+1 + Cl(n)+2)||θ̂m(n) − θ∗||. (4.2.15)
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Apply Lemma 4.2.3 to {C2
k , k ≥ 1}. Then C2

l(n)+1/n and C2
l(n)+2/n converge to 0 a.s.

as n → ∞ and hence (Cl(n)+1 +Cl(n)+2)/
√

n → 0 a.s. as n → ∞. Since ||θ̂m(n)−θ∗||

is bounded, (4.2.15) converges to 0 as n → ∞ a.s.

To show that D3,n ⇒ 0, we will adapt techniques from Janson [1983] and

Henderson and Glynn [2001]. For any fixed θ and θ∗ ∈ U , define

∆Hk(θ, θ
∗) = Hk(θ) − Hk(θ

∗), k ≥ 1,

FN(θ, θ∗) = σ(∆H1(θ, θ
∗), τ1, ∆H2(θ, θ

∗), τ2, . . . , ∆HN(θ, θ∗), τN),

SN(θ, θ∗) =

N
∑

k=1

∆Hk(θ, θ
∗) and

WN(θ, θ∗) = E(S2
N+1(θ, θ

∗) −
N+1
∑

k=1

∆H2
k(θ, θ∗)

− 2

N
∑

k=1

∆Hk(θ, θ
∗)∆Hk+1(θ, θ

∗)|FN(θ, θ∗)).

Note that E[Hk(θ) − Hk(θ
∗)] = 0 so W (θ, θ∗) = (WN(θ, θ∗) : N ≥ 1) is a mar-

tingale with respect to the filtration F(θ, θ∗) = (FN(θ, θ∗) : N ≥ 1). Define

a ∧ b = min{a, b}. If T is a randomized stopping time with respect to F(θ, θ∗),

then EWT∧N (θ, θ∗) = EW1(θ, θ
∗) = 0. Hence,

ES2
1+T∧N(θ, θ∗) = E[

1+T∧N
∑

k=1

∆H2
k(θ, θ∗) + 2

T∧N
∑

k=1

∆Hk(θ, θ
∗)∆Hk+1(θ, θ

∗)]

≤ E[

1+(T∧N)
∑

k=1

∆H2
k(θ, θ∗) +

T∧N
∑

k=1

(∆H2
k(θ, θ∗) + ∆H2

k+1(θ, θ
∗))]

≤ 3E[

1+(T∧N)
∑

k=1

∆H2
k(θ, θ∗)].
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Noting that l(n) + 1 is a randomized stopping time, we obtain

ES2
l(n)+2(θ, θ

∗) ≤ lim
n→∞

inf ES2
1+[l(n)+1)∧N ](θ, θ

∗) (4.2.16)

≤ 3 lim
n→∞

inf E

1+[(l(n)+1)∧N ]
∑

k=1

∆H2
k(θ, θ∗)

= 3E

l(n)+2
∑

k=1

∆H2
k(θ, θ∗) (4.2.17)

= 3E∆H2
1 (θ, θ∗)E(l(n) + 2), (4.2.18)

where (4.2.16) follows from Fatou’s lemma, (4.2.17) follows from the monotone

convergence theorem, and (4.2.18) is a variant of Wald’s equation for 1-dependent

random variables. Note that

D3,n =
1√
n

Sl(n)+2(θ̂m(n), θ
∗).

Chebyshev’s inequality ensures that for any fixed ǫ > 0

P (|D3,n| > ǫ) ≤ ǫ−2ED2
3,n

=
1

nǫ2
ES2

l(n)+2(θ̂m(n), θ
∗)

=
1

nǫ2
E[E[S2

l(n)+2(θ̂m(n), θ
∗)|θ̂m(n), θ

∗]]

≤ 3

nǫ2
E[E[∆H2

1 (θ̂m(n), θ
∗)|θ̂m(n), θ

∗]E[l(n) + 2|θ̂m(n), θ
∗]]

= 3
E[l(n) + 2]

nǫ2
E[∆H2

1 (θ̂m(n), θ
∗)]

≤ 3
E[l(n) + 2]

nǫ2
EC2

1E||θ̂m(n),θ∗ − θ∗||2. (4.2.19)

By LDCT, E||θ̂m(n) − θ∗||2 → 0, and by Theorem 3.1 of Janson [1983], E(l(n) +

2)/n → λ as n → ∞. Therefore, (4.2.19) converges to 0 as n → ∞.

It remains to give conditions under which θ̂m → θ∗. The best that we can hope

for from a computational point of view is that θ̂m is a first-order critical point

for the problem Pm. If the gradient of the variance estimator converges to the
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gradient of σ2(θ) uniformly on Θ a.s, then by sample-path analysis we can prove

the convergence of first-order critical points to those of the true problem P.

Theorem 4.2.6. Suppose that

(i) Θ is convex and compact,

(ii) σ2(·) is C1 on an open set containing Θ,

(ii) V (m, ·) is C1 on an open set containing Θ w.p.1, for all m ≥ 1, and

(iv) supθ∈Θ ||∇θV (m, θ) −∇θσ
2(θ)|| → 0 a.s. as n → ∞.

Let θ̂m be a first-order critical point of V (m, ·) on Θ and S(σ2(·), Θ) be the set of

first order critical points of σ2(·) on Θ. Then d(θ̂m, S(σ2(·), Θ)) → 0 as m → ∞

a.s.

Proof. If d(θ̂m, S(σ2(·), Θ)) 6→ 0, then by passing to a subsequence if necessary, we

can assume that for some ǫ > 0, d(θ̂m, S(σ2(·), Θ)) ≥ ǫ for all m ≥ 1. Since Θ is

compact, by passing to a further subsequence if necessary, we can assume that θ̂m

converges to a point θ∗ ∈ Θ. It follows that θ∗ 6∈ S(σ2(·), Θ). On the other hand,

σ2(·) is C1 and ∇θV (m, θ̂m) → ∇θσ
2(θ∗) as m → ∞ a.s. Since Θ is convex, each

θ̂m satisfies the first order condition

〈∇θV (m, θ̂m), u − θ̂m〉 ≥ 0, for all u ∈ Θ, a.e.

Taking the limit as m → ∞, we obtain that

〈∇θσ
2(θ∗), u − θ∗〉 ≥ 0, for all u ∈ Θ, a.e.

Therefore, θ∗ ∈ S(σ2(·), Θ) and we obtain a contradiction.
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Theorem 4.2.6 gives conditions under which θ̂m converges to the set of first-

order critical points of σ2 as m → ∞. As discussed in Chapter 2, a simple sufficient

condition that ensures convergence to a fixed θ∗ is the existence of a unique first-

order critical point, but this condition is not easy to verify in practice.

In general, the condition (iv) in Theorem 4.2.6 is hard to verify. A condition

that may be more easily verified is that if the variance estimator V (m, ·) converges

to σ2(·) uniformly on Θ in probability and the problem P has a unique solution

which is well separated, then θ̂m is a (weakly) consistent estimator for θ∗. A well

separated optimal solution θ∗ is an optimal solution that is unique and such that

for any neighborhood of θ∗ the gap between the optimal value and the value at any

point outside the neighborhood is bounded away from zero. A sequence of random

variables {ξn : n ≥ 1} is op(1) if and only if ξn → 0 in probability as n → ∞.

Theorem 4.2.7. Suppose that (P) has a unique optimal solution θ∗ and assume

that

(i) supθ∈Θ |V (m, θ) − σ2(θ)| = op(1) and

(ii) for any ε > 0,

inf
θ∈{θ̃:d(θ̃,θ∗)≥ε}

σ2(θ) > σ2(θ∗). (4.2.20)

Let θ̂m be an optimal solution for problem Pm. Then θ̂m → θ∗ as m → ∞ in

probability.

Proof. Since V (m, θ̂m) ≤ V (m, θ∗) and V (m, θ∗) = σ2(θ∗) + op(1),

V (m, θ̂m) ≤ σ2(θ∗) + op(1).
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Then

0 ≤ σ2(θ̂m) − σ2(θ∗) ≤ σ2(θ̂m) − V (m, θ̂m) + op(1)

≤ sup
θ∈Θ

|σ2(θ) − V (m, θ)| + op(1).

By (i), σ2(θ̂m) → σ2(θ∗) in probability as m → ∞.

By (ii), for all ε > 0 and some η > 0,

σ2(θ) − σ2(θ∗) > η, for all θ ∈ {θ : d(θ, θ∗) ≥ ε}.

Therefore,

P (d(θ̂m, θ∗) ≥ ε) ≤ P (σ2(θ̂m) − σ2(θ∗) > η). (4.2.21)

The righthand side of (4.2.21) goes to 0 and hence θ̂m → θ∗ as m → ∞ in proba-

bility.

4.3 Variance Estimators

In this section, we consider two estimators for the TAVC σ2(θ) and provide con-

ditions under which the sample average approximation problems converge to the

true problem. The first estimator is based on the regenerative method. The use

of regenerative structure allows us to easily analyze the asymptotic properties of

this estimator. The second estimator is based on the batch means method, which

is currently more applicable than the regenerative method. It is strongly consis-

tent under the harder-to-verify assumption that the output process obeys a strong

invariance principle (also called strong approximation; see Damerdji [1994]).
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4.3.1 Regenerative Method

The variance estimator of σ2(θ) derived using the regenerative method is

VRG(m; θ) =
1

m

l(m)−1
∑

k=1

[Z2
k(m; θ) + 2Zk(m; θ)Zk+1(m; θ)],

where Zk(m; θ) = (Fk − Hk(θ)) − αm(θ)τk. The SAA problem based on this esti-

mator is

PRG(m) : min
θ∈Θ

VRG(m; θ).

Let θ̂RG(m) be a first-order critical point for problem PRG,m.

Theorem 4.1.2 implies that under the conditions of Theorem 4.2.5, the estima-

tor VRG(m, θ) is a strongly consistent estimator of σ2(θ) for every θ ∈ Θ. We can

prove that under the same conditions, θ̂RG(m) converges to the set of first-order

critical points of the true problem P. Our next result extends Theorem 2.5.4 in

Chapter 2 for finite-horizon simulation to steady-state simulation.

Let u(θ) = (u(1)(θ), . . . , u(d)(θ)) be a R
d-valued function of θ ∈ Θ ⊂ R

p and

{Um(θ) = (U
(1)
m (θ), . . . , U

(d)
m (θ)) : m ≥ 1} be a family of R

d-valued random vari-

ables parameterized by θ such that Um(θ) → u(θ) a.s. as m → ∞ for all θ ∈ Θ.

Suppose that Υ(x) is a real-valued C1 function of x ∈ D ⊂ R
d, where D is an open

set containing the range of u and Um for all m. We seek conditions under which

first-order critical points of Υ ◦Um = Υ(Um(·)) on Θ converge to those of Υ ◦ u on

Θ.

Theorem 4.3.1. Consider the family of random variables {Um(·) : m ≥ 1} and

the function u(·) defined immediately above. Suppose that Θ is convex and compact

and

(i) Um(·) = (U
(1)
m (·), . . . , U (d)

m (·)) is C1 on an open set containing Θ w.p.1, for all

m ≥ 1,
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(ii) u(·) is C1 on an open set containing Θ,

(iii) supθ∈Θ

∣

∣

∣
U

(r)
m (θ) − u(r)(θ)

∣

∣

∣
→ 0, a.s. as m → ∞ (r = 1, . . . , d) and

(iv) supθ∈Θ

∣

∣

∣
∂U

(r)
m (θ)/∂θ(j) − ∂u(r)(θ)/∂θ(j)

∣

∣

∣
→ 0 a.s. as m → ∞. (r = 1, . . . , d,

j = 1, . . . , p).

Let θ̂m ∈ S(Υ◦Um, Θ) be the set of first-order critical points of Υ◦Um on Θ. Then

d(θ̂m, S(Υ ◦ u, Θ)) → 0 as m → ∞ a.s.

This is a corollary of Theorem 4.2.6, so the proof is omitted. We now obtain

the following corollary.

Corollary 4.3.2. Suppose that B1-B3 hold and Θ is convex. Then

d(θ̂RG(m), S(σ2, Θ)) → 0

as m → ∞ a.s.

Proof. If Υ(ζ1, . . . , ζ8) = ζ1 − 2ζ8ζ2 + ζ2
8ζ3 + 2ζ4 − 2ζ8ζ5 − 2ζ8ζ6 + 2ζ8ζ7, then

VRG,m(θ) = Υ(Um(θ)) and

σ2(θ) = Υ(u(θ)),

where

Yk(θ) = Fk − Hk(θ), θ ∈ Θ, k ≥ 1,
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U
(1)
m (θ) =

Pl(m)−1
k=1 Y 2

k (θ)

m
, u(1)(θ) =

EY 2
1 (θ)

Eτ1
,

U
(2)
m (θ) =

Pl(m)−1
k=1 Yk(θ)τk

m
, u(2)(θ) = EY1(θ)τ1

Eτ1
,

U
(3)
m (θ) =

Pl(m)−1
k=1 τ2

k

m
, u(3)(θ) =

Eτ2
1

Eτ1
,

U
(4)
m (θ) =

Pl(m)−1
k=1 Yk(θ)Yk+1(θ)

m
, u(4)(θ) = EY1(θ)Y2(θ)

Eτ1
,

U
(5)
m (θ) =

Pl(m)−1
k=1 Yk(θ)τk+1

m
, u(5)(θ) = EY1(θ)τ2

Eτ1
,

U
(6)
m (θ) =

Pl(m)−1
k=1 τkYk+1(θ)

m
, u(6)(θ) = Eτ1Y2(θ)

Eτ1
,

U
(7)
m (θ) =

Pl(m)−1
k=1 τkτk+1

m
, u(7)(θ) = Eτ1τ2

Eτ1
and

U
(8)
m (θ) = αm(θ), u(8)(θ) = α.

Note that Y1(·) is C1 on U and

Y1(θ), Y
2
1 (θ),

∂Y1(θ)

∂θ(j)
and

∂Y 2
1 (θ)

∂θ(j)

are all dominated by an integrable function (j = 1, . . . , p). By Proposition 4.2.2,

U (r)
m (θ) → u(r)(θ) and ∂U (r)

m (θ)/∂θ(j) → ∂u(r)(θ)/∂θ(j), r = 1, . . . , 7, j = 1, . . . , p

uniformly on Θ as m → ∞ a.s. It remains to show that αm(θ) → α and

∂αm(θ)/∂θ(j) → 0, j = 1, . . . p uniformly on Θ as m → ∞ a.s. Then by The-

orem 4.3.1,

d(θ̂RG(m), S(σ2, Θ)) = d(θ̂RG(m), S(Υ ◦ u, Θ)) → 0

as m → ∞. The proof of the uniform convergence of αm(θ) is very similar to

the proof of the similar result in Theorem 4.2.4. Nothing that ∂H1(θ)/∂θ(j), j =

1, . . . , p is dominated by C1, by Theorem 2.3.1, we obtain

E

[

∂H1(θ)

∂θ(j)

]

=
∂

∂θ(j)
[EH1(θ)] = 0, θ ∈ Θ, j = 1, . . . , p.
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Now,

sup
θ∈Θ

∣

∣

∣

∣

∂αm(θ)

∂θ(j)

∣

∣

∣

∣

≤ sup
θ∈Θ

∣

∣

∣

∣

∣

∣

1

m

l(m)
∑

k=1

∂Hk(θ)

∂θ(j)

∣

∣

∣

∣

∣

∣

+ sup
θ∈Θ





1

m

T (l(m)+1)−1
∑

k=T (l(m))

∣

∣

∣

∣

∂h(Xk, θ)

∂θ(j)

∣

∣

∣

∣





≤ sup
θ∈Θ

∣

∣

∣

∣

∣

∣

1

m

l(m)
∑

k=1

∂Hk(θ)

∂θ(j)

∣

∣

∣

∣

∣

∣

+
Cl(m)+1

m
. (4.3.1)

By Proposition 4.2.2 and Lemma 4.2.3, (4.3.1) converges to 0.

It is difficult to apply the regenerative method when the regeneration times

cannot be easily identified. For this reason we consider a second estimator based on

the batch means method, which does not require identification of the regeneration

times.

4.3.2 Batch Means Method

Suppose that we have a sample path X0, X1, . . . , Xm−1. Divide this sample path

into bm adjacent batches, each of size km. For simplicity, we assume that m = kmbm.

The ith batch consists of observations X(i−1)km , . . . , Xikm−1. The sample mean

Mi(km; θ) for the ith batch is

Mi(km; θ) =
1

km

ikm−1
∑

j=(i−1)km

[f(Xj) − h(Xj; θ)] , i ≥ 1.

The grand mean of the individual batch means is

M̄(m; θ) =
1

bm

bm
∑

i=1

Mi(km; θ).

Then we can estimate σ2(θ) using

VBM (m; θ) =
km

bm − 1

bm
∑

i=1

(Mi(km; θ) − M̄(m; θ))2.

Then the SAA problem based on this estimator is

PBM,m : min
θ∈Θ

VBM(m; θ).
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Let θBM (m) be the resulting estimator of a minimizer of σ2(·).

Due to its simplicity, batch means is one of the most widely used methods in

steady-state output analysis. In the classical batch means method, the number of

batches bm is fixed and the resulting batch means are approximately i.i.d. normal

random variables for sufficiently large batch size km. The TAVC σ2(θ) is not es-

timated but is instead canceled out. If on the other hand the number of batches

bm increases as the sample size m increases, under some conditions the estimator

VBM,m(θ) becomes a consistent estimator for σ2(θ).

We would like to use Theorem 4.3.3 to establish that θBM (m) → θ∗ as m → ∞.

To do so, we need to establish uniform convergence in probability of the batch

means estimator VBM(m, θ). Unfortunately, we have not been able to do so. How-

ever, we conjecture that a result of this form should hold. First, we state one more

assumption, and a useful result, that we believe are needed.

Assumption B4 Assume that σ2(θ) > 0 for all θ ∈ Θ, and there exists δ ∈ (0, 2)

such that for all θ ∈ Θ,

E

[

T2−1
∑

n=T1

|f(Xn) − h(Xn; θ)|
]2+δ

< ∞, and E
[

τ
1+δ/2
1

]

< ∞.

Remark 8. A set of sufficient conditions for B4 is that there exists δ ∈ (0, 2) such

that for all θ ∈ Θ,

EF̃ 2+δ
1 (θ), EW 2+δ

1 (θ) < ∞,

where F̃i =
∑T (i)−1

k=T (i−1) |f(Xk)| and

E
[

τ
1+δ/2
1

]

, EC2+δ
1 < ∞.

The following theorem provides conditions under which a sequence of random

functions is uniformly convergent in probability.
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Theorem 4.3.3. [Newey, 1991] Let Θ ⊂ R
p be a compact set, Qn(θ) be a random

function of θ ∈ Θ and the sample size n, and q(θ) be a non-random function of

θ ∈ Θ. Suppose that

(i) for each θ ∈ Θ, Qn(θ) − q(θ) = op(1),

(ii) there is Bn such that Bn = Op(1), that is, Bn is bounded in probability and

for all θ, θ̃ ∈ Θ,

|Qn(θ̃) − q(θ)| ≤ Bn||θ̃ − θ|| and

(iii) q(·) is continuous on Θ.

Then supθ∈Θ |Qn(θ) − q(θ)| = op(1).

Conjecture Suppose that (P) has a unique optimal solution θ∗ and assume that

(4.2.20) is satisfied. Let θ̂BM (m) be an optimal solution for problem PBM,m. Then

under B1-B4 and some conditions for bm and km, θ̂BM (m) → θ∗ as m → ∞ in

probability.



Appendix A

Additional Details of the Barrier Option

Example
We first discuss the verification of our assumptions for a general class of martin-

gales, and then specialize to the particular parameterization we used.

First assume that Θ is convex and compact. Suppose that there exists a

bounded open set U such that Θ ⊂ U , U(x, i; ·) : U → R is C1 for all (x, i) ∈

S × {0, 1, . . . , l − 1}, and U(·, i; ·) : [Hl, Hu] × U → R is Lipschitz for all i ∈

{0, 1, . . . , l − 1}. (These assumptions are all satisfied in our particular example.)

Since {0, 1, . . . , l − 1} is finite and U is bounded, there exists a C > 0 such that

for all θ1, θ2 ∈ U and (x, i) ∈ S × {0, 1, . . . , l},

|U(x, i; θ1) − U(x, i; θ2)| ≤ C‖θ1 − θ2‖,

and

D = sup
θ∈U ,(x,i)∈S×{0,1,...,l−1},k=1,...,p

{

|U(x, i; θ)|,
∣

∣

∣

∣

∂U(x, i; θ)

∂θk

∣

∣

∣

∣

}

< ∞.

Moreover, for any θ1, θ2 ∈ U ,

|Ml(U(θ1)) − Ml(U(θ2))|

≤
l
∑

i=1

|U(S̃i, l − i; θ1) − U(S̃i, l − i; θ2)|

+
l
∑

i=1

|P (S̃i−1, ·)U(·, l − i; θ1) − P (S̃i−1, ·)U(·, l − i; θ2)|

≤ lC‖θ1 − θ2‖ +
l
∑

i=1

P (S̃i−1, ·)C‖θ1 − θ2‖

≤ 2lC‖θ1 − θ2‖.

96
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For any θ ∈ U ,

|X(θ)| ≤ (S̃l − K)+ +

l
∑

i=1

(

|U(S̃i, l − i; θ)| + P (S̃i−1, ·)|U(·, l − i; θ)|
)

≤ Hu + 2lD,

and similarly,

∣

∣

∣

∣

∂

∂θi

X(θ)

∣

∣

∣

∣

≤ 2lD.

Since all of these bounds are finite, we can easily verify that assumptions A1-A6

are satisfied.

Next we discuss the computation of the martingale for the particular parame-

terization we chose. First, we compute the transition kernel P (x, ·) for x ∈ S. If

x = 0,

P (0, y) = P(S̃1 = y|S̃0 = 0) =















1 if y = 0 and

0 otherwise.

For Hl ≤ x ≤ Hu,

P (x, [−∞, y]) = P(S̃1 ≤ y, |S̃0 = x)

=



















































0 if y < 0,

P(S1 < Hl or S1 > Hu|S0 = x) if 0 ≤ y < Hl,

P(S1 ≤ y|S0 = x) + P (S1 > Hu|S0 = x) if Hl ≤ y ≤ Hu,

1 if y > Hu.

Therefore,

P (x, y) =















0 if y /∈ S, and

P(S1 < Hl or S1 > Hu|S0 = x) if y = 0.
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If Hl ≤ y ≤ Hu, then, letting

Γ =

(

r − 1

2
σ2

)

∆t + ln x, C =
1

σ
√

∆t

1√
2π

exp(− Γ2

2σ2∆t
),

and Φ be the distribution function of a standard normal random variable, we have

that

dP (x, [−∞, y])

dy
=

dP(x exp((r − 1
2
σ2)∆t + σ

√
∆tZ) ≤ y)

dy

=
dΦ(

ln( y
x
)−(r− 1

2
σ2)∆t

σ
√

∆t
)

dy

=
1

σ
√

2π∆ty
exp

(

− 1

2σ2∆t
(ln y − (r − 1

2
σ2)∆t − ln x)2

)

=
1

σ
√

2π∆ty
exp

(

− Γ2

2σ2∆t
− (ln y)2

2σ2∆t
+

Γ

σ2∆t
ln y

)

= C exp

(

−(ln y)2

2σ2∆t
+ (

Γ

σ2∆t
− 1) ln y

)

.

To compute Ml(U(θ)), it suffices to compute P (x, ·)U(·, i) for x ∈ S and i = 0,

. . . , l − 1. For Hl ≤ A < B ≤ Hu and p ≥ 0, let

Ψ(x; p, A, B) :=

∫ B

A

yp C exp

(

−(ln y)2

2σ2∆t
+ (

Γ

σ2∆t
− 1) ln y

)

dy

= C

∫ lnB

ln A

exp

(

− u2

2σ2∆t
+ (

Γ

σ2∆t
+ p)u

)

du

= C exp(
β2

4α
)

√

π

α

[

Φ

(√
2α(ln B − β

2α
)

)

− Φ

(√
2α(ln A − β

2α
)

)]

= exp(pΓ +
p2σ2∆t

2
)

[

Φ

(

ln B − Γ

σ
√

∆t
− pσ

√
∆t

)

− Φ

(

ln A − Γ

σ
√

∆t
− pσ

√
∆t

)]

,

where

α =
1

2σ2∆t
and β =

Γ

σ2∆t
+ p.
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Then

P (x, ·)U(·, i; θ)

=



































































0 if x = 0,

Ψ(x; 1, K, Hu) − KΨ(x; 0, K, Hu) if i = 0 and x 6= 0, and

θ4(i−1)+1Ψ(x; θ4(i−1)+2, Hl, Hu)

+θ4(i−1)+3Ψ(x; 1, Hl, Hu))

+θ4iΨ(x; 0, Hl, Hu) if i = 1, 2 . . . , l − 1 and x 6= 0.

Computing the control variate M(U(θ)) therefore involves the evaluation of the

distribution function of a normal random variable. The error in the approximation

to the normal distribution function used in our simulation experiment is of the

order 10−6 and it may therefore very slightly bias our adaptive control variate

estimators. We do not explore this issue further in this dissertation.
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