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In this thesis, I examine several situations in which one can improve the efficiency

of a stochastic simulation algorithm by adaptively exploiting special structure of

the problem at hand.

The thesis is comprised of three independent papers. In the first paper, I

propose a new variance reduction technique in the setting of comparing the per-

formance of two stochastic systems. The technique is a natural generalization

of common random number sampling, a well-known sampling strategy that may

reduce variance in certain situations. Common random number sampling entails

sampling the underlying uniform random variates according to a particular copula;

my proposed method considers more general copulae. I identify properties such a

copula must have in order to induce a valid sampling strategy, give examples of

situations in which copulae exist that outperform common random numbers, and

give an algorithm for computing an effective Gaussian copula.

In the second paper, I discuss an automated procedure for computing a control

variate for the pricing of American options. The control variate is equal to the

value of a particular martingale at the time the option is exercised. The martingale

is constructed using a an approximation of the value function in a backward dy-

namic program. We use adaptive linear regression splines to create the functional

approximation. These splines have properties of which make them computationally

convenient for constructing a martingale-based control variate of this type.

In the third paper, I describe and analyze a novel root-finding procedure for



monotone, convex univariate functions in the presence of noise. The main result of

the analysis is a probabilistic performance guarantee for the algorithm. Specifically,

given an indifference parameter delta and a confidence alpha, the algorithm returns

a point whose absolute function value is less than delta with probability at least

one minus alpha. The total amount of work required by the algorithm may be

bounded in terms of the length of the compact interval on which the function is

defined and the Lipschitz constant of the function.
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Chapter 1

Introduction

1.1 Background

Stochastic simulation is a widely used technique applicable to a great variety of

computational problems in operations research. One reason for the success that

simulation has enjoyed is the fact that the rate of convergence of a simulation

estimator is typically independent of the dimension of the underlying problem,

thanks to the Central Limit Theorem (e.g., Henderson 2006). Thus, for very

high dimensional problems, simulation is often the most appropriate choice of

computational method.

Perhaps an even more important reason for simulation’s popularity is its sim-

plicity. At its most basic level, stochastic simulation entails generating a sequence

of random values and substituting the empirical distribution of these values for

their theoretical distribution in computations. In many cases, this process is fairly

straightforward. One particularly simple example is the estimation of the mean of

a random variable’s distribution when that distribution is not known analytically.

If we can generate values of the random object X according to a known distribu-

tion µ, and if we can compute the function value f(X) for any realization of X,

then we can compute the simulation estimator 1
n

∑n
j=1 f(Xj) for Ef(X).

The apparent simplicity of implementing a simulation estimator of the kind de-

scribed above may lead one to believe that simulation is always a trivial exercise.

The reality is that the devil is the details. Many challenges persist in comput-

ing simulation estimators. In some situations, the computational effort required

1



to generate the random values Xj, j ≥ 1 or to compute the function f is too

great for large numbers of iterations be practical. In these cases people often look

for estimators having lower variance than the usual sample average estimator so

that fewer iterations are necessary. Techniques for computing such estimators are

known as variance reduction techniques (e.g., Asmussen and Glynn 2007, Chap-

ter 5). Although reducing the variance of an estimator does not alter its rate of

convergence, it does provide a constant factor improvement in speed.

Much current research in stochastic simulation focuses on simulation procedures

that are adaptive in some sense. There is a bit of subjectivity involved in defining

exactly what we mean by “adaptive.” For the purposes of this dissertation, I take

the expression to mean that certain features of the simulation algorithm are learned

and adjusted by the algorithm as it proceeds. A crucial feature of adaptivity is

that its details should be invisible to the end-user of the simulation algorithm.

What is it that adaptive simulation algorithms adapt to? They adapt to struc-

ture present in the problem at hand. Sometimes this structure is present but

completely unknown, whereas in other cases a good deal is known about the prob-

lem a priori. The papers presented in this thesis contain examples of both types.

1.2 Comparing Two Systems: Beyond Common Random

Numbers

The first paper of this thesis is Chapter 2, “Comparing Two Systems: Beyond

Common Random Numbers.” A version of this paper will appear in the Pro-

ceedings of the 2008 Winter Simulation Conference (Ehrlichman and Henderson

2



2008).

In the paper, I propose a new variance reduction technique applicable to the

problem of comparing the real-valued output of two stochastic simulations. The

technique is quite general in that very little structure about the systems being

compared is assumed. Rather, all the structure is learned by the algorithm.

A classic variance reduction trick for the system comparison problem is com-

mon random number (CRN) sampling (e.g., Kelton 2006). If the outputs being

compared are represented by random variables X and Y , the quantity of interest

is X − Y . CRN sampling attempts to reduce the sampling variance not of X or Y

individually but rather to reduce the sample variance of the difference X − Y by

inducing positive covariance between the estimators of X and Y . The idea is to

hope that the random variables X and Y depend upon the underlying sequence of

computer-generated pseudorandom variates in similar ways. In that case, feeding

the same sequence of pseudorandom variates to the estimators of X and Y should

result in the desired positive covariance.

Common random number sampling is only effective if the necessary similarity

between the systems is present. In general, there is no reason to believe this will

hold. In fact, it is possible that CRN sampling will introduce negative covariance

between X and Y ! See Wright and Ramsay (1979) for an example.

The contribution of our work is to describe a generalization of CRN sampling

that adapts to the observed structure of the systems X and Y . Instead of using

identical streams of random numbers for each system, our procedure discovers a

joint distribution (copula) on the streams that minimizes the variance of X − Y

on a pilot sample. I provide several examples in which this procedure outperforms

3



both näıve sampling and CRN sampling. I also prove a key property of the optimal

copula in the special case where bothX and Y are linear in a certain transformation

of the pseudorandom streams.

1.3 Adaptive Control Variates for Multidimensional Amer-

ican Options

The second paper of this thesis is Chapter 3, “Adaptive Control Variates for Mul-

tidimensional American Options.” This paper appears in The Journal of Compu-

tational Finance (Ehrlichman and Henderson 2007a).

This paper describes a variance reduction scheme for American option pricing.

The scheme is to be used in conjunction with many well-known simulation-based

American option pricing algorithms such as Longstaff and Schwartz (2001) or Tsit-

siklis and Van Roy (2001). It can be applied to any option payoff structure and

any underlying risk-neutral market dynamics provided that certain key conditional

expectations are easily computed.

Variance reduction in this scheme is achieved by way of a control variate. The

value of the control variate on any given sample path is equal to the value of a

particular martingale at the exercise time of the option. The effectiveness of the

control variate depends upon two features: the quality of the exercise strategy

determined by the underlying pricing algorithm (e.g., Longstaff-Schwartz), and

the quality of a certain approximation to the option’s value function.

Use of martingales as control variates in this way is not new. In fact, Bolia

and Juneja (2005) use just such a martingale for American option pricing. Their

4



paper relies on a particular functional form for the approximate value function

in the one-dimensional Black-Scholes case. Our contribution was to demonstrate

an automatic method for constructing the martingale using multivariate linear

regression splines. Because of the specific form these splines take, it turns out to

be rather easy to compute the necessary conditional expectations in a great variety

of cases.

The paper includes the results of extensive numerical tests of our method. The

method is quite successful in practice, sometimes achieving variance reduction

factors of more than 100.

1.4 Deterministic and Stochastic Root Finding in One Di-

mension for Increasing Convex Functions

The third paper of this thesis is Chapter 4, “Deterministic and Stochastic Root

Finding in One Dimension for Increasing Convex Functions.” As of the writing of

this thesis, the paper was in review for publication in SIAM Journal on Optimiza-

tion. An early version appeared in the Procedings of the 2007 Winter Simulation

Conference (Ehrlichman and Henderson 2007b).

In this paper I prove a probabilistic performance guarantee for a novel root-

finding algorithm. The algorithm is applicable to any non-decreasing, convex,

univariate function on a compact interval having a known Lipschitz constant.

In analyzing this root-finding algorithm, I adopt an indifference-zone approach.

The idea is that when seeking a root of a function h, we consider any point x having

|h(x)| < δ to be “close enough.” Such a point is called a δ-root of h. Indifference

5



zones have their roots in the problem of constructing statistically valid sequential

tests (e.g., Wald 1947). More recently, indifference zones have appeared in a related

context in the simulation literature, the “selection of the best system” problem.

See Kim and Nelson (2006).

I consider both the case where the function may be evaluated exactly and

the case where only interval estimates are available. The algorithm evaluates

the function at a sequence of points such that each point is adaptively chosen to

guarantee a minimal reduction in the complexity of the problem. I prove that this

strategy leads to an overall probabilistic performance guarantee for the algorithm.

Specifically, given an indifference zone parameter δ > 0 and a confidence level

α ∈ (0, 1), the algorithm is guaranteed to produce a δ-root with probability at

least 1− α.

The original motivation for this paper came from the American option pricing

problem, although in a more restricted setting than I consider in Chapter 3. In the

one-dimensional Black-Scholes setting, it is optimal to exercise an American put at

time t < T if the stock price St is below a certain threshold. Here, T denotes the

expiration time of the option. If g(s) denotes the value of immediately exercising

the option at time t when the stock price is s and f(s) is the conditional expected

value of holding the option past time t given that the stock price is s, then the

desired threshold is equal to the unique root of h = f − g. It can be shown (e.g.,

Ekström 2004) that h is monotone and convex on the region where g > 0.

The indifference zone approach has a natural economic interpretation in the

context of American options. Namely, |h(x̂)| is an upper bound on the financial

loss associated with choosing x̂ as the exercise threshold in lieu of the unknown

true root of h. Contrast this with the usual notion of closeness to a root, which is

6



defined in terms of the abscissa.

I conclude this chapter by observing that the application of my root-finding

algorithm to American option pricing is far from straightforward. The difficulty

lies in the fact that although h is monotone and convex, we do not have access to the

true value function f at any time step other than t = T−1. The approximate value

function arising from following a suboptimal exercise strategy is, unfortunately,

not convex. A useful direction for future research would be to complete the bridge

between the root-finding algorithm and option pricing in such a way that the

resulting option price admitted a probabilistic performance guarantee as well.

7



Chapter 2

Comparing Two Systems: Beyond

Common Random Numbers

2.1 Introduction

Let X and Y be random variables quantifying the performance of two systems.

Consider the problem of determining which of these systems has greater mean per-

formance. A typical stochastic simulation approach to this problem is to generate

an IID sequence (Xj, Yj : j = 1, . . . , n) of pairs of random variables where Xj
d
= X

and Yj
d
= Y , j = 1, . . . , n, and estimate

E(X − Y ) ≈ 1

n

n
∑

j=1

(Xj − Yj).

The sign of the resulting estimator indicates which of the two systems is preferable.

It is crucial that the random vectors (Xj , Yj) be IID in order for the usual

limit theorems to hold. However, there is no reason that Xj and Yj must be

independent for fixed j. Indeed, it may be helpful to induce such dependence; if

Cov(Xj , Yj) > 0, then

Var(Xj − Yj) < VarX + VarY.

The right-hand side, above, is the variance that would be achieved if Xj and Yj

were sampled independently.

A particularly simple method for inducing positive dependence between X

and Y is common random number (CRN) sampling (e.g., Kelton 2006), discussed

in §2.2. Our purpose in this paper is to propose a more general technique for

8



introducing such dependence; the technique has a quite similar flavor to CRN

sampling, and indeed has CRN sampling as a special case.

The outline of the paper is as follows. Section 2.2 establishes notation, defines

CRN sampling, and introduces our new method. Section 2.3 discusses earlier work

on the subject, especially on known conditions under which CRN is optimal (in a

sense to be defined). Section 2.4 proposes using a particular class of copula, the

Gaussian copula, and shows its effectiveness in several toy examples. Section 2.5

discusses two algorithms for computing an optimal Gaussian copula. In §2.6 we

prove a key property of the set of optimal Gaussian copulae in a particularly simple

case. Section 2.7 offers concluding remarks and directions for further research.

In the sequel, we drop the subscript j and make reference to the joint distribu-

tion of the random vector (X, Y ).

2.2 Common Random Numbers

Common random number sampling entails using identical sequences UX = UY =

U = (U1, U2, . . .) of pseudorandom variates to compute both X and Y . This can

often be accomplished by resetting a seed for a pseudorandom number generator

to a common value s for simulating both X and Y . If the ways in which X and

Y are computed in terms of U are fairly similar, we may hope that this technique

induces the positive dependence, and hence variance reduction, discussed in the

previous section.

We shall ignore the fact that U is actually deterministic and treat it as random

for the remainder of this paper. Under this convention, U is treated as a sequence of

9



IID uniform [0,1] random numbers. In fact, we will assume further that U has finite

dimension d, i.e., U = (U1, . . . , Ud). Technically this is without loss of generality;

in fact, we could even assume d = 1 since there exists a bijection between [0, 1]

and [0, 1]∞. But practically speaking, such a bijection is not particularly useful.

Hence, the assumption of finite dimensionality may limit the situations in which

the approach we discuss below is applicable.

Let us make the dependence of X and Y on U explicit by defining functions

fU , gU : [0, 1]d → R so that X = fU(UX) and Y = gU(UY ), for UX ,UY ∼

U([0, 1]d). Notice that if X or Y depends on j < d uniform random variables, then

the function fU or gU will simply depend on the first j components of UX or UY .

Standard, or IID, sampling consists of sampling the random vector (UX ,UY )

according to the uniform probability measure on [0, 1]2d. We denote this measure

by Piid. In contrast, CRN sampling consists of sampling under the probability

measure PCRN where

1. UX and UY are each uniform on [0, 1]d, and

2. UX = UY PCRN-almost surely.

Both probability measures described above are examples of copulae on [0, 1]2d.

That is, they are distributions on this hypercube having uniform marginals. In this

paper, we consider the possibility of using other copulae that satisfy Condition 1.

We say that a copula on [0, 1]2d satisfying Condition 1 is admissible, and we denote

by C the set of all such copulae. Within any given class of copulae, a copula

minimizing Var(X − Y ) is called optimal in that class. If Var(X − Y ) = 0 is

achieved, the copula is called perfect. Of course, VarX and VarY are unaffected

by the choice of admissible copula. This implies that we cannot expect to find a

10



perfect copula except possibly in the case where VarX = VarY .

2.3 Previous Work

At its essence, our work involves a computational approach to constructing a cou-

pling between two stochastic systems. For excellent reviews of coupling see Lindvall

(1992) and Thorisson (2000). Wright and Ramsay (1979) describe a class of cou-

plings between two (univariate) random variables based upon finite partitions of

the unit interval; they (apparently erroneously) attribute the idea to Hammersley

and Handscomb (1964) who in fact propose a related coupling in the context of gen-

eralized antithetic sampling. Schmeiser and Kachitvichyanukul (1986) described

a number of approaches for coupling two random variables based on generation

methods other than inversion. Devroye (1990) developed various couplings be-

tween two random vectors that attempts to maximize the number of components

that are identical. Glasserman and Yao (1992) consider the question of when com-

mon random numbers is optimal for a class of performance measures that includes

the variance of the difference between two random variables as considered here. As

noted there, this question is poorly defined without further structure, which they

impose in various ways. Glasserman and Yao (2004) provide a characterization of

optimal couplings using a property they call the “nonintersection” property.

Throughout the remainder of the paper we will make considerable use of stan-

dard methods from linear algebra. The necessary background can be found in

many books, e.g., Horn and Johnson (1985).
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2.4 Gaussian Copulae

We now restrict our attention to a smaller class of copulae than C , the class G

of Gaussian copulae that are admissible. In our setting, a Gaussian copula on

[0, 1]2d is a probability measure P such that the random vector (ZX ,ZY ), defined

componentwise by

ZX [i] = Φ−1(UX [i]),

ZY [i] = Φ−1(UY [i]),

for i = 1, . . . , d, has a multivariate normal distribution with standard marginals

under P . Here, Φ denotes the standard normal cdf.

Let

Σ =







ΣXX ΣXY

ΣT
XY ΣY Y







be the covariance matrix of (ZX ,ZY ), where the blocks are d × d matrices. In

order for UX and UY to be uniform on [0, 1]d (Condition 1 of §2.2) we must have

ΣXX = ΣY Y = Id, the d×d identity matrix. Therefore we consider only covariance

matrices of the form

Σ =







Id ΣXY

ΣT
XY Id






. (2.1)

A positive semidefinite matrix of the form (2.1) will be called admissible, and we

denote by Sd the set of all such matrices. We denote by PΣ the copula on [0, 1]2d

associated with the covariance matrix Σ.

It is immediate that both Piid and PCRN are elements of G . IID sampling

corresponds to Σ = I2d, or in other words ΣXY = 0d, the d × d zero matrix.

On the other hand, Condition 2 of §2.2 describing CRN sampling corresponds to

ΣXY = ΣY X = Id.
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We can consider X and Y to depend on the Gaussian random vector (ZX ,ZY )

directly. Thus, in order to simplify notation, we introduce functions f, g : R2d → R

given by

f(z) = fU(Φ−1(z[1]), . . . ,Φ−1(z[d])),

g(z) = gU(Φ−1(z[1]), . . . ,Φ−1(z[d])).

Examples 1 and 2, below, are simple cases where a Gaussian copula outperforms

both CRN and independent sampling.

Example 1. Take d = 2, f(ZX) = (ZX [1] + ZX [2])/
√

2, and g(ZY ) = ZY [1].

Here X and Y have linear relationships to ZX and ZY , respectively. The ran-

dom variable X depends on ZX through both its components equally, whereas

Y depends only upon the first component of ZY . The admissible covariance ma-

trix with ΣXY = 1√
2







1 1

1 −1






defines an optimal, and in fact a perfect, Gaussian

copula for this problem; this covariance matrix corresponds to setting ZY [1] =

(ZX [1] + ZX [2])/
√

2 and ZY [2] = (ZX [1]− ZX [2])/
√

2, so that X = Y .

Observe that the columns of ΣXY have L2 norm 1. We may interpret this

fact to mean that the optimal copula results in perfect correlation between the

appropriate linear functions of ZX and ZY . This copula is strongly related to

CRN sampling in that UY is a deterministic transformation of UX . We prove that

this happens whenever f and g are linear in §2.6.

Example 2. Take d = 1, fU(UX) = χ[.5,.6](UX), and gU(UY ) = χ[.6,.7](UY ).

Here, χA denotes the indicator function (characteristic function) of the set A. In

order to maximize the covariance of these indicator random variables, we would

13



like to have the events UX ∈ [.5, .6] and UY ∈ [.6, .7] tend to occur at the same

time. In fact, a copula satisfying UX ∈ [.5, .6]⇐⇒ UY ∈ [.6, .7] would be perfect.

Unfortunately, there is no Gaussian copula satisfying this condition. The opti-

mal Gaussian copula, in contrast, is given by the covariance matrix Σ =







1 ρ

ρ 1






,

where ρ is chosen to maximize the probability of (ZX , ZY ) ∈ [Φ−1(.5),Φ−1(.6)] ×

[Φ−1(.6),Φ−1(.7)] (equivalently, to maximize EXY ). It is easy to see that ρ = 1

sets this probability to zero, so clearly ρ = 1 is not optimal. On the other hand, it

is intuitive that ρ > 0 is desirable since we want ZX and ZY to tend to have the

same sign. Figure 2.1 shows that the optimal value of ρ is about .97. This value

yields Var(X − Y ) ≈ .15. Contrast this result with Example 1, where the optimal

Gaussian copula had every column of ΣXY having norm 1.

2.5 Finding an Optimal Gaussian Copula

The primary reason we have restricted attention to Gaussian copulae is that they

are easily parameterized by a covariance matrix. This allows us to perform a

numerical search for a locally optimal copula. We formulate the optimization

problem in two distinct ways. Both involve maximizing the covariance between X

and Y , but the underlying space over which the optimization is performed differs.

The first formulation is a nonlinear semidefinite program (NLP-SDP) (e.g.,

Kočvara and Stingl 2003). The decision variable in the optimization problem is the

covariance matrix Σ of the Gaussian copula, which varies over the feasible region

of admissible covariance matrices Sd as defined in (2.1). Let Z be a 2d-dimensional

standard multivariate normal random vector. We then wish to maximize Eh(Σ,Z),
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Figure 2.1: E[XY ] as a function of ρ.

where

h (Σ,Z) =

f
((

Σ1/2Z
)

[1, . . . , d]
)

g
((

Σ1/2Z
)

[d+ 1, . . . , 2d]
)

. (2.2)

Here, Σ1/2 denotes the Cholesky factor of Σ.

One can view Σ1/2 as a differentiable function (admittedly complicated) of

Σ, so that (2.2) is differentiable in Σ for each fixed Z. One might then apply

gradient-based methods for performing the optimization. Unfortunately, actually

computing the gradient is difficult. One might resort to some rather complicated

approach based on infinitesimal perturbation, or a more straightforward approach

based on finite differences. In either case there are computational disadvantages, so
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we turn to a different formulation that seems more readily adapted to computation.

In our second formulation, rather than treating the covariance matrix Σ as the

decision variable, we optimize over the space of all appropriate linear transforma-

tions of Z ∼ N (0, I2d). The key to this formulation is the following proposition.

A matrix M with at least as many rows as columns is called orthogonal if MTM

gives the identity matrix.

prop 2.1. Let ΣXY and M2 be d× d matrices such that

M :=







ΣXY

M2







is orthogonal. Then the covariance matrix of







ZX

ZY






:=







Z[1, . . . , d]

MTZ







is given by

Σ =







Id ΣXY

ΣT
XY Id






.

Conversely, if Σ is admissible then there exists M2 such that







ΣXY

M2







is orthogonal.
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Proof. For the first statement, we have

Cov

[

ZX ZY

]

= E







ZXZT
X ZXZT M

MTZZT
X MT ZZT M







=















Id

[

Id 0d

]

M

MT







Id

0d






MT M















= Σ.

Conversely, suppose

[

ZX ZY

]

has admissible covariance matrix Σ. Then

Cov
(

ZY −ΣT
XY ZX

)

=

[

−ΣT
XY Id

]

Σ







−ΣXY

Id







=

[

−ΣT
XY Id

]







0d

Id −ΣT
XY ΣXY







= Id −ΣT
XY ΣXY ,

implying that the matrix on the right is positive semidefinite. Therefore, there

exists M2 such that MT
2 M2 = Id − ΣT

XY ΣXY and hence MTM = ΣT
XY ΣXY +

MT
2 M2 = Id.

Proposition 2.1 demonstrates that we can compute an optimal Gaussian copula

by solving an optimization problem on the space V2d,d of 2d×d orthogonal matrices

rather than on Sd. The space of such matrices is an example of a Stiefel manifold;

see Edelman, Arias, and Smith (1999) for a discussion of the geometry of these and

related manifolds, and of optimization algorithms thereon. In this formulation, our

objective function (2.2) is replaced by

h(M,Z) = f (ZX) g
(

MT Z
)

. (2.3)
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Again we wish to maximize Eh(M,Z), but this time the feasible region is M ∈

V2d,d.

It is now straightforward to compute derivatives of h(·,Z) with respect to M

for a fixed Z. We have that

h′ij(M,Z) :=
∂h(M,Z)

∂M[i, j]

= f(ZX)gj

(

MTZ
)

Z[i],

where gj(x) is the partial derivative of g(·) with respect to the jth component,

evaluated at x.

One can use these derivatives in various gradient-based optimization approaches

such as stochastic approximation. Our optimization approach is based upon Sam-

ple Average Approximation (SAA) (e.g., Shapiro 2004). SAA is a general method

for solving optimization problems of the form

max
x∈X

Eh(x, ξ)

where ξ is a random object. Initially a small “pilot” sample ξ1, . . . , ξm is generated.

These values are then treated as fixed, and the optimization problem is replaced

by

max
x∈X

1

m

m
∑

i=1

h(x, ξi).

Since the sample is fixed, the problem can be viewed as a deterministic opti-

mization problem, and one can then employ specialized deterministic optimization

algorithms to solve the problem. We use exactly this approach using optimization

algorithms designed for differentiable functions over a Stiefel manifold. The solu-

tion to the optimization problem using a sample of size m, say, Z1, . . . ,Zm yields a

matrix M∗
m that defines a copula, which can then be used in a “production” run to

actually compare the systems in question. Under mild regularity conditions, it is
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known that M∗
m will not only be a locally optimal solution for the sample-average

problem, but will also be a nearly locally optimal solution for the true problem.

See Shapiro (2004), Proposition 7, p. 363 and Bastin, Cirillo, and Toint (2006).

Example 3. We conclude this section with an example of a stochastic activity

network (e.g., Avramidis and Wilson 1993). The network in Figure 2.2 is an ab-

straction of a set of jobs which must be completed. Each arc corresponds to a job.

Nodes represent constraints on the order in which the jobs must be performed. All

the jobs whose arcs enter a given node must be completed before any job whose

arc leaves that node commences. The arcs are labelled by random variables corre-

sponding to the length of time required by each task. Two nodes are distinguished

as the source and the sink, respectively representing the state in which no tasks

have begun and the state in which all tasks are completed. The total completion

time for the set of all tasks is equal to the maximum length of all paths from source

to sink.

V
1

V
4

V
2

V
3

Figure 2.2: Stochastic Activity Network Example.

Let us compare two possible configurations of the stochastic activity network
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in Figure 2.2, where the different configurations correspond to different joint distri-

butions on the activity times V1, . . . , V4. In Configuration 1, the activity times are

IID exponential with rate 1. In Configuration 2, V1 and V2 are as in Configuration

1, but V3 and V4 are exponential conditional on V1 and V2 with respective rates

1
2
(1 + V2) and 1

2
(1 + V1). Let X and Y respectively be the completion times of

Configurations 1 and 2.

The functions connecting the underlying normal random variates to the service

times are given by

f(z) = max(− log Φ(z1)− log Φ(z3),

− log Φ(z2)− log Φ(z4))

g(z) = max
(

− log Φ(z1)−
2

1− log Φ(z2)
log Φ(z3),

− log Φ(z2)−
2

1− log Φ(z1)
log Φ(z4)

)

.

We solved this problem using the Stiefel manifold formulation with the freely

available MATLAB procedure sgmin (Lippert and Edelman 1999), using the SAA

framework sketched above. We solved it over both the spaces V2d,d and Vd,d and

achieved quite similar resulting covariance matrices. This strongly suggests that

the optimal Gaussian copula is in fact a change of variables applied to CRN sam-

pling.

The Gaussian copula returned by the optimization procedure is defined by (2.4).

We performed longer runs, independent from the pilot, under IID sampling, CRN

sampling, and the optimal Gaussian copula. The resulting variance of (X − Y ) in
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each case is given in Table 2.1.

ΣXY =



















.958 −.038 .160 .237

−.037 .960 .239 .141

−.158 −.238 .957 −.048

−.239 −.143 −.026 .960



















. (2.4)

Table 2.1: Example 3 results.

Sampling Strategy Variance
IID 5.257

CRN 0.565
OPT 0.280

We can see that the optimal covariance matrix defined (2.4) returned by the

optimization algorithm is quite close to that of CRN sampling. Although the

random variables ZX [i] and ZY [i], i = 1, . . . , 4, are not identical, they are very

highly correlated. However, the difference in performance between the two copulae

is great, with the optimal Gaussian copula resulting in more than a 50% reduction

in variance.

2.6 Analysis of the Linear Case

The optimal copula given in Example 1 has the property that ΣXY is itself an

orthogonal matrix; equivalently, the lower d rows of this solution M are all zero. A

natural question to ask is under what conditions we may assume that an optimal

solution of this type exists. Knowledge of such conditions would allow the opti-

mization problem to be solved on the smaller space Vd,d. Moreover, the resulting

copula can be sampled from using only d independent normal variates per sample,
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as opposed to the 2d normal variates required in the general case. We do not have

a complete answer to this question at present, although we are able to show that

a sufficient condition is for X and Y to be linear in ZX and ZY , respectively.

prop 2.2. Let Z be a 2d-dimensional random vector with mean zero and covariance

matrix I2d. Suppose f and g are functions on Rd given by f(z) = aTz, g(z) = bTz,

for some a,b ∈ Rd. Then

max
M∈V2d,d

Ef(

[

Id 0d

]T

Z)g(MTZ)

= max
ΣXY ∈Vd,d

Ef(

[

Id 0d

]T

Z)g(

[

ΣXY 0d

]T

Z).

Proof. Let LHS and RHS respectively denote the left- and right-hand sides of the

desired equality. The inequality LHS ≥ RHS follows immediately from the fact

that

[

ΣXY 0d

]

∈ V2d,d, so we need only prove the converse.

Let M ∈ V2d,d be arbitrary. Let us write






Z1

Z2






and







M1

M2







for Z and M respectively. Then

Ef(

[

Id 0d

]T

Z)g(MTZ) = EaTZ1b
T MTZ

= EaT Z1Z
T
1 M1b + EaT Z1Z

T
2 M2b = 〈a,M1b〉. (2.5)

Now,

〈a,M1b〉2 ≤ ‖a‖2‖M1b‖2

≤ ‖a‖2‖M1‖22‖b‖2

≤ ‖a‖2‖b‖2.

(2.6)

Here, ‖M1‖2 denotes the spectral norm (greatest absolute eigenvalue) of M1. The

first inequality is Cauchy-Schwartz. The second inequality is a property of the
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spectral norm. The third inequality is proven as follows: if λ is an eigenvalue of

M1 with corresponding eigenvector w, then

1 = ‖w‖2 = wTMTMw

= wT (MT
1 M1 + MT

2 M2)w

= λ2‖w‖2 + wTMT
2 M2w

≥ λ2,

since MT
2 M2 is positive semidefinite.

Combining (2.5) with (2.6) yields LHS ≤ ‖a‖‖b‖. Now let v = b− ‖b‖‖a‖a. Let

ΣXY be the Householder reflection induced by v,

ΣXY = Id −
2

‖v‖2vvT .

It is easy to check that ΣXY ∈ Vd,d and that 〈a,ΣXY b〉2 = ‖a‖2‖b‖2. This implies

‖a‖‖b‖ ≤ RHS, completing the proof.

2.7 Conclusion

We have shown that it is possible to compute couplings of two random vectors that

have IID components with the goal of minimizing the variance of the difference

between real-valued functions of the random vectors. We use an underlying Gaus-

sian copula because it is amenable to computation, although one could certainly

consider other copula families as well. We have given simple examples where the

gains beyond common random numbers are significant.
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Chapter 3

Adaptive Control Variates for

Multidimensional American Options

3.1 Introduction

Efficient pricing of American options remains a thorny issue in finance. This is

true despite the fact that numerical techniques for solving this problem have been

studied for decades – certainly at least since the binomial tree method of Cox et al.

(1979). Both tree-based methods and PDE methods are very fast in low dimen-

sions but do not extend well to higher-dimensional problems, arbitrary stochastic

processes, or arbitrary payoff structures. In the last decade or so, attention has

been turned to simulation techniques to solve such problems.

What makes American options much more difficult to price than their Euro-

pean counterparts, of course, is the embedded optimal stopping problem. Many

of the early papers on using simulation to price American options therefore focus

on this aspect of the computation. Carriere (1996) uses nonparametric regression

techniques to approximate the value of continuing (i.e., not exercising) at every

time step, proceeding backwards in time from expiry. This in turn produces a stop-

ping rule: exercise only if the (known) value of exercise exceeds the (approximate)

value of continuing. These ideas are developed further in Longstaff and Schwartz

(2001) and Tsitsiklis and Van Roy (2001), both of which use linear regression on

a fixed set of basis functions to approximate the continuation value.

The continuation value approximations obtained using these methods are not
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perfect, but they do yield feasible stopping policies. These policies therefore yield

lower bounds on the true option price. Recently, Haugh and Kogan (2004), Rogers

(2002), and Andersen and Broadie (2004) showed how to compute upper bounds

on the option price via a martingale duality. Bolia and Juneja (2005) observed that

this same martingale, if computed by function approximation instead of simulation-

within-simulation, can serve as a simulation control variate and thereby provide

variance reduction. This approach can be viewed as a special case of a class of

martingale control variate methods introduced by Henderson and Glynn (2002).

The method introduced by Bolia and Juneja (2005) relies on finding a partic-

ular set of basis functions. To avoid internal simulations it is necessary that the

basis functions be such that one can easily compute certain one-step conditional

expectations. In related work, Rasmussen (2005) computes a control variate for

the option price by using a carefully chosen European option (or several such op-

tions), evaluated at the exercise time of the American option being priced. Laprise

et al. (2006) construct upper and lower piecewise linear approximations of the

value function and compute the American option price using a sequence of portfo-

lios of European options. Their method only works in one dimension, though. An

earlier use of European options as control variates for American options appears in

Broadie and Glasserman (2004), wherein the European options in question expire

in a single time step and employed at each step of a stochastic mesh scheme.

The work we present here, like that of Bolia and Juneja (2005), can be thought

of as a “primal-dual” method, in the sense of Andersen and Broadie (2004). The

martingale-based control variate is used both to improve the quality of the lower

bound and to derive the upper bound. In our work, as well as that of Andersen

and Broadie (2004), the upper bound solution is derived by first considering a
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suboptimal stopping strategy, and then deriving a corresponding martingale. Thus,

a poor choice of stopping strategy will never be “rescued” by the fact that an upper

bound is available. However, unlike Andersen and Broadie (2004), our upper bound

solutions do not involve any additional simulation trials. As a result, the quality

of the upper bound depends not only on the quality of the suboptimal stopping

times but also on a functional approximation for the martingale from which the

upper bound arises. In that sense, our work can also be thought of as primarily a

variance reduction technique for lower bound methods, albeit one which produces

an upper bound for free.

Our contribution is to identify a technique for computing the control variate

that possesses the desired tractability property in a quite general setting. More-

over, construction of the control variate is more or less automatic; once it has been

done for one pricing problem it can be extended to other problems without much

effort. We demonstrate these extensions in detail for various basket options, bar-

rier options, and Asian options in both a Black-Scholes and stochastic volatility

(Heston 1993) model.

Rogers (2002) commented that the selection of the dual martingale may be

“more art than science.” We contend that our approach takes a bit of the art out

of this process and injects, if not science, at least some degree of automation to

the procedure.

The remainder of this paper is organized as follows. Section 3.2 gives some

mathematical preliminaries, recalls the pricing algorithm of Longstaff and Schwartz

(2001), defines the martingales that we work with and clarifies their linkage with

the pricing problem. Section 3.3 discusses multivariate adaptive regression splines

(Friedman 1991), or MARS, and discriminant analysis, which are the techniques
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we adapt to construct martingales. Section 3.4 describes the algorithm in de-

tail. Section 3.5 gives a number of examples, and we offer some conclusions in

Section 3.6.

3.2 Mathematical Framework

As in most papers that discuss simulation applied to American option pricing, we

actually consider the problem of pricing a Bermudan option, which differs from

its American counterpart in that it may be exercised only at a finite set of points

in time. To simplify notation, we assume that these times are the evenly spaced

steps t = 0, . . . , T .

Let (Xt : t = 0, . . . , T ) be an Rd-valued process on a filtered probability space

(Ω,F ,P), where F = (Ft : t = 0, . . . , T ) is the natural filtration of (Xt). We

assume (Xt) to be Markov, enlarging the state space if necessary to ensure this.

We treat X0 as deterministic, so F0 is taken to be trivial. Let r be the riskless

interest rate which we assume to be constant and, to simplify notation, normalized

so that if s < t, the time-s dollar value of $1 to be delivered at time t is e−r(t−s).

We assume that the market is arbitrage-free and work exclusively with a risk-

neutral (pricing) measure Q with the same null sets as P. See e.g., Duffie (2001)

or Glasserman (2004) for details on risk-neutral pricing.

Let the known function g : {0, . . . , T} ×Rd satisfy g(t, ·) ≥ 0 and Eg2(t, Xt) <

∞ for all t = 0, . . . , T . We interpret g(t, Xt) to be the value of exercising the

option at time t in state Xt. Let T (t) be the set of all F -stopping times valued in
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{t, . . . , T}. Then the Bermudan option pricing problem is to compute Q0, where

Qt = sup
τ∈T (t)

Et

[

e−r(τ−t)g (τ,Xτ )
]

,

for t = 0, . . . , T . We recall some theory about American and Bermudan options;

again see e.g., Duffie (2001) for details. The above optimal stopping problem

admits a solution τ ∗t ∈ T (t), so that

Qt = Et

[

e−r(τ∗

t −t)g
(

τ ∗t , Xτ∗

t

)]

for each t = 0, . . . , T . Moreover, the Qt’s satisfy the backward recursion

QT = g(T,XT ),

Qt = max
{

g(t, Xt), e
−rEtQt+1

}

,

for t = 0, . . . , T − 1. Therefore, the optimal stopping times τ ∗0 , . . . , τ
∗
T satisfy

τ ∗T ≡ T,

τ ∗t =















t if g(t, Xt) ≥ e−rEtQt+1,

τ ∗t+1 otherwise,

for t = 0, . . . , T − 1. An easy consequence of this is

s < t ≤ τ ∗s =⇒ τ ∗s = τ ∗s+1 = · · · = τ ∗t . (3.1)

3.2.1 The Longstaff-Schwartz Method

The least-squares Monte Carlo (LSM) method of Longstaff and Schwartz (2001)

provides an approximation to the optimal stopping times (τ ∗t ) and hence to the

option price process (Qt). Since the resulting stopping times (τt) are suboptimal

for the original problem, the value of following such a stopping strategy provides
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a lower bound on the true price process. Following the notation of Andersen and

Broadie (2004), we denote the lower bound process by

Lt = Ete
−r(τt−t)g (τt, Xτt

) .

We now recall the procedure by which LSM computes the stopping times (τt)

and hence (Lt). Let φ0, φ1, . . . , be a collection of functions from Rd to R such

that φ0 ≡ 1 and {φi(Xt) : i = 0, 1, . . .} form a basis for L2(Ω, σ(Xt),Q) for all

t = 1, . . . , T . The algorithm proceeds as follows. Denote φ = (φ0, . . . , φk), for

some fixed k. Generate a set of N paths {Xt(n) : t = 0, . . . , T ;n = 1, . . . , N}. Set

τT (n) = T and LT (n) = g(T,XT (n)) for n = 1, . . . , N . Then recursively estimate

αt = argmin
α

N
∑

n=1

1[g(t,Xt(n))>0] (α
′φ(Xt(n))− Lt+1(n))

2
, (3.2)

τt(n) =















t if g(t, Xt(n)) > [α′tφ(Xt(n))]+

τt+1(n) otherwise,

Lt(n) =















g(t, Xt(n)) if τt(n) = t,

e−rLt+1(n) otherwise,

for t = T −1, . . . , 0. The regression in (3.2) is performed only on those paths which

have positive exercise value at time t, thus (we hope) producing a better fit on the

paths that actually matter than we would obtain if we performed the regression on

the complete set of paths. We shall comment on this point in Section 3.4.1 when

we describe our version of the algorithm with the control variate.

The idea behind the LSM algorithm is that if τt is close to the true optimal

stopping time τ ∗t , then the lower-bounding value process Lt is close to Qt. It is

shown in Clément et al. (2002) both that the approximations τt converge to τ ∗t
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and that the approximations Lt converge to Qt as the number of basis functions

used k →∞.

3.2.2 Martingales and Variance Reduction

As we have already noted, the stopping times (τt) obtained in the LSM method

are suboptimal, and so the option prices (Lt) implied by the algorithm are lower

bounds on the true option prices (Qt). To obtain an upper bound we employ a

martingale duality result developed independently by Haugh and Kogan (2004)

and Rogers (2002). Let π = (πt : t = 0, . . . , T ) denote a martingale with respect

to F . By the optional sampling theorem, for any t ≥ 0,

Qt = ert sup
τ∈T (t)

Et

[

e−rτg(τ,Xτ)− πτ + πτ

]

= ert sup
τ∈T (t)

Et

[

e−rτg(τ,Xτ)− πτ

]

+ ertπt

≤ ertEt max
s=t,...,T

[

e−rsg(s,Xs)− πs

]

+ ertπt

=: Ut.

(3.3)

The martingale π here is arbitrary, and any such choice yields an upper bound.

We next give a class of martingales from which to choose.

Let ht : Rd → R be such that E|ht(Xt)| < ∞ for each t = 0, 1, . . . , d. Define

π0 = 0, and for t = 1, . . . , T , set

πt =
t
∑

s=1

e−rs(hs(Xs)−Es−1hs(Xs)). (3.4)

Evidently (πt) is a martingale, and can be used to obtain an upper bound on the

option price as in (3.3).
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Such martingales can also be used to great effect as control variates in estimat-

ing the lower bound process. Recall that Lt = Ete
−r(τt−t)g(τt, Xτt

) for each t, and

so conditional on Ft, we can compute Lt by averaging conditionally independent

replicates of e−r(τt−t)g(τt, Xτt
). Proposition 3.1 shows that if we choose the function

ht so that ht(Xt) = Lt for each t, then the martingale difference πτt
−πt is a perfect

control variate, in the sense that it is perfectly correlated with e−r(τt−t)g(τt, Xτt
),

conditional on Ft. This generalizes a comment in Bolia and Juneja (2005), who

show that the proposition holds in the case t = 0.

prop 3.1. Suppose that ht is chosen so that ht(Xt) = Lt for each t = 1, . . . , T .

Then the martingale π = (πt : t = 0, . . . , T ) defined in (3.4) satisfies

πτt
− πt = e−rτtg(τt, Xτt

)− e−rtLt

for each t = 0, 1, . . . , T .

Proof. First observe that on the event [τt = t], both sides of the equality we are

trying to prove are zero. Hence, it suffices to prove that the result holds in the

continuation region, i.e.,

1[τt>t] (πτt
− πt) = 1[τt>t]

(

e−rτtg (τt, Xτt
)− e−rtLt

)

. (3.5)

Now, if s ∈ {t+ 1, . . . , T}, then

1[τt≥s]Es−1Ls = 1[τt≥s]Es−1

[

Ese
−r(τs−s)g (τs, Xτs

)
]

= Es−11[τt≥s]e
−r(τs−s)g (τs, Xτs

)

= erEs−11[τt≥s]e
−r(τs−1−(s−1))g

(

τs−1, Xτs−1

)

= er1[τt≥s]Ls−1,

where the penultimate equality uses the fact that

s < t ≤ τs =⇒ τs = τs+1 = · · · = τt,
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analogous to (3.1). Therefore,

πτt
− πt =

T
∑

s=t+1

1[τt≥s]e
−rs (Ls −Es−1Ls)

=

T
∑

s=t+1

1[τt≥s]e
−rs (Ls − erLs−1)

=
T
∑

s=t+1

1[τt≥s]e
−rsLs −

T−1
∑

s=t

1[τt≥s+1]e
−rsLs

= 1[τt=T ]e
−rTLT +

T−1
∑

s=t+1

e−rsLs

(

1[τt≥s] − 1[τt≥s+1]

)

− 1[τt>t]e
−rtLt

=

T
∑

s=t+1

e−rsLs1[τt=s] − 1[τt>t]e
−rtLt.

So

1[τt>t] (πτt
− πt) = 1[τt>t]

T
∑

s=t+1

1[s=τt]e
−rsLs − 1[τt>t]e

−rtLt

= 1[τt>t]

(

e−rτsLτs
− e−rtLt

)

,

proving (3.5).

Proposition 3.1 shows that conditional on Ft, we can estimate Lt with zero

(conditional) variance by

e−r(τt−t)g(τt, Xτt
)− ert(πτt

− πt).

Since F0 is the trivial sigma field, by taking t = 0 we get a zero variance estimator

of L0, the lower bound on the option price at time 0. In other words, ert (πτt
− πt)

is the “perfect” additive control variate for estimating Lt from e−r(τt−t)g(τt, Xτt
).

Of course, we cannot set ht(Xt) ≡ Lt, since we are trying to compute Lt in the

first place. But this observation motivates us to search for a set of functions {ĥt}

such that

ĥt(Xt) ≈ Lt
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for each t. (In this paper the approximation is in the mean-square sense.) Let us

write L̂t for ĥt(Xt), and let the induced martingale be π̂ = (π̂t : t = 0, 1, . . . , T ),

where π̂0 = 0 and

π̂t =
t
∑

s=1

e−rs
(

L̂s(Xs)−Es−1L̂s(Xs)
)

.

We use the approximately optimal martingale π̂ evaluated at time τ0 as a control

variate in estimating L0, as indicated by the remark following Proposition 3.1;

details are given in Section 3.4.

Observe that there are two distinct approximations being performed. The one

described in the preceding paragraph approximates the value of the option at

time t by a (more tractable) function of the underlying state Xt. In contrast, (3.2)

projects the realized value of the option at time t+1 onto a certain space of random

variables measurable with respect to Ft. In the language of Glasserman and Yu

(2004), the approximation used to compute the martingale is “regression later,”

whereas the approximation (3.2) used for the stopping strategy is “regression now.”

In addition to serving as a control variate, the martingale π̂ begets an upper

bound on the true option price, as in (3.3). Andersen and Broadie (2004) show

that the martingale π is the optimal one to use in computing the upper bound,

and indeed that the inequality in (3.3) would actually be an equality if we had

τt = τ ∗t almost surely, for t = 0, . . . , T . This motivates the use of the martingale π̂

to compute the upper bound. We note that the same observation is made in Bolia

and Juneja (2005).

To compute the martingale π̂, we need to be able to compute the conditional

expectation Es−1hs(Xs) efficiently. We restrict the class of functions {ht} consid-

ered so that these conditional expectations can be evaluated without the need to

resort to further simulation, in the same spirit as Bolia and Juneja (2005) and
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Rasmussen (2005). Bolia and Juneja (2005) use a particular parametric form for

ht which is easily fit by least squares, but is tightly coupled with the specific

stochastic process considered. Rasmussen (2005) chooses ht to be the value of a

European option, or a combination of several European options, that are highly

correlated with the American option being priced. Indeed, in many examples

Rasmussen (2005) simply chooses h to be given by ht(Xt) = Etg(T,XT ) so that

πt = e−rtEtg(T,XT )−Eg(T,XT ). The success of their method, therefore, depends

on the ability to find particular European options which can be easily priced and

which correlate well with the American option in question. Our method also in-

volves the pricing of European options in a sense, although not necessarily options

on traded assets. Like Broadie and Glasserman (2004), the European options we

use as control variates each expire after a single time step. These options are au-

tomatically selected using the MARS fitting procedure, and in general are priced

easily. We now explore MARS.

3.3 MARS and Extensions

Multivariate adaptive regression splines (Friedman 1991), or MARS, is a non-

parametric regression technique that has enjoyed widespread use in a variety of

applications since its introduction. For example, Chen et al. (1999) use MARS

to approximate value functions of a stochastic dynamic programming problem,

although for a different purpose than we do here.

Given observed responses y(1), . . . , y(N) ∈ R and predictors x(1), . . . , x(N) ∈

Rd, MARS fits a model of the form

y ≈ f̂(x) = α0 +

M1
∑

m=1

α1,mf1,m(x) +

M2
∑

m=1

α2,mf2,m(x) + · · ·+
Mp
∑

m=1

αp,mfp,m(x).
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Each function f1,m takes one of two forms,

f1,m(x) ∈
{

([

x(i) − x(i)(n)
])

+
,
([

x(i)(n)− x(i)
])

+

}

,

for some i = 1, . . . , d, and some n = 1, . . . , N . Here, x(i) denotes the i’th coordinate

of x. Each function fj,m for j > 1 is a product of functions used in previous sums

so that the total degree is j. In our setting, we take p = 1 so the fitted model can

be written

y ≈ f̂(x) = α0 +
d
∑

i=1

Ji
∑

j=1

αi,j

(

qi,j
[

x(i) − ki,j

])

+
, (3.6)

where qi,j ∈ {−1,+1} and the knots ki,j are chosen from the data: ki,j ∈ {x(i)(n) :

n = 1, . . . , N}, for each i = 1, . . . , d and each j = 1, . . . , Ji. A function with the

form (3.6) may be called an additive linear spline.

We present a simplified version of the MARS fitting algorithm here, as we are

only concerned with the p = 1 case. Full details are given in Friedman (1991), and

a summary can be found in Hastie et al. (2001). MARS produces a fitted model

by proceeding in a stepwise manner. At each step, the algorithm attempts to add

each possible pair of basis functions1

{

(

x(i) − x(i)(n)
)

+
,
(

x(i)(n)− x(i)
)

+

}

in turn for n = 1, . . . , N and i = 1, . . . , d. It adds a basis function if the improve-

ment in fit from adding that function exceeds a given threshold, up to a specified

number of basis functions Mmax. Upon completion of this procedure, the algo-

rithm prunes some of the basis functions it has selected if doing so will improve

the weighted mean-square error criterion

1
N

∑N
n=1

(

yn − f̂(xn)
)2

(1− CM1+1
N

)2
,

1In fact, the algorithm sorts the xn(i)’s and skips a small number of observations between
each knot it considers. This helps to prevent over-fitting and offers some computational benefits
as well.
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where C is a specified penalty parameter.

Friedman (1991) argues that the computation time of the fitting algorithm has

an upper bound proportional to dNM4
max. Our implementation of MARS takes

Mmax = 21∨(2d+1), so for d < 10 the computational time is simply proportional to

dN ; for higher dimensions, it is proportional to d5N . However, in our experiments,

we have found that the threshold criterion is often met before Mmax basis functions

are even considered, so even though the upper bounds discussed above are valid,

they may be quite pessimistic.

3.3.1 Computing the Approximating Martingale

Suppose we have used MARS to fit

ĥt(x) = α0 +
d
∑

i=1

Ji
∑

j=1

αi,j

(

qi,j
[

x(i) − ki,j

])

+

for each time step t = T, . . . , 1. Then for each t = 1, . . . , T, the t’th increment of

the resulting martingale (π̂t) is given by

π̂t − π̂t−1 = e−rt

d
∑

i=1

Ji
∑

j=1

αi,j

(

(

qi,j

[

X
(i)
t − ki,j

])

+
− Et−1

[

(

qi,j

[

X
(i)
t − ki,j

])

+

])

,

(3.7)

where we have suppressed the dependence of the fitted parameters on the time

step t in the notation. Having simulated, say, Xs(1), . . . , Xs(N
′), s = 1, . . . , T , it

is evident how to compute the first term inside the sum in (3.7). The second term

can be computed explicitly as long as we can compute expressions of the form

Et−1

[

(

X
(i)
t − k

)

+

]

. (3.8)

But this is nothing but the expected value of a vanilla European call option on

a single underlying random variable. Such conditional expectations can often be
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computed very easily. Even if the underlying random variables have complex

dynamics, such as arises in a stochastic volatility model, we may be able to simplify

the problem enough by selecting our discretization scheme carefully so that an

answer is within reach. Typically, this will involve replacing the state variable Xt

with some transformation of logXt. See Section 3.5 for specific examples of how

we compute the conditional expectation.

3.3.2 An Extension of MARS

The function approximation (3.6) is separable in {x(i) : i = 1, . . . , d}. Of course,

the function Lt = Lt(Xt) we are trying to approximate will not be separable in

general. Indeed, even if the payoff function g is separable, we cannot expect that

Lt(Xt) will be separable except for the case t = T . For example, consider the case

t = T − 1. Here,

QT−1 = QT−1(XT−1) = max
{

g (T − 1, XT−1) , e
−rET−1 [g(T,XT )]

}

.

So even if g is separable, and even if ET−1g(T,XT ) is separable (which it may not

be if there is dependence in the components of XT ), QT−1 will typically not be

separable, as the maximum of two separable functions need not be separable.

Intuitively, separability of g is equivalent to the European version of the option

being decomposable into options on the individual components of X. Separability

of Qt for t < T , on the other hand, would mean that the decision of whether to

exercise early could be made separately for these options, which is not the case.

Since Lt can be made arbitrarily close to Qt by employing sufficiently many ba-

sis functions, it follows that Lt will not be separable either. Thus, the best we

can ever hope for with the approximation (3.6) is to obtain an approximation to
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the projection of Lt = Lt(·) on the space of separable functions. In particular,

E
(

L̂t − Lt

)2

may be large no matter how much effort is spent on computing L̂t.

This fact suggests that MARS may produce inadequate approximations to the

optimal martingale.

In order to at least partially address this issue, we consider a more general form

of the approximating multivariate linear spline,

y ≈ f̂(x) = α0 +

J
∑

j=1

αj

[

a′jx− kj

]

+
, (3.9)

where we have additional parameters aj ∈ Rd, j = 1, . . . , d, to estimate. This is

quite similar to the form (3.6), except that now we consider linear combinations of

the x’s as predictors. One can think of the aj vectors as giving a reparameterization

of the state variables. If we a priori choose the aj ’s, then the problem essentially

reduces to the previous one. But this would require user intervention. We prefer an

automated procedure, although one can certainly reparameterize manually before

invoking our approach.

The following proposition indicates that it is possible to achieve good function

approximations with expressions of the form (3.9).

prop 3.2. Suppose X is an Rd-valued random variable, and f : Rd → R satisfies

Ef 2(X) < ∞. Then for any ε > 0 there is a function f̂ of the form (3.9) such

that E(f(X)− f̂(X))2 < ε.

Proof. Jones (1987) shows that there exists a sequence of vectors

(

am ∈ Rd : m = 1, 2, . . .
)

such that

E

(

f(X)−
m
∑

j=1

gj

(

a′jX
)

)2

−→ 0
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as m→∞. Here, the functions (gm : R→ R : m = 1, 2, . . . , ) are given recursively

by

gm(z) = E

[

f(X)−
m−1
∑

j=1

gj(a
′
jX)

∣

∣

∣

∣

a′mX = z

]

.

Accordingly, choose m sufficiently great such that E
(

f(X)−∑m
j=1 gj(a

′
jX)

)2

<

ε/2. By induction, Eg2
j (a
′
jX) <∞ for j = 1, . . . , m. Since continuous functions are

dense in L2 (Rudin 1987, Theorem 3.14), we conclude from the Stone-Weierstrass

Theorem that there exist linear splines ĝj : R→ R such that

E
(

gj(a
′
jX)− ĝj(a

′
jX)

)2
< ε/2j+1,

for each j = 1, . . . , m. The result now follows from the triangle inequality and the

observation that, in one dimension, any linear spline can be written in the form

(3.9).

The expression (3.9) can be thought of as a specific example of a projection

pursuit regression fit (Friedman and Stuetzle 1981; Friedman et al. 1983) using

truncated linear splines as its univariate basis functions. Projection pursuit regres-

sion methods typically estimate the linear directions a1, . . . , aJ and the remaining

parameters simultaneously. This requires numerical optimization and can be slow.

We instead adopt the simpler approach of Zhang et al. (2003), who first identify

candidate aj ’s and then run the MARS fitting algorithm with x = (x(1), . . . , x(d))

replaced by (a′1x, . . . , a
′
Jx). Zhang et al. (2003) provide two methods for se-

lecting the ar’s. We consider the method that uses linear discriminant analy-

sis, or LDA (Fisher 1936). Given responses y(1), . . . , y(N) ∈ R and predictors

x(1), . . . , x(N) ∈ Rd, choose some ñ ∈ {1, . . . , N} and define the corresponding

LDA direction to be

S−1
x





1

|{n : y(n) < y(ñ)}|
∑

y(n)<y(ñ)

x(n)− 1

N − |{n : y(n) < y(ñ)}|
∑

y(n)≥y(ñ)

x(n)



 ,
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where Sx denotes the sample covariance matrix of the x(n)’s. Observe that the

bracketed term is nothing but the vector connecting the centroids of the two sub-

populations of predictors.

This idea can be extended by performing LDA on the second moments of the

predictor variables, leading to directions given by the eigenvectors of

S−1
x

[

Sx(n)|[y(n)<y(ñ)] − Sx|[y(n)≥y(ñ)]

]

S−1
x , (3.10)

where Sx|A is the conditional sample covariance matrix of x given A. Zhang et al.

(2003) argue that one typically only needs the eigenvectors of (3.10) corresponding

to the two or three greatest magnitude eigenvalues.

We have found that including linear combinations of the components ofXt when

estimating the approximation L̂t as described in this section provides a dramatic

improvement over the “vanilla” MARS fit in terms of reducing variance. This is

most notable in the case of basket options (see Section 3.5.2), where the value

functions are highly non-separable.

3.4 The Algorithm

We now describe how these pieces are put together to compute lower and upper

bounds for the Bermudan option price. Like Bolia and Juneja (2005), we use a

two phase procedure. In phase one, we compute the suboptimal stopping times

τ0, . . . , τT−1 and the approximate value functions L̂1, . . . , L̂T , working backwards

from time T . This is done with a small number of simulation trials. In phase

two, we run a large number of simulation trials to estimate the lower bound of the
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option price,

E
[

e−rτ0g (τ0, Xτ0)− π̂τ0

]

,

and the upper bound,

E max
t=0,...,T

[

e−rtg(t, Xt)− π̂t

]

.

Before presenting the algorithm, we point out how the control variate can be

used not only to estimate L0 but also to improve our estimates of the stopping

times (τt).

3.4.1 Using the Control Variate to Estimate the Stopping

Times

Since for each t = 1, . . . , T , the random variable π̂t can be computed without

knowing τ0, . . . , τt−1, we can in fact use a modified version of the control variate

for computing stopping times in phase one as well as for estimating the bounds on

the price in phase two. (A similar idea is explored in Rasmussen 2005.) Specifically,

we replace the approximation (3.2) by

αt = argmin
α

N
∑

n=1

1[g(t,Xt(n))>0]

(

α′φ(Xt(n))−
[

Lt+1(n)− er(t+1)(π̂τt+1 − π̂t)
])2

.

(3.11)

For the purposes of this regression, our estimate of Lt+1 comes from samples of

e−r(τt+1−(t+1))g
(

τt+1, Xτt+1

)

, so we can write the predictors in the regression (3.11)

as

Zt

(

e−rτt+1g
(

τt+1, Xτt+1

)

−
(

π̂τt+1 − π̂t

))

,

where Zt := 1[g(t,Xt)>0]e
r(t+1).
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We now provide evidence that this actually improves (or at least, does not

worsen) our stopping time estimates. For the time being, let us ignore the term

Zt. Evidently,

Ete
−rτt+1g

(

τt+1, Xτt+1

)

= Et

(

e−rτt+1g
(

τt+1, Xτt+1

)

−
(

π̂τt+1 − π̂t

))

, (3.12)

since π̂ is a martingale. Moreover, by Proposition 3.1,

πτt+1 − πt = (πτt+1 − πt+1) + (πt+1 − πt) = e−rτt+1g
(

τt+1, Xτt+1

)

− e−r(t+1)EtLt+1,

so

Vart

[

e−rτt+1g
(

τt+1, Xτt+1

)

−
(

πτt+1 − πt

)]

= Vart [EtLt+1] = 0,

where Vart[·] denotes the conditional variance Et(·)2 − E2
t (·). Therefore,

Vart

[

e−rτt+1g
(

τt+1, Xτt+1

)

−
(

π̂τt+1 − π̂t

)]

= Vart

[(

πτt+1 − πt

)

−
(

π̂τt+1 − π̂t

)]

.

Taking expectations and invoking the variance decomposition formula gives

E Vart

[

e−rτt+1g
(

τt+1, Xτt+1

)

−
(

π̂τt+1 − π̂t

)]

= Var
[(

πτt+1 − πt

)

−
(

π̂τt+1 − π̂t

)]

− VarEt

[(

πτt+1 − πt

)

−
(

π̂τt+1 − π̂t

)]

= Var
[(

πτt+1 − πt

)

−
(

π̂τt+1 − π̂t

)]

.

On the other hand,

E Vart e
−rτt+1g

(

τt+1, Xτt+1

)

= EVart

[

πτt+1 − πt + e−r(t+1)EtLt+1

]

= EVart

[

πτt+1 − πt

]

= Var
[

πτt+1 − πt

]

.

But π̂ is a projection of π, and so

EVart

[

e−rτt+1g
(

τt+1, Xτt+1

)

−
(

π̂τt+1 − π̂t

)]

≤ E Vart

[

e−rτt+1g
(

τt+1, Xτt+1

)]

.

(3.13)

Equation (3.12) says that the regressor has the same conditional bias regardless

of the presence of the control variate; equation (3.13) says that on average, the
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regressor with the control variate has lower conditional variance than the one

without. Therefore, the control variate should improve the quality of the stopping

times.

When the term Zt is reintroduced, it is not clear that these properties are

maintained. Although the Ft-measurability of Zt implies

EtZte
−rτt+1g

(

τt+1, Xτt+1

)

= EtZt

(

e−rτt+1g
(

τt+1, Xτt+1

)

−
(

π̂τt+1 − π̂t

))

,

so the conditional bias is still unchanged, the inequality corresponding to (3.13)

may not hold and so we may not actually reduce variance by including the control

variate. The point is that even though π̂ is a projection of π, we cannot conclude

that variance reduction occurs when we are restricted to the subset [g(t, Xt) > 0].

Nevertheless, it is reasonable to assume that there is variance reduction except

perhaps when the option is deep out of the money so that the event [g(t, Xt) > 0]

occurs with very low probability. We have found in our numerical experiments

that there is a (modest) improvement in using the control variate to estimate the

stopping time; we continue to perform the regression using (3.11), retaining the

indicator function as a heuristic.

3.4.2 The Algorithm

We establish the notation we use in the description of the algorithm. Let φ =

(φ0 = 1, φ1, . . . , φk) be a fixed set of basis functions which will be used in esti-

mating the stopping time, as in (3.2). The fitted coefficients of this regression will

be denoted αt ∈ Rk+1, for t = 0, . . . , T − 1. We will denote by θt the complete

set of parameters specifying the fitted extended MARS model (3.9) for the ap-

proximate value function ĥt(·) = ĥt(·; θt), for t = 1, . . . , T . The variables Y (n),
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n = 1, . . . , N1, keep track of the cash flow along each path; the variables cv(n) are

the corresponding values of the control variate described in Section 3.4.1.

Algorithm 1 Phase One: Fit Stopping Times and Control Variate.

1: simulate (X0(n), . . . , XT (n) : n = 1, . . . , N1)
2: Y (n)← g(T,XT (n)), for n = 1, . . . , N1

3: cv(n)← 0, for n = 1, . . . , N1

4: for t = T − 1, . . . , 0 do

5: θt ← argmin
θ

∑N1

n=1

(

Y (n)− ĥ(Xt+1(n); θ)
)2

6: cv(n)← cv(n) + ĥ(Xt+1(n); θt)−E
[

ĥ(Xt+1; θt) | Xt(n)
]

, for n = 1, . . . , N1

7: αt ← argminα

∑N1

n=1 1[g(t,Xt(n))>0]e
−r (α′φ(Xt(n))− (Y (n)− cv(n)))2

8: for n = 1, . . . , N1 do

9: if g(t, Xt(n)) > [α′tφ(Xt(n))]+ then

10: Y (n)← g(t, Xt(n)); cv(n)← 0
11: else

12: Y (n)← e−rY (n); cv(n)← e−rcv(n)
13: end if

14: end for

15: end for

Algorithm 1 is the first phase of the pricing method where the stopping times

and the control variate parameters are fit. After simulating the price paths and

setting the value of the option at expiry to equal the payoff in lines 1-3, the

algorithm proceeds backwards in time. Line 5 is where the MARS fitting algorithm

is invoked; note that the “minimization” in this line is not a true minimization,

due to the adaptive nature of the MARS fitting procedure. Line 6 updates the

control variate for the stopping time as described in Section 3.4.1. Lines 7-14 are

the Longstaff-Schwartz algorithm. Note that the fit in line 7 is trivial when t = 0

since we have assumed that X0 is constant.

Algorithm 2 is the second phase wherein the lower and upper bounds on the

option price are computed. New price paths are simulated (line 1), and the realized

values are plugged in to the expressions for the martingale control variate (line 2)
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and the stopping strategy (line 3), both of which were computed during the first

phase. Finally, the lower and upper bounds are computed on lines 4-5.

Algorithm 2 Phase Two: Compute Option Price Lower and Upper Bounds.

1: simulate new paths (X0(n), . . . , XT (n) : n = 1, . . . , N2)

2: π̂t(n) ← ∑t
s=1 e

−rs
(

ĥ(Xs(n); θs)− E
[

ĥ(Xs; θs) | Xs−1(n)
])

, for n =

1, . . . , N2, t = 1, . . . , T
3: τ0(n) ← T ∧ min{t = 0, . . . , T − 1 : g(t, Xt(n)) > α′tφ(Xt(n))}, for n =

1, . . . , N2

4: L0 ← 1
N2

∑N2

n=1 e
−rτ0(n)g(τ0(n), Xτ0(n)(n))− π̂τ0(n)(n)

5: U0 ← 1
N2

∑N2

n=1 maxt=0,...,T (g(t, Xt(n))− π̂t(n))

3.5 Numerical Examples

In this section, we describe how we have applied this algorithm to several multi-

dimensional American option pricing problems, and we provide numerical results.

In particular, we show how the conditional expectations (3.8) are computed.

All computations were performed using the R language (R Development Core

Team 2005). The MARS fitting algorithm was originally developed in the S lan-

guage by Hastie and Tibshirani; it was ported to R by Leisch et al. (2005). R is an

interpreted language and thus can be fairly slow. Additionally, raw computation

times may reflect details of implementation (e.g., R’s garbage collection routines)

and mask information that would be relevant in evaluating our algorithm. For this

reason, we report the ratio of the computation time of the näıve estimator with

that of our estimator for a fixed degree of accuracy, which we now explain.

In all experiments we fix the run lengths for Phase 1 and Phase 2 to 10,000

and 20,000 respectively, using common random numbers across experiments. We

record the following quantities.
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r1 The time required in Phase 1 for both the LSM method and for MARS to fit

the L̂t functions.

r2 The time required in Phase 2 to compute the MARS-based estimators of the

lower and upper bounds.

r̃1 The time required in Phase 1 for the LSM method alone.

r̃2 The time required in Phase 2 to compute the näıve estimator of the lower

bound.

s2 An estimate of the variance of the MARS-based estimator of the lower bound.

s̃2 An estimate of the variance of the näıve estimator of the lower bound.

L̂0 The MARS-based estimate of the lower bound.

We then compute the Phase 2 run lengths (ñ and n for the näıve and MARS-

based estimators respectively) required to achieve a confidence interval half-width

for the lower bound that is approximately 0.1% of the lower bound estimate. Hence

ñ =
1.962s̃2

0.0012L̂2
0

and

n =
1.962s2

0.0012L̂2
0

.

We then compute approximations for the computational time corresponding to

these run lengths, viz

R̃ = r̃1 +
ñ

20, 000
r̃2 and

R = r1 +
n

20, 000
r2.

Finally, we report

TR = R̃/R

as an estimate of the speed-up factor (or time reduction) of the MARS-based

estimator over the näıve estimator. We also report

VR = s̃2/s2
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as the variance reduction factor. The former measure represents the true improve-

ment in efficiency of the MARS-based estimator over the näıve estimator, while

the latter measure indicates the variance reduction without adjustment for com-

putation time.

In all examples, VR and TR are reported to two significant figures.

3.5.1 Asian Options

We begin by pricing Bermudan-Asian put options, under both the Black-Scholes

and Heston (1993) models. In the Black-Scholes case, we have (Xt : t = 0, . . . , T ) =

((St, At) : t = 0, . . . , T ), where S0 is given and S1, . . . , ST are generated according

to

St = St−1 exp

(

r − 1

2
σ2 + σWt

)

,

for independent standard normal variates W1, . . . ,WT . The average process (At :

t = 0, . . . , T ) is given by A0 = 0 and, for t ≥ 1,

At =
1

t

t
∑

s=1

Ss =
1

t
St +

t− 1

t
At−1 =

1

t
St−1 exp

(

r − 1

2
σ2 + σWt

)

+
t− 1

t
At−1.

(3.14)

The averaging dates are assumed to coincide with the possible exercise dates,

excluding the date t = 0.

In continuous time, the Heston (1993) model is given by

dSt = µStdt+
√

VtdW
(1)
t ,

dVt = κ(θ − Vt)dt+
√

Vtσ
(

ρdW
(1)
t +

√

1− ρ2dW
(2)
t

)

,

(3.15)

where W (1) and W (2) are independent Brownian motions. We approximate (3.15)

in discrete time by applying the first-order Euler discretization to the logarithms
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of St and Vt. See Glasserman (2004, pp. 339–376) for details. This gives (Xt : t =

0, . . . , T ) = (St, Vt, At : t = 0, . . . , T ) where S0 and V0 are given, and

Vt = Vt−1 exp

(

κθ

Vt−1
− κ− 1

2Vt−1
σ2 +

ρσW
(1)
t +

√

1− ρ2σW
(2)
t√

Vt−1

)

St = St−1 exp

(

r − 1

2
Vt−1 +

√

Vt−1dW
(1)
t

)

,

(3.16)

where W
(1)
1 , . . . ,W

(1)
T ,W

(2)
1 , . . . ,W

(2)
T are independent standard normal variates.

(The process (At : t = 0, . . . , T ) is still given by (3.14).) The scheme (3.16) is not

an exact discretization of (3.15); we ignore the discretization error and henceforth

consider (3.16) to be the true dynamics of the underlying.

The payoff function of the Bermudan-Asian put is given by g(0, ·) ≡ 0 and

g(t, Xt) = (K − At)+

for t ≥ 1.

Let us consider the Heston case, as the Black-Scholes case is an easy special-

ization thereof. As mentioned in Section 3.3.1, we apply the MARS algorithm not

to Xt but to a transformation of Xt which replaces St and Vt by their logarithms

and At by the logarithm of the geometric average

Ãt = exp
1

t

t
∑

s=1

log Ss.

We do not include the LDA directions in the Asian case. This yields an approxi-

mation

L̂t =

JS
∑

j=1

αS,j

(

qS,j

[

log St − kS,j

]

)

+
+

JV
∑

j=1

αV,j

(

qV,j

[

log Vt − kV,j

]

)

+

+

JA
∑

j=1

αA,j

(

qA,j

[

log Ãt − kA,j

]

)

+
.
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The marginal conditional distributions of logSt, log Vt, and log Ãt given Ft−1 are

Gaussian, with mean and variance given by

Et−1 log













St

Vt

Ãt













=













logSt−1 + r − 1
2
Vt−1

log Vt−1 + κθ/Vt−1 − κ− 1
2
σ2/Vt−1

1
t

(

(t− 1) log Ãt−1 + logSt−1 + r − 1
2
Vt−1

)













,

Vart−1 log













St

Vt

Ãt













=













Vt−1

σ2/Vt−1

(1/t2)Vt−1













.

(3.17)

(The full covariance matrix is irrelevant for our purpose.) This allows us to com-

pute the conditional expectations Et−1L̂t easily.

Table 3.1 shows our computational results for Bermudan-Asian options. For

all examples, we considered an option maturing in 6 months with monthly exer-

cise/averaging dates; the annualized risk-free rate was 12r = .06; the initial asset

price was S0 = 100. For the Heston examples, the annualized model parameters

were κ = 1.5, σ = .2, θ = .36, ρ = −.75, V0 = .4. The stopping times were fit using

the polynomials of degree up to 4 in St, At, and (for the Heston model) Vt, for

t = 1, . . . , T − 1.

Table 3.1: Asian Option Results.

Model K Näıve L0 MARS L0 MARS U0 VR TR

BS (σ = .3) 95 2.77 (.07) 2.73 (.00) 2.78 (.00) 210 85
BS (σ = .3) 115 15.92 (.14) 15.86 (.01) 15.95 (.01) 230 44
BS (σ = .6) 95 7.88 (.15) 7.80 (.01) 7.94 (.01) 190 71
BS (σ = .6) 115 20.57 (.23) 20.48 (.02) 20.65 (.01) 230 56

Heston 95 5.04 (.11) 4.96 (.01) 5.06 (.01) 150 61
Heston 115 17.73 (.11) 17.66 (.01) 17.78 (.01) 200 50

Parenthesized values are 95% confidence interval half -widths. VR=Variance Reduction,

TR=Time Reduction, defined at the top of Section 3.5.
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In these examples, the reduction in variance is dramatic, ranging from about

150 times to 250 times variance reduction. Similarly, for an approximate 95%

confidence interval with (relative) width .001, one needs to do about 50 times

more work with the näıve estimator than with the one using the MARS-based

control variate. Finally, observe that the closeness of the (MARS) estimates of L0

and U0 suggests that the stopping time found by the LSM algorithm is quite good.

3.5.2 Basket Options

Next, we consider options on baskets of d assets whose prices are given by (Xt :

t = 0, . . . , T ) = (St(i) : t = 0, . . . , T ; i = 1, . . . , d). Specifically, we test call options

on the maximum and on the average of the assets, which have respective payoff

functions

gmax(t, x) =
(

∨d
i=1x(i)−K

)

+
, gavg(t, x) =

(

1

d

d
∑

i=1

x(i)−K
)

+

.

The underlying assets are assumed to follow the multidimensional Black-Scholes

model, which is discretized as

St(i) = St−1(i) exp

(

r − δ − 1

2
σ2

i + σiWt(i)

)

, (3.18)

for i = 1, . . . , d, where Wt = (Wt(1), . . . ,Wt(d)) is a sequence of independent (in

time) multivariate normal random variates with mean zero, unit variance, and a

specified correlation matrix (see below). Here, δ is the dividend rate paid by each

of the stocks per time step.

We take the annualized risk-free rate 12r to be .05, the dividend rate 12δ = .1,

the annualized volatility to be
√

12σ = .2, the expiration to be 3 years, and the

strike price to be K = 100. The dimension d of the problem takes the values
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d = 2, 3, 5, 10. We test several values of the initial prices (S0(i))), which are taken

to be identical for i = 1, . . . , d. For the payoff function gavg, we take the basis

functions φ for fitting the stopping time τ to be the polynomials of degree up to

two in the d asset prices. For the function gmax, we take the basis functions to

be the polynomials of degree up to two in the order statistics of the asset prices,

which is similar to the choice of basis functions for such options in Longstaff and

Schwartz (2001).

We divide each test further into three cases:

1. The assets’ returns are uncorrelated,

2. The correlation between Wt(i) and Wt(j), for i 6= j, is a constant ρ, and

3. We randomly generate a correlation matrix for (Wt(i), i = 1, . . . , d), t =

1, . . . , T , using the method of Marsaglia and Olkin (1984).

We test both the control variate based on MARS and the control variate based

on LDA-MARS as in Section 3.3.2. For the LDA-MARS tests, we partition the

sample paths at each time step t into three groups of approximately equal size

corresponding to low, medium, and high values of g(τt, Xτt
), and take the first

two eigenvalues of the matrix (3.10), resulting in a total of nine LDA directions.

(These are included in addition to, not instead of, the canonical directions.)

We apply the MARS and LDA-MARS fitting algorithms to the logarithm of

St. The conditional distribution of logSt given Ft−1 is multivariate Gaussian with

mean logSt−1 + r − 1
2
σ2, variance σ2, and correlation matrix C which depends

upon which of the three aforementioned cases we are in. Therefore, for a direction

a ∈ Rd, ‖a‖ = 1, the conditional distribution of a′ logSt given Ft−1 is Gaussian
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with mean and variance

Et−1a
′ log St =

d
∑

i=1

a(i)

(

logSt−1(i) + r − 1

2
σ2

)

Vart−1 a
′ log St = σ2a′Ca

This allows us to compute the conditional expectations (3.8).
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Table 3.2: Basket Option Results: Call on Average.

d S0 Näıve L0 MARS L0 LMARS L0 LMARS U0 MVR MTR LMVR LMTR
Uncorrelated asset prices.

2 90 1.98 (.07) 2.00 (.04) 1.99 (.01) 2.08 (.01) 3.2 2.8 51.0 43.0
2 100 4.90 (.10) 4.94 (.05) 4.93 (.01) 5.06 (.01) 4.4 3.9 73.0 59.0
3 90 1.08 (.05) 1.09 (.03) 1.10 (.01) 1.26 (.01) 2.2 1.8 18.0 15.0
3 100 3.61 (.07) 3.62 (.04) 3.63 (.01) 3.85 (.01) 3.2 2.9 32.0 29.0
5 90 0.39 (.02) 0.41 (.02) 0.42 (.01) 0.58 (.01) 1.4 1.1 6.4 4.3
5 100 2.32 (.05) 2.36 (.03) 2.37 (.01) 2.59 (.01) 2.4 1.9 19.0 15.0

10 90 0.05 (.01) 0.05 (.01) 0.05 (.00) 0.15 (.00) 1.0 0.5 2.3 0.2
10 100 1.18 (.03) 1.21 (.02) 1.25 (.01) 1.42 (.01) 1.9 1.3 13.0 8.3
Correlated asset prices (ρ = .45 for all asset pairs).

2 90 3.08 (.09) 3.11 (.03) 3.09 (.01) 3.15 (.01) 7.3 6.8 83.0 78.0
2 100 6.39 (.13) 6.43 (.04) 6.38 (.01) 6.48 (.01) 11.0 9.7 120.0 110.0
3 90 2.61 (.08) 2.64 (.03) 2.62 (.01) 2.70 (.01) 6.0 5.1 67.0 56.0
3 100 5.77 (.12) 5.82 (.04) 5.80 (.01) 5.91 (.01) 8.6 7.4 95.0 83.0
5 90 2.15 (.07) 2.25 (.03) 2.24 (.01) 2.33 (.01) 4.6 3.4 60.0 48.0
5 100 5.27 (.10) 5.32 (.04) 5.30 (.01) 5.41 (.01) 6.9 5.8 91.0 75.0

10 90 1.77 (.06) 1.92 (.03) 1.96 (.01) 2.08 (.01) 4.0 2.8 35.0 23.0
10 100 4.71 (.10) 4.87 (.04) 4.90 (.01) 5.02 (.01) 7.0 5.7 80.0 64.0
Correlated asset prices (random correlation matrix).

5 90 0.07 (.01) 0.08 (.01) 0.08 (.01) 0.15 (.00) 2.5 0.9 3.7 0.5
5 100 0.85 (.02) 0.88 (.01) 0.89 (.01) 1.03 (.01) 3.2 2.5 11.0 8.1

10 90 0.09 (.01) 0.09 (.01) 0.10 (.01) 0.21 (.01) 1.2 0.6 2.9 0.3
10 100 1.38 (.03) 1.40 (.02) 1.42 (.01) 1.62 (.01) 2.1 2.0 11.0 9.3
Parenthesized values are 95% confidence interval half-widths. MVR/LMVR = MARS/LMARS variance reduction. MTR/LMTR =

MARS/LMARS time reduction, defined at the top of Section 3.5.
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For the call on the average, the variance reduction using LDA-MARS is quite

good, resulting in a speed-up factor of between about 5 and 50 for both the uncor-

related case and the randomly correlated case, and between about 25 and 110 for

the positively correlated case. There is some degradation of performance as the

dimension increases from 2 to 10. We also observe that the variance reduction is

much greater for options at-the-money than out-of-the-money.

It is natural to expect that LDA-MARS should perform significantly better

than MARS for an option on the average of stocks, as there is one linear direc-

tion (namely, a = (1, . . . , 1)) that is likely to capture much of the variation in the

value function. It is also plausible that the effect of the control variate is stronger

when the assets are positively correlated, and that the degradation with dimen-

sion is smaller in that case as well, since under this correlation structure much

of the variance of the assets’ returns is driven by a single factor. Both of these

observations are borne out in the results.
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Table 3.3: Basket Option Results: Call on Max, Uncorrelated Asset Prices.

d S0 Näıve L0 MARS L0 LMARS L0 LMARS U0 MVR MTR LMVR LMTR
2 90 7.92 (.16) 8.05 (.03) 8.08 (.03) 8.40 (.02) 23 18 37 30
2 100 13.77 (.20) 13.88 (.05) 13.90 (.03) 14.46 (.03) 18 17 40 37
2 110 21.27 (.23) 21.33 (.06) 21.33 (.04) 22.09 (.04) 14 11 39 33
3 90 11.15 (.18) 11.20 (.05) 11.17(.04) 11.92 (.04) 14 10 17 13
3 100 18.58 (.23) 18.57 (.07) 18.60 (.06) 20.01 (.05) 11 8.9 16 12
3 110 27.42 (.26) 27.42 (.09) 27.43 (.07) 29.22 (.06) 8.7 6.9 16 12
5 90 16.27 (.21) 16.46 (.08) 16.46 (.08) 18.18 (.07) 6.4 4.8 7.5 5.1
5 100 25.83 (.25) 25.98 (.11) 25.97 (.10) 28.79 (.08) 5.5 4.3 6.8 5.0
5 110 36.46 (.28) 36.58 (.13) 36.53 (.11) 40.20 (.10) 4.8 3.7 6.5 4.7

10 90 25.70 (.24) 25.85 (.12) 25.87 (.12) 29.20 (.11) 3.9 2.9 4.3 3.1
10 100 37.73 (.27) 39.74 (.14) 37.94 (.13) 42.14 (.12) 3.6 2.7 4.2 3.1
10 110 50.19 (.30) 50.47 (.16) 50.45 (.15) 55.25 (.13) 3.6 2.7 4.1 3.0
Parenthesized values are 95% confidence interval half -widths. MVR/LMVR = MARS/LMARS variance reduction. MTR/LMTR =

MARS/LMARS time reduction, defined at the top of Section 3.5.
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Table 3.4: Basket Option Results: Call on Max, Correlated Asset Prices.

d S0 Näıve L0 MARS L0 LMARS L0 LMARS U0 MVR MTR LMVR LMTR
ρ = .45 for all asset pairs.

2 90 7.11 (.16) 7.18 (.04) 7.19 (.03) 7.68 (.03) 16 13 28 22
2 100 12.20 (.20) 12.28 (.05) 12.35 (.04) 13.08 (.03) 15 14 31 28
2 110 19.02 (.24) 19.00 (.06) 19.03 (.04) 20.00 (.04) 15 12 35 25
3 90 9.26 (.19) 9.27 (.06) 9.30 (.05) 10.47 (.04) 11 8.1 15 11
3 100 15.33 (.23) 15.35 (.07) 15.38 (.06) 17.04 (.05) 11 8.4 17 13
3 110 22.97 (.27) 22.95 (.08) 22.97 (.07) 24.98 (.06) 11 8.3 17 13
5 90 12.33 (.21) 12.46 (.08) 12.49(.08) 14.53 (.07) 6.9 5.3 8.1 5.8
5 100 19.65 (.26) 19.80 (.10) 19.84 (.09) 22.94 (.09) 6.7 5.1 8.0 5.8
5 110 28.36 (.30) 28.52 (.12) 28.55 (.10) 32.42 (.10) 6.8 5.1 9.0 6.4

10 90 17.46 (.26) 17.64 (.11) 17.64(.11) 20.86(.12) 5.5 3.8 6.0 3.7
10 100 26.43 (.31) 26.58 (.13) 26.67 (.12) 31.20 (.13) 5.4 3.6 6.2 4.8
10 110 36.50 (.35) 36.74 (.15) 36.69 (.14) 42.21 (.15) 5.5 4.1 6.5 4.7
random correlation matrix
5 90 15.78 (.20) 15.89 (.06) 15.88 (.06) 17.16 (.06) 9.7 7.4 10 7.6
5 100 25.45 (.23) 25.61 (.08) 25.63 (.07) 27.70 (.07) 8.8 6.8 9.4 6.8
5 110 36.35 (.25) 36.52 (.09) 36.53 (.09) 39.25 (.07) 7.7 5.9 8.5 6.0

10 90 23.55 (.24) 23.79 (.12) 23.79 (.11) 27.02 (.11) 4.3 2.9 4.9 3.1
10 100 35.10 (.28) 35.35 (.14) 35.41 (.13) 39.69 (.12) 4.0 3.4 4.7 3.6
10 110 47.23 (.30) 47.56 (.15) 47.53 (.14) 52.56 (.13) 3.9 3.0 4.5 3.2
Parenthesized values are 95% confidence interval half -widths. MVR/LMVR = MARS/LMARS variance reduction. MTR/LMTR =

MARS/LMARS time reduction, defined at the top of Section 3.5.
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The results are somewhat less dramatic for the case of the option on the max-

imum. This is most likely due to the fact that the payoff function gmax is highly

non-separable, so the fitted functions L̂ are poor approximations for the true value

functions L. In fact, not only is gmax non-separable, but it cannot even be repre-

sented exactly in the form (3.9). Thus, even when LDA directions are used, and

even in the correlated assets case, the performance degrades quickly to a variance

reduction factor of only around 2 or 3 as the dimension increases. Still, the method

seems to be able to provide about a threefold decrease in computation time even

in this case. We also observe that the effects of correlation are much less noticable

for the call on the max than for the call on the average.

The first nine rows of the first panel of Table 3.3 may be compared with Ta-

ble 2 of Andersen and Broadie (2004). Our results (using LDA-MARS) include

confidence intervals that are approximately twice the width of the ones reported

in Andersen and Broadie (2004), although we use 20,000 simulation trials to their

2,000,000 trials. In order to get confidence intervals of the same order, we would

need to use approximately 80,000 trials – still quite a bit fewer than 2,000,000. On

the other hand, the “duality gaps” between the upper and lower bounds are much

tighter in Andersen and Broadie (2004) than in our study. This stands to reason;

our upper bounds are wholly reliant on the approximation π̂ for π; in contrast,

they compute π explicitly by running additional simulation trials.

3.5.3 Barrier Options

Finally we test our method on a variety of barrier options: the up-and-out call,

the up-and-out put, and the down-and-out put, all on a single asset. Unlike a

vanilla Bermudan call, a Bermudan up-and-out call on an asset that does not pay
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dividends may have an optimal exercise policy other than the trivial one τ0 = T .

Again, we test both the Black-Scholes and the Heston models.

Although it would be possible to accommodate the path dependence of barrier

options by expanding the state space, we adopt a different approach. Let B ⊂ Rd

denote the region in which the option is knocked out. Assume the payoff function

g satisfies g(·, x) ≡ 0 for all x ∈ B. For each t = 0, . . . , T , let νt be the first hitting

time of B between t and T , or T + 1 if there is no such hitting time, i.e.,

νt = inf{s = t, . . . , T + 1 : (s,Xs) ∈ {t, . . . , T} ×B ∪ {T + 1} × Rd}.

We now redefine our value function to be

Qt = sup
τ∈T (t)

Et

[

e−r(τ∧νt−t)g (τ ∧ νt, Xτ∧νt
)
]

. (3.19)

The stopping times τ ∗t solving (3.19) satisfy

τ ∗T ∧ νT = T,

τ ∗t ∧ νt =















t if νt = t or if g(t, Xt) ≥ e−rEtQt+1,

τ ∗t+1 otherwise,

for t = 0, . . . , T − 1. The suboptimal stopping times (τt : t = 0, . . . , T ) are defined

analogously to those in Section 3.2.1. In this setting the analogous martingale π

satisfies

πτt∧νt
− πt = e−rτt∧νtg (τt ∧ νt, Xτt∧νt

)− e−rtLt,

similar to Proposition 3.1, and we have

Q0 ≤ E max
t=0,...,T

[g (t ∧ ν0, Xt∧ν0)− πt∧ν0 ] .

In other words, the martingale π evaluated only as far as the hitting time of the

knock-out region, both for computing the control variate and the upper bound.
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This leads to Algorithms 3 and 4, which are modifications of Algorithms 1 and

2, respectively. The only difference between Algorithms 1 and 3 occurs on line 9,

which in the barrier option case says to zero out the cash flow and the control

variate upon exercise or knockout. Algorithm 4 differs from Algorithm 2 in that

the exercise time τ0 is replaced with the minimum of the exercise time and knock

out time τ0 ∧ ν0.

Algorithm 3 Phase One (Barrier Option): Fit Stopping Times and Control
Variate.
1: simulate (X0(n), . . . , XT (n) : n = 1, . . . , N1)
2: Y (n)← g(T,XT (n)), for n = 1, . . . , N1

3: cv(n)← 0
4: for t = T − 1, . . . , 0 do

5: θt ← argminθ

∑N1

n=1

(

Y (n)− ĥ(Xt+1(n); θ)
)2

6: cv(n)← cv(n) + ĥ(Xt+1(n); θt)−E
[

ĥ(Xt+1; θt) | Xt(n)
]

, for n = 1, . . . , N1

7: αt ← argmin
α

∑N1

n=1 1[g(t,Xt(n))>0]e
−r (α′φ(Xt(n))− (Y (n)− cv(n)))2

8: for n = 1, . . . , N1 do

9: if g(t, Xt(n)) > [α′tφ(Xt(n))]+ or Xt(n) ∈ B then

10: Y (n)← g(t, Xt(n)); cv(n)← 0
11: else

12: Y (n)← e−rY (n); cv(n)← e−rcv(n)
13: end if

14: end for

15: end for

Algorithm 4 Phase Two (Barrier Option): Compute Option Price Lower and
Upper Bounds.

1: simulate new paths (0(n), . . . , XT (n) : n = 1, . . . , N2)

2: π̂t(n) ← ∑t
s=1 e

−rs
(

ĥ(Xs(n); θs)− E
[

ĥ(Xs; θs) | Xs−1(n)
])

, for n =

1, . . . , N2, t = 1, . . . , T
3: τ0(n) ← T ∧ min{t = 0, . . . , T − 1 : g(t, Xt(n)) > α′tφ(Xt(n))}, for n =

1, . . . , N2

4: ν0(n)← (T + 1) ∧min{t = 0, . . . , T : Xt(n) ∈ B}
5: L0 ← 1

N2

∑N2

n=1 e
−r(τ0(n)∧ν0(n))g((τ0(n) ∧ ν0(n)), X(τ0(n)∧ν0(n))(n)) −

π̂(τ0(n)∧ν0(n))(n)

6: U0 ← 1
N2

∑N2

n=1 maxt=0,...,ν0(n) (g(t, Xt(n))− π̂t(n))

In our numerical experiments on Bermudan barrier options, the underlying dy-
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namics of (Xt : t = 0, . . . , T ) = (St : t = 0, . . . , T ) or (Xt : t = 0, . . . , T ) =

((St, Vt) : t = 0, . . . , T ) follow (3.18) or (3.16) accordingly, and the appropriate pa-

rameters of the one-step conditional distributions are still given by (3.17) (without

the At term). The model parameters are as described in Section 3.5.1. Tables 3.5

and 3.6 report the computational results for barrier options in the Black-Scholes

and Heston models, respectively.

The performance of the control variate for the barrier option examples seems

to have huge variability, with variance reduction factors ranging from 8.5 to 350

just within the Black-Scholes cases. Why is there such a discrepancy in the quality

of the algorithm between these two examples? The cases for which the control

variate is very successful are the “up-and-out” puts, which knock out when the

option is deep out-of-the-money. The less successful cases are the “up-and-out”

call and the “down-and-out” put, which knock out in-the-money and as such have

discontinuous payoff functions. Indeed, this discontinuity is notorious for causing

headaches among traders, especially in currency markets, who must hedge these

options. Our problem here is that MARS has difficulty fitting these functions as

well as it fits the smoother “up-and-out” put value functions. We believe that with

a little manual tweaking we could get the performance for the discontinuous cases to

improve significantly. However, in the spirit of having a fully automated procedure

we have not pursued this line of inquiry. An interesting future research project

would be to develop a version of MARS that is more robust to discontinuities in

the target function.
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Table 3.5: Barrier Option Results (Black-Scholes, σ = .3).

Stgy. K B Näıve L0 MARS L0 MARS U0 VR TR

Call 95 130 13.38 (.16) 13.36 (.04) 14.11 (.04) 18.0 15.0
Call 115 130 3.19 (.06) 3.19 (.02) 3.44 (.02) 8.5 7.3
Put 95 70 6.61 (.11) 6.7 (.03) 7.25 (.03) 14.0 13.0
Put 115 70 18.34 (.19) 18.45 (.02) 19.30 (.04) 79.0 53.0
Put 95 130 6.98(.14) 7.09 (.01) 7.13 (.01) 180.0 140.0
Put 115 130 17.72 (.20) 17.86 (.01) 17.92 (.01) 350.0 140.0

Parenthesized values are 95% confidence interval half -widths. VR=Variance Reduction,

TR=Time Reduction, defined at the top of Section 3.5.

Table 3.6: Barrier Option Results (Heston).

Stgy. K B Näıve L0 MARS L0 MARS U0 VR TR

Call 95 130 14.06 (.15) 13.98 (.05) 14.82 (.05) 9.9 8.5
Call 115 130 3.36 (.06) 3.33 (.03) 3.66 (.02) 5.0 4.3
Put 95 70 8.95 (.12) 8.99 (.05) 9.82 (.04) 5.2 4.5
Put 115 70 22.12 (.20) 22.20 (.06) 23.72 (.06) 9.6 7.9
Put 95 130 12.93(.24) 13.10(.02) 13.16 (.02) 170.0 120.0
Put 115 130 22.04 (.33) 22.34 (.03) 22.51 (.02) 170.0 110.0

Parenthesized values are 95% confidence interval half -widths. VR=Variance Reduction,

TR=Time Reduction, defined at the top of Section 3.5.
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3.6 Conclusion

We have presented a new, automated procedure for finding control variates for

the American option pricing problem. The key advantages of our method are

its degree of applicability to many option types and stochastic processes, without

requiring much additional implementation overhead, and its use of off-the-shelf

software. Our method works extremely well for problems of moderate dimension

(up to about 5), and for problems where much of the variability of the underlying

processes can be explained with a moderate number of parameters. Moreover,

the method can “discover” such structure automatically as a result of using an

adaptive fitting procedure.

A possible area of future research would be to apply this technique in conjunc-

tion with quasi-Monte Carlo methodology. This would likely result in even greater

variance reductions, although that remains to be seen. The good news is that the

overall procedure would not change in any substantive way. Finally, this paper

suggests that there is promise in applying techniques from the (vast) statistical

data mining literature to the American option pricing problem. This is a direction

we hope to continue to pursue.
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Chapter 4

Deterministic and Stochastic Root

Finding in One Dimension for Increasing

Convex Functions

4.1 Introduction

Suppose h∗ : [a, b] → R is non-decreasing and convex, with known upper bound c

on the left derivative at b. Suppose further that h∗ is known to have a unique root

in [a, b]. In this paper, we discuss efficient algorithms for finding an approximate

root of h∗. Our notion of an approximate root is different from the usual one in that

we are concerned only with finding a point x̄ satisfying |h∗(x̄)| ≤ δ, where δ > 0 is

the tolerance parameter; proximity to the actual root of h∗ is irrelevant. Such an

x̄ is called a δ-root. We consider both the cases where h∗ can be evaluated exactly

and where h∗ must be evaluated by stochastic simulation. In the latter case, we

suppose that confidence interval estimates of the function values are available.

Our interest in this form of the root-finding problem arises from the problem

of pricing American options (eg, (Duffie 2001), (Glasserman 2004)). In approaches

for American option pricing which combine simulation with backward stochas-

tic dynamic programming (eg, (Carriere 1996), (Grant, Vora, and Weeks 1996),

(Longstaff and Schwartz 2001)) one must classify all points in the state space as

points where it is preferable to exercise the option immediately or as points where

it is preferable to continue to hold the option. If the state space is one dimen-

sional, then under quite general conditions this amounts to finding the root of a

particular convex function. This function must be computed via simulation. The
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absolute value of this function at a point x indicates the financial loss associated

with making the wrong decision in state x.

A standard approach to stochastic root finding is stochastic approximation,

which has an enormous literature; see, e.g., (Kushner and Yin 2003). However,

stochastic approximation is fundamentally a search procedure, and does not pro-

vide a probabilistic guarantee. This is also true of Simultaneous-Perturbation

Stochastic Approximation (Spall 2003). Chen and Schmeiser (Chen and Schmeiser

2001) develop retrospective root finding algorithms that progressively narrow in on

a root, and, like stochastic approximation, the theory is directed towards proving

convergence in a limiting sense, rather than offering finite-time performance guar-

antees. This is also true of the root finding procedures developed in (Pasupathy

and Schmeiser 2003; Pasupathy and Schmeiser 2004).

Our work is related to algorithms developed for the root finding problem with

exact function evaluations, especially (Gross and Johnson 1959), but also of note

are (Potra 1994), in which a quadratic rate of convergence is established for a root

finding algorithm applied to a subclass of smooth convex functions, and (Rote

1992), which surveys and analyzes the sandwich algorithm for shrinking a polygonal

envelope of a convex function. None of the papers we have seen attempt to identify

a δ-root, instead adopting other error measures.

Therefore, the first main contribution of our work, namely the development

and analysis of an algorithm for δ-root finding with exact function evaluations,

shares the problem context of these papers, but we work with both a different

error measure and a different class of functions. The second main contribution

extends this algorithm and its analysis to the case of inexact function evaluations.

We provide a bound on the number of iterations required in each case, where in the
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stochastic case the bound holds with high probability. In particular, this bound

is an improvement over that of our algorithm’s natural competitor, the bisection

algorithm, by a constant factor.

The remainder of this paper contains two main sections. Section 4.2 deals with

the deterministic case and §4.3 deals with the stochastic case. For the deterministic

case, we begin by defining notation and briefly recalling the performance guarantee

one can achieve with the simple bisection algorithm. Section 4.2.1 defines envelope

functions that sandwich h∗ and discusses how these envelopes can be used to guide

a root-finding procedure. In §4.2.2 we state and prove the performance guarantee.

We begin §4.3 by discussing the natural extension of bisection to the stochastic

case. Section 4.3.1 describes how to construct envelopes in the stochastic set-

ting. Section 4.3.2 provides a performance guarantee assuming that the interval

estimates have probabilty zero of error. In §4.3.3 we relax that assumption and

introduce an adaptive algorithm for determining the confidence levels with which

the interval estimates must be generated. We provide a heuristic performance

improvement in §4.3.4 based upon the idea of completely solving the root-finding

problem for a decreasing sequence of tolerance parameters.

4.2 Deterministic δ-root finding

In this section, we discuss the version of the problem in which exact evaluations of

the unknown function h∗ are available. We also establish notation and terminology

to use throughout the paper.

For constants a < b and c > 0, let H0 = H0(a, b, c) be the set of all convex,
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non-decreasing functions h : [a, b] → R that are continuous at a and b, possess a

unique zero in [a, b], and whose left derivative at b is bounded above by c.

The algorithms discussed in this paper evaluate h∗ at a sequence of points until

a stopping condition is reached. For j ≥ 1, let xj be the point at which h∗ is

evaluated in the jth iteration and let yj = h∗(xj). For k ≥ 1, let xk = (x1, . . . , xk)

and yk = (y1, . . . , yk). Denote by xk
[1], . . . , x

k
[k] and yk

[1], . . . , y
k
[k] the order statistics

of xk and yk, respectively. We typically omit the superscripts on these quantities,

as the relevant iteration is usually clear from the context. The fact that h∗ is

known to be non-decreasing implies that the order statistic notation is consistent,

i.e., h∗(x[j]) = y[j], for j = 1, . . . , k. Let Hk denote the set of all functions h ∈ H0

such that h(xj) = yj, for j = 1, . . . , k. In particular, we have h∗ ∈ Hk for k ≥ 0.

Perhaps the most obvious choice of algorithm for locating a δ-root is bisection,

e.g., (Press, Flannery, Teukolsky, and Vetterling 1992, pp. 350–354). Let Bk denote

the bracket after k iterations of the algorithm, defined to be the smallest interval

whose endpoints are in {a, x1, . . . , xk, b} that is known to contain the root of h∗.

After k iterations one next evaluates h∗ at the midpoint of Bk. Since the width

of the bracket decreases by a factor of 2 at each iteration (i.e., the sequence of

bracket widths converges to zero linearly at rate 2), the bracket width after k ≥ 0

iterations is 2−k(b − a). The fact that the growth rate of h∗ on any interval is a

priori bounded above by c guarantees that once the bracket width is no greater

than 2δ/c, the midpoint of the bracket is a δ-root. Thus, the algorithm can be

designed to terminate after dlog2((b− a)c/δ)− 1e function evaluations or fewer.

Other derivative-free one-dimensional root finding algorithms, as described,

e.g., in (Potra 1994), (Press, Flannery, Teukolsky, and Vetterling 1992, pp. 354–

362), exhibit super-linear convergence, but only when the function is known to
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satisfy certain smoothness conditions and the root has already been sufficiently

well-bracketed. In such algorithms, it is the sequence of bracket widths which

converges super-linearly in accordance with the goal of finding a point close to the

true root. In contrast, our algorithm measures progress according to a sequence

of quantities (qk : k ≥ 2), described in §4.2.2, which are specially designed to

measure progress towards finding a δ-root. The main result of this section is that

this sequence converges linearly to zero at rate 3 for the entire class of functions

H0 until such time as a δ-root is found.

4.2.1 Envelope functions

For the remainder of §2, we suppose the endpoints of the initial bracket [a, b] are

evaluated in the first two iterations, so that (x1, x2) = (a, b). Although not strictly

necessary, this will simplify notation somewhat. Suppose further that h(a) < −δ

and h(b) > δ, for otherwise there is no work to be done in finding a δ-root.

Once k ≥ 2 points have been evaluated, one can derive piecewise linear func-

tions uk and lk that provide tight bounds on the functions in Hk. We name these

functions the upper and lower envelopes, respectively. The upper envelope uk is

simply the linear interpolant of the points (xj , yj), for j = 1, . . . , k. The lower

envelope lk is constructed by extending the line segment joining consecutive points

(x[j], y[j]), (x[j+1], y[j+1]) to the left of x[j] (for j = 2, . . . , k) and to the right of x[j+1]

(for j = 1, . . . , k − 1), extending a horizontal ray to the right of (a, h∗(a)), and

extending a ray with slope c to the left of (b, h∗(b)). The pointwise maximum of

these 2k − 2 rays is the lower envelope; see Figure 4.1. This same construction is

given in (den Boef and den Hertog 2007) and (Rote 1992). In §4.3.1 we extend

this procedure to the case where function evaluations are inexact, and prove (in
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the more general setting) that the resulting bounds are tight in the sense that

uk(x) = suph∈Hk
h(x) and lk(x) = infh∈Hk

h(x).

x[1] = a x[2] x[3] x[4] = b

h(x)
uk(x)
lk(x)

Figure 4.1: Envelope functions.

Observe that both uk and lk may be constant on certain intervals. Accordingly,

for any continuous function f : [a, b] → R we denote by f← and f→ the left and

right inverses of f , respectively, given by

f←(y) = inf{x ∈ [a, b] : f(x) = y}

f→(y) = sup{x ∈ [a, b] : f(x) = y}.

If x ∈ Bk = [x[i], x[i+1]) is the root of h∗, then

x[i] ≤ u←k (0) ≤ x ≤ l→k (0) ≤ x[i+1].

In other words, the envelopes allow us to deduce an interval that is smaller than

the bracket in which to search for δ-roots.

We can also use the envelopes to determine a stopping condition for the algo-

rithm. In particular, if

l→k (−δ) ≤ x ≤ u←k (δ), (4.1)
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then

−δ ≤ lk(x) ≤ uk(x) ≤ δ,

implying that x must be a δ-root of h∗. It is possible that (4.1) may be met for

some x even if h∗ has not actually been evaluated at a δ-root, as illustrated in

Figure 4.2.

− δ

0

δ

x[1] = a x[2] x[3] = b

uk(x)
lk(x)
δ−roots

Figure 4.2: Stopping condition.

4.2.2 Reductions in potential

In much the same spirit as (den Boef and den Hertog 2007), we use the informa-

tion contained in uk and lk to extract information to guide our search procedure,

including to determine the sequence of points at which to evaluate h∗. Before

describing how this is done, we introduce some more notation.

The lower envelope lk is piecewise linear but not necessarily convex. Indeed, lk

is locally concave at each ordinate xj. Denote by z−[j] and z+
[j], respectively, the left

and right derivatives of lk at x[j] (take z−[1] = 0 and z+
[k] = c). Let zk = (z−[j], z

+
[j] :

j = 1, . . . , k). The dependence of these quantities upon the iteration k is usually
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suppressed in the notation; if we need to make the iteration k explicit, we write

z±[j](k).

As we will see in §4.3.1, the quantities z−[j] and z+
[j] provide tight bounds on the

subgradient of all functions h ∈ Hk at x[j]; moreover, they turn out to be helpful in

the construction of the lower envelope in the stochastic setting. For the time being,

we simply remark that zk can be computed using only xk and yk, as well as the

known constants b and c. We note that the order statistic notation is consistent

here as well, as z−[j] ≤ z−[j+1] and z+
[j] ≤ z+

[j+1], for j = 1, . . . , k − 1.

We now discuss the sequence of quantities (qk : k ≥ 2) which tracks the progress

of the algorithm. This in turn leads us to a particular sampling strategy. Given

k ≥ 2, suppose Bk = [x[i], x[i+1]). Define the potential qk by:

qk = y2
[i+1](z

+
[i+1]∆

−1
k − 1), (4.2)

where

∆k =
y[i+1] − y[i]

x[i+1] − x[i]

is the slope of uk on Bk.

There is a geometric interpretation to qk. Namely, it is twice the product of

the slope z+
[i+1] with the area of the triangle formed by the x-axis, the graph of uk,

and the ray to the left of x[i+1] appearing in the construction of the lower envelope.

The potential qk plays a role in our algorithm analogous to that played by the

width of Bk in bisection. Lemma 4.1 shows that once qk is sufficiently small, the

stopping condition (4.1) holds for a particular value of x.

Lemma 4.1. Let

x̂ = x[i+1] −
y[i+1]

z+
[i+1]

.
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Then we have

0 ≤ lk(x̂) ≤ uk(x̂) ≤
1

2

√
qk. (4.3)

In particular, if qk ≤ 4δ2 then x̂ is a δ-root.

Proof. The first two inequalities in (4.3) follow directly from the definition of x̂ and

of the envelope functions. For the proof of the third and final inequality, consider

Figure 4.3. By the similarity of the triangles ABE and ACD, we have

x[i] u−1(0) x̂ x[i+1]

0

u(x̂)
y[i+1]

A

B
C

DE

Figure 4.3: Similar triangles in proof of Lemma 4.1. Here, slope(AC) = ∆ and
slope(CE) = z+

[i+1].

u(x̂) = y[i+1] ·
(

1− ∆k

z+
[i+1]

)

= y[i+1]

z+
[i+1]∆

−1
k − 1

z+
[i+1]∆

−1
k

= y[i+1]
qk

qk + y2
[i+1]

.

For any fixed value of qk, the latter expression is maximized at y[i+1] =
√
qk. This

proves (4.3).

We now consider how much of a reduction in potential is achieved at each

iteration. The key idea is to pick a point x∗ at which to sample h∗ which equates

upper bounds on the potential in the two cases h∗(x∗) > 0 and h∗(x∗) < 0. To

that end, let

x∗ = x[i+1] − y[i+1]
∆−1

k

2
√

z+
[i+1]∆

−1
k − 1

. (4.4)
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Lemma 4.2. If Bk = [x[i], x[i+1]) and the (k+1)th sampling point is given by (4.4),

then

qk+1

qk
≤

√

z+
[i+1]∆

−1
k − 1

2z+
[i+1]∆

−1
k +

√

z+
[i+1]∆

−1
k − 1

. (4.5)

Proof. We consider two separate cases depending upon the sign of y∗ := h(x∗).

(Clearly, the case y∗ = 0 is trivial.)

Case 1: y∗ > 0. Consider Figure 4.4. The new potential qk+1 is given by

x[i] u−1(0) x* x[i+1]

y[i]

0

y*

y[i+1]

A

B

D

E

C F

Figure 4.4: Proof of Lemma 4.2, Case 1: y∗ > 0. The newly evaluated point is D.
Here, slope(AB) = ∆ and slope(BF ) = z+

[i+1].

twice the area of the triangle 4CDE times the slope of the line BD. Since

4CDE ⊂ 4ADE, this means that

qk+1 ≤ 2 · area(4ADE) · slope(BD) = y∗y[i+1]

(

∆−1
k

y[i+1] − y∗
x[i+1] − x∗

− 1

)

.

The above expression is maximized with respect to y∗ at

y∗ =
1

2
(y[i+1] −∆k(x[i+1] − x∗)) = y[i+1]

√

z+
[i+1]∆

−1
k − 1

2
√

z+
[i+1]∆

−1
k − 1

.
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Therefore

qk+1 ≤
(

y[i+1]

)2

(√

z+
[i+1]∆

−1
k − 1

)2

2
√

z+
[i+1]∆

−1
k − 1

,

which, in light of (4.2), proves (4.5).

Case 2: y∗ < 0. Consider Figure 4.5. In this case, the new potential qk+1 is

x* x[i+1]

y[i]

y*

0

y[i+1]

A

B

CD
E

Figure 4.5: Proof of Lemma 4.2, Case 2: y∗ < 0. The newly evaluated point is E.
Here, slope(BC) = z+

[i+1].

twice the area of 4BCD times the slope of BC. Since 4BCD ⊂ 4ABC,

qk+1 ≤ 2 · area(4ABC) · slope(BC)

= y[i+1]

(

(

x[i+1] − x∗
)

z+
[i+1] − y[i+1]

)

=
(

y[i+1]

)2

(√

z+
[i+1]∆

−1
k − 1

)2

2
√

z+
[i+1]∆

−1
k − 1

,

where the final equality follows from (4.4). Hence, (4.5) holds in this case as

well.

We now analyze the ratio of slopes z[i+1]∆
−1
k , which appears in many of the

above expressions. First we construct a sequence (γk : k ≥ 2) which, as we will see
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in Lemma 4.3 below, provides a lower bound on the sequence of slopes (∆k : k ≥ 2).

Refer to Figure 4.6 and define

γk = slope(AB) ∨ slope(AC) =

(

−y[i]z
+
[i+1]

(

x[i+1] − x[i]

)

z+
[i+1] − y[i+1]

)

∨ z−[i], (4.6)

where Bk =
[

x[i], x[i+1]

)

.

A

B C

(a)

A

BC

(b)

Figure 4.6: Construction of γk. See (4.6).

Although the sequence (z+
[i+1]∆

−1
k : k ≥ 2) might not decrease in k, Lemma

4.3 shows that (z+
[i+1]γ

−1
k : k ≥ 2) does. Moreover, the lemma also shows that the

former sequence is bounded by the latter.

For the rest of this section, denote respectively by x(l), y(l), and z(l) the ordinate,

abscissa, and subgradient upper bound associated with the right endpoint of the

bracket after l iterations, for l ≥ 2.

Lemma 4.3. Suppose 2 ≤ j ≤ k. Then:

∆k ≥ γk ≥ γj (4.7)

and

z(j) ≥ z(k). (4.8)
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Hence,

z(k)∆
−1
k ≤ z(j)γ

−1
j (4.9)

for all such j and k.

Proof. The only statement requiring proof is the second inequality in (4.7), as

all the other inequalities follow from the construction of the relevant quantities.

Consider Figure 4.7. The four panels show all four possible configurations after k

iterations. The point E represents the sampled value at iteration k+1. In the left

two panels, we have slope(AB) > slope(AC) and on the right the reverse is true;

in the upper panels, the function value at the newly sampled point is positive and

in the lower panels it is negative. In all cases, the new value γk+1 is bounded below

by the slope of AF , which exceeds γk.

We now state and prove the main result of this section.

Theorem 4.4. Suppose 2 ≤ j ≤ k. Let ε > 0 be arbitrary. Define

ηj := 2 ∧
√

z(j)γ
−1
j , θj :=

√

2η2
j + ηj − 1

ηj − 1
.

If

k ≥ j + 1 +
1

2
logθj



qj

√

z(j)∆
−1
j − 1

2z(j)∆
−1
j +

√

z(j)∆
−1
j − 1



+ logθj

1

2ε
, (4.10)

then

0 ≤ h

(

x(k) −
y(k)

z+
(k)

)

≤ ε

for all h ∈ Hk.

Proof. One can check that as a function of ηj, the quantity θj decreases on [1, 2]

and then increases on [2,∞). But by construction, 1 ≤ ηj ≤ 2, and so Lemma 4.3
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A

B C

E

F

D

(a) γk = slope(AB)
γk+1 = slope(AF )
∆k+1 = slope(AE)

A

BC
E

F

D

(b) γk = slope(AC)
γk+1 = slope(AF )
∆k+1 = slope(AE)

B C

A

E
F

D

(c) γk = slope(AB)
γk+1 = slope(EF )
∆k+1 = slope(ED)

A

BCF
E

D

(d) γk = slope(AC)
γk+1 = slope(EF )
∆k+1 = slope(ED)

Figure 4.7: Configurations in proof of Lemma 4.3.

implies θj ≤ θj+1 ≤ · · · ≤ θk and

θ2
l ≤

2z(l)∆
−1
l +

√

z(l)∆
−1
l − 1

√

z(l)∆
−1
l − 1

,

for l =≥ 2. Now, Lemma 4.2 and condition (4.10) imply

θ
2k−2(j+1)
j ≥ qj

4ε2
·

√

z(j)∆
−1
j − 1

2z(j)∆
−1
j +

√

z(j)∆
−1
j − 1

≥ qj+1

4ε2
.

Therefore

qj+1 ≤ 4ε2
k−1
∏

l=j+1

θ2
l ≤ 4ε2

k−1
∏

l=j+1

2z(l)∆
−1
l +

√

z(l)∆
−1
l − 1

√

z(l)∆
−1
l − 1

.
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So by Lemma 4.2,

qk =
qk
qk−1

qk−1

qk−2
· · · qj+2

qj+1
qj+1 ≤ 4ε2.

The result now follows from Lemma 4.1.

The rate θj appearing in Theorem 4.4 is bounded below by 3. Therefore,

Theorem 4.4 implies that rate of linear convergence to a δ-root is at least 3, as

mentioned in the beginning of §4.2. We end this section with Algorithm 5, a formal

statement of the deterministic convex δ-root finding algorithm.

Algorithm 5 Deterministic convex δ-root finding.

Require: Initial values x1 = a, x2 = b, y1 < 0, y2 > 0
Set z−1 = z−2 = 0, z+

1 = z+
2 = c,∆2 = (y2 − y1)/b

Set i = 1, k = 2 (i is bracket left endpoint, k is iteration)
while u←k (δ) ≤ l→k (−δ) do

Set x∗ = x[i+1] − y[i+1]
∆−1

k

2
√

z+
[i+1]

∆−1
k
−1

5: Set y∗ = h∗(x∗)
if y∗ ≤ 0 then

Set i = i+ 1
end if

Set yk+1 = y∗, xk+1 = x∗
10: Set k = k + 1

Recompute the functions uk and lk
end while

return 1
2
(u←k (δ) + l→k (−δ))

4.3 Stochastic δ-root finding

We now turn to the stochastic setting, in which only interval estimates of h∗(x)

are available. In particular, we assume that we can generate confidence intervals

for h∗(x), i.e., random intervals (Y −, Y +) of a specified length which satisfy Y − ≤

h∗(x) ≤ Y + with a specified probability. Such an interval can be constructed
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through a central limit theorem procedure, or through the use of Chebyshev- or

Hoeffding-type inequalities as on pp. 21–22 of (Fishman 1996).

The bisection algorithm works in this case as well. Suppose we wish to report

a δ-root at confidence level 1− α, for some α > 0. At each x at which we sample

h∗, we generate a confidence interval of width δ for h∗(x) at a certain confidence

level 1− β. If this confidence interval contains 0, the sampled point is reported as

a δ-root. Otherwise, the algorithm proceeds just as in the deterministic case. If

every confidence interval actually contains the true value of h∗ at the appropriate

point, then the algorithm is guaranteed to return a δ-root. Since at most dlog2((b−

a)c/δ)− 1e evaluations are needed, Bonferroni’s inequality implies that the entire

procedure succeeds with probability at least 1− βdlog2((b− a)c/δ)− 1e. Thus we

take β = α/dlog2((b− a)c/δ)− 1e.

In the routine just described, it is sensible to take the confidence levels β to be

the same across iterations. The reason for this is that it is known in advance that

after each iteration, either the algorithm terminates or the bracket width is cut

exactly in half. In contrast, an extension of our convex δ-root finding procedure of

§4.2 allows us to select the confidence level for each iteration adaptively according

to a bound on the work remaining.

In the remainder of this section, we describe how the convex δ-root finding pro-

cedure must be modified to accommodate interval estimates and give a probabilistic

performance guarantee. We first analyze the algorithm under the assumption that

the interval estimates are guaranteed to contain the true function value. We then

relax this assumption and address the issue of how to choose the confidence levels

for each interval estimate.
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4.3.1 Envelope functions

In this section we describe how to compute the envelopes uk and lk in the stochastic

setting. The proofs in this section are given as sketches only; complete proofs

appear in the Appendix. Let H0 be defined as in §4.2. We define the state after

k points have been sampled to be the triple (xk,y
−
k ,y

+
k ), where xk = (x1, . . . , xk),

y−k = (y−1 , . . . , y
−
k ) and y+

k = (y+
1 , . . . , y

+
k ), and define

Hk = {h ∈ H0 : y−j ≤ h(xj) ≤ y+
j , j = 1, . . . , k}.

Hence, y−k and y+
k represent lower and upper bounds on the true function values

at the points in xk.

Let Hk(x) denote {h(x) : h ∈ Hk}. Each time an interval estimate at a new

point is generated, we wish to update the state in such a way that y−j = infHk(xj)

and y+
j = supHk(xj) for all j = 1, . . . , k. This may mean tightening some of the

interval estimates previously generated; in particular, the interval (y−j , y
+
j ) may be

different from the confidence interval estimate originally generated for h∗(xj) at

the j’th iteration. In order to distinguish between the original and the tightened

estimates, we use capital letters (e.g., (Y −j , Y
+
j )) for the former.

We now construct the envelope functions lk and uk in such a way that for all

x ∈ [a, b], we have

Hk(x) = [lk(x), uk(x)] (4.11)

We say that the state (xk,y
−
k ,y

+
k ) is j-upper consistent (respectively, j-lower

consistent) if there exists a function h ∈ Hk such that h(xj) = y+
j (respectively,

h(xj) = y−j ), for j = 1, . . . , k. If (xk,y
−
k ,y

+
k ) is j-upper consistent (j-lower consis-

tent) for all j = 1, . . . , k, we say it is upper consistent (lower consistent). If the

triple is both upper consistent and lower consistent, it is called consistent.
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Given any state triple (not necessarily consistent), set z−[1] = 0, z+
[k] = c, and

z−[j] = 0 ∨
y−[j] − y+

[j−1]

x[j] − x[j−1]
∨ · · · ∨

y−[j] − y+
[1]

x[j] − x[1]
, for j = 2, . . . , k, and

z+
[j] = c ∧

y+
[j+1] − y−[j]
x[j+1] − x[j]

∧ · · · ∧
y+

[k] − y−[j]
x[k] − x[j]

, for j = 1, . . . , k − 1.

(4.12)

Now define the envelopes lk and uk by their actions on x ∈ [x[j], x[j+1]] as follows:

lk(x) =
(

y−[j] +
(

x− x[j]

)

z−[j]

)

∨
(

y−[j+1] −
(

x[j+1] − x
)

z+
[j+1]

)

,

uk(x) = y+
[j] +

y+
[j+1] − y+

[j]

x[j+1] − x[j]

(

x− x[j]

)

,

for j = 1, . . . , k − 1.

Proposition 4.5 shows that if (xk,y
−
k ,y

+
k ) is appropriately consistent, then z−j

and z+
j provide tight bounds on the subgradient ∂h(xj) of every h ∈ Hk at xj ,

given by

∂h(x) = {z : h(x′) ≥ h(x) + z(x′ − x) for all x′ ∈ [a, b]},

Proposition 4.6 shows that if (xk,y
−
k ,y

+
k ) is consistent, then the envelopes provide

tight bounds on the functions in Hk.

prop 4.5. Let h ∈ Hk. For j = 2, . . . , k and z ∈ ∂h(x[j]), we have z ≥ z−[j].

For j = 1, . . . , k − 1 and z ∈ ∂h(x[j]), we have z ≤ z+
[j]. Furthermore, for all

j = 1, . . . , k, if (xk,y
−
k ,y

+
k ) is both upper consistent and j-lower consistent then

there exists a function φj ∈ Hk such that φj(x[j]) = y−[j] and z−[j], z
+
[j] ∈ ∂φj(x[j]).

Sketch. The first two statements follow from the definitions of z−[j] and z+
[j] as well

as from elementary facts about convex functions. The function φj is constructed

by splicing together the function uk and the two lines passing through the point

(x[j], y
−
[j]) with respective slopes z−[j] and z+

[j]. It is straightforward to do so such

that φj ∈ Hk.
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prop 4.6. If the state triple (xk,y
−
k ,y

+
k ) is consistent then (4.11) holds.

Sketch. By the convexity ofHk(x), we need only show that for h ∈ H and x ∈ [a, b]

we have lk(x) ≤ h(x) ≤ uk(x) and that lk(x), uk(x) ∈ Hk(x).

For the upper bound, if h ∈ Hk, then convexity of h implies h(x) ≤ uk(x)

for all x ∈ [a, b]. The fact that uk(x) ∈ Hk(x) for all such x is shown by taking

hi, hj , hk ∈ Hk which exhibit upper consistency at x[i], x[j], x[l], respectively, and

using the known properties of these functions to prove uk ∈ H0.

For the lower bound, again convexity of h implies h(x) ≥ lk(x) for all x ∈ [a, b].

To prove that the lower bound is actually achieved, we construct a function φ by

φ(x) =































φj(x) if a ≤ x ≤ x[j]

lk(x) if x[j] ≤ x ≤ x[j+1]

φj+1(x) if x[j+1] ≤ x ≤ b.

This function achieves the lower bound on [xj , xj+1].

In light of Proposition 4.6, we require a procedure which maintains the consis-

tency of the state as h∗ is evaluated at new points. We now present such a proce-

dure. For notational ease, let (xk,y
−
k ,y

+
k ) =: ((x̃j), (ỹ

−
j ), (ỹ+

j )) denote the values in

the state triple before the (k+ 1)th point is evaluated and let (xk+1,y
−
k+1,y

+
k+1) =:

((xj), (y
−
j ), (y+

j )) denote said values after the (k + 1)th point is evaluated and the

new state is made to be consistent. Let [Y −, Y +] be the interval estimate for

h∗(xk+1). Algorithm 6 updates the upper bounds y+
1 , . . . , y

+
k+1; Algorithm 7 up-

dates the lower bounds y−1 , . . . , y
−
k+1 and also produces z−1 , . . . , z

−
k+1, z

+
1 , . . . , z

+
k+1.

Algorithm 7 assumes that Algorithm 6 has already been run.
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In what follows, we assume that the newly sampled point appears in the i’th

position in the ordered list of the k + 1 distinct x-coordinates, where i = 2, . . . , k.

We omit discussion of the cases k = 0, 1, as these are straightforward.

To update the upper bounds, Algorithm 6 first checks to make sure Y + <

uk(xk+1), for otherwise Y + imparts no new information. Assuming this is true,

the algorithm then sweeps leftward from the rightmost point x[k+1] to x[i], ensuring

that the bounded growth and convexity conditions are satisfied. It then sweeps

rightward from x[1] to x[i−1] checking monotonicity and convexity in the same

manner.

Algorithm 6 Upper Bound Tightening.

Require: Consistent state after k iterations; interval estimate [Y −, Y +] for
h∗(xk+1); newly sampled point is xk+1 = x[i]

if uk(x[i]) ≤ Y + then

Set y+
j = uk(xj) for all j = 1, . . . , k + 1

else

Set y+
[i] = Y +

5: Set y+
[k+1] = ỹ+

[k] ∧
(

Y + +
(

x[k+1] − x[i]

)

c
)

for j = k to i+ 1 do

Set y+
[j] = ỹ+

[j−1] ∧
(

Y + +
(

x[j] − x[i]

) y+
[j+1]

−Y +

x[j+1]−x[i]

)

end for

Set y+
[1] = ỹ+

[1] ∧ Y +

10: for j = 2 to i− 1 do

Set y+
[j] = ỹ[j] ∧

(

Y + −
(

x[i] − x[j]

) Y +−y+
[j−1]

x[i]−x[j−1]

)

end for

end if

Algorithm 7 proceeds outward from x[i], alternating between updating the sub-

gradient bounds and the function value lower bound at each point visited.

Proposition 4.7 says that Algorithms 6 and 7 maintain consistency of the state.

More precisely, if the state is consistent after k iterations, then there are only two
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possibilities after the (k + 1)th point is sampled:

1. the state remains consistent, or

2. the set Hk+1 is empty.

Since we know h∗ ∈ H, possibility 2 can occur only if one of the interval estimates

fails to contain the true function value at some stage.

Algorithm 7 Lower Bound Tightening.

Require: Algorithm 6 has been run
Set y−[i] = Y − ∨ lk(x[i])

Set z−[i] and z+
[i] according to (4.12)

for j = i+ 1 to k + 1 do

Set y−[j] = ỹ−[j−1] ∨
(

y−[j−1] +
(

x[j] − x[j−1]

)

z−[j−1]

)

5: Set z−[j] and z+
[j] according to (4.12)

end for

for j = i− 1 to 1 do

Set y−[j] = ỹ−[j] ∨
(

y−[j+1] −
(

x[j+1] − x[j]

)

z−[j+1]

)

Set z−[j] and z+
[j] according to (4.12)

10: end for

prop 4.7. Suppose that after k points have been evaluated, the state

(xk,y
−
k ,y

+
k ) is consistent. (If k = 1, consistency merely requires that Hk is not

empty.) Let Hk+1 be the new triple (xk+1,y
−
k+1,y

+
k+1) produced by running first

Algorithm 6, then Algorithm 7, on (xk,y
−
k ,y

+
k ) and the new interval estimate

[Y −, Y +] of h∗(xk+1). Then

Hk+1 = Hk ∩ {h : Y − ≤ h(xk+1) ≤ Y +}.

Moreover, either (xk+1,y
−
k+1,y

+
k+1) is consistent or Hk+1 is empty.

Sketch. The inclusion Hk+1 ⊆ Hk ∩ {h : Y − ≤ h(xk+1) ≤ Y +} is immediate. Let

h ∈ Hk satisfy Y − ≤ h(xk+1) ≤ Y +. Then it can be shown by induction that after
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running Algorithm 6, y−j ≤ h(x[j]) ≤ y+
j for all j = 1, . . . , k+1. Upper consistency

follows from uk+1 ∈ Hk+1, which is easily shown. Finally, j-lower consistency is

proved inductively on j by constructing a function ψj achieving the appropriate

lower bounds.

Figure 4.8 illustrates the process described in this section. Here, k = 3. Panel

(a) depicts the state at the beginning of the (k + 1)th iteration. Panel (b) depicts

the new interval estimate. Panels (c) and (d) respectively depict the updating of

the upper and lower envelopes.

x~[1] = a x~[2] x~[3] = b

uk(x)
lk(x)
old interval estimates

(a)

x[1] = a x[2] x[3] x[4] = b

uk(x)
lk(x)
old interval estimates
new interval estimate

(b)

uk(x)
lk(x)
interval estimates

x[1] = a x[2] x[3] x[4] = b

(c)

uk(x)
lk(x)
interval estimates

x[1] = a x[2] x[3] x[4] = b

(d)

Figure 4.8: Algorithms 6 and 7.
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4.3.2 Reductions in potential

The development in this section mirrors that in §4.2.2. Indeed, many of the defi-

nitions and results in that section carry over to the case of interval estimates with

minimal changes. The key assumption we make is that all interval estimates have

width δ or less. As mentioned in the introduction to §4.3, after each function value

is estimated the algorithm has enough information to terminate or to determine

whether the root lies to the left or the right of the just-evaluated point. Through-

out the remainder of this section, we assume Bk = [x[i], x[i+1]) and that an interval

estimate of length less than or equal to δ has been generated for h∗(x[i+1]). (This

last assumption is critical for the next two lemmas.)

We define the potential in the current setting by

qk =
(

y+
[i+1]

)2 (

z+
[i+1]∆

−1
k − 1

)

, (4.13)

where

∆k =
y+

[i+1] − y+
[i]

x[i+1] − x[i]
.

Compare with (4.2). Lemmas 4.8 and 4.9 are analogous to Lemmas 4.1 and 4.2.

The proofs are virtually identical to those in §4.2, and so we omit them here.

Lemma 4.8. Let x̂ = x[i+1] − y+
[i+1]/z

+
[i+1]. Then

−δ ≤ lk (x̂) ≤ uk (x̂) ≤ 1

2

√
qk.

In particular, if qk ≤ 4δ2, then x̂ is a δ-root.

Lemma 4.9. If the (k + 1)th sampling point is given by (4.4), then

qk+1

qk
≤
(

y+
[i+1] + δ

y[i+1]

)2
√

z+
[i+1]∆

−1
k − 1

2z+
[i+1]∆

−1
k +

√

z+
[i+1]∆

−1
k − 1

. (4.14)
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The way in which Lemmas 4.1 and 4.8 differ is not significant, since in both

cases a potential of less than 4δ2 indicates that the algorithm may terminate. On

the other hand, the difference between Lemmas 4.2 and 4.9 matters. The present

lemma contains a “slippage” factor of ((y+
[i+1] + δ)/y+

[i+1])
2. The good news is

that when the potential is great, this factor is unimportant. It only significantly

slows the guaranteed reduction in potential during the last three iterations of the

algorithm.

We now derive an upper bound on the potential reduction given by (4.14). The

key idea is to reparameterize the right-hand side of (4.14) in a way which allows

us to maximize the bound. Let us take

ρj :=
√

z+
[i+1]∆

−1
k and wk :=

√
qk

δ
=
y+

[i+1]

δ

√

ρ2
k − 1.

Take x̂ as in Lemma 4.8. If the algorithm has not yet terminated after k steps,

then we must have

δ ≤ u(x̂) = y+
[i+1] − (x[i+1] − x̂)∆k = y+

[i+1]

ρ2
k − 1

ρ2
k

.

Hence, wk ≥ ρ2
k/
√

ρ2
k − 1. This implies ρk ∈ R(wk), where

R(w) =

[

1

2

(

√

w(w + 2)−
√

w(w − 2)
)

,
1

2

(

√

w(w + 2) +
√

w(w − 2)
)

]

.

Here, we have used the quadratic formula and the fact that:

1

2
(
√
w + 2 +

√
w − 2)2 = w +

√
w2 − 4.

So the next-step potential reduction on the right-hand side of (4.14) is bounded

above by σ(wk), where

σ(w) := sup
ρ∈R(w)

(

1 +

√

ρ2 − 1

w

)2
ρ− 1

2ρ2 + ρ− 1
.
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Figure 4.9 contains plots of σ(w) and of w 7→ w2σ(w), both of which are easily

computed numerically. Panel (a) demonstrates that σ(w) is both decreasing in

w and fairly close to 1/9 so long as w is sufficiently great – at least about 40.

Panel (b) suggess that w2σ(w) is monotone in w. This is an important point, for

it allows us to conclude that a smaller value of the potential qk always indicates

less remaining work.
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Figure 4.9: Plots of σ(w) and w2σ(w).

We are now in a position to derive a bound on the number of remaining itera-

tions given potential qk. Let v0 = 2, and for s ≥ 1 define vs by

v2
sσ(vs) = v2

s−1. (4.15)

Theorem 4.10 shows how the sequence (vs) can be used to determine such a bound.

Theorem 4.10. If w2
j ≤ v2

s after j iterations then the algorithm terminates in at

most s additional iterations.

Proof. Follows from Lemma 4.8, Lemma 4.9 and the monotonicity of the map

w 7→ w2σ(w).
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By including the value of the slippage factor, we can tighten this somewhat.

Corollary 4.11. If after j iterations,

w2
j

(

y(j) + δ

y(j)

)2
ρj − 1

2ρ2
j + ρj − 1

≤ v2
s ,

then the algorithm terminates in at most s+ 1 additional iterations.

Proof. Immediate from the theorem and Lemma 4.9.

The first few values of the sequence (vs : s ≥ 0) are presented in Table 4.1. For

Table 4.1: The sequence (vs : s ≥ 0).

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

2 3.3769 7.1203 19.448 56.557 167.92 502.02 1504.3 4511.3 13532

s > 3, the ratio vs/vs−1 is fairly close to 3, the guaranteed linear convergence rate

in the deterministic case. For s > 9, this ratio is virtually indistinguishable from

3, and may be treated as equal to 3 for the purposes of computing a bound on the

number of remaining iterations.

4.3.3 Selecting the confidence levels

We now relax the assumption that every interval estimate is guaranteed to enclose

the true function value. Indeed, in the context of stochastic root finding, the

best that one can hope for is that a given interval covers the true function value

with high probability. By carefully choosing the confidence levels of such intervals,

we can construct a probabilistic guarantee for our root-finding procedure. More

precisely, we can promise that for a given α ∈ (0, 1), the probability that the
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(random) point our algorithm returns is indeed a δ-root is at least 1 − α. This

statement is similar in principle to the probability-of-correct-selection guarantees

that come with ranking and selection procedures; see (Kim and Nelson 2006).

The key assumptions we make are that

1. conditional on the (random) abscissa xj at which an interval is generated,

the interval [Y −j , Y
+
j ] is independent of all previous steps in the algorithm,

and

2. conditional on xj , the interval [Y −j , Y
+
j ] contains the true function value

h∗(xj) with probability at least 1− βj, where we can select βj .

The bound derived in the previous section on the number of remaining iterations

guides our selection of βj .

Recall that the initial information available about the unknown non-decreasing

convex function h∗ consists of the domain [a, b] of h∗ and an upper bound c on

the subgradient of h∗ on (a, b). In order for the analysis of the previous section

to apply, we must have the root bracketed at each step; in particular, in order

for Lemmas 4.8 and 4.9 to hold, the interval estimate at the right endpoint of the

bracket must be to within δ. Thus, the algorithm begins by generating a length-δ

interval estimate of h∗(b). It is not necessary to have the left endpoint estimated

to that degree of accuracy. Indeed, we may take the initial interval estimate of

the left endpoint to be the a priori bounds (Y −1 , Y
+
1 ) = (−(b − a)c, 0). Observe

that we may consider this estimate to be at confidence level 1, since there is no

randomness.

Although we do not know what the resulting potential q2 will be once h∗(b) is
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estimated, we do know that

q2 =
(

y+
[2]

)2
(

c
b− a

y+
[2] − y+

[2]

− 1

)

≤ (b− a)cy+
[2] −

(

y+
[2]

)2

≤ (b− a)2c2

4
=: q∗2.

Let k∗(q) be the bound on the number of additional random intervals required

before we can halt the algorithm, as provided by Theorem 4.10, when the potential

is q. Let Bj be the event that at least j intervals are generated (counting the first

two) in the algorithm, and let Aj be the union of Bc
j and the subset of Bj in which

the jth interval contains the true function value (j ≥ 1). In words, Aj represents

the event that either fewer than j intervals are required, or j intervals or more

are required, and the jth interval contains the true function value. Define the

(trivial) values Y −j = Y +
j = 0 on the event Bc

j , i.e., when the algorithm uses fewer

than j intervals. Let Fj be the sigma field generated by Y −1 , Y
+
1 , . . . , Y

−
j , Y

+
j , for

j = 1, 2, . . ., and notice that Bj is a member of Fj−1 for all j ≥ 1, with F0 being

the trivial sigma field.

Now, P (Aj) = EP (Aj|Fj−1). On the event Bc
j (so that j− 1 or fewer intervals

are required), P (Aj|Fj−1) = 1. Furthermore, on the event Bj, this probability

is equal to 1 − βj (it is here that we use the independence assumption). Hence,

P (Ac
j|Fj−1) ≤ βjI(Bj), and so P (Ac

j) ≤ βj . Set K0 = 1 + k∗(q∗2), which is a bound

on the total number of intervals the algorithm must generate, and set β1 = 0 and

βj =
α

K0

for all j =≥ 1. Then the probability that the reported root is indeed a δ-root is
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bounded below by

P

(

K0
⋂

j=1

Aj

)

≥ 1−
K0
∑

j=1

P (Ac
j)

≥ 1−
K0
∑

j=1

α

K0

= 1− α,

where we have used Bonferroni’s inequality in the first step.

This somewhat brute-force approach to designing the overall root-finding pro-

cedure ignores the information contained in the intervals that are successively

obtained. In particular, it requires that each interval have a uniformly high prob-

ability that it covers the true value, and since the intervals need to have width at

most δ, large simulation run-lengths may be necessary at each x value. We now in-

troduce a concept we call adaptive α-spending that still ensures that the algorithm

has an α-guarantee, but will, in many cases, reduce the simulation run-lengths

required to obtain the intervals. Algorithm 8 implements this idea.

The key idea is that, at each step of the algorithm, we compute a new bound

on the number of steps that remain, and adjust the coverage probabilities of the

remaining intervals accordingly. In other words, the sequence (βj) of allowed prob-

abilities of error may (and probably will) increase with j.

To see why Algorithm 8 has a guaranteed probability of success of at least 1−α

and is more efficient than the brute-force algorithm, redefine the events Aj and

Bj to apply to Algorithm 8 rather than the “brute force” one. As above, we have

that for j ≥ 1, P (Ac
j|Fj−1) ≤ βjI(Bj). Let T be the value of j when the algorithm

terminates, so that T is the number of intervals generated, including the initial

two that are given. Notice that the sequence K0, K1, . . . , KT is decreasing, so a
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Algorithm 8 Stochastic δ-root finding via adaptive α-spending.

Require: Constants δ, c > 0, α ∈ (0, 1), and a < b
Set K0 = 1 + k∗(q∗2), K1 = K0 − 1, β1 = 0, β2 = α/K0

Set x2 = (a, b), y−2 = (−(b− a)c, 0), y+
2 = (0, (b− a)c)

Compute estimate [Y −2 , Y
+
2 ] for h∗(x2) at confidence level 1− β2

Update state with the estimate (Y −2 , Y
+
2 ) according to Algorithms 6 and 7

5: Set j = 2, Kj = k∗(qj)
while l→j (−δ) ≥ u←j (δ) do

Set j = j + 1
Set βj =

α−(β1+···+βj−1)

Kj−1

Select new point to sample according to (4.4)
10: Generate interval estimate (Y −j , Y

+
j ) at confidence level 1− βj

Update state according to Algorithms 6 and 7
Compute qj and Kj = k∗(qj) from state

end while

Return midpoint of all known δ-roots

straightforward induction argument shows that for j = 1, . . . , T , β1 + · · ·+βj ≤ α,

and βj ≥ α/K0. The latter inequality shows that the new version of the algorithm

is more efficient, as the individual confidence levels are no greater here than in

the brute force version. Moreover, we then have that the probability that the

algorithm returns a true δ-root is at least

P

(

K0
⋂

j=1

Aj

)

≥ 1−
K0
∑

j=1

P (Ac
j)

= 1−E
K0
∑

j=1

P (Ac
j|Fj−1)

≥ 1−E
K0
∑

j=1

βjI(Bj)

= 1−E
T
∑

j=1

βj

≥ 1− α.
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4.3.4 Intermediate values of δ

The procedure we have described has the property that every confidence interval

computed is of width δ. Typically, generating such a confidence interval requires an

amount of work proportional to 1/δ2. Since points sampled early in the algorithm

may be far from the root, we may be able to save computational effort by initially

solving the problem for a greater value of δ than the one we actually want.

We now discuss a simple example of how this idea might be implemented while

maintaining the statistical guarantee of the original algorithm. We do not claim

that the specifics provided here are in any way optimal. The approach we suggest

is to solve the root-finding problem in its entirety for one or more intermediate

values of the tolerance parameter δ. Here, we give details for a version which uses

a single intermediate value.

Even before any function values are sampled, it is known that −(1/2)(b−a)c ≤

h∗((1/2)(a + b)) ≤ (1/2)(b − a)c, a fact which follows from the definition of H0.

Hence, the initial problem is already solved for a tolerance parameter value of

(1/2)(b − a)c. Choose some δ̃ satisfying δ < δ̃ < (1/2)(b − a)c. If we were to

generate an interval estimate of h∗(b) with width δ̃ and having upper endpoint

Y +, the resulting value of the potential would be bounded above by (Y +)2(c(b −

a)/Y +− 1) ≤ (1/4)c2(b− a)2. Plug this bound and the value δ̃ into Theorem 4.10

to compute k̃max, the maximum number of additional iterations required to find a

δ̃-root. Now compute the interval estimate of h∗(b) with width δ̃ and confidence

level 1−α/2(k̃max + 1). Allocate error probability α/2× (1− 1/(k̃max + 1)) to this

subproblem and solve using Algorithm 8.

Once the subproblem is solved, after, say, k̃ steps, there are two cases to consider
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(assuming, of course, we did not happen to find a δ-root in solving the subproblem).

The simpler case is that the interval estimate at the last point sampled (call it x∗)

does not contain 0. In this case, the true root is bracketed between two adjacent

points in Xk̃. In fact, it is bracketed in a smaller interval, [u←
k̃

(δ), l→
k̃

(−δ)]. In a

manner similar to how we dealt with the initial subproblem, we may compute an

upper bound on the value of the potential after sampling h∗ at the new bracket

right endpoint with interval width δ, use Theorem 4.10 to determine the maximum

number of iterations it will take to finish solving the problem, and spend the

remaining error probability α/2 accordingly.

The more difficult case is when the last point sampled is a δ̃-root. In this

case, we no longer have the true root bracketed. Hence, we must resample at x∗

with interval width δ to bracket the root. This involves computing the maximum

possible value of the potential after resampling at x∗ and possibly after resampling

at the new bracket right endpoint and allocating error probability in the usual way.

The procedure described above may, of course, be extended to include multiple

intermediate tolerance parameters. As a heuristic, we suggest that the sequence

of δ’s decline geometrically to the target δ at rate 3.

We conclude this section with a worked example of the intermediate δ procedure

in practice. We assume that the error with which h∗ is sampled is standard normal.

Suppose that the function h∗ is given by

h∗(x) = (1/200)x2 − (8/3).

Take a = 0, b = 100, c = 1, α = 0.05, δ = 0.1. The potential after sampling at b

is bounded above by (b − a)2c2/4 = 2, 500. Take δ̃ = 3δ = 0.3. Using Theorem

4.10, we determine that a δ̃-root will be found after at most 5 iterations of the

algorithm. Thus, we begin with a confidence interval for h∗(100) having width 0.3
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and confidence level 1− α/(2× (1 + 5)) ≈ .99583.

We now invoke Algorithm 8, from which we request a δ̃ root at confidence level

1− (α/2− α/12) ≈ .97917. Table 4.2 gives the sequence of points evaluated, the

resulting interval estimates, the alpha spent at each iteration, the potential after

each iteration, and the number of simulation trials used for the confidence interval

estimate. Iteration 0 refers to the initial interval estimate of h∗(100). Figure

4.10 plots the envelopes at all iterations of the subproblem. Table 4.3 contains a

summary of the state after the subproblem is solved.

Table 4.2: Subproblem to find δ̃-root, where δ̃ = 0.3.

iter. eval. pt. int. est. alpha spent potential # trials

0 100 [41.48, 41.78] .00417 2432.5 368
1 52.25 [5.17, 5.47] .00417 189.28 368
2 40.40 [-0.37, -0.07] .00417 19.152 368
3 44.75 [1.61, 1.91] .00417 0.4837 368

Table 4.3: State after solving δ̃-root subproblem.

j = 1 j = 2 j = 3 j = 4 j = 5
x[j] 0.0000 40.398 44.745 52.245 100.0000
y−[j] -20.284 -0.36690 1.6105 5.1741 41.484

y+
[j] -0.06690 -0.06690 1.9105 5.4741 41.784

z−[j] 0.0000 0.0000 0.38586 0.44238 0.75406

z+
[j] 0.49302 0.49302 0.51514 0.76662 1.0000

Once the δ̃-root subproblem is solved, we proceed to solve the problem for

the original tolerance parameter δ. Since the interval estimate at the last point

sampled did not contain 0, we resample next at the point x∗ = l→3 (−δ) = 41.42.

In order to figure out at what confidence level this interval should be estimated,
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Figure 4.10: Subproblem to find δ̃-root, where δ̃ = 0.3.

we must first bound the potential of the resulting state. Such a bound is given by

sup
δ≤y≤u(x∗)

y2

([

z+
[3] ∧

y+
[3] − (y − δ)
x[3] − x∗

]

× x∗ − x[2]

y − y+
[2]

− 1

)

=

[

sup
.1≤y≤.3

y2

(

0.52894

y + 0.06690
− 1

)]

∨
[

sup
.3≤y≤.40015

y2

(

0.30923× 2.0105− y
y + 0.06690

− 1

)]

= .252902

(

0.52894

0.31980
− 1

)

= 0.04183.

Hence, the value w of Theorem 4.10 is bounded above by
√
.04183/δ = 2.0452,

which implies that at most one additional iteration is needed after computing an

interval estimate of h∗(x∗). Thus, we use confidence level 1 − α/4 for the next

interval estimate. It turns out that after simulating at x∗, condition (4.1) is met

and the algorithm terminates. The final interval estimate and the plot of the state

upon termination are, respectively, in Table 4.4 and Figure 4.11.
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Table 4.4: Subproblem to find δ-root.

iter. eval. pt. int. est. alpha spent potential # trials

0 41.42 [0.2033, 0.3033] .0125 .0323 2496
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Figure 4.11: Subproblem to find δ-root.

Finally, we note that the two-phase procedure used a total of 5 iterations and

3,968 simulation trials. Simply using Algorithm 8 at level δ, in contrast, required

5 iterations and a total of 13,676 simulation trials. It is likely that in practice

the version of the procedure which considers a decreasing sequence of tolerance

parameters will typically outperform the fixed-δ version as in this example.
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Appendix A

Additional Proofs

We provide proofs of Propositions 4.5, 4.6, and 4.7. Collectively, these proposi-

tions demonstrate that at each iteration of the root-finding algorithm the envelope

functions, as defined in §3.1 of Chapter 2, precisely define the set of functions

consistent with the simulated confidence intervals.

Lemma 1. The state (xk,y
−
k ,y

+
k ) is upper consistent if and only if uk ∈ Hk.

Proof. The fact that uk ∈ Hk implies upper consistency is immediate. Con-

versely, suppose Hk is upper consistent. Accordingly, for 1 ≤ i < j ≤ k, let

hi, hj ∈ Hk satistfy hi(x[i]) = y+
[i] and hi(x[j]) = y+

[j]. Then

uk(x[i]) = y+
[i] = hi(x[i]) ≤ hi(x[j]) ≤ y+

[j] = uk(x[j])

and

uk(x[j]) = y+
[j]

= hj(x[j])

≤ hj(x[i]) + (x[j] − x[i])c

≤ y+
[i] + (x[j] − x[i])c

= uk(x[i]) + (x[j] − x[i])c.

Since uk is the linear interpolant of (x[1], y
+
[1]), . . . , (x[k], y

+
[k]), this proves that uk is

nondecreasing and satisfies the bounded slope condition. Finally, if 1 ≤ i < j <
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l ≤ k, then

(x[l] − x[i])uk(x[j]) = (x[l] − x[i])hj(x[j])

≤ (x[j] − x[i])hj(x[l]) + (x[l] − x[j])hj(x[i])

≤ (x[j] − x[i])y
+
[l] + (x[l] − x[j])y

+
[i]

= (x[j] − x[i])uk(x[l]) + (x[l] − x[j])uk(x[i]),

which proves that uk is convex. Hence, uk ∈ Hk.

Proof of Proposition 4.5

Step One. Let j = 2, . . . , k, h ∈ Hk, and z ∈ ∂h(xj) be arbitrary. Since h is

non-decreasing, z ≥ 0. Furthermore, for any l = 1, . . . , j − 1,

z ≥ h(x[j])− h(x[l])

x[j] − x[l]

≥
y−[j] − y+

[l]

x[j] − x[l]

.

Therefore,

z ≥ 0 ∨ y[j] − y[j−1]

x[j] − x[j−1]

∨ · · · ∨
y−[j] − y+

[1]

x[j] − x[1]

= z−[j].

The statement z ≤ z+
[j] for j = 1, . . . , k − 1 is proved similarly.

Step Two. Now take j = 1, . . . , k and suppose the state is both upper

consistent and j-lower consistent. Let q be the least element of {1, . . . , j− 1} such

that z−[j] = (y−[j]−y+
[q])/(x[j]−x[q]), or q = 1 if there is no such element (which could

be the case if z−[j] = 0). Let r be the greatest element of {j + 1, . . . , k} such that

z+
[j] = (y+

[r] − y−[j])/(x[r] − x[j]), or r = k if there is no such r. Now define φj by

φj(x) =































y−[j](x[j] − x)z−[j] if x[q] ≤ x ≤ x[j],

y+
[j](x[j] − x)z−[j] if x[j] ≤ x ≤ x[r],

uk(x) otherwise;

see Figure A.1. Now observe that if q > 0, then
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Figure A.1: The function φj.
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z−[j] =
y−[j] − y+

[q]

x[j] − x[q]

>
y−[j] − y+

[q−1]

x[j] − x[q−1]

.

Rearranging this gives

(y−[j] − y+
[q])(x[j] − x[q−1] + x[q] − x[q]) > (y−[j] − y+

[q−1] + y+
[q] − y+

[q])(x[j] − x[q]).

If we subtract (y−[j] − y+
[q])(x[j] − x[q]) from both sides, we get

(y−[j] − y+
[q])(x[q] − x[q−1]) > (y+

[q] − y+
[q−1])(x[j] − x[q]).

or,

z−[j] =
y−[j] − y+

[q]

x[j] − x[q]

>
y+

[q] − y+
[q−1]

x[q] − x[q−1]

=
φj(x[q])− φj(x[q−1])

x[q] − x[q−1]

. (A.1)

Similarly, one can show that for r < k,

φj(x[r+1])− φj(x[r])

x[r+1] − x[r]

> z+
[j]. (A.2)

In words, these inequalities show that the slope of φj(x) increases as x passes over

the boundaries of the separate regions on which φj is defined.
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It is easy to check that φj is piecewise linear and continuous. Continuity, along

with z−[j] ≥ 0, the conclusion of Step One, and Lemma 1, imply that φj is non-

decreasing. Observe that by invoking Lemma 1 we have used upper consistency.

Similarly, we conclude that φj satisfies the bounded slope condition. Moreover,

the aforementioned facts, combined with (A.1) and (A.2), imply that φj is convex.

So we have established φj ∈ H0.

In order to prove that in fact φj ∈ Hk, we must show

y−[l] ≤ φj

(

x[l]

)

≤ y+
[l], (A.3)

for l = 1, . . . , k. Evidently, (A.3) holds for 1 ≤ l < q or r < l ≤ k, since

φj

(

x[l]

)

= uk

(

x[l]

)

= y+
[l] for such l. And of course (A.3) holds for l = j. So

suppose q ≤ l < j. Then

φj

(

x[l]

)

= y−[j] −
(

x[j] − x[l]

)

z−[j] ≤ y−[j] −
(

x[j] − x[l]

)
y−[j] − y+

[l]

x[j] − x[l]

= y+
[l].

This is one of the two inequalities in (A.3). Now, by j-lower consistency we know

there is some function hj ∈ Hk having hj

(

x[j]

)

= y−[j]. If z−[j] = 0, then

y−[l] ≤ hj

(

x[l]

)

≤ hj

(

x[j]

)

= y−[j] = φj

(

x[l]

)

.

On the other hand, if z−[j] > 0, then

y−[l] ≤ hj

(

x[l]

)

≤ x[j] − x[l]

x[j] − x[q]

hj

(

x[q]

)

+
x[l] − x[q]

x[j] − x[q]

hj

(

x[j]

)

≤ x[j] − x[l]

x[j] − x[q]

y+
[q] +

x[l] − x[q]

x[j] − x[q]

hj

(

x[j]

)

=
x[j] − x[l]

x[j] − x[q]

y+
[q] +

x[l] − x[q]

x[j] − x[q]

y−[j]

= y−[j] −
y−[j] − y+

[q]

x[j] − x[q]

(

x[j] − x[l]

)

= φj

(

x[l]

)

,
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proving that (A.3) holds. We omit the similar argument establishing (A.3) for

j < l ≤ r, and conclude φj ∈ Hk.

Finally, we simply observe that z−[j], z
+
k [j] ∈ ∂φj

(

x[j]

)

follows from the definition

of φj and the convexity of φj.

Proof of Proposition 4.6

Clearly the equality Hk(x) = [lk(x), uk(x)] implies consistency. So suppose that

(xk,y
−
k ,y

+
k ) is consistent. Let h ∈ Hk and x ∈ [x[j], x[j+1]] for some j = 1, . . . , k−1.

By convexity of h,

h(x) ≤ x− x[j]

x[j+1] − x[j]

h(x[j+1]) +
x[j+1] − x
x[j+1] − x[j]

h(x[j])

≤ x− x[j]

x[j+1] − x[j]

y+
[j+1] +

x[j+1] − x
x[j+1] − x[j]

y+
[j]

= uk(x).

Now, if z ∈ ∂h(x[j]), then Proposition 4.5 implies

h(x) ≥ h(x[j]) + (x− x[j])z ≥ y−[j] + (x− x[j])z
−
[j].

Similarly,

h(x) ≥ y−[j+1] − (x[j+1] − x)z+
[j],

proving h(x) ≥ lk(x).

Now we show that the bounds are tight, i.e., lk(x), uk(x) ∈ Hk(x). This, along

with convexity of Hk, suffices to prove the result.

By Lemma 1, uk(x) ∈ Hk(x). To finish the proof, we will exhibit a function in
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Hk that agrees with lk on the interval [x[j], x[j+1]]. Let

φ(x) =































φj(x) if x < x[j],

lk(x) if x[j] ≤ x ≤ x[j+1],

φj+1(x) if x > x[j+1],

where φj, φj+1 are as in Proposition 4.5; see Figure A.2.

Figure A.2: The function φ.
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Clearly φ is increasing, piecewise linear, continuous, and satisfies y−[l] ≤ φ(x[l]) ≤

y+
[l] for all l = 0, . . . , k. It is also clear that φ is convex on the intervals [0, x[j]],

[x[j], x[j+1]], and [x[j+1], x[k]]. Therefore, we need only check that the slope increases

across the boundaries of the regions on which φ is defined.

But this fact follows immediately from the definitions: if j > 0, then

φ(x[j])− φ(x[j−1])

x[j] − x[j−1]

=
φj(x[j])− φj(x[j−1])

x[j] − x[j−1]

= z−k [j],

which is less than or equal to the slope of lk anywhere on [x[j], x[j+1]]. Likewise, if
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j < k, then

φ(x[j+1])− φ(x[j])

x[j+1] − x[j]

=
φj+1(x[j+1])− φj+1(x[j])

x[j+1] − x[j]

= z+
k [j + 1],

which is greater than or equal to the slope of lk anywhere on that same interval.

Therefore, we conclude that φ is convex, and hence φ ∈ Hk.

Proof of Proposition 4.7

We prove

Hk+1 = Hk ∩ {h : Y − ≤ h(xk+1) ≤ Y +}. (A.4)

in steps 1–3; we prove that Hk+1 is consistent (or empty) in steps 4–7.

Step One. Let us assume (inductively) that (xk,y
−
k ,y

+
k ) is consistent. It is

immediately seen from Algorithms 3.1 and 3.2 of Chapter 2 that lk(x[j]) ≤ y−[j] and

y+
[j] ≤ uk(x[j]) for all j = 1, . . . , k + 1. Therefore, Hk+1 ⊂ Hk. It is also immediate

that Y − ≤ y−k+1 and y+
k+1 ≤ Y +

k , and so we have

Hk+1 ⊂ Hk ∩ {h : Y − ≤ h(xk+1) ≤ Y +}.

For the rest of the proof, we assume that Hk ∩ {h : Y − ≤ h(xk+1) ≤ Y +} is

nonempty (for otherwise the remaining claims are true vacuuously).

Step Two. Suppose h ∈ Hk and Y − ≤ h(xk+1) ≤ Y +. In this step, we

prove that h(x[j]) ≤ y+
[j] for j = 1, . . . , k + 1. For the remainder of the proof, let

i be the order statistic of the point inserted at the (k + 1)th iteration, so that

(xk+1, y
−
k+1, y

+
k+1) = (x[i], y

−
[i], y

+
[i]).

Consider the main conditional expression in Algorithm 3.1 of Chapter 2. If

Y + ≥ uk(xk+1), then we have

y+
[j] = uk(x[j]) ≥ h(x[j])
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for all j = 1, . . . , k + 1, and upper consistency of (xk+1,y
−
k+1,y

+
k+1) follows from

upper consistency of (xk,y
−
k ,y

+
k ).

So suppose instead that Y + < uk(xk+1). Then

y+
[i] = Y + ≥ h(x[i]) (A.5)

by assumption. We now proceed to show by (backward) induction that

h(x[j]) ≤ y+
[j] (A.6)

for all j = k + 1, . . . , i+ 1. For the base case (j = k + 1), we have

h(x[k+1]) ≤ h(x[i]) + (x[k+1] − x[i])c (since h ∈ H0)

≤ Y + + (x[k+1] − x[i])c.

Furthermore, h(x[k+1]) ≤ uk(x[k+1]) = ỹ+
[k]. Therefore, by line 5 of Algorithm 3.1 of

Chapter 2, we conclude that (A.6) holds in the base case. Now, for j = k, . . . , i+1,

we have h(x[j]) ≤ uk(x[j]) = ỹ+
[j−1] and

h(x[j]) ≤
x[j+1] − x[j]

x[j+1] − x[i]

h(x[i]) +
x[j] − x[i]

x[j+1] − x[i]

h(x[j+1]) (by convexity)

≤ x[j+1] − x[j]

x[j+1] − x[i]

Y + +
x[j] − x[i]

x[j+1] − x[i]

y+
[j+1] (by (A.5) and induction)

= Y + +
y+

[j+1] − Y +

x[j+1] − x[i]

(x[j] − x[i]).

Therefore, line 7 of Algorithm 3.1 of Chapter 2 implies (A.6) holds for j = i, . . . , k+

1. We omit the similar proof that (A.6) holds for j = 1, . . . , i− 1.

Step Three. In this step, we show by induction that

h(x[j]) ≥ y−[j]. (A.7)

for j = i, . . . , k+1, omitting the similar proof that (A.7) holds for j = 1, . . . , i−1.
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We have h(x[i]) ≥ Y − by assumption and h(x[i]) ≥ lk(x[i]) by Proposition 4.5.

So by Algorithm 3.2 of Chapter 2, line 1, (A.7) holds for j = i.

Now suppose (inductively) that h(x[j−1]) ≥ y−[j−1] for j − 1 ≥ i. By line 4 of

Algorithm 3.2 of Chapter 2, we know that either y−[j] = ỹ−[j−1] or

y−[j] = y−[j−1] + (x[j] − x[j−1])z
−
[j−1]. (A.8)

In the former case, the fact that h ∈ Hk implies the desired inequality. Therefore,

let us assume (A.8) holds. Suppose z−[j−1] = 0. Then the fact that h is nondecreas-

ing and the inductive hypothesis imply (A.7). So suppose instead that z−[j−1] > 0.

In this case, by construction there must be some l < j − 1 such that

z−[j−1] =
y−[j−1] − y+

[l]

x[j−1] − x[l]

≤ h(x[j−1])− h(x[l])

x[j−1] − x[l]

. (A.9)

Here, the inequality follows from the induction hypothesis and from Step Two of

this proof. Combining (A.8) and (A.9) and invoking the convexity of h yields

y−[j] ≤ y−[j−1] +
h(x[j−1])− h(x[l])

x[j−1] − x[l]

(x[j] − x[j−1])

≤ y−[j−1] +
h(x[j])− h(x[j−1])

x[j] − x[j−1]

(x[j] − x[j−1])

= h(x[j]).

Therefore, (A.7) holds. We conclude that h ∈ Hk+1, proving (A.4).

Step Four. We prove that the new state (xk+1,y
−
k+1,y

+
k+1) is upper consistent.

If Y + ≥ uk(xk+1), then upper consistency of (xk+1,y
−
k+1,y

+
k+1) follows from

(A.4) and upper consistency of (xk,y
−
k ,y

+
k ), since in this case we have uk = uk+1 ∈

Hk+1. Suppose instead that Y + < uk(xk+1). We will show that uk+1 ∈ Hk+1 in

this case as well. By construction, y+
[j] = uk+1(x[j]) ≥ y−[j] for all j = 1, . . . , k+1. So
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we need only prove uk+1 ∈ H0, i.e., that uk+1 is increasing and convex and satisfies

the bounded growth condition. Since uk+1 is piecewise linear, we need only check

that these conditions hold at its knots, i.e.,

0 ≤
y+

[j+1] − y+
[j]

x[j+1] − x[j]

≤ c, for j = 1, . . . , k + 1, and

y+
[j] − y+

[j−1]

x[j] − x[j−1]
≤
y+

[j+1] − y+
[j]

x[j+1] − x[j]
, for j = 1, . . . , k.

(A.10)

We provide details of the proof of these statements for j ∈ {i, . . . , k + 1}; the

proof for j ∈ {1, . . . , i−1} is similar and is thus omitted. From line 5 of Algorithm

3.1 of Chapter 2, either

y+
[k+1] = ỹ+

[k] = uk(x[k+1]) ≥ uk(xk+1) ≥ Y + = y+
[i]

or

y+
[k+1] = y+

[i] + (x[k+1] − x[i])c ≥ y+
[i].

It follows from line 7 of the algorithm and an easy induction argument that

y+
[i] ≤ y+

[j]

for all j = i, . . . , k + 1. Now (A.10) follows directly from lines 5 and 7.

Step Five. We prove lower consistency. It follows from (A.4) and Proposi-

tion 4.6 (applied to (xk,y
−
k ,y

+
k ), which we have assumed to be consistent) that

(xk+1,y
−
k+1,y

+
k+1) is i-lower consistent. Now, let j ≥ i and assume (inductively on

j) that (xk+1,y
−
k+1,y

+
k+1) is j-lower consistent. (We will omit the similar induction

proof that (xk+1,y
−
k+1,y

+
k+1) is lower consistent at indices less than i.) Let r be

the least index in {j+1, . . . , k+1} such that y−[r] = ỹ−[r−1] (as in line 5 of Algorithm

3.1 of Chapter 2), or let r = k + 2 if there is no such index. We claim that this
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definition of r implies

y−[l−1] = y−[j] + (x[l−1] − x[j])z
−
[j], and

z−[l−1] = z−[j]

(A.11)

for all l = j + 1, . . . , r. Clearly, (A.11) holds for l = j + 1. Assume inductively

that (A.11) holds for a particular l ∈ j + 1, . . . , r. Then by the definition of r and

by lines 5 and 6 of Algorithm 3.1 of Chapter 2,

y−[l] = y−[l−1] + (x[l] − x[l−1])z
−
[l−1]

= y−[j] + (x[l] − x[j])z
−
[j]

and

z−[j] ≤ z−[l] = z−[j] ∨
y−[l] − y+

[l−1]

x[l] − x[l−1]
≤ z−[j] ∨

y−[l] − y−[l−1]

x[l] − x[l−1]
= z−[j].

Therefore, (A.11) holds for all l = j + 1, . . . , r.

Let φk+1
j ∈ Hk+1 and φk

r−1 ∈ Hk be as in Proposition 4.5. We are able to invoke

that proposition for φk+1
j using the inductive hypothesis that (xk+1,y

−
k+1,y

+
k+1)

is j-lower consistent, and we are able to invoke it for φk
r−1 using the inductive

hypothesis that (xk,y
−
k ,y

+
k ) is consistent.

Now define

ψj(x) =















































φk+1
j (x) if x[1] ≤ x < x[j],

y−[j] + (x− x[j])z
−
[j] if x[j] ≤ x ≤ x[r−1],

y−[r] −
y−

[r]
−y−

[r−1]

x[r]−x[r−1]
(x[r] − x) if r ≤ k + 1 and x[r−1] < x ≤ x[r],

φk
r−1(x) if r ≤ k and x[r] < x ≤ x[k+1].

We will show that ψj ∈ Hk+1 and that ψj(x[j+1]) = y−[j+1], thus demonstrating

(j + 1)-lower consistency of Hk+1. The fact that φk+1
j ∈ Hk+1 implies that Y − ≤
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ψj(x[i]) = φk+1
j (x[i]) ≤ Y +. Therefore, by (A.4), we need only show ψj ∈ Hk in

order to prove ψj ∈ Hk+1.

Step Six. In this step we show that

ψj is continuous, (A.12)

ỹ−[l] ≤ ψj(x̃[l]) ≤ ỹ+
[l] for all l ∈ {1, . . . , k}, (A.13)

ψj(x[j+1]) = y−[j+1]. (A.14)

Observe that (A.12) is evident at all points x except possibly x = x[r−1], so we

may replace (A.12) by

ψj is continuous at x = x[r−1]. (A.15)

Also, (A.13) holds automatically for l = 1, . . . , j − 1 and l = r, . . . , k, so it need

only be checked for l = j, . . . , r − 1.

The facts (A.13), (A.14), and (A.15) are automatic from the definition of ψj if

r = j + 1, so assume r > j + 1. Then by (A.11),

y−[r−1] = y−[j] + (x[r−1] − x[j])z
−
[j],

proving (A.15),

ψj(x[j+1]) = y−[j] + (x[j+1] − x[j])z
−
[j] = y−[j+1],

proving (A.14), and for l = j, . . . , r − 1,

ψj(x̃[l]) = ψj(x[l+1]) = y−[j] + (x[l+1] − x[j])z
−
[j] = y−[l+1] ∈ [ỹ−[l], ỹ

+
[l]],

proving (A.13).

Step Seven. All that remains is to prove convexity of ψj , as the monotonicity

and bounded growth conditions are clear from the construction of ψj . Evidently,
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ψj is convex on the interval [x[1], x[r−1]], which follows from the construction of

φk+1
j . Also, if r ≤ k, then ψj is (separately) convex on [x[r], x[k+1]]. Therefore, in

order to prove ψj is convex, we need prove only two inequalities:

z−[j] ≤
y−[r] − y−[r−1]

x[r] − x[r−1]

, if r ≤ k + 1, and (A.16)

y−[r] − y−[r−1]

x[r] − x[r−1]

≤ z̃+
[r−1], if r ≤ k. (A.17)

First, for r ≤ k + 1, we have

y−[r] − y−[r−1]

x[r] − x[r−1]

≥ z−[r−1] = z−[j],

proving (A.16). Second, for r ≤ k, by the definition of r,

y−[r] − y−[r−1]

x[r] − x[r−1]

=
lk(x̃[r−1])− y−[r−1]

x̃[r−1] − x[r−1]

≤ lk(x̃[r−1])− lk(x[r−1])

x̃[r−1] − x[r−1]

≤ z̃+
[r−1],

as desired.
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