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Low-rank matrix approximations have been used in many applications, because

they provide compact representations of the data and reveal the underlying

structure. This dissertation is concerned with applications of low-rank approx-

imations in optimization problems. Motivation comes from a recent effort in

designing radiotherapy treatment plans for patients with cancer. The problem

was formulated as a second-order cone program. Due to the size of the prob-

lem, low-rank matrices were used in order to create a computationally tractable

approximation. This work is an attempt to theoretically explain the success of

low-rank approximations in such problems. The main vehicle for this analysis is

a stylized optimization problem with randomly sampled ellipsoidal constraints.

We consider two different matrix approximations, one based on the Singular

Value Decomposition and one based on column sampling, and apply them to

the matrices in the stylized problem. We provide results about the probability

distributions of the optimal values of these problems as well as their relative

difference. Since the focus is on problems with large number of constraints, we

provide asymptotic results, when the number of constraints tends to infinity.

We finally compare the performance of the two approximations and discuss the

implications of our results.
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CHAPTER 1

INTRODUCTION

1.1 Low-rank matrix approximations

In many applications where the data can be formulated as a matrix with a large

number of columns and rows, it is of interest to find compact representations

of the data. The concept of the rank of a matrix is fundamentally connected to

finding such compact representations. For an m×n matrix A, the rank is defined

as the dimension of the range of A, ran(A) = {y ∈ Rm|y = Ax for some x ∈ Rn} .

If the rank of A is equal to k, then all columns of A can be written as linear

combinations of a subset of the columns of size k.

In many cases though, the rank of A is not significantly smaller than

min {m, n}. One can then try to find an m×n matrix of low rank that is an approx-

imation to A. A natural way to define such an approximation is as the solution

to the problem

min ‖A − X‖F

subject to X ∈ Rm×n, rank(X) ≤ k, (1.1)

where ‖ · ‖F denotes the Frobenius norm. The solution to this problem is re-

lated to the Singular Value Decomposition (SVD) of A and is described in the

following theorem, see [23].

Theorem 1.1.1 Let UT AV = Σ = diag(σ1, ..., σp) ∈ Rm×n, p = min {m, n} be the SVD

of the m × n matrix A, where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices. Then a
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solution to Problem (1.1) is given by the matrix

A(k)
= UΣ(k)VT ,

where Σ(k)
= diag(σ1, ..., σk, 0, ..., 0). Furthermore,

‖A − A(k)‖F =

√

√

√ p
∑

j=k+1

σ2
j .

This fundamental result shows that the singular values of the matrix A deter-

mine how close it is to a low-rank matrix and gives an algorithm for computing

such an approximation based on the SVD.

Computing a low-rank approximation using the SVD is appealing from a

theoretical point of view, since it provides the closest matrix with a given rank.

For many applications where the data matrix is large, calculating the SVD can

be impractical since it requires a large number of operations and it has large

memory requirements. Recent research has thus focused on algorithms that are

suboptimal, in the sense that the low-rank matrices that they calculate are not

the closest possible to the original matrix, [18, 36, 22, 19, 20, 2]. The advantage of

using such algorithms is that they are faster than the SVD-based algorithm and

need less memory, making them much more suitable for large scale applications.

Low-rank approximations have found numerous applications in various

fields. Examples include Latent Semantic Indexing, [7, 31], Support Vector Ma-

chine training, [22, 36], Computer Vision, [30], and Web Search models, [26]. In

these applications, the data consist of a matrix that, although not of low rank,

can be approximated well by a low-rank matrix. Calculating such a low-rank

approximation can reveal the underlying structure of the data and allow for fast

computations.
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1.2 An application in optimization

The topic of this dissertation is the application of low-rank approximations in

optimization problems. More specifically, we are concerned with the problem

of approximating quadratic constraints using low-rank matrices. Motivation

comes from a recent optimization problem, [13, 12], arising in designing In-

tensity Modulated Radiation Therapy (IMRT) treatment plans. The problem is

formulated as a second-order cone program, but due to the size of the problem,

low-rank approximations were used in order to make the problem computa-

tionally tractable. Computational results suggest that the approximation was

successful.

Briefly, in [13, 12], an optimization formulation for the IMRT problem was

proposed, which we present in more detail in Section 2.1. The analysis takes

into account various uncertainties that affect the radiation dose delivered to a

patient. These uncertainties are due to position uncertainties, or motion and de-

formation of the patient or of the inner organs between daily treatments. Con-

straints are imposed on the dose delivered to each part of the body, that assure

high dose with high probability delivered to tumor parts and low dose with

high probability delivered to healthy parts of the body. Each such constraint is

a quadratic constraint in Rd, of the form

√

xT Wix ≤ ai + bT
i x,

where Wi is a covariance matrix.

The number of quadratic constraints of this type is around 10000, while the

dimension d of the problem is around 1000, making the problem computation-

ally intractable due to large memory requirements. In order to make this prob-
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lem more tractable, a simple approximation scheme was used in [13, 12] that

essentially replaced the covariance matrices Wi with sample covariance matri-

ces Ci based on a small number of scenarios. The problem was then formulated

as an optimization problem with a linear objective function.

The optimization problem was solved numerically in a patient case. The re-

sulting treatment plan was satisfactory, achieving sparing of the healthy tissue

and delivering a high dose to the target volume, while accounting for uncer-

tainties. In order to further test the quality of the solution obtained using this

scenario-based approximation, the problem was solved using various numbers

of scenarios, [13]. The solutions were found to be of similar quality.

This empirical phenomenon is striking. The d × d covariance matrices Wi

were substituted by matrices Ci of rank in the order of 10, reducing the memory

requirements significantly and making the problem computationally tractable.

On the other hand, the solution was satisfactory, suggesting that it was close to

the solution that would have been obtained without the approximation.

1.3 Dissertation layout

Motivated by the optimization problem that we present in Section 2.1, we per-

form a theoretical analysis of low-rank approximations in optimization prob-

lems with quadratic constraints. Our first goal is to explore mathematically the

success of the low-rank approximation in [13]. Furthermore, through our the-

oretical study we provide insight to the properties of low-rank approximations

in optimization and compare the performance of different kinds of approxima-

tions.
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In order to perform our analysis, we construct a stylized optimization prob-

lem that is based on the robust IMRT problem and has a feasible region that is

the intersection of ellipsoids of the same shape, randomly rotated around the

origin. We argue in Section 2.2 that this is a reasonable approximation to the

constraints of the IMRT problem. We then approximate the constraints by using

two different approximations: one based on the SVD and one based on column

sampling. We focus on the optimal values of these problems and especially on

their relative difference. Since low-rank approximations are particularly attrac-

tive when the number of constraints is large, our study involves an asymptotic

analysis of the optimal values, when the number of constraints tends to infinity.

In Chapter 2 we present the robust IMRT problem formulation in more de-

tail. We then construct the stylized optimization problem. The stylized prob-

lem is a sampled optimization problem, with a linear objective function and

constraints drawn independently from a specific distribution. Sampled prob-

lems have been used recently in order to approximate the chance-constrained

problem, which is more difficult to solve in practice. We give a brief introduc-

tion to the relevant theory and then present the results that connect chance-

constrained and sampled problems. We then capitalize on them in order to

describe a method than can be used to give properties of the optimal value of

any sampled problem with independent constraints.

In Chapter 3 we present the approximate optimization problem that results

when the matrices in the constraints of the original problem are approximated

with low-rank matrices calculated using the SVD. Using such an approximation

is a natural choice since it approximates the matrices in an optimal way and it

has a nice geometric interpretation in our setting. We then apply the technique
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that we developed in Chapter 2 to the optimal values of the two problems. More

specifically, we explicitly solve the corresponding chance-constrained optimiza-

tion problem by exploiting symmetry in the distribution that we have chosen for

generating constraints in our model. We conclude this chapter with an asymp-

totic result about the the optimal value of the chance-constrained problem that

will be used later.

We present an alternative approach on approximating a matrix using col-

umn sampling in Chapter 4. This algorithm requires time that is linear in the

dimension of the matrix. Thus, it is faster than the SVD-based algorithm and

is more attractive in a practical setting. After describing in detail the algorithm

and related work, we give the form of the optimization problems in our model

under this approximation. In order to give some insight into the behavior of

the approximating problem, we present an analysis when the constraints of the

original problem are nearly spherical. The analysis is related to the well-known

coupon-collector’s problem from probability theory. We then apply the tech-

nique from Chapter 2 to the approximating problem. The analysis is more in-

volved than in the SVD-based approximation. We are not able to explicitly solve

the corresponding chance-constrained optimization problem, but we provide a

bound on its optimal value.

In Chapter 5, we use our fundamental result about sampled problems from

Chapter 2 in order to characterize the asymptotic behavior of the optimal value

of sampled problems when the number of constraints tends to infinity. The

asymptotic behavior depends on a certain asymptotic behavior of the optimal

value of the corresponding chance-constrained problem.Applying our methods,

we get asymptotic results related to the optimal values and the errors of the

6



approximations when the number of constraints tends to infinity. Finally, we

combine the results that we have for the approximations in order to discuss the

implications of our analysis for using low-rank approximations in practice and

to compare the two methods that we have studied.
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CHAPTER 2

THE MODEL

2.1 The robust IMRT problem

Intensity Modulated Radiation Therapy (IMRT) is a method for planning and

delivering radiation therapy to patients with cancer. The objective of IMRT is to

shape the distribution of the dose delivered to the targeted tissues while sparing

healthy tissues, [10, 24, 29]. Briefly, dose distributions are formed by the super-

position of a series of beamlets intersecting the target from many directions.

From an optimization point of view, one wants to find the optimal intensity

assigned to each beamlet in order to hit the targeted tissues with a high dose

while delivering a low dose to healthy tissues. In addition to that, the opti-

mization formulation has to address uncertainties about the exact locations of

the targeted areas. These uncertainties are unavoidable and are due to either

position uncertainties, or motion and deformation of the patient or of the inner

organs during, or between daily treatments.

There exist many ways to formulate this problem as an optimization prob-

lem that addresses uncertainties. The approach in [13, 12] can be interpreted

either from a probabilistic, or from a robust optimization point of view. We

present here, almost verbatim from [12], the probabilistic derivation.

Using the conventional modelling approach of using voxels (volume ele-

ments) as sample points on a grid where we measure amounts of dose absorbed,

let x be the beamlet intensity vector and Di(x) be the total dose delivered to

voxel i over the course of all N treatments. Then Di(x) is viewed as a random
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variable, since the exact dose in each treatment depends on the exact position of

the voxel, which is random and as argued in [13] can be considered to be nor-

mally distributed. We denote by µi and σ2
i the mean and the variance of Di(x)

respectively.

If the voxel i is part of a healthy region, then we do not want the dose in that

voxel to exceed some threshold M1 ≥ µi. We require that the dose exceeds M1

with probability at most δ, where δ is a small constant, e.g. 0.05. So, we require

that P(Di(x) > M1) ≤ δwhich is equivalent to

P

(

Di(x) − µi

σi
>

M1 − µi

σi

)

≤ δ. (2.1)

Since the random variable (Di(x) − µi)/σi is approximately distributed as a stan-

dard normal, (2.1) becomes

σi ≤
M1 − µi

Φ−1(1− δ) , (2.2)

whereΦ(·) is the cumulative distribution of a standard normal random variable.

In complete analogy, if voxel i comes from the target volume, then we do

not want the dose to fall below a certain threshold M2 < µi. A similar argument

leads to the constraint

σi ≤
µi − M2

Φ−1(1− δ) . (2.3)

From the i.i.d. assumption we get that µi = NE[Di1(x)] and σ2
i = NVar[Di1(x)],

so we need to calculate the mean and the variance of the dose for a single treat-

ment. Let Yi denote a random column vector, indexed by beamlets, representing

the dose delivered to voxel i from each beamlet, if the beamlets have unit inten-

sity. Then the dose to voxel i in a single treatment is given by

Di1(x) = YT
i x.

9



This immediately implies that we have

µi = NE[YT
i ]x

and

σ2
i = NxT Cov(Yi)x.

Constraint (2.2) becomes then

√

NxT Cov(Yi)x ≤
M1 − NE[YT

i ]x

Φ−1(1− δ) (2.4)

and (2.3) becomes
√

NxT Cov(Yi)x ≤
NE[YT

i ]x − M2

Φ−1(1− δ) . (2.5)

The next question that arises is how one can estimate the covariance matrices

Cov(Yi) for each voxel i. Estimating the covariance matrices assuming some

probability distribution for the movement of the voxels and some model for the

dose deposition is possible, but the biggest challenge is storing these matrices.

In practice, Cov(Yi) is a d×d matrix, where d is the number of beamlets,which is

on the order of one thousand. There can easily be tens of thousands of voxels,

so storing a covariance matrix for each voxel requires too much memory for

this formulation to be tractable. In order to make the problem tractable, the

following model of the random dose was adopted in [13, 12].

Suppose that on any single treatment, one of m possible scenarios s1, ..., sm

can occur with probabilities p1, .., pm respectively. Let ai j be a column vector,

indexed by beamlets, giving the dose delivered to voxel i in scenario j from

each beamlet, when the beamlets have unit intensity.
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Let p be the column vector of scenario probabilities, and

Ai =



























































aT
i,1

aT
i,2

...

aT
i,m



























































be a matrix where the j-th row contains the vector giving the dose to voxel i in

scenario j from each beamlet. Then the mean of the dose to voxel i is

E[Di1(x)] = pT Aix.

Let e denote an m × 1 vector where each element is equal to 1, let I denote the

m × m identity matrix and P denote the diagonal matrix where P j j = p j. Then

Var[Di1(x)] =
[

Aix − e(pT Aix)
]T

P
[

Aix − e(pT Aix)
]

= ‖RAix‖2 ,

where R = P1/2(I − epT ).

Putting it all together, we see that constraint (2.2) can be written as

‖RAix‖2 ≤
M1 − N pT Aix

Φ−1(1− δ)
√

N
. (2.6)

Constraint (2.3) can be expressed in a similar way. Finally, further constraints

are imposed on the maximum total dose to target voxels with high probability,

the minimum dose per scenario to target voxels and dose-volume constraints of

the form “no more than a specific percentage of a healthy structure may receive

more than a given dose”. The objective function is then written as the sum of

weighted penalties, penalizing the violation of the constraints.

This formulation relies on approximating the dose distribution, which is in

general continuous, by a discrete distribution. This discrete distribution de-

pends on the scenarios that we choose and the probability assigned to each of
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them. It is clear that the proposed approximation to the original formulation

is much more tractable. Instead of storing a d × d covariance matrix for each

constraint, the approximation requires only an m × d matrix.

In each constraint, the original covariance matrix Wi = Cov(Yi) is replaced

by the covariance matrix Ci = AT
i R2Ai with respect to the discrete distribution.

Given the fact that we have m scenarios, Ci is of rank at most m. In the patient

case that was solved in [13, 12], m was on the order of ten. From a geometric

point of view this means that for each i, the convex quadratic constraint defined

by the matrix Wi is replaced by a convex quadratic constraint that is defined

by the matrix Ci. Intuitively, the quality of the optimal solution depends on

how close the two constraints are, or in other words by how well Wi can be

approximated by a low-rank approximation.

In [13], the problem was solved using various numbers of scenarios, and the

quality of the solution was evaluated with a Dose-Expected Volume Histogram

(DEVH). Briefly, a DEVH plots the expected volume of a structure that receives

at least some dose. All solutions were found to be of similar quality, achieving

sparing of the healthy tissue, while delivering a high dose to the target volume.

2.2 Stylized model

The success of the low-rank formulation in the robust IMRT problem motivates

us to study the effect of low-rank approximations to optimization problems of

the same form. Our goal is to study the relation between the optimal values

of the original and the approximating problem. More specifically, we want to

analyze theoretically how this relation depends on the shape of the constraints,

12



the objective function, the type of the low-rank approximation that is used and

the number of constraints in the problem.

The reasons for using a stylized model are twofold. First, we want to work

with an optimization problem that is simple enough to be analyzed, while shar-

ing the fundamental properties of the IMRT problem. Second, using a stylized

model allows us to illuminate how the various parameters of the problem, such

as the dimension, the singular values of the matrices, the number of constraints

and the objective function, affect the behavior of the low-rank approximation.

Before presenting the model, we take a closer look at the constraints of the

original problem in the patient case studied in [13]. As we saw in Section 2.1,

the constraints are of the form

√

xT Wix ≤ ai + bT
i x.

First, we examine the covariance matrices Wi of the doses in 100 voxels of size

1cm from the area of interest. We estimate the covariance matrices by sampling

3000 shifts from a uniform distribution in a cube centered at the origin, with

edges parallel to the axes and with edge length equal to 2cm. Shifts in this

context correspond to rigid body deformations, i.e., we assume that the entire

patient is moved this much. The resulting matrices have a small number of

significant singular values. Furthermore, as one can see from Figure 2.1, the

matrices have singular values that decay in a similar way.

Using the same sampled shifts, we also examine the means of the doses in

each voxel. For each voxel, most entries of the mean dose vector are near zero,

except a few positive entries. A plot of the mean dose vector with respect to

beamlets for a single voxel is given in Figure 2.2.
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Figure 2.1: Plot of the 20 largest singular values of the constraint matrices
in the IMRT problem.

The first assumption that we introduce concerns the singular values of the

matrices Wi, i = 1, ..., n in the constraints. We assume in our model that the

matrices Wi, i = 1, ..., n have the same singular values. This seems reasonable,

since the estimated matrices in our experimental result have singular values that

decay in a similar way. In addition, this assumption allows us to emphasize the

dependence of the behavior of the low-rank approximations in our model on

the singular values of the constraint matrices.

Our second assumption concerns the linear term bT
i x in the constraints. We

assume that bi = 0, i = 1, ..., n. Although this is not a close approximation of the

constraints in the IMRT problem, we introduce this assumption in order to keep

the model simple and to make the results and conclusions transparent. This as-
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Figure 2.2: Plot of the average dose to a specific voxel from each beamlet

sumption implies that all constraints in our model are ellipsoidal cylinders cen-

tered at 0. The methodology that we develop can be used for analyzing models

of the same form where the centers of the ellipsoidal cylinders are sampled ran-

domly uniformly in a ball centered at the origin. In that case, the formulas are

similar to the ones that we provide here, but more involved.

Under these assumptions, the stylized optimization problem takes the form

max cT x (2.7)

subject to xT Wix ≤ a2
i , i = 1, ..., n.

Let Wi = QT
i AQi be the SVD of the covariance matrices in the constraints for

i = 1, ..., n., where A does not depend on i because we have assumed that the

matrices Wi, i = 1, ..., n have the same singular values. Without loss of generality

we assume that the largest diagonal entry of A is equal to 1 and we consider
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matrices A such that the diagonal elements are in decreasing order, i.e., 1 =

A11 ≥ A22 ≥ · · · ≥ Add ≥ 0. Furthermore, we assume that ai = 1, i = 1, ..., n, so

that all constraints are ellipsoidal cylinders of the same shape, rotated around

the origin. Without loss of generality we choose c ∈ Rd such that ‖c‖2 = 1.

The final assumption concerns the orthogonal matrices Qi, i = 1, ..., n. For

our stylized model, we assume that Qi, i = 1, ..., n are independent random ma-

trices and they follow the orthogonally invariant distribution in the set Od of

d × d orthogonal matrices. This implies that the constraints are ellipsoids of the

same shape, randomly rotated around the origin. The orthogonally invariant

distribution is essentially a uniform distribution over orthogonal matrices and

is invariant under left and right orthogonal multiplication, i.e., the measure of

QX = {QX : X ∈ X}

for any measurable X ⊂ Od and Q ∈ Od is equal to that of X. In other words,

it is the Haar measure on the set Od. For more information see [25]. A sim-

ple algorithm for sampling from this distribution requires generating a random

matrix U with independent standard normal entries and then calculating its QR

decomposition, QR = U. The matrix Q follows the orthogonally invariant distri-

bution. A proof of this can be found in Stewart, [34]. This choice of distribution

is crucial for the analysis that follows, because it allows us to use the orthogonal

invariance property.

Thus, our model for the original formulation of the robust IMRT problem is

the sampled problem

max cT x (2.8)

subject to xT Wix ≤ 1, i = 1, ..., n,
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where Wi = QT
i AQi and n is the total number of constraints. Let V1 be the optimal

value of Problem (2.8). The feasible region of (2.8) is defined as the intersection

of ellipsoids that contain the unit ball in Rd. So, we easily get the inequality

V1 ≥ 1.

We next introduce the approximation to (2.8), which is written as

max cT x (2.9)

subject to xTCix ≤ 1, i = 1, ..., n.

The matrices Ci are symmetric positive semidefinite low-rank approximations

to Wi for each i = 1, ..., n. We haven’t yet specified the relationship between

the matrices Ci and Wi. In what follows we will assume that one has access

to the matrices Wi and then some algorithm is used to calculate the low-rank

approximation Ci. We further assume that all matrices Ci, i = 1, ...n are of the

same rank.

The optimal values of Problems (2.8) and (2.9) are random variables defined

on the same probability space. The probability distribution of V1 depends on the

matrix A and also on the number of constraints n. The distribution of the optimal

value of the Problem (2.9) depends additionally on the type of approximation

used and on the rank of the matrices Ci, i = 1, ..., n. We are interested in deriving

properties of these optimal values and also of their relative difference.

The stylized optimization problems that we have created are sampled opti-

mization problems with independent constraints. Our goal is to derive proper-

ties of the optimal value of such problems. Recent research, [8, 9, 14, 21], has

focused on using sampled optimization problems, which are straightforward to

solve in practice, in order to approximate the much harder to solve in practice
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chance-constrained optimization problems. Our method for analyzing sampled

problems is based on the connection between sampled and chance-constrained

problems. In the following sections we present the relevant results from chance-

constrained optimization theory. For a comprehensive discussion of the theory

and applications of such problems, see [33, 32].

2.3 Chance-constrained optimization theory

Chance-constrained optimization theory has a long history, dating back to the

work of Charnes and Cooper for linear programs in 1959, [11] and has found

applications in areas such as portfolio optimization under value-at-risk con-

straints, staffing of call centers and emergency services. The main goal of this

approach is to reduce sensitivity in the solution of optimization problems with

respect to some unknown parameter. It assumes that the parameters are dis-

tributed according to some known probability P on a set Ξ. The goal is not

to satisfy all constraints, but to find a solution that violates a set of constraints

that has small P-probability. A chance-constrained problem with linear objective

function and convex constraints is given in general form by

max cT x (2.10)

subject to P ( f (x, ξ) > 0) ≤ ǫ.

where x ∈ Rd is the optimization variable, f (x, ξ) is a convex function in x for all

ξ ∈ Ξ, and ξ is the unknown random parameter that is assumed to lie in the set

Ξ The parameter ǫ ∈ (0, 1) controls the probability that the optimal solution of

(2.10) violates the constraints.

The main drawback of chance-constrained optimization problems is that
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they are extremely hard to solve in practice. Even if the function f (x, ξ) is con-

vex, the feasible region of (2.10) is not convex in general. Moreover, merely

calculating the probability P ( f (x, ξ) > 0) for a fixed x is a nontrivial task that

typically involves calculating a multidimensional integral. Another weakness

of chance-constrained programs lies in the fact that knowledge of the proba-

bility measure P on the set of parameters Ξ is assumed. In a practical setting

P would have to be estimated, introducing another source of sensitivity in the

optimal solution. For more details see [32],[35].

Very closely related to chance-constrained optimization theory is robust op-

timization, introduced by Ben-Tal and Nemirovski, [4, 5, 6]. Robust optimiza-

tion gives a similar framework for reducing the sensitivity of the optimal solu-

tion of optimization problems with respect to uncertainty in parameter values.

In this framework one seeks a solution which simultaneously satisfies all pos-

sible constraint instances. In general form, a robust optimization problem with

linear objective function and convex constraints is given by

max cT x (2.11)

subject to f (x, ξ) ≤ 0, ∀ξ ∈ Ξ,

where x ∈ Rd is the optimization variable, f (x, ξ) is a convex function in x for

all ξ ∈ Ξ, and ξ is the unknown parameter that is assumed to lie in the set Ξ.

Problems of this type can include an infinite number of constraints. In special

cases and under some regularity conditions they can be solved by reformulating

the constraints in (2.11) as a finite collection of constraints.

Motivated by the computational complexity of chance-constrained prob-

lems, Calafiore and Campi [8, 9] and de Farias and Van Roy [14] independently

proposed tractable approximations. The idea is to approximate Problem (2.10)
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by sampling independent and identically distributed parameters ξi under the

distribution P and to solve instead the much easier sampled problem

max cT x (2.12)

subject to f (x, ξi) ≤ 0, i = 1, ..., n.

De Farias and Van Roy, [14], study problems where the constraint function

f (·, ξ) is linear. They use results from Computational Learning Theory to give

a lower bound on the number of sampled constraints needed in order to guar-

antee that the feasible region of Problem (2.10) is included in the feasible region

of (2.11) with probability at least 1 − δ. Calafiore and Campi [8, 9] consider

general convex functions f (x, ξ) and provide a similar bound on the number of

constraints that need to be sampled so that the optimal solution of the sampled

Problem (2.12) is feasible for (2.10) with probability at least 1− δ.

2.4 Fundamental inequality

Before proceeding with the fundamental inequality, we review the results in

[8, 9] in more detail. Let x̂ and V be the optimal solution and the optimal value

of the sampled Problem (2.12). For any ǫ ∈ (0, 1) we denote by x̂(ǫ), G(ǫ) andX(ǫ)

the optimal solution, the optimal value and the feasible region of the chance-

constrained Problem (2.10) respectively. Also, we define x̂k to be the optimal so-

lution to the sampled problem that is obtained if we remove the k-th constraint

from (2.12).

Definition 2.4.1 (Support Constraint) The k-th constraint f (x, ξk) ≤ 0 is called a

support constraint for the Problem (2.12) if cT x̂k > cT x̂.
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The results are based on a fundamental property of convex programs given in

the following theorem.

Theorem 2.4.1 (Theorem 2 in [8]) A convex program in Rd has at most d support

contraints.

Using this, they prove the following result. Since this is the basic building block

of our main result, Theorem 2.4.2, we give here the proof as presented in [21].

Proposition 2.4.1 (Theorem 1 in [9]) Fix ǫ > 0. Let x̂ denote the optimal solution of

the sampled Problem (2.12). Then

P (x̂ < X(ǫ)) ≤
(

n
d

)

(1− ǫ)n−d. (2.13)

Proof:

The sampled Problem (2.12) is a convex program in Rd with n constraints.

Let I ⊆ {1, 2, ..., n}, with |I| = d. Let

Ξ
n
I =

{

(ξ1, ξ2, ..., ξn) : all the support constraints ⊆ I
}

.

Then Theorem 2.4.1 implies that Ξn
= Ξ × Ξ · · · × Ξ can be expressed as

Ξ
n
= ∪{I⊆{1,...,n}:|I|=d}Ξ

n
I .

We define x̂I to be the optimal solution of the sampled problem with only the

samples i ∈ I present, andAI to be the event

AI = {(ξi)i∈I : x̂I < X(ǫ)} .
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We have

P((ξ1, ..., ξn) : x̂ < X(ǫ)) ≤
∑

{I⊆{1,...,n}:|I|=d}
P((ξ1, ..., ξn) ∈ Ξn

I : x̂I < X(ǫ))

=

∑

{I⊆{1,...,n}:|I|=d}
P (AI) P((ξ)i<I : f (x̂I, ξi) ≤ 0|AI)

=

∑

{I⊆{1,...,n}:|I|=d}
P (AI)

∏

i<I

P(ξi : f (x̂I, ξi) ≤ 0|AI),

where each probability in the sum can be written as a product because {ξi}ni=1 are

i.i.d. samples. Since x̂I < X(ǫ), it follows that for i < I,

P(ξi : f (x̂I, ξi) ≤ 0 | AI) ≤ 1− ǫ.

Thus,

P((ξ1, ..., ξn) : x̂ < X(ǫ)) ≤ (1− ǫ)n−d
∑

{I⊆{1,...,n}:|I|=d}
P((ξi)i∈I : x̂I < X(ǫ))

≤
(

n
d

)

(1− ǫ)n−d.

⊓⊔

Proposition 2.4.1 gives an upper bound on the probability that the optimal

solution of the sampled problem is infeasible for the corresponding chance-

constrained problem. By inverting inequality (2.13), one can get a lower bound

on the number of constraints that need to be sampled so that the optimal so-

lution of the sampled problem is infeasible for the chance-constrained problem

with small probability.

The following result gives an upper bound on the probability that the op-

timal value of the sampled problem is greater than the optimal value of the

chance-constrained problem. The main argument of the proof is based on look-

ing for feasible points for the sampled problem, in the direction of the optimal

solution of the chance-constrained problem.
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Proposition 2.4.2 (Theorem 2 in [9]) Let V be the optimal value of the sampled prob-

lem and for ǫ > 0 let G(ǫ) be the optimal value of the corresponding chance-constrained

problem. Then we have

P(V ≥ G(ǫ)) ≥ (1− ǫ)n.

We can now combine Propositions 2.4.1 and 2.4.2 to get the following result

that describes the behavior of the tail probability of the optimal value V of the

sampled problem.

Theorem 2.4.2 Assume that for all v ∈ R we have P(V = v) = 0. Then, for any

ǫ ∈ (0, 1) we have

(1− ǫ)n ≤ P(V > G(ǫ)) ≤
(

n
d

)

(1− ǫ)n−d. (2.14)

Let G = (lim
ǫ↓0

G(ǫ), lim
ǫ↑1

G(ǫ)). Then, for any v ∈ G, there exists a G−1(v) ∈ (0, 1), where

G−1(·) is a left inverse of G(·), such that

(1−G−1(v))n ≤ P(V > v) ≤
(

n
d

)

(1−G−1(v))n−d. (2.15)

Also, if V(n) is the optimal value of Problem (2.12) with n constraints, then the sequence

{V(n)}∞n=1 of random variables satisfies

lim
n→∞

logP(V(n) > v)
n

= log(1−G−1(v)),

for any v in G.

Proof:

Since G(ǫ) is the optimal value of the chance-constrained problem, using

Proposition 2.4.1 we get

P(V > G(ǫ)) ≤ P(x̂ < X(ǫ)) ≤
(

n
d

)

(1− ǫ)n−d.
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From Proposition 2.4.2 and using our assumption we have

P(V > G(ǫ)) = P(V ≥ G(ǫ)) ≥ (1− ǫ)n.

We thus get that

(1− ǫ)n ≤ P(V > G(ǫ)) ≤
(

n
d

)

(1− ǫ)n−d.

LetG = (lim
ǫ↓0

G(ǫ), lim
ǫ↑1

G(ǫ)) and consider an arbitrary v ∈ G. We first prove that

there exist no nontrivial intervals of constancy for G. If there exists an interval

[ǫ1, ǫ2] such that for all ǫ ∈ [ǫ1, ǫ2], G(ǫ) = v, we get that

(1− ǫ1)n ≤ P(V > v) ≤
(

n
d

)

(1− ǫ2)n−d.

Considering large n leads to a contradiction.

If there exists a unique ǫ(v) such that

G(ǫ(v)) = v,

we get that

(1− ǫ(v))n ≤ P(V > v) ≤
(

n
d

)

(1− ǫ(v))n−d.

Otherwise, we define

ǫ1(v) = sup {ǫ |G(ǫ) ≤ v}

and

ǫ2(v) = inf {ǫ |G(ǫ) ≥ v} .

From the definition and since there is no ǫ such that G(ǫ) = v we have ǫ1(v) =

ǫ2(v). We have for any ω < ǫ1(v) and ζ > ǫ2(v) that

(1− ζ)n ≤ P(V > v) ≤
(

n
d

)

(1− ω)n−d.
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This implies that

(1− ǫ(v))n ≤ P(V > v) ≤
(

n
d

)

(1− ǫ(v))n−d, (2.16)

where ǫ(v) = ǫ1(v) = ǫ2(v).

In both cases we set G−1(v) = ǫ(v) and so, we get the inequality

(

1−G−1(v)
)n
≤ P(V > v) ≤

(

n
d

)

(

1−G−1(v)
)n−d

(2.17)

for any v ∈ G.

Recall that we denote by V(n) the optimal value of the sampled problem with

n constraints. From (2.17) we easily get that

lim
n→∞

logP(V(n) > v)
n

= log(1−G−1(v)).

⊓⊔

Theorem 2.4.2 gives a characterization of the tail probability of the optimal

value V of the sampled problem that depends on the optimal value G(ǫ) of the

corresponding chance-constrained problem. In order to apply this theorem to a

specific sampled optimization problem, we must have some information about

G(ǫ), which, as we explained previously, is very hard to obtain in general. In the

type of problems that we will analyze in subsequent chapters, we can either ex-

plicitly solve the related chance-constrained problems, or get asymptotic results

for their optimal values.
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CHAPTER 3

THE SVD APPROXIMATION

3.1 The approximation

In this chapter we present the first approximation that we will study in our

model. It is based on the SVD of the matrices Wi in the optimization Problem

(2.8). We start with some motivation for using this approximation. We then

present the approximate optimization problem and apply the method that we

developed in Chapter 2.

Recall that the initial optimization problem in our model is given by

max cT x

subject to xT Wix ≤ 1, i = 1, ..., n,

where Wi = QT
i AQi. The matrices {Qi}ni=1 are independent random orthogonal

matrices, uniformly distributed in the set Od of orthogonal matrices in Rd×d and

A is a diagonal matrix such that

1 = A11 ≥ A22 ≥ · · · ≥ Add ≥ 0.

We assume that the matrices Wi, i = 1, .., n are approximated by the matrices

Ci = QT
i A(k)Qi, i = 1, ..., n.,

where A(k)
= diag(A11, ..., Akk, 0, ..., 0).

The use of this approximation is appealing for many reasons. First, Ci is a
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solution to the problem

min ‖Wi − X‖ (3.1)

subject to rank(X) ≤ k, X ∈ Rd×d,

where ‖ · ‖ denotes either the Frobenius or the 2-norm. Furthermore, Ci is a sym-

metric positive semidefinite matrix, and thus the feasible region of the approxi-

mate problem is an intersection of constraints of the same type as the constraints

of the original problem. Finally, such an approximation is appealing from a ge-

ometric point of view. Each constraint is replaced by an ellipsoidal cylinder that

has the same principal directions as the corresponding original constraint and

is unbounded along the principal directions with the d − k largest semi-axes. A

simple example with 2 constraints can be seen in Figure 3.1.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5
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−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 3.1: Illustration of the approximation in a sampled problem in d = 2
dimensions and with n = 2 constraints.

We thus have the following sampled problems in our model, an original
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problem of the form

max cT x (3.2)

subject to xT QT
i AQix ≤ 1, i = 1, ..., n

and the approximation to (3.2) given by

max cT x (3.3)

subject to xT QT
i A(k)Qix ≤ 1, i = 1, ..., n.

We denote by V1 and V2 the optimal values of Problems (3.2) and (3.3) respec-

tively. We define the relative error of the approximation to be

R2 =
V2 − V1

V1
. (3.4)

Problems (3.2) and (3.3) have constraints of the same form, the only differ-

ence being the substitution of the diagonal matrix A with the matrix A(k). This

implies that the probability distributions of the optimal values V1 and V2 are of

the same form, but with different parameters. In what follows in this chapter,

we focus on Problem (3.2), since the same analysis holds for the approximating

Problem (3.3).

3.2 Main result

In this section we apply the method that we developed in Section 2.4 to the

optimal value V1 of Problem (3.2). We first formulate and solve the chance-

constrained problem corresponding to the sample Problem (3.2). We then give

an analytic expression for the optimal value of the chance-constrained problem

and apply Theorem 2.4.2 to the optimal value V1 of Problem (3.2). We conclude
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with an asymptotic result for the optimal value of the chance-constrained prob-

lem, which will be used in Chapter 5.

We begin by presenting a robust optimization version of Problem (3.2) with

an uncountable number of constraints, which can be thought of as a limiting

case of the sampled problem with infinite number of constraints. This is the

problem

max cT x (3.5)

subject to xT QT AQx ≤ 1,∀Q ∈ Od.

Problem (3.5) has an infinite number of constraints which can be equivalently

written as

sup
{

xT QT AQx|Q ∈ Od
}

≤ 1

⇔ ‖x‖22 sup
{

uT Au | ‖u‖2 = 1
}

≤ 1

⇔ ‖x‖22 ≤ 1,

where the last inequality follows from the fact that ‖A‖2 = 1. Thus the feasible

set of (3.5) is the closed unit ball in Rd, the optimal solution is c and the optimal

value is equal to 1. Intuitively, the feasible region of the chance-constrained and

the sampled problem resemble the unit ball for small ǫ and a large number of

constraints n respectively.

The chance-constrained problem corresponding to Problem (3.2) for ǫ ∈ (0, 1)

is given by

max cT x (3.6)

subject to x ∈ X1(ǫ),

where

X1(ǫ) =
{

x ∈ Rd | P(xT QT AQx > 1) ≤ ǫ
}

.
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It turns out that due to the symmetry in our problem, the feasible region X1(ǫ)

is simple as well. We have the following proposition.

Proposition 3.2.1 Let X1(ǫ) and G1(ǫ) be the feasible region and the optimal value of

the chance-constrained Problem (3.6) respectively. Then X1(ǫ) is a closed ball centered

at 0 and the optimal value G1(ǫ) satisfies the equation

P















∑d
j=1 A j jY2

j
∑d

j=1 Y2
j

>
1

G2
1(ǫ)















= ǫ, (3.7)

where
{

Y j

}d

j=1
are independent standard normal random variables.

Proof: Our first observation is that the feasible region X1(ǫ) of the chance-

constrained problem is orthogonally invariant. This is a direct consequence of

the orthogonal invariance property of the distribution of the orthogonal matrix

Q. Also, for any x ∈ X1(ǫ) and any λ ∈ [0, 1] we have λx ∈ X1(ǫ), so the feasible

region X1(ǫ) is a ball centered at 0. This allows us to easily find the optimal

solution of the chance-constrained problem.

Our next step is to find the radius of X1(ǫ). We use the fact that for any unit

vector u ∈ Rd, the vector s = Qu is uniformly distributed on the unit sphere in

R
d. Let F(z) = P(sT As ≤ z) be the distribution function of the random variable

sT As. We express the radius in terms of the function F(·).

Let λ > 0 be such that λe1 ∈ X1(ǫ). We have λe1 ∈ X1(ǫ) if and only if

P(λ2eT
1 QT AQe1 > 1) ≤ ǫ,

which holds if and only if

λ ≤

√

1
F−1(1− ǫ) .
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From this we see that

X1(ǫ) = B



















0,

√

1
F−1(1− ǫ)



















.

The optimal solution is

x̂1(ǫ) =

√

1
F−1(1− ǫ) c

and the optimal value is

G1(ǫ) =

√

1
F−1(1− ǫ) .

For a point s that is uniformly distributed on the boundary of the unit ball we

have

s
D
=

(

Y1

‖Y‖2
,

Y2

‖Y‖2
, ...,

Yd

‖Y‖2

)T

,

where
{

Y j

}d

j=1
are independent standard normal random variables and

D
= denotes

equality in distribution. We thus get that G1(ǫ) satisfies the equation

P















∑d
j=1 A j jY2

j
∑d

j=1 Y2
j

>
1

G2
1(ǫ)















= ǫ. (3.8)

For the function G−1
1 we get the expression

P















∑d
j=1 A j jY2

j
∑d

j=1 Y2
j

>
1
v2















= G−1
1 (v). (3.9)

⊓⊔

Proposition 3.2.1 gives us an analytic expression for the optimal value G1(ǫ)

of the ǫ-chance-constrained problem that involves the diagonal entries of the

matrix A and the ratio of sums of squared normal random variables. The opti-

mal value G1(ǫ) does not depend on the objective function vector c, because of

the symmetry in the distribution of the constraints. Figure 3.2 shows the robust

problem, the chance-constrained and a sampled problem in 2 dimensions

Combining Proposition (3.2.1) and Theorem (2.4.2) we easily get the follow-

ing result for the optimal value V1.
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Figure 3.2: Feasible regions of the robust, sampled and chance-constrained
problems in 2 dimensions. The thicker lines give the con-
straints of the sampled problem and the dotted line represents
the boundary of the feasible region of the chance-constrained
problem.

Proposition 3.2.2 Let V1 be the optimal value of Problem (3.2). We have that for any

v > 1,

(1−G−1
1 (v))n ≤ P(V1 > v) ≤

(

n
d

)

(1−G−1
1 (v))n−d, (3.10)

where

G−1
1 (v) = P















∑d
j=1 A j jY2

j
∑d

j=1 Y2
j

>
1
v2















and
{

Y j

}d

j=1
are independent standard normal random variables.

Our next goal is to get a better understanding of the behavior of the function

G−1
1 (·), which is given by (3.9). We will focus on the asymptotic behavior of

this function as v approaches 1. As we will show in Chapter 5, the asymptotic
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behavior of G−1
1 (·) near 1, characterizes the asymptotic behavior of the optimal

value V1 of the sampled problem when the number of constraints n tends to

infinity.

Before we proceed with our analysis, we recall a few definitions related to

the asymptotic behavior of real functions and sequences of random variables.

Definition 3.2.1 Let f , g be real functions. We then write f (x) = O(g(x)) as x → ∞

if for any real function α(·) such that α(x) → ∞, we have f (x)
g(x)

1
α(x) → 0. Similarly we

have f (x) = Ω(g(x)), if f (x)
g(x)α(x) → ∞ and f (x) = Θ(g(x)) if f (x) = Ω(g(x)) and f (x) =

O(g(x)).

This notation can also be used when studying the behavior of the function f

around a point a, by simply replacing the limits above with limits as x→ a.

The following lemma gives the asymptotic behavior of G−1
1 (v) as v ↓ 1, for a

special choice of the diagonal matrix A.

Lemma 3.2.1 Consider the function G−1
1 (·) corresponding to the chance-constrained

Problem (3.6) with

A =























Ik 0

0 θId−k























, θ ∈ [0, 1).

Then

lim
v↓1

G−1
1 (v)

(v − 1)(d−k)/2
=

(

2
1− θ

)(d−k)/2 2

(d − k)B
(

d−k
2 ,

k
2

) ,

where B(α, β) denotes the beta function.
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Proof: From (3.9) we have for v < 1√
θ

that

G−1
1 (v) = P















∑k
j=1 Y2

j + θ
∑d

j=k+1 Y2
j

∑d
j=1 Y2

j

>
1
v2















= P

















(1− v−2)
k

∑

j=1

Y2
j > (v−2 − θ)

d
∑

j=k+1

Y2
j

















= P















∑d
j=k+1 Y2

j
∑k

j=1 Y2
j

<
1− v−2

v−2 − θ















= P















∑d
j=k+1 Y2

j /(d − k)
∑k

j=1 Y2
j /k

<
k

d − k
v2 − 1
1− θv2















.

The random variable
∑d

j=k+1 Y2
j /(d − k)

∑k
j=1 Y2

j /k

follows the F distribution with d − k, k degrees of freedom. Because of the con-

nection between the distribution function of an F random variable and the in-

complete beta function, see [1], we get that

G−1
1 (v) = I

(

1− v−2

1− θ ;
d − k

2
,

k
2

)

,

where

I(x;α, β) =

∫ x

0
tα−1(1− t)β−1dt

B(α, β)

and

B(α, β) =
∫ 1

0
tα−1(1− t)β−1dt.

It is easy to see that

lim
x↓0

I(x;α, β)
xα

=
1

αB(α, β)
.

We thus get that

lim
v↓1

G−1
1 (v)

(v − 1)(d−k)/2
=

(

2
1− θ

)(d−k)/2 2

(d − k)B
(

d−k
2 ,

k
2

) .

⊓⊔
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Using Lemma 3.2.1 we prove the following result.

Proposition 3.2.3 Consider the chance-constrained Problem (3.6) and let l be the num-

ber of diagonal elements of A that are equal to 1. Then we have that as v ↓ 1,

G−1
1 (v) = Θ

(

(v − 1)(d−l)/2
)

.

Proof:

We have that

G−1
1 (v) = P















∑d
j=1 A j jY2

j
∑d

j=1 Y2
j

>
1
v2















= P















∑l
j=1 Y2

j +
∑d

j=l+1 A j jY2
j

∑d
j=1 Y2

j

>
1
v2















.

It is easy to see that

m(v) ≤ G−1
1 (v) ≤ M(v),

where

m(v) = P















∑l
j=1 Y2

j
∑d

j=1 Y2
j

>
1
v2















and

M(v) = P















∑l
j=1 Y2

j +
∑d

j=l+1 Al+1,l+1Y2
j

∑d
j=1 Y2

j

>
1
v2















.

From Lemma 3.2.1 we have that

m(v) = Θ
(

(v − 1)(d−l)/2
)

and

M(v) = Θ
(

(v − 1)(d−l)/2
)

.

We thus get that

G−1
1 (v) = Θ

(

(v − 1)(d−l)/2
)

.
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⊓⊔

Proposition 3.2.3 gives the asymptotic behavior of the function G−1
1 (·), close

to 1. The important fact is that the asymptotic rate depends only on the number

l of elements equal to 1 in the diagonal matrix A. As we will see in Chapter 5,

the behavior of G−1
1 (v) close to 1 characterizes the behavior of the optimal value

of the sampled problem when the number of constraints n tends to infinity.
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CHAPTER 4

THE NYSTRÖM APPROXIMATION

In this chapter, we analyze an alternative algorithm for approximating a sym-

metric positive definite matrix with a low-rank one. The algorithm is based on

the idea of using the subspace spanned by a few columns of the matrix to create

the approximation. In Section 4.1 we present the algorithm and show the con-

nection with algorithms of the same type. In Section 4.2 we analyze the behavior

of the approximation in a special case in our model. In the last two sections of

this chapter we analyze the approximation in our model, using the method that

we developed in Chapter 2.

4.1 The approximation

The SVD-based algorithm that we analyzed in Chapter 3 is appealing from a

theoretical point of view since it returns an optimal low-rank matrix approxima-

tion with respect to the Frobenius and the 2-norm. Its main drawback though,

is its computational complexity. Computing the SVD of a d × d matrix requires

O(d3) operations and O(d2) memory. In applications where d is large, using such

an algorithm may be problematical.

Recent research, [18, 36, 22, 19, 20, 2] has focused on algorithms that are sub-

optimal, in the sense that they return a low-rank approximation that does not

attain the smallest possible error. From a theoretical point of view, research has

focused on providing upper bounds on the approximation error. The main ad-

vantage of such algorithms is that they are able to produce an approximation
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using at most O(d) operations and memory. In the context of our model, ap-

proximating all the constraints using such an algorithm is practical, since it re-

quires O(dn) operations, which is small compared to the O
(

(n + d)d2
)

operations

required for a single step of an interior point method for the original problem.

Typically, such algorithms do not preserve the structure of the original ma-

trix, so we focus on algorithms that can approximate a symmetric positive

semidefinite matrix with a low-rank symmetric positive semidefinite matrix.

We will describe two related algorithms that have been proposed in the litera-

ture and then present the algorithm that we will analyze.

In what follows if W is a d × d matrix and I, J are two disjoint subsequences

of {1, 2, ..., d} , let W(I, J) denote the submatrix of W that is composed of the in-

tersection of the rows of W in I and the columns in J. We denote by W(:, J) the

submatrix of W composed of the columns in J and similarly by W(I, :) the sub-

matrix of W composed of the rows in I. We denote by [IJ] the concatenation of

the two sequences I, J. If x is a vector in Rd, xI denotes the vector that contains

only the elements with indices in I.

In [36], a randomized method to approximate a symmetric positive semidef-

inite matrix W was proposed in the context of Support Vector Machines. The

algorithm chooses k columns from W uniformly at random and without replace-

ment, in order to construct the approximation. The algorithm works as follows.

Algorithm 4.1.1

• Input: A d × d symmetric positive semidefinite matrix W, integer k.

• Output: A d × d symmetric positive semidefinite matrix C of rank k.
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• Sample k columns of W uniformly at random and without replacement.

Let I be this sequence of indices.

• Set R = W(:, I) and F = W(I, I).

• Return C = RF−1RT .

In [36] there is no theoretical analysis of the behavior of this algorithm and

issues such as the existence of the inverse were not addressed. In computational

experiments that were performed, the procedure was shown to work well. This

method has been referred to as the Nyström method, because it can be inter-

preted in terms of the Nyström technique for solving linear integral equations

[17].

Drineas and Mahoney, [20], analyzed an algorithm similar to Algorithm 4.1.1

but more general. They use sampling of columns with respect to a general prob-

ability distribution
{

p j

}d

j=1
. They provide an upper bound on the approximation

error, when columns are sampled using the judiciously chosen probabilities

p j =
W2

j j
∑d

t=1 W2
tt

, j = 1, ..., d.

The bound holds in expectation and with high probability. The algorithm works

as follows.

Algorithm 4.1.2

• Input: A d×d symmetric positive semidefinite matrix W ,
{

p j

}d

j=1
, such that

∑d
j=1 p j = 1, integers m ≤ d and k ≤ m.

• Output: A d × d symmetric positive semidefinite matrix C.
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• Pick m columns of W in i.i.d. trials, with replacement and with respect to

the probabilities
{

p j

}d

j=1
; let I be the set of indices of the sampled columns.

• Scale each sampled column (whose index is j ∈ I) by dividing its ele-

ments by
√

mp j ; Let R be the d×m matrix containing the sampled columns

rescaled in this manner. Let F be the m × m submatrix of W whose entries

are Wi j/(m
√

pi p j), i, j ∈ I.

• Compute Fk , the best rank-k approximation to F with respect to the Frobe-

nius norm.

• Return C = RF+k RT , where F+k denotes the Moore-Penrose generalized in-

verse of the matrix Fk.

The algorithm that we will analyze in our model shares ideas from Algo-

rithms 4.1.1 and 4.1.2. It can be thought of as a deterministic version of Algo-

rithm 4.1.1. The choice of columns is made using the idea from Algorithm 4.1.2

of picking the columns that contain large diagonal elements. Let I be the set of

indices of the columns that are chosen. The algorithm then creates the unique

symmetric positive semi-definite matrix such that the columns in I are approx-

imated exactly and the remaining columns are linear combinations of the ones

in I.

Algorithm 4.1.3

• Input: A d × d symmetric positive semi-definite matrix W and a positive

integer k.

• Output: A d×d symmetric positive semi-definite matrix C of rank at most

k.
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• Pick the k columns of W with the largest diagonal entries Wii. Name I the

set of those k indices.

• Let R be the d × k matrix formed by the columns of W in I and F be the

submatrix of W created by the intersection of the rows and columns in I.

• Return C = RF+RT .

We assume that in the case that there are two or more equal diagonal elements,

we choose from them uniformly at random and without replacement.

In [3], the following result is proven which provides some useful properties

of Algorithm 4.1.3.

Proposition 4.1.1 (Proposition 1 in [3]) Let W be a d×d symmetric positive semidef-

inite matrix. Let I be a subset of {1, 2, ..., n} and let J be its ordered complement in

{1, 2, ..., n}. If the columns of W with indices in I are chosen during the application of

Algorithm 4.1.3 to W, then C is the unique d × d matrix C such that

• C is symmetric

• The column space of C is spanned by the columns of W with indices in I.

• The columns of C and W with indices in I are equal.

The matrices C and W −C are positive semidefinite. Furthermore, the matrix C is such

that

C([IJ], [IJ]) =























W(I, I) W(I, J)

W(I, J)T W(J, I)W(I, I)+W(I, J)























.
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Using this result, it is easy to see that the output of Algorithm 4.1.3 can be al-

ternatively seen as the result of an incomplete Cholesky factorization with sym-

metric permutations that uses only the columns of W in I.

We then use Algorithm 4.1.3 in our stylized optimization problem. Our

model consists of the original optimization Problem (2.8)

max cT x

subject to xT QiA
T Qix ≤ 1, i = 1, ..., n,

with optimal value V1, and the approximation to it given by

max cT x (4.1)

subject to xTCix ≤ 1, i = 1, ..., n,

where Ci is the output of Algorithm 4.1.3 with inputs Wi = QT
i AQi and k, for

i = 1, ..., n. We denote by V3 the optimal value of Problem (4.1) and we define

the relative error

R3 =
V3 − V1

V1
. (4.2)

We write the approximating matrix as C(Q) whenever we want to stress the

dependence on the random orthogonal matrix Q. Similarly, when we want to

emphasize the dependence on the number of constraints, we denote by V3(n)

the optimal value of Problem (4.1). We have already studied Problem (2.8), so

we now focus on Problem (4.1).

4.2 The near-spherical case

We begin our analysis with a simple case, A = Id that highlights some funda-

mental properties of the optimal value V3 of Problem (4.1). In this case, the
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constraints of the original problem are unit balls centered at 0. We then extend

the results to the case where A is close to Id, i.e., when the constraints of the

original problem are near-spherical.

We first consider the extreme case, A = Id and c = e1. Then, Problem (2.8)

becomes

max eT
1 x (4.3)

subject to ‖x‖2 ≤ 1

and we have V1 = 1. Algorithm 4.1.3 then approximates each Wi with the matrix

Ci, where Ci is a diagonal matrix with k diagonal elements equal to 1 and d − k

elements equal to 0. The set of indices such that the corresponding diagonal ele-

ments of Ci are equal to 1 is chosen uniformly at random from the set {1, 2, ..., d} .

The feasible regions of Problems (2.8) and (4.1) in this case can be seen in Figure

4.2.

From the form of the approximating problem, we see that we have V3 = 1

if and only if the first column of at least one of the matrices W1, ...,Wn is chosen

during the approximation and V3 = ∞ otherwise. LetAn be this event. We then

have that for any v > 1,

P(V3(n) < v) = P(An).

Since columns are chosen uniformly and independently across matrices, it is

easy to see that

P(V3(n) < v) = 1−
(

1− k
d

)n

.

Also, in this case we have that the relative difference in the optimal values of

the original and the approximate optimization problems is

R3(n) =
V3(n) − V1(n)

V1(n)
= V3(n) − 1.

43



-2 -1 0 1 2

-1

1

Figure 4.1: Feasible regions of Problems (2.8) and (4.1), when A = I2 and
k = 1.

So we see that

P(R3(n) > r) =

(

1− k
d

)n

,

for any r > 0.

We conclude that in this case, the approximate problem has optimal value

V3 that is equal to the optimal value V1 = 1 of the original problem with high

probability. In contrast, for the SVD-based approximation, when A = Id we have

from Proposition 3.2.2 that for any r > 0,

P















∑k
j=1 Y2

j
∑d

j=1 Y2
j

<
1

(1+ r)2















n

≤ P (R2(n) > r) ≤
(

n
d

)

P















∑k
j=1 Y2

j
∑d

j=1 Y2
j

<
1

(1+ r)2















n−d

,

where
{

Y j

}d

j=1
are independent standard normal random variables. For r close to

0, we have that
(

1− k
d

)

< P















∑k
j=1 Y2

j
∑d

j=1 Y2
j

<
1

(1+ r)2















.
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This implies that

lim
n→∞

logP(R3(n) > r)
n

< lim
n→∞

logP(R2(n) > r)
n

,

for r close to 0. We thus have that P(R3(n) > r) converges to 0 with respect to n

faster than P(R2(n) > r), i.e., for large n, the relative error of the approximation

using Algorithm 4.1.3 is small with higher probability than the error of the SVD-

based approximation.

We can derive a similar result in the case A = Id for arbitrary unit vector

c ∈ Rd in the objective function. We consider the original problem

max cT x (4.4)

subject to ‖x‖2 ≤ 1.

We assume that c has l ≤ d non-zero elements and without loss of generality we

assume that c = [cT
I 0]T , where cI is a unit vector in Rl. It is easy to see that we

have V3 = 1 if and only if there exists an i such that the columns with indices

1, 2, ..., l of Wi are picked during the application of Algorithm 4.1.3 to the matrix

Wi. This implies that V3 can become arbitrarily close to 1 only if the rank k of the

approximating matrices is at least as large as the number l of non-zero elements

in the objective function vector c. We will see in the analysis that follows in this

chapter that this is a general property of this approximation.

If k ≥ l it is easy to see by extending the argument that we used in the case

c = e1, that

P(V3(n) = 1) = 1−
















1−

(

d−l
k−l

)

(

d
k

)

















n

.

We thus get that under the condition k ≥ l, the relative error R3(n) is equal to 0

with probability that decays quickly with respect to the number of constraints
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n. In contrast, for the SVD-based approximation, when A = Id we have from

Proposition 3.2.2 that for any r > 0,

P















∑k
j=1 Y2

j
∑d

j=1 Y2
j

<
1

(1+ r)2















n

≤ P (R2(n) > r) ≤
(

n
d

)

P















∑k
j=1 Y2

j
∑d

j=1 Y2
j

<
1

(1+ r)2















n−d

,

where
{

Y j

}d

j=1
are independent standard normal random variables. For r close to

0, we have that

1−

(

d−l
k−l

)

(

d
k

) < P















∑k
j=1 Y2

j
∑d

j=1 Y2
j

<
1

(1+ r)2















.

This implies that

lim
n→∞

logP(R3(n) > r)
n

< lim
n→∞

logP(R2(n) > r)
n

,

for r close to 0. We thus have that P(R3(n) > r) converges to 0 with respect to n

faster than P(R2(n) > r), i.e., for large n, the relative error of the approximation

using Algorithm 4.1.3 is small with higher probability than the error of the SVD-

based approximation.

The cases that we examined so far were somewhat artificial, since A = Id. Our

conclusion was that the optimal value of the approximate problem is a good

approximation to the optimal value of the original problem with probability

that increases to 1 quickly with respect to the number of constraints. If the case

A = Id is representative of the behavior of the algorithm, then we expect similar

conclusions to hold when A is close to Id as well. In order to investigate whether

this is true, we assume that the matrix A depends on a parameter θ ∈ R and we

write A = A(θ). We also assume that as θ ↑ 1, we have A(θ) → Id. The choice of

θ ↑ 1 is arbitrary and results in no loss of generality. We will first present the

analysis of the case c = e1 and then give the results for arbitrary c ∈ Rd.

46



We write the original optimization Problem (2.8) as

max eT
1 x (4.5)

subject to xT QT
i A(θ)Qi x ≤ 1 , i = 1, ..., n

and the approximate problem as

max eT
1 x (4.6)

subject to xTCi(θ)x ≤ 1 , i = 1, ..., n,

where Ci(θ) is the rank-k approximation to the matrix QT
i A(θ)Qi given by Algo-

rithm 4.1.3. Let V3(θ) be the optimal value of Problem (4.6).

Recall that A(θ) is a d×d diagonal matrix and {Qi}ni=1 are random, independent,

d × d orthogonal matrices following the uniform distribution in Od. We further

assume that A11(θ) = f1(θ) ≡ 1 and A j j(θ) = f j(θ), j = 2, ..., d, where f j, j = 2, ..., d

are functions defined in an open interval that includes 1 and which satisfy the

following conditions:

• f j(θ) < 1 for θ < 1.

• f j(1) = 1.

• f j are increasing functions with f ′j (1) > 0, j = 2, ..., d and f ′j (1), j = 2, ..., d

are all distinct.

In all the proofs below we work with orthogonal matrices Q1, ...,Qn such

that the matrix inversion during Algorithm 4.1.3 is possible and the diagonal

elements of Wi = QT
i A(θ)Qi are unequal when θ , 1 lies in a neighbourhood of 1,

so that we do not need to randomly sample columns. This can be done without

affecting our results, since the set of such Q1, ...,Qn has probability 1.

47



We first prove a lemma that describes the way that columns are picked by

Algorithm 4.1.3, when θ belongs in a suitable neighbourhood of 1.

Lemma 4.2.1 Let W(θ) = QT
i A(θ)Qi be one of the symmetric positive semidefinite ma-

trices in the constraints of Problem (4.5). Let I(θ) be the set of k indices of the columns

of W(θ) that are picked by Algorithm 4.1.3 . Also, let C(θ) be the output of Algorithm

4.1.3 . Then there exists a θ0 < 1 such that for θ ∈ (θ0, 1), I(θ) = J, which does not

depend on θ. We also have that

lim
θ↑1

Ci j(θ) =























1 if i = j, i, j ∈ J

0 otherwise
.

Proof: Let C(θ) be the rank-k approximation to W = QT A(θ)Q given by Algo-

rithm 4.1.3 . Then C(θ) is of the form

C(θ) = W(:, I(θ))W−1(I(θ), I(θ))W(I(θ), :),

where I is the set of the indices of the columns of W that contain the k-largest

diagonal elements.

For integers 1 ≤ m, j ≤ d, m , j the elements of matrix W as a function of θ

are

W j j(θ) =
d

∑

k=1

fk(θ)Q
2
k j

and

Wm j(θ) =
d

∑

k=1

fk(θ)Qk jQkm.

We also have that

lim
θ↑1

W j j(θ) = W j j(1) = 1, (4.7)

lim
θ↑1

Wm j(θ) = Wm j(1) = 0, (4.8)

W
′

j j(1) =
d

∑

k=1

f
′

k(1)Q2
k j.
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So, there exists a θ0 < 1 such that for θ ∈ (θ0, 1) the k columns that will be chosen

are the columns with indices l1, l2, ..., lk such that
{

W
′

l jl j
(1), j = 1, ..., k

}

are the k-

smallest values of the set
{

W
′

ll(1), l = 1, ..., d
}

. Then, we have that for all θ ∈ (θ0, 1),

I(θ) = {l1, l2, ..., lk} = J.

Suppose that the matrix W(θ) after some symmetric permutations is in the

form

W(θ) =























R1(θ) R2(θ)

RT
2 (θ) R3(θ)























such that R1(θ) is (d − k)× (d − k), R3(θ) is k× k and the last k columns of W are the

ones that are picked for θ arbitrarily close to 1. Then

C(θ) =























R2(θ)

R3(θ)























R−1
3 (θ)

[

RT
2 (θ) RT

3 (θ)
]

=























R2(θ)R−1
3 (θ)RT

2 (θ) R2(θ)

RT
2 (θ) R3(θ)























.

From (4.7) and (4.8) it is easy to see that

lim
θ↑1

R3(θ) = Ik

and

lim
θ↑1

R2(θ) = 0.

This gives us that

lim
θ↑1

Ci j(θ) =























1 if i = j ∈ J

0 otherwise
.

⊓⊔

Lemma 4.2.1 shows that under our assumptions the choice of columns by Algo-

rithm 4.1.3 is stable for A(θ) close to Id with probability 1.

When A = Id we saw that a necessary and sufficient condition so that V3 = 1

is that during application of Algorithm 4.1.3 to the matrices W1, ...Wn, the first
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column of at least one of these matrices is chosen. We demonstrate in the fol-

lowing simple example that this condition does not suffice for

lim
θ↑1

V3(θ) = 1.

Consider the following family of optimization problems in 2 dimensions

with 2 constraints,

max eT
1 x

subject to xT QT
i A(θ)Qi x ≤ 1, i = 1, 2,

where A(θ) = diag(1, θ) and

Qi =























cos(ti) sin(ti)

sin(ti) cos(ti)























, i = 1, 2.

We assume θ < 1 and we pick ti ∈ (0, π/4), i = 1, 2. Under this choice of parame-

ters, both constraints are approximated choosing the first column and it is easy

to see that the optimal value of the approximate problem is such that

lim
θ↑1

V3(θ) =
∣

∣

∣

∣

∣

sin(2 t2) + sin(2 t1)
sin(2 t2) − sin(2 t1)

∣

∣

∣

∣

∣

> 1.

We next provide a result that describes the behavior of the optimal value V3

as the diagonal matrix A tends to the identity matrix, Id. As we show in the

proof of this result, a sufficient condition for

lim
θ↑1

V3(θ) = 1,

is that the matrices Q1, ...,Qn are such that columns with all indices 1, ..., d are

chosen during the application of Algorithm 4.1.3 to the matrices W1, ...,Wn.

Proposition 4.2.1 Let V3(θ) be the optimal value of Problem (4.6). Then

1− P
(

lim
θ↑1

V3(θ) = 1

)

= O
((

1− k
d

)n)

. (4.9)
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Proof: From Lemma 4.2.1 we have that

lim
θ↑1

Ci(θ) = Di,

where Di is a diagonal matrix, with k elements in the diagonal equal to 1, and

d − k elements equal to 0. We also have that the choice of columns is stable in a

neighbourhood of 1 and each subset of columns of size k has equal probability

of being chosen.

Suppose that the orthogonal matrices {Qi}ni=1 are such that columns with all

possible indices 1, 2, ..., d are chosen for θ arbitrarily close to 1 during the ap-

plication of Algorithm 4.1.3 to the matrices W1, ...,Wn. Let K ⊂
(

Od
)n

be the set

of {Qi}ni=1 that satisfy this property. We will prove that under this condition we

have

lim
θ↑1

V3(θ) = 1.

We first prove that under this condition, the feasible region of Problem (4.6)

is bounded uniformly in θ in a neigbourhood of 1. Let x ∈ Rd be an arbitrary

feasible point of Problem (4.6). Let ν ∈ {1, 2, ..., d} be such that

|xν| = max{|x1| , |x2| , ..., |xd|} .

Because of our assumption, there exists a κ ∈ {1, 2, ..., n}, such that column ν is

picked during application of Algorithm 4.1.3 to matrix QT
κ AQκ. Let B = Cκ. Then

constraint κ gives us

d
∑

l,m=1

Blm(θ)xlxm ≤ 1

⇔ Bνν(θ)x
2
ν + 2

∑

l,ν

Bνl(θ)xl xν +
∑

m,l,ν

Blm(θ)xlxm ≤ 1. (4.10)
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Since the matrix B is positive semidefinite, we have that the last term in the left

hand side of (4.10) is non-negative. Then, inequality (4.10) implies that

Bνν(θ)x
2
ν + 2

∑

l,ν

Bνl(θ)xl xν ≤ 1

⇔ Bνν(θ)x
2
ν ≤ 1− 2

∑

l,ν

Bνl(θ)xlxν. (4.11)

We define m(θ) to be the maximum in absolute value of all elements of the

matrices Ci(θ), i = 1, ..., n that tend to 0 as θ increases to 1 and M(θ) to be the

minimum of all elements of Ci(θ), i = 1, ..., n that tend to 1. Then, we have

lim
θ↑1

m(θ) = 0

and

lim
θ↑1

M(θ) = 1.

For θ in a neighbourhood of 1, we have that (4.11) implies

M(θ)x2
ν ≤ 1+ 2(d − 1)m(θ)x2

ν

⇒ x2
ν ≤

1
M(θ) − 2(d − 1)m(θ)

. (4.12)

Since

|xν| = max{|x1| , |x2| , ..., |xd|} ,

we see that

|x1| ≤

√

1
M(θ) − 2(d − 1)m(θ)

. (4.13)

From (4.13) we have

V3(θ) ≤

√

1
M(θ) − 2(d − 1)m(θ)

.

Since lim
θ↑1

m(θ) = 0 and lim
θ↑1

M(θ) = 1,we get that

lim
θ↑1

V3(θ) = 1.
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Thus, for any (Q1, ...,Qn) ∈ K we have that

lim
θ↑1

V3(θ) = 1.

From that, we easily get that

P

(

lim
θ↑1

V3(θ) = 1

)

≥ P(K).

Each subset of indices of size k from {1, 2, ..., d} has the same probability of

being picked, and we require each index from {1, 2, ..., d} to be picked at least

once, in any of the n constraints. This problem is equivalent to a version of the

now classic coupon collector’s problem. In this problem a population S of s

distinct elements is sampled with replacement in groups of k elements at each

time. The quantity of interest is the sample size necessary for the acquisition

of the set S . De Moivre in [15] and [16] first derived the probability that all

elements of S will be obtained after n samples for the case k = 1. Laplace, in a

memoir , [27], and then in [28], generalized De Moivre’s result to the case k ≥ 1.

So, we have that

P(K) =
d

∑

j=k

(−1)d− j

(

d − k
j − k

)

















(

j
k

)

(

d
k

)

















n−1

,

from which the result follows directly.

⊓⊔

Proposition 4.2.1 describes the behavior of the optimal V3 when the diagonal

matrix A is close to the identity. It implies that when A approaches Id, the proba-

bility that V3 does not approach 1 decays at least as fast as (1−k/d)n, as the num-

ber of constraints tends to infinity. Furthermore, comparing it with the limiting

case A = Id, we have that as n increases to infinity, it implies that P

(

lim
θ↑1

V3(θ) = 1

)
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and P(V3(1) = 1) tend to 1 at the same rate. Also, for v > 1, we get that

lim
θ↑1
P(V3(θ) > v) ≤ P

(

lim
θ↑1

V3(θ) = 1

)

= O
((

1− k
d

)n)

.

A similar analysis can be performed under the same assumptions for the

problem

max cT x (4.14)

subject to xT C(θ)x ≤ 1 , i = 1, ...n,

where c ∈ Rd is an arbitrary unit vector and for each i, Ci is the output of Al-

gorithm 4.1.3 with inputs QT
i AQi and k. If l is the number of non-zero elements

of the vector c, and the rank of the approximating matrices is k ≥ l, then the

optimal value V3(n) of the sampled problem can become arbitrarily close to 1.

Furthermore, we can prove the following result.

Proposition 4.2.2 Let V3(θ) be the optimal value of Problem (4.14). Then

1− P
(

lim
θ↑1

V3(θ) = 1

)

= O



































1−

(

d−l
k−l

)

(

d
k

)

















n
















. (4.15)

The proof of Proposition 4.2.2 is presented in the appendix. It is based on similar

arguments as in the proof of the case c = e1. As in the case c = e1, it implies that

P

(

lim
θ↑1

V3(θ) = 1

)

and P(V3(1) = 1) tend to 1 at the same rate. Also, for v > 1, it

implies that

lim
θ↑1
P(V3(θ) > v) ≤ P

(

lim
θ↑1

V3(θ) = 1

)

= O



































1−

(

d−l
k−l

)

(

d
k

)

















n
















.
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4.3 Simple objective function

The analysis of the near-spherical case described the behavior of the approxima-

tion when the diagonal matrix A is close to the identity matrix. In this section

we apply the method that we developed in Chapter 2, in order to derive results

about the optimal value V3 for any diagonal matrix A. We first analyze the case

c = e1.

Recall that Problem (4.1) is given under this assumption by

max eT
1 x

subject to xTC(Qi)x ≤ 1 , i = 1, ...n,

where C(Qi) is the output of Algorithm 4.1.3 with inputs Wi = QT
i AQi and k. The

matrices Qi, i = 1, .., n are independent random uniformly distributed orthogo-

nal matrices and A is a diagonal matrix with

1 = A11 ≥ A22 ≥ · · · ≥ Add ≥ 0.

We denote by V3 the optimal value of Problem (4.1).

We first consider the robust optimization problem corresponding to the ap-

proximating Problem (4.1). This is

max eT
1 x (4.16)

subject to xTC(Q)x ≤ 1, ∀Q ∈ Od.

Since the robust problem can be thought of as a limiting case of the ǫ-chance-

constrained problem as ǫ ↓ 0, we denote by X3(0) the feasible region of this

problem and by G3(0) its optimal value. For this problem, we assume that if

during application of Algorithm 4.1.3 to the matrix QT AQ, there are diagonal
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elements that are equal, then all possible subsets of columns of size k are chosen,

i.e., instead of choosing uniformly at random which columns to pick, all possible

choices are created, leading to multiple low-rank approximations and multiple

constraints. This is done in order to avoid introducing any randomness to this

problem. Figure 4.3 shows the feasible region of the robust problem, when d = 2,

k = 1 and A22 = 0.25.
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Figure 4.2: Feasible region of the robust problem when d = 2, k = 1 and
A22 = 0.25.

The following lemma gives us the solution and the optimal value of the ro-

bust problem.

Lemma 4.3.1 For the robust optimization Problem (4.16) we have G3(0) = 1 and the

optimal solution is x̂3(0) = e1.

Proof: We first check that x = e1 is feasible. This is easy to see since for every
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Q ∈ Od we have

eT
1C(Q)e1 ≤ 1.

Hence, we have G3(0) ≥ 1.

We consider a feasible point of the form x = λu, where u , e1 is a unit vector

in Rd and λ > 0. Without loss of generality we assume that u1 > 0 and u2 , 0. We

have that

λu ∈ X0

⇔ λ
√

uTC(Q)u ≤ 1,∀Q ∈ Od. (4.17)

Taking Q = Id in (4.17), we get that

λ ≤ 1
√

uTC(Id)u
≤ 1

√

∑k
j=1 A j ju2

j

.

This implies that

eT
1 x = λeT

1 u ≤ u1
√

∑k
j=1 A j ju2

j

< 1.

So we get that G3(0) = 1 and x̂3(0) = e1 is the unique optimal solution.

⊓⊔

Since the optimal value of the robust problem is 1, we see that as n increases, the

optimal value V3 of the sampled problem can become arbitrarily close to 1.

We then consider the chance-constrained problem corresponding to (4.1).

For ǫ ∈ (0, 1) it is given by

max eT
1 x (4.18)

subject to x ∈ X3(ǫ).
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We have x ∈ X3(ǫ) if and only if P
(

xT C(Q)x > 1
)

≤ ǫ, where Q is uniformly

distributed in Od under P. Figure 4.3 shows the feasible region of the chance-

constrained problem for ǫ = 0.05.
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Figure 4.3: Feasible region of the chance-constrained problem when d = 2,
A22 = 0.25and ǫ = 0.05.

The feasible region is not convex in general, as can be seen from Figure 4.4.

We can provide a useful characterization of the feasible region X3(ǫ) as fol-

lows. If x = λu, where u is a unit vector in Rd, we have

x = λu ∈ X3(ǫ)

if and only if

P

(

uTC(Q)u >
1
λ2

)

≤ ǫ.

Let F(·; u) be the distribution function of the random variable uTC(Q)u. We then
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Figure 4.4: Feasible region of the chance-constrained problem when d = 2,
A22 = 0.25and ǫ = 0.85.

have that

1− F

(

1
λ2

; u

)

≤ ǫ

⇔ |λ| ≤ 1
√

F−1 (1− ǫ; u)
.

We first present our main result about the optimal value of the sampled prob-

lem. The result is an application of Theorem 2.4.2 to Problem (4.1).

Proposition 4.3.1 Let V3 be the optimal value of the sampled Problem (4.1) with c = e1

and G3(ǫ) denote the optimal value of the corresponding chance-constrained problem.

Then, for any v > 1, there exists a G−1
3 (v) ∈ (0, 1], where G−1

3 (·) is a left inverse function

of G3(·), such that

(1−G−1
3 (v))n ≤ P(V3 > v) ≤

(

n
d

)

(1−G−1
3 (v))n−d. (4.19)

Proof: For the sampled problem we have for v > 1 that

P(V3 = v) = 0.
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This is a consequence of the fact that for A , Id, no specific constraint can be

sampled with positive probability. Since P(V3 < v) > 0 for all v > 1, we get that

lim
ǫ↓0

G3(ǫ) = 1.

We thus get from Theorem 2.4.2 that for any v > 1, we have

(1−G−1
3 (v))n ≤ P(V3 > v) ≤

(

n
d

)

(1−G−1
3 (v))n−d.

⊓⊔

Proposition 4.3.1 gives us an important theoretical result about the optimal

value of the sampled problem (4.1) but it does not provide a useful represen-

tation for G−1
3 (v). This would require knowledge of the optimal value of the

chance-constrained problem. Since solving the chance-constrained problem is

hard, we will instead provide a bound for G−1
3 (v). We start with some prelim-

inary results about the feasible region of the chance-constrained problem. For

the remainder of this section, we focus on rank-1 approximations. From the

analysis that follows it is straightforward to see that the same bound holds for

higher rank approximations.

The following lemma shows that the chance-constrained problem has a fea-

sible region that is symmetric with respect to the axes.

Lemma 4.3.2 For any ǫ > 0, the feasible region X3(ǫ) of Problem (4.18) with k = 1 is

symmetric with respect to the axes.

Proof: Without loss of generality we will prove symmetry with respect to the

x1 axis. Let x ∈ X3(ǫ). We define the set of constraints that are violated by x,

Cx =















Q ∈ Od | |W(p, :)x|
√

Wpp

> 1















,

60



where p depends on Q and is the index of the column of the matrix QT AQ that

was picked during the approximation. Let

U = diag(1,−1, ...,−1) ∈ Rd×d.

Then we have that y = Ux is symmetric to x with respect to the x1 axis. The i j

element of W = QT AQ is

Wi j =

d
∑

k=1

QkiQk jAkk.

The i j element of the matrix UT WU = (QU)T A(QU) is

(UT WU)i j =

d
∑

k=1

QkiQk jAkkUiiU j j.

We thus get that the diagonal elements of UT WU and W are the same. The set of

constraints violated by y is

Cy =















Q ∈ Od | |W(p, :)y|
√

Wpp

> 1















=















Q ∈ Od | |W(p, :)Ux|
√

Wpp

> 1















=























Q ∈ Od |
|eT

p UUT QT AQUx|
√

eT
p QT AQep

> 1























=























Q ∈ Od |
|eT

p U(QU)T A(QU)x|
√

eT
p (QU)T AQUep

> 1























=























Q ∈ Od |
|eT

p (QU)T A(QU)x|
√

eT
p (QU)T AQUep

> 1























= CxU
T .

But then, since Q is uniformly distributed in Od, we get that

P(Cy) = P(CxU
T ) = P(Cx) ≤ ǫ,

and therefore, y ∈ X3(ǫ).
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⊓⊔

In the following lemma, we prove that the midpoint of two feasible points

for the ǫ-chance-constrained problem is feasible for the 2ǫ-chance-constrained

problem.

Lemma 4.3.3 Let x, y ∈ X3(ǫ), where ǫ < 1/2. Then

z =
1
2

x +
1
2

y ∈ X3(2ǫ).

Proof: We define the sets

Cc
x =















Q ∈ Od | |W(p, :)x|
√

Wpp

≤ 1















and

Cc
y =















Q ∈ Od | |W(p, :)y|
√

Wpp

≤ 1















.

Since x, y ∈ X3(ǫ), we have

P
(Cc

x

)

, P
(

Cc
y

)

> 1− ǫ.

But for any Q ∈ Cc
x ∩ Cc

y we have that

|W(p, :)z|
√

Wpp

=
|W(p, :)(x + y)|

2
√

Wpp

≤ 1
2
|W(p, :)x|
√

Wpp

+
1
2
|W(p, :)y|
√

Wpp

≤ 1.

So Cc
z ⊇ Cc

x ∩ Cc
y, whence⇒ P(Cc

z) > 1− 2ǫ and so z ∈ X3(2ǫ).

⊓⊔

In the following lemma, we give an upper bound on the norm of feasible

points of the chance-constrained problem of the form z = λe1.
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Lemma 4.3.4 Let z = λe1 for some 1 < λ <
√

2. Then we have that

z ∈ X3(ǫ)⇔ P















∑d
j=1 A j jY2

j
∑d

j=1 Y2
j

>
1
λ2















≤ ǫ,

where
{

Y j

}d

j=1
are independent standard normal random variables.

Proof: Let p be the index of the column of W = QT AQ that contains the largest

diagonal element. We will prove that for p , 1, |W1p|√
Wpp
≤
√

2
2 . Without loss of

generality we assume that W1p > 0. Assume that

W1p
√

Wpp

>

√
2

2
.

Then, since we have W1p ≤
√

W11Wpp ,we get that

Wpp ≥ W11 ≥ W1p >
1
2
.

Let g =
√

2
2 (e1 + ep). We have that

gT Wg =
1
2

W11+
1
2

Wpp +W1p > 1.

But this is a contradiction since we have xT Wx ≤ 1 for any x ∈ Rd with ‖x‖2 = 1.

We have that z ∈ X3(ǫ) if and only if

⇔ P














∣

∣

∣W1p

∣

∣

∣

√

Wpp

>
1
λ















≤ ǫ. (4.20)

For λ <
√

2, (4.20) becomes

P

(

W11 >
1
λ2

)

≤ ǫ

⇔ P















∑d
j=1 A j jY2

j
∑d

j=1 Y2
j

>
1
λ2















≤ ǫ.

⊓⊔
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We can now combine these results in order to prove our main result.

Proposition 4.3.2 Let G3(ǫ) be the optimal value of the ǫ-chance-constrained Problem

(4.18). Then for v > 1 that is sufficiently close to 1, we have that

G−1
3 (v) ≥

G−1
1 (v)

2
,

where

G−1
1 (v) = P















∑d
j=1 A j jY2

j
∑d

j=1 Y2
j

>
1
v2















and Y1, ..., Yd are independent standard normal random variables.

Proof: Assume that there exists an optimal solution x = x̂3(ǫ) for the ǫ-chance

constrained problem. Then we have that eT
1 x = G3(ǫ).Also, let y be the point that

is symmetric to x with respect to the x1 axis. Then we have from Lemma 4.3.2

that y ∈ X3(ǫ) and eT
1 y = G3(ǫ) as well. Furthermore, from Lemma 4.3.3 we have

that

z =
1
2

x +
1
2

y = G3(ǫ)e1 ∈ X3(2ǫ).

This means that for G3(ǫ) <
√

2 we have

P















∑d
j=1 A j jY2

j
∑d

j=1 Y2
j

>
1

G3(ǫ)2















≤ 2ǫ.

Consider G1(2ǫ), the optimal value of the 2ǫ-chance-constrained problem corre-

sponding to the original sampled Problem (2.8), that satisfies the equation

P















∑d
j=1 A j jY2

j
∑d

j=1 Y2
j

>
1

G2
1(2ǫ)















= 2ǫ.

For ǫ such that G3(ǫ) <
√

2 we then have

G3(ǫ) ≤ G1(2ǫ).
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If an optimal solution does not exist, there exists a sequence {xν}∞ν=1 ⊂ X3(ǫ)

such that

lim
ν→∞

eT
1 xν = G3(ǫ).

By using the sequence {yν}∞ν=1 ⊂ X3(ǫ) of points symmetric to {xν}∞ν=1 with respect

to the x1 axis, we can get following similar arguments that

G3(ǫ) ≤ G1(2ǫ).

⊓⊔

Proposition 4.3.2 gives a bound on the quantity G−1
3 (v) for v close to 1 with re-

spect to G−1
1 (v). Since we have

G−1
1 (v)

2
≤ G−1

3 (v) ≤ G−1
1 (v),

we get the inequality

(1−G−1
1 (v))n ≤ P(V3 > v) ≤

(

n
d

) (

1−
G−1

1 (v)

2

)n−d

,

that relates the optimal value of the approximate sampled Problem (4.1) with

the optimal value of the chance-constrained Problem (3.6). We will discuss the

implications that this result has on the asymptotic behavior of V3(n) as n tends

to infinity in Chapter 5.

In order to connect the results of this section with the previous results for

the near-spherical case, we consider the setting that we introduced in Section

4.2. For v > 1, let

G−1
1 (v; θ) = P















∑d
j=1 A j j(θ)Y2

j
∑d

j=1 Y2
j

>
1
v2















.

We have that

lim
θ↑1
P(V3(θ) > v) ≤ lim

θ↑1

(

n
d

)

(

1−G−1
1 (v; θ)/2

)n−d
=

(

n
d

)

(1− 1/2)n−d .
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We thus get that

lim
n→∞

log

(

lim
θ↑1
P(V3(θ) > v)

)

n
≤ log

(

1− 1
2

)

.

From the analysis in Section 4.2 we have that

lim
n→∞

log

(

lim
θ↑1
P(V3(θ) > v)

)

n
≤ log

(

1− k
d

)

,

a result that is weaker for small k, but stronger for large k. This suggests that

our bound

G−1
3 (v) ≤

G−1
1 (v)

2

is not tight and that the results of Section 4.2 are complementary to the results

given in this section.

4.4 General case

In this section, we analyze Problem (4.1) without the assumption c = e1. We

denote by l the number of non-zero elements of c and by k the rank of the ap-

proximating matrices. For simplicity and without loss of generality we assume

that the non-zero elements of c are the first l ones, so that c = [cI 0], where

I = {1, 2, ..., l}. Furthermore, we assume throughout this section that the diago-

nal matrix A has positive diagonal entries, i.e.,

1 = A11 ≥ A22 ≥ · · · ≥ Add > 0.

The approximate problem is given by

max cT x (4.21)

subject to xTC(Qi)x ≤ 1 , i = 1, ...n,
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where C(Qi) is the output of the approximation Algorithm 4.1.3 with inputs Wi =

QT
i AQi and k < d. We denote by V1 and V3 the optimal values of Problems (3.2)

and (4.21) respectively.

We first present the robust optimization problem corresponding to (4.21).

This is

max cT x (4.22)

subject to xTC(Q)x ≤ 1 for every Q ∈ Od.

We letX3(0) be the feasible region of this problem and G3(0) its optimal value. As

in the previous section, we assume that when during application of Algorithm

4.1.3 there are diagonal elements of the matrix Wi that are equal, the approxima-

tion returns multiple matrices created with all possible choices of columns.

We start with the following lemma about Problem (4.22).

Lemma 4.4.1 Consider an orthogonal matrix Q ∈ Od such that the index set of

the columns that are picked by Algorithm 4.1.3 is J, where J does not contain I =

{1, 2, ..., l} . Then we have that there exists a constant h < 1 that does not depend on Q,

such that

cTC(Q)c ≤ h.

Proof: Let H = I ∩ Jc be the non-empty set of the indices that are in I but not

in J and K = I ∩ J. For notational simplicity we write C = C(Q). We then have

that

cTCc = cT
KC(K,K)cK + 2cT

KC(K,H)cH + cT
HC(H,H)cH .

But we have that the rows and columns of C that belong in K are equal to the
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respective rows and columns of W = QT AQ. So, we get that

cTCc = cT
KW(K,K)cK + 2cT

KW(K,H)cH + cT
HC(H,H)cH .

By adding and subtracting the quantity cT
HW(H,H)cH , we get that

cT c = cT Wc + cT
H(C(H,H) −W(H,H))cH .

But since we have that W = QT AQ is of full rank, the Schur complement

W(H,H) − C(H,H)

is a positive definite matrix. If

sup
{

cT
H(C(H,H) −W(H,H))cH | Q ∈ Od

}

= 0,

there would exist an orthogonal matrix Q such that W(H,H)−C(H,H) is positive

semidefinite. This implies that

sup
{

cT
H(C(H,H) −W(H,H))cH | Q ∈ Od

}

< 0.

Since we have cT Wc ≤ 1,there exists an h < 1 that depends only on A and c such

that

cTCc ≤ h.

⊓⊔

Lemma 4.4.1 states that if at least one of the columns 1, 2, ..., l is not picked dur-

ing the application of Algorithm 4.1.3 to W = QT AQ, then cT C(Q)c is bounded

away from 1. It is clear from the proof of the lemma, that the constant h depends

on c and A. For a fixed A, h approaches 1 only if the smallest in absolute value

non-zero element of c tends to 0, otherwise it stays bounded away from 1.

Our next result, states that if k < l, then the optimal value of the robust

Problem (4.22) is greater than 1.
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Proposition 4.4.1 For the robust optimization Problem (4.16), if we have k < l, then

G3(0) > 1.

Proof: Since we have k < l, there is no choice of columns that contains all the

indices of the non-zero elements of c. From Lemma 4.4.1, there exists a λ0 > 1

such that λ2
0cTC(Q)c ≤ 1 for all Q ∈ Od. Then x = λ0c is feasible, and we have that

G3(0) ≥ λ0cT c > 1.

⊓⊔

This result implies that if c has a large number of non-zero elements, Algorithm

4.1.3 results in an approximation with error that does not become arbitrarily

small, even if the number of constraints tends to infinity.

We next prove that if the number of columns k used in the approximation is

greater or equal to l, then the optimal value of the robust Problem (4.22) is equal

to 1.

Proposition 4.4.2 For the robust optimization Problem (4.16), if we have k ≥ l, then

G3(0) = 1 and an optimal solution is x̂3(0) = c.

Proof: Since the feasible region of Problem (4.22) contains the unit ball in

R
d, we have G3(0) ≥ 1. Let x be a feasible vector for Problem (4.22). Then we

have that for every Q ∈ Od,

xTC(Q)x ≤ 1.

Let I = {1, 2, ..., k} and J = {k + 1, ..., d}. For arbitrary orthogonal matrices Q1 ∈ Ok
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and Q2 ∈ Od−k we consider the d × d orthogonal matrix

Q =























Q1 0

0 Q2























.

We have that the first l columns of W = QT AQ are picked and also

C(I, I) = QT
1 A(I, I)Q1

and

C(I, J) = 0,C(J, J) = 0.

So we get that

xTC(Q)x ≤ 1

⇔ xT
I W(I, I)xI ≤ 1.

Since this holds for any Q1 ∈ Od, we get that

‖xI‖2 ≤ 1.

This implies that

cT x = cT
I xI ≤ ‖cI‖2‖xI‖2 ≤ 1. (4.23)

We thus get G3(0) = 1 and x = c is an optimal solution.

⊓⊔

We next present the chance-constrained analog of Problem (4.22). We assume

in what follows that the number of columns k chosen during the approximation

is such that k ≥ l. This is necessary in order to guarantee that the approximate

sampled problem will be a good approximation to the original problem for a
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large number of constraints. For ǫ ∈ (0, 1) the chance-constrained problem is

given by

max cT x (4.24)

subject to x ∈ X3(ǫ).

We have x ∈ X3(ǫ) if and only if P
(

xTC(Q)x > 1
)

≤ ǫ.

Applying Theorem 2.4.2 to Problem (4.21), we get a result that connects the

optimal value V3 of the sampled problem with the optimal value G3(ǫ) of the

chance-constrained problem.

Proposition 4.4.3 Let V3 be the optimal value of the sampled Problem (4.21) with k ≥ l

and G3(ǫ) denote the optimal value of the corresponding chance-constrained problem.

Then we have that for any v > 1 there exists a G−1
3 (v) ∈ (0, 1], where G−1

3 (·) is a left

inverse of G3(·), such that

(1−G−1
3 (v))n ≤ P(V3 > v) ≤

(

n
d

)

(1−G−1
3 (v))n−d. (4.25)

Proof:

Inequality (4.25) holds for v in the image of G(·) because of Theorem 2.4.2.

Since P(V3 < v) > 0 for all v > 1, we get that

lim
ǫ↓0

G3(ǫ) = 1.

Using Theorem 2.4.2 we get that for any v > 1, there exists a G−1
3 (v) and we have

(1−G−1
3 (v))n ≤ P(V3 > v) ≤

(

n
d

)

(1−G−1
3 (v))n−d.

⊓⊔

71



Proposition 4.3.1 gives us an important theoretical result about the optimal

value of the sampled problem (4.21) but it does not provide a useful representa-

tion for G−1
3 (v). This would require solving the chance-constrained problem, or

providing a bound on its optimal value.

In the following chapter, we capitalize on the results that we have for the

optimal values of the problems that we have studied so far in order to derive

asymptotic results. More specifically, we capitalize on Inequality (2.15), in order

to describe the asymptotic behavior of the optimal values Vi(n), i = 1, 2, 3, as n

tends to infinity. This leads to asymptotic results for the relative errors R2(n) and

R3(n).
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CHAPTER 5

ASYMPTOTICS AND DISCUSSION

5.1 Preliminaries

In this section we focus on the behavior of the optimal values of the optimiza-

tion problems in our model when the number n of constraints tends to infinity.

This is important, since we are interested in problems with a large number of

constraints. We will derive asymptotic results for the optimal values and the

relative errors. The basic tool that we will use for the analysis that follows is

the fundamental inequality (2.15). We present the analysis through the original

sampled Problem (3.2), but the analysis holds for the approximating Problems

(3.3) and (4.1) as well.

Consider the original optimization Problem (3.2). We denote its optimal

value by V1(n) in order to stress the dependence on the number of constraints n.

The main result that we have for V1(n) states that for any v > 1, we have

(1−G−1
1 (v))n ≤ P(V1(n) > v) ≤

(

n
d

)

(1−G−1
1 (v))n−d,

where

G−1
1 (v) = P















∑d
j=1 A j jY2

j
∑d

j=1 Y2
j

>
1
v2















and
{

Y j

}d

j=1
are independent standard normal random variables. The idea is to

find decreasing sequences of real numbers {Z1(n)}∞n=1 and {z1(n)}∞n=1 such that

lim
n→∞
P(V1(n) < Z1(n)) = 1 (5.1)

and

lim
n→∞
P(V1(n) > z1(n)) = 1. (5.2)
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This implies that

lim
n→∞
P(z1(n) < V1(n) < Z1(n)) = 1, (5.3)

giving us a description of how V1(n) behaves for large n.

Since for any v > 1,

lim
n→∞
P (V1(n) > v) = 0,

we get that as n → ∞, V1(n) converges to 1 in P-probability. Our plan is to use

the results in Theorem 2.4.2 and Proposition 3.2.3 in order to get sufficient condi-

tions on Z1(n) and z1(n) so that (5.3) holds. This will allow us to describe, in some

sense that will be made precise later in this section, how fast the optimal value

V1(n) converges to 1 in P-probability. Applying (5.3) to the sampled Problems

(3.3) and (4.1) in our model, leads to similar results for their respective optimal

values V2(n) and V3(n). Furthermore, we describe in the same sense, how fast

the relative errors

R2(n) =
V2(n) − V1(n)

V1(n)

and

R3(n) =
V3(n) − V1(n)

V1(n)

converge to 0.

The following proposition gives sufficient conditions for (5.1) and (5.2) to

hold.

Proposition 5.1.1 Let V1(n) be the optimal solution to the sampled Problem (3.2) and

let G1(ǫ) denote the optimal value of the corresponding chance-constrained problem.

Then for sequences {Z1(n), z1(n)}∞n=1, we have that as n→ ∞,

lim
n→∞

n
logn

G−1
1 (Z1(n)) = ∞⇒ lim

n→∞
P(V1(n) < Z1(n)) = 1,
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lim
n→∞

nG−1
1 (z1(n)) = 0⇒ lim

n→∞
P(V1(n) > z1(n)) = 1.

Proof: From (3.10), we have that a sufficient condition for

lim
n→∞
P(V1(n) > z1(n)) = 1

is lim
n→∞

(

1−G−1(z1(n))
)n
= 1, which is equivalent to

lim
n→∞

n log(1−G−1
1 (z1(n))) = 0. (5.4)

In order for (5.4) to hold we must have lim
n→∞

G−1
1 (z1(n)) = 0. Since

lim
x→0

log(1− x)
x

= −1,

a condition equivalent to (5.4) is

lim
n→∞

nG−1
1 (z1(n)) = 0. (5.5)

From (3.10) a sufficient condition for

lim
n→∞
P(V1(n) < Z1(n)) = 1

is lim
n→∞

(

n
d

) [

1−G−1
1 (Z1(n))

]n−d
= 0, which is equivalent to

⇔ lim
n→∞

log

(

n
d

)

+ (n − d) log
[

1−G−1
1 (Z1(n))

]

= −∞. (5.6)

Equation (5.6) holds if and only if

lim
n→∞

d logn − nG−1
1 (Z1(n)) = −∞. (5.7)

A sufficient condition for (5.7) is

lim
n→∞

n
logn

G−1(Z1(n)) = ∞. (5.8)

⊓⊔
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It is easy to see that the result of Proposition 5.1.1 holds for the sampled Prob-

lems (3.3) and (4.1) as well. We thus have that for i = 1, 2, 3,

lim
n→∞

n
logn

G−1
i (Zi(n)) = ∞⇒ lim

n→∞
P(Vi(n) < Zi(n)) = 1

and

lim
n→∞

nG−1
i (zi(n)) = 0⇒ lim

n→∞
P(Vi(n) > zi(n)) = 1.

Before we proceed with our analysis, we recall a few definitions related to

the asymptotic behavior of sequences of random variables.

Definition 5.1.1 If {X(n)}∞n=1 is a sequence of random variables defined on some proba-

bility space (Ω,F , P) and g is a real function, we have X(n) = OP(g(n)), if for any real

sequence α(n) such that α(n)→ ∞, we have

X(n)
g(n)

1
α(n)

P→ 0 as n→ ∞

Similarly, we have X(n) = ΩP(g(n)), if for any real sequence α(n) such that α(n) → ∞,

we have

X(n)
g(n)
α(n)

P→ ∞ as n→ ∞.

We write X(n) = ΘP(g(n)) if X(n) = ΩP(g(n)) and X(n) = OP(g(n)).

5.2 The SVD problem

From Proposition 3.2.3 we know the asymptotic behavior of G−1
1 (·) close to 1. We

can combine this result with Proposition 5.1.1 and get the following asymptotic

result for the optimal value V1(n).
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Proposition 5.2.1 For the optimal value V1(n) of the sampled Problem (3.2) we have

V1(n) − 1 = OP












(

n
logn

)−2/(d−l1)










and

V1(n) − 1 = ΩP
(

n−2/(d−l1)
)

,

where l1 is the number of diagonal elements of the matrix A that are equal to 1.

Proof: From Proposition 3.2.3 we have that as v ↓ 1,

G−1
1 (v) = Θ

(

(v − 1)(d−l1)/2
)

.

Using this result and Proposition 5.1.1, we see that for a sequence {Z1(n)}∞n=1 such

that

lim
n→∞

n (Z1(n) − 1)(d−l1)/2
= 0, (5.9)

we have

lim
n→∞
P (V1(n) > Z1(n)) = 1.

Consider any sequence {α(n)}∞n=1 such that

lim
n→∞
α(n) = ∞.

Then we have for any M > 0 that

lim
n→∞
P

(

(V1(n) − 1)α(n)n2/(d−l1) > M
)

=

lim
n→∞
P

(

V1(n) > 1+
M
α(n)

n−2/(d−l1)

)

= 1,

where the last limit is equal to 1 because the sequence 1 + M
α(n) n

−2/(d−l1) satisfies

condition (5.9). Thus, we have

(V1(n) − 1)α(n)n2/(d−l1) P→ ∞.
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Similarly, for a sequence {z1(n)}∞n=1 such that

lim
n→∞

(z1(n) − 1)(d−l1)/2 n
logn

= ∞, (5.10)

we have

lim
n→∞
P (V1(n) < z1(n)) = 1.

Consider any sequence {α(n)}∞n=1 such that

lim
n→∞
α(n) = ∞.

Then we have for any M > 0 that

lim
n→∞
P













V1(n) − 1
α(n)

(

n
logn

)2/(d−l1)

< M













=

lim
n→∞
P













V1(n) < 1+ Mα(n)

(

n
logn

)−2/(d−l1)










= 1,

where the last limit is equal to 1 because the sequence 1 + Mα(n)
(

n
logn

)−2/(d−l1)

satisfies condition (5.10). Thus, for any sequence {α(n)}∞n=1 such that lim
n→∞
α(n) = ∞,

we get

V1(n) − 1
α(n)

(

n
logn

)2/(d−l1)
P→ 0.

⊓⊔

Proposition 5.2.1 describes how fast the optimal value V1(n) converges to 1 as

n tends to infinity. We see that this depends only on the dimension d of the

problem and the number l1 of singular values that are equal to 1.

Similarly, we can apply the same technique to the SVD-based approximating

Problem (3.3) and get that

V2(n) − 1 = OP












(

n
logn

)−2/(d−l2)










(5.11)
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and

V2(n) − 1 = ΩP
(

n−2/(d−l2)
)

, (5.12)

where l2 is the number of diagonal elements of the matrix A(k) that are equal to

1.

We can use Proposition 5.2.1 in order to get asymptotic results for the relative

error R2(n). We distinguish two cases that we will treat separately, l1 > l2 and

l1 = l2. This choice of cases is dictated by the fact that the asymptotic behavior of

the optimal value of the sampled problems depends on the number of diagonal

elements equal to 1.

Proposition 5.2.2 Let R2(n) be the relative error as defined in (3.4). Let l1 and l2 be the

number of diagonal elements equal to 1 in A and A(k) respectively. Then, if l1 > l2, we

have

R2(n) = OP












(

n
logn

)−2/(d−l2)










and

R2(n) = ΩP
(

n−2/(d−l2)
)

.

Proof: From Proposition 5.2.1 we have that for any sequences {α1(n), α2(n)}∞n=1

with lim
n→∞
α1(n) = ∞ and lim

n→∞
α2(n) = ∞,

lim
n→∞
P

(

V2(n) > 1+
1
α2(n)

n−2/(d−l2)

)

= 1

and

lim
n→∞
P













V1(n) < 1+ α1(n)

(

n
logn

)−2/(d−l1)










= 1.

Thus

lim
n→∞
P





















R2(n) >
1
α2(n) n

−2/(d−l2) − α1(n)
(

n
logn

)−2/(d−l1)

1+ α1(n)
(

n
logn

)−2/(d−l1)





















= 1.
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For any sequence {γ(n)}∞n=1 , satisfying lim
n→∞
γ(n) = ∞, we have

lim
n→∞
P





















R2(n)n2/(d−l2)γ(n) >

γ(n)
α2(n) − γ(n)α1(n)

(

n
logn

)−2/(d−l1)
n2/(d−l2)

1+ α1(n)
(

n
logn

)−2/(d−l1)





















= 1.

By choosing appropriate sequences α1(n) and α2(n), we have that

lim
n→∞

γ(n)
α2(n) − γ(n)α1(n)

(

n
logn

)−2/(d−l1)
n2/(d−l2)

1+ α1(n)
(

n
logn

)−2/(d−l1)
= ∞.

We thus see that

R2(n)n2/(d−l2)γ(n)
P→∞.

The claim

R2(n)

(

n
logn

)
2

d−l2 1
γ(n)

P→ 0

follows easily from the inequality R2(n) ≤ V2(n) − 1 and Proposition 5.2.1.

⊓⊔

This result states that when l2 < l1, the relative error R2(n) converges to 0 at the

same rate as V2(n). In other words, since the optimal value V2(n) of the approx-

imating problem converges to 1 at a slower rate than the optimal value V1(n) of

the original problem, the error is dominated by V2(n).

We next treat the case l1 = l2. In this case, we can only provide a lower bound

on how fast R2(n) converges to 0.

Proposition 5.2.3 Let R2(n) be the relative error as defined in (3.4). Let l1 and l2 be the

number of diagonal elements equal to 1 in A and A(k) respectively. Then, if l1 = l2, we

have

R2(n) = OP












(

n
logn

)−2/(d−l1)










.
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Proof: The result is a direct implication of the inequality R2(n) ≤ V2(n) − 1 and

(5.12).

⊓⊔

Proposition 5.2.3 states that when l2 = l1, the relative error R2(n) converges to 0

at least as fast as V2(n) and V1(n). Our asymptotic result in Proposition 5.2.1 is

not fine enough to give us a lower asymptotic bound on R2(n) as well. Under

the condition l1 = l2 though, we have that both V1(n) − 1 and V2(n) − 1 roughly

behave as n−2/(d−l1) for large n, which suggests that R2(n) should also behave as

n−2/(d−l1) asymptotically.

5.3 The Nyström problem

In this section we focus on asymptotic results about the optimal value V3(n) of

Problem (4.1) and the relative difference

R3(n) =
V3(n) − V1(n)

V1(n)
,

between the optimal values of Problems (4.1) and (3.2). We will present the

results in the case c = e1. In this case we have a bound on the function G−1
3 (v) for

v close to 1.

We have through Propositions 4.3.1 and 4.3.2, for v close to 1, that

(1−G−1
3 (v))n ≤ P(V3(n) > v) ≤

(

n
d

)

(1−G−1
3 (v))n−d

and

G−1
1 (v) ≤ G−1

3 (v) ≤
G−1

1 (v)

2
.
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We thus get the following Proposition that describes the asymptotic behavior of

G−1
3 (v) near 1.

Proposition 5.3.1 If c = e1, when v ↓ 1,

G−1
3 (v) = Θ

(

(v − 1)
d−l1

2

)

,

where l1 is the number of diagonal elements of A that are equal to 1.

Proof: The result follows directly from the inequality

G−1
1 (v) ≤ G−1

3 (v) ≤
G−1

1 (v)

2
.

and the fact that

G−1
1 (v) = Θ

(

(v − 1)
d−l1

2

)

.

⊓⊔

Based on Proposition 5.3.1, we prove the following asymptotic result for the

optimal value V3(n).

Proposition 5.3.2 For the optimal value V3(n) of the sampled Problem (4.1) with l = 1,

where l is the number of non-zero elements of the vector c, we have

V3(n) − 1 = OP












(

n
logn

)−2/(d−l1)










and

V3(n) − 1 = ΩP
(

n−2/(d−l1)
)

,

where l1 is the number of diagonal elements of the matrix A that are equal to 1.

Proof: The proof follows the same steps as the proof of Proposition 5.2.1.
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⊓⊔

This result states that if the number of nonzero components of c is 1, then V3(n)

converges to 1 roughly as fast as n−2/(d−l1).

We get the following result for the relative error R3(n).

Proposition 5.3.3 Consider Problems (3.2) and (4.1) with l = 1, where l is the number

of non-zero elements of the vector c. Let R3(n) be the relative error as defined in (4.2).

Let l1 be the number of diagonal elements equal to 1 in A. Then, we have

R3(n) = OP












(

n
logn

)−2/(d−l1)










.

Proof: The result is a direct implication of the inequality

R3(n) ≤ V3(n) − 1

and Corollary 5.3.2.

⊓⊔

Proposition 5.3.3 states that when the number of nonzero components of c is 1,

the relative error R3(n) converges to 0 at least as fast as
(

n
logn

)−2/(d−l1)
. Our asymp-

totic results in Propositions 5.2.1 and 5.3.2 are not fine enough to give us a lower

asymptotic bound on R3(n) as well.
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CHAPTER 6

CONCLUSIONS

6.1 Discussion

So far in this dissertation, we have derived a number of properties of the op-

timal values of the problems in our model and the relative errors of the two

approximations. In this section we will analyze these results and discuss their

implications for applying low-rank approximations to optimization problems

in practice.

The fundamental result in this dissertation is Theorem 2.4.2, which char-

acterizes the probability distributions of sampled problems with independent

convex constraints and linear objective function. Through Proposition 3.2.1, we

have proved that for every v > 1, the optimal value V1 of the original Problem

(3.2) satisfies the inequality

P















∑d
j=1 A j jY2

j
∑d

j=1 Y2
j

<
1
v2















n

≤ P(V1 > v) ≤
(

n
d

)

P















∑d
j=1 A j jY2

j
∑d

j=1 Y2
j

<
1
v2















n−d

,

where
{

Y j

}d

j=1
are standard normal random variables. Furthermore, for Problem

(3.3) we have that

P















∑k
j=1 A j jY2

j
∑d

j=1 Y2
j

<
1
v2















n

≤ P(V2 > v) ≤
(

n
d

)

P















∑k
j=1 A j jY2

j
∑d

j=1 Y2
j

<
1
v2















n−d

.

These inequalities quantify the connection between the optimal values V1 and

V2 and the singular values A11, ..., Add of the constraint matrices Wi.

We can use this result to give some theoretical justification for the success

of low-rank approximation in optimization problems where the constraint ma-

trices have the same singular values and the singular values decay quickly. If
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in our model the d − k smallest singular values Ak+1,k+1, ..., Add are close to 0, the

probabilities

P















∑d
j=1 A j jY2

j
∑d

j=1 Y2
j

<
1
v2















and P















∑k
j=1 A j jY2

j
∑d

j=1 Y2
j

<
1
v2















are close to each other. Then, based on our analysis, we expect the optimal

value V2(n) of the approximating problem with rank k constraints to be a good

approximation for the optimal value V1(n) of the original problem.

In Section 5.2 we have derived asymptotic results about the optimal val-

ues V1(n) and V2(n) as the number of constraints n tends to infinity. Our main

motivation for this was to explain the behavior of low-rank approximations in

problems with a large number of constraints. In the asymptotic analysis for the

optimal value V1(n), we have shown that the crucial quantity is the number l1 of

singular values equal to 1. We proved in Proposition 5.2.1 that V1(n) − 1 essen-

tially behaves as n−2/(d−l1), for a large number of constraints n. Since typically in

applications where a low-rank approximation is attractive, the number of vari-

ables d is large, this implies that the optimal value V1(n) converges to 1 slowly.

Our main quantity of interest though, is the relative difference R2(n) in the

optimal values of Problems (3.2) and (3.3). Because of the importance of the

number of singular values l1 and l2 that are equal to 1 in the matrices A and A(k)

respectively, we have two cases: l1 > l2 and l1 = l2. We interpret the former case

as an approximation of an optimization problem with constraints that have a

few large singular values with a low-rank problem that does not approximate

all the large singular values. The latter case corresponds to an approximation

where all the large singular values of the original problem are approximated in

the low-rank problem.

If l1 > l2, from Proposition 5.2.2 we have that for large n, R2(n) essentially
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behaves as n−2/(d−l2). This means that the approximation error is dominated by

the optimal value V2(n) and the relative error converges to 0 with the rate de-

pending heavily on l2 the number of elements in the matrix A(k) that are equal

to 1. Intuitively, this means that unless the number of constraints is large, a

low-accuracy low-rank approximation will not result in small error in terms of

optimal values. On the other hand, based on this result we see that if the number

of constraints n in the problem is large, even a rough low-rank approximation

can give satisfactory results.

Under the assumption l1 = l2, we see from Proposition 5.2.3 that the rela-

tive error R2(n) converges to 0 roughly as fast as n−2/(d−l1). We thus get a similar

conclusion, i.e., a large number of constraints is required in order for the ap-

proximation error to get small.

We then consider the approximating Problem (4.1). We have proved that if

A is of full rank and the rank of the approximating matrices is k ≥ l, where l is

the number of non-zero elements of the objective function vector c, then

(1−G−1
3 (v))n ≤ P(V3 > v) ≤

(

n
d

)

(1−G−1
3 (v))n−d,

for any v > 1. Through the analysis in Section 4.2 we have shown that when

A is close to the identity and v close to 1, P(V3(n) < v) tends to 1 faster than

P(V2(n) < v), suggesting that V3(n) is a better approximation for V1(n) for large n.

In the special case l = 1, i.e., when the vector c is parallel to one of the axes,

we have shown that for v close to 1, we have

1
2

P















∑d
j=1 A j jY2

j
∑d

j=1 Y2
j

>
1
v2















≤ G−1
3 (v) ≤ P















∑d
j=1 A j jY2

j
∑d

j=1 Y2
j

>
1
v2















.

This suggests that under the condition l = 1, Problem (4.1) provides a good

approximation to the original Problem (3.2), especially when the singular val-
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ues A11, ..., Add are not close to 0. Furthermore, we have shown in this case that

for large n, the optimal values V1(n) and V3(n) converge to 1 roughly as fast as

n−2/(d−l1). Thus, in problems where l2 < l1, we see that V3(n) converges to 1 faster

than V2(n), making the approximation based on Algorithm 4.1.3 attractive. This

is a somewhat surprising result, since the SVD results in an optimal low-rank

approximation. Algorithm 4.1.3, though, provides a better approximation to the

optimal value because it approximates the feasible region close to the optimal

value, when the objective function vector c is parallel to one of the axes.

If the rank of the approximating matrices is k < l, we have proved that the

approximation based on Algorithm 4.1.3 results in error that cannot be arbi-

trarily close to 0, even for a large number of constraints. This implies that in

problems where c has many non-zero components, using Algorithm 4.1.3 is not

practical.

In such a case, one could adapt Algorithm 4.1.3 as follows. If U ∈ Od is such

that Uc = e1, we define y ∈ Rd
= Ux. Then the original problem takes the form

max eT
1 y (6.1)

subject to yT (UQT
i )A(QiU

T )y ≤ 1, i = 1, ..., n.

In our model, due to the fact that {Qi}ni=1 are uniformly distributed, the optimal

value of this problem has the same distribution as V1. Applying Algorithm 4.1.3

with k ≥ 1 to the matrices

W̃i = UQT
i AQiU

T , i = 1, ..., n,

gives us an approximating problem with optimal value Ṽ3 that satisfies for v

close to 1 the relationship

(

1−G−1
1 (n)

)n
≤ P(Ṽ3 > v) ≤

(

n
d

) (

1−
G−1

1 (v)

2

)n−d

.
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This means, that under the assumptions of our model, using such an approx-

imation leads to an optimization problem with optimal value that is close to

the optimal value of the original problem, even if the rank of the approximat-

ing matrices is k = 1. Furthermore, it is not clear whether such an approach

should provide a good approximation for a general optimization problem with

quadratic constraints

Reflecting on the motivating problem, it is not clear whether the conclusions

that we have derived from our model extend to the IMRT problem. The sym-

metric positive definite matrices in the constraints of the IMRT problem do not

have identical singular values, but according to the discussion in Section 2.2,

their singular values are close to each other. It would be interesting to see if the

results extend to this case or whether there is a continuity result for the optimal

values of such problems with respect to the singular values.

Furthermore, according to the analysis of our model, the optimal value of

the approximating problem decays to 1 at most as fast as n−2/(d−k). Since d is in

the order of 1000 and k is in the order of 10, this is consistent with the empirical

findings in [13] and suggests that the test that was used in order to evaluate the

quality of the solution was not suitable. A more appropriate test would be to

estimate the covariance matrices by sampling a large number of shifts from a

continuous distribution and then check whether the optimal solution is feasible

for the resulting constraints.

In summary, our main goal in this dissertation was to explore an empirical

phenomenon in terms of rigorous analysis of a stylized model. What we have

proved should thus serve as an indication of what might hold in general. One

can try to generalize our model, incorporating, for example, more general types
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of constraints, or assuming a different distribution for their random compo-

nents. This would make the model more realistic, but it would probably require

different mathematical techniques to analyze it.

We have also demonstrated in our model that matrices with rapidly decay-

ing eigenvalues can be replaced by a low-rank approximation, with minor loss

of accuracy. This is a common observation in applications of low-rank approx-

imations in various fields. Thus, our work serves in the direction of extending

this idea in optimization applications and unifying our view of low-rank ap-

proximations.

Finally, although our work is mainly concerned with the theoretical explana-

tion of a phenomenon, it leads to observations that show possible future direc-

tions for the application of low-rank approximations in optimization problems

in practice. We have shown that in special cases, using Algorithm 4.1.3 in our

model leads to better approximations in terms of optimal values. Also, in our

model, we have proposed a way of applying Algorithm 4.1.3 that is adapted to

the optimization problem and results in an approximation that performs well in

our model.

6.2 Future directions

In reflecting on the research questions addressed, we observed several interest-

ing research topics. These would allow us to further evaluate and expand the

findings of this dissertation.

An obvious first direction for future research is to analyze more sophisticated
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stylized optimization problems. It is of interest to see if similar results hold

in optimization problems with constraints that are of different shape, without

common centers and sampled from a general probability distribution. Inequal-

ity (2.15) holds for any sampled problem with independent convex contraints,

but the corresponding chance-constrained problems are hard to solve, unless

the probability distributions and the form of the constraints are carefully cho-

sen. Also, it is not clear if the results hold for problems with constraints that are

not sampled independently.

The fundamental result in this dissertation is Inequality (2.15), that provides

a link between sampled and chance-constrainted problems. This inequality is

based on a result that holds for general convex constraints, so it could be possi-

ble to derive a better bound, that holds for the model that we are considering.

Apart from being interesting from a theoretical point of view, such an improve-

ment could lead to tighter asymptotic results for the optimal values.

A weakness of our method is that it fails to provide results about the joint

distribution of the optimal values of the sampled problems that we are studying.

It would be of interest to investigate ways to generalize the chance-constrained

methodology, in order to provide results about the joint distribution of the op-

timal values of the sampled problems, when the random components of the

constraints are common. This could lead to improved bounds on the number of

constraints required so that the relative difference of the optimal values is below

some level with certain probability.

Finally, in our model, we have seen that although the SVD-based algorithm

provides an optimal matrix approximation, in some cases it fails to provide as

good an approximation compared to Algorithm 4.1.3. By taking into account
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the structure of the problem that is approximated, it may be the case that there

exist algorithms that require small number of operations and which provide

a very good approximation to the problem. As an example, we can mention

the adaptation of Algorithm 4.1.3 in our model that we presented in Section

6.1. Using information about the objective function during the approximation,

the resulting approximating problem has an optimal value that is close to the

optimal value of the original problem, at least in our model. Thus, a natural

direction for future research is to design matrix approximation algorithms that

can be adapted to the optimization problem.
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APPENDIX A

PROOFS OF RESULTS IN SECTION 4.2

We begin with a lemma, that provides an extension to the coupon collector prob-

ability that we used in the case c = e1. It provides the probability that after sam-

pling uniformly at random n times with replacement subsets of size k from a set

of size d, all d elements are picked at least once and a certain subset of size l ≤ k

is included in at least one of the random samples of size k.

Lemma A.0.1 Let S be a set with d elements and let L ⊆ S , where L has l elements.

Suppose we sample k ≥ l distinct elements of S with replacement. Each subset of size k

of S has the same probability of being picked. Suppose we sample independently n times.

We define the events

B = {

After sampling n times, all elements of S have been sampled
}

,

C = {

After sampling n times, one of the samples contains all l elements of L
}

.

Let pn be the probability of the event

A = B ∩ C.

We have that

1− pn = O



































1−

(

d−l
k−l

)

(

d
k

)

















n
















.

Proof: Let (Xi)
∞
i=1 be a stochastic process with values in

F = {k, k + 1, ..., d} × {0, 1, 2, ..., l} × {0, 1} ,

such that for each i, Xi = (Xi(1), Xi(2), Xi(3)), where
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• Xi(1) is equal to 0 if no sample out of the first i contains the set {1, 2, ..., l}

and 1 otherwise.

• Xi(2) is the number of different elements of {1, 2, ..., l} sampled in the first i

samples,

• Xi(3) is the number of different elements of {1, 2, ..., d} sampled in the first i

samples.

It is easy to see that (Xi)
∞
i=1 is a Markov chain. We arrange the state space

using a lexicographical ordering (considering the state vector in the form

X(1), X(2), X(3).) Then, the resulting one step probability transition matrix P is

upper triangular. We will focus on the diagonal elements, because these are

equal to the eigenvalues.

Assume that the current state is (ν1, ν2, ν3), where ν2 < l. This also implies

that ν1 ≤ d − (l − ν2) and ν3 = 0. Then we have that

P(Xi+1 = (ν1, ν2, ν3)|Xi = (ν1, ν2, ν3)) =

(

ν1
k

)

(

d
k

) .

If ν2 = l, ν3 = 0, then

P(Xi+1 = (ν1, ν2, ν3)|Xi = (ν1, ν2, ν3)) = 1−

(

ν1−l
k−l

)

(

d
k

) .

Finally, if ν2 = l, ν3 = 0, then we have that

P(Xi+1 = (ν1, ν2, ν3)|Xi = (ν1, ν2, ν3)) =

(

ν1
k

)

(

d
k

) .

Then the second largest eigenvalue is given by the second largest of the above

values, which is

λ2 = 1−

(

d−l
k−l

)

(

d
k

) .
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We have that

pn = P(Xn = (d, l, 1)) =
∑

j

h j(n − 1)λn−1
j ,

where h j are polynomials with degree that depends on the algebraic multiplicity

of λ j. Since we need lim
n→∞

pn = 1, and the second largest eigenvalue is λ2, we get

that

1− pn = O
(

λn
2

)

.

⊓⊔

We use this lemma, in the following proposition.

Proposition A.0.1 Let V3(θ) be the optimal value of Problem (4.14). Then

1− P
(

lim
θ↑1

V3(θ) = 1

)

= O



































1−

(

d−l
k−l

)

(

d
k

)

















n
















. (A.1)

Proof:

We fix the orthogonal matrices Q1, ....,Qn and we assume that they are such

that for every θ in a neighbourhood of 1, the following hold:

1. Columns with all possible indices {1, 2, ..., d} are picked during application

of Algorithm 4.1.3 to matrices QT
i A(θ)Qi, i = 1, ..., n,

2. Columns with indices {1, 2, ..., l} are picked together during application of

Algorithm 4.1.3 to at least one of the matrices QT
i A(θ)Qi, i = 1, ..., n.

Let K ⊂ (Od)n be the set of all such (Q1, ...,Qn). As in the proof of Proposition

(4.2.1), we define M(θ) to be the minimum of all elements of matrices Ci(θ) that
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tend to 1 as θ goes to 1 and m(θ) to be the maximum in absolute value of all ele-

ments of the matrices Ci(θ) that tend to 0. We then have that in a neighbourhood

of 1, it holds that

|xi| ≤

√

1
M(θ) − 2(d − 1)m(θ)

= K(θ).

Let QT
p A(θ)Qp be one of the matrices such that columns {1, ....l} are picked during

application of Algorithm 4.1.3 . We let C(θ) = Cp(θ), for simplicity in notation.

Then we have that the p-th constraint gives, for θ in a neighbourhood of 1,

xT C(θ)x ≤ 1

⇔
l

∑

j,ν=1

C jν(θ)x jxν +
d

∑

j,ν=l+1

C jν(θ)x jxν + 2
l

∑

j=1

d
∑

ν=l+1

Cνl(θ)x jxν ≤ 1

Since C is a symmetric positive semidefinite matrix, we get

l
∑

j,ν=1

C jν(θ)x jxν ≤ 1− 2
l

∑

j=1

d
∑

ν=l+1

Cνl(θ)x jxν

⇒
l

∑

j,ν=1

C jν(θ)x jxν ≤ 1+ 2l(d − l)m(θ)K(θ)2

⇔
l

∑

j=1

C j j(θ)x
2
j ≤ 1+ 2l(d − l)m(θ)K(θ)2 −

l
∑

j,ν=1, j,ν

C jν(θ)x jxν

⇒
l

∑

j=1

C j j(θ)x
2
j ≤ 1+ 2l(d − l)m(θ)K(θ)2

+ l(l − 1)m(θ)K(θ)2

⇔
l

∑

j=1

x2
j ≤ 1+

(

2ld − l2 − l
)

m(θ)K(θ)2
+

l
∑

j=1

(1−C j j(θ))x
2
j

⇒
l

∑

j=1

x2
j ≤ 1+

(

2ld − l2 − l
)

m(θ)K(θ)2
+ l(1− M(θ))K(θ)2

Let x1l =

[

x1 · · · xl

]T

. Then we have that

‖x1l‖2 ≤
√

1+ α(θ),
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where lim
θ↑1
α(θ) = 0. Since for every x in the feasible region we have that

∣

∣

∣cT x
∣

∣

∣ ≤

‖c‖2 ‖x1l‖2 = ‖x1l‖2, it follows that

V3(θ) ≤
√

1+ α(θ),

which implies

lim
θ↑1

V3(θ) = 1.

So, we have that

P

(

lim
θ↑1

V3(θ) = 1

)

≥ P(K).

and then the result follows from Lemma A.0.1.

⊓⊔
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