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Ranking and selection (R&S) procedures are widely used for selecting the best

among a set of candidate systems, where each candidate system is associated with

a simulation model. In this thesis, we focus on three aspects on the sample com-

plexity of the R&S problem. First, we develop a method for predicting the sample

complexity. Second, we present Envelope Procedure (EP), a R&S procedure that

delivers a probably approximately correct selection guarantee, and we provide a

high probability upper bound on its sample complexity. We also prove a lower

bound on the sample complexity for general R&S procedures. The performance

of the EP is demonstrated by numerical experiments. Finally, we discuss some

specific aspects and features of the EP in parallel computing environment and the

sampling rules.
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CHAPTER 1

INTRODUCTION

1.1 Background

The simulation optimization (SO) problem integrates stochastic simulation into a

nonlinear optimization problem whose objective function is not explicitly avail-

able but can be measured with error by Monte Carlo simulation. An example of

such a problem is ambulance planning [45]. The decision-makers of ambulance

organizations need to decide the locations and schedules of the ambulances in

order to minimize a quantile of the response times. For any candidate plan, its

performance over a fixed time horizon is analytically intractable. Stochastic simu-

lation can be used to approximately evaluate the objective function in an effort to

solve this optimization problem. Such problems arise in a wide variety of areas,

e.g., supply chain management [31], transportation, and public health [1, part 4].

For more examples of SO problems, see [23].

Ranking and selection (R&S) problems are a special class of SO problems in

which: (1) the number of feasible solutions is finite, (2) no structural properties,

e.g., convexity, of the objective are assumed, and (3) the computational budget

permits at least some simulation of every system. The goal is to identify the best

among a finite set of systems where the performance of each system can only be

observed by simulation. This is an important class of problems, since in many
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practical applications the structural properties are non-existent or very difficult to

verify. The main issue in R&S problems is how to allocate computational budget

for simulation of the systems so that a statistically reliable choice of the best system

can be determined efficiently. A good R&S procedure achieves a balance between

the total running time and the quality of the ultimate selection. For an overview

of this area, see [26, 9] for context, and see [4, 21] for book-level treatment.

Many procedures have been proposed for dealing with R&S problems. They

can be classified into Bayesian approaches and frequentist approaches. Bayesian

approaches usually aim to optimize an objective that penalizes suboptimal

choices, as estimated through the posterior distribution. For example, OCBA

(Optimal Computing Budget Allocation) [10] allocates a computational budget to

maximize approximations of the posterior Probability of Correct Selection (PCS).

Other Bayesian procedures [13, 12] allocate samples to minimize the expected op-

portunity cost, or to maximize a measure of the expected value of information

[11].

Frequentist approaches usually provide a certain statistical guarantee on the

quality of the selected system irrespective of the unknown problem configuration.

An important class of such procedures are indifference-zone (IZ) procedures. IZ

procedures originated with [2] and have been well studied; see, e.g., [49, 52, 36, 24,

18]. They guarantee to select the unique best system with at least a prescribed PCS,

assuming that the difference between the best and all others is sufficiently large.

To be more precise, let µi denote the true performance (usually an expectation)
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of the ith system. For notational simplicity, suppose that, unknown to the R&S

procedure, the systems are indexed so that µ1 ≤ µ2 ≤ ⋯ ≤ µk, and System k is the

best. A R&S procedure provides a PCS guarantee at level α if

P(I∗ = k) ≥ 1 − α, if µk − µk−1 > δ,

where I∗ is the (random) index of the selected system, the parameter δ is called

the IZ parameter, and 1 − α is the confidence level. It is natural to require 1 − α >

1/k, since otherwise the procedure is no better than random guessing. Therefore

throughout the thesis we assume that α < 1 − 1/k, i.e., α is bounded away from

1 for fixed k. The IZ guarantee only holds when the difference between the best

and second-best systems is greater than δ; nothing is guaranteed otherwise. There

are also some recent IZ-free frequentist procedures [17] that deliver PCS without

imposing an IZ restriction.

A stronger form of guarantee that holds for any configuration of means, and

that also implies a PCS guarantee when µk − µk−1 > δ, is probably approximately

correct (PAC) selection, which is also referred to as a probability of good selection

(PGS) guarantee in, for example, [46, 47]. It guarantees, with high probability,

to select a system whose performance is not too far away from that of the best

system, i.e., that

P(µI∗ > µk − δ) ≥ 1 − α,

irrespective of the gap between the best and the other systems. It is not hard to

see that a procedure that delivers a PAC guarantee automatically delivers a PCS

guarantee, but the converse does not necessarily hold. R&S procedures that pro-
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vide PAC guarantees are far less prevalent than those providing PCS guarantees,

perhaps due to the difficulty in establishing such guarantees; see [15] for a survey.

The R&S problem is closely related to the multi-armed bandit (MAB) problem.

They both originate from the work of [2] and [49]. An important difference is

that, in MAB problems, one typically considers the cumulative reward collected

by pulling each arm (i.e., obtaining a sample from each system) throughout the

experiment, instead of focusing only on the quality of the final decision as in R&S

[50]. In pure-exploration instances of the MAB, the goal is to find the best arm

/system at the end of the procedure, which is the same overall objective as in

R&S problems, but still, different distributional assumptions are made about the

underlying arms/systems. Algorithms developed for the bandit problem usually

assume bounded or sub-Gaussian simulation outputs with a known bound on the

variances. In addition, the algorithms for the MAB problem usually simulate one

system at a time. In comparison, the R&S literature typically assumes Gaussian

error, uses batching to approximately ensure this when needed, and takes samples

from a set of systems in each round.

A focus of the MAB literature is the analysis of the sample complexity. The

median elimination procedure of [16] was shown to deliver the PAC guarantee

in O(k/δ2 log(1/α)) arm pulls. Since then, the upper bound on the sample com-

plexity for this problem or the no-relaxation form of this problem, i.e., δ = 0, has

been successively improved by the work of [33], [27], [34] and [28]. The upper

bound on the sample complexity, i.e., how many samples are needed to deliver
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such a guarantee, has also been studied in [16] [44] and [28]. These works provide

a theoretical analysis of the relation between the sample complexity and the prob-

lem configuration. In the R&S literature, there has also been some research on

the asymptotic upper bound [17] and lower bound [30]. However, in general this

aspect is largely overlooked, and the computational efficiency of the R&S proce-

dures is usually only demonstrated through numerical experiments. We consider

the study of the sample complexity as an important issue in the R&S problem

since it helps us better understand the procedures and the underlying difficulty

of problem instances. In addition, studying the upper and lower bounds suggests

where the limits of a R&S procedure lie and the directions for improving the effi-

ciency of existing procedures.

Originally, R&S procedures were only designed for problem instances where

the number of systems is small, due to the limited computing capability and the

requirement of the statistical guarantee even for the worst-case configuration.

With the introduction of sequential R&S procedures, the sample complexity of

the R&S procedures has decreased dramatically since samples can be sequentially

allocated only to superior systems due to the sequential update of information.

As a result, R&S procedures have become more efficient and can be applied to

problems of larger scale.

In the past decade, with the significant advances in computing power and the

advent of parallel computing, we can aim for solving much larger R&S prob-

lems. However, converting the current serial R&S procedures to their parallel
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versions can be much more complicated than it seems. The critical question is,

can we fit the current serial R&S procedures into a parallel computing environ-

ment to achieve high efficiency while preserving statistical validity? As pointed

out in [41], the main difference in a parallel computing environment is that “the

input and output sequences of observations are different on multiple processors,

whereas they are the same on a single processor.” For this reason, simply allo-

cating the simulation tasks to different cores without requiring any synchroniza-

tion may invalidate the statistical guarantee. However, excessive synchronization

leads to low efficiency. Furthermore, screening work is in general harmless in se-

rial R&S procedures since its running time is usually negligible compared to that

of the simulations, but in a parallel computing environment it can become the bot-

tleneck as discussed in [47]. How to design a parallel R&S procedure is one goal

of this thesis.

Predicting sample complexity is another issue that emerges with the intro-

duction of parallel R&S procedures, since the sample complexity determines the

amount of computational resources needed for a R&S procedure to terminate in

a reasonable time period. This information is unknown to the user of a paral-

lel R&S procedure. If a customer wants to buy some cloud computing service to

solve a R&S problem in 48 hours, he needs to predict the sample complexity to

determine the number of cores required and hence the cost. However, this task

is surprisingly nontrivial. In order to predict the sample complexity, a prelim-

inary sampling stage is needed to estimate the configuration of the problem it

is solving. Due to the small sample size of the preliminary stage, small differ-
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ences between the system means can be swamped by noise, an effect we call the

“means-spreading” phenomenon. Means-spreading leads us to underestimate the

running time by overestimating the difference between the best system and the

others.

1.2 Contributions

In this thesis, we focus on three aspects of the R&S problem, each of which is a

relatively self-contained work. In the following chapters, we make the following

contributions.

Predicting the Sample Complexity. We propose a method for predicting the

the sample complexity of any given R&S procedure for any given problem. This

method effectively reduces the impact of the “means-spreading” phenomenon, so

that it provides a better understanding about the true configuration of the prob-

lem, and hence a better prediction of the sample complexity. Additional benefits

of estimating the configuration of the problem include improving the efficiency

of the procedure by wisely determining the values of free parameters, e.g., r̄ in

[47], and providing a progress bar throughout the procedure for showing the es-

timated remaining time. Numerical experiments demonstrate the quality of our

prediction method.
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The Envelope Procedure. We present the Envelope Procedure (EP), a fully se-

quential procedure that provides a PAC guarantee. It consists of a stopping rule

and a sampling rule. The stopping rule is the base of the PAC guarantee and it

affords considerable flexibility in designing the sampling rule. Thus, the EP is

actually a family of procedures. A high probability upper bound on the sample

complexity of the EP with a specific sampling rule is proved, which relates the

problem configuration to the sample complexity. We also provide a nearly match-

ing lower bound on the sample complexity that any PAC procedure must satisfy.

Computational experiments show that the EP is more efficient than some leading

R&S procedures across various problem configurations. We also compare EP with

those procedures by realized PAC, and the performance of the EP is even better.

A heuristic version of the EP is developed based on this observation and it shows

a clear improvement in efficiency over the original EP.

Parallel Envelope Procedure and Sampling Rules. We discuss some specific

aspects and features of the EP in a parallel computing environment. Specifically,

our parallel EP (1) adopts the master-worker framework, (2) uses a vector-filling

method to deal with the random completion issue, (3) considers information up-

dates in sequential job assignment, and (4) eliminates inferior systems for screen-

ing efficiency. We combine all of these features together to develop a parallel

Envelope Procedure. We also propose the Gap-Minimization sampling strategy

designed for serial computing environments, and the No-Waste sampling strat-

egy designed for parallel computing environments. We compare the parallel EP
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and the vector-filling KN (VKN) procedure in a computational study in a parallel

computing environment and the results show that the parallel EP outperforms the

VKN in sample size, wall-clock time, and utilization in various configurations.
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CHAPTER 2

PREDICTING THE SAMPLE COMPLEXITY IN RANKING AND

SELECTION PROCEDURES

Historically, due to limited computing capability, the interest in R&S problems

primarily focuses on small-scale problems where the number of systems and the

number of simulations of each system are relatively small. Nowadays, with im-

provements in computing power, the introduction of cloud computing and the

development of efficient algorithms, much larger problems can be solved [47, 41].

However, new issues also emerge as the scale increases. Estimating the sample

complexity, i.e., the number of replications of each system required to make a

selection is key, because simulation budget is almost always the dominant con-

tributor to running time, and the cost of running a task on the cloud depends on

running time. Knowledge of the simulation budget also helps us decide the num-

ber of cores needed for the procedure to terminate in a reasonable time period in

a parallel computing environment. For these reasons, a methodology for sample

complexity estimation for R&S procedures is important for large-scale problems.

The sample complexity of a procedure usually depends heavily on the config-

uration of the problem it is solving, i.e., the means and variances of these systems,

which are unknown. Therefore a preliminary sampling stage is needed in order

to get some knowledge about the structure of the problem. Non-trivial issues

arise in this process. Since the sample size of the preliminary stage is usually

very small, small differences in performances of systems are usually dominated
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by noise. With the naı̈ve way of estimating expectations by sample means, we

tend to overestimate the differences between the best system and the others, and

hence underestimate the running time. An extreme case is the slippage configura-

tion in which all but one system have the same expectation and the other system is

only a little better than the others. It is almost impossible to discern such a config-

uration with small sample sizes, since the sample means will vary. In this chapter

we propose a method to better deal with this “means-spreading” phenomenon, so

that we have a better understanding about the true configuration of the problem.

Our focus throughout the chapter is primarily on estimating the means of the sys-

tems, rather than the variances, because the means tend to have a more dramatic

effect on running times. For example, in order to distinguish the difference be-

tween two normal populations having means µ1 and µ2, and variances σ2
1 and σ2

2 ,

one can take n replications of each system until a statistically significant difference

is seen in the sample means. The sample size n that is needed is on the order of

(σ2
1 + σ

2
2)/(µ2 − µ1)

2. Therefore, there is greater sensitivity to errors in predictions

of means, rather than errors in predictions of variances, explaining our focus on

means in this chapter

Based on a limited sample size in the preliminary stage, it is extremely diffi-

cult to estimate the configuration of the problem and hence the sample complexity

very accurately. Even if the system configuration is given, we still do not know the

exact total number of samples due to the randomness of simulation output. How-

ever, our goal in estimating the sample complexity is to better allocate computing

resources for solving the problem, so we only care about the order of magnitude
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of the sample complexity instead of its exact value. For example, we want to be

able to predict whether the procedure will require 100 replications or 1000 repli-

cations, rather than 100 replications or 110 replications. In the latter case we are

unlikely to alter the number of cores allocated.

In this chapter we focus on estimating sample complexity of procedures rather

than the more desirable goal of estimating running times, partly because the two

are so closely related. Moreover, there are complexities in estimating running

times that make them difficult to analyze. For example, synchronization issues,

the details of one’s parallelization scheme and the implementation of the proce-

dure all can heavily affect the wall-clock running time of procedures running in

a parallel computing environment. We thus focus on estimating the simulation

budget, taking the pragmatic, but not perfect, view that one can obtain an im-

perfect estimate of the running time by scaling simulation budgets by observed

average running times per replication. This imperfect estimate does not account

for the complexities mentioned above, but it can be viewed as an “approximate

lower bound” on the running time, which suffices for our purpose.

There is an additional benefit of estimating the configuration of the problem.

With a better understanding of the problem based on preliminary samples, we

may be able to improve the efficiency of the R&S procedure. For example, for

procedures with free parameters, e.g., [47], taking advantage of the knowledge of

the configuration helps us determine the values of parameters (r̄ in [47]) in such

a way as to improve the procedure’s efficiency. And for Bayesian procedures, the
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prior might be partially based on the estimated problem configuration.

The efficiency of a procedure might be impaired by the extra samples in the

preliminary stage. Indeed, for small problems that can be solved in seconds, effi-

ciency is probably not very important, and estimation of the running time might

not be necessary. However, for large-scale problems the improvement of efficiency

can be large even with the overhead brought by the extra samples. And there may

be no need to discard the samples observed in the preliminary stage as long as we

are not using the information provided by those samples for the procedure it-

self, e.g., to determine free parameters for the procedure. Therefore, we can just

include those samples in the main body of the procedure and hence nothing is

wasted.

Besides estimating the running time before the whole procedure starts, we can

also update our estimate of the remaining time during the process to inform the

user of progress through some kind of “progress bar.”. With more and more data

observed, we expect that the estimate will be more and more accurate.

Our algorithm provides a point estimate of the problem configuration and the

running time. One might desire more information, through confidence regions

or belief distributions on the configuration, for example. Beyond repeatedly run-

ning our algorithm, we do not offer a practical method for obtaining such, more

complex, information.
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2.1 Preliminaries

Suppose we have k simulated systems, from which we can take samples by simu-

lation to evaluate their performance. LetXij be the j-th sample taken from System

i, for i = 1, . . . , k, j = 1,2, . . .. We assume Xi = (Xij ∶ j ≥ 1) is an i.i.d. sequence of

samples drawn from N (µi, σ2
i ), a normal distribution with mean µi and variance

σ2
i , and moreover, X1,X2, . . . ,Xk are independent. We denote µ = (µ1, . . . , µk) and

σ2 = (σ2
1, . . . , σ

2
k) as the expectation vector and variance vector, which together

are referred to as the system configuration. Our goal is to identify the system with

largest expectation with a certain given level of confidence 1 − α.

There are two primary forms of frequentist probabilistic guarantees: the prob-

ability of correct selection (PCS) and probably approximately correct (PAC) selec-

tion. For a given confidence level 1 − α, the PCS guarantee means that the proba-

bility of choosing the best system (the system with the highest expectation) is no

less than 1 − α, if the difference between the expectations of the best and others is

greater than or equal to δ, the indifference-zone parameter. The PAC guarantee does

not require such an assumption on the configuration of the problem. It means that

the probability of selecting a system with expectation within δ of the best is no less

than 1 − α.

In practice simulation outputs may not be normally distributed, and then these

probabilistic guarantees may not necessarily hold. A commonly used strategy is

to draw a batch of samples at a time and take their mean as one output Xij , so
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that the central limit theorem (CLT) ensures that the outputs are approximately

normally distributed, and the guarantees might then hold approximately.

The sampling rule of a R&S procedure specifies how to allocate samples to

each of the k systems, either deterministically or adaptively based on the samples

that have already been observed. The R&S procedure terminates when the ob-

served statistics are sufficient to deliver the pre-specified probabilistic guarantee.

The sampling rule and stopping rule are designed to ensure the validity of the

procedure, and together determine the efficiency of the R&S procedure, i.e., how

many samples are needed to identify the best system.

Most efficient R&S procedures adopt an elimination strategy, i.e., identifying

inferior systems to eliminate during the procedure as more samples are observed,

so that those eliminated systems will not be considered as candidates and will no

longer be sampled. At the end of the procedure, all but one system are eliminated,

and the sole survivor is selected as the best.

2.2 Estimating the Total Number of Samples

R&S procedures essentially are composed of three tasks: (1) deciding the number

of samples to draw from each system, (2) running simulations, and (3) screening

(making elimination decisions), which includes computing and comparing statis-

tics based on the simulation results. Usually, the computational cost for task (2)
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dominates, especially for large-scale problems, which is our focus in this article.

Therefore, the essential question to ask in estimating the running time is how

many samples are needed for the procedure to terminate and how long one repli-

cation takes.

The number of samples depends on the configuration of the given problem,

i.e., the expectation vectorµ and the variance vector σ2, which are both unknown.

Therefore we use a preliminary stage to estimate the system configuration; see

Section 4. For now we just assume that we have already obtained an estimate of

the system configuration, based on which we present two approaches for estimat-

ing the total number of samples: (1) a first-order estimate, and (2) simulating the

simulation process. The first approach simplifies the problem by ignoring the fluc-

tuation in elimination time due to randomness in samples. The second approach

simulates the whole R&S procedure, but instead of simulating the systems to get

samples, it generates normally distributed samples directly from the estimated

problem configuration.

In the preliminary stage, we estimate both the system configuration and the

average simulation time T̄ , i.e., the amount of time spent taking one sample. Then

the estimated total running time T̂total is given by

T̂total = N̂ T̄ ,

where N̂ is the estimated total number of samples. When the simulation time

varies from system to system, we record T̄i’s separately for each System i, and
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then

T̂total =
k

∑
i=1

N̂iT̄i,

where N̂i is the estimated number of samples from System i.

In a parallel computing environment, other issues such as latency and syn-

chronization also affect scalability and wall-clock time. Both highly depend on

the algorithm itself, its implementation and the configuration of the problem. We

ignore those issues, so that we get what might be viewed as an approximation of a

lower bound on the running time when we convert our estimation to the parallel

computing environment directly by dividing the total running time by the num-

ber of cores. In general, one might first estimate the total running time with our

methodology, and second, decide the number of cores needed to finish the job in

an acceptable time.

2.2.1 First-order estimate

Under our assumptions the accumulated sums of the system outputs (Yi(n) ∶ n ≥

0) with

Yi(n) =
n

∑
j=1

Xij, i = 1, . . . , k,

or the differences between pairs of such accumulated sums are random walks

with normally distributed increments. R&S procedures explicitly [36, 24] or im-

plicitly [18] define a continuation region, whereby a system is eliminated once the

corresponding random walk hits the boundary f(n, θ) of the continuation region,
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where the parameter θ can involve statistics of the outputs, e.g., sample variances

or accumulated sums of other systems. Hence, estimatingNi, the total sample size

of System i, is equivalent to the problem of estimating a first-passage time of the

corresponding random walk.

The expected first-passage time for simple cases (e.g., constant and linear

boundaries) are well-understood, but other than that, closed-form formulae for

few boundaries are known [32]. For mathematical tractability, we simplify the

problem to a first-order estimate, which means replacing the random walks

(Yi(n), n ≥ 0) by linear functions (yi(n) = nµi, n ≥ 0). In other words, we ignore

the fluctuation of the random walks when estimating the first-passage time.

Why is this reasonable? The law of the iterated logarithm [7, 54] establishes

that when σi > 0,

lim sup
n→∞

∣Yi(n) − µin∣

σi
√
n log logn

=
√

2, a.s.

Therefore for systems with large total sample size Ni, it is rare to see fluctua-

tions go beyond the order of
√
n log logn in magnitude, and the drift µi dominates.

Therefore, relatively speaking, the performance of those systems will be close to

their expected performance. When we focus on large-scale problems, most of the

samples are contributed by those systems with large Ni, and so this simplification

is reasonable. In addition, R&S procedures are designed to eliminate inferior sys-

tems based on their expectations irrespective of their variances, and so continua-

tion regions are designed to be large enough to identify the average performance,

irrespective of fluctuations, with high probability. Hence, it seems reasonable to
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neglect the randomness in determining when the random walk exits the continu-

ation region. We will later see in numerical experiments that this seemingly rough

simplification usually gives good results.

2.2.2 Simulation of the simulation process

Based on the estimated system configuration, we can simply run the whole R&S

procedure for the original problem, replacing simulation by samples from a nor-

mal distribution with our estimated expectations and variances. In other words,

we “simulate” the whole R&S procedure. Actually this strategy has been used

before to test R&S procedures, e.g., [36] and [18].

Usually R&S procedures spend a majority of their running time on simula-

tions, which is skipped in this approach. Therefore we expect it to be faster than

the procedure itself, which is essential. The screening time of some R&S proce-

dures is O(k2), for example, the original KN procedure [36] and [24]. For those

procedures, this simulation approach may take a long time for large-scale prob-

lems, compared to those procedures with screening times that are linear [18] or

approximately linear [47] in the number of systems. In these O(k2) procedures,

we recommend using the first-order estimate approach if k is large.
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Figure 2.1: Histograms of expectations and sample means under the fol-
lowing configurations: SC (row 1) and RPI (row 2). k = 1000,
δ = 0.1, σ2

i = 25, n0 = 50.

2.3 Estimation of the Ordered Expectations

2.3.1 Issues with Naive Estimation

As we see from the previous section, the estimation of the total number of sam-

ples N depends on the configuration (µ,σ2) of the problem. The configuration

is unknown, so we use a preliminary stage in which we sample each system n0

times. For most R&S procedures that deal with unknown variances, there is such

a stage for estimating variances. We can just make use of those samples taken for
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estimating variances for our preliminary stage so that no extra samples should be

taken. However, if the estimate of running time will be used for determining the

value of some free parameters in the R&S procedure, then usually those samples

have to be dropped in order to ensure the statistical guarantee.

Recall that our goal is to answer questions like, how many samples are needed

for the best system to eliminate the second best one. Therefore, instead of estimat-

ing the µi’s, we only care about estimating the ordered expectations µ(i)’s without

the need to know their identities. For σ2
i ’s, we use sample variances as our estima-

tors and pair them, in the natural way, with the ordered expectations by the order

of the corresponding sample means. For example, if the sample mean X̄i(n0) of

System i is the second largest, we pair its sample variance S2
i with the estimated

second largest ordered expectation µ̂(2). The same pairing strategy can be used for

the average simulation time T̄i as well.

With n0 samples from each of the systems, the most straightforward estimators

of their expectations are the sample averages X̄i(n0), i = 1,2, . . . , k. Each sample

average is an unbiased estimator of the expectation, but the estimated expecta-

tions tend to “spread out”, so the ordered sample averages are not unbiased es-

timators of the ordered expectations. An extreme case is the slippage configura-

tion (SC), in which µ1 = δ µi = 0, ∀i ≠ 1, where σ2
i = σ2 are equal. The sample

means are independent and normally distributed with variance σ2/n0, hence the

differences between their true means are exaggerated. We call this phenomenon

“means-spreading”. Histograms of expectations and sample means are given as
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illustration in Figure 2.1. The first row is for the SC, and the second row is for

the random problem instances (RPI) configuration, where µi ∼ N (0,4δ2) and are

independent in i. As we can see, the sample means of both configurations in the

right-hand panels are more spread out than their corresponding true expectations

in the left-hand panels.

In general, for any configuration of the problem,

Emax
i
X̄i ≥ max

i
EX̄i = max

i
µi, and

Emin
i
X̄i ≤ min

i
EX̄i = min

i
µi,

suggesting that means-spreading is ubiquitous. (We will later characterize the

difference between Emaxi X̄i and maxi µi.) It is therefore reasonable to expect that

we are being overly optimistic if we treat the sample means as true expectations,

since the advantage of the best system over other systems is magnified, leading to

an underestimation of N̂ . For configurations in which the expectations are close to

each other, e.g., SC, the estimated total number of samples N̂ can be tremendously

smaller than what is needed, as we will see in numerical experiments.

The impact of means-spreading depends on how clustered the true expecta-

tions are relative to their true variances. If the expectations are very close to each

other and the variances are large, then the sample means will be very spread-out.

In general, for a fixed δ, the smaller the differences between the expectations and

the larger the variances, the harder the problem, in the sense that it usually takes

more samples to find the best system.
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2.3.2 Regression Method for Estimating the Ordered Expecta-

tions

We have seen that recovering the ordered expectations solely from the sample

means X̄i(n0) can perform badly. Fortunately, we have the full process: (Xij ,

i = 1,2, . . . , k, n = 1,2, . . . , n0) and hence (X̄i(n), i = 1,2, . . . , k, n = 1,2, . . . , n0). Our

goal is to understand the relation between ordered sample means and the ordered

true expectations, especially those around Emaxi X̄i versus maxi µi.

First consider the case where all the µi are the same. Assuming all Xi’s are

independent and normally distributed, the distribution function of M = M(n) =

maxi=1,...,k X̄i(n) is given by

FM(x) = P (M(n) ≤ x)

=
k

∏
i=1

P (X̄i(n) ≤ x)

=
k

∏
i=1

Φ(
x − µ

σi/
√
n
) .

The probability density function of M is then

fM(x) =
d

dx

k

∏
i=1

Φ(
x − µ

σi/
√
n
)

=
k

∑
i=1

[∏
j≠i

Φ(
x − µ

σj/
√
n
)]φ(

x − µ

σi/
√
n
)

1

σi/
√
n
.
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Therefore

EM(n) = ∫
∞

−∞
x

k

∑
i=1

[∏
j≠i

Φ(
x − µ

σj/
√
n
)]φ(

x − µ

σi/
√
n
)

1

σi/
√
n
dx

= µ +
1

√
n
∫

∞

−∞
y

k

∑
i=1

[∏
j≠i

Φ(
y

σj
)]φ(

y

σi
)

1

σi
dy (let y =

x − µ

1/
√
n
)

= µ +
C
√
n

where

C = C(σ) = ∫

∞

−∞
x

k

∑
i=1

[∏
j≠i

Φ(
x

σj
)]φ(

x

σi
)

1

σi
dx

is a constant that does not depend on n.

The value of C is usually unknown since we do not know the variances σi.

However, we do not need to calculate it explicitly since we only care about the

expectation µ. For each n, the corresponding largest sample mean M(n) is known

from the data, and so we can apply linear regression to estimate µ, using the model

M(n) = µ + Cx(n) with x(n) = n−1/2 to get an unbiased estimator of µ, which is

the estimate of the intercept. An illustration of the regression method is given

in Figure 2.2. In this example, the intercept of the fitted line, which is also the

estimated µ̂, is 0.02, which is very close to its true value 0.

For general configurations, we similarly have

FM(x) =
k

∏
i=1

Φ(
x − µi
σi/

√
n
) ,

and

fM(x) =
k

∑
i=1

[∏
j≠i

Φ(
x − µj

σj/
√
n
)]φ(

x − µi
σi/

√
n
)

1

σi/
√
n
,
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Figure 2.2: Regression method to estimate µ when all µi = µ = 0 and σ2
i =

σ2 = 4 are equal. Here k = 1000 and n0 = 50. The estimated
µ̂ = 0.08.

so that

EM(n) = ∫
∞

−∞
x

k

∑
i=1

[∏
j≠i

Φ(
x − µj

σj/
√
n
)]φ(

x − µi
σi/

√
n
)

1

σi/
√
n
dx

(let y =
x − µ(k)

1/
√
n

)

= µ(k) +
1

√
n
∫

∞

−∞
y

k

∑
i=1

[∏
j≠i

Φ(
y −

√
n(µj − µ(k))

σj
)]φ(

y −
√
n(µi − µ(k))

σi
)

1

σi
dy

= µ(k) +
D(n)
√
n

where

D(n) =D(n,µ,σ)

= ∫

∞

−∞
x

k

∑
i=1

[∏
j≠i

Φ(
x −

√
n(µj − µ(k))

σj
)]φ(

x −
√
n(µi − µ(k))

σi
)

1

σi
dx

In this case, the slope D(n) is not constant. Moreover, its expression is compli-
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cated and mathematically intractable. What if we simply treat it as constant in n

and apply linear regression as with the case of identical expectations? Denoting

µ̂(k) as our estimator of µ(k) by linear regression, the following theorem can help

us understand the relation between µ̂(k) and µ(k).

Theorem 1. D(n) is non-negative, non-increasing in n, and

lim
n→∞

D(n,µ,σ) = C(σ̃),

where the components of σ̃ are those σi’s whose corresponding µi’s are equal to µ(k) .

Remark: The dimension of σ̃ will usually be smaller than k. For example, if

there are three systems with expectation equal to µ(k), then the dimension of σ̃ is

3, and implicit in our notation is the the fact that we evaluate C with k = 3.

We use stochastic domination to prove this theorem. Recall that X is said to be

smaller than X ′ in the usual stochastic order (denoted by X ≤st X ′) if

F ′(x) ≤ F (x) ∀x ∈ R,

where F and F ′ are the cumulative distribution function ofX andX ′, respectively.

PROOF. (Theorem 1)

Firstly, since

µ(k) +
D(n)
√
n

= E max
i=1,...,k

X̄i(n) ≥ max
i=1,...,k

EX̄i(n) = µ(k),
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Figure 2.3: Regression method to estimate µ(k) when all σ2
i = 4 are equal

and µi are independently and normally distributed with stan-
dard deviation equal to 0.2. We subtract maxi µi from µi, i =
1,2, . . . , k to ensure that µ(k) = 0. Here k = 1000 and n0 = 50.
Only the last 25 data points are used for regression. The esti-
mated µ̂(k) = −0.22.

D(n) ≥ 0. Secondly,

D(n) = ∫
∞

−∞
x

k

∑
i=1

[∏
j≠i

Φ(
x −

√
n(µj − µ(k))

σj
)]φ(

x −
√
n(µi − µ(k))

σi
)

1

σi
dx

= EM̃,

where M̃ = maxi=1,...,k X̃i, X̃i ∼ N (
√
n(µi−µ(k)), σi). The distribution function of M̃

FM̃(x) =
k

∏
i=1

Φ(
x −

√
n(µi − µ(k))

σi
)

is non-decreasing in n for all x since Φ is an increasing function and µi−µ(k) ≤ 0, ∀i,

so the corresponding random variables are non-increasing in the usual stochastic

order. Therefore, D(n) = EM̃ is non-increasing. See (1.A.7) of [53].
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In addition, since

lim
n→∞

Φ(
x −

√
n(µj − µ(k))

σj
) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Φ ( x
σj
) , µj = µ(k)

1, µj < µ(k)

lim
n→∞

φ(
x −

√
n(µi − µ(k))

σi
) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

φ ( x
σi
) , µi = µ(k)

0, µj < µ(k)

lim
n→∞

D(n,µ,σ) = lim
n→∞∫

∞

−∞
x

k

∑
i=1

[∏
j≠i

Φ(
x −

√
n(µj − µ(k))

σj
)]φ(

x −
√
n(µi − µ(k))

σi
)

1

σi
dx

= ∫

∞

−∞
x ∑
i∶µi=µ(k)

⎡
⎢
⎢
⎢
⎢
⎣

∏
j≠i,µj=µ(k)

Φ(
x

σj
)

⎤
⎥
⎥
⎥
⎥
⎦

φ(
x

σi
)

1

σi
dx

= C(σ̃),

where the components of σ̃ are those σi’s whose corresponding µi’s are equal to

µ(k). The second equality can be justified by the Monotone Convergence Theorem

since D(n,µ,σ) is monotonically decreasing in n.

By Theorem 1, the slope D(n) is non-negative, non-increasing with n and

hence non-decreasing with 1
n . Since our goal is to estimate the intercept of the

linear function, in other words, the limit of EM(n) when n → ∞, if we treat

D(n) as a constant, our estimator µ̂(k) underestimates the true highest expecta-

tion µ(k). The larger n, the closer D(n) to its limit, so using M(n) with larger n

in regression leads to lower bias. However, fewer data points brings higher vari-

ance, so there is a tradeoff between bias and variance over the number of data
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Figure 2.4: Regression method to estimate µ(k) when all σ2
i = 4 are equal

and µi are normally distributed with standard deviation equal
to 0.2, and µ(k) = 0. Here k = 1000 and n0 = 50. Only the last 25
data points are used for regression. The estimated µ̂(k) = −0.14.

points used for regression. A practical rule of thumb that has had reasonable

performance in our experiments is to use the second half of the data points, e.g.,

(M(n), n = 26,27, . . . ,50) for n0 = 50. An illustration is given in Figure 2.3, where

the estimated µ̂(k) = −0.22.

In our linear regression model, we use M(n) in place of EM(n). However,

using only one observation leads to high variance, especially for the case where n

is small. If we have more observations of M(n), we can obtain a better estimate

of EM(n) and hence make our estimation on µ(k) more reliable. Limited to the

sample size of the preliminary stage, we only have n0 samples for each system.

However, noticing that all the samples are generated independently and there is

no specified order, we can use bootstrapping, e.g., we can shuffle the samples by

randomly reordering them for each system to generate more data points M(n)’s
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for our regression, to make the estimation more stable. Denoting the number of

shuffles by nshuffle, for each j = 1,2, . . . , nshuffle, we randomly reorder the samples

for each system independently and compute the largest sample mean for the first

n samples M (j)(n), n = 1,2, . . . , n0. Define M̄(n) = 1
nshuffle

∑
nshuffle
j=1 M (j)(n). Using

M̄(n) instead of M(n) gives a more accurate estimator of EM(n) and hence a

more stable µ̂(k); see Figure 2.4.

The same idea applies to all of the ordered expectations µ(i), i = 1,2, . . . , k.

For each i, letting Mi = Mi(n) = X̄(i)(n) be the i-th smallest sample mean, its

probability density function is given by

∑
r∈R

[
i−1

∏
j1=1

Φ(
x − µr(j1)

σr(j1)/
√
n
)][

k

∏
j2=i+1

(1 −Φ(
x − µr(j2)

σr(j2)/
√
n
))]φ(

x − µr(i)

σr(i)/
√
n
)

1

σr(i)/
√
n
,

where R is the set of permutations of 1,2, . . . , k. Using the similar change of vari-

able y = x−µi
1/

√
n

, we get

EMi(n) = µ(i) +
Di(n)
√
n
,

Hence, we can estimate µ(i) with linear regression as we did for M =Mk, although

Di(n) is not necessarily monotone in n.

Unfortunately, µ̂(i), the estimate of the ith order statistics, may not be mono-

tonically increasing in i. Therefore, in practice we further process the estimates

µ̂(i) by taking µ̂M
(i) = maxj=1,...,i µ̂(j) to enforce monotonicity.

We are estimating the ordered means, so we want the variance of the differ-

ences between systems to be small. In practice we recommend using common

random numbers (CRN) for the initial stage to enhance the accuracy of the esti-
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Figure 2.5: Ordered expectations and the values of estimators. The red
curve is the true ordered means, the blue curve is the naive
estimator mi, the green curve is the regression estimator µ̂(i)
and the black curve is the linear combination estimator µ̃(i).
All σ2

i = 4 are equal and µi are independent and normally dis-
tributed with standard deviation equal to 0.2. Here k = 10000
and n0 = 50. The coefficient ρ = 0.48.

mation. When CRN is employed, in the shuffling step, instead of shuffling each

system’s replications independently, we shuffle the replications across all systems

together. More specifically, if Xj = (Xij ∶ i = 1,2, . . . , k), we randomly select from

X1,X2, . . . ,Xn0 .
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2.3.3 Convex Combination of Naive and Regression Estimators

As stated previously, µ̂(k) underestimates the true highest expectation µ(k). Sim-

ilarly, we can prove that µ̂(1) overestimates the true lowest expectation µ(1). In

general, intuitively and empirically, the estimated ordered expectations are con-

densed relative to the true configuration, which means that the estimated expec-

tations will be closer to each other than the true expectations.

On the other hand, mean-spreading tells us that the ordered sample means

are not condensed, but rather, spread out. That inspires us to combine these two

consistent estimators to construct a less biased estimator. Here we consider the

linear combination (LC) estimator

ν̂ = ρµ̂M + (1 − ρ)M ,

where ν̂ is our new estimator of the ordered expectations, µ̂M = (µ̂M
(1), . . . , µ̂

M
(k))

T

is the vector of the monotone regression estimators of the ordered expectations,

M = (M1(n0), . . . ,Mk(n0))
T is the vector of ordered sample means of the first n0

samples, and ρ is a coefficient. In order to find an appropriate value of ρ for given

vectors µ̂M and M , we want to be able to measure how close ν̂ is to the true or-

dered expectations, but these are unknown. However, we can take advantage of

the ordered sample means in the sense that if two expectation vectors are close,

then the ordered sample means they generate should also be close. For two or-

dered sample mean vectors x̄ and ȳ, we define the distance between them to be
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the L2 norm of their difference

∥x̄ − ȳ∥ = [
k

∑
i=1

(x̄(i) − ȳ(i))
2]

1/2

.

We enumerate ρ from 0 to 1 in steps of length 0.02 to find the best coefficient.

For each ρ, we first compute the corresponding ν̃, and generate ngen sample means

independently based on it, with the corresponding σ̂2
i/
√
n0 as variance, then com-

pute the average distance from those generated ordered sample means to the true

ordered sample meansM . In our experiments we set ngen = 100. Finally we select

the ρ that minimizes this value, and take the corresponding ν̃ as our final estima-

tor. As illustrated in Figure 2.5, comparing to the true ordered means, the naive es-

timator is more spread-out and the regression estimator is more condensed, while

the linear combination of these two estimators with optimal coefficient ρ = 0.4

appears to be very close to the true values.

One might be tempted to simply set ρ = 0.5, which may be more efficient. How-

ever, the optimal ρ can be close to 0 when the means of the systems are spread-out,

or close to 1 when the means of the systems are close to one another. In these cases,

setting ρ = 0.5 does not yield accurate predictions. In addition, as we will show in

numerical experiments, the time spent on predicting runtimes, including the time

spent calculating a good choice of ρ, is negligible compared to the total running

time of the R&S procedure.

Thus, we have a final estimator that appears to work much better than the

original naive estimator. The whole algorithm is summarized below.
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Estimation of the ordered expectations

1. Generate n0 samplesXij, j = 1,2, . . . , n0 from each system i = 1,2, . . . , k. Com-

pute X̄i(n0) and σ̂2
i for each i. Let Mi(n0) = X̄(i)(n0) and r(i) be the corre-

sponding index, i.e., Mi(n0) = X̄r(i)(n0).

2. For j = 1, . . . , nshuffle,

(a) For i = 1, . . . , k,

i. Shuffle Xij, j = 1, . . . , n0 and get X(j)
i` , ` = 1, . . . , n0, where ` is the

new index after shuffling.

ii. Compute X̄(j)
i (n) = 1

n ∑
n
`=1X

(j)
i` for n = 1, . . . , n0.

(b) Compute the ordered sample means M (j)
i (n) = X̄

(j)
(i) (n) for i = 1, . . . , k,

n = 1, . . . , n0.

3. Compute M̄i(n) =
1

nshuffle
∑
nshuffle
j=1 M

(j)
i (n) for i = 1, . . . , k, n = 1, . . . , n0.

4. Apply linear regression to calculate µ̂(i) using M̄i(n), n = ⌈n0

2 ⌉ + 1, . . . , n0, for

i = 1, . . . , k.

5. Enforce monotonicity by computing µ̂M
(i).

6. For ρ = 0,0.02, . . . ,1,

(a) Compute ν̂ = ρµ̂M + (1 − ρ)M .

(b) For j = 1, . . . , ngen,

i. Generate Ȳi ∼ N (ν̂i, σ̂2
r(i)/

√
n0) for i = 1, . . . , k, independently.
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ii. Compute Dj(ρ), the L2 distance between (Ȳ(1), Ȳ(2), . . . Ȳ(k))
T and

M = (M1(n0),M2(n0), . . . ,Mk(n0))
T .

(c) Compute the average L2 distance D(ρ) = 1
ngen

∑
ngen
j=1 Dj(ρ).

7. Find ρopt = argminρD(ρ) and let ν̂ = ρoptµ̂M + (1 − ρopt)M be our estimate

of the ordered true means. The estimate of the corresponding variances is

(σ̂2
r(1), σ̂2

r(2), . . . , σ̂2
r(k))

T .

2.3.4 Statistical Properties of The Estimators

In this section we give some theoretical support for the estimators. Specifically, we

establish consistency and identify the rate of convergence of the naive estimator

Mi(n0), the regression estimator µ̂(i) and hence the LC estimator ν̂i. For simplic-

ity, we analyze simpler forms of the estimators that exploit neither the shuffling

of samples for generating more data points, nor the enforcing of monotonicity. In

proving these results, we relax the normality assumption, since the results hold

more generally. To simplify indexing notation, in this section we assume, unbe-

knownst to our procedure, that µ1 ≤ µ2 ≤ ⋯ ≤ µk. We impose different subsets of

the following conditions in the results to follow.

A0 Means are unique: µ1 < µ2 < ⋯ < µk.

A1 Sequences are iid with finite mean: Xi = (Xij ∶ j ≥ 1) is an i.i.d. sequence with

finite mean µi, for each i = 1, . . . , k.

35



A2 Finite second moments: E(X2
i1) < ∞, so that the variance, σ2

i , is finite, i =

1,2, . . . , k.

A3 Finite fourth moments: E(X4
i1) <∞, i = 1,2, . . . , k.

A4 Mutual independence: X1,X2, . . . ,Xk are independent.

Proposition 1. Fix i ∈ {1,2, . . . , k}. If A0, A1 hold, then the naive estimator Mi(n) is a

strongly consistent estimator of µi, for each i = 1,2, . . . , k. If A0–A2 hold, then we have

the central limit theorem

√
n(Mi(n) − µi)⇒ σiN(0,1)

as n→∞. If A0–A3 hold, then the mean squared error of Mi(n) is O(n−1).

Notice that we assume neither normality nor mutual independence; the result

is more general, and covers these special cases. The assumption of finite fourth

moments for the mean-squared error result is potentially stronger than needed,

but permits a straightforward proof, and is standard; see, e.g., [20]. Here we as-

sume the uniqueness of means, A0, but we relax that condition in Proposition 2

in the appendix, leading to qualitatively similar results that are more complicated

to establish. For example, the limiting distribution in the central limit theorem

changes.

PROOF. Let X̄i(n) = n−1∑
n
j=1Xij be the nth sample mean from System i. This

does not necessarily equal Mi(n), since Mi(n) is the ith smallest sample mean.

These two quantities agree on the event, Bi(n) say, where X̄i(n) is the ith smallest
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of the sample means X̄1(n), . . . , X̄k(n), i.e., it is ranked correctly, and may differ

otherwise.

To establish consistency, the strong law of large numbers and the fact that k is

finite ensure that maxkq=1 ∣X̄q(n) − µq ∣ → 0 as n → ∞ a.s. Hence, since the µqs are

unique, the event Bi(n) occurs eventually a.s., i.e., there exists a (random) N such

that for all n ≥ N , Bi(n) occurs a.s. Moreover, on the event Bi(n), Mi(n) = X̄i(n).

To establish the central limit theorem, let 1(B) denote the indicator of the event

B that equals 1 on the event and 0 otherwise. As noted above, 1(Bi(n)) = 1

for sufficiently large n (for n ≥ N ) a.s., so that the indicator of the complement,

1(Bc
i (n)) = 0 for n ≥ N a.s.. Define Ei(n) =

√
n (Mi(n) − µi). Then

Ei(n) =
√
n(X̄i(n) − µi)1(Bi(n)) +Ei(n)1(B

c
i (n)),

and the result now follows from the ordinary central limit theorem and Slutsky’s

theorem.

To establish the mean-squared error result, we write

Ei(n) =
√
n(X̄i(n) − µi) +

√
n(Mi(n) − X̄i(n))1(B

c
i (n)).

The inequality (a + b)2 ≤ 2a2 + 2b2 gives

E(Ei(n)
2) ≤ 2nE(X̄i(n) − µi)

2 + 2nE [(Mi(n) − X̄i(n))
2
1(Bc

i (n))] . (2.1)

The first term in (2.1) equals 2σ2
i . For the second term, the Cauchy-Schwarz in-

equality, together with the fact that Mi(n) is equal to XJ(n) for some (random) J
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gives

2nE [(Mi(n) − X̄i(n))
2
1(Bc

i (n))]

≤ 2nE [(Mi(n) − X̄i(n))
4
]

1/2
P(Bc

i (n))
1/2

≤ 2n(∑
j≠i

E [(X̄j(n) − X̄i(n))
4
]

1/2
)(∑

j>i
P(X̄j(n) − X̄i(n) < 0) +∑

j<i
P(X̄j(n) − X̄i(n) > 0))

1/2

.

We used the fact thatBc
i (n) ⊆ {⋃j>i{X̄j(n) − X̄i(n) < 0} ∪⋃j<i{X̄j(n) − X̄i(n) > 0}}.

The term E [(X̄j(n) − X̄i(n))
4
], by direct calculation, is O(1). Chebyshev’s in-

equality applied to the remaining terms yields the bound

2nO(1)(∑
j≠i

var (X̄j(n) − X̄i(n))

(µj − µi)2
)

1/2

= 2nO(1)(∑
j≠i

var (Xj −Xi)

n(µj − µi)2
)

1/2

= O(1),

concluding the proof.

Turning now to the regression estimator, let xj = j−1/2 and yj =Mi(j) for j ≥ 1.

Assume that n is even, for notational simplicity. Define

x̄ =
1

n/2

n

∑
j=n/2+1

xj,

so that x̄ is a mean of the xj values. Similarly, define ȳ, xy and x2, so that, for

example,

xy =
1

n/2

n

∑
j=n/2+1

xjyj.
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The regression estimator is the y intercept of the estimated regression line, and

can thus be written as

µ̂i(n) =
x2ȳ − x̄xy

x2 − x̄2
. (2.2)

Theorem 2. Fix i ∈ {1,2, . . . , k}. If A1 holds, then the regression estimator µ̂i(n) is a

strongly consistent estimator of µi as n → ∞. If A0-A2 hold, then it satisfies the central

limit theorem
√
n(µi(n) − µi)⇒ ηN(0,1),

where the variance constant η2 is approximately 8.4144σ2
i . If A1-A3 hold then its mean

squared error is O(n−1).

We assume uniqueness of the means to establish the central limit theorem be-

cause the argument is involved; we conjecture that a version of the central limit

theorem holds without that assumption.

PROOF. To establish consistency, write

µ̂i(n) = ȳ +
x̄2(xy/x̄ − ȳ)

x2 − x̄2
. (2.3)

From Proposition 2 in the appendix, we know that under A1,Mi(n)→ µi as n→∞

a.s. It immediately follows that ȳ → µi and xy/x̄ → µi as n → ∞ a.s. For two real-

valued sequences (an ∶ n ≥ 1) and (bn ∶ n ≥ 1) we write an ∼ bn if an/bn → 1 as
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n→∞. Approximating sums by integrals,

x̄ =
2

n

n

∑
j=n/2+1

j−1/2 ∼
2

n ∫
n

n/2
x−1/2 dx =

β1
√
n
,

x2 =
2

n

n

∑
j=n/2+1

j−1 ∼
β2

n
,

x2 − x̄2 ∼
β3

n
, and

x̄2

x2 − x̄2
∼ β2

1/β3,

where the constants β1 = 4− 2
√

2, β2 = 2 ln(2), and β3 = β2 −β2
1 . These observations,

together with the representation (2.3), yield consistency.

We prove the mean-squared error result before the central limit theorem. Re-

call that we defined Ej so that yj = µi +
Ej√
j
. Using this definition in (2.2),

µ̂i(n) =
x2ȳ − x̄xy

x2 − x̄2

=
x2 [µi +

2
n ∑

n
j=n/2+1 j

−1/2Ej] − x̄ [x̄µi +
2
n ∑

n
j=n/2+1 j

−1Ej]

x2 − x̄2

= µi +
n

∑
j=n/2+1

2x2j−1/2 − 2x̄j−1

n(x2 − x̄2)
Ej

= µi +
n

∑
j=n/2+1

cn,jEj, (2.4)

where cn,j = O(n−3/2) using the order-of-magnitude results above.

Thus, using the fact that E(E2
n) = O(1) from (A.1) in the proof of Proposition 2
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in the appendix, (2.4) yields

E[(µ̂i(n) − µi)
2] = E

⎡
⎢
⎢
⎢
⎢
⎣

n

∑
j=n/2+1

cn,jEj

⎤
⎥
⎥
⎥
⎥
⎦

2

= O(1)
n

∑
j=n/2+1

n

∑
m=n/2+1

cn,jcn,m

= O(1)O(n2)O(n−3)

= O(n−1)

giving the mean-squared error result.

Turning to the central limit theorem, by consistency and the fact that the means

are assumed unique, there exists (random)N such that for all j ≥ N ,Mi(j) = X̄i(j).

Thus, 1(n/2 ≥ N) converges to 1 almost surely, and (2.4) gives

√
n(µ̂i(n) − µi) = 1(n/2 ≥ N)

√
n

n

∑
j=n/2+1

cn,jEj + 1(n/2 < N)
√
n(µ̂i(n) − µi).

The second term in this expression is eventually equal to 0 and the indicator in

the first expression is eventually equal to 1. It therefore suffices to focus attention

on the summation in the first expression. Moreover, on the event {n/2 ≥ N},

Ej =
√
j(X̄i(j) − µi) for j ≥ n/2, and then (on that event),

√
n

n

∑
j=n/2+1

cn,jEj =
n

∑
j=n/2+1

cn,j
√
nj(X̄i(j) − µi)

=
n

∑
j=n/2+1

cn,j
√
n/j

j

∑
m=1

(Xi(m) − µi)

=
n

∑
m=1

⎛

⎝

n

∑
j=max(n/2+1,m)

cn,j
√
n/j

⎞

⎠
(Xi(m) − µi)

=
n

∑
m=1

an,m(Xi(m) − µi)
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for appropriately defined constants an,m, where we changed the order of summa-

tion in the second-to-last step. We can now apply the Lindeberg-Feller Central

Limit Theorem; see, e.g., Theorem 27.2 of [5]. Verifying the Lindeberg condition is

straightforward; it follows exactly the same lines as the discussion of (27.9) in that

text. The central limit theorem we desire therefore follows using the magnitude

of the constants an,m that we determine next, and has variance given by

σ2
i lim
n→∞

n

∑
m=1

a2
n,m. (2.5)

It remains to obtain the expression for the variance. To that end,

an,m =
n

∑
j=max(n/2+1,m)

cn,j
√
n/j

= 2
√
n

n

∑
j=max(n/2+1,m)

x2j−1 − x̄j−3/2

n(x2 − x̄2)

∼
2
√
n

β3

n

∑
j=max(n/2+1,m)

(β2n
−1j−1 − β1n

−1/2j−3/2).

Using an integral to asymptotically approximate the sum shows that for m ≤ n/2,

an,m ∼
2β2 ln(2) − 4β1(

√
2 − 1)

β3

√
n

=
β4
√
n
,

and for m > n/2,

an,m ∼
2

β3

√
n
(β2 ln(n/m) − 2β1 (

√
n/m − 1)) .

We now use an integral once more to obtain the asymptotic form of (2.5). This

step involves considerable but tedious algebra. A symbolic manipulator yields

the expression

σ2
i [−512

√
2 + 2208

√
2 ln2

(2) − 904
√

2 ln3
(2) + 80

√
2 ln4

(2) + 2688 ln2
(2) − 1392 ln3

(2)

+ 84 ln4
(2) − 4 ln5

(2) − ln(2)(384
√

2 − 256) − 1024]/(ln2
(2) − 24 ln(2) + 16)2,
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which evaluates to 8.4144σ2
i .

The observation in Theorem 2 that the asymptotic variance of the regression es-

timator (that appears in the central limit theorem) is larger than that of the naive

estimator should not be too surprising. Indeed, the regression estimator is de-

signed to combat the bias in the naive estimator, and bias-reduced estimators usu-

ally entail increased variance. Moreover, the regression estimator is essentially a

weighted average of the samples, and with non-uniform weights one would ex-

pect an increase in variance. The fact that the asymptotic variance only involves

σ2
i and not the variance of the other systems is natural; the asymptotic analysis

depends on the fact that asymptotically the systems are correctly ordered by their

sample means, and on that event the regression estimator is based only on sam-

ples from the ith system.

The LC estimator is a convex combination of the naive and linear regression es-

timators, where the weight ρ is random and is obtained from the same data used

to construct the estimators. Accordingly, the results for consistency and mean-

squared error are easily established. If the estimate of ρ converges a.s. as the sam-

ple size goes to infinity, as would be the case if it is fixed at the outset for example,

then a central limit theorem for the LC estimator can also be established [51], but

we don’t provide that result since it is a straightforward extension of the results

we have established.

Corollary 1. Under A1, the LC estimator ν̂i is a strongly consistent estimator of µi.

Under A1-A3, its mean-squared error is O(n−1).
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Table 2.1: Problem configurations used in numerical experiments.

Name Expectation Variances

Slippage Configuration (SC) µ = [δ,0, . . . ,0] σ2
i = σ

2 = 4

SC, increasing variances (SC-INC) µ = [δ,0, . . . ,0] σ2
i = (1 + 2i

k )
2

SC, decreasing variances (SC-DEC) µ = [δ,0, . . . ,0] σ2
i = (3 − 2i−2

k )2

Monotone decreasing means (MDM) µi = −δ(i − 1) σ2
i = σ

2 = 4

MDM, increasing variances (MDM-INC) µi = −δ(i − 1) σ2
i = (1 + 2i

k )
2

MDM, decreasing variances (MDM-DEC) µi = −δ(i − 1) σ2
i = (3 − 2i−2

k )2

Random problem instances 1 (RPI1), µi ∼ N (0,4δ2), i.i.d. σ2
i = σ

2 = 4

Random problem instances 2 (RPI2), µi ∼ N (0,25δ2), i.i.d. σ2
i = σ

2 = 4

RPI, heterogeneous variances (RPI-HET), µi ∼ N (0,25δ2), i.i.d. σ2
i = (1 + 2i

k )
2

2.4 Numerical Experiments

In this section we demonstrate the performance of our estimates of the simula-

tion budget as measured through the total number of samples. We use three ef-

ficient R&S procedures: the KN procedure [36] , the Bayes-inspired indifference

zone (BIZ) procedure [18] and the Good Selection Procedure (GSP) [47]. The KN

procedure is highly influential and might be considered the state-of-the-art for in-

difference zone R&S [6]. It compares all pairs of systems and eliminates inferior

ones when certain random walks leave a triangular continuation region, until one
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system remains. The BIZ procedure has a tight worst-case preference-zone PCS

bound for the known-variance case, and is empirically more efficient than KN on

a variety of problems. The GSP is designed for a parallel computing environment,

and it provides a PAC guarantee. Since we are only using the samples taken in

the preliminary stage for simulation budget prediction, those samples are reused

as initial samples in the R&S procedures. All the source code for our experiments

is available in the open-source repository [42].

2.4.1 Comparison of Naive Estimation and Linear Combination

Estimation

We demonstrate the difference in performance of the naive estimator and LC esti-

mator on 9 standard test configurations: SC, SC-INC, SC-DEC, MDM, MDM-INC,

MDM-DEC, RPI1, RPI2, RPI1-HET, with three problem sizes: k = 100,500,2000.

These test configurations (and their acronyms) are described in Table 2.1. For all

configurations and problem sizes, the indifference zone constant δ = 0.1 and the

confidence level 1−α = 0.95. We compare and illustrate the accuracy of the estima-

tors by the ratios of the estimator and the true value of the total number of samples

N . The results do not show significant difference between the three procedures,

BIZ, KN and GSP, so we only visualize the results for BIZ through histograms of

the ratios under different configurations with different k, as shown in Figure 2.6,

2.7 and 2.8. The results in the histograms come from the simulation of the simulation
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Figure 2.6: Histogram of ratios between estimation and true value of N .
Test on BIZ under the following configurations: SC (row 1);
SC-INC (row 2) and SC-DEC (row 3) with k = 100 (column 1);
500 (column 2) and 2000 (column 3).

process approach. The average ratio for all procedures and both first-order estimate

and simulation of the simulation process approaches are given in Tables ?? and ?? in

the appendix.

For the slippage configurations in Figure 2.6, the LC estimator performs con-

sistently much better than the naive estimator. We see that we usually under-
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Figure 2.7: Histogram of ratios between estimation and true value of N .
Test on BIZ under the following configurations: MDM (row
1); MDM-INC (row 2) and MDM-DEC (row 3) with k = 100
(column 1); 500 (column 2) and 2000 (column 3).

estimate the number of samples, perhaps because the slippage configuration is

difficult to recover. However, there is still a huge difference between the perfor-

mances of the naive estimator and linear combination estimator. The LC estimator

can achieve around 70% accuracy (the ratio of the estimator to the true value), and

so we expect that it can get the correct order of magnitude, which is enough for

determining the number of cores or how much computing resource is needed in
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Figure 2.8: Histogram of ratios between estimation and true value of N .
Test on BIZ under the following configurations: RPI1 (row 1);
RPI2 (row 2) and RPI-HET (row 3) with k = 100 (column 1); 500
(column 2) and 2000 (column 3).

practice. In comparison, the value of the naive estimator is usually around 10% to

20% of the true value, and that can result in an incorrect order of magnitude.

For monotone decreasing means configurations in Figure 2.7, both estimators

perform well. The reason is that the means are already very clearly separated, so

the “mean-spreading” phenomenon is not severe in this case. In practice, we ex-
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pect that both estimators should have good performance for configurations with

spread-out means.

For the random problem instances in Figure 2.8, the LC estimator has a good

performance as well while the naive estimator sometimes diverges from the truth.

In those random instances when there are many good systems not too far away

from the best, the LC estimator is still able to recover the original configuration,

while the naive estimator might be confused. The ratios between the LC estimator

and the true values are usually between 0.8 and 1.2, especially for large k. In

comparison, the naive estimator tends to underestimate.

In practice, we rarely see a real-world problem that is as difficult as the slip-

page configuration. Usually the means are more spread out than the slippage

configuration but more condensed than the MDM configuration. In general, the

LC estimator should be able to accurately reflect the true configuration without

being too “optimistic” or “pessimistic” about the running time.

The LC estimator performs better when k is large for condensed configurations

(SC family and RPI1), since with more information provided by more systems, it

is able to more accurately estimate the configuration. This is desirable since we

mainly focus on large-scale problems.

As shown in Table ??, the estimations obtained with the first-order approach

are similar to those obtained with the simulation approach, and also have good

performance.
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2.4.2 An Illustrative Problem

In this section we test our estimation of total number of samples on the

“throughput-maximization” problem taken from SimOpt.org [23]. In this prob-

lem, we want to solve

max
x

E [g(x; ξ)]

s.t. r1 + r2 + r3 = R

b1 + b2 = B

x = (r1, r2, r3, r4, r5) ∈ {1,2, . . .}5

where the function g(x; ξ) represents the random throughput of a three-station

flow line with finite buffer storage in front of Stations 2 and 3, denoted by b2 and

b3 respectively, and an infinite number of jobs in front of Station 1. The processing

times of each job at stations 1, 2, and 3 are independently exponentially distributed

with service rates r1, r2 and r3, respectively. The overall objective is to maximize

expected steady-state throughput by finding an optimal (integer-valued) alloca-

tion of buffer and service rates. The warm-up period consists of 2000 released

jobs starting from an empty system and the average throughput is then computed

based on the time required for the following 10 jobs. For further details of this

problem, see [23].

For our test, we set R = B = 20, so that k = 3249, and we set α = 0.05 and

δ = 0.1. It takes 0.008 seconds to get one simulation sample on average, and there

is no significant difference in simulation time between different systems. We test
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Table 2.2: Means and standard deviations of the ratios of estimation to the
true value of the sample sizes for the illustrative problem

n0

KN BIZ GSP

mean std mean std mean std

10 0.78 0.14 1.41 0.21 0.79 0.18

20 0.82 0.11 1.49 0.17 0.63 0.17

50 0.81 0.08 1.28 0.11 0.67 0.17

Table 2.3: Means and standard deviations of the true sample sizes for the
illustrative problem (×105, 2 significant figures)

n0

KN BIZ GSP

mean std mean std mean std

10 21 1.5 1.9 0.15 180 21

20 13 1.4 2.1 0.10 68 7.0

50 12 0.7 2.9 0.15 41 5.1

our estimation for all three procedures: KN, BIZ and GSP with simulation-of-the-

simulation-process approaches. To find out the impact of the initial sample size n0

on the accuracy of the prediction and the computational effort of the prediction,

we tried n0 = 10,20 and 50 for all cases.

The ratios of estimates and true values are given in Table 2.2. All of the esti-
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Table 2.4: Average total running time for the R&S procedure and for the
prediction of running time for the illustrative problem (seconds,
2 significant figures)

n0

KN BIZ GSP

R&S predicting R&S predicting R&S predicting

10 1000 7.3 140 1.4 7800 1.7

20 630 9.1 140 1.7 2800 2.0

50 610 12 200 2.1 1700 2.4

mates are reasonably accurate, suggesting that the estimation procedure is practi-

cal. Further, for different values of n0, the results show that there is no significant

change in the accuracy of the prediction for this problem as n0 varies. Table 2.3

gives statistics on the total sample size required by each of the procedures as n0

varies. As n0 increases, the total sample size increases only for BIZ, and not by

a huge amount, though certainly by a nontrivial amount. For the other proce-

dures, the sample size decreases, due to a more confident prediction of the system

variances that is exploited in the procedures. (BIZ uses a heuristic to handle esti-

mated variances.) This suggests that the recommendation for R&S algorithms of

using n0 on the order of 10 or 20 is only a rule of thumb, and other choices may

be better. Taking n0 larger is useful, though not essential, for our regression-based

estimation procedure. The choice of n0 = 50 seems reasonable in general.

The computational time spent running the R&S procedure and in predicting
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the necessary simulation budget is given in Table 2.4. For all procedures, the time

spent on simulations dominates, with the predictions requiring at most a few per-

cent of the time spent running simulations. This model is very simple and getting

one replication takes only milliseconds. For more complicated models the ratio

between the length of the time for making the prediction and for running the R&S

procedure would be even smaller. We conclude that our predictions introduce

negligible overhead.

We conclude this section by providing a sense of how the predictions can be

used to select the number of cores in a parallel implementation. In doing so we

use the mean sample size information in Table 2.3 as if they were the predictions of

the simulation budget, and the running-time information in Table 2.4 as if it gave

the predicted running time obtained by scaling the predicted simulation budgets

by average computational time obtained in the prediction stage. Of course, this

means we are using actual running time values rather than the predictions in our

explanation, which we do simply because it means we need not provide addi-

tional information on the predictions; the decision process is the same. The deci-

sion process is simply to choose the number of cores, c say, so that the total compu-

tation time divided by c is on the order of the desired wall-clock computation time.

An additional check is that the total number of simulation replications needed is

large enough relative to c that one would expect a well-implemented R&S pro-

cedure to be able to efficiently distribute the computation across the cores. If the

number of replications per core is too small, e.g., less than a few hundred, then

we should be cautious of the heuristic of dividing total computation by available
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cores, which assumes perfect utilization of cores.

The running-times in Table 2.4 for n0 = 50 (our proposed choice of n0) sug-

gest that both KN and GSP will be time-consuming, requiring on the order of

600 seconds and 1700 seconds of computation respectively. If we want the R&S

procedure to conclude within, say, one or two minutes, then we would require

on the order of 10 cores and 30 cores for the two procedures, respectively. The

number of needed replications (from Table 2.3 is so large that one expects a well-

implemented R&S procedure to be able to efficiently use the cores, so we expect

that the procedures would be very likely to finish within two minutes. Similarly, if

one wanted to finish within a few seconds, then we’d instead need on the order of

600 cores and 2000 cores for the two procedures, respectively. KN requires on the

order of 1.2 million replications overall, again suggesting that the recommended

number of cores (600) could be efficiently used. This would not be the case if we

wanted to finish in a small fraction of a second, however, since then the number

of replications per core gets so low that one expects synchronization issues and

the like to play a role.

Of course, the running time for generating a single replication of this simple

example is very small, so the order of the predictions above are modest. For more

complex simulation models where the predictions of total computation time are

on the order of days (on a single core), the prediction tools outlined in this chapter

become more important and relevant. This is especially the case in some cloud-

computing settings where the setup time at the start of a computation can be on
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the order of minutes. (Our simple heuristic for estimating wall-clock running

times ignores setup). In such settings, for wall-clock computation targets that are

on the order of days or more, our procedure is highly relevant and worthwhile.

2.5 Conclusions

In this chapter, we explored the problem of predicting the simulation budget of

R&S procedures, which is important when dealing with large-scale problems. We

presented two approaches for estimating the total number of samples needed for

a R&S procedure to terminate, both of which rely on the estimation of the problem

configuration, which is not trivial. We develop a linear combination estimator that

exhibits excellent performance in a realistic setting, and reasonable performance

even in the slippage configuration. Experimental results for both synthetic test

problems and a realistic problem together suggest that our approach is effective

and sufficient for application.
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CHAPTER 3

A SEQUENTIAL SELECTION PROCEDURE DELIVERING A

PROBABLY-APPROXIMATELY-CORRECT SELECTION USING

CONFIDENCE BANDS

An important class of R&S procedures, indifference-zone (IZ) procedures, provide

a certain statistical guarantee on the quality of the selected system. Frequentist

IZ procedures originated with [2] and are well studied; see, e.g., [49, 52, 36, 24,

18]. They guarantee to select the unique best system with at least a prescribed

probability of correct selection (PCS), assuming that the difference between the

best and all others is sufficiently large. To be more precise, let µi denote the true

performance (usually an expectation) of the ith system. For notational simplicity,

suppose that, unknown to the R&S procedure, the systems are indexed so that

µ1 ≤ µ2 ≤ ⋯ ≤ µk, so that System k is the best. A R&S procedure provides a PCS

guarantee at level α if

P(I∗ = k) ≥ 1 − α, if µk − µk−1 > δ,

where I∗ is the (random) index of the selected system, the parameter δ is called the

indifference-zone parameter, and 1 − α is the confidence level. It is natural to re-

quire 1−α > 1/k, since otherwise the procedure is no better than random guessing.

Therefore throughout the chapter we assume that α < 1 − 1/k, i.e., α is bounded

away from 1 for fixed k. The IZ guarantee only holds when the difference between

the best and second-best systems is greater than δ; nothing is guaranteed other-

wise. A stronger form of guarantee that holds for any configuration of means, and
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that also implies a PCS guarantee when µk − µk−1 > δ, is probably approximately

correct (PAC) selection, which is also referred to as a probability of good selection

(PGS) guarantee in, e.g., [46, 47]. It guarantees, with high probability, to select a

system whose performance is not too far away from that of the best system, i.e.,

that

P(µI∗ > µk − δ) ≥ 1 − α,

irrespective of the gap between the best and the other systems. R&S procedures

that provide PAC guarantees are far less prevalent than those providing PCS guar-

antees, perhaps due to the difficulty in establishing such guarantees; see [15] for a

survey.

In this chapter we present the Envelope Procedure (EP), a fully sequential pro-

cedure providing a PAC guarantee. The EP repeatedly takes samples from sys-

tems based on an adaptive sampling rule until a stopping criterion is met. In

contrast to elimination-based sequential procedures, e.g., [36, 24, 18], all systems

remain in contention until the stopping rule is met, although systems that do not

appear to be competitive will be sampled infrequently. The stopping rule of EP is

the main factor in ensuring the PAC guarantee, and it affords considerable flexi-

bility in designing the sampling rule. Thus, the EP is really a family of procedures,

where the stopping rule is universal but the sampling rule can vary from one pro-

cedure to another.

The PAC guarantee of EP is based on the construction of confidence bands.

The idea of using confidence bands in R&S procedures is not new. For example,
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this idea is also adopted in [39, 40]. A clear difference is that both of those papers

consider pairwise differences between systems, while the EP considers events for

each single system one at a time, and the methods for constructing confidence

bands here are different. To calculate the parameter that determines the width of

the bands, and hence the confidence on the quality of the final selection, essen-

tially we need to evaluate the exit probability of a Brownian Motion from certain

continuation regions. Computing such probabilities for general regions is math-

ematically intractable, so we give both bounds and Monte Carlo schemes for our

particular choice of continuation region.

In R&S literature, computational efficiency is usually only demonstrated

through simulation experiments. We go further by providing an analysis of the

sample complexity of the EP. The analysis gives a high-probability upper bound

on the total sample size, which helps us better understand the procedure and the

underlying difficulty of problem instances. Intuitively, it is hard to distinguish a

system from the best one if the difference between their means is small. However,

when the difference is smaller than δ there is no need to precisely capture the dif-

ference because of our focus on PAC selection. In addition, the problem is difficult

if the levels of the noise are high, i.e., the variances are large. Given this intuition,

we define a measure of the complexity of a given problem by

Hδ =
k

∑
i=1

(
σi

max(∆i, δ)
)

2

,

where ∆i = µk−µi, and σ2
i is the variance of an observation from the ith system. We

provide an explicit relationship between the sample complexity of the EP (with a
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specific choice of sampling rule) and Hδ.

To complement this complexity result of the EP, we provide a nearly match-

ing lower bound on the sample complexity that any PAC procedure must satisfy.

These upper and lower bounds allow us to conclude that the EP is optimal (from

a complexity standpoint that ignores multiplicative constants) up to a logarithmic

factor. Related results exist in both the R&S and MAB settings; our lower bound

extends a bound in [30] that applies in the IZ setting for a very restricted class of

selection procedures. Our result is inspired by a related result in [44] that provides

a lower bound for Bernoulli MAB models. [35] gives a general lower bound for

the case δ = 0.

The sampling and stopping rules of the EP require negligible computational

effort relative to that expended on obtaining simulated samples. This is not al-

ways the case for R&S procedures. For example, the screening time of some fully

sequential R&S procedures such as [37] and [24] isO(k2), where k is the number of

systems, since these procedures require pairwise comparisons between surviving

systems. (Some recent work [25] reduces the work in pairwise comparisons to an

O(k) operation for the KN procedure, but the ideas do not extend to all R&S pro-

cedures.) As stated in [47], this screening time can become prohibitive when k is

large, especially when R&S procedures are implemented in a parallel computing

environment where large k is the norm.

In addition to a complexity analysis, the EP also has strong performance in

computational experiments. Our experiments demonstrate that, across various
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problem configurations, EP is more efficient than KN [36], broadly considered a

state-of-the-art IZ R&S procedure. Comparing to BIZ [18], an IZ procedure that

has a tight lower-bound on PCS for the so-called slippage configuration, EP shows

considerable reductions in sample size for configurations with spread-out expec-

tations, especially for larger-scale problems. If we compare EP with KN and BIZ

in terms of empirical, i.e. realized, PAC, instead of the lower bound on PAC used

to select procedure parameters, EP is even more impressive. Inspired by the gap

between the empirical PAC and its lower bound, we develop a heuristic version

of the EP that is more efficient than the original EP and the competitor procedures

we have tried.

As stated above, the EP is a R&S algorithm and is perhaps best viewed as a

contribution to that line of research. Much has been done in this area, dating

back to the seminal works of [2] and [22]. See [26, 9] for context, [38] for an in-

troduction to the principles underlying many R&S procedures and, for book-level

treatments, see [4, 21]. We also view the EP as a contribution to the best-arm

identification problem in the exploratory multi-armed bandit (MAB) setting. That

work traces its origins to [3] and [49]. Though the algorithms designed for the

pure exploration MAB problems usually have different assumptions on the simu-

lation outputs, e.g., bounded outputs [16] or sub-Gaussian (with a known bound

on the scale parameter) outputs [28], the essence of the problems are quite similar.

Both R&S problems and pure exploration MAB problems focus on finding the best

system (arm) at the end of the procedure, rather than tracking the performance of

the arms explored during the exploratory phase as is done in so-called (online)
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regret settings. In [29], best-arm algorithms are divided into three classes: action

elimination (AE), UCB and LUCB. Though the EP does not strictly belong to any

of these classes, its underlying design is inspired by a mixture of them. Thus,

we regard this work as a bridge connecting the R&S literature and the best-arm

literature.

The rest of the chapter is organized as follows. In §3.1 we formally introduce

the formulation and the assumptions of the problem. The EP for the case of known

variances is presented in §3.2, in which we describe the procedure, introduce two

sampling rules, analyze the statistical validity and sample complexity of the pro-

cedure theoretically, and discuss the computation of the parameter η. In §3.3 we

discuss the EP for the case of unknown variances in a similar fashion. In §3.4 we

present our lower bound on the complexity of any PAC procedure. Then we sum-

marize results from simulation experiments in §3.5, followed by conclusions in

§3.6. Two appendices contain an alternative sampling strategy and several sup-

porting results.

3.1 Problem Formulation

Let S = {1,2, . . . , k} be a set of k systems. Each system i ∈ S is associated with its

own simulation model, from which we can generate a sequence of iid real-valued

replications Xi1,Xi2, . . . For each i ∈ S , let µi = EXi1 be the associated mean, which

we assume to be finite. For simplicity of notation, and without loss of generality,
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we assume that the systems are indexed so that µ1 ≤ µ2 ≤ ⋯ ≤ µk. Naturally the

decision maker should not be aware of, nor exploit, this indexing.

Throughout this chapter we adopt Assumptions A0 and A1 below. This rules

out the use of common random numbers, for example. We selectively adopt As-

sumption A2 (commonly assumed in the best-arm literature), or A3 (commonly

assumed in the R&S literature).

A0 Sequences of i.i.d. samples: Xi = (Xij ∶ j ≥ 1) is an i.i.d. sequence with finite

mean µi, ∀i ∈ S .

A1 Independent systems: The sequences X1,X2, . . . ,Xk are independent.

A2 Sub-Gaussian: ∀t ∈ R, E[exp (t(Xij − µi))] ≤ exp (σ2
i t

2/2), ∀ı ∈ S .

A3 Gaussian: Xij is normally distributed with mean µi and variance σ2
i , i.e.,

Xij ∼ N (µi, σ2
i ), ∀i ∈ S .

For any δ > 0, System i is said to be δ-optimal if its mean is within δ of the

best, i.e., µi > µk−δ, where System k is a best system by our notational convention.

A R&S algorithm draws samples from the systems, potentially adaptively based

on the samples obtained so far, and terminates and returns a selected system I∗ ∈

S . A R&S algorithm is defined to be a Probably Approximately Correct (PAC)

algorithm for given parameters δ > 0, α ∈ (0,1) if it 1) always terminates in finite

time, and 2) returns a δ-optimal system with probability at least 1 − α, i.e.,

P(µI∗ > µk − δ) ≥ 1 − α.
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Our goal is to devise, for any given δ > 0, α ∈ (0,1), a PAC algorithm, under the

assumptions A0, A1 and A2.

3.2 Known σ2σ2σ2 Envelope Procedure

The Envelope Procedure (EP) is a sequential procedure, which means that it takes

actions in rounds. In each round t, it either takes samples from a subset of the

systems based on the observed samples up to that point, or terminates and returns

the selected system. We denote the total number of samples of System i prior to

round t as ni(t), and the number of samples to take from System i in round t as

mi(t), so ni(t + 1) = ni(t) +mi(t), where ni(0) = n0, i = 1,2, . . . , k is the number of

samples to take from each system in the initial stage. We let X̄i(n) = 1
n ∑

n
j=1Xij

denote the sample mean of the first n samples of System i.

The key elements of the algorithm are the stopping rule and the sampling rule.

The former is a mapping from the observed samples to the decision between con-

tinuation and termination, and the latter is a mapping from the observed samples

to the allocation of new samples to draw from the systems. The EP accommodates

a variety of sampling rules, since the validity (the PAC guarantee) does not rely

on the specific choice of it. The sampling rule determines the efficiency of the al-

gorithm. We will also introduce two specific sampling rules in this section. We

call our algorithm the Envelope Procedure because for each system we consider a

random walk inside an Envelope: between the upper and lower confidence bound,
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up to a determined time point.

In many scenarios, we can assume that the σ’s have known bounds, e.g., the

samples are Bernoulli distributed, the support of the distribution is bounded, or

there is some known upper bound of the variances. (The scale parameter σ is an

upper bound of the standard deviation of the distribution, which is proved in [8].)

Here we introduce KEP, the EP with known σ, and later on we will extend the

algorithm to the unknown σ version.

3.2.1 The Procedure

KEP

1. Setup. Let a = 1 − (1 − α)1/k. Compute η, such that

P (Wn ≤ η
√
n, ∀n = 1,2, . . . ,N) ≥ 1 − a, (3.1)

where

N = ⌈(
2ηmaxi σi

δ
)

2

⌉ , (3.2)

and (Wn, n = 1,2, . . .) is any random walk with i.i.d. standardized (mean 0,

scale factor 1) sub-Gaussian increments. Calculate Ni = (2ησi/δ)
2 for each

system i.

2. Initialization. Initialize t = 0. Obtain n0 samples Xij , j = 1,2, . . . , n0 from each
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system i = 1,2, . . . , k. Compute sample means X̄i(n0) and define

i∗(t) = argmax
i=1,2,...,k

X̄i(ni(t)), j∗(t) = argmax
j≠i∗

X̄j(nj(t)) +
ησj

√
nj(t)

breaking ties arbitrarily. We sometimes omit the index t in i∗ and j∗ when it

does not cause confusion.

3. Stopping Rule. If

X̄i∗(ni∗(t)) −
ησi∗

√
ni∗(t)

≥ X̄j∗(nj∗(t)) +
ησj∗

√
nj∗(t)

− δ, (3.3)

go to Step 5. Otherwise go to Step 4.

4. Sampling Rule. Compute mi(t) for i = 1,2, . . . , k according to the sampling

rule, and take min(Ni −ni(t),mi(t)) samples from each system i. Let t = t+ 1

and update ni(t), X̄i(ni(t)), i∗ and j∗. Go to Step 3.

5. Termination. Stop and select system I∗ = i∗ as the best.

We motivate the KEP as follows. For a given constant η > 0, denote by

Li(ni) = X̄i −
ησi
√
ni

Ui(ni) = X̄i +
ησi
√
ni

the lower and upper confidence bound, respectively, which are high probability

bounds on the deviation of the empirical mean of System i from its expectation in

the specific direction. The width of the confidence bound monotonically decreases
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as more samples are drawn. We carefully choose parameters η so that with high

probability, the following inequalities

Li(n) ≤ µi for i = 1,2, . . . , k − 1, and

Uk(n) ≥ µk,

hold throughout the whole procedure. The parameter η determines the width of

the confidence bounds and hence the statistical validity and sample complexity

of the procedure. We will discuss more about the choice of η and its properties in

later sections.

In each iteration, we allocate samples to systems according to the sampling

rule, take samples and update the upper and lower confidence limits. Once we see

that the lower confidence limit Li∗(ni∗(t)) of System i∗, the one with the highest

sample mean, is no less than the highest Uj(nj(t)) − δ, j ≠ i∗, we select System i∗

and stop. Since the inequalities for the upper and lower confidence limits should

hold with high probability when the procedure terminates, we expect that the

selected system i∗ is probably a δ-optimal system. We will formally prove this

result in §3.2.3.

The behavior of the EP is illustrated in Figure 3.1. The figure originally ap-

peared in [43]. The example has k = 3 systems. The sample mean X̄i(ni(t)) and

upper and lower confidence limits Ui(ni(t)) and Li(ni(t)) for each system i are

plotted versus the iterator t. In this example we use the multi-samples strategy

discussed in §4.2.1. Samples are drawn from systems iteratively, and the total

sample size varies across systems. Due to the sampling rule, the green system has
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Figure 3.1: Illustration of EP. Systems are distinguished by different colors.
The solid lines are X̄i(ni)’s and the dashed lines are Ui(ni)’s
and Li(ni)’s throughout the procedure. The dotted lines are
the final upper and lower confidence bounds when the proce-
dure stops. The black dashed line indicates termination of the
procedure when the stopping rule is met.

fewer samples and hence wider confidence interval, since its mean is relatively

lower than those of the red one and blue one. As ni(t) increases for each system,

the sample means are converging to their true means and the confidence intervals

are shrinking. Finally, when the difference between the lower confidence limit

of System i∗ (the red one) and the highest upper confidence limit of the others is

no more than δ, the procedure stops and we take i∗ as the output. Here the final

upper confidence limits of the inferior systems (green and blue) are overlapping
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(the second dotted line from the top) since they are very close, which is due to our

choice of the sampling rule.

3.2.2 Sampling Rule

The goal of the sampling rule is to achieve high efficiency, i.e., take as few samples

as possible before the procedure terminates. Intuitively, we do not want to waste

samples on inferior systems. In other words, we should focus the computational

effort on those systems that are more likely to be the best system, or its strong

competitors. From another point of view, we want the stopping rule to be met

as soon as possible, so we should focus on the systems that make a difference to

(3.3).

Top-Two Strategy We present a very simple sampling rule, where we only con-

sider the two systems that show up explicitly in (3.3), i.e., Systems i∗ and j∗. In

round t we draw one sample from i∗(t) and one sample from j∗(t). Formally,

mi(t) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 if i = i∗(t) or i = j∗(t)

0 otherwise.

The same sampling rule is also adopted in [33]. The simplicity of this sampling

strategy makes it possible to analyze its sample complexity, as in §3.2.3.

The top-two strategy has a good theoretical bound on its sample complexity, as
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we will see in §3.2.3. However, when we solve practical problems using stochas-

tic simulation, the number of systems can be large, and thus parallel computing

might be adopted for simulation. In such a case, the 2-sample strategy might not

be very efficient. We propose some sampling strategies for practical use in both

sequential and parallel computing environment in §4.2.

3.2.3 Theoretical Analysis

The theoretical analysis of the algorithm comprises two aspects: statistical validity

and sample complexity. The statistical validity is about the PAC guarantee of the

algorithm, while the sample complexity is a high-probability worst-case bound

on the total sample size of the algorithm before it terminates.

An efficient algorithm should be able to use fewer samples for easier problems.

We say a problem configuration is hard when it is difficult to distinguish the best

system from other systems. Intuitively, such difficulty for System i ∈ S is high

when its mean is close to µk and its variance is large. We denote by ∆i = µk − µi,

the difference between the means of Systems i and k. In our setting, when a system

is δ-optimal, we do not need to know how close it is to the best, so the quantity

we care about is max(∆i, δ). Hence, we define the complexity of the problem

configuration as

Hδ =
k

∑
i=1

(
σi

max(∆i, δ)
)

2

.

Ideally, an efficient algorithm accommodates problem configurations of different
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complexity, and should take fewer samples when the problem is easier. In the

following, we denote σ = maxi σi to simplify the notation.

Theorem 3 below has two parts. The first part states the statistical validity of

the procedure, i.e., it has the PAC guarantee, and the result does not rely on the

choice of the sampling rule. The second part gives a high probability bound of the

sample complexity of the procedure, under a specific choice of the sampling rule.

Theorem 3. If A0, A1 and A2 hold, then with probability at least 1−α, (1) KEP returns

a δ-optimal system, and (2) using the 2-sample strategy, the total sample size is upper

bounded by 16η2Hδ, where a lower bound on η2 is given in Lemma 2, and that bound is

O (ln
k

α
+ ln ln

σ

δ
) , as

k

α
→∞ and

σ

δ
→∞.

Proof of (1). We first show that the procedure always terminates in finite time. If

ni∗(t) < Ni∗ or nj∗(t) < Nj∗ , then the algorithm is still drawing samples. Otherwise,

we plug ni∗(t) = Ni∗ = ⌈(2ησi∗/δ)
2
⌉ and nj∗(t) = Nj∗ = ⌈(2ησj∗/δ)

2
⌉ into (3.3), giving

X̄i∗(ni∗(t)) −
ησi∗

√
ni∗(t)

≥ X̄i∗(ni∗(t)) −
δησi∗

2ησi∗

= X̄i∗(ni∗(t)) −
δ

2

≥ X̄j∗(nj∗(t)) −
δ

2

= X̄j∗(nj∗(t)) +
δησj∗

2ησi∗
− δ

≥ X̄j∗(nj∗(t)) +
ησj∗

√
nj∗(t)

− δ.

It follows that the stopping rule is met. Therefore, the procedure terminates by

the time that ni∗(t) = Ni∗ and n)j∗(t) = Nj∗ .
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Under our ascending means assumption, System k is the true best system. De-

fine events

Ai = {X̄i(n) ≤ µi +
ησi
√
n
,∀n ≤ N}

= {
nX̄i(n) − nµi

σi
≤ η

√
n,∀n ≤ N}

= {Wi(n) ≤ η
√
n,∀n ≤ N} ,

for i = 1,2, . . . , k − 1, where Wi(n) is a standard Brownian motion observed at

discrete time n. Also, define

Ak = {X̄k(n) ≥ µk −
ησk
√
n
,∀n ≤ N}

= {
nX̄k(n) − nµk

σk
≥ −η

√
n,∀n ≤ N}

= {Wk(n) ≥ −η
√
n,∀n ≤ N} .

Since Ni ≤ N , ∀i = 1,2, . . . , k, the inequalities hold throughout the whole proce-

dure. By (3.1),

P (Ai) ≥ 1 − a,∀i = 1,2, . . . , k.

and by assumption A1, the Ai’s are independent, so that

P (
k

⋂
i=1

Ai) =
k

∏
i=1

P (Ai) ≥ (1 − a)k = 1 − α.

Denote the final round as T and the index of the selected system as i∗ = i∗(T ). By

definition of Ai, on the event ⋂ki=1Ai,

µi ≥ X̄i(n) −
ησi
√
n
,∀n < N,∀i = 1,2, . . . , k − 1, (3.4)
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and

µk ≤ X̄k(n) +
ησk
√
n
,∀n ≤ N. (3.5)

For the selected system i∗ and on the event ⋂ki=1Ai, , there are two cases: (i) i∗ = k,

or (ii) i∗ ≠ k.For case (i), a δ-optimal system is selected. In case (ii), since ni(T ) ≤ N ,

∀i = 1,2, . . . , k, we have

µi∗ ≥ X̄i∗(ni∗(T )) −
ησi∗

√
ni∗(T )

≥ X̄j∗(nj∗(T )) +
ησj∗

√
nj∗(T )

− δ

≥ X̄k(nk(T )) +
ησk

√
nk(T )

− δ

≥ µk − δ,

where the first and fourth inequalities are due to the definition of Ai∗ and Ak, the

second is due to (3.3), and the third is from the definition of j∗. Therefore i∗ is also

a δ-optimal system. Hence,

P (i∗ is a δ-optimal system) ≥ P (
k

⋂
i=1

Ai) ≥ 1 − α.

Before proving the second part of Theorem 3, we present a lemma giving a

bound on the hitting probability of the random walk with sub-Gaussian incre-

ments for square-root boundaries. The proof is inspired by [28].

Lemma 1. Let X1,X2, . . . ,XN be i.i.d. standard (with scale parameter 1 and mean 0)

sub-Gaussian random variables and denote Wn = ∑
n
j=1Xj . For any d > 0 and ε > 0, with
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probability at least 1 − 2 ⌈ lnN
ln(1+ε)⌉ exp (−(1 + ε)d),

Wn ≤ (1 +
√
ε)

√
2(1 + ε)dn,∀n = 1,2, . . . ,N.

Proof. First, by Lemma 3 in the appendix with f(⋅) = 1,

P (Wn ≥
√

2xn) ≤ exp (−x) ,∀n,∀x.

We define a sequence of important integers by induction: u0 = 1, ui+1 = ⌈(1 + ε)ui⌉.

Then using a union bound

P (∃i, s.t. ui ≤ N ∶Wui ≥
√

2(1 + ε)dui) ≤

⌈ lnN
ln(1+ε) ⌉

∑
i=1

P (Wui ≥
√

2(1 + ε)dui)

≤ ⌈
lnN

ln(1 + ε)
⌉ exp (−(1 + ε)d) .

(3.6)

In what follows we use Hoeffding’s maximal inequality,

P( max
n=1,2,...,m

Wn ≥ x) ≤ exp(−
x2

2m
) .

This inequality appears in [28], but we have not found a proof anywhere,, so we

proved it as Lemma 3 and 4 in the appendix.

Next, consider the time period between ui and ui+1. By the above inequality,

Pi ∶= P (∃n ∈ {ui + 1, . . . , ui+1 − 1} ∶Wn −Wui ≥
√

2εdui+1)

= P (∃n ∈ {1, . . . , ui+1 − 1 − ui} ∶Wn ≥
√

2εdui+1)

≤ exp(−
2εdui+1

2(ui+1 − 1 − ui)
)

≤ exp(−εd
1 + ε

ε
)

= exp (−(1 + ε)d) .
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Similarly, applying a union bound yields

P (∃i, s.t. ui ≤ N,∃n ∈ {ui + 1, . . . , ui+1 − 1} ∶Wn −Wui ≥
√

2εdui+1) ≤

⌈ lnN
ln(1+ε) ⌉

∑
i=1

Pi

≤ ⌈
lnN

ln(1 + ε)
⌉ exp (−(1 + ε)d) .

(3.7)

Let u`(n) = ui and uu(n) = ui+1 such that ui ≤ n < ui+1. Combining (3.6) and

(3.7), and the fact that uu(n) ≤ n(1 + ε), we have that with probability at least

1 − 2 ⌈ lnN
ln(1+ε)⌉ exp (−(1 + ε)d), ∀n = 1,2, . . . ,N ,

Wn = (Wn −Wu`(n)) +Wu`(n)

≤
√

2εduu(n) +
√

2(1 + ε)du`(n)

≤ (1 +
√
ε)

√
2(1 + ε)dn

Based on the previous lemma, we give a sufficient condition on choosing η,

which determines the sample size of the procedure.

Lemma 2. A sufficient condition for (3.1) and (3.2) is that

η2 ≥ 2(1+
√
ε)2 ln

⎛
⎜
⎜
⎜
⎝

8 ln(
4
√

2(1+
√
ε)(1+ε)σ

δ(a ln(1+ε))
1
2

)

a ln(1 + ε)

⎞
⎟
⎟
⎟
⎠

= O (ln
k

α
+ ln ln

σ

δ
) , as

k

α
→∞ and

σ

δ
→∞.

Proof. Let η = (1 +
√
ε)

√
2(1 + ε)d. Then, by Lemma 1,

P (Wn ≤ η
√
n,∀n = 1, . . . ,N) ≥ 1 − 2 ⌈

lnN

ln(1 + ε)
⌉ exp(−

η2

2(1 +
√
ε)2

) .
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Plugging (3.2) into (3.1) and using ⌈ lnN
ln(1+ε)⌉ ≤

ln(N(1+ε))
ln(1+ε) , we need

4 ln (
2ησ(1+ε)

δ )

ln(1 + ε)
exp(−

η2

2(1 +
√
ε)2

) ≤ a,

which is equivalent to

η ≥ (1 +
√
ε)

⎛
⎜
⎝

2 ln
⎛
⎜
⎝

4 ln (
2ησ(1+ε)

δ )

a ln(1 + ε)

⎞
⎟
⎠

⎞
⎟
⎠

1
2

. (3.8)

If (3.8) does not hold, then using the fact that ln(x) ≤ x,

η < (1 +
√
ε)

⎛
⎜
⎝

2 ln
⎛
⎜
⎝

4 ln (
2ησ(1+ε)

δ )

a ln(1 + ε)

⎞
⎟
⎠

⎞
⎟
⎠

1
2

(3.9)

≤ (1 +
√
ε)

⎛
⎜
⎝

8 ln (
2ησ(1+ε)

δ )

a ln(1 + ε)

⎞
⎟
⎠

1
2

≤ 4(1 +
√
ε)(

ησ(1 + ε)

aδ ln(1 + ε)
)

1
2

.

Hence

η <
16(1 +

√
ε)2(1 + ε)σ

aδ ln(1 + ε)
.

Plug this final inequality in the right-hand side of (3.9) to get

η < (1 +
√
ε)

⎛
⎜
⎜
⎜
⎝

2 ln

⎛
⎜
⎜
⎜
⎝

8 ln(
4
√

2(1+
√
ε)(1+ε)σ

δ(a ln(1+ε))
1
2

)

a ln(1 + ε)

⎞
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎠

1
2

.

Therefore, we get a sufficient condition for (3.8):

η2 ≥ fη(σ, δ, a, ε) = 2(1 +
√
ε)2 ln

⎛
⎜
⎜
⎜
⎝

8 ln(
4
√

2(1+
√
ε)(1+ε)σ

δ(a ln(1+ε))
1
2

)

a ln(1 + ε)

⎞
⎟
⎟
⎟
⎠

. (3.10)
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Then we analyze the asymptotic behavior of fη when σ/δ → ∞ and a → 0.

When σ/δ is large enough and a is close enough to 0, and using the fact that for

A ≥ 2 and B ≥ 2, AB ≥ A +B,

fη(σ, δ, a, ε) = 2(1 +
√
ε)2 ln

⎛
⎜
⎜
⎜
⎝

8 ln(
4
√

2(1+
√
ε)(1+ε)σ

δ(a ln(1+ε))
1
2

)

a ln(1 + ε)

⎞
⎟
⎟
⎟
⎠

= 2(1 +
√
ε)2 ln

⎛
⎜
⎜
⎜
⎝

8 ln (
4
√

2(1+
√
ε)(1+ε)σ
δ ) + 8 ln( 1

(a ln(1+ε))
1
2
)

a ln(1 + ε)

⎞
⎟
⎟
⎟
⎠

≤ 2(1 +
√
ε)2 ln

⎛
⎜
⎜
⎜
⎝

64 ln (
4
√

2(1+
√
ε)(1+ε)σ
δ ) ln( 1

(a ln(1+ε))
1
2
)

a ln(1 + ε)

⎞
⎟
⎟
⎟
⎠

≤ 2(1 +
√
ε)2 ln

⎛
⎜
⎝

64 ln (
4
√

2(1+
√
ε)(1+ε)σ
δ )

(a ln(1 + ε))
3
2

⎞
⎟
⎠

= 2(1 +
√
ε)2 (

3

2
ln(

16

ln(1 + ε)
) +

3

2
ln(

1

a
) + ln ln(

4
√

2(1 +
√
ε)(1 + ε)σ

δ
))

= O (ln
1

a
+ ln ln

σ

δ
)

Since α is bounded away from 1, a = 1 − (1 − α)1/k = O(αk ), so

η2 = O (ln
k

α
+ ln ln

σ

δ
)

Remark: One might attempt to reduce the order of η2 above by optimizing

over ε. As we show in Proposition 3 in the appendix, the order of the solution
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to the minimization problem is ε = O ((ln k
α + ln ln σ

δ
)
−1
), which does not affect the

order of η2.

Now with all of the ingredients given above, we are ready to prove the second

part of Theorem 3. for notation simplicity, in what follows we omit the ceiling

signs when we refer to the number of samples, which does not hurt the validity

of the proof.

Proof of Part (2) of Theorem 3. Throughout the proof suppose we are on the event

⋂
k
i=1Ai, and then (3.4) and (3.5) hold. Denote the set of all δ-optimal systems as G

(good systems), and that of all others B (bad systems). Further, for System i ∈ G,

we say it is active at time t if ni(t) < Ni, and inactive if ni(t) = Ni. We do not define

active or inactive for System i ∈ B, so when we say a system is active or inactive

that also implies that it is a good system.

We count the total number of rounds before termination, since the total sample

size is at most twice the total number of rounds. Split all of the rounds t into the

following subsets (see Table 3.1): (I) at least one of i∗(t) and j∗(t) are active, (II)

j∗(t) ∈ B and i∗(t) is not active (i.e., i∗(t) ∈ B or i∗(t) is inactive), and (III) j∗(t)

is inactive and i∗(t) ∈ B. This is a partition of the rounds since it if both i∗(t) and

j∗(t) is inactive, the procedure terminates by our previous proof.

For Case (I), there are at most ∑i∈GNi = ∑i∈G (
2ησi
δ

)
2

rounds, since at least one

active system gets one sample in such a round and an active system i becomes

inactive once ni(t) = Ni.
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Table 3.1: Partition of the possible cases of rounds.

j∗(t) is active j∗(t) is inactive j∗(t) ∈ B

i∗(t) is active I I I

i∗(t) is inactive I Termination II

i∗(t) ∈ B I III II

For Case (II), there are two sub-cases: (i) i∗(t) ≠ k and (ii) i∗(t) = k and System

k is inactive. If (i), then by the definition of i∗(t), j∗(t), (3.4) and (3.5),

µj∗(t) +
2ησj∗(t)

√
nj∗(t)(t)

≥ X̄j∗(t)(nj∗(t)(t)) +
ησj∗(t)

√
nj∗(t)(t)

≥ X̄k(nk(t)) +
ησk

√
nk(t)

≥ µk,

which implies nj∗(t)(t) ≤ (
2ησj∗(t)
∆j∗(t)

)
2
.

If (ii), if the procedure has not terminated yet, then by the stopping rule,

X̄k(nk(t)) −
ησk

√
nk(t)

≤ X̄j∗(t)(nj∗(t)(t)) +
ησj∗(t)

√
nj∗(t)(t)

− δ.
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Since System k is inactive, nk(t) = Nk = (
2ησk
δ

)
2
, so

µj∗(t) +
2ησj∗(t)

√
nj∗(t)(t)

− δ ≥ X̄j∗(t)(nj∗(t)(t)) +
ησj∗(t)

√
nj∗(t)(t)

− δ

≥ X̄k(nk(t)) −
ησk
√
Nk

≥ µk −
2ησk
√
Nk

= µk − δ,

which implies nj∗(t)(t) ≤ (
2ησj∗(t)
∆j∗(t)

)
2
.

Therefore, in either sub-case (i) or (ii), nj∗(t)(t) ≤ (
2ησj∗(t)
∆j∗(t)

)
2
, so there are at most

∑i∈B (
2ησi
∆i

)
2

rounds in case (II).

For Case (III), because i∗(t) ≠ k, by definition of j∗(t),

X̄j∗(t)(nj∗(t)(t)) +
ησj∗(t)

√
nj∗(t)(t)

≥ X̄k(nk(t)) +
ησk

√
nk(t)

≥ µk,

and since j∗(t) is inactive, nj∗(t)(t) = Nj∗(t), so

X̄j∗(t)(nj∗(t)(t)) ≥ µk −
ησj∗(t)
√
Nj∗(t)

= µk −
δ

2
.

Therefore, by (3.4) and the definition of i∗(t),

µi∗(t) +
ησi∗(t)

√
ni∗(t)(t)

≥ X̄i∗(t)(ni∗(t)(t))

≥ X̄j∗(t)(nj∗(t)(t))

≥ µk −
δ

2
,

which implies ni∗(t)(t) ≤ (
ησi∗(t)

∆i∗(t)− δ2
)

2

≤ (
2ησi∗(t)
∆i∗(t)

)
2

since ∆i∗(t) ≥ δ. Therefore there are

at most ∑i∈B (
2ησi
∆i

)
2

rounds in case (III).
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Summarizing the analysis for (I), (II) and (III) yields that the total number of

rounds is at most

∑
i∈G

(
2ησi
δ

)
2

+∑
i∈B

(
2ησi
∆i

)
2

+∑
i∈B

(
2ησi
∆i

)
2

≤ 2
k

∑
i=1

(
2ησi

max(∆i, δ)
)

2

≤ 8η2Hδ.

Combining with Lemma 2 completes the proof.

3.2.4 On Computing the Parameter ηηη

Computing the Bound on ηηη

The parameter η determines the width of the confidence bounds. The statistical

validity of the EP requires that η should be large enough so that the probability

that the sample mean of any system will cross the boundary is small. On the

other hand, the total sample size is roughly proportional to η2, so for the sake

of efficiency we should not set η too large. In other words, we want to find the

smallest η that satisfies (3.1).

For general sub-Gaussian samples, we can replace the inequality in (3.8) by

equality and solve the fixed point problem

η = f1(η) = (1 +
√
ε)

⎛
⎜
⎝

2 ln
⎛
⎜
⎝

4 ln (
2ησ(1+ε)

δ )

a ln(1 + ε)

⎞
⎟
⎠

⎞
⎟
⎠

1
2
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through iteration,

ηn+1 = f1(ηn)

with any reasonable starting point η0. In practice this iteration usually converges

in several steps, but we do not attempt to prove that, because ε plays a role only

in our complexity analysis, where any positive fixed value suffices. In our imple-

mentations, we compute η in a different way.

Computing ηηη Numerically

Instead of computing a bound on η, one can also find an approximate value

of η with Monte Carlo. Based on our analysis in §3.2.3, η is roughly linear

in (ln lnN)1/2, so the efficiency of the algorithm will not be heavily affected if

we choose N slightly larger than what is needed. For given parameters α, k

(hence a) and N , we can use Monte Carlo, simulating random walks with nor-

mally distributed increments and approximating η by the 1− a sample quantile of

maxn≤NWn/n1/2.

Here we fix α = 0.05, and take k = 10,100,1000 and 10000, N = 103,104,105.

The results are shown in Table 3.2. For fixed k (or equivalently, fixed a), as N

increases by orders of magnitude, the corresponding η only increases by a small

amount. For example, when k = 1000, η only increases by 1% when N increases

from 104 to 105, which only causes an increase in the total number of samples by

2%, agreeing with our analysis above. Therefore, in practice we can first estimate
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a large enough upper bound for η, and find the smallest N that satisfies (3.2) in

Table 3.2 to get the value of η.

Table 3.2: Simulated η for different values of k and N .

k N = 103 N = 104 N = 105

10 3.58 3.69 3.77

100 4.20 4.30 4.37

1000 4.73 4.83 4.88

10000 5.22 5.28 5.35

From simulation results, we can fit a function that yields a reasonable value of

η. Based on (3.8), we consider functions of the following form:

η = (c0 + c1 ln(
ln c2σ

δ

a
))

1
2

. (3.11)

To use the simulation results, by (3.2), we let σ/δ = N1/2/(2η) . Fitting the above

function to the simulation results, we get c0 = −0.318, c1 = 2.114 and c2 = 3.231.

Using the fitted function, we recalculate η for given k and N , and get Table 3.3.

The values in Table 3.2 and Table 3.3 are very close, indicating a good fit.
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Table 3.3: Fitted η for different values of k and N .

k N = 103 N = 104 N = 105

10 3.59 3.69 3.77

100 4.20 4.29 4.36

1000 4.73 4.82 4.88

10000 5.21 5.28 5.35

3.3 Unknown σ2σ2σ2 Envelope Procedure

Usually the scale parameters or the variances of the systems are unknown in ad-

vance and there is no explicit bound on them. Same regularity assumption is

essential [19]; as in much R&S literature, in this section we assume A3, i.e., nor-

mally distributed samples. We present two EP variants with unknown σ: UEP,

which is a two-stage procedure, where the the first stage provides variance esti-

mates, and UEPu, in which we keep updating the sample variances throughout

the procedure. These two procedures can be seen as generalizations of the KEP

since the structure and intuition behind them is similar.

3.3.1 The Procedure

UEP
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1. Initialization. Initialize t = 0. Obtain n0 samples Xij , j = 1,2, . . . , n0 from each

system i = 1,2, . . . , k. Compute sample means X̄i(n0) and sample variances

S2
i .

2. Setup. Let a = 1 − (1 − α)1/k. Compute η, such that

E [Fn0−1 (
(n0 − 1)Z2

η2
)] ≤ a, (3.12)

where

N = ⌈(
2ηmaxi Si

δ
)

2

⌉ and Z = max
n=1,...,N

Wn
√
n
, (3.13)

(Wn, n = 1,2, . . .) is a random walk with i.i.d. standardized Gaussian incre-

ments and Fn0−1 is the cumulative distribution function of the chi-squared

distribution with n0−1 degrees of freedom. CalculateNi = (2ηSi/δ)
2 for each

system i.

3. Stopping Rule. If

X̄i∗(ni∗(t)) −
ηSi∗

√
ni∗(t)

≥ X̄j(nj∗(t)) +
ηSj∗

√
nj∗(t)

− δ,

where

i∗(t) = argmax
i=1,2,...,k

X̄i(ni(t)), j∗(t) = argmax
j≠i∗

X̄j(nj(t)) +
ηSj

√
nj(t)

,

go to Step 5. Otherwise go to Step 4.

4. Sampling Rule. Compute mi(t) for i = 1,2, . . . , k according to a sampling

rule, and take max(Ni −ni(t),mi(t)) samples from each system i. Let t = t+1

and update ni(t), X̄i(ni(t)), i∗ and j∗. Go to Step 3.
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5. Termination. Stop and select system I∗ = i∗ as the best.

The UEP takes an additional parameter n0, which is the sample size of the

initial stage to obtain the sample variances of the systems. In practice we recom-

mend a value between 10 and 100. If n0 is too small then the boundary can be

too large due to large uncertainty in the variance estimates, while if n0 is too large

then many samples can be wasted. In our experiments we set n0 = 20 or 50. After

the initial stage, UEP is similar to KEP, replacing the known variances σ2
i by the

estimated variance S2
i , for each i = 1,2, . . . , k.

We also develop a heuristic procedure, UEPu, based on UEP, in which variance

estimators are updated as samples are gathered. UEPu is heuristic in the sense that

it does not offer a formal PAC guarantee. We expect that UEPu is more efficient

than UEP because the variance estimates become more and more accurate as the

procedure runs. Experimental results in §3.5 support this conjecture.

UEPu

1. Initialization. Initialize t = 0. Obtain n0 samples Xij , j = 1,2, . . . , n0 from each

system i = 1,2, . . . , k. Compute sample means X̄i(n0) and sample variances

S2
i (n0).

2. Setup. Let a = 1 − (1 − α)1/k. Compute η, such that

P(
Wn

√
nSn

≤ η,∀n = 1,2, . . . ,N) ≥ 1 − a,
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where

N = ⌈(
2ηmaxi Si(n0)

δ
)

2

⌉ ,

(Wn, n = 1,2, . . .) is a random walk with i.i.d. standardized Gaussian in-

crements and (Sn, n = 1,2, . . .) is the sample variance of Wn. Calculate

Ni = (2ηSi(n0)/δ)
2 for each system i.

3. Stopping Rule. If

X̄i∗(ni∗(t)) −
ηSi∗(ni∗(t))

√
ni∗(t)

≥ X̄j(nj∗(t)) +
ηSj∗(nj∗(t))

√
nj∗(t)

− δ,

where

i∗(t) = argmax
i=1,2,...,k

X̄i(ni(t)), j∗(t) = argmax
j≠i∗

X̄j(nj(t)) +
ηSj

√
nj(t)

,

go to Step 5. Otherwise go to Step 4.

4. Sampling Rule. Compute mi(t) for i = 1,2, . . . , k according to the sampling

rule, and take max(Ni −ni(t),mi(t)) samples from each system i. Let t = t+1

and update ni(t), X̄i(ni(t)), S2
i (ni(t)), i∗ and j∗. Go to Step 3.

5. Termination. Stop and select system I∗ = i∗ as the best.

For the sampling rule for both UEP and UEPu , we can use modified versions

of the 2-sample strategy and multi-samples strategy, where the variances σ2
i are

replaced by the estimated variances S2
i . We omit the details since they are similar

to those described in §3.2.2.
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3.3.2 Theoretical Analysis

Theorem 4. If A0, A1 and A3 hold, then with probability at least 1 − α, (1) UEP re-

turns a δ-optimal system, and (2) using the 2-sample strategy, the total sample size is

O (Hδ
1
n2
0
( α

2n0/2k)
2/n0

).

Proof. Using the same notation as in Theorem 3, we define events

Ai = {X̄i(n) ≤ µi +
ηsi
√
n
,∀n ≤ N}

= {
nX̄i(n) − nµi

σi
< η

√
n ⋅

Si
σi
,∀n < N}

= {Wi(n) < η
√
n ⋅

1
√
n0 − 1

⋅

√
n0 − 1Si
σi

,∀n < N}

=

⎧⎪⎪
⎨
⎪⎪⎩

Wi(n)
√
n

< η ⋅

√
χ2
i

n0 − 1
,∀n < N

⎫⎪⎪
⎬
⎪⎪⎭

for i = 1,2, . . . , k − 1, where Wi(n) is a standard Brownian motion observed at

discrete time n, and (χ2
i ∶ 1 ≤ i ≤ k) are independent χ2 random variables with n0 −

1 degrees of freedom that are independent of (Wi(n) ∶ 1 ≤ i ≤ k,1 ≤ n ≤ N). Also,

define

Ak = {X̄k(n) > µk −
ηSk
√
n
,∀n < N}

=

⎧⎪⎪
⎨
⎪⎪⎩

Wk(n)
√
n

> −η ⋅

√
χ2
k

n0 − 1
,∀n < N

⎫⎪⎪
⎬
⎪⎪⎭

Following the same argument as in the proof of Theorem 3, on the event ⋂ki=1Ai,

the inequalities hold throughout the whole procedure. By (3.12), ∀i = 1,2, . . . , k,
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letting Zi = maxn=1,...,NWi/n1/2,

P (Ai) = P
⎛

⎝
Zi < η ⋅

√
χ2
i

n0 − 1

⎞

⎠

= P (χ2
i >

(n0 − 1)Z2
i

η2
)

= E [1 − Fχ2
n0−1

(
(n0 − 1)Z2

i

η2
)∣Zi]

≥ 1 − a.

Following the same proof as in Theorem 3, we get that the total number of rounds

is at most 8η2Hδ. Next we compute the order of the parameter η. According to

Lemma 1, letting ε = 1, we get

P (Z ≤ x) ≤ G(x) = 2 ln2Ne
−x

2

8 .

Therefore,

E
⎡
⎢
⎢
⎢
⎢
⎣

P
⎛

⎝
Z ≥ η

√
χ2

n0 − 1

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

≤E
⎡
⎢
⎢
⎢
⎢
⎣

G
⎛

⎝
η

√
χ2

n0 − 1

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

=2 ln2N ∫
∞

0
e
− −η2x

8(n0−1)
1

2n0/2Γ(n0/2)
xn0/2−1e−x/2dx

=
ln2N

2n0/2Γ(n0/2)
∫

∞

0
xn0/2−1e

−( η2

8(n0−1)+
1
2
)
dx

=
ln2N

2n0/2Γ(n0/2)
(

η2

8(n0 − 1)
+

1

2
)

−n0/2

Γ(
n0

2
)

=
ln2N

2n0/2
(

η2

8(n0 − 1)
+

1

2
)

−n0/2

.

Letting the above formula be less than or equal to a yields

η2 ≤
1

8(n0 − 1)
[(

ln2N

2n0/2−1a

2/n0

) −
1

2
] .
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Hence we have the order of the parameter η, and the rest of the proof is as the

same as the proof of Theorem 3.

3.3.3 On Computing the Parameter ηηη

In order to compute η that satisfies (3.12) for large enough N in (3.13), we can

approximate the expectation by Monte Carlo:

E [Fχ2
n0−1

(
(n0 − 1)Z2

η2
)] ≤ a ≈

1

n

n

∑
i=1

Fχ2
n0−1

(
(n0 − 1)Z2

η2
) .

We can estimate the distribution of Z using Monte Carlo as discussed in §3.2.4. We

give the value of η for both UEP and UEPu for some commonly used scenarios,

(which are also used in our experiments in §3.5) where k = 100,1000, and 10000,

n0 = 20 and 50, and N = 105 in Table 3.4.

Table 3.4: Approximated value of η for UEP and UEPu for N = 105

k
UEP UEPu

n0 = 20 n0 = 50 n0 = 20 n0 = 50

100 5.62 4.40 4.80 4.19

1000 6.77 5.18 5.51 4.80

10000 8.00 6.11 6.20 5.37
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3.4 Lower Bound on the Sample Complexity of PAC Procedures

In this section we develop a lower bound on the sample complexity of PAC proce-

dures, and compare the lower bound with the sample complexity of EP, assuming

known variances.

Informally speaking, a PAC procedure sequentially obtains a sample from one

of the competing systems, and then decides either to stop and declare one of the

systems the best, or to continue with further sampling. Stopping decisions and

decisions on which system to sample may be randomized. To capture this setup

more formally, we construct a probability space as follows. Let Ω = [0,1]×⊗∞
i=1(S×

R × [0,1]) denote the sample space, and equip Ω with the usual product sigma

field. Each ω ∈ Ω takes the form

ω = (u(0), (i(1), x(1), u(1)), ((i(2), x(2), u(2)), . . .).

For t = 1,2, . . ., define the random variables I(t, ω) = i(t) (denoting the index

of the system to be sampled at time t), and X(t, ω) = x(t) (the value of the ob-

served sample from System i at time t). For t = 0,1, . . ., define the random variable

U(t, ω) = u(t) ∈ [0,1] (a random variable that permits us to randomize decisions).

Take F0 to be the sigma field generated by U(0), and for n ≥ 1 let Fn be the

sigma field generated by U(0), ((I(t),X(t), U(t)) ∶ t = 1,2, . . . , n). For t ≥ 1, we

take I(t) to be Ft−1 measurable since the procedure can only make decisions on

which system to sample based on the history. The procedure takes only one sam-

ple from one system at each step; procedures taking multiple samples at a step fit
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within this framework through a redefinition of “step.” For t ≥ 1, given I(t), X(t)

is conditionally independent of Ft−1 and normally distributed with mean µI(t) and

variance σ2
I(t). For t ≥ 1, U(t) is independent of Ft−1 and of I(t),X(t), and for t ≥ 0

is uniformly distributed on [0,1]. Thus (U(t) ∶ t ≥ 0) is an i.i.d. sequence of uni-

form [0,1] random variables that can be viewed as providing randomization, if

needed. The procedure stops at the finite-valued stopping time T , so that in par-

ticular, the event {T = t} is Ft measurable. (Notice that T can depend on U(T ) so

can be randomized.) At time T the procedure reports an FT -measurable system

I∗ as the best.

To simplify notation, in what follows we index the systems in the following

way. First index all of the systems i where µi < maxj µj − δ by µi in increasing

order, i.e., µ1 ≤ µ2 ≤ . . . ≤ µ` < maxj µj − δ, assuming ` such systems. Then index all

of the other systems by σi in increasing order, so that µi ≥ maxj µj − δ, ∀i > `, and

σ`+1 ≤ σ`+2 . . . ≤ σk. Break ties arbitrarily.

The following result and proof is inspired by a related result provided by [44]

for Bernoulli MAB models. Let 1 denote the usual indicator function.

Theorem 5. Consider any selection procedure as defined immediately above that delivers a

PAC guarantee. Let Ti = ∑T
t=1 1(I(t) = i) be the sample size for System i, and T = ∑

k
i=1 Ti

be the total sample size. Under assumptions A0, A1 and A3, there exist positive constants

α0, c and b, such that for any α ≤ α0 <
1
2 ,

E[T ] > c
k−1

∑
i=1

(
σi

max(∆i, δ)
)

2

ln
1

bα
. (3.14)
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[30] also provides a lower bound on the sample complexity for elimination

procedures. Their result applies to a specific class of elimination procedures in the

IZ setting, the error probability α is equally assigned to each system, and identical

variances are assumed. Theorem 5 can be viewed as a generalization of their result

to any PAC procedure without those assumptions.

[35] gives a lower bound for i.i.d. sampling without assuming normality as we

do. Their result does not allow relaxation in the problem, i.e., they take δ = 0.

Assuming normal sampling distributions with identical variances, their bound

simplifies to c∑k−1
i=1 (σ/∆i)

2 ln(1/(bα)). Though the constants c and b are different,

this bound has the same order as our result in the special case where δ = 0.

PROOF. Consider the hypotheses

H0 ∶ µ̂` = µ`, for ` = 1,2, . . . , k,

and for i = 1,2, . . . , k,

Hi ∶ µ̂i = µk + δ, and µ̂` = µ` for ` ≠ i.

System i is the only δ-optimal system under Hi, i ≥ 1. Let Ei and Pi denote the

expectation and probability under hypothesis Hi, respectively, for i = 0,1,2, . . . , k.

Suppose, with the intention of reaching a contradiction, that for some i ≥ 1,

E0[Ti] ≤ t
∗
i =

cσ2
i

max(∆i, δ)2
ln

1

bα
. (3.15)

Define the event Si = {I∗ = i}, i.e., System i is selected ultimately. Since

∑
k
i=1 P0(Si) = 1, the number of systems i that satisfy P0(Si) ≥ 1/2 is at most one.
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In other words, for at least k−1 systems, P0(Sci ) ≥ 1/2, where Sci is the complement

of Si. From now on we restrict i to index one of these k − 1 systems.

Next, define the event Ai = {Ti ≤ at∗i }, where a is a constant that we will decide

later. Since

t∗i ≥ E0[Ti] ≥ at
∗
i P0(Ti > at

∗
i ) = at

∗
i (1 − P0(Ti ≤ at

∗
i )),

we have P0(Ai) ≥ 1 − 1/a. Recall that we define, for t ≥ 0, Wi,t = ∑
t
j=1(Xij − µi),

where Xij is the jth sample taken from System i. Define the event

Bi =

⎧⎪⎪
⎨
⎪⎪⎩

max
1≤t≤at∗i

Wi,t

σi
≥ −

√

t∗i ln
1

bα

⎫⎪⎪
⎬
⎪⎪⎭

.

Since (Wi,t/σi ∶ t = 1,2, . . .) is a random walk with i.i.d. standardized sub-Gaussian

increments, by Lemma 4,

P0(Bi) ≥ 1 − exp(−
t∗i ln 1

bα

2at∗i
) = 1 − (bα)

1
2a .

Let Di = Sci ⋂Ai⋂Bi. Then

P0(Di) ≥ 1 −
1

a
− (bα)

1
2a −

1

2
=

1

2
−

1

a
− (bα)

1
2a .

Denote the sequence (i(1), i(2), . . . , i(t), x(1), x(2), . . . , x(t), u(0), u(1), . . . , u(t))

by ξ0∶t. Define the likelihood

Li(ξ0∶T ) = 1(u(0) ∈ [0,1])
T

∏
t=1

P(I(t) = i(t)∣Ft−1)φ(x(t);µi(t), σ
2
i(t))1(u(t) ∈ [0,1]),

where φ(⋅;µ,σ2) is the density function of the normal distribution with mean µ

and variance σ2.

93



Consider the pair of hypotheses H0 and Hi, which differ only in the specifica-

tion of the mean µ̂i of System i. How does the likelihood of ξ0∶T differ under these

two hypotheses? The sampling decisions I(t) are Ft−1 measurable (t ≥ 1), and

hence are the same. The likelihoods of the observed samples are thus different

only for those t where I(t) = i, when the means are different. Therefore the like-

lihood ratio of these two hypothesis only depends on the samples from System i.

Let Xij be the j-th sample from System i, which is observed at the jth time that

I(t) = i. Then, after cancelling common terms,

Li(ξ1∶T )

L0(ξ1∶T )
=

Ti

∏
j=1

exp (−
(Xij−µk−δ)2

2σ2
i

)

exp (−
(Xij−µi)2

2σ2
i

)

=
Ti

∏
j=1

exp(−
(2Xij − µk − δ − µi)(µi − µk − δ)

2σ2
i

)

=
Ti

∏
j=1

exp(−
(2(Xij − µi) + µi − µk − δ)(µi − µk − δ)

2σ2
i

)

=
Ti

∏
j=1

exp(−
(µk + δ − µi)2 − 2(Xij − µi)(µk + δ − µi)

2σ2
i

)

= exp(
2Wi,Ti(∆i + δ) − Ti(∆i + δ)2

2σ2
i

) ,

recalling that Wi,t = ∑
t
j=1(Xij − µi).

On the event Di,

Ti ≤
acσ2

max(∆i, δ)2
ln

1

bα
and Wi,Ti ≥ −

√
cσ2 ln 1

bα

max(∆i, δ)
,
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so that

Li(ξ1∶T ))

L0(ξ1∶T ))
= exp(

2Wi,Ti(∆i + δ) − Ti(∆i + δ)2

2σ2
i

)

≥ exp
⎛
⎜
⎝

−
2
√
cσ2(∆i+δ) ln 1

bα

max(∆i,δ) −
acσ2

i (∆i+δ)2 ln 1
bα

max(∆i,δ)2

2σ2
i

⎞
⎟
⎠

≥ exp(−2
√
c ln

1

bα
− 2ac ln

1

bα
)

= (bα)2
√
c+2ac,

where the second inequality is due to the fact that (∆i + δ)/max(∆i, δ) ≤ 2. By

changing the probability measure,

Pi(Sci ) ≥ Pi(Di)

= Ei[1(Di)]

= E0 [
Li(ξ1∶T ))

L0(ξ1∶T ))
1(Di)]

≥ (bα)2
√
c+2acE0[1(Di)]

≥ (bα)2
√
c+2ac (

1

2
−

1

a
− (bα)

1
2a) .

For any given α, one can set the constants a and b large enough, and c small

enough so that the lower bound on Pi(Sci ) is arbitrarily close to 1/2 > α0 ≥ α,

which contradicts the PAC assumption that Pi(Sci ) ≤ α. Specifically, one can set

the constants as follows.

1. Let ε > 0 be arbitrary. Choose a > 0 large enough and b > 0 small enough so

that
1

a
+ (bα)

1
2a < ε.
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2. Choose c > 0 small enough so that

(bα)2
√
c+2ac > 1 − ε.

3. Hence we get a lower bound on Pi(Sci ),

Pi(S
c
i ) > (1/2 − ε)(1 − ε).

4. Since ε was arbitrary, we can make the lower bound on Pi(Sci ) arbitrarily

close to 1/2 > α0 ≥ α. For example, when α = 0.05, one can let ε = 0.4 and set

a = 5, b = 10−6 and c = 10−4 to satisfy the above inequalities.

Therefore, Pi(Sci ) > α, which contradicts the PAC assumption. Hence we must

have

E0[Ti] >
cσ2

i

max(∆i, δ)2
ln

1

bα
.

This is true for each i such that P0(Sci ) ≥ 1/2. Summing over these systems and

noting that our indexing of systems yields the k−1 lowest values of the summands

concludes the proof.

Comparing the lower bound in (3.14) and the result in Theorem 3, we see that

the upper bound of EP differs from the lower bound by a factor that is

O (lnk + ln ln
σ

δ
) .

Hence, EP is optimal up to a logarithmic factor.

96



3.5 Numerical Results

In this section, we summarize the results of numerical experiments intended to

demonstrate the performance of the EP with the multi-samples strategy on stan-

dard test problems, and to compare it to two leading R&S procedures: the KN

procedure [36] and the BIZ procedure [18]. We consider both known-variances

and unknown-variances cases. The experiments are conducted in sequential com-

puting environment with the Gap-Minimization sampling rule that is discussed

in §4.2.1.

The KN procedure is a leading frequentist R&S procedure. Some KN-based

procedures, e.g., [24], have better performance in some settings with heteroge-

neous variance, but the KN procedure is still regarded as a yardstick for selection

procedures [37, 6, 18]. Since the original KN procedure deals with unknown-

variances cases, in the known-variances case we modify it so that it exploits

known variances in the same way as in [18]. The BIZ procedure is a Bayes-inspired

procedure, but it delivers a pre-specified frequentist PCS and has a tight lower

bound on worst-case PCS under the IZ setting for the known-variances case. The

BIZ procedure is more efficient than KN on a variety of problems and is regarded

as a state-of-the-art procedure. However, for the unknown-variances case it is a

heuristic procedure that does not offer a statistical guarantee. For both KN and

BIZ, only PCS guarantees, and not PAC guarantees, have been proved.

In the experiments we consider 3 classes of test problem configurations.
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1. Slippage Configuration (SC), where µ1 = µ2 = . . . = µk−1 = 0 and µk = δ. This

is typically the most difficult configuration.

2. Monotone Increasing Means (MIM), where µi = (i−1)δ. In this configuration,

it is easier than in SC to correctly select System k.

3. Random problem instances (RPI-C), where µi ∼ N (0,C2δ2), and are i.i.d..

For example, in RPI-2, µi ∼ N (0,4δ2). The constant C here determines how

spread-out the means of the systems are. We regard this class of configu-

rations as representative of practical problems, at least compared to the SC,

which is synthetic and usually used for worst-case analysis.

The variances for all configurations are Chi-squared distributed: σ2
i ∼ χ2(4),

and are i.i.d. We set δ = 0.1 and α = 0.05 for all configurations. The samples Xij

are normally distributed with mean µi and variance σ2
i and are independent, as

assumed in our problem formulation. For the size of the problems, we choose

k = 100,1000,10000 for small, medium and large-scale problems, respectively.

3.5.1 Statistical Validity and Efficiency

To check the validity and efficiency of the EP and compare with the benchmark

procedures, we run these procedures on a set of standard test problem configu-

rations. For each configuration, we run 1000 independent experiments to get the

estimated PAC and average sample sizes. The results for both known-variances

and unknown-variances cases are shown in Tables 3.5 and 3.6, respectively.
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BIZ does not provide a statistical guarantee for heterogeneous or unknown-

variances cases. Therefore, though efficient, BIZ is regarded as a heuristic proce-

dure in our experiments, while KN has provable PCS.

We first discuss the known-variances results. All procedures pass the practi-

cal validity check since their estimated PACs are all above 0.95 for all problem

configurations. For the SC, BIZ has the smallest average sample size and lowest

estimated PAC. This is not surprising, since BIZ has nearly tight PCS (when the

variances are common) in this configuration. Comparing to KN, KEP is about 20%

more efficient than KN in medium and large-scale problems.

For the MIM configurations, the estimated PAC of KN and KEP are 100% in

all scales, while BIZ makes mistakes sometimes but still retains a high confidence.

Regarding efficiency, KEP outperforms KN in all scales, especially for medium

and large-scale problems. The performances of KEP and BIZ are comparable in

all scales. The sample size does not increase much as the problem scale increases.

The reason is that the systems added in medium and large scale problems are far

away from the best system, so it is easy to distinguish them from the best one.

We have three kinds of RPIs with increasing deviations of the system means:

RPI-2, RPI-5 and RPI-10. KN and KEP do not make mistakes in these configu-

rations and the estimated PAC of BIZ is also very close to 100%. Regarding effi-

ciency, KEP outperforms both KN and BIZ in most cases, except for the small-scale

problem in RPI-2, where KEP takes a few more samples than does BIZ. KEP shows

the most significant advantage in the large scale problem in RPI-10, where it only
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uses 11% of the samples used by KN and 18% of the samples used by BIZ. Overall,

KEP saves between 20% and 80% of the samples of KN and BIZ in most cases.

The results for the unknown-variances case are similar to those for the known-

variances case. The performances of UEP and UEPu are close but UEPu is always

slightly better than the UEP. Here we set n0 = 50 since if n0 is too small then η will

be too large and the efficiency of the procedure will decrease. In practice, however,

we can use the empirical EP as discussed in the later section, where the impact of

n0 on η is weaker. For the SC, BIZ has the best performance in all scales, and the EP

variants are usually more efficient than KN. For the MIM, the order of efficiency of

the procedures is still BIZ, UEPu, UEP and then KN, but the differences between

them are not as large as in the SC. For the RPI configurations, UEP and UEPu

outperform BIZ and KN in most cases, but the improvement is not as large as in

the known-variances case. The reason is that when the variances are unknown we

have an initial stage to take n0 samples from each system for variance estimation,

and that offsets the EPs’ advantage in requiring fewer samples from the inferior

systems.

To summarize, EP is less efficient than BIZ in the SC, but is more efficient in

more practical problems. In general, we can see a tendency that KEP performs

better when the scale of the problem is larger and when the system means come

from the random instances.
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Figure 3.2: Empirical PAC vs. total sample size n for different procedures
in SC. Variances are known.

3.5.2 Empirical PAC and Practical Efficiency

As seen in the previous section, EP never errs in selecting an approximately cor-

rect system. These results indicate that EP is reliable, but this over-delivery of the

PAC guarantee suggests that EP takes more samples than are needed. In other

words, the gap between the practical PAC and the lower bound of the theoretical

PAC is large and there is room for further improvement.

In the proof of the theoretical results, the target PAC, 1 − α, that we provide

as the input parameter is actually a lower bound on the true PAC, and such a

lower bound can be loose as a result of the inequalities employed in the proofs.

When we compare the accuracy of the procedures, we may prefer to compare
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their true PAC instead of the lower bounds, especially in situations where the

computational budget is limited. To that end, we conduct some experiments to

compare the efficiency of EP with other procedures based on their true PAC.

To vary the empirical PAC of the procedures, we change the values of some

parameters in the procedures, e.g., η in KN as defined in [36] and η as defined

here, which is essentially changing the value of the input parameter α. These two

η’s have different meanings. In order to differentiate them, we call them ηKN and

η, respectively. For each value of the parameter, we repeat the experiment and

report the empirical PAC and average sample size.

Intuitively and empirically, the SC is the most difficult configuration, so if a
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procedure satisfies the statistical guarantee in this case, it should also be valid

for other configurations, and this result with stronger assumptions is partially

proved in [18]. Therefore, we consider the SC to illustrate the practical efficiency

of the procedures. We consider a small-scale problem in the SC where k = 100 and

σ2
1 = σ2

2 = . . . = σ2
k = 4. To achieve the desired range of PAC, for KN we set ηKN ∈

[4.12,10.81], for BIZ we set 1−α ∈ [0.8,0.999], for KEP we set η ∈ [2.22,4.6], and for

UEP and UEPu we set η ∈ [2.1,5]. The empirical PAC and corresponding average

sample size is obtained using 10,000 independent replications of each experiment.

The results for known-variances are shown in Figure 3.2, which originally ap-

peared in [43]. From the figure we can see that EP is the most efficient procedure,

BIZ is in second place, and KN is in third place. To achieve PAC = 0.95, on average

KEP uses 1.50×105 samples, while BIZ and KN use 2.19×105 and 3.06×105 samples,

which are 46% and 104% more than KEP, respectively. On the other hand, if the

total number of samples is restricted to 2 × 105, EP achieves 98.7% accuracy, while

BIZ and KN only get 93.5% and 82.7%, respectively. For the unknown-variances

case, the results are similar, as shown in Figure 3.3. UEPu is slightly more efficient

than UEP, and they both outperform BIZ and KN. To achieve PAC = 0.95, on av-

erage UEPu, UEP, BIZ and KN take 1.53 × 105, 1.61 × 105, 2.16 × 105 and 3.14 × 105

samples respectively, and using a sample size of 2×105, the empirical PAC of these

4 procedures are 98.9%,98.0%,93.6% and 83.2%, respectively. In summary, the EPs

show a strong advantage over BIZ and KN in efficiency in this set of experiments.

Based on these result, it seems we can set the parameter η to the value that
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achieves 1 − α PAC in SC, so that a practical PAC is still secured (albeit without

theoretical guarantee), while the efficiency can be improved. Hence, we get a very

efficient heuristic R&S procedure. We give the efficiency of the heuristic procedure

in Table 3.7, cf. Table 3.5, 3.6. From the table we can see the clear improvement. For

the known-variances case, the heuristic EP only takes 30% to 50% of the samples

of the original one, and hence is also much more efficient than KN and BIZ. For

the unknown-variances case, the improvement is similar, except for the medium

and large scale case in MIM and some spread-out RPI configurations, where the

samples taken in the initial stage play a key role and cannot be improved.

In summary, using the same number of samples, the EPs achieve higher em-

pirical PAC than KN and BIZ. Based on this observation, we developed heuristic

procedures, and the experimental results show that the efficiency is clearly im-

proved and is more efficient than KN and BIZ in all scenarios.

3.6 Conclusions and Future Work

In this chapter, we present EP, a new fully sequential selection procedure that

delivers a PAC guarantee. Unlike elimination-based procedures, EP keeps all of

the systems in contention, though the frequency of being sampled is based on their

performance, depending on the sampling rule. The EP accommodates a variety of

sampling rules, and two specific sampling rules are discussed.
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Besides the statistical guarantee and a general lower bound on the sample com-

plexity of PAC procedures, we also provide an analysis of the sample complexity

of the EP, relating it to the problem complexity. Experimental results show that EP

outperforms the state-of-the-art procedures KN and BIZ in efficiency on a variety

of problems, especially for large-scale problems with randomly sampled expecta-

tions. If the comparison is done based on empirical PAC, the performance of EP

is even more impressive, and, inspired by this observation, we offered a heuristic

version of the EP.

Several research directions suggest themselves. First, the empirical PAC of the

EP is much larger, from a practical perspective, than the guaranteed value of PAC

we derived; reducing this gap would be desirable. Second, it may be worthwhile

to examine the sample complexity and empirical performance of EP with differ-

ent shaped envelopes (the confidence boundary). Third, the upper bound on the

sample complexity of EP and the lower bound of any R&S procedure with a PAC

guarantee differ by a factor of lnk. We believe this lnk term is necessary but have

not been able to prove it, so perhaps the lower bound can be strengthened. Fourth,

the EP performs well in practical large-scale problems, and it is natural to consider

applying it in a parallel computing environment.
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CHAPTER 4

SAMPLING RULES FOR THE ENVELOPE PROCEDURE IN A PARALLEL

COMPUTING ENVIRONMENT

4.1 The Envelope Procedure in a Parallel Computing Environ-

ment

In this section we discuss some specific aspects and features of the EP with un-

known variances (i.e., UEP in §3.3, but we will use the term EP instead in this

chapter since no confusion will be caused) in parallel computing environment,

some of which apply to general R&S procedures while others are specifically de-

signed for the EP.

4.1.1 Master and Worker Scheme

We consider the master-worker framework (also known as master-slave frame-

work) in a parallel computing environment, where a single core acts as a ”mas-

ter” process, which stores all the data information and coordinate the parallel pro-

cedure, and all other cores act as ”worker” cores, which execute the instructions

from the master. This parallel scheme is also adopted in [41], [48] and [47], though

the details in implementation are different.
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For the EP, the workers are responsible for the simulation tasks. Their working

cycle is simple: A worker sends a message to the master saying it is ready, and

receives a simulation job assigned by the master. It then executes the job and send

the simulation result back to the master. This cycle is repeated until it receives a

stop message from the master. The master has four tasks: it (1) determines what

simulations to run next according to the sampling rule based on the information

collected so far, (2) sends simulation jobs to an available worker, (3) receives simu-

lation results from the worker and update the statistics, and (4) check the stopping

criterion and send stop message to workers when it is met.

To reduce the amount of communication work between master and workers,

the simulation jobs assigned to workers are in batches rather than single repli-

cations. Since the only information EP uses for screening are sample means and

sample variances, the workers only need to report the sums and the sample vari-

ances of the simulation results to the master, and the master can maintain these

summary statistics instead of storing all of the simulation results.

The batch size should be chosen carefully. If the batch size is too small, the

master might be overwhelmed by messages. If the batch size is too large, on the

other hand, some samples might be redundant. The ideal batch size depends

on the average simulation time of one replication Tsim, the number of workers c,

and the average screening time Tscr. To avoid the master being overwhelmed by

messages, the batch size b should not be less than cTscr/Tsim. In practice, one can

estimate Tsim and Tscr by the samples collected in the initial stage to determine b.
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4.1.2 Random Completion Times and Vector Filling

As discussed in [48], [41] and [47], the randomness of completion times of simula-

tions in a parallel computing environment can cause nontrivial issue in statistical

validity. In the procedure, estimators are constructed from collections of simu-

lation results. In a parallel computing environment, multiple simulation replica-

tions can be carried on different cores simultaneously, and the order of the com-

pletion of simulation replications is random. If we construct those estimators by

collecting simulation results in the order in which they are received, then the dis-

tribution of the estimator might be changed due to the possible statistical depen-

dencies between completion time and simulation results.

In our case, for example, we maintain the mean value of system outputs X̄i’s

during the main stage (Step 3 - 5 in §3.3) of the procedure, and the statistical va-

lidity of the procedure is based on the fact that the samples are i.i.d.. However, if

we collect simulation replications in the order of their completions then we lose

this property and hence the statistical validity of the procedure. To avoid the loss

of statistical guarantee, we use the “vector-filling” method [41] to keep the order

of simulation outputs as same as the order in which the simulations are initiated.

A similar approache is discussed in [47].

Specifically, we maintain a result list throughout the main stage of EP. When

the master assigns a simulation job to a worker, the index of the job is also sent to

the worker. When the worker completes the job and sends the simulation result
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along with the index back to the master, the master stores the result in the position

of the result list corresponding to the index. A result can be used by the master

(we call it absorbed by the master) for making decisions only when it and all of

its precedents are received. We only need to maintain the cumulative sum of the

absorbed results. In this way, simulation results are used for screening in the exact

order in which they were assigned. The statistical guarantee of the EP is based on

the fact that the sample means of the systems always stay within their envelopes

throughout the whole procedure, whenever observed, so the randomness in the

number of absorbed result by a fixed time does not hurt its validity. Therefore,

the statistical validity of the parallel procedure is guaranteed as in the serialized

procedure.

An advantage of the EP is that it does not require synchronization between dif-

ferent systems. The statistical validity of the EP is based on the fact that the sample

means always stay within the envelopes around their true means throughout the

whole procedure with high probability, so the sample sizes of the systems can be

arbitrary (as long as they do not exceed Ni’s) when the decisions (choice of sys-

tems from which to take samples and whether to terminate or not) are made. In

other words, we can make decisions at any time and there is no need to wait for

any simulation job to be completed, provided vector-filling is maintained.
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4.1.3 Sequential Assignment and Information Update

In a parallel computing environment, cores send messages of availability to the

master one by one, along with new information. Therefore, the sampling rule

does not need to determine the numbers of replications for all systems or all cores

in one round. Instead, we make the sampling decisions sequentially. In this way,

we can make sampling decisions based on the most recent information to try to

avoid redundant samples.

Usually the statistics get updated only when the master receives simulation re-

sults from the workers. However, the action of sending simulation jobs to workers

also contains information. For example, consider top-two sampling strategy of the

EP. When the master assigns a simulation job of System j∗ to a worker, the sam-

ple size nj∗ will increase by a batch size. Therefore the identity of j∗ may change,

since the upper confidence bound of this system will change. This suggests that,

if the current j∗ will not be the one with the highest confidence upper bound, then

the it should not be picked when the next available core arrives, even though the

simulation result for it has not been received yet.

For this reason, we redefine the upper and lower confidence bound as

Li = X̄i −
ηSi

√
ni +mi

,

Ui = X̄i +
ηSi

√
ni +mi

,

where ni is the number of samples that have been received, and mi is the number

of samples that have been sent to workers but have not yet been absorbed. When
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a job of simulating system i is sent to worker, we should update mi and j∗ accord-

ingly, while when the result is received by the master and is absorbed (see §4.1.2),

we should update mi, ni, X̄i, i∗ and j∗ accordingly.

System i∗ can have the same issue. When there are many workers, it is possible

that the master assigns many jobs of simulating i∗ to workers before any of the jobs

is completed, since the sample means and the identity of i∗ do not change when

sending jobs. There is a chance that the current i∗ could be a system with low

mean after the first few samples are completed and all of the jobs after those early

samples are in vain. This scenario can happen especially in the early stage of the

procedure, where the uncertainty on the means of the systems is still very high.

To resolve this problem, we propose a Baysian approach to estimate the output of

the systems that are being simulated.

We assume that the unknown mean of System i has the non-informative con-

jugate normal prior distribution. As shown in [14], the posterior distribution of µi

is

µ̃i ∼ N (X̄i,
σ2
i

ni
) .

In practice we approximate σ2
i by sample variance S2

i . Therefore, the posterior

mean of mi replications of System i follows normal distribution with mean X̄i

and variance σ2
i /ni+σ

2
i /mi. When the master assign simulation jobs to workers, we

randomly generate outputs according to this posterior distribution before the real

results are sent back. In this way, the action of sending jobs also creates (random)

information as to the identity of i∗, and hence the problem of over-sampling can
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be relieved. When the real results are received, the randomly generated results

are replaced by the real ones.

4.1.4 Inferior System Elimination

In a parallel computing environment, the speed of the screening or making sam-

pling decision is much more important than in a sequential environment since the

master makes such decisions more frequently as discussed in §4.1.3, and it affects

the utilization of the workers. For the EP, such decisions are usually based on the

identity of i∗ and j∗ among all systems. For practical problems, there are usually

some systems whose means are much lower than the best. Including these infe-

rior systems as candidates for i∗ and j∗ is unnecessary and slows the process of

making sampling decisions.

Therefore, we present a method to eliminate those systems from the candidates

for i∗ and j∗ without harming the statistical validity of EP. Remember that the PAC

guarantee of EP is based on the fact that, with high probability, the true means

are within the confidence band throughout the procedure. Conditioning on that

desired event, we have

µk − δ ≥ max
i
X̄i −

ησi
√
ni
− δ = thresh

and

µi ≤ X̄i +
ησi
√
ni
,∀i.
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If for System i, X̄i +
ησi√
ni
< thresh, then

µi < µk − δ,

and hence System i is not a δ-optimal system, and it can be eliminated.

This elimination scheme usually does not affect the sampling decisions and

hence the total number of samples of the procedure, since the eliminated systems

are those that should not be sampled anyway. The purpose of introducing elim-

ination to the EP is to make the selection of i∗ and j∗ more efficiently. Therefore,

we recommend doing the elimination only once after the initial stage, or only a

few times during the main stage, because the elimination itself also takes time.

4.1.5 The Parallel EP

We summarize the parallel EP here. The master starts with Algorithm 1 and the

workers run Algorithm 3. And then the master runs Algorithm 2 and the workers

run Algorithm 3 again.

4.2 Sampling Rules

We introduced the top-two strategy in §3.2.2, which is designed for sample com-

plexity analysis. Now we introduce two more sampling rules for practical use:

the Gap-Minimization strategy and the No-Waste strategy. The former one is
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Algorithm 1: Parallel EP: Master Initialization

1: while Not every worker is closed do

2: Receive a message from an available worker w.

3: if Tag == READY then

4: if Not every system is assigned then

5: Send a message with Tag=SIM of simulating next system to w.

6: else

7: Send message with Tag=STOP to w.

8: else if Tag == DONE then

9: Update ∑X and ∑X2 of this system according to the result.

10: if Not every system is assigned then

11: Send a message with Tag=SIM of simulating next system to w.

12: else

13: Send message with Tag=STOP to w.

14: else if Tag == CLOSED then

15: Mark w as closed.

16: Calculate the statistics.
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Algorithm 2: Parallel EP: Master Main Stage

1: while Not every worker is closed do

2: Check the stopping rule only based on the absorbed results.

3: Receive a message from an available worker w.

4: if Tag == READY then

5: if The stopping criterion is not met then

6: Send a message with Tag=SIM of simulating a system according to

the sampling rule to w.

7: Update m of the system and j∗.

8: else

9: Send message with Tag=STOP to w.

10: else if Tag == DONE then

11: if The stopping criterion is not met then

12: Send a message with Tag=SIM of simulating next system to w.

13: Update m (the number of assigned but not completed jobs) of the

system and j∗.

14: else

15: Send message with Tag=STOP to w.

16: Save the result to the corresponding position of the result list.

17: while The result in the head of the result list has been received do

18: Absorb the result in the head by updating ∑X , n and m of the cor-

responding system according to the result.

19: Move the head of the result list forward.

20: Update i∗ and j∗.

21: else if Tag == CLOSED then

22: Mark w as closed.

23: Return the selected system and other statistics.
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Algorithm 3: Parallel EP: Worker

1: Send message with Tag=READY to the master.

2: while True do

3: Receive a message from the master.

4: if Tag == SIM then

5: Do the simulation job according to the message.

6: Send a message with Tag=DONE of returning the result to the master.

7: else if Tag == STOP then Break.

8: Send message with Tag=CLOSED to the master.

designed for a serial computing environment, while the latter is designed for a

parallel computing environment.

4.2.1 Gap Minimization

Here we consider a sampling strategy that allocates multiple samples in a greedy

fashion. Denoting the number of samples we can draw in each round by M , in

each round, we try to shrink the absolute value of the (negative) gap between the

the right-hand side and left-hand side of (3.3) by allocating those samples. We

ignore the change in the sample means since the change is unknown at the point

of making allocation decisions, and to ensure tractability. In other words, the X̄i’s

are constants and the only variables here are the number of samples mi. Formally,
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in each round t we want to solve the optimization problem

argmin
m1,m2,⋯,mk

{
ησi∗

√
ni∗ +mi∗

+max
j≠i∗

{X̄j(nj) +
ησj

√
nj +mj

}} ,

s.t. ∑
i

mi =M,

mi ≥ 0,

where the constants (X̄i∗(ni∗) and δ) in (3.3) are dropped and we omit the iterator

t for notational convenience. The integrality of the number of samples is also

relaxed for simplicity.

We start with a simple case where we only consider systems i∗ and j∗ as in the

2-sample strategy. In this case, the optimization problem becomes

argmin
mi∗ ,mj∗

{
ησi∗

√
ni∗ +mi∗

+
ησj∗

√
nj∗ +mj∗

} ,

s.t. mi∗ +mj∗ =M,

mi∗ ≥ 0,mj∗ ≥ 0.

Plugging mj∗ =M −mi∗ into the objective function and setting the derivative with

respect to mi∗ to zero, we get

−
ησi∗

2 (ni∗ +mi∗)
3
2

+
ησj∗

2 (nj∗ +M −mi∗)
3
2

= 0,

which is equivalent to
nj∗ +M −mi∗

ni∗ +mi∗
= (

σj∗

σi∗
)

2
3

.
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Solving for mi∗ yields

mi∗ =
ni∗ + nj∗ +M

(
σj∗
σi∗

)

2
3
+ 1

− ni∗ .

The feasible range of mi∗ is [0,M]. From the derivative of the objective function,

it is not hard to see that the objective function is convex, so the optimal solution is

mi∗ = min

⎛
⎜
⎜
⎝

max

⎛
⎜
⎜
⎝

ni∗ + nj∗ +M

(
σj∗
σi∗

)

2
3
+ 1

− ni∗ ,0

⎞
⎟
⎟
⎠

,M

⎞
⎟
⎟
⎠

, (4.1)

and correspondingly

mj∗ =M −mi∗ . (4.2)

A complication is that the identity of j∗ may change due to the change of the

width of the confidence interval. If there exists a system j that is not i∗ or j∗, s.t.

X̄j(nj) +
ησj
√
nj

> X̄j∗(nj∗) +
ησj∗

√
nj∗ +mj∗

, (4.3)

where mj∗ is given by (4.2), then only considering Systems i∗ and j∗ is not equiv-

alent to the original optimization problem. When more systems need to be con-

sidered, the closed-form solution of the optimization problem is not tractable any-

more. One can exactly solve the problem by iterating over the number of samples

to draw from i∗, with the rest of the samples being carefully allocated to other

systems.

The key idea is to iterate over the number of samples to draw from i∗. Before

we start the iteration, we sort all systems but i∗ by their upper confidence bounds,

say j1, j2, . . . , jk−1, i.e.,

Uj1(nj1) ≥ Uj2(nj2) ≥ . . . ≥ Ujk−1(njk−1).
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Initially we assign all samples to i∗. In the next iteration, we move a batch of

samples from i∗ to j1, calculate the resulting value of the objective function and

save it. Next, we move a batch of samples from i∗ to the current system with

the highest upper confidence bound, compute the objective values and save. We

keep iterating like that until all samples are taken from i∗. In this process, we

maintain the minimum value of the objective function and the corresponding al-

location (mi, i = 1, . . . , k). Finally we take the allocation that minimizes the outer

objective function as our solution; see Algorithm 4, where we drop the iterator t

for notational convenience.

4.2.2 No-Waste Sampling

In a parallel computing environment, as discussed in §4.1.3, the master makes

sampling decisions sequentially instead of determining the sample sizes of all sys-

tems in one round. The question we need to answer is that, which system should

we sample so that the new batch of replications will not be a waste. The first step

to answer this question is find out the number of samples needed for each system

so that the total number of samples is minimized. We still ignore the change in

the sample means to ensure tractability. By allocating samples to different sys-

tems, we can decrease the upper confidence bound of i∗ and increase the lower

confidence bound of the others, so that (3.3) is satisfied.
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Algorithm 4: Gap-Minimization strategy

1: Compute mi∗ and mj∗ according to (4.1) and (4.2).

2: if (4.3) does not hold then

3: mj ← 0 for all j ∈ S ∖ {i∗, j∗}.

4: return

5: Sort systems S ∖ i∗ by Uj(nj) and denote the sorted indices by j1, j2, . . . , jk−1.

6: Initialization: Let Ui ← X̄i + ησi/
√
ni for each i, i∗ ← argmaxi X̄i, j∗ ←

argmaxj≠i∗ Uj .

7: Let mj ← 0 for j ≠ i∗, mi∗ ← B, b← 1.

8: Let minV← ησi∗√
ni∗+B

+Uj∗ , minMi =mi for each i.

9: while mi∗ > 0 do

10: Let mi∗ ←mi∗ − b, mj∗ ←mj∗ + b, Uj∗ ← X̄j∗ + ησj∗/
√
nj∗ +mj∗ .

11: Let j∗ ← argmaxj≠i∗ Uj , V ← ησi∗/
√
ni∗ +mi∗ +Uj∗ .

12: if V < minV then

13: Let minV ← V , minMi =mi for each i.

14: Let mi ← minMi for each i.

Formally, we consider the following optimization problem:

min
m1,...,mk

k

∑
i=1

mi

s.t.X̄i∗ −
ησi∗

√
ni∗ +mi∗

≥ max
j≠i∗

X̄j +
ησj

√
nj +mj

− δ

mi ≥ 0, i = 1,2, . . . , k.
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Let ` = X̄i∗ − ησi∗/
√
ni∗ +mi∗ , then

ni∗ +mi∗ = (
ησi∗

X̄i∗ − `
)

2

, and

nj +mj ≥ (
ησj

` + δ − X̄j

)

2

,∀j ≠ i∗.

It is implied that

X̄i∗ −
ησi∗
√
ni∗

≤ ` < X̄i∗ , and

` > X̄j − δ,∀j ≠ i
∗.

Therefore, the original problem is equivalent to the following problem,

min
`
f(`) = (

ησi∗

X̄i∗ − `
)

2

+ ∑
j≠i∗

max
⎛

⎝
(

ησj

` + δ − X̄j

)

2

, nj
⎞

⎠

s.t. max
j≠i∗

(X̄j − δ) < ` < X̄i∗ , and

l ≥ X̄i∗ −
ησi∗
√
ni∗

.

which is a convex optimization problem that can be solved efficiently. Once the

solution is achieved, one can calculate mi’s to determine the number of replica-

tions to simulate for each system.

As in Top-two strategy, the system i∗ and j∗ are the key systems in stopping

rule. However, if we have already taken enough samples from a system, we do not

need to take more sample from it. Therefore the question is, whether the number

of sample from i∗ or j∗ is enough.
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We can find the answer from solving the previous optimization problem. We

should take samples from System i∗ or j∗ if and only if mi∗ > 0 or mj∗ > 0 in the

optimal solution of the problem.

System i∗: Sincemi∗ = 0 corresponds to `1 = X̄i∗ −ησi∗/
√
ni∗ , it suffices to check

(1) if `1 is not a feasible solution, i.e.,

`1 ≤ max
j≠i

X̄j − δ, and

(2) if `1 is not the optimal solution, i.e.,

f ′(`1) =
(ησi∗)

2

(X̄i∗ − `1)
3 − ∑

j∈J`1

(ησj)
2

(`1 + δ − X̄j)
3 < 0,

where

J` =

⎧⎪⎪
⎨
⎪⎪⎩

j ∶ (
ησj

` + δ − X̄j

)

2

> nj

⎫⎪⎪
⎬
⎪⎪⎭

.

If (1) and/or (2) is satisfied, then mi∗ > 0.

System j∗: Since mj∗ = 0 is equivalent to mj = 0, ∀j ≠ i, which corresponds to

`2 = X̄j∗ +
ησj∗√
nj∗

− δ , it suffices to check (1) if `2 is not a feasible solution, i.e.,

`2 ≥ X̄i∗ , and

(2) if `2 is not the optimal solution, i.e.,

f ′(`2) =
(ησi∗)

2

(X̄i∗ − `2)
3 −

(ησj∗)
2

(`2 + δ − X̄j∗)
3 > 0.

If (1) and/or (2) is satisfied, then mj∗ > 0.

Remark: If the sample size of System i∗ has reached the limit Ni∗ , then j∗ should

always be sampled, and vice versa.
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4.3 Computational Study

In this section, we demonstrate the performance of the EP with the no-waste sam-

pling rule in a parallel computing environment, and compare it with the vector-

filling KN (VKN) procedure [41]. Since the variances are unknown in our experi-

ments, we use UEP and replace σi by Si.

The VKN procedure extends the KN procedure [36] to a parallel computing

environment with the vector-filling method, and it also adopts the master-worker

scheme. It has the same statistical validity as the KN procedure. The original

vector-filling method in [41] requires a large amount of memory since it needs

to store all of the simulation results in the exact order in which the simulation

jobs are sent from the master. To save the memory so that we can test large-scale

problem, we improved this strategy by storing the cumulative sum of the absorbed

results instead of the individuals, as described in §4.1.2.

Both the EP and the VKN are implemented using the Message-Passing In-

terface (MPI), which is a standardized and portable message-passing system to

function on parallel computing architectures. Our algorithms are implemented in

python and we use the MPI for Python package (mpi4py). The MPI allows us to

fully customize the work-flow and the message-passing scheme between master

and workers, and hence provides high flexibility in designing the algorithms.

We test the performance on the “throughput-maximization” problem taken

from SimOpt.org [23]. The setup of the problem is discussed in §2.4.2, and the
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details can be found in [23]. For our experiments, we set the warm-up period

as 2000 jobs and the average throughput is based on the following 50 jobs. We

consider two configurations: 1)R = B = 20, in which k = 3249, and 2)R = B = 50, in

which k = 57624. The parameters are α = 0.05, δ = 0.1 throughout the experiments

and the batch size is set to be the same as n0.

The performance of the procedures is demonstrated with three measurements:

number of samples, wall-clock time and utilization. The number of samples is

a standard measurement for the efficiency of R&S procedures. In parallel com-

puting environment, considering the screening time, synchronization issue and

idling time, the wall-clock time is a more important factor. In addition, we define

the utilization as

utilization =
total time spent on simulation

wall-clock time × number of workers
,

which measures how efficiently the workers are used on simulation effort.

The experimental results are shown in Table 4.1. From the experimental results

we can see that, the EP outperforms the VKN in all configurations in all of the

measurement. The EP uses many fewer samples and much less wall-clock time to

complete, and the utilization of the workers of the EP is higher than the VKN as

well, especially for the large-scale problem. For the EP, there is no tendency that

the utilization will change a lot as the number of cores or the number of systems

increases. In comparison, the utilization of VKN drops dramatically for the large-

scale problem. The reason is that screening involves pair-wise comparison, which

is very time-consuming, and many workers are idling waiting for the instructions
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from the master when it is doing the screening job.

4.4 Conclusions

In this chapter, we discussed the EP in a parallel computing environment and two

sampling rules. For the parallel EP, we use the master-worker parallel framework.

The vector-filling technique is used for resolving the issue brought by random

completion times. We also designed information update and system elimination

schemes to adapt to the sequential assignment of simulation jobs in a parallel en-

vironment. Furthermore, we designed Gap-Maximization sampling rule and No-

Waste sampling rule. They both can work in a parallel environment, but the latter

is specifically designed for it since it assigns job sequentially, so we recommend it

and used it for our experiments. The experimental results show that the parallel

EP outperforms the VKN in all of the measurements for the parallel computing

environment across all test configurations.
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CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis, we focused on three topics of the R&S problem. First, we explored

the problem of predicting the simulation budget of R&S procedures, which is im-

portant when dealing with large-scale problems. We presented two approaches

for estimating the total number of samples needed for a R&S procedure to termi-

nate, both of which rely on the estimation of the problem configuration, which is

not trivial. We developed a linear combination estimator that exhibits excellent

performance in a realistic setting and reasonable performance even in the slip-

page configuration. Experimental results for both synthetic test problems and a

realistic problem together suggested that our approach is effective and sufficient

for application.

Second, we presented EP, a new fully sequential selection procedure that de-

livers a PAC guarantee. Unlike elimination-based procedures, EP keeps all of the

systems in contention, though the frequency of being sampled is based on their

performance, depending on the sampling rule. The EP accommodates a variety

of sampling rules, and two specific sampling rules are discussed. Besides the sta-

tistical guarantee and a general lower bound on the sample complexity of PAC

procedures, we also provide an analysis of the sample complexity of the EP, relat-

ing it to the problem complexity. Experimental results show that EP outperforms

the state-of-the-art procedures KN and BIZ in efficiency on a variety of problems,

especially for large-scale problems with randomly sampled expectations. If the
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comparison is done based on empirical PAC, the performance of EP is even more

impressive, and, inspired by this observation, we offered a heuristic version of the

EP.

Finally, we developed several features for the EP specifically designed for a

parallel computing environment, which improves the efficiency of EP while pre-

serving its statistical validity. In addition, two sampling rules for the EP are pre-

sented, one of which is for a serial computing environment, while the other is for

a parallel computing environment. Computational experiments are done to com-

pare the performance of the parallel EP with the VKN procedure, and the results

show that the EP outperforms the VKN in all of the measurements for the parallel

computing environment across all test configurations.

In this thesis, we only discussed the method for predicting the sample com-

plexity of procedures, instead of the more desirable goal of predicting running

times. These two goals are closely connected, but the latter one is more difficult to

analyze. At the end of the day, the prediction of the running time is the ultimate

goal. The factors that affect the running time include synchronization issues, the

detail of the parallelization scheme, and the implementation of the procedure. A

possible way to obtain a reasonable prediction of the running time is to use our

methods to get a prediction on the sample complexity, and then consider all of

these issues to predict the running time based on the sample complexity.

For the EP, there is a clear gap between the empirical PAC and the guaranteed

value of PAC we derived. By reducing this gap, theoretically or practically, the
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efficiency can be further improved. Another gap that inspires a future direction

is the one between the upper bound on the sample complexity of the EP and the

lower bound of any R&S procedure with a PAC guarantee. Intuitively, the lnk

term in the bound is necessary, but we did not find a way to prove it. Furthermore,

the current shape of the envelope might not be the optimal one. Further study on

the impact of these factors on the sample complexity is an intriguing topic.

From the numerical results we can see that the current parallel scheme for the

EP works well. However, due to the limit of the computational resources, we did

not try very large experiments, say, 100 thousand systems or 1 million systems,

on 64 cores, 128 cores or hundreds of cores. For this level of configurations, the

current scheme may or may not be able to maintain a high utilization. If it does

not, the natural question to ask is how can we further improve the parallel scheme

so that it scales with the number of systems and number of cores. For example, if

the screening becomes the bottleneck, a possible solution is using another core as

an assistant for the master to help with calculating the statistics and screening. In

addition, besides vector-filling, is there a more efficient way to keep the statistical

validity in parallel computing environments? We leave this as a future research

direction.

132



APPENDIX A

APPENDIX FOR CHAPTER 2

A.1 Relaxed Condition in Proposition 2

Proposition 2, below, complements Proposition 1, and relaxes the assumption that

the means are unique. In fact, an inspection of the proof of Proposition 1 reveals

that the proof holds under the weaker assumption that only µi is unique, rather

than assuming that all the means are unique. (One need only note that the event

Bi(n), that X̄i(n) is the ith smallest of the sample means, holds eventually under

this weaker assumption.) Accordingly, here we assume that µi is not unique. To

that end, we again assume, without loss of generality, that the µ vector is ordered

from smallest to largest, and let l ≤ i ≤ u be such that u − l > 1 and µl−1 < µl =

µl+1 = ⋯ = µi = ⋯ = µu < µu+1. We explicitly allow l = 1 or u = k, in which case

the corresponding strict inequality is vacuous. For a vector v, let f(v) return the

(i − l + 1)th smallest component of v. We need the following assumption.

A5 The joint central limit theorem

√
n

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

X̄l(n) − µi

X̄l+1(n) − µi

⋮

X̄u(n) − µi

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⇒ N(0,Σ)

holds as n→∞, for some multivariate normal random vector N(0,Σ).

133



Notice that A5 holds under the independence assumption A4, in which case

Σ is the diagonal matrix with diagonal entries equal to the variance constants

σ2
l , σ

2
l+1, . . . , σ

2
u, so that the situation we focus upon in the chapter is covered by

A5. But the conclusion of Proposition 2 applies more generally than the setting

of Assumption A4, e.g., in certain steady-state simulation settings, or in quantile-

estimation settings, which is why we adopt A5 as the basic assumption.

Proposition 2. Fix i ∈ {1,2, . . . , k}. If A1 holds, then the naive estimator Mi(n) is a

strongly consistent estimator of µi, for each i = 1,2, . . . , k. If A1, A2 and A5 hold, then

Mi(n) satisfies the central limit theorem

√
n(Mi(n) − µi)⇒ f(N(0,Σ))

as n→∞. If A1–A3 hold, then the mean squared error of Mi(n) is O(n−1).

PROOF. Define Ci(n) to be the event that the sample means

X̄l(n), X̄l+1(n), . . . , X̄u(n) correctly take positions l, l+1, . . . , u (in any order within

these positions) in the ranking of the sample means. On the event Ci(n), it follows

that Mi(n) ∈ {X̄l(n), X̄l+1(n), . . . , X̄u(n)}. Then, as in the proof of Proposition 1,

for some (random) N , Ci(n) happens for all n ≥ N a.s. Consistency then follows

as before.

For the central limit theorem, we first observe that 1(Ci(n)) = 1 eventually

a.s., and on the event Ci(n), Mi(n) = f(X̄[l,u](n)), where the vector X̄[l,u](n) =
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(X̄l(n), X̄l+1(n), . . . , X̄u(n)). We then obtain that

√
n(Mi(n) − µi) =

√
n(Mi(n) − µi)1(Ci(n)) +

√
n(Mi(n) − µi)1(C

c
i (n))

=
√
n[f(X̄[l,u](n)) − µi]1(Ci(n)) +

√
n(Mi(n) − µi)1(C

c
i (n))

= f(
√
n(X̄[l,u](n) − µi)1(Ci(n)) +

√
n(Mi(n) − µi)1(C

c
i (n)).

The result now follows from Slutsky’s theorem, the continuous mapping theorem,

and the fact that f is continuous.

To establish the mean-squared error result, we proceed almost exactly as be-

fore. First,

√
n(Mi(n) − µi) =

√
n(f(X̄i[l, u](n)) − µi) +

√
n(Mi(n) − f(X̄i[l, u](n)))1(C

c
i (n)),

so that

nE((Mi(n) − µi)
2) ≤ 2nE(f(X̄i[l, u](n)) − µi)

2 + 2nE [(Mi(n) − X̄i(n))
2
1(Cc

i (n))] .

(A.1)

Since f selects a single term from a vector, the first term in (A.1) is bounded by

2∑
u
q=l σ

2
q . The second term is handled almost exactly as before; we omit the details.

A.2 Supplementary Tables

The supplementary tables for the experimental results in §2.4 are given below.
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APPENDIX B

APPENDIX FOR CHAPTER 3

B.1 Supporting Results for Theorem 3

Lemma 3 (Chernoff Bound for sub-Gaussian Random Walk). Define (Wn, n =

1,2, . . .) as a random walk with i.i.d. standardized (mean 0, scale factor 1) sub-Gaussian

increments. For any function f(n),

P (Wn ≥
√

2xnf(n)) ≤ exp (−xf(n)) ,∀n,∀x.

PROOF.

P (Wn ≥
√

2xnf(n)) ≤ exp (−t
√

2xnf(n))(exp(
t2

2
))

n

= exp(−t
√

2xnf(n) +
nt2

2
)

Choosing t =
√

2xf(n)
n gives the desired inequality.

Lemma 4 (Hoeffding’s Maximal Inequality). If X1,X2, . . . ,XN are i.i.d. standard

(with scale parameter 1) sub-Gaussian random variables, then

P( max
n=1,2,...,m

Wn ≥ x) ≤ exp(−
x2

2m
) .

PROOF. First, for any non-negative t, exp (tWn) is a submartingale with respect
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to the natural filtration {Fn}, since

E [exp (tWn) ∣Fn−1] = E [exp (tXn) exp (tWn−1) ∣Fn−1]

= E [exp (tXn)] exp (tWn−1)

≥ exp (tWn−1) ,

where the last inequality holds since

E [exp (tXn)] ≥ exp (tEXn) = 1

by Jensen’s inequality and the fact that EXn = 0. Hence, by Doob’s martingale

inequality,

P( max
n=1,2,...,m

Wn ≥ x) = P( max
n=1,2,...,m

exp (tWn) ≥ exp (tx))

≤
E [exp (tWm)]

exp (tx)

=
(E [exp (tXn)])

m

exp (tx)

≤ exp(
1

2
t2m − tx) .

Choosing t = x/m gives the desired inequality.

Proposition 3. Let ε∗ be the solution of the following optimization problem

min
ε

(1 +
√
ε)2 (

3

2
ln(

16

ln(1 + ε)
) +

3

2
ln(

1

a
) + ln ln(

4
√

2(1 +
√
ε)(1 + ε)σ

δ
)) . (B.1)

Then

ε∗ = O ((ln
k

α
+ ln ln

σ

δ
)

−1

) .
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PROOF. We have the relationships

(1 +
√
ε)2 = 1 + 2

√
ε +O(ε),

ln(
1

ln(1 + ε)
) = ln(

1

ε
) +O(ε),

and

ln ln(
4
√

2(1 +
√
ε)(1 + ε)σ

δ
) = ln ln(

4
√

2σ

δ
) +O(

√
ε).

Therefore, (B.1) equals

(1 + 2
√
ε +O(ε)) [ln(

16

a
) +

1

3
ln ln(

4
√

2σ

δ
) + ln(

1

ε
) +O(

√
ε)] .

Let C = ln (16/a) + 1
3 ln ln (4

√
2σ/δ). Then (B.1) is asymptotically equivalent to

f(ε) = (1 + 2
√
ε) (C + ln(

1

ε
)) .

Setting the derivative to zero, the solution ε∗ satisfies

C + ln(
1

ε∗
) = 2 +

1
√
ε∗
. (B.2)

Let x = ln ( 1
ε∗ ). Then ε∗ = e−x, and so (B.2) becomes

C + x = 2 + e
x
2 .

Therefore C = O (e
x
2 ) and x = O (lnC), hence

ε∗ = O (
1

C
) = O ((ln

k

α
+ ln ln

σ

δ
)

−1

) .

144



BIBLIOGRAPHY

[1] Jerry Banks. Handbook of simulation: principles, methodology, advances, applica-

tions, and practice. John Wiley & Sons, 1998.

[2] Robert E. Bechhofer. A single-sample multiple decision procedure for rank-

ing means of normal populations with known variances. The Annals of Math-

ematical Statistics, pages 16–39, 1954.

[3] Robert E. Bechhofer. A sequential multiple-decision procedure for selecting

the best one of several normal populations with a common unknown vari-

ance, and its use with various experimental designs. Biometrics, 14(3):408–

429, 1958.

[4] Robert E. Bechhofer, Thomas J. Santner, and David Goldsman. Design and

Analysis of Experiments for Statistical Selection, Screening and Multiple Compar-

isons. Wiley, New York, 1995.

[5] Patrick Billingsley. Probability and Measure. Wiley, New York, 3rd edition,

1995.

[6] Jürgen Branke, Stephen E. Chick, and Christian Schmidt. Selecting a selection

procedure. Management Science, 53(12):1916–1932, 2007.

[7] Leo Breiman. Probability. Society for Industrial and Applied Mathematics

(SIAM), Philadelphia, PA, 1992.

[8] Valerii V. Buldygin and Yu V. Kozachenko. Sub-Gaussian random variables.

Ukrainian Mathematical Journal, 32(6):483–489, 1980.

145



[9] Chun-Hung Chen, Stephen E. Chick, Loo Hay Lee, and Nugroho A. Pujowid-

ianto. Ranking and selection: efficient simulation budget allocation. In Hand-

book of Simulation Optimization, pages 45–80. Springer, 2015.

[10] Chun-Hung Chen, Jianwu Lin, Enver Yücesan, and Stephen E. Chick. Simu-
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