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In this dissertation we consider variants of the vehicle routing problem applied

to two problem areas. First, we consider the problem of scheduling deliveries

from a central depot to clients in a metric space using a single delivery vehicle.

Although this problem involves only a single vehicle rather than a fleet, it is

amenable to analysis from both a worst-case and average-case perspective, and

has applications to real-world systems. Second, we consider two problems re-

lated to the scheduling of air ambulances, one in an offline setting and another

in an online setting. Air ambulances are used to provide emergency medical ser-

vices to residents of both British Columbia and Ontario, Canada. We consider

techniques to improve the efficiency of service in these systems.
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CHAPTER 1

INTRODUCTION

1.1 Approximation and Competitive Algorithms

1.1.1 Approximation Algorithms

An approximation algorithm is an algorithm that is capable of finding a good qual-

ity solution to a problem in time bounded by a polynomial of the input size.

See [23] for an overview of approximation algorithms. Approximation algo-

rithms are useful when dealing with NP-hard problems, where exactly com-

puting the optimal solution can be prohibitively expensive. An approximation

algorithm is characterized by its approximation ratio, defined as follows.

Definition 1. Let a (possibly randomized) algorithm ALG be given for a mini-

mization problem along with an optimal algorithm OPT. If

E [ALG(x)] ≤ α ·OPT(x)

for all inputs x, then ALG is an α-approximation algorithm for the given prob-

lem.

1.1.2 Competitive Algorithms

Online algorithms are algorithms that receive information about an input se-

quence over time, and must make decisions as the information arrives. See [11]

for an overview of competitive algorithms. For example, an online sorting al-

gorithm would receive each number to sort over time, and must maintain a

sorted list of all elements observed so far. To describe the performance of an
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online algorithm we use its competitive ratio, which is the worst-case ratio be-

tween the online algorithm’s performance and an offline optimal algorithm’s

performance.

Definition 2. Let a (possibly randomized) online algorithm ALG be given for a

minimization problem along with an optimal offline algorithm OPT. If

E [ALG(x)] ≤ c ·OPT(x)

for all inputs x chosen by a given adversary, then ALG is c-competitive against

the chosen adversary.

The type of adversary we consider can influence the competitive ratio of an

algorithm.

1.1.3 Types of Adversaries

An adversary is responsible for constructing input sequences to an online algo-

rithm. We classify adversaries by the amount of information they have at their

disposal when constructing an input sequence.

Oblivious adversary. An oblivious adversary is given full knowledge of the

online algorithm, but must construct the input sequence before seeing the al-

gorithm make any decisions. Thus an oblivious adversary cannot construct an

input sequence for which later inputs depend on the realization of random ac-

tions by the online algorithm.

Adaptive online adversary. An adaptive online adversary is given full knowl-

edge of the online algorithm. Additionally, the adaptive online adversary is al-

lowed to choose each input value after seeing the algorithm react to all previous

inputs.
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Adaptive offline adversary. An adaptive offline adversary is given full knowl-

edge of the online algorithm as well as the outcome of any random decisions by

the online algorithm.

Thus the oblivious, adaptive online, and adaptive offline adversaries are

progressively stronger, with each adversary knowing more than the previous

adversary.

1.2 Vehicle Routing Problems

The vehicle routing problem (VRP) encompasses a large class of problems involv-

ing the distribution of goods through a network using a collection of delivery

vehicles. Formally, we have a number of depots from which orders for goods

originate to be sent to a number of clients. These goods must be delivered by a

fleet of vehicles moving through the network, which we will refer to as couriers.

The couriers can have different starting locations, speeds, and carrying capaci-

ties. The objective of the VRP is to minimize the cost of serving all deliveries. A

VRP may have a number of side constraints, including time windows on deliv-

eries, capacity restrictions on the couriers, delivery route length maximums, or

order release dates. See [19] for a survey of VRPs.

The VRP in the previous paragraph is also known as the offline VRP, as all

deliveries to be made are known in advance. A natural variant of the VRP is the

online VRP where the deliveries to be made are revealed over time. A survey of

results can be found in [17].

A closely related problem is the traveling salesman problem (TSP). The TSP is

a classic optimization problem in which the goal is to compute a minimum cost

tour over n cities in a metric space [23]. If we take edge costs to the the time re-

quired to traverse this edge, the optimal TSP tour computes the minimum time
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required for a courier to depart from a depot, make a number of deliveries, and

return to the depot. The online traveling salesman problem (OLTSP), introduced

in [6], is a natural variant of the TSP where the cities to be visited are revealed

over time. They give an algorithm that is 2-competitive. This result is general-

ized to the m-courier case in [17].

The OLTSP problem can be viewed as a 1-courier instance of a VRP where

all the products being delivered are fungible and the courier departs the depot

with an infinite supply of goods; this ensures that the courier does not need to

return to the depot before all cities have been visited.

We will consider a different objective value than the ones discussed above.

So far we have considered minimizing the time required to complete all deliv-

eries and return to the depot; this is also known as the makespan of the schedule.

We will instead focus on minimizing the total time between the delivery of a

good and its release date; this is also known as the total latency of the schedule.

If the VRP with a makespan objective is viewed as a generalization of the TSP,

then the VRP with a total latency objective can be viewed as a generalization

of the traveling repairman problem (TRP). Like the TSP, the input to the TRP is a

set of cities in a metric space, and the output is a tour over those cities. How-

ever, where the TSP finds a tour to minimize the time it takes to return to the

depot, the TRP finds a tour to minimize the sum of the times it takes to visit

each individual city. See citekrumke2003news for a discussion of the TRP.

1.3 Average-Case Analysis

In Section 1.1 our goal was to analyze algorithms in order to understand how

they perform in the worst case. However, the world is often not so adversarial.

We are also interested in understanding the typical performance of algorithms,
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for example, by measuring the average performance under inputs drawn from

a distribution, rather than selected by an adversary. We introduce some tech-

niques in the following sections that we will later utilize.

1.3.1 Markov Decision Processes

Throughout we use the machinery of [20]. A Markov decision process (MDP) is a

mathematical model of a discrete-time system with random events. We say Φ =

(X,A, C, P ) is an MDP with state space X , action spaceA, costs C : X×A → R,

and action-dependent state transition probabilities P : X × X × A → X . At

each discrete time the system is in some state x ∈ X , and an action a ∈ A must

be chosen. A cost C(x, a) is then incurred, and we transition to state x′ ∈ X

with probability Px, x′(a). A discounted MDP has a discount factor α ∈ (0, 1) that

is used to weight the costs accrued based on when they occur. If we visit states

x0, x1, . . . , xn and take actions a0, a1, . . . , an in each of those states the discounted

cost over those n+ 1 states is

n∑
t=0

αtC(xt, at).

The goal is to determine a sequence of actions to take to minimize the expected

discounted cost over an infinite horizon.

A policy π : X → A is a mapping from states to actions to take in that state.

Although policies that depend on the full history of the system are permitted,

Chapters 4 and 7 of [20] show that we can restrict our attention to stationary

policies that depend on only the current state. Let X0, X1, . . . ∈ X be random

variables representing the state of the system at each time 0, 1, . . .. Under a pol-

icy π we have that

Pr [Xt = x′ | Xt−1 = x] = Px, x′(π(x)).
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For a given discount factor α ∈ (0, 1), we define the (discounted) value function

Vα,π(x) =
∞∑
t=0

αt E [C(Xt, π(Xt)) | X0 = x] (1.1)

for all x ∈ X . Thus Vα,π(x) represents the expected discounted cost incurred

under policy π when beginning in state x. We also define the value function

Vα(x) = inf
π
Vα,π(x) (1.2)

for all x ∈ X . The goal is to find a policy π that realizes Vα(x) for a given initial

state.

A continuous-time analog of the MDP is the continuous-time Markov decision

process. We say Ψ = (X,A, G, g, ν, P ) is a CTMDP with state space X , action

space A, fixed costs G : X × A → R, rate costs g : X × A → R, transition rates

ν : X ×A → R+, and transition probabilities P : X ×X ×A → X . Events occur

in continuous time. If at some time we are in state x ∈ X and action a ∈ A is

chosen we incur costsG(x, a) as well as rate costs g(x, a) until the next transition

time. The next transition time is exponentially distributed with rate ν(x, a). We

transition to state x′ with probability Px, x′(a). Our goal is to find a policy that

minimizes the long-run average cost incurred by the system.

1.3.2 Sample Average Approximation

Sample average approximation (SAA) is a technique used to solve simulation op-

timization problems. In such problems the exact objective value of the problem

is either unknown or complicated, but can be estimated by a simulation. In

particular, we assume that the true objective function can be approximated by

f(x) = E [f(x, ξ)] ,
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where the distribution of the random variable ξ does not depend on x. For ex-

ample, ξ might represent the arrival times of customers in a service queue, while

x represents the choice of labor allocated to the queue. We can then approximate

f via

fn(x) =
1

n

∑
i∈[n]

f(x, ξi)

where ξ1, . . . , ξn are all drawn from the same distribution. Given this fixed sam-

ple ξ1, . . . , ξn, we can then use fn as our approximate objective function. See [18]

for an overview of SAA.

1.4 General Notation

Table 1.1 contains notation used throughout this dissertation.

Symbol Definition
[n] The set {1, 2, . . . , n} for any positive integer n
(x)+ The value max {0, x} for any real number x
EX [f ] The expectation of the expression f with respect to a

random variableX ; X may be omitted if it is clear from
context.

Pr [x] The probability of the random event x happening
OPT(x) The optimal cost of an input x, where the problem is

context-dependent.
ALG(x) The cost of an input x under some algorithm, where

the problem and algorithm are context-dependent.

Table 1.1: A summary of the notation used throughout this dissertation.

1.5 Source Code

The source code for projects discussed in this dissertation are available online at

the following locations:
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• github.com/prsteele/mdp contains the Haskell code used to solve

the MDPs described in Chapter 2.

• github.coecis.cornell.edu/ornge/ornge contains the code used

to solve the base selection problem in Chapter 3.

• github.coecis.cornell.edu/BCEHS/BCEHS-Simulation contains

the code used to simulate operations at BCEHS as in Chapter 4.
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CHAPTER 2

AGGREGATING COURIER DELIVERIES

2.1 Motivation

We consider the problem of scheduling deliveries of goods from a central depot

with an uncapacitated courier under online arrivals. This is a problem facing

many companies offering on-demand delivery services. Uber Rush and Ama-

zon Prime Now offer on-demand delivery services for online purchases, with

deliveries made by local couriers within hours of purchase [1, 5]. The couri-

ers delivering these products typically operate in urban areas where orders can

originate from clustered retailers, offering the possibility for multiple orders to

be grouped and delivered together. Thus there is a tension between immedi-

ately dispatching a courier when a delivery arrives to minimize the latency of

that single order and waiting some amount of time to minimize the total latency

over several nearby orders.

To explore this tension we consider the problem where all deliveries arrive

at a central depot and must be delivered by a single uncapacitated courier. The

deliveries will lie in some metric space. The courier can pick up deliveries at

the depot, move through the space to make each delivery, and then return to

the depot to serve future requests. The objective is to minimize the total time

between arriving in the system and being delivered across all deliveries.

2.1.1 Notation

We define S as a finite discrete metric space with distance function ‖·‖. The

depot is located at s∗ ∈ S. A delivery request (t, s) is a request for a delivery to

location s ∈ S arriving at time t ∈ R+. A request sequence of length n is a list
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of n delivery requests ordered by increasing arrival time. We define σ(n) as a

random variable over request sequences of length n with distribution function

µ(n); distribution functions are defined within the context of each section. For

a request sequence ((t1, s1), (t2, s2), . . . , (tn, sn)) and a departure schedule that

delivers delivery request (ti, si) at time t′i, the latency of the request is wi = t′i− ti.

The objective is to minimize
∑n

i=1wi.

Finally, we define OPT(x) as the optimal cost of serving a request sequence

x with an offline algorithm, while ALG(x) is the cost of serving the request

sequence with a given context-specific online algorithm.

2.2 Problem Statement

The problem is to design an online algorithm that chooses departure times to

minimize the total latency of all delivery requests in a request sequence chosen

by an adversary. We require that when the algorithm sends the courier out for a

delivery that all waiting delivery requests are served, and we do not allow the

server to return to the depot before all deliveries are made.

We will consider this problem from two perspectives. In Section 2.3 we con-

sider the case where both arrival times and locations are controlled by an ad-

versary. We present a (3β∆/2δ − 1)-competitive algorithm, along with a lower

bound of (1 + 0.271∆/δ) for the competitive ratio of any online algorithm; here,

β is the approximation ratio of the TSP, ∆ is the optimal TSP tour length over all

clients, and δ is the minimum distance between the depot and any client, noting

that all clients are a positive distance from the depot. In Section 2.4 we consider

the case where arrival times and locations occur according to a Poisson process.

We derive structural results on the optimal policies for minimizing the long-run

average latency; in particular, we show that optimal policies exhibit an intuitive
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threshold structure. Finally in Section 2.5 we explore the performance of our

randomized competitive algorithm in the Poisson arrivals setting.

In both sections we will rely on the notion of an a priori tour of the clients.

An a priori tour is a TSP tour over all the locations that is used to dictate the

order in which clients are visited. In particular, when only a subset of clients

needs to be visited following the a priori tour causes us to visit the clients in

the same order as in the full tour while eliminating unnecessary legs. While

there is extensive literature on computing a priori TSP tours [16, 9, 21], we will

not require any particular measure of optimality with respect to the a priori TSP

problem. In Section 2.3 this assumption is used to construct an algorithm, but

the lower bounds derived to not depend on it. In Section 2.4 this assumption is

used more directly, and allows us to tractably model the problem.

2.3 Adversarial Setting

We consider the case where the request sequences are chosen by an adversary.

We consider both the oblivious adversary and the adaptive offline adversary.

Our analysis will depend on a polynomial time traveling salesman approxi-

mation algorithm TSPβ with approximation guarantee β, where by convention

we always include the depot s∗ as the starting location of the tour. Define

∆ = TSP1(S) (2.1)

along with

δ = min {‖s− s∗‖ | s ∈ S \ {s∗}} . (2.2)

Lemma 1. Let a request sequence S = {(t1, s1), (t2, s2), . . . , (tn, sn)} be given. Then

OPT(S) ≥
n∑
i=1

‖si − s∗‖ ≥ nδ.
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Algorithm 1 RAND-SINGLE
Draw α← Uniform(0, β∆)
for i← 0, 1, . . . do

Let S be the set of delivery requests at the depot at time iβ∆ + α
Depart at time iβ∆ + α with all requests in S, short-cutting TSPβ(S)

end for

Proof. Consider delivery request (ti, si) and the set S of delivery requests that it

is sent with on the courier.

From (2.2), we have that ‖si − s∗‖ ≥ δ for all i ∈ [n]. When si is delivered

along any tour by the triangle inequality the distance traveled before reaching

si is at least ‖si − s∗‖. Thus the optimal offline algorithm incurs a cost of at δ per

delivery request, and so pays at least nδ in total.

Theorem 1. Algorithm 1 is (3β∆/2δ − 1)-competitive against an oblivious adversary.

Proof. We first show that Algorithm 1 produces a feasible schedule that serves

all delivery requests. Consider a departure at time kβ∆ + α for any k ≥ 0 and

any realization of α, and let S be the set of delivery requests at the depot at that

time. The algorithm departs at kβ∆ + α and embarks on a tour according to

TSPβ(S). By construction we have that β∆ ≥ TSPβ(S), and so the courier will

return to the depot before the next scheduled departure at (k + 1)β∆ + α, after

having served all requests in S.

We now show that the competitive ratio is as claimed. We proceed by bound-

ing the cost of any single delivery request. Let a delivery request (ti, si) be given,

and define k = bt/∆c. Our algorithm will depart at times k∆+α and (k+1)∆+α.

Thus (t, s) will be sent for delivery at time k∆ + α when t ≤ k∆ + α and at time

(k + 1)∆ + α when t > (k + 1)∆ + α. If t ≤ kβ∆ + α the request will wait

kβ∆ + α− t before departing, and otherwise will wait (k + 1)β∆ + α− t before

departing.
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When we depart with this request it will be delivered along a tour of all re-

quests being delivered at that time. For any set of requests S being delivered we

have that TSPβ(S) ≤ β∆. Since the tour must begin and end at s∗, we will visit si

after traveling at most β∆−‖si − s∗‖. The latency of this request consists of the

waiting time before the courier departs and the delivery time after it departs.

This gives us

wi = β∆− ‖si − s∗‖+ (kβ∆ + α− t) 1{t≤kβ∆+α}+((k + 1)β∆ + α− t) 1{t>kβ∆+α}

= β∆− ‖si − s∗‖+ kβ∆ + α− t+ β∆ 1{α<t−kβ∆} .

Since α is uniformly distributed over [0,∆], we can compute

E [wi] = β∆− ‖si − s∗‖+ kβ∆ +
β∆

2
− t+ β∆ Pr [α < t− kβ∆]

= β∆− ‖si − s∗‖+ kβ∆ +
β∆

2
− t+ t− kβ∆

=
3

2
β∆− ‖si − s∗‖ .

Thus the expected cost of any request sequence S = {(t1, s1), (t2, s2), . . . , (tn, sn)}

is

E [ALG(S)] = E

[
n∑
i=1

wi

]
=

n∑
i=1

E [wi] =
3

2
nβ∆−

n∑
i=1

‖si − s∗‖ .

by the linearity of expectations. Finally, by Lemma 1 we have that

ALG(S) ≤ 3

2
nβ∆−

n∑
i=1

‖si − s∗‖

=

(
3β∆

2δ
− 1

)
OPT(S),

as required.

It is worth noting where this proof depends on the assumption of an oblivi-

ous adversary. In particular, we use this assumption when we take an expecta-

tion over α. An adaptive online adversary can learn α by sending just a single
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delivery request at time 0 and observing the algorithm’s response. An adaptive

offline adversary simply knows the realization of α in advance. This leads to

the following result.

Theorem 2. Algorithm 1 is (2β∆/δ − 1)-competitive against an adaptive offline ad-

versary.

Proof. From the definition of Algorithm 1 there is a departure within β∆ of the

arrival of any delivery request. Once on the courier, a delivery request waits at

most an additional β∆ − ‖si − s∗‖ time before being delivered, as in the proof

of Theorem 1. Thus the latency of the delivery request (ti, si) is at most

wi = β∆ + β∆− ‖si − s∗‖ ,

and so for a request sequence S = {(t1, s1), (t2, s2), . . . , (tn, sn)}we have

ALG(S) ≤
n∑
i=1

(2β∆− ‖si − s∗‖) ≤
(

2
β∆

δ
− 1

)
OPT(S),

as required.

2.3.1 A Lower Bound on the Competitive Ratio

We now provide a lower bound on the competitive ratio of any online algorithm

by utilizing Yao’s Lemma, shown in Theorem 7 of Section A. We proceed as fol-

lows. We first describe an input distribution. We then provide an upper bound

on the expected cost of the optimal offline algorithm for this input distribution.

Next we show that the optimal deterministic algorithm for any given input will

only choose to depart at certain times, and then we will provide a lower bound

on the cost of such an algorithm. Finally we will apply these results to Yao’s

Lemma.
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We begin by constructing an input distribution µ(N) over N -length request

sequences. To construct µ(N), let S̄ = S \ {s∗} and let

s = arg min {‖s− s∗‖ | s ∈ S \ {s∗}} ;

that is, S̄ represents a worst-case TSP instance in S while s is a location as close

to the depot as possible. Define as well

mN = max
{
i ∈ Z+ | (i+ 1)2 ≤ N

}
,

and so (mN + 1)2 ≤ N < (mN + 2)2. Let X be a random variable with mass

function f(i) = 1/mN , i ∈ [mN ], along with i.i.d. exponential random variables

Yi with rate parameter λ for each i ∈ [X + 1]. Define

τi =


0, i = 1,

τi−1 + Yi + ∆ + 2δ, 2 ≤ i ≤ X,

τX + YX+1, i = X + 1.

for i ∈ [X + 1].

Our input distribution µ(N) consists of X + 1 bunches of arrivals, where a

bunch is a collection of delivery requests arriving at the same time. We only con-

sider N such that mN >
∣∣S̄∣∣. The bunches arrive at bunch times τ1, τ2, . . . , τX+1.

For i ∈ [X], the bunch arriving at τi consists of one delivery request going to

each location in S̄, along with mN −
∣∣S̄∣∣ delivery requests going to s, for a total

of mN delivery requests. The bunch arriving at time τX+1 consists of N −mNX

delivery requests all going to s.

Lemma 2. Let N be given. Assuming X ≥ i, the bunch arriving at time τi can be

delivered so that the total latency of requests in the bunch is at most

mNδ +
∣∣S̄∣∣∆.

This delivery strategy requires at most ∆ + 2δ time to complete.
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Proof. To prove the upper bound on the cost we provide a tour that achieves

the desired cost. Suppose that TSP1(S̄) gives a tour s∗, s1, . . . , sk, s
∗, which by

construction has length at most ∆. Consider the path s∗, s, s1, . . . , sk, which may

visit s twice. From the triangle inequality we have that

‖s− s1‖ ≤ ‖s− s∗‖+ ‖s∗ − s1‖ ,

and so this path is no longer than the path s∗, s, s∗, s1, . . . , sk. Since ‖s∗ − s‖ ≤ δ,

this path has length at most 2δ + ∆. Note that since sk is at least δ from s∗, all

deliveries to locations in S̄ travel no more than δ + ∆. The cost of serving the

requests to s is (mN − |S|)δ, while the cost of serving the requests to locations in

S̄ is at most
∣∣S̄∣∣ (∆ + δ). Thus the total latency of the requests in the bunch is at

most

(mN − |S|)δ +
∣∣S̄∣∣ (∆ + δ) = mNδ +

∣∣S̄∣∣∆,
as required.

Lemma 3. Let N be given. Assuming X ≥ i, the total latency of requests in the bunch

arriving at time τi is at least mNδ, and the delivery takes at least ∆ time.

Proof. By construction ‖s− s∗‖ ≥ δ for all s ∈ S̄, and so each of the mN delivery

requests in the bunch incurs a cost of at least δ. Finally, by assumption we have

that TSP1(S̄) = ∆, and so the courier can return from delivery no sooner than ∆

after departing.

We now provide an upper bound on the expected cost of the optimal offline

algorithm for this input distribution.

Lemma 4. For any N such that mN >
∣∣S̄∣∣,

Eµ(N)

[
OPT(σ(N))

]
≤ δN +

(
1 +

1

λ

)
o(N).
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Proof. We provide an offline algorithm that achieves the desired cost; the op-

timal offline algorithm must do at least as well. For a given realization of X ,

we choose to depart at times τ1, . . . , τX−1, and then at time τX+1. Each time we

depart we follow the tour described in Lemma 2. Note that since each depar-

ture returns us to the depot in at most ∆ + 2δ time that this departure sched-

ule is feasible. This incurs a cost of at most mNδ +
∣∣S̄∣∣∆ for the bunches at

times τ1, . . . , τX−1. Delivery requests in the bunch at time τX will wait an ad-

ditional YX+1 time before being delivered alongside the requests in the final

bunch. When we make the final delivery we follow the same path as in previ-

ous bunches, yielding a total cost of mNYX+1 + mNδ +
∣∣S̄∣∣ (∆ + δ) for requests

in the bunch at time τX and a total cost of (N −mNX)δ for requests in the final

bunch. Thus we have that

OPT(σ(N)) ≤
(
mNδ +

∣∣S̄∣∣∆)X +mNYX+1 + (N −mNX)δ

= Nδ +mNYX+1 +X
∣∣S̄∣∣∆.

Taking expectations, we find

Eµ(N)

[
OPT(σ(N))

]
≤ Nδ +

mN

λ
+
mN + 1

2

∣∣S̄∣∣∆
≤ Nδ +

(
1 +

1

λ

)
o(N),

since limN→∞mN/N → 0 by construction.

We must now provide lower bounds on the cost of the best deterministic

algorithm for any input sequence σ(N). We first show that we can restrict our

attention to algorithms that depart only at times that are a subset of bunch times

{τ1, . . . , τX+1}.

Lemma 5. For any request sequence σ(N) drawn from µ(N), let any algorithm be given

that chooses to depart at some time not in the set {τ1, . . . , τX+1}. Then this algorithm
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performs no better than an algorithm that chooses only to depart at times in the set

{τ1, . . . , τX+1}.

Proof. Let ALG be a deterministic algorithm that chooses to depart at some time

not in {τ1, . . . , τX+1}. Since ALG is deterministic, for it to depart at some time

not in the set {τ1, . . . , τX+1} it must choose to depart a fixed time τ > 0 after

some bunch time τj , unless perhaps τj + τ ≥ τj+1. Let τj be the first time the

algorithm chooses to wait τ > 0 before departing. Note that if j = mN + 1, then

the algorithm is waiting to depart after the final arrival and so is trivially worse

than an otherwise equivalent algorithm that chooses τ = 0. For j < mN + 1

there exist algorithms that are otherwise equivalent to this one, except that they

either choose τ = 0 or τ = ∞. Namely, let ALG1 be the algorithm that chooses

τ = 0 and let ALG2 be the algorithm that chooses τ =∞.

Suppose that τj + τ < τj+1, and so ALG departs before the next bunch time.

In this case we have that ALG(σ(N)) ≥ ALG1(σ(N))+mNτ , since themN delivery

requests that arrived at τj wait an additional τ before departure relative to what

they wait under ALG1. Alternatively, if τj + τ ≤ τj+1 then ALG behaves exactly

like ALG2, and so ALG(σ(N)) ≥ ALG2(σ(N)). Let p = Pr [τj + τ < τj+1]. Then

ALG(σ(N)) ≥ pALG1(σ(N)) + pmNτ + (1− p)ALG2(σ(N)).

Thus either ALG1(σ(N)) ≤ ALG(σ(N)) or ALG2 ≤ ALG(σ(N)), as required.

We now provide a lower bound on the cost of any deterministic algorithm

for a particular choice of λ. Define the function f(x) = xex, and let LambertW(x)

be the inverse of f [22].

Lemma 6. For

λ =
2 + LambertW (−e−2)

∆
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and
√
N >

∣∣S̄∣∣,
E
[
ALG(σN)

]
≥ mN(mN + 1)

(
δ +

1

2
· ∆

LambertW(−e−2) + 2

)
.

Proof. Suppose we are at time τk, and so the algorithm has just observed the kth

bunch. We compute (lower bounds on) the expected cost of choosing to depart

immediately at τk and the cost of choosing to remain until at least τk+1. Note

that we assign the cost of delivering the final bunch to the bunch at time τX .

We first consider the cost of departing immediately. By Lemma 3 the algo-

rithm must pay at least mNδ to deliver the requests in bunch at time τk, and

the algorithm takes at least ∆ time to return to the depot. Additionally, if X = k

there is the chance that the bunch at τX+1 must wait until we return (after no less

than ∆ time) before being delivered, where again each delivery takes at least δ

time. Thus the cost of departing is at least

C∆ = mNδ + 1{
X=k

∣∣∣X>k−1
} (N −mNk)

(
δ + (∆− YX+1)+) .

Taking the expectation over X , we find

E
[
CDepart

]
= mNδ +

N −mNk

mN − k + 1

(
δ +

∫ ∆

0

(∆− y)λe−λy dy

)
= mNδ +

N −mNk

mN − k + 1

(
δ +

e−λ∆ − 1

λ
+ ∆

)
.

Since N ≥ (mN + 1)2 ≥ mN(mN + 1), we have that

E
[
CDepart

]
≥ mNδ +mN

(
δ +

e−λ∆ − 1

λ
+ ∆

)
= 2mNδ +mN

(
e−λ∆ − 1

λ
+ ∆

)
.

We now consider the cost of choosing to remain at the depot until at least

time τk+1. Since τk+1− τk = Yk+1 +∆+2 ≥ Yk+1, the total cost of delivering these

requests is at least mNYk+1 + mNδ. If X = k we must also pay for the delivery
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requests in the last bunch. This gives us that the cost of remaining is at least

CRemain = mNYk+1 +mNδ + 1{
X=k

∣∣∣X>k−1
}(N −mNk)δ.

Taking expectations, we find

E [CRemain] =
mN

λ
+mNδ +

N −mNk

mN − k + 1
δ

≥ mN

λ
+ 2mNδ.

To bound the cost of the algorithm, it will be sufficient to choose λ such that

min
{

E
[
CDepart

]
,E [CRemain]

}
≥ φ for some positive constant φ; if this holds, then

we incur at least φ at each bunch time. Consider

λ =
2 + LambertW (−e−2)

∆
.

Note that this implies that

e−λ∆ = e−2−LambertW(−e−2)

= e−2e−LambertW(−e−2)

= e−2 LambertW(−e−2)

−e−2

= −LambertW(−e−2).

Then

E
[
CDepart

]
≥ 2mNδ +mN

(
e−λ∆ − 1

λ
+ ∆

)
≥ 2mNδ +mN∆

(
1− LambertW(−e−2) + 1

LambertW(−e−2) + 2

)
≥ 2mNδ +

mN∆

LambertW(−e−2) + 2
,

while

E [CRemain] ≥ 2mNδ +
mN

λ

≥ 2mNδ +
mN∆

LambertW(−e−2) + 2
.
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From Lemma 5 we know that we can restrict our attention to algorithms which

only choose to depart at bunch times. Any such algorithm incurs a cost of at

least

2mNδ +
mN∆

LambertW(−e−2) + 2

at each of the first X bunch times. This gives us

Eµ(N)

[
ALG(σ(N))

]
≥ E

[
X∑
i=1

(
2mNδ +

mN∆

LambertW(−e−2) + 2

)]

= E [X]

(
2mNδ +

mN∆

LambertW(−e−2) + 2

)
=
mN + 1

2

(
2mNδ +

mN∆

LambertW(−e−2) + 2

)
= mN(mN + 1)

(
δ +

1

2
· ∆

LambertW(−e−2) + 2

)
.

We are now prepared to provide a lower bound on the competitive ratio of

any online algorithm via Yao’s principle.

Theorem 3. There does not exist an online algorithm with competitive ratio less than

1 + 0.271∆/δ.

Proof. We apply Yao’s principle to our input distribution µ(N) with

λ =
2 + LambertW (−e−2)

∆
.

From Lemma 4 we have that

Eµ(N)

[
OPT(σ(N))

]
≤ δN +

(
1 +

1

λ

)
o(N)

≤ δN + o(N)

since λ does not depend on N . Likewise, from Lemma 6 we have that

inf
i

Eµ(N) [ALGN,i] ≥ mN(mN + 1)

(
δ +

1

2
· ∆

LambertW(−e−2) + 2

)
≥ m2

N

(
δ +

1

2
· ∆

LambertW(−e−2) + 2

)
+ o(N),
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where {ALGN,i | i ∈ Z+} is the set of all deterministic algorithms for request

sequences of length N . Thus

lim
N→∞

infi Eµ(N) [ALGN,i]

Eµ(N) [OPT(σ(N))]
≥ lim

N→∞

m2
N

(
δ + 1

2
· ∆

LambertW(−e−2)+2

)
+ o(N)

δN +
(
1 + 1

λ

)
o(N)

= 1 +

1
2
· ∆

LambertW(−e−2)+2

δ

= 1 +
∆

2δ (LambertW(−e−2) + 2)

> 1 + 0.271
∆

δ
,

as required.

2.4 Average-case Setting

We now consider the case where delivery requests occur according to a Poisson

process. We consider request sequences of unbounded length, and seek to min-

imize the long-run average cost of serving such request sequences. The times

of delivery requests will be distributed according to a Poisson process with rate

λ, and the location of the requests will be distributed i.i.d. according to some

probability mass function fS : S → R+; this ensures that each request sequence

(t1, s1), (t2, s2), . . . is distributed according to a marked Poisson process. We as-

sume that fS(s) > 0 for all s ∈ S \ {s∗}.

In Section 2.3 we considered online algorithms that made use of approxima-

tion algorithms to produce an a priori TSP tour. Here we only rely on having

any a priori TSP tour Π over all locations in S. We make no assumptions about

the quality of this tour; rather, for any such tour we derive the structure of the

optimal policy for serving delivery requests using that tour. For the remainder

of this section we will assume that some Π is given and fixed, and without loss

of generality we assume that Π visits s1, s2, . . . , sn, s
∗ in that order.
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We will further relax our assumption of travel times. In particular we assume

that any path through S of length dwill take d time to travel in expectation, with

the actual time required to traverse the path being exponentially distributed

with mean d. This will make the problem amenable to analysis as a CTMDP.

2.4.1 The Problem as a CTMDP and MDP

We express this problem as CTMDP. We define the state space X = Z|S|+ . We

index elements x ∈ X by the location each coordinate represents, and so xsi

represents the number of delivery requests to si ∈ S waiting at the depot. We

define esi as a vector in X such esisj = 1{i=j}. For any x ∈ X , define

L(x) = {s ∈ S | xs > 0, s 6= s∗} (2.3)

as the set of delivery locations for requests waiting at the depot; it will be con-

venient to also define L(x) as
∑

s∈L(x) e
s depending on context.

We define the action space A as

A = {Remain} ∪
{

Departx′ | x
′ ∈ X \ {0} , L(x) ⊆ L(x′)

}
. (2.4)

The decision epochs will correspond to delivery request arrivals and the courier

returning to the depot.

Let Π(x) be the tour that begins at s∗, visits all locations in L(x), and then

returns to s∗, visiting each location in the same order as in Π. Choosing the

action Departx′ in state x means that the courier will depart from the depot to

deliver all waiting requests, following the tour Π(x′). At this time we will pay

the costs associated with each delivery request being sent along the tour Π(x′),

as well as paying the holding fees associated with any new delivery requests

that arrive while we are away from the depot.
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When we depart on a tour Π(x′) in state x, we will be gone for a random time

Λ that is exponentially distributed with mean Π(x′)s∗ . Since the arrival sequence

is a Poisson process with rate λ, given the value of Λ the number of arrivals I

is a Poisson random variable with parameter λΛ. Let ξ1, ξ2, . . . , ξI be random

variables describing the arrival times of delivery requests while we are away

from the depot, measured from the departure time, and let S1, S2, . . . , SI be the

i.i.d. random variables describing the locations they are sent to. Conditional

on Λ these I arrivals will arrive at times after we depart that are uniformly

distributed over [0,Λ]. We charge each of these arrivals the mean waiting time

they accrue, which will be Λ/2. Thus the total expected waiting time accrued is

E

[
I∑
i=1

(Λ− ξi)

]
= E

[
E

[
I∑
i=1

(Λ− ξi)

∣∣∣∣∣Λ
]]

= E

[
E

[
Λ

2
I

∣∣∣∣Λ]]
=
λ

2
E
[
Λ2
]

=
λ

2
· 2Π(x′)2

s∗

= λΠ(x′)2
s∗ .

The cost of delivering the requests in x is simply
∑

s∈S Π(x′)sxs. Then we have

transition probabilities P , fixed costs G, rate costs g, and transition rates ν of

Px, x′′(Departx′) = Pr

x′′ = ∑
i∈[I]

eSi

 , (2.5)

G(x,Departx′) = λΠ(x′)2
s∗ +

∑
s∈S

Π(x′)sxs (2.6)

g(x,Departx′) = 0, (2.7)

ν(x,Departx′) =
1

Π(x′)s∗
. (2.8)

The transition probabilities P represent that we transition to the random state∑
i∈[I] e

Si . The fixed costsG represent the cost of delivering the request currently
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waiting at the depot, along with the waiting time accrued by new delivery re-

quests that arrive while we are gone. There are no rate costs, since the waiting

time accrued by requests on the courier have been accounted for in the fixed

costs. Finally, the transition rate ν represents that the delivery takes Π(x′)s∗ in

expectation to complete.

Taking the Remain action in state x means that we will not depart from the

depot until at least the time of the next delivery request arrival. During this time

we pay the holding fees for each delivery request waiting at the depot. The next

delivery request will occur in an exponentially distributed time with rate λ and

will be sent to a destination in S according to distribution function FS . While we

are waiting for this arrival all requests at the depot continue to accrue waiting

time. We have no fixed costs. This gives us transition probabilities P , fixed costs

G, rate costs g, and transition rates ν of

Px, x′′(Remain) =


fS(si), x′′ = x+ esi

0, otherwise,
(2.9)

G(x,Remain) = 0 (2.10)

g(x,Remain) =
∑
s∈S

xs, (2.11)

ν(x,Remain) = λ. (2.12)

The transition probabilities P represent that the next state has exactly one ad-

ditional delivery request. The rate costs g represent the additional waiting time

accrued by the waiting delivery requests. The transition rate ν represents that

the next delivery request arrives at an exponential rate with rate parameter λ.

Finally, we can use standard uniformization techniques from [20] to convert

the CTMDP Ψ = (S,A, g, G, ν, P ) to a discrete time MDP. The idea behind uni-

formization is to create a discrete-time MDP where each transition represents a
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time step

τ = inf
x∈X, a∈A

ν(x, a)−1

= min

{
1

λ
, Π(1)s∗

} (2.13)

the fastest mean transition time in Ψ, where 1 ∈ X is the ones vector. We com-

pensate for slower transitions by increasing the probability of self transitions in

those states. Applying these techniques gives us a cost functionC and transition

probabilities P ∗ defined as

C(x, a) = G(x, a)ν(x, a) + g(x, a) (2.14)

P ∗x, x′(a) =


τν(x, a)Px, x′(a), x 6= x′

1− τν(x, a), x = x′.

(2.15)

It is worth expanding the definition of C, which gives us

C(x,Remain) =
∑
s∈S

xs

C
(
x,Departx′

)
= λΠ(x′)s∗ +

∑
s∈S

Π(x′)s
Π(x′)s∗

xs.

(2.16)

With these we can define the MDP Φ = (S,A, C, P ∗) as the discrete-time ana-

logue of the CTMDP Ψ.

2.4.2 Structural Results

Our goal in this section will be to show that average cost optimal policies for Ψ

are threshold policies.

Definition 3. A policy π : X → A is a threshold policy if for any x ∈ X such

that π(x) = DepartL(x), then for all x ≤ x′ with L(x) = L(x′) we have that

π(x′) = DepartL(x).
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Our goal in this section will be to show that average cost optimal policies for

Ψ are threshold policies.

Lemma 7. Let x, x′ ∈ X be given with L(x) ⊆ L(x′). Then Π(x)s ≤ Π(x′)s for all

s ∈ L(x).

Proof. We show that Π(x)s ≤ Π
(
x+ es

′) for any s′ ∈ S; the result follows imme-

diately. Let s ∈ L(x) and s′ ∈ S be given. If s ≤ s′, then Π(x)s = Π
(
x+ es

′) by

construction. If s > s′, then Π(x)s ≤ Π
(
x+ es

′), since Π
(
x+ es

′) must make a

nonnegative length detour from Π(x) to visit s′ before visiting s.

Lemma 8. Let x1, x
′
1, x2, x

′
2 ∈ X be given with L(x1) = L(x′1) = L(x2) = L(x′2).

Then Px1,x′′
(

Departx′1

)
= Px2,x′′

(
Departx′2

)
for all x′′ ∈ X .

Proof. From Equation (2.5),

Px1, x′′
(

Departx′1

)
= Pr

x′′ = ∑
i∈[I]

eSi


Px2, x′′

(
Departx′2

)
= Pr

x′′ = ∑
i∈[I′]

eSi

 ,
where I conditional on Λ is a Poisson random variable with rate parameter λΛ,

Λ is an exponentially distributed random variable with rate parameter Π(x′1)s∗ ,

and I ′ and Λ′ are defined analogously. Since L(x′1) = L(x′2), from Lemma 7 we

have that Π(x′1)s∗ = Π(x′2)s∗ , and so I and I ′ are identically distributed. This

ensures that

Px1,x′′
(

Departx′1

)
= Px2,x′′

(
Departx′2

)
,

as required.

Lemma 9. For the MDP Φ, Vα(x) ≤ Vα(x′) for all x ≤ x′ with L(x) ⊆ L(x′).
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Proof. We show that for any s′ ∈ S , Vα(x) ≤ Vα
(
x+ es

′); the result then imme-

diately follows. We argue via coupling. Let π∗ be a stationary policy realizing

Vα as per Theorem 5, and let s ∈ S be given. Let T be the first random transi-

tion at which π∗ does not choose the Remain action given that we begin in state

x + es, noting that it is possible that T = ∞ if π∗ never does so, and let x̂ + es
′

be the random state that π∗ observes at transition T . Define the non-stationary

policy π that chooses the Remain action for the first T − 1 transitions, chooses

the Departx̂+es′ at transition T , and then follows π∗ exactly for all remaining

transitions. We show that π incurs no more cost than π∗ along this sample path.

By construction both π and π∗ take the Remain action for the first T − 1

transitions. During each of these transitions the cost incurred by π is strictly

less than the cost incurred by π∗, since from Equation (2.16)

C (x,Remain) =
∑
s∈S

xs

<
∑
s∈S

xs + 1

=
∑
s∈S

(
x+ es

′
)
s

= C
(
x+ es

′
,Remain

)
for any x ∈ X . At transition T both π and π∗ choose the Departx̂+es′ action, and

follow the tour Π
(
x̂+ es

′). Since

C(x̂,Departx̂+es′ ) = λΠ
(
x̂+ es

′
)
s∗

+
∑
s∈S

Π(x̂)s

Π
(
x̂+ es

′
s∗

) x̂s
≤ λΠ

(
x̂+ es

′
)
s∗

+
∑
s∈S

Π
(
x̂+ es

′)
s

Π (x̂+ es′)s∗

(
x̂s + es

′
)

= C(x̂+ es
′
,Depart),

π again incurs a cost of no more than that incurred by π∗. Both policies will

return to the depot in the same state, having departed at the same time and
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for the same duration. Since from this point onward π follows π∗ exactly, both

policies incur identical costs moving forward. Thus Vα(x) ≤ Vα
(
x+ es

′), as

required.

Lemma 10. Let α ∈ (0, 1) be given and define the set

Â = {Remain} ∪
{

DepartL(x) | x ∈ X \ {0}
}
.

There exists an optimal policy π∗ for Φ that uses only the actions in Â.

Proof. Let an optimal policy π∗ be given, and consider some state x where a

policy chooses Departx′ for some x′ ∈ X with L(x) = L(x′). We show that the

policy π̂∗, defined as

π̂∗(x̂) =


DepartL(x), x̂ = x

π∗(x̂), otherwise
∀x̂ ∈ X,

is optimal as well. It then follows that there exists an optimal policy that does

not choose actions outside those in Â. From Theorem 5,

Vα(x) = C
(
x,Departx′

)
+ α

∑
x′′∈X

P ∗x, x′′
(
Departx′

)
Vα(x′′)

= min
a∈Ax

{
C(x, a) + α

∑
x′′∈X

P ∗x, x′′(a)Vα(x′′)

}
.

However, from Lemma 8 and Equation (2.16) we have that

Vα(x) = C
(
x,Departx′

)
+ α

∑
x′′∈X

P ∗x, x′′
(
Departx′

)
Vα(x′′)

= C
(
x,DepartL(x)

)
+ α

∑
x′′∈X

P ∗x, x′′
(

DepartL(x)

)
Vα(x′′)

= Vα,π̂∗(x),

and so the policy π∗ is no better than the policy π̂∗.
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Theorem 4. Let α ∈ (0, 1) be given along with an optimal policy π∗ as in Lemma 10.

Then π∗α is a threshold policy.

Proof. Let an optimal policy π∗ be given that restricts itself to actions in Â,

shown to exist by Lemma 10. Let x ∈ X be given for which π∗(x) = DepartL(x)

along with s′ ∈ L(x); if no such x exists, we are done. We want to show that

π
(
x+ es

′)
= DepartL(x); if so, we have proved our claim. From Theorem 5 we

have that

Vα(x) = min
{
Vα, Remain(x), Vα, Depart(x)

}
,

where

Vα, Remain(x) = C (x,Remain) + α
∑
x′′∈X

P ∗x, x′′(Remain)Vα(x′′)

Vα, Depart(x) = C
(
x,DepartL(x)

)
+ α

∑
x′′∈X

P ∗x, x′′
(

DepartL(x)

)
Vα(x′′).

From Lemma 7 we have that

C
(
x+ es

′
,DepartL(x)

)
= λΠ (L(x))s∗ +

∑
s∈S

Π
(
x+ es

′)
s

Π (L(x))s∗

(
x+ es

′
)
s

= λΠ(x)s∗ +
∑
s∈S

Π(x)s
Π(x)s∗

(
x+ es

′
)
s

= λΠ(x)s∗ +
∑
s∈S

Π(x)s
Π(x)s∗

xs +
Π(x)s′

Π(x)s∗

= C
(
x,DepartL(x)

)
+

Π(x)s′

Π(x)s∗
.
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Combining this with Lemma 8, we have that

Vα, DepartL(x)

(
x+ es

′
)

= C
(
x+ es

′
,DepartL(x)

)
+ α

∑
x′′∈X

P ∗
x+es′ , x′′

(
DepartL(x)

)
Vα(x′′)

= C
(
x,DepartL(x)

)
+

Π(x)s′

Π(x)s∗

+ α
∑
x′′∈X

P ∗x, x′′
(

DepartL(x)

)
Vα(x′′)

= Vα, Depart (x) +
Π(x)s′′

Π(x)s∗

≤ Vα, Depart (x) + 1,

since by construction Π (x)s′ ≤ Π (x)s∗ . Finally, since π∗ is an optimal policy and

chose to depart in x, we have that

Vα, Depart

(
x+ es

′
)
≤ Vα, Depart (x) + 1

= Vα (x) + 1

≤ Vα, Remain(x) + 1

= Vα, Remain

(
x+ es

′
)
.

Thus π∗(x) = DepartL(x) implies that π
(
x+ es

′)
= DepartL(x) for all s′ ∈ L(x),

as required.

Thus we have shown that in the α-discounted setting, optimal policies for Φ

exhibit a threshold structure. We now argue that this result holds in the undis-

counted case using Theorem 6. We must first show that Φ satisfies the conditions

of the theorem.

Lemma 11. Consider the policy π defined as

π(x) = Depart1. (2.17)

Then Vα,π(x) ≤ 2λΠ(1)s∗/(1− α).
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Proof. We begin by providing an upper bound on the cost incurred in each state.

From Equation (2.16), Lemma 7, and the fact that Π(1)s ≤ Π(1)s∗ for all s ∈ S,

we have that

C(x, π(x)) = λΠ(1)s∗ +
∑
s∈S

Π(1)s
Π(1)s∗

xs

≤ λΠ(1)s∗ +
∑
s∈S

xs

Thus the cost incurred at each transition is upper bounded by a function that is

linear in the number of delivery requests in the state. Applying Lemma 8 gives

us that

P ∗x, x′′
(
Departx+1

)
= P ∗1, x′′

(
Depart1

)
,

for all w′′ ∈ X , and so at each transition the transition probabilities are inde-

pendent of the current state. In particular, we transition to the random state

χ =
∑

i∈[I] e
si , where I given Λ is a Poisson random variable with rate parame-

ter λΛ and Λ is an exponential random variable with mean Π(1)s∗ . Combining

this with Equation (1.1), we have

Vα,π(0) ≤
∞∑
t=0

αt E
[
C(χ,Depart1)

]
≤

∞∑
t=0

αt E

[
λΠ(1)s∗ +

∑
s∈S

χs

]
.

Straightforward calculation shows that

E [I] = E [E [I | Λ]]

= E [λΛ]

= λΠ(1)s∗ ,
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and so

Vα,π(0) ≤ 2λΠ(1)s∗
∞∑
t=0

αt

=
2λΠ(1)s∗

1− α
.

Lemma 12. The MDP Φ satisfies SEN 1—3 of Theorem 6.

Proof. We show that each of the assumptions holds in turn for Φ. We take the

zero vector 0 as our distinguished state. Throughout this proof it is assumed

that α ∈ (0, 1) is given.

SEN 1. Since all costs C are nonnegative it suffices to show that (1−α)Vα(0) is

bounded above. Lemma 11 immediately provides this bound, since any feasible

policy provides an upper bound on the cost of the optimal policy.

SEN 2. We show that

hα(x) ≤ 2λΠ(1)s∗

P ∗1, 0(Depart)
,

or equivalently that

Vα,π(x) =
2λΠ(1)s∗

P ∗1, 0(Depart)
+ Vα(0).

Consider the non-stationary policy π̂ that follows π from Equation (2.17) in

states x 6= 0 until the first time it reaches state 0, and after which it follows

some optimal policy π∗. We show that this policy leads to the state 0 from x 6= 0

with finite cost.

Let x 6= 0 be given, and consider following π̂. Note that P ∗x, 0(Departx+1) > 0.

From Lemma 8 we have that

P ∗x, 0(Departx+1) = P ∗x+1, 0

(
Depart1

)
= P ∗1, 0

(
Depart1

)
.
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This means that at each transition the probability we transition to 0 is at least

P ∗1, 0(Depart). Thus an upper bound on the number of transitions we need to

take until we get to state 0 isX , whereX ∈ {1, 2, . . .} is a geometric random vari-

able with success probability P ∗1, 0(Depart). As shown in the proof of Lemma 11,

this policy incurs a cost of at most 2λΠ(1)s∗ per transition. This gives us

Vα,π(x) ≤ E

[
X∑
t=1

αX−1 · 2λΠ(1)s∗ + αXVα(0)

]

≤ E

[
X∑
t=1

2λΠ(1)s∗ + Vα(0)

]

=
2λΠ(1)s∗

P ∗1, 0(Depart)
+ Vα(0),

and so hα(x) is bounded above as required.

SEN 3. We show that 0 ≤ hα(x). Showing that 0 ≤ hα(x) is equivalent to

showing that Vα(0) ≤ Vα(x), which follows immediately from Lemma 9.

Lemma 13. For any α ∈ (0, 1), let π∗α be an α-discount optimal threshold policy as in

Theorem 4. For all x ∈ X such that
∑

s∈S xs > 2λΠ(1)s∗ , π∗α(x) = DepartL(x).

Proof. Let x ∈ X be given with
∑

s∈S xs > 2λΠ(1)s∗ . Suppose for contradiction

that π∗α(x) = Remain. Then

Vα(x) =
∑
s∈S

xs + α(1− λτ)Vα(x) + α
∑
s∈S

fS(s)Vα (x+ es) .

From Lemma 9 we have that Vα (x+ es) ≥ Vα(x), and so

Vα(x) ≥
∑
s∈S

xs + α(1− λτ)Vα(x) + α
∑
s∈S

fS(s)Vα (x)

≥
∑
s∈S

xs + αVα(x)

≥ 1

1− α
∑
s∈S

xs.

34



By assumption we have that
∑

s∈S xs > 2λΠ(1)s∗ , and so

Vα(x) >
2λΠ(1)s∗

1− α
.

However, from Lemma 11 we know that Vα(x) ≤ 2λΠ(1)s∗/(1− α), a contradic-

tion.

Lemma 14. For any α ∈ (0, 1), let π∗α be an α-discount optimal threshold policy as in

Theorem 4. Then there exists α1, α2, . . . ∈ (0, 1) with limn→∞ αn → 1 such that

lim
n→∞

π∗αn
→ π∗

exists where π∗ is also a threshold policy.

Proof. Observe that a threshold policy may be fully characterized by the set of

all states for which the Remain action is chosen, since for any state x not in that

set by definition the DepartL(x) action is taken. For any α ∈ (0, 1) define

Rα = {x ∈ X | π∗α(x) = Remain} .

From Lemma 13 we have for any α ∈ (0, 1) that π∗α(x) = DepartL(x) for all x ∈ X

such that
∑

s∈S xs > 2λΠ(1)s∗ . Define

R =

{
x ∈ X |

∑
s∈S

xs ≤ 2λΠ(1)s∗

}
.

This is a finite set, and by constructionRα ⊆ R. Let a sequence α1, α2, . . . ∈ (0, 1)

with limn→∞ αn → 1 be given. Then the sequence Rα1 ,Rα2 , . . . is contained

in the finite set R and so has some convergent subsequence Rβ1 ,Rβ2 , . . . that

converges to an element ofR, sayR∗. Thus

lim
n→∞

π∗βn → π∗

exists and is a threshold policy, as required.
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2.5 Comparing the Two Settings

Computing an optimal threshold policy π∗ for the CTMDP Ψ can be compu-

tationally expensive, whereas running Algorithm 1 on a given input requires

only evaluating the β-approximation TSPβ(S). For this reason we are interested

in bounding the performance of Algorithm 1 relative to the performance of π∗,

an optimal policy for Ψ, in the long-run average cost setting of Section 2.4. We

consider the simple geometry where S is a finite subset of [0,∆/2] where the de-

pot is at 0; note that by construction the optimal TSP tour will depart from the

depot, move to the furthest client at a distance ∆/2, and then return, incurring

a total distance of ∆. In this case we can consider β = 1 since the optimal tour

is known.

In this simple geometry, the CTMDP of Section 2.4 can be reduced to a much

smaller state space. In particular, we need only track the total number of deliv-

ery requests waiting for delivery, and the distance of the furthest client to which

there is a delivery request. With these two pieces of information the tour we

take when we depart and the costs incurred are known. To construct this equiv-

alent CTMDP we move all delivery charges from the depart action to the remain

action, noting that over any sequence of remain actions followed by a depart ac-

tion we incur the same cost. We can then use any solution method to compute

the long-run average cost incurred, for example, via value iteration [20].

Figure 2.1 shows the ratio between the performance of Algorithm 1 relative

to the optimal threshold policy when S = {0, 1/11, 2/11, . . . , 10/11}. We con-

sidered uniform and (discretized) Beta distributions for the client distribution

fS . As shown, for any arrival rates the performance guarantees are quite good.

Note that the competitive ratio in this setting is 3/2 · (10/11)/(1/11) − 1 = 14,

which is far worse than any of these performance guarantees, suggesting that
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Algorithm 1 can perform well in place of using a difficult-to-compute optimal

threshold policy.

Figure 2.1: The ratio of the performance of Algorithm 1 relative to the optimal
threshold policy for different arrival rates. The solid lines indicate the ratio for
different arrival distributions. The associated dashed lines represent the worst-
case ratio for any arrival rate. The worst-case guarantees are easily computed
by evaluating the expected cost per delivery request of Algorithm 1, which de-
pends only on the mean delivery request distance and not the arrival rate. The
associated lower bound on the cost of optimal threshold policy is obtained by
the structure of the cost functions.
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CHAPTER 3

THE BASE SELECTION PROBLEM

3.1 Air Ambulance Routing at Ornge

The Ornge corporation offers air ambulance services for the Canadian province

of Ontario [3]. Each day Ornge must transport a number of patients between

locations across Ontario. Each patient, or transfer request, involves picking up a

patient from one location and flying them to another. Local ground ambulances

handle the transportation of the patient to and from any nearby hospital, so in

this chapter we assume all patients are being transferred between airports.

Each of these transfer requests can have a number of healthcare-related side

constraints. Constraints can include earliest pickup times, latest delivery times,

or requiring the patient to be the only patient on board.

Ornge has access to a fleet of fixed-wing air ambulances which can be used

to serve these requests. Different aircraft have different patient capacities, flight

speeds, required ground time, and landing restrictions. Each aircraft has a home

base where it begins its day and must return to at the end of the day. Thus when

an aircraft is assigned to serve some set of requests it must choose a tour over

pickup and delivery locations, starting and ending at its home base.

3.1.1 The Single-Day Problem

Each day Ornge is presented with a number of non-emergency transfer requests

to serve. These transfer requests are fully known ahead of time, and so an of-

fline schedule can be developed to serve them. Emergency requests are handled

by Ornge separately from non-emergency requests, and so we will ignore emer-

gency requests in this chapter.
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Given a set of transfer requests to serve, Ornge’s goal is to find a minimum-

cost routing of all transfer requests utilizing its available fleet. Each transfer

request must be served by an aircraft in a manner that satisfies its side con-

straints, while each aircraft has limits on how long it can operate each day and

how many patients it can have on board at any time.

This problem is a variant of the dial-a-ride problem [14], where each trans-

fer request has a number of additional side constraints. This problem can also

be expressed as a set partitioning integer programming (IP) problem [7] when

we do additional work to compute the objective coefficients [12, 13]. In this for-

mulation, for each subset of transfer requests and for each aircraft we associate

a binary variable. The objective coefficient of this variable is the optimal cost

of serving the subset of requests with that aircraft. We must then select subset-

aircraft pairs so that each request is in exactly one selected pair, and each aircraft

is used in at most one selected pair.

Formally, let L be the set of airports that Ornge services. For each ` ∈ L let P`

be the set of aircraft in the Ornge fleet with home base `, and define P =
⋃
`∈LP`

as the Ornge fleet. LetR be the set of transfer requests to be served, and let P(R)

be the power set of R. Each r ∈ R has an origin and destination in L, along

with a (possibly empty) set of side constraints to be respected. Let an aircraft

i ∈ P and a set j ∈ P(R) be given. We define cij as the optimal cost of serving

all requests in j with aircraft i, where cij = ∞ if there is no feasible schedule.

See [13] for a practical treatment of how to compute such cij . Then the following

integer program models the daily transfer request problem at Ornge.
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Q(P ,R) = min
∑
i∈P

∑
j∈P(R)

cijxij

s.t.
∑
i∈P

∑
j∈P(R):r3j

xij = 1 ∀r ∈ R

∑
j∈P(R)

xij ≤ 1 ∀i ∈ P

xij ∈ {0, 1} ∀i ∈ P , j ∈ P(R).

(3.1)

The variable xij indicates whether we serve subset j ∈ P(R) with aircraft i.

The first set of constraints ensures that each request is served by some subset-

aircraft pair. The second set of constraints ensures that each aircraft serves at

most one set of requests.

This formulation has a number of useful properties. First, for problem in-

stances that actually arise at Ornge this integer program can be solved to op-

timality in an acceptable amount of time. (One practical constraint enforced is

that we only consider subsets of requests of size at most four. Although larger

subsets can be considered, it increases the time required to solve the problem

dramatically and offers little benefit, since the duty day constraints on aircraft

will typically be violated serving such subsets.) Second, the varied side con-

straints on both the aircraft and transfer requests are easily enforced during the

computation of the objective coefficients cij . A software tool solving this prob-

lem is used by Ornge to help plan transfer requests each day at Ornge [13].

3.2 Base Selection

Ornge owns a number of air ambulances with which it serves both emergency

and non-emergency calls. However there are also a number of standing agree-

ment (SA) aircraft that can be used by Ornge for a certain number of hours per
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year. Each SA aircraft has a home base that it begins its day and must return

to at the end of each day, just as the Ornge aircraft do. These SA contracts are

periodically renegotiated, offering the possibility of choosing SA aircraft at dif-

ferent locations. Table 3.1 lists the current SA aircraft available. Our goal is to

decide where to locate SA aircraft in order to minimize the long-run expected

operating cost for Ornge.

Carrier Count Home base
Air Bravo 1 Barrie-Orillia
Air Bravo 1 Thunder Bay
NAS 1 Thunder Bay
NAS 1 Muskoka
SkyCare 2 Sioux Lookout
Thunder Air 2 Timmins
Thunder Air 2 Thunder Bay
Wabusk 1 Moosonee

Table 3.1: The fleet of 11 SA aircraft currently available to Ornge. There are
32 additional potential SA aircraft from various locations in Ontario to choose
from.

3.2.1 Stochastic Programming Formulation

Our objective is to choose a set of SA aircraft locations, subject to some bud-

get constraint, that minimizes the average cost of operations over some time

horizon. We can formulate this problem as a 2-stage stochastic optimization

problem. In the first stage we choose a set of SA aircraft to operate, and in the

second stage we solve a number of single-day problems to compute the total

cost implied by that selection.

As before let L be the set of airports that Ornge services. We now augment P

andP` for each ` ∈ L to include the potential new SA aircraft, and denote P̂ ⊆ P

as the set of aircraft that will be guaranteed to remain open after the first stage

decisions. We are allowed to choose at most NP aircraft and at most NL base
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locations. Finally, let R be a random variable over the set of transfer requests

to be served on a given day, including over all associated side constraints. This

gives us the following 2-stage stochastic integer program, where Q is defined

in (3.1).

min
∑
i∈P

Fiyi + E [Q({i ∈ P | zi = 1} ,R)]

s.t.
∑
i∈P

zi ≤ NP

∑
`∈L

y` ≤ NL

∑
i∈P`

zi ≤ |P`| y` ∀` ∈ L

zi = 1 ∀i ∈ P̂

zi ∈ {0, 1} ∀i ∈ P \ P̂

y` ∈ {0, 1} ∀` ∈ L.

(3.2)

Here the variable zi indicates whether or not aircraft i ∈ P will be utilized,

and variable y` indicates whether or not location ` ∈ L will be utilized by a

chosen aircraft. The first constraint ensures that we choose at most NP aircraft,

and the second constraint ensures that we choose at mostNL base locations. The

third constraint ensures that aircraft can only be chosen if their corresponding

base has been opened. The fourth constraint is used to force us to choose all

aircraft in P̂ , as these aircraft are not up for renegotiation. Finally, the fifth and

sixth constraints ensure that all choices are binary.

3.2.2 Extensive Form Formulation

The random variable R is high-dimensional. In addition to a pickup location,

a delivery location, an earliest pickup time, and a latest delivery time, each re-
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quest can also have additional side constraints. To overcome the need to model

the distribution of R explicitly we rely on previously observed data to form an

empirical distribution. LetR1,R2, . . . ,Rn be request sets from n previously ob-

served days. Assuming that R has the empirical distribution associated with

R1, . . . ,Rn, then we can write (3.2) in extensive form as follows [10].

min
∑
i∈P

Fiyi +
1

n

∑
t∈[n]

∑
i∈P

∑
j∈Rt

ctijxtij

s.t.
∑
i∈P

∑
j∈P(Rt):r∈j

xtij = 1 ∀t ∈ [n] , r ∈ Rt

∑
j∈P(Rt)

xtij ≤ zi ∀t ∈ [n] , i ∈ P

∑
i∈P

zi ≤ NP

∑
`∈L

y` ≤ NL

∑
i∈P`

zi ≤ y` ∀` ∈ L

zi = 1 ∀i ∈ P̂

zi ∈ {0, 1} ∀i ∈ P \ P̂

y` ∈ {0, 1} ∀` ∈ L

xtij ∈ {0, 1} ∀t ∈ [n] , i ∈ P , j ∈ P(Rt).

(3.3)

Here the first, second, and final constraints are time-indexed variants of the

constraints in program (3.1). The first constraint ensures that for each sub-

problem t ∈ [n] that all requests inRt are served. The second constraint ensures

that each aircraft can be only utilized if that aircraft has been chosen for use.

The third through eighth constraints serve the same role as in program (3.2).

The final constraint ensures that for each sub-problem all decisions are binary.
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3.3 Results

Ornge provided 198 records of daily request sets from May 6, 2015 to April 25,

2016. We solved the program (3.3) using 60 request sets randomly-chosen from

this collection as the scenarios in the objective function. The choice to use only a

subset of the available data is due to practical constraints; Table 3.4 shows that

solving the IP even with only 60 request sets uses a large amount of memory.

Solving the IP with additional request sets is computationally infeasible. We

considered 43 different aircraft to open across 22 base locations. We set Fi = 0

for all aircraft, as the cost of choosing an aircraft is either unknown or uncer-

tain. Instead we solve the program for a number of choices of NL and NP . In

particular, we focused on the following scenarios listed in Table 3.2.

Scenario
∣∣∣P̂∣∣∣ NP NL

(Current) 11 11 9
1.1 11 12 9
1.2 11 13 9
1.3 11 14 9
2.1 9 10 9
2.2 9 11 9
2.3 9 12 9
2.4 9 13 9
2.5 9 14 9
2.6 9 15 9
(All) 44 44 22

Table 3.2: List of scenarios considered for the SA base selection problem. The
forced aircraft column represents the size of P̂ . The total aircraft column in-
dicates the aircraft budget NP , while the total bases column indicates the base
budget NL. The scenario “(Current)” represents Ornge’s current fleet, while the
scenario “(All)” represents using all 44 potential aircraft. The “(All)” scenario is
infeasible from Ornge’s perspective, but provides a useful bound on the cost on
what can be achieved.

As a pre-processing step we compute the objective coefficients for each of

the 198 available days and store them in a database, as these coefficients are
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identical across the different scenarios.

3.3.1 Direct Computation with Gurobi

We created a Gurobi [15] model in C++ to directly solve the extensive form

IP from Equation (3.3). Each scenario was then constructed by querying the

objective coefficients from the database, assembling the model, and passing it to

Gurobi to be solved. All but one scenario, Scenario 2-2, was solved to optimality.

Scenario 2-2 failed to solve, with the machine running out of memory. This

happened even when warm starting Gurobi using the optimal solution from

Scenario 2-1. The costs associated with each solution are listed in Table 3.3,

while the run time characteristics are described in Table 3.4.

Scenario E [φ1] E [φ2] E [φ3]
(Current) 2100.75 5.13 1.29
1.1 2087.31 5.09 1.28
1.2 2066.58 5.04 1.27
1.3 2046.71 4.99 1.26
2.1 2133.06 5.21 1.32
2.2 — — —
2.3 2058.66 5.02 1.27
2.4 2041.26 4.98 1.26
2.5 2031.35 4.95 1.25
2.6 2027.98 4.94 1.25
(All) 1987.36 4.86 1.23

Table 3.3: The costs associated with each scenario. Here φ1, φ2, and φ3 are ran-
dom variables describing cost per distance requested, the cost per distance re-
quested, and the distance flown per distance requested for a day. The distance
requested in a single day is the sum over all requests of the origin to destination
distance. Costs are expressed in dollars, and distances are expressed in kilo-
meters. Scenario 2-2 failed to solve with Gurobi running out of memory, even
when warm-starting the solve using the solution from Scenario 2.1.
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Scenario CPU Time (hours) Wall time (hours) Max Memory (GB)
1-1 20.45 2.86 17.06
1-2 15.51 2.24 17.07
1-3 5.92 1.00 15.59
2-1 16.12 2.28 12.68
2-2 12.27 1.85 30.73
2-3 8.64 1.32 17.53
2-4 4.19 0.77 16.45
2-5 4.79 0.84 15.94
2-6 11.35 1.66 20.22

Table 3.4: The computing resources required to solve each scenario. Scenario 2-2
was terminated after running out of available memory, even when warm started
with a solution from Scenario 2-1. The “(Current)” and “(All)” scenarios have
no first stage decisions, and so were solved entirely during the pre-processing
step.

3.3.2 Decomposition

An alternate strategy to directly solving the extensive form IP in Equation (3.3)

is to utilize the integer L-shaped method for stochastic programming. For a

detailed explanation of the integer L-shaped method, see Section 8.1 of [10].

The linear programs used in the L-shaped method, specialized to our prob-

lem, are shown in Section A.2. It is useful to explore the constraint cuts gener-

ated by the L-shaped method.

The first type of cuts generated are feasibility cuts. These cuts take the form

∑
i∈P

σizi ≥
∑
r∈Rt

σr, (3.4)

where σ is a dual optimal solution to the linear program in Equation A.2 for

some sub-problem t ∈ [n], and σ is indexed according to the constraints in the
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program. The dual of the linear program can be written as

max
∑
r∈σr

σr −
∑
i∈P

ziσi

s.t.
∑
r∈j

σr ≤ σi ∀i ∈ P , j ∈ P(Rt)

σr ∈ [0, 1] ∀r ∈ Rt

σi ∈ [0, 1] ∀i ∈ P .

(3.5)

Note that the feasibility cut enforces that the dual objective must be non-positive,

which coincides with the feasibility LP having a zero objective value. Addition-

ally, the dual variables are bounded between zero and one, and so the feasibility

cut can be interpreted as requiring the first-stage LP to open enough planes to

satisfy the total number of transfer requests that were unable to be served.

The second type of cuts generated are optimality cuts. These cuts take the

form
1

n

∑
t∈[n]

∑
i∈P

πtizi + θ ≥ 1

n

∑
t∈[n]

∑
r∈Rt

πtr, (3.6)

where πt is a dual optimal solution to the linear program in Equation A.3 corre-

sponding to the tth sub-problem, and πt is indexed according to the constraints

in the program. The dual of the linear program can be written as

max
∑
r∈Rt

πtr −
∑
i∈P

ziπti

s.t.
∑
r∈j

πtr ≤ πti + ctij ∀i ∈ P , j ∈ P(Rt)

πtr ≥ 0 ∀r ∈ Rt

πti ≥ 0 ∀i ∈ P .

(3.7)

Note that by taking an average over the objective functions of all sub-problems,

the optimality cut ensures that the expected second stage cost θ is at least the

average of the second stage objective values. For each r ∈ Rt, the dual variable
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πtr can be interpreted as the contribution of transfer request r to the objective

value. For each i ∈ P , the dual variable πti can be interpreted as the savings

achieved by utilizing aircraft i.

We implemented the integer L-shaped method for the base selection prob-

lem, using Gurobi as the underlying linear programming solver. While small

problems were able to be solved to optimality, problems with even a few days of

sub-problems took tens of hours to complete or exhausted all available memory.

The majority of the work (and memory utilization) went into the branch-and-

bound tree. I conjecture that this is due in part to the lack of integrality cuts such

as Gomory cuts [8]. The difficulty in incorporating such cuts in the decomposi-

tion technique is due to the first stage decisions influencing the right-hand side

of the constraints in the second stage, where the bulk of the integer variables

are.

It is tempting to rely on Gurobi’s impressive abilities as an IP solver to solve

the second stage problems to optimality in one pass. However, doing so dis-

cards all dual information used to generate feasibility and optimality cuts in the

first stage problem.

Another tempting avenue to speed up the decomposition routine would be

to warm-start algorithm with a good-quality integer solution we can use to

prune the branch-and-bound tree. A natural approach to this would be to utilize

randomized rounding. Unfortunately, we have the following result.

Lemma 15. The IP in Equation (3.3) has an unbounded integrality gap.

Proof. Consider an instance of this IP with 2 aircraft, 1 sub problem, and 4 trans-

fer requests. Each aircraft can feasibly serve one of the following subsets of

requests: {1, 2} , {3, 4} , {1, 3} , {2, 4}. Let j = 1, 2, 3, 4 index these subsets, re-
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spectively. Aircraft 1 has objective coefficients

c111 = a c112 = a

c113 = b c114 = b,

while aircraft 2 has objective coefficients

c121 = b c122 = b

c123 = a c124 = a,

where a < b. Then the optimal fractional solution is to choose x111 = x112 =

1/2 and x123 = x124 = 1/2, achieving an objective value of 2a. However, the

only two feasible integer solutions are x111 = x122 = 1 or x113 = x124, up to

symmetry in the aircraft, all with a cost of a + b. Thus the integrality gap is at

least (a + b)/(2a) = 1/2 + b/a. Since we are free to choose b large and a small,

there is no finite integrality gap for this family of instances.
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CHAPTER 4

ONLINE EMERGENCY TRANSPORTATION DISPATCHING

4.1 Air Ambulance Routing at BCEHS

BC Emergency Health Services (BCEHS) offers both air and ground ambulance

service in the Canadian province of British Columbia [2]. Each day BCEHS must

transfer patients between locations across British Columbia. BCEHS has a fleet

of land ambulances, fixed-wing (FW) aircraft, and rotor-wing (RW, helicopter)

aircraft to provide these services. FW aircraft must land at airports, and so pa-

tients are moved to and from the airport using land ambulances, whereas RW

aircraft can land at airports, helipads, and other sufficiently open locations such

as the locations of roadside accidents.

Unlike Ornge, BCEHS does not serve urgent and non-urgent calls with sep-

arate fleets. This is in part because they have a smaller fleet available. Ornge

operates 11 FW standing agreement aircraft just for non-urgent calls, and has a

larger fleet of FW and RW aircraft for urgent calls, while BCEHS currently has

nine aircraft available in total; see table 4.1 for details.

Name Type Count Home base
Cessna Citation FW (Jet) 1 Vancouver
Beechcraft King Air FW (Turboprop) 1 Vancouver
Beechcraft King Air FW (Turboprop) 2 Kelowna
Beechcraft King Air FW (Turboprop) 1 Prince George
Sikorsky S76 RW 2 Vancouver
Sikorsky S76 RW 1 Prince Rupert
Bell 412 RW 1 Kamloops

Table 4.1: The fleet of 9 aircraft available to BCEHS.

Our goal is to identify policies with which BCEHS can schedule its fleet to

serve all urgent and non-urgent calls. Calls arrive in an online fashion, each

with an origin, destination, and urgency. Urgent calls typically involve patients
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with time-sensitive, life-threatening conditions. These calls will often require a

RW aircraft for pickup as the location of the associated accident may be far from

an airport. Non-urgent calls typically indicate a transfer request to or from a

hospital, and generally utilize FW aircraft. We ignore other healthcare-specific

side constraints.

There are several objective functions we can consider. In particular, we can

consider minimizing any of the following: pickup latency, time between a call

arriving and the patient being boarded onto a transport; (total) latency, the time

between the arrival of a call and the delivery of the patient to the destination;

or the float time, the total time between the arrival of a call and the delivery

of the patient to the destination minus the required transport time. We can

additionally consider each of these quantities broken down by the urgency of

calls being served.

Unlike in Chapter 3, we do not choose as our objective the total cost of ser-

vice, as assigning a cost associated with degrading the quality of service for an

urgent call is difficult. Similarly, it is not clear how much we should value the

quality of service for urgent calls over non-urgent calls, and so we will look for

Pareto efficient solutions.

4.1.1 Notation

To simulate policies we need to keep track of the state of the world. We say that

a world W is a full description of the status of all known calls and transports,

including locations, histories, and planned actions. We defineW as the space of

all possible worlds. A call R consists of an origin, a destination, and an urgency.

We defineR as the space of all possible calls.
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4.1.2 Policies

We will be interested in exploring policies to govern the behavior of both FW

and RW aircraft in the presence of a mixed stream of urgent and non-urgent

calls. A policy maps the state of the world to an action to be taken. In particular,

when presented with a world a policy must choose exactly one of the following

options.

1. Schedule a pickup for a call on a transport, choosing where in the trans-

ports’ queue the pickup occurs.

2. Schedule a delivery for a call on a transport, choosing where in the trans-

ports’ queue the delivery occurs.

3. Schedule a transport to fly to another airport, choosing where in the trans-

ports’ queue the flight occurs.

4. Request to be asked to provide an action at some later time.

5. Take no action.

We consider the following functions to build up candidate policies.

Greedy(f). Perhaps the simplest policy imaginable considers each call as it

arrives, and schedules it on the transport and in the position that will minimize

the objective f for this call. Note that this policy might assign a call ahead of

existing calls, delaying them.

GreedyNon(f). This policy is identical to Greedy(f), except that calls will al-

ways be scheduled after already-scheduled calls.
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Threshold(k, p, q). This policy serves urgent calls with policy p and non-urgent

calls with policy q. However, all non-urgent calls will not be scheduled until

there are at least k transports available.

ReturnToBase(p). This policy first allows the policy p to react to the state of

the world. If p takes no action, then this policy will schedule an idle transport

that is away from its home base to return to its home base.

In particular, we explore the policies Greedy, GreedyNon, Threshold(k, p, q)

for each k ∈ {0, 1, ..., 9} and each p, q ∈ {Greedy,GreedyNon}. Additionally, for

each of these policies p, we consider ReturnToBase(p). We will use the notation

of Table 4.2 to refer to such policies.

Notation Explanation
GP A greedy preemptive policy
GNP A greedy non-preemptive policy
Tk (p, q) A threshold policy with threshold k, urgent policy p,

and non-urgent policy q
R (As a suffix) return to base when idle

Table 4.2: Naming conventions used to label policies. For example, the label
“T1 (GNP, GP) R” represents a threshold policy that has a threshold of 1, uses
a greedy non-preemptive policy for urgent calls, a greedy preemptive policy
for non-urgent calls, and finally sends transports back to their home base when
idle.

4.2 Computational Results

We simulated daily operations for all calls from 2014. The data available from

BCEHS only includes urgent calls that began as non-urgent calls. Thus the re-

sults in this section should be interpreted only as a first approximation of the

true behavior of the system, as there should be more urgent calls. As it stands

we considered a total of 17083 calls, 7409 of which are non-urgent and 9674
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of which are urgent. Arrival times of the calls were drawn from the empirical

call distribution from operations at Ornge, since the arrival times of calls in the

BCEHS data are not available.

The performance of various policies for non-urgent and urgent calls are shown

in Tables 4.3 and 4.4, respectively. The policies shown include the best 10 and

worst 10 policies, as measured by the total latency of non-urgent calls. The con-

fidence intervals listed are computed by batch means, assuming each month of

calls is approximately independent, and represent the 95% confidence level.

Somewhat surprisingly, the very simple greedy non-preemptive policy which

returns idle planes to their home base does quite well for both urgent and non-

urgent calls. However, the actual policy used does not seem to matter as long as

the return-to-base heuristic is also used. This suggests that geography is play-

ing a large role in the performance of these policies. In particular, BCEHS has

been operating for years, and so the home base of each aircraft are likely chosen

to offer good service for typical demand patterns. This in turn suggests that

careful base selection, as in Chapter 3, could provide a large benefit to BCEHS.

The utilization of each aircraft under each policy are tabulated in Section C.1.

It is important to recall that the demand distribution we simulated does not

account for all the calls that BCEHS receives, and so should not be interpreted

as providing a perfectly accurate analysis. Rather, these results should be used

to guide the exploration of a variety of policies that incorporate geography more

explicitly.

4.3 Conclusions and Future Work

As discussed above, the results from this work are largely preliminary. The sim-

ulation model captures the core behavior of the air ambulances, but omits many
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Policy Pickup Latency Total Latency Float
GNP R 0.22± 0.01 1.21± 0.03 0.28± 0.02
GP R 0.23± 0.01 1.30± 0.03 0.37± 0.02
T1 (GNP, GNP) R 0.34± 0.01 1.42± 0.02 0.40± 0.02
GNP 0.34± 0.01 1.42± 0.02 0.40± 0.02
T0 (GNP, GNP) 0.34± 0.01 1.42± 0.02 0.40± 0.02
T1 (GNP, GNP) 0.34± 0.01 1.42± 0.02 0.40± 0.02
T0 (GNP, GNP) R 0.34± 0.01 1.42± 0.02 0.40± 0.02
T7 (GNP, GNP) 0.37± 0.01 1.45± 0.03 0.43± 0.02
T7 (GNP, GNP) R 0.37± 0.01 1.45± 0.03 0.43± 0.02
T7 (GNP, GP) 0.37± 0.01 1.48± 0.03 0.50± 0.02
T8 (GP, GP) 0.61± 0.02 1.85± 0.04 0.86± 0.03
T8 (GP, GP) R 0.61± 0.02 1.85± 0.04 0.86± 0.03
T9 (GNP, GP) R 1.44± 0.08 2.48± 0.09 1.52± 0.07
T9 (GNP, GP) 1.44± 0.08 2.48± 0.09 1.52± 0.07
T9 (GNP, GNP) 1.44± 0.08 2.48± 0.09 1.52± 0.07
T9 (GNP, GNP) R 1.44± 0.08 2.48± 0.09 1.52± 0.07
T9 (GP, GNP) 1.60± 0.06 2.76± 0.07 1.82± 0.06
T9 (GP, GP) R 1.60± 0.06 2.76± 0.07 1.82± 0.06
T9 (GP, GNP) R 1.60± 0.06 2.76± 0.07 1.82± 0.06
T9 (GP, GP) 1.60± 0.06 2.76± 0.07 1.82± 0.06

Table 4.3: Performance measures for a selection of policies for non-urgent calls.
The total latency measures time between a request arriving in the system and
the request being served. The pickup latency measures the time between a re-
quest arriving in the system and the request being boarded on an aircraft. The
float time is the total latency minus the required travel time for each request. All
units are hours.
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Policy Pickup Latency Total Latency Float
GNP R 0.43± 0.01 1.41± 0.01 0.52± 0.01
GP R 0.42± 0.01 1.42± 0.01 0.53± 0.01
T1 (GNP, GNP) R 0.59± 0.01 1.41± 0.02 0.69± 0.01
GNP 0.59± 0.01 1.41± 0.02 0.69± 0.01
T0 (GNP, GNP) 0.59± 0.01 1.41± 0.02 0.69± 0.01
T1 (GNP, GNP) 0.59± 0.01 1.41± 0.02 0.69± 0.01
T0 (GNP, GNP) R 0.59± 0.01 1.41± 0.02 0.69± 0.01
T7 (GNP, GNP) 0.59± 0.01 1.41± 0.02 0.70± 0.02
T7 (GNP, GNP) R 0.59± 0.01 1.41± 0.02 0.70± 0.02
T7 (GNP, GP) 0.59± 0.01 1.41± 0.02 0.70± 0.01
T8 (GP, GP) 0.59± 0.01 1.44± 0.02 0.73± 0.01
T8 (GP, GP) R 0.59± 0.01 1.44± 0.02 0.73± 0.01
T9 (GNP, GP) R 0.60± 0.01 1.41± 0.02 0.71± 0.02
T9 (GNP, GP) 0.60± 0.01 1.41± 0.02 0.71± 0.02
T9 (GNP, GNP) 0.60± 0.01 1.41± 0.02 0.71± 0.02
T9 (GNP, GNP) R 0.60± 0.01 1.41± 0.02 0.71± 0.02
T9 (GP, GNP) 0.59± 0.01 1.43± 0.02 0.74± 0.01
T9 (GP, GP) R 0.59± 0.01 1.43± 0.02 0.74± 0.01
T9 (GP, GNP) R 0.59± 0.01 1.43± 0.02 0.74± 0.01
T9 (GP, GP) 0.59± 0.01 1.43± 0.02 0.74± 0.01

Table 4.4: Performance measures for a selection of policies for urgent calls. The
total latency measures time between a request arriving in the system and the
request being served. The pickup latency measures the time between a request
arriving in the system and the request being boarded on an aircraft. The float
time is the total latency minus the required travel time for each request. All
units are hours.
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medically relevant details. The available data also omit an important class of

calls, namely urgent calls that did not begin as non-urgent calls. The omission

of such call is one likely explanation for the low utilization of the RW aircraft as

shown in Table C.1. However, these results still point to the conclusion that the

home base location of aircraft is an important factor influencing service quality.

Although the results from Chapter 3 suggest that Ornge can reduce their costs

by only a few percent by carefully choosing base locations, these improvements

are to a schedules that are planned with full information available. In the on-

line system of BCEHS it is possible (and the simulation data agree) that base

locations are at least as important.
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APPENDIX A

MISCELLANEOUS THEOREMS AND EQUATIONS

A.1 Useful Theorems

The following are useful theorems we rely on in Chapter 2.

Theorem 5 (Theorem 4.1.4 of [20]). For an α-discounted MDP Φ = (Ω,A, C, P ),

the discounted value function Vα is the minimum nonnegative solution of

Vα(ω) = min
a∈A

{
C(ω, a) + α

∑
ω′∈Ω

Pω, ω′(a)Vα(ω′)

}
, ∀ω ∈ Ω.

Theorem 6 (Theorem 7.2.3 of [20]). Consider the following conditions for the MDP

Φ = (Ω,A, C, P ), and define hα(ω) = Vα(ω)− Vα(ω∗) for some distinguished ω∗ ∈ Ω.

SEN1. The quantity (1− α)Vα(ω∗) is bounded for all α ∈ (0, 1).

SEN2. There exists M ≥ 0 such that hα(ω) ≤M for all ω ∈ Ω and all α ∈ (0, 1).

SEN3. There exists L ≥ 0 such that −L ≤ hα(ω) for all ω ∈ Ω and all α ∈ (0, 1).

Let π∗α be the α-discount optimal policy for Φ. If Φ satisfies SEN 1—3 and there exists

a sequence αn → 1 such that limαn→1 παn = π, then π is average cost optimal.

Theorem 7 (Theorem 8.6 of [11], Yao’s principle). Here we consider request-answer

systems for which there is no a priori bound on the number of requests, and so the

cost of the game may be unbounded. Let ALG be any randomized online algorithm

for the request-answer system. Let σ(n) be a random variable representing n-length

arrival sequences with distribution µ(n) for all n ≥ 1. Let {ALGn,i} be the set of all

deterministic algorithms for serving request sequences of length n. If

lim inf
n→∞

infi Eµ(n)

[
ALGn,i(σ

(n))
]

Eµ(n) [OPT(σ(n))]
≥ c,
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and

lim sup
n→∞

Eµ(n)

[
OPT(σ(n))

]
=∞,

then the competitive ratio of the algorithm is at least c.

A.2 Linear Programs for the L-Shaped Method

Refer to the notation used in Chapter 3. The master linear program is

min
∑
i∈P

Fiyi + θ

s.t.
∑
i∈P

zi ≤ NP

∑
`∈L

y` ≤ NL

∑
i∈P`

zi ≤ y` ∀` ∈ L

zi = 1 ∀i ∈ P̂

zi ≥ 0 ∀i ∈ P \ P̂

y` ≥ 0 ∀` ∈ L∑
i∈P

σki zi ≥
∑
r∈Rtk

σkr ∀k ∈ [k1]

1

n

∑
t∈[n]

∑
i∈P

(πt)ki zi + θ ≥ 1

n

∑
t∈[n]

∑
r∈Rt

(πt)kr ∀k ∈ [k2] ,

(A.1)

where k1 represents the number of feasibility cuts, tk is the index of the feasi-

bility linear program used in the constraint, and k2 represents the number of
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optimality cuts. The feasibility linear programs are

min
∑
r∈Rt

(
v+
r + v−r

)
+
∑
i∈P

(
v+
i + v−i

)
s.t.

∑
i∈P

∑
j∈P(Rt):r∈j

xtij + v+
r − v−r = 1 ∀r ∈ Rt

∑
j∈P(Rt)

xtij + v+
i − v−i ≤ zi ∀i ∈ P

xtij ≥ 0 ∀i ∈ P , j ∈ P(Rt)

v+
i , v

−
i ≥ 0 ∀i ∈ P

v+
r , v

−
r ≥ 0 ∀r ∈ Rt

(A.2)

for each sub-problem t ∈ [n], and the optimality linear programs are

min
∑
i∈P

∑
j∈Rt

ctijxtij

s.t.
∑
i∈P

∑
j∈P(Rt):r∈j

xtij = 1 ∀r ∈ Rt

∑
j∈P(Rt)

xtij ≤ zi ∀i ∈ P

xtij ≥ 0 ∀i ∈ P , j ∈ P(Rt)

(A.3)

for each sub-problem t ∈ [n].
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APPENDIX B

DETAILED BASE SELECTION RESULTS

B.1 Base Choices

The following figures show the actual base choices associated with the results

of Table 3.3. We show only the scenarios considered most useful by Ornge. The

maps utilized in these plots were created by [4]

Figure B.1: The current location of SA aircraft at Ornge. Each triangle represents
a base location; darker triangles indicate that multiple aircraft are located at that
base.
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Figure B.2: The set of candidate SA base locations.
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Figure B.3: The aircraft chosen in scenario 1-1.
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Figure B.4: The aircraft chosen in scenario 1-2.
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Figure B.5: The aircraft chosen in scenario 1-3.
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APPENDIX C

BCEHS SIMULATION

C.1 Aircraft Utilization

The following tables detail the utilization of each aircraft under selected policies,

as measured by the fraction of time the aircraft was available. Since we ignored

duty day constraints, each aircraft is available 24 hours a day. The title of each

table is the policy being detailed; see Table 4.2 for details.

GNP
Transport Total Active Patient
Cessna Citation 0.36 0.20 0.23
Beechcraft King Air 0.11 0.07 0.07
Beechcraft King Air 1 0.10 0.07 0.07
Beechcraft King Air 2 0.09 0.06 0.06
Beechcraft King Air 0.07 0.05 0.05
Sikorsky S76 0.05 0.05 0.05
Sikorsky S76 0.03 0.03 0.03
Sikorsky S76 0.03 0.03 0.03
Bell 412 0.03 0.02 0.02

Table C.1: The time flown by each aircraft, expressed as a percentage of the
total time the aircraft is in service. Recall that aircraft did not have restricted
duty days. The active time represents time with at least one patient onboard.
The patient time represents the total time spent by patients onboard, counting
each patient separately. Note that the RW aircraft (the Sikorsky S76 and Bell
412) have very low utilization, likely due to the omission of most urgent calls as
discussed in Section 4.2.
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GNP R
Transport Total Active Patient
Cessna Citation 0.27 0.13 0.14
Beechcraft King Air 0.07 0.03 0.04
Beechcraft King Air 1 0.17 0.08 0.08
Beechcraft King Air 2 0.04 0.02 0.02
Beechcraft King Air 0.38 0.18 0.19
Sikorsky S76 0.01 0.01 0.01
Sikorsky S76 0.00 0.00 0.00
Sikorsky S76 0.35 0.17 0.17
Bell 412 0.05 0.03 0.03

Table C.2: The time flown by each aircraft, expressed as a percentage of the total
time the aircraft is in service. Recall that aircraft did not have restricted duty
days. The active time represents time with at least one patient onboard. The
patient time represents the total time spent by patients onboard, counting each
patient separately.

GP
Transport Total Active Patient
Cessna Citation 0.37 0.22 0.26
Beechcraft King Air 0.13 0.09 0.10
Beechcraft King Air 1 0.10 0.07 0.07
Beechcraft King Air 2 0.09 0.06 0.07
Beechcraft King Air 0.06 0.04 0.04
Sikorsky S76 0.03 0.03 0.03
Sikorsky S76 0.03 0.02 0.02
Sikorsky S76 0.04 0.03 0.03
Bell 412 0.03 0.03 0.03

Table C.3: The time flown by each aircraft, expressed as a percentage of the total
time the aircraft is in service. Recall that aircraft did not have restricted duty
days. The active time represents time with at least one patient onboard. The
patient time represents the total time spent by patients onboard, counting each
patient separately.
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GP R
Transport Total Active Patient
Cessna Citation 0.27 0.13 0.15
Beechcraft King Air 0.07 0.04 0.04
Beechcraft King Air 1 0.17 0.08 0.08
Beechcraft King Air 2 0.04 0.02 0.02
Beechcraft King Air 0.38 0.19 0.20
Sikorsky S76 0.01 0.01 0.01
Sikorsky S76 0.00 0.00 0.00
Sikorsky S76 0.35 0.17 0.17
Bell 412 0.05 0.03 0.03

Table C.4: The time flown by each aircraft, expressed as a percentage of the total
time the aircraft is in service. Recall that aircraft did not have restricted duty
days. The active time represents time with at least one patient onboard. The
patient time represents the total time spent by patients onboard, counting each
patient separately.

T9 (GP, GP)
Transport Total Active Patient
Cessna Citation 0.39 0.23 0.28
Beechcraft King Air 0.12 0.08 0.08
Beechcraft King Air 1 0.10 0.07 0.07
Beechcraft King Air 2 0.09 0.06 0.06
Beechcraft King Air 0.05 0.03 0.04
Sikorsky S76 0.05 0.04 0.04
Sikorsky S76 0.02 0.02 0.02
Sikorsky S76 0.02 0.02 0.02
Bell 412 0.02 0.02 0.02

Table C.5: The time flown by each aircraft, expressed as a percentage of the total
time the aircraft is in service. Recall that aircraft did not have restricted duty
days. The active time represents time with at least one patient onboard. The
patient time represents the total time spent by patients onboard, counting each
patient separately.
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T9 (GP, GP) R
Transport Total Active Patient
Cessna Citation 0.39 0.23 0.28
Beechcraft King Air 0.12 0.08 0.08
Beechcraft King Air 1 0.10 0.07 0.07
Beechcraft King Air 2 0.09 0.06 0.06
Beechcraft King Air 0.05 0.03 0.04
Sikorsky S76 0.05 0.04 0.04
Sikorsky S76 0.02 0.02 0.02
Sikorsky S76 0.02 0.02 0.02
Bell 412 0.02 0.02 0.02

Table C.6: The time flown by each aircraft, expressed as a percentage of the total
time the aircraft is in service. Recall that aircraft did not have restricted duty
days. The active time represents time with at least one patient onboard. The
patient time represents the total time spent by patients onboard, counting each
patient separately.
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