
COMPUTATIONAL METHODS FOR STATIC
ALLOCATION AND REAL-TIME

REDEPLOYMENT OF AMBULANCES

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Mateo Restrepo

August 2008



c© 2008 Mateo Restrepo

ALL RIGHTS RESERVED



COMPUTATIONAL METHODS FOR STATIC ALLOCATION AND

REAL-TIME REDEPLOYMENT OF AMBULANCES

Mateo Restrepo, Ph.D.

Cornell University 2008

We propose new approaches to tackle the problems of static and dynamic

ambulance fleet allocation.

Static ambulance fleet allocation refers to deciding on home bases for am-

bulances, to which they return after serving calls. The number and location of

bases are given. The goal is to keep response times to calls as small as possible.

The first part introduces two models for this problem. Both of them are based

on the Erlang loss formula. The first model is stylized and serves to illustrate

that allocating ambulances to bases in proportion to base offered load is often

non-optimal. The second model is similar in spirit to queueing theoretical mod-

els developed in the past but uses the Erlang loss function as a key ingredient.

A careful computational comparison shows that the predictions obtained from

our model are often more accurate than those produced by previous models,

especially in low utilization regimes. This model can be used as a prescreen-

ing tool to find promising candidate allocations to be further evaluated through

detailed simulation.

Dynamic redeployment concerns the real-time relocation of idle ambulances

so as to ensure better preparedness. The second part of this dissertation formu-

lates this problem as a dynamic program in a high-dimensional and uncount-

able state space, and then resorts to approximate dynamic programing (ADP)

techniques to obtain approximate solutions. To this end, a specially tailored



approximation architecture for the problem is developed. The architecture de-

pends on a small number of free parameters which are tuned using simulated

cost trajectories of the system and linear regression. Computational experiments

show that the relocation policies obtained from this approach offer significant

performance improvements relative to benchmark static-relocation policies.

In the third part we use the linear programming approach to ADP on the

dynamic-redeployment problem, using the previously developed approxima-

tion architecture. We conclude that, although the policies obtained are compa-

rable in quality to those obtained using regression, there are serious issues re-

lated to numerical stability. Furthermore, the amount of computation required

makes this approach less practical than the regression-based one.



BIOGRAPHICAL SKETCH

Mateo was born in the glorious “Nueva Villa de Nuestra Señora de la Cande-

laria de Medellı́n” on September 10th of 1979, exactly 123 years after Elias Howe

got a patent for the sewing machine. A few months later, and contradicting the

pious origin of his name, Mateo would be baptized in a makeshift ritual by one

of his father’s comrades by sustained immersion in the numbing cold waters of

a turbulent creek in the vicinity of his hometown. This primordial experience

might be the key to explaining some of our hero’s main physical and psycho-

logical qualities, such as the pale purple hue of his skin and the euphemistically

termed crackpottedness of his character.

Since early age, Mateo’s innate beatitude and virtue naturally kept his diet

away from green vegetables and herbs in general. To parody his carnivorous

inclinations, at the age of three, Mateo dressed himself in a custom bunny cos-

tume bearing embroidered cloth carrots. His keen sense of fashion allowed little

Teo to differentiate himself from his dissolute fellow toddlers. While attending

Kindergarten our paladin was famous for always donning very short shorts and

a pair of Venetian red rubber boots. At the age of 5, his precocious smoothness

allowed him to espouse a petite curly redheaded girl. Mateo’s heathen and ju-

venile condition obliged him to perform this by means of a pagan ceremony

around a tree using aluminium foil pieces as wedding rings. This relationship

would be the first in a yet-to-end series of lascivious encounters with carmine-

haired debauchees. During high school, Mateo was famous for his albescence

and was therefore nicknamed as ‘Agua Mala’ (lit. ‘Bad Water’, Col. colloq. ‘Jelly

Fish’.) Among his hobbies during this period we can recount: funambulism, pa-

piroflexia, cartomancy, omphaloskepsis and shark shaking.

After finishing a lurid period of high education at the “Universidad Nacional

iii



de Colombia”, Mateo went on towards a more sublime level of education in the

U.S.A, a.k.a. “The Land of Freedom”. This transition implied his transubstanti-

ation from a torpid physicist to an ebullient applied mathematician concerned

mostly with the ontological status of the concept of true randomness, the viabil-

ity of astrology as a substitute for economic forecasting, and whatnot. These he

pursued while studying combinatorial optimization as an entremets.

During grad school, Mateo was always displeased by galling allusions to

ancient traditions of his native country such as presenting friends a “Colombian

neck-tie”, shaking one’s derrière while dancing and dressing fried chicken with

honey.

During his 60 moons at the Jewel of the Ivy League, Mateo was constantly

besieged by sinful and bibulous feminines – many of them scarlet haired – who

wanted to luxuriate in his exuberant company and mesmeric charm, and pre-

sumably bear his offspring, too. Our hero, in his chastity and integrity, never

succubi to the temptation of these succumb or to the scents originated in the

spirituous beverages that customarily accompanied them. Neither did he at-

tend the clamors of the cohort of debauched wrongdoers and yeggs who called

themselves his friends. Instead of getting involved in the Saturnalia that the

Olympian city of Ithaca became on Saturdays, our Ulysses dedicated all of his

efforts to the improvement of his soul and virtue. This he accomplished by

drudging day and night, with the aide of his two hoary mentors, on the weari-

some completion of his magnum opus which the base reader now holds in his

vile hands.

Having finished his Ph.D., our generous hero shall set forth towards yet

more dangerous seas. As part of his ever continuing struggle for the happiness

and the well-being of the whole human race, in September 2008 he will begin

iv



work in the cesspool of Wall Street, thereby risking his spiritual taintlessness in

order to save the world from an imminent financial collapse.

v



To the human race.

vi



ACKNOWLEDGEMENTS

What the world needs is more

geniuses with humility, there are

so few of us left.

Oscar Levant

First and foremost, I would like to thank both co-chairs of my committee,

Professors Shane Henderson and Huseyin Topaloglu for their time, patience,

wise advice on the research, and dedication to proof-reading and massively im-

proving the paper manuscripts. Without them, I could not have brought this

dissertation to fruitful completion. I extend my thanks to Professor Rick Durrett,

who showed me the purer side of applied mathematics and generously allowed

me to work with him and write proofs for one year and later light-heartedly

let me go. Thanks to Professor Paat Rusmevichientong, for his enthusiasm and

encouragement regarding this work and for agreeing to be last player in this

dream team of a committee.

Thanks to Alex Currell, Armann Ingolfsson and Andrew Mason for the data

used for the numerical experiments in Sections 2.5, 3.5, 3.6.

My gratitude goes also to Dolores Pendell for her invaluable administra-

tive and human support during my five years at the Center for Applied Math

(C.A.M.). Other people at C.A.M that deserve acknowledgment for their aca-

demic and personal support all this time are (in no particular order): Johnny

Guzman, Emilia Huerta-Sánchez, Fergal Casey, Yannet Interian Fernández,

Marcel Blais, Erik Sherwood, Chris Scheper, June Andrews, Diarmuid Caha-

lane.

I am greatly indebted to Vanja Dukić for her friendship and support through-

out all these years and for proof-reading some of the early versions of the first

vii



chapter.

I would like to thank the Colombian Student’s association at C.U., for mak-

ing many meals in Ithaca yummier and alleviating the cold of many Fridays.

Thanks to Natalia Moreno for forcing me to have proper lunch so many times,

and also for her kind company and encouragement during the latest stages of

preparation of this manuscript.

Finally, I should say Thanks to the faculty and staff Computer Science de-

partment at C.U., for hiring me to work as a T.A. almost every semester during

the past 4 years. The CS Department was the author’s main source of funding

and this work would not have been at all possible without it.

This manuscript is based upon work supported in part by the National Sci-

ence Foundation Grants No. DMI 0400287 and DMI 0422133. All opinions,

findings, and conclusions or recommendations expressed in this manuscript are

those of the authors and do not necessarily reflect the views of the National Sci-

ence Foundation.

viii



TABLE OF CONTENTS

Biographical Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction 1
1.1 Static ambulance allocation . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Dynamic programming based real time redeployment of ambu-

lances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Erlang loss models for the static deployment of ambulances 10
2.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 The Island Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Insights from the Island Model . . . . . . . . . . . . . . . . . . . . 16
2.4 The Overflow Model . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Computational Results for the Overflow Model, the A-

Hypercube Model and Simulation . . . . . . . . . . . . . . . . . . 24
2.6 Conclusions and Future Research . . . . . . . . . . . . . . . . . . . 33
2.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Approximate dynamic programming for ambulance redeployment 36
3.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Ambulance Redeployment as a Markov Decision Process . . . . . 40

3.2.1 State Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.3 Fundamental Dynamics . . . . . . . . . . . . . . . . . . . . 43
3.2.4 Transition Costs . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.5 Objective Function and Optimality Equation . . . . . . . . 45

3.3 Approximate Dynamic Programming . . . . . . . . . . . . . . . . 47
3.4 Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.1 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.2 Unreachable Calls . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.3 Uncovered Call Rate . . . . . . . . . . . . . . . . . . . . . . 51
3.4.4 Missed Call Rate . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.5 Future Uncovered Call Rate . . . . . . . . . . . . . . . . . . 54
3.4.6 Future Missed Call Rate . . . . . . . . . . . . . . . . . . . . 55

3.5 Computational Results on Edmonton . . . . . . . . . . . . . . . . 56
3.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 56
3.5.2 Baseline Performance . . . . . . . . . . . . . . . . . . . . . 58

ix



3.5.3 Comparison with Random Search . . . . . . . . . . . . . . 60
3.5.4 Making Additional Redeployments . . . . . . . . . . . . . 62

3.6 Computational Results on a Second Metropolitan Area . . . . . . 64
3.6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 65
3.6.2 Baseline Performance . . . . . . . . . . . . . . . . . . . . . 66
3.6.3 Effect of Turn-Out Time . . . . . . . . . . . . . . . . . . . . 67
3.6.4 Varying Call Arrival Rates and Fleet Sizes . . . . . . . . . . 69

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Linear programming based approximate dynamic programing for am-
bulance redeployment 73
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 LP-based DP – exact and approximate formulations . . . . . . . . 75

4.2.1 LP-based Exact Dynamic Programming . . . . . . . . . . . 76
4.2.2 LP-based Approximate Dynamic Programming . . . . . . 77

4.3 Implementation and Testing . . . . . . . . . . . . . . . . . . . . . . 81
4.3.1 Improving stability . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Evaluation of RLP policies for making additional redeployments 91
4.5 Comparison with the Approximate Policy Iteration Approach . . 92
4.6 Conclusions and Directions for Further Research . . . . . . . . . . 94

A Detailed Derivation of Approximation Procedure 96

B Initializing the Iterative Procedure for Solving the Overflow Model
Fixed-Point Equations 100

C Detailed Definition of Function R(·) 101

x



LIST OF TABLES

2.1 Comparison of accuracy measures of the overflow and A-
Hypercube models for a range of average utilizations. An ∗ in-
dicates an instance where a measure for a model is significantly
better than the same measure for the other model. . . . . . . . . 30

2.2 Error statistics for individual vehicle utilizations according to the
two models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Effect of turn-out time on the performance gap between ADP
and the benchmark policy. . . . . . . . . . . . . . . . . . . . . . . 68

xi



LIST OF FIGURES

2.1 Optimal solutions to Problem (2.1)-(2.4) for different values of
(λ1, λ2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Value of n1 in the optimal solutions (n1,N − n1) to Problem (2.1)-
(2.4) for different values of λ1/(λ1 + λ2). . . . . . . . . . . . . . . . 18

2.3 Rate of lost calls for proportional allocation and the optimal al-
location, for ρ = 0.15,0.3 and 0.5, respectively. . . . . . . . . . . . 19

2.4 Scatter plot of the fraction of calls wRTOTS estimated by the
overflow model – left (resp. the A-Hypercube model – right)
versus the fraction determined through simulation. The figures
are percentages of the total rate of calls. . . . . . . . . . . . . . . 28

2.5 Differences between vehicle utilizations obtained from the over-
flow model and the simulation model (left). Corresponding dif-
ferences for the A-Hypercube model. . . . . . . . . . . . . . . . . 32

3.1 Performance of ADP and the benchmark policy (solid thin line). 59
3.2 Performance of ADP with poorly chosen basis functions. . . . . . 60
3.3 Performance of the 1,100 greedy policies obtained through ran-

dom search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4 Performance of ADP as a function of the frequency of the addi-

tional redeployments. . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5 Performance of ADP for two values of κ and the benchmark pol-

icy (solid thin line). . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.6 Performance of ADP and benchmark policy for different call ar-

rival rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.7 Performance of ADP and benchmark policy for different fleet sizes. 71

4.1 First trial at iteratively solving the RLP . . . . . . . . . . . . . . . 85
4.2 Iteratively solving the RLP with filtering constant θ = 0.01 . . . . 87
4.3 Iteratively solving the RLP with filtering constant θ = 0.01 and

100 simulation replications per iteration . . . . . . . . . . . . . . . 88
4.4 Iteratively solving the RLP with filtering constant θ = 0.01 and

keeping constraints from most recent 5 iterations. . . . . . . . . . 89
4.5 Iteratively solving the RLP with filtering constant θ = 10−5, and

storing constraints from most recent 5 iterations. . . . . . . . . . . 90
4.6 Performance of best policy vs. frequency of extra-relocations . . 91

xii



LIST OF ABBREVIATIONS

ADP Approximate Dynamic Programming, see Chapter 3.
ALP Approximate Linear Program, see Section 4.2.2.
API Approximate Policy Iteration, see Chapter 3.3.
EMS Emergency Medical Service, see Chapter 1.
LP Linear program.
NDP Neuro-dynamic Programming, see Chapter 1

syn. approximate dynamic programming.
RLP Reduced Linear Program.
wRTOTS with Response Times over the time standard (or threshold);

see Section 1.1

xiii



CHAPTER 1

INTRODUCTION

We do what we must, and call it

by the best names.

Ralph Waldo Emerson

The optimization of various aspects of emergency medical service (EMS) ve-

hicle systems has been, since at least the mid 1960’s, a very active area of re-

search for applied mathematics and operations research. There have been hun-

dreds of journal articles dealing with the development of models to support

important decisions such us:

1. the locations, capacities and staffing of bases;

2. the scheduling of crews;

3. the number and type of vehicles to deploy at each base;

4. the choice of which vehicle to dispatch to an emergency; and

5. the redeployment of vehicles as a function of the system state.

There are several reasons why the design and operation of EMS systems has

attracted so much attention from the operations research community. On one

hand these issues are very important to society. Considering the large costs as-

sociated with obtaining and maintaining EMS equipment, and the highly quali-

fied staff needed, it is of prime importance to make sure that available resources

get the best possible use. On the other hand, the problems are rich and interest-

ing from the mathematical point of view and require a high degree of ingenuity

1



from the researcher, both to keep up with the subtleties and complexities inher-

ent to them as well as to come up with approaches that can be implemented in

practice given limitations in data availability and computational resources.

This dissertation proposes new models for aspects 3 and 5 of ambulance lo-

gistics mentioned above. Specifically, we focus on the static allocation of an

ambulance fleet to a given set of bases and on the real-time relocation of idle

ambulances in an operating system. Both of these problems are closely related

in that both deal with choosing optimal locations for ambulances as a function

of the demand of the system. However, the former is strategic in character and

allows for careful off-line computational procedures that deal with stationary

properties of the system to be applied, whereas the latter requires the imple-

mentation of procedures that can be used in real-time and can react promptly to

transitory changes in the system. Therefore, we treat each of these problems sep-

arately using fundamentally different analytical tools. The present work is thus

naturally divided into two logically separated and self-contained parts which

we now introduce in turn.

1.1 Static ambulance allocation

Emergency medical service providers face the problem of allocating a fixed

number of ambulances among a set of bases. The ultimate goal is to ensure

the best possible medical outcomes for patients. Though this is difficult to mea-

sure, an easily-measured proxy is the response time for a call, defined as the

elapsed time from when a call is received to when an ambulance arrives at the

scene. For studies demonstrating the relationship between response time and

2



probability of survival, see Erdogan, Erkut and Ingolfsson [21] and references

therein. An industry standard is to attempt to ensure that a percentage p of all

calls have response times under ∆ minutes, with common choices being on the

order of p = 80%and ∆ = 10. In this work, we will refer to ∆ as the time standard

or time threshold.

In Chapter 2, we provide two new computational models that can help with

the ambulance allocation problem, where the goal is to minimize the fraction of

calls with response times over the time standard (calls wRTOTS). We consider

only static deployments, in the sense that ambulances return to their assigned

bases whenever they are available to serve calls. This is in contrast to dynamic

deployments, where ambulances are directed to different locations throughout

their shifts in an attempt to better match anticipated demand. Dynamic deploy-

ments are the subject of Chapter 3.

Our first model in Chapter 2, which we call the island model, is prescriptive

in nature, meaning that it implicitly searches over all possible allocations of am-

bulances to bases, and returns the one that yields the best performance, that is,

the minimal percentage of calls wRTOTS. This ability to search over all possible

allocations comes at a price, however. The island model uses a simplified objec-

tive function which, while related to the goal of minimizing the fraction of calls

wRTOTS, is not an exact match for it. The quantity minimized is the fraction of

calls that cannot be assigned to an ambulance immediately but are queued for

service instead. The model also assumes that each base operates independently

of all other bases, so that each base “is an island.” The island model should

therefore be viewed as a tool for obtaining insight into effective allocations, but

its predictions should be refined through the use of more detailed methods.

3



Our second model, which we call the overflow model, can provide such re-

fined predictions for a proposed allocation of ambulances to bases. As such, it

is descriptive rather than prescriptive in that it provides performance predictions

for a single proposed allocation. Computationally evaluating a single alloca-

tion can be done quickly (less than a second), and so it can be viewed as a tool

for helping to quickly screen out poor ambulance allocations, and to identify

potentially highly effective allocations for further investigation.

Both the island and overflow models are based on the Erlang loss formula,

which is a standard result from queuing theory that has been used many times

in EMS modeling, but not in the way we propose here.

The solution to the two-base version of the island model provides useful in-

sights. In particular, it turns out that it is not optimal to allocate ambulances to

bases in proportion to the call loads offered to bases. Instead, bases with lighter

call loads should receive more than a proportional share of ambulances. This

result can be seen as an economy of scale phenomenon. For a given utiliza-

tion ratio (a ratio of demand offered to number of servers) bases with a larger

number of ambulances – and serving a proportionally larger demand – offer a

lower queueing ratio than bases with a small number of servers. Why is this

important? This is essentially the problem faced by a central planner who must

decide how many vehicles to allocate between two (or more) cities, where the

two cities are far enough apart that vehicles based in one city cannot routinely

attend calls in the other city. One might be tempted to allocate vehicles in pro-

portion to the load, but our results show that this can be far from optimal. A

similar situation arises in cities that, due to traffic congestion and/or geographic

layout, can be broken down into 2 or more regions between which it is hard to

4



travel. This is precisely the case for the city of Auckland in New Zealand for

example, where a major bridge linking the north and south portions of the city

is virtually impassable during peak traffic periods. As the peak traffic periods

approach, dispatchers might try to dispatch vehicles so as to appropriately dis-

tribute ambulances between the two regions.

The island model adds insight, but the assumption that bases do not interact

is unfortunate if one wishes to apply the results to a typical city where interac-

tion between bases is substantial. The overflow model relaxes this assumption

and is, therefore, less tractable. The overflow model approximates, for a given

ambulance allocation, the probability that a given base responds to calls origi-

nating in a given district of the city, for all base-district pairs. These probabilities

can be used to compute the fraction of calls wRTOTS. This model can also be

used to estimate other performance measures, as discussed later. The main idea

is to use the Erlang loss formula with carefully chosen parameters to approxi-

mate the probability that all ambulances at one or more bases are busy, the so

called busy probability. These probabilities are then used to compute dispatch

probabilities, i.e., the probabilities that a call will be answered by an ambulance

stationed at each base. The dispatch probabilities can be related back to the

busy probabilities by means of a system of non-linear equations. Similar non-

linear systems of equations have appeared many times before in the context of

descriptive models for ambulance allocation and, in particular, in relation to the

hypercube model Larson [43, 44], Jarvis [38], and its various extensions; see,

e.g., Goldberg and Szidarovsky [30], Brandeau and Larson [13] and Budge, In-

golfsson and Erkut [15]. An important distinction of our work is that the earlier

work formulates fixed point equations that involve a sophisticated version of

the so-called Q factors, whereas our model avoids the need for Q factors by us-

5



ing the Erlang loss function. A similar use of the Erlang loss function to estimate

overflow rates in multi-skill call centers appears in Koole and Talim [42]. The

solution of the resulting system of equations is generally accomplished through

iterative fixed point schemes. This is the approach we adopt in our work as

well. Although we are not able to provide a proof of convergence of the result-

ing iterative scheme, the computational results suggest that there exists a unique

fixed point and the fixed point can be computed extremely quickly. Therefore,

as noted above, the overflow model can be used to pre-screen a large number of

ambulance allocations, after which the best allocations can be studied through

simulation.

Some of the insights developed in dealing with the static deployment prob-

lem proved helpful in attacking the more complicated problem of dynamic re-

deployment, which is the subject of the second part of the dissertation and we

introduce next.

1.2 Dynamic programming based real time redeployment of

ambulances

Ambulance redeployment is one possible approach that can help EMS man-

agers cope with rising costs of medical equipment, increasing call volumes and

worsening traffic conditions, and meet performance goals set by regulators and

contracts, while at the same time taking better advantage of available resources.

Ambulance redeployment, also known as relocation, move up, system-status

management or dynamic repositioning, refers to any strategy by which a dis-

patcher repositions idle ambulances to compensate for others that are busy, and

6



hence, unavailable. The increasing availability of geographic information sys-

tems and the increasing affordability of computing power have finally created

ideal conditions for bringing real-time ambulance redeployment approaches to

fruitful implementation.

Chapter 3 presents the development and computational testing of an ap-

proach for making real-time ambulance redeployment decisions that is based

on approximate dynamic programming (ADP). We begin by formulating the

ambulance redeployment problem as a stochastic dynamic program (SDP). This

kind of formulation allows our model to capture the random evolution of the

system over time. The expected (discounted) number of calls with response

times over the time standard plays the role of the cost-to-go function which is to

be minimized. The stochastic dynamic program involves a system evolving in

continuous time on a high-dimensional and uncountable state space and, due

to its high complexity, is intractable by means of exact DP techniques. ADP is

then adopted as a way to circumvent this difficulty. The most common and best

understood approach to ADP, which we also adopt in our work, starts by ap-

proximating the arbitrary value functions by linear combinations of a small set

of basis functions of the state, the so-called feature functions. The features func-

tions have to be especially and carefully tailored to the particular application in

order to guarantee the effectiveness of the scheme. Once a sensible set of feature

functions is chosen, the problem becomes that of the tuning the coefficients in

the linear combination to best approximate the actual optimal cost-to-go func-

tion. There are several ways to achieve this.

The ADP algorithm termed Approximate Policy Iteration (API), which is

studied in Chapter 3, tunes the coefficients of the value function approximation

7



through an iterative simulation-based method. Each iteration of the API algo-

rithm consists of two steps. In the first step, we simulate the trajectory of the

greedy policy induced by the current value function approximation and collect

cost trajectories of the system. This is the analog of policy evaluation in the exact

version of the policy iteration algorithm. In the second step, we tune the param-

eters of the value function approximation by solving a regression problem that

fits the value function approximation to the collected cost trajectories. This is

the analog of policy improvement in the exact algorithm. The latter step yields

a new set of parameters that characterize new value function approximations,

and so, we can go back and repeat the same two steps.

We emphasize here that what allows the successful application of the general

ADP framework to a problem as complex as real-time ambulance redeployment

is the development of a refined approximation architecture, i.e., a set of basis

functions {φp(·) : p = 1, . . . ,P}, that is able to capture the essence of how an EMS

system configuration at a given time determines future performance. A com-

bination of a great deal of experimentation and use of the insights gained from

the first part of this work proved very helpful in achieving this. We consider the

development of this architecture a major contribution of our work, as this de-

velopment took literally months of exhaustive exploration and experimentation

of many different alternative function architectures.

In the second part of Chapter 3, we provide computational experiments on

EMS systems in two scenarios: the city of Edmonton, Alberta Canada and an-

other much bigger city. Our results indicate that ADP has the potential to obtain

high-quality redeployment policies in real systems. They also show that our ap-

proach compares favorably with benchmark policies that are similar to those

8



used in practice.

Chapter 4 describes the implementation of a linear-programming based

ADP approach that approximately solves the dynamic program by construct-

ing and solving what is termed the reduced linear program (RLP). To the best of

our knowledge, the application described in this chapter is the first application

of LP-based ADP techniques to a problem involving an uncountable state-space

and continuous-time event-based evolution. The constraints in the RLP come

from state-action pairs visited during the course of simulation under some pol-

icy. The decision variables in the RLP are the tunable parameters of the linear

approximation architecture. Thus, after the simulation is finished and the linear

program is solved, the solution vector will determine a value function approx-

imation. The greedy policy with respect to this value function will hopefully

be better than the starting one. This approach lends itself naturally to be im-

plemented as part of a larger iteratively scheme, in which new simulations are

carried out and a new set of constraints are sampled under the new policy, much

in the same way as the API from Chapter 3.

We carry out numerical tests on this iterative approach for the city of Ed-

monton scenario studied in Chapter 3. Some difficulties related to the ill-

conditioning of the RLPs generated by the algorithm are found and resolved

through refinements in the way constraints are collected and on the way the

tunable parameters are updated from one iteration to the next. We also find

that, in the cases considered, the best policies generated by the algorithm have

practically the same performance as the best policies obtained by the API ap-

proach of Chapter 3.

9



CHAPTER 2

ERLANG LOSS MODELS FOR THE STATIC DEPLOYMENT OF

AMBULANCES

Times have not become more

violent. They have just become

more televised.

Marilyn Manson

How should one allocate a fleet of ambulances to fixed bases with the goal of

keeping response times to calls as small as possible? We present two new mod-

els for this problem, both of which are based on the Erlang loss formula.

The first model is stylized and mostly intended to provided managerial in-

sight into the ambulance deployment problem. The model is an integer program

that allocates a fixed number of ambulance among a set of bases. The objective

is to minimize the number of calls that do not find an available ambulance when

they are received, and we capture this fraction by using the Erlang loss function.

Among other things, it shows that allocating ambulances in proportion to the

offered load is not necessarily optimal. Instead, bases with lighter call loads

receive more than a proportional share of the ambulances. The main simpli-

fying assumption of this model is that it does not allow collaboration between

different bases, or put in a slightly different way, this model assumes a priori

knowledge of the amounts of demand served by the different bases. Of course,

bases always interact to some extent, but there are situations where bases can-

not interact as much as one would like owing to natural barriers such as the sea

harbors in Auckland, New Zealand or traffic congestion on arterial roadways.

10



The results of our first model should also be useful for a centralized planner

who is responsible for allocating the EMS assets between different cities that do

not share resources operationally.

The first model adds insight, but the assumption that the bases do not inter-

act is unfit. Our second model relaxes this assumption, though at the expense

of loss of tractability. The second model estimates, for a given ambulance al-

location, the fraction of calls whose response times are longer than some time

standard. It can be used to screen potential allocations to identify top candidates

for further investigation. Computational experiments provide useful insights.

We carry out a careful comparison of the second model with the A-hypercube

model which shows that our model has comparable and in many cases better

accuracy measures. Thus our model can be used as a pre-screening tool to, in

combination with detailed simulation, efficiently identify nearly optimal static

ambulance allocations.

This chapter is organized as follows. Section 2.1 presents a a review of previ-

ous literature on the static allocation problem. Section 2.2 introduces the island

model, and we study the two-base version of the island model in detail in Sec-

tion 2.3. Section 2.4 describes the overflow model, and Section 2.5 compares

performance estimates obtained via the overflow model, the Approximate Hy-

percube model and a simulation model. We conclude in Section 2.6.

2.1 Literature Review

Static ambulance deployment problems have received a great deal of attention

in the literature. We present a brief survey here to give a feel for the primary

11



approaches studied in the past. For more detailed surveys, we recommend the

excellent reviews by Swersey [56], Brotcorne, Laporte and Semet [14], Goldberg

[27] and Green and Kolesar [31].

As mentioned in the introduction, prescriptive methods are optimization

oriented in that they search over all possible ambulance allocations to identify

promising allocations, and they typically use simplified performance measures

to allow for efficient search procedures. Important early work on prescriptive

models includes Toregas, Saqin, ReVelle and Berman [58] and Church and ReV-

elle [16]. The later model by Daskin [17] attempts to capture some of the stochas-

tic aspects of the problem under the assumption that the ambulances are statis-

tically independent. Batta, Dolan and Krishnamurthy [6] build on this model

to relax the independence assumption, whereas ReVelle and Hogan [50] and

Marianov and ReVelle [46] extend the earlier models by adding constraints on

the minimum number of ambulances required to cover various zones. The last

two papers are related to our work in the sense that the minimum number of

ambulances are obtained from the Erlang loss formula. More recently, Erdogan

et al. [21] incorporate medical outcomes into the objective function by concen-

trating on the lengths of the response times rather than the fraction of calls with

response times below a certain time standard. All of the papers mentioned in

this paragraph thus far generally use linear integer programming formulations,

but nonlinear models have also been used by several authors. For example,

Goldberg and Paz [29] embed a heuristic search procedure into the approxi-

mate hypercube model proposed by Larson [44]. The underlying theme of this

work is to use tractable approximations for the performance of the system to

guide a search procedure.

12



Descriptive methods, on the other hand, do not explicitly optimize over a

feasible set of allocation. Instead, they focus on evaluating single allocations in

order to provide more accurate performance predictions than are possible with

the simplified objective functions used in prescriptive models. This area is dom-

inated by the hypercube method Larson [43] and its extensions, which include

Larson [44], Jarvis [38], Jarvis [39], Berman and Larson [10], Brandeau and Lar-

son [13], Goldberg and Szidarovsky [30] and Budge et al. [15]. The descriptive

model presented in Section 2.4 falls into this line of development in that it for-

mulates a non-linear system of equations relating zone demands to ambulance

busy probabilities. The main difference is that earlier work formulates equa-

tions that involve a sophisticated version of the so called Q factors, whereas our

model completely avoids the need for Q factors by using the Erlang loss func-

tion. Another recent work, also based on queuing theory, is Singer and Donoso

[54]. Another important descriptive approach is, of course, simulation. Simu-

lation has been used in a large portion of ambulance deployment studies either

to analyze the performance of other models or as a tool in and of itself. For an

overview, see Henderson and Mason [34].

2.2 The Island Model

In this section we present a prescriptive model (the island model) for the static

ambulance deployment problem. We have N ambulances to allocate among a

set of bases. The set of bases is B and we can allocate at most cb ambulances to

base b. An ambulance deployed at base b can serve calls at rate µb and the calls

that are offered to base b arrive according to a Poisson process with rate λb.

13



Our goal here is to obtain insight about the problem rather than to obtain

predictions that could be used immediately in real organizations. Accordingly,

we adopt a model that is mathematically tractable at the expense of some real-

ism. In the island model, each base operates independently. Calls that arrive for

a base when all ambulances that are located there are busy are lost, meaning that

they are assumed handled by some outside agency (e.g., the fire department, or

a competing EMS organization). So in the island model bases do not handle the

overflow calls from other bases, and {λb : b ∈ B} are known parameters that do

not depend on the ambulance allocation. We relax this strong assumption later

in Section 2.4.

If we allocate nb ambulances to base b, then each base operates as an

M/G/nb/nb queue, i.e. a queue with exponential interarrival times, general ser-

vice time distribution, nb servers and a maximum of nb customers in the queue.

This implies that we can compute the probability that an arriving call offered to

base b finds all nb ambulances busy by using the Erlang loss formula

E(nb, λb/µb) =
[λb/µb]nb/nb!∑nb
j=0[λb/µb] j/ j!

.

See, for instance, Gross and Harris [32] for proof that this formula is valid for

general service time distributions.

In this case, we can solve the problem

min
∑

b∈B
λbE(nb, λb/µb) (2.1)

subject to
∑

b∈B
nb = N (2.2)

0 ≤ nb ≤ cb b ∈ B (2.3)

nb integer b ∈ B (2.4)

14



to decide how many ambulances should be allocated to each base. Each term

in the objective function, λbE(nb, λb/µb), corresponds to the expected number of

lost calls offered to base b per unit time. As shown, for example, in Harel [33],

E(nb, λb/µb) is a convex function of nb, which implies that the objective function

of Problem (2.1)-(2.4) is a separable convex function. Consequently, Problem

(2.1)-(2.4) can be solved efficiently through simple marginal analysis; see Fox

[24]. (One takes a greedy approach, adding ambulances one at a time, respect-

ing the base capacities but otherwise choosing the base that leads to the greatest

reduction in the objective function.) In certain situations, such as the ones con-

sidered in the next section, and in order to get a better qualitative understanding

of this model, it will prove useful to relax the integrality requirement in (2.4) and

use continuous version of the Erlang loss formula [37].

Recall that, in this model, calls that arrive when all ambulances at a base

are busy are “lost.” The proportion of such calls is small when the load on a

base is small. Hence, it is in this lightly loaded regime where the model is most

appropriate.

The queueing model underlying the Erlang loss function assumes that the

service times (including travel time, time at scene, etc.) for successive calls are

independent. This assumption does not hold precisely, because the locations of

ambulances are affected by the locations of previous calls. The assumption is

reasonable when a large portion of calls are served by ambulances that are al-

ready waiting at the base. As reported in Richards [51], even in systems having

utilizations of around 35%, the fraction of calls responded to from the road is

usually only around 10%. Furthermore, the time spent by an ambulance at the

scene typically dominates the travel time [15], so the dependence between calls,

15



even when calls are often responded to from the road, is mild.

The most unfortunate assumption in Problem (2.1)-(2.4) is that we have a

priori knowledge of what portions of the demand are served by the different

bases. In reality, the total rate of call arrivals into the system is known, but the

proportions of the calls served by the different bases emerge as a result of the

ambulance dispatch policy. Problem (2.1)-(2.4) assumes that fixed and known

portions of the calls arriving into the system are offered to the different bases

and the bases do not help each other even if they are not able to cope with their

offered call loads.

2.3 Insights from the Island Model

Consider Problem (2.1)-(2.4) in the case where we have two bases, so that B =

{1,2}. Our goal is to obtain insight into the optimal allocation of ambulances

to bases. As we will see, allocating ambulances in proportion to the call loads

at the bases can be highly suboptimal, but as the total load increases, this sub-

optimality decreases.

We first let (µ1, µ2) = (1,1) and N = 20, and solve Problem (2.1)-(2.4) for

different values of (λ1, λ2). We choose (µ1, µ2) = (1,1) only for convenience and

other service rates can be captured by simply scaling our results. The regions

and the associated labels in Figure 2.1 show the optimal solutions to Problem

(2.1)-(2.4) for different values of (λ1, λ2). For example, if (λ1, λ2) = (3,2), then

the optimal solution to Problem (2.1)-(2.4) is (n1,n2) = (11,9). In Figure 2.1, the

shaded area covers those regions for which allocating ambulances in proportion

to call loads differs from the optimal allocation. It is easy to see that allocating

16



Figure 2.1: Optimal solutions to Problem (2.1)-(2.4) for different values of
(λ1, λ2).

ambulances in proportion to the call loads offered to the different bases is almost

never optimal for low utilization regimes and it is only optimal for the higher

utilization regimes if λ1 is close to λ2. For example, if (λ1, λ2) = (5,2.5), then we

have λ1/λ2 = 2, but the optimal solution to Problem (2.1)-(2.4) is (n1,n2) = (12,8)

and n1/n2 = 1.5.

Exploring further, suppose that (µ1, µ2) = (1,1) and N = 10. Since the service

rates are equal to 1, the offered load per server is ρ = (λ1 + λ2)/N. We vary λ1 but

keep ρ and N fixed. In Figure 2.2, we plot n∗1, the optimal number of ambulances

assigned to Base 1 as a function of λ1. We do this for 3 different values of ρ. In

each case, the units of the x-axis have been linearly scaled and correspond to

λ1/(λ1 + λ2) which is the fraction of the total demand λ1 + λ2 that is offered to the

first base. We note that Figure 2.2 uses a continuous version of the Erlang loss

formula to allow fractional ambulance allocations and this allows us to produce

17



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

λ
1
/(λ

1
+λ

2
)

op
tim

al
 a

llo
ca

tio
n 

 n
1*

 

 

prop. alloc

ρ = 0.1

ρ = 0.3

ρ = 0.5

Figure 2.2: Value of n1 in the optimal solutions (n1,N−n1) to Problem (2.1)-
(2.4) for different values of λ1/(λ1 + λ2).

smooth plots [37].

If proportional allocation were optimal, we would have n1/N = λ1/(λ1 + λ2)

and the optimal solutions to Problem (2.1)-(2.4) as a function of λ1/(λ1 + λ2)

would lie on the straight line in Figure 2.2, for any value of the offered load

per server. However, the figure shows that optimal solutions differ substan-

tially from proportional allocation, especially when the offered load per server

is low. When the offered load per server is high, proportional allocation is close

to optimal. However, this requires offered load per server values as large as

0.5, whereas a more typical value in practice is 0.3; see, e.g., Budge et al. [15].

When λ1/(λ1 + λ2) < 0.5, the number of ambulances allocated to the first base

is larger than that suggested by proportional allocation. In other words, bases

with lighter loads receive more than their proportional share of ambulances.

18



0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

A
ve

ra
ge

 L
os

s 
R

at
e 

[%
]

λ
1
/ (λ

1
+λ

2
)

 

 
Optimal allocation

Proportional Allocation

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

A
ve

ra
ge

 L
os

s 
R

at
e 

[%
]

λ
1
/ (λ

1
+λ

2
)

 

 

Optimal allocation

Proportional Allocation

0 0.2 0.4 0.6 0.8 1
5

10

15

20

25

30

35

A
ve

ra
ge

 L
os

s 
R

at
e 

[%
]

λ
1
/ (λ

1
+λ

2
)

 

 

Optimal allocation

Proportional Allocation

Figure 2.3: Rate of lost calls for proportional allocation and the optimal
allocation, for ρ = 0.15,0.3 and 0.5, respectively.

The intuitive reason for this behaviour is that, for higher call rates the num-

ber of calls wRTOTS becomes proportional to the utilization, regardless of the

number of ambulances thus proportional allocation ensures that different bases

have roughly the same loss. On the other hand, at lower utilization rates bigger

capacity bases are significantly more robust and provide a much

But how significant is the sub-optimality of proportional allocation?

Figure 2.3 gives the loss rates for proportional allocation and the optimal

allocation as a function of λ1/(λ1 + λ2). The results indicate that the cost of using

proportional allocation can be very large. For example, if λ1/(λ1 + λ2) = 0.1, then

proportional allocation loses about 7% of the calls, whereas the optimal solution

loses about 2% of the calls. This is certainly a practically significant difference.

Similar to Figure 2.2, Figure 2.3 uses a continuous version of the Erlang loss

formula.

The non-optimality of proportional allocation appears to be a general phe-

nomenon, occurring in situations with more than 2 bases. Consider a situation

with 6 ambulances and 3 bases with offered demands (λ1, λ2, λ3) = (1.2,0.3,0.3),

respectively, so that ρ = 0.3. Proportional allocation yields (n1,n2,n3) = (4,1,1)

19



which has a loss rate of 9.4%of calls, whereas (n1,n2,n3) = (3,2,2) has a loss rate

of 7.1% of calls. Similar examples are easily constructed for greater numbers of

ambulance and bases. To see why this observation should hold for more than

2 bases, consider the (unknown) optimal allocation of ambulances to bases. Se-

lect any 2 bases. The allocation of ambulances to these 2 bases must be optimal

for a 2-base system, so our observation above should hold in this case, and the

lower-loaded base receives a more-than proportional number of the ambulances

shared by the 2 bases.

2.4 The Overflow Model

In this section we propose a descriptive model (the overflow model) that esti-

mates performance measures for a given ambulance allocation. The overflow

model relaxes some of the critical assumptions of the island model in Section

2.2. In particular, it does not require that we know the call loads offered to dif-

ferent bases, and allows bases to cooperate.

The primary use we have in mind for the overflow model is to quickly eval-

uate a large number of possible ambulance allocations. We can then evaluate a

small set of the most promising allocations through a detailed simulation study.

Thus the overflow model is not meant to replace simulation but rather to com-

plement it, by enabling pre-screening and fast discarding of many possible allo-

cations.

We start by considering a simple extension of the island model meant to

overcome the assumption that {λb : b ∈ B} are known parameters. One can at-

tempt to do this by turning these parameters into decision variables in Problem

20



(2.1)-(2.4). This idea amounts to solving a problem of the form

min
∑

b∈B
λbE(nb, λb/µb)

subject to
∑

b∈B
nb = N

0 ≤ nb ≤ cb b ∈ B

nb integer b ∈ B
∑

b∈B
λb = λ

λb ≥ 0 b ∈ B,

where λ is the total rate of call arrivals into the system, and {nb : b ∈ B} and

{λb : b ∈ B} are the decision variables. This problem finds an allocation of the

calls and ambulances among the bases to minimize the number of lost calls, and

it mimics the natural load balancing sought after by dispatchers in practice. Un-

fortunately, numerical evaluations reveal that λbE(nb, λb/µb) is not jointly convex

in (nb, λb). Therefore, there are no guarantees that the new problem has a unique

local minimum, and finding a global optimum may be almost as difficult as

enumerating all possible values of {nb : b ∈ B} that satisfy Constraints (2.2)-(2.4).

In view of this we consider a different approach that does not directly take

optimizing the expected Erlang loss as the criterion for dividing the demands

but instead views the problem as a queueing system with a spatial structure.

We start by assuming that there are a number of demand nodes indexed by

j = 1, . . . , J. Each demand node j generates a Poisson arrival process of calls

with rate d j and the processes corresponding to different demand points are

independent. The set of bases is B = {1, . . . , B}.

Each demand node j has a fixed priority ranking of all bases j(1), . . . , j(B),

21



which might correspond, for instance, to how far each base is from node j. A

call originating at node j is first offered to an ambulance based at j(1), and if

no ambulance is available there, then it is offered to an ambulance based at

j(2), and so forth. If no ambulance is available at any base, then the call is lost

and assumed to be answered by some alternative agent. The term “offered”

emphasizes that some calls contribute to the load on a base, even if they are

not actually served by that base. We say that a base is busy if all ambulances

stationed there are busy.

Let sjk denote the probability, under stationarity, that a call originating at

node j will be answered by an ambulance from base j(k). We extend the defini-

tion of sjk to include k = B + 1, so that sj,B+1 is the probability that no ambulance

is available.

Remark 1 The probability that all ambulances are busy is typically extremely small.

Indeed, if each ambulance is independently busy with probability ρ, where ρ is the over-

all utilization, then sj,B+1 = ρN. This value is negligible for systems with modest uti-

lization and many ambulances. In general the true probability that all ambulances are

busy is larger than this approximation, but still practically negligible, except in cases of

extreme load that do not typically arise in daily operations.

Suppose we are able to obtain (approximations for) these probabilities. Then

it is easy to compute (approximations for) any performance measure relating to

the response time to calls, for which the conditional expected value given the

originating demand point j and responding base k can be (approximated or)

computed. Let ψ jk denote this conditional expectation. Then the conditional

22



expectation ψ( j) given the originating demand point j is

ψ( j) :=
B∑

k=1

sjkψ jk. (2.5)

Moreover, ψ is then given by

ψ =

∑J
j=1 djψ( j)
∑J

j=1 dj

. (2.6)

Examples of such performance measures include the probability of reaching

a call within a given time threshold, the expected response time and, as consid-

ered in Erdogan et al. [21], the survival probability.

In our analysis, we focus on the probability of reaching a call within a given

time threshold, which we denote by r . Assuming deterministic travel times,

if demand node j can be reached from, and only from, the first N( j) bases in

demand node j’s list within the time standard, the specialization of equation

(2.5) to this measure simplifies to

r( j) =

N( j)∑

k=1

sjk. (2.7)

In this setup, it is possible to derive a system of equations relating the prob-

abilities sjk and the node demands that has the form

S = f (S), (2.8)

where S stands for the J × (B + 1) matrix [S] jk = sjk and f is a certain non-linear

function.

We present the detailed derivation in Appendix A and only present the most

important points here. First, the total demand offered to base b is the sum of a

primary demand, coming from nodes for which b is the preferred base, plus an

23



overflow demand coming from other nodes, when all bases preferred to b by

those nodes are busy. The probability that all ambulances at a particular base

are busy can be estimated from the demand offered to it using the Erlang loss

formula. However, when trying to estimate the probability that a call from node

j finds all servers at its k-th preferred base busy, conditioned on all ambulances

in the previous k − 1 bases to be busy, one has to take into account the addition

to the demand offered to base k from overflow demand from the first k−1 bases.

Careful estimation of the new demands resulting from this conditioning leads

to a system of non-linear equations for the matrix of probabilities sjk which can

be put in the form (2.8).

2.5 Computational Results for the Overflow Model, the A-

Hypercube Model and Simulation

In this section, we present a case study based on data from the Edmonton, Al-

berta, EMS. The key performance measure considered is the percentage of calls

wRTOTS, although we also look at vehicle utilization. We apply both the over-

flow model introduced in the previous section and the approximate hypercube

(A-Hypercube) model developed in Larson [44]. We use the second method in

Section 4 of Larson [44] to normalize the ambulance dispatch probabilities of

the A-Hypercube model. Our goal is to verify that the performance measure es-

timates computed through the overflow model are accurate enough to reliably

assist in identifying high-quality ambulance allocations for further exploration.

Some important structural differences between the A-Hypercube approx-

imation scheme and the overflow model are worth mentioning here. In the

24



A-Hypercube model, the fundamental descriptive variables are the individual

vehicle utilizations ρ = (ρa,a = 1, . . . ,N), where N is the total number of ambu-

lances. In the overflow model, the fundamental quantities are the probabilities

sjk that a call from any give zone is served by any given base. As in our model,

the A-Hypercube estimation of ρ is based upon the solution of an equation of the

form ρ = fH(ρ), where fH is a certain non-linear function. In the original proce-

dure, proposed by Larson [44], this is done by initializing ρ0 = (ρ̄, ρ̄, . . . ρ̄), where

ρ̄ := λ/µN is the average global utilization of the system, and producing a se-

quence of estimates ρ1, ρ2, . . . , as follows. At each step, one first lets ρ̃k = fH(ρk−1)

and then computes ρk = ρ̄ · (ρ̃k)/(
∑N

a=1 ρ̃
k
a), thereby re-normalizing the utilizations

to the average ρ̄. The procedure we use to solve the fixed point equation (2.8)

generates a sequence of matrices S0,S1, . . . in an analogous way, but it does not

enforce any normalization on S. The natural normalization condition, namely,

that
∑

k sjk = 1, for every j is automatically preserved by our f . See Appendix B

for a discussion on ways to initialize the matrix S.

The A-Hypercube iterative procedure stops when ‖ρk+1 − ρk‖1 < ε, a given

tolerance. In order to establish a fair comparison between the speeds of conver-

gence for both methods, we set the stopping condition for the overflow model

to be ‖R(Sk+1) − R(Sk)‖1 < ε, where R(S) is a function that computes individual

vehicle utilizations from the probability matrix S. An exact description of this

function can be found in Appendix C.

Our input data are taken from Budge et al. [15], describing the ambulance

system operating in Edmonton, Alberta. The system is medium sized with 16

bases and 180 demand nodes. We experimented with allocations of 12 and 16

ambulances and demand rates ranging between 2 and 7 calls per hour. The

25



service rate is about µ = 0.97 calls per hour per ambulance, which corresponds

to an average service time of about 62 minutes per call.

A computation shows that there are approximately 400,000 different ways of

allocating 12 ambulances among 16 bases given the capacity constraints for the

bases in this system. The number of allocations of 16 ambulances is also very

close to 400,000. In our experimental setup, we select subsets of 1,000 allocations

among the 400,000 possible ones, for each of these two scenarios. We apply both

the overflow model and the A-Hypercube model to each of these allocations to

estimate the base (resp. vehicle) utilizations. From these we calculate predic-

tions for the system-wide percentage of calls wRTOTS as

100%−
∑J

j=1 djr( j)
∑J

j=1 dj

,

where r( j) is given by (2.7), and dj is the demand rate at location j.

To provide a benchmark for comparison, we use discrete-event simulation

to compute the same performance measure for each of the 1,000 ambulance al-

locations in a simplified model of ambulance operations. The specifics of the

simulation model are as follows. Calls are generated in each of the 180 locations

as independent Poisson processes with constant rates equal to the historical de-

mand rates. All calls are assumed urgent. The ambulance dispatching policy

is to send the closest available ambulance to a call, and if there are no available

ambulances, then the call is put in a first-in-first-out queue. (Putting a call in a

queue almost always implies that the call will not meet the time standard.) In

the simulation, travel times between each base and demand zone are determin-

istic and taken to be equal to the average travel time observed from historical

data. Ambulances spend an exponentially distributed amount of time at the

scene with a mean of 12 minutes. Patients require transport to a hospital with

26



probability 0.75. Given that a patient is to be transported to a hospital, the choice

of hospital is independent of all else and chosen according to historical proba-

bilities. The time spent at the hospital is Weibull distributed with a mean of 30.4

minutes and a shape parameter of 2.5.

For each allocation, we simulate the system for two weeks and make 50 runs

to estimate the fraction of calls wRTOTS. Fifty replications are enough to esti-

mate this fraction with a 95% confidence interval of width 0.6%. More impor-

tantly, since we are using common random numbers (i.e., the same set of calls)

for all allocations, 50 replications is enough to establish a difference between

allocations whose mean performances differ by 0.5% or more. For instance, in

the experiment with 12 ambulances and λ = 3 calls per hour, the simulation of

allocations #345 and #435 yields mean costs of 16.7%± 0.3% and 16.5%± 0.3%,

respectively, and a difference of 0.3%± 0.3%. Thus, the second allocation is bet-

ter than the first one with high confidence, even when the confidence intervals

for their mean costs have a big overlap. The average response time is, of course,

a function of the allocation. For the best allocation in the situation above, the

average response time is 5.8 min. The average time of transport to the hospi-

tal is observed to be 16.4 min, which is considerably larger due to the fact that

there are significantly fewer hospitals than bases and that the ambulance travels

at regular speed when driving to the hospital.

The chart on the left-hand side of Figure 2.4 shows a scatter plot of the esti-

mate of the fraction of calls wRTOTS as predicted by the overflow model versus

the corresponding fraction measured from the simulation model for 1,000 am-

bulance allocations. The total number of ambulances is 12, and the total call rate

is λ = 3 calls/hr which corresponds to an average utilization ρ̄ = 0.26. The chart

27



10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

Percent of Calls wRTOTS according to simulation

P
er

ce
nt

 o
f C

al
ls

 w
R

T
O

T
S

 a
cc

or
di

ng
 to

 th
e 

O
ve

rf
lo

w
 M

od
el

10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

Percent of Calls wRTOTS according to simulation

P
er

ce
nt

 o
f C

al
ls

 w
R

T
O

T
S

 a
cc

or
di

ng
 to

 A
. H

yp
er

cu
be

 m
od

el

Figure 2.4: Scatter plot of the fraction of calls wRTOTS estimated by the
overflow model – left (resp. the A-Hypercube model – right)
versus the fraction determined through simulation. The figures
are percentages of the total rate of calls.

on the right-hand side of the same figure shows the scatter plot of estimates

yielded by the A-Hypercube model versus those from the simulation model, for

the same 1,000 allocations. The solid line on both charts is the line y = x on

which the points would lie if the predictions of the approximate models agreed

perfectly with the simulation measurements.

The overflow model predicts the fraction of calls wRTOTS more accurately

than the A-Hypercube model. The predictions of both models exhibit a nega-

tive bias, with the A-Hypercube model bias being more pronounced. The root

mean-squared error (RMSE) of the overflow model predictions is 4.8% whereas

the RMSE of the A-Hypercube model predictions was 7.2%. The Spearman’s

(rank) correlation between the overflow model’s predictions and the simulation

measurements is 0.86, which is slightly better than that for the A-Hypercube

model (0.82).

As stated earlier, the primary purpose of the overflow model is to serve as

28



a pre-screening tool to evaluate a large set of possible allocations quickly in or-

der to identify the most promising ones to evaluate using detailed simulation.

To investigate the effectiveness of this approach we define F as the fraction of

allocations that have a model-predicted cost below that of the allocation hav-

ing minimum simulated cost. The usefulness of measure F is that it is propor-

tional to the number of allocations one has to evaluate through simulation in

increasing order of model-evaluated cost before one evaluates the optimal al-

location. In the charts in Figure 2.4 the allocation having minimum simulated

cost is marked with a ∗ and the fraction just defined corresponds to the frac-

tion of allocations below the horizontal dashed line. For the overflow model

we have F = 0.006. For the A-Hypercube model we have F = 0.020, which is

considerably larger.

The results we have just described are not uncommon in the low to medium-

low utilization range. Table 2.1 summarizes the results of a series of experiments

carried out on allocations having 12 and 16 ambulances over a range of system

utilizations. In general we see that the overflow model has greater accuracy

in predicting the percentage of calls wRTOTS, as evidenced by lower value of

the RMSEs throughout. Rank correlations (R. Corr.) are similar for both models,

with the A-Hypercube being significantly better only for the highest utilizations.

The overflow model F-fractions are comparatively lower than those of the A-

Hypercube for the lowest utilizations but higher for the highest utilizations.

Another measure registered in Table 2.1, of somewhat lesser importance than

F, is G, defined as the fraction of allocations having simulated cost lower than

that of the best model-ranked policy. In the charts, this corresponds to the frac-

tion of points to the left of the dotted line. This fraction is a measure of how

29



Table 2.1: Comparison of accuracy measures of the overflow and A-
Hypercube models for a range of average utilizations. An ∗ in-
dicates an instance where a measure for a model is significantly
better than the same measure for the other model.

Sim. Params. Overflow Model A-Hypercube Model

N λ ρ̄ R.Corr RMSE F G R.Corr RMSE F G O.D.

12 2 0.17 0.85 *5.8% *0.006 0.004 0.83 6.6% 0.025 0.004 0

16 3 0.19 *0.86 *4.2% 0.001 *0.003 0.82 5.1% 0.002 0.018 1

12 3 0.26 0.84 *4.8% *0.006 *0.046 0.82 7.2% 0.020 0.190 0

16 5 0.32 0.73 *2.5% 0.090 0.261 0.74 6.7% *0.020 0.301 3

12 5 0.43 0.71 *4.0% 0.122 0.060 0.79 7.8% *0.014 0.052 2

16 7 0.45 0.49 *6.5% 0.457 * 0.035 *0.67 7.5% *0.033 0.191 0

far the best model-ranked policy is from optimality. A notion of the magni-

tude of this quantity could be helpful for ambulance managers who do not have

the means to evaluate allocations through detailed simulation but only have a

model upon which to rely. The overflow model yields G-ratios that are at least as

low as those yielded by the A-Hypercube model in 5 of the six cases presented

in Table 2.1 and yields significantly lower values in 3 of them.

Another important measure of the quality of these methods is how well they

predict the utilization of individual vehicles. The chart on the left-hand side of

Figure 2.5 shows a histogram of the absolute difference between the individ-

ual vehicle utilizations predicted by the overflow model and those obtained by

simulation. The chart on the right does the same for the A-Hypercube model

predicted utilizations. The differences are taken individually for each of the

vehicles and for each of the 1,000 evaluated allocations. A positive difference

indicates that the model-predicted utilization is larger than the simulated one.

30



Table 2.2: Error statistics for individual vehicle utilizations according to
the two models.

Sim.Params Overflow Model A-Hypercube Model

N λ Error Std. Error Std.

16 3 1.3% 2.5% 0.7 % 4.0%

12 3 2.5% 2.9% 0.6 % 4.8%

16 5 5.4% 3.6% 1.0 % 5.6%

12 5 9.6% 3.9% 0.2 % 5.8%

16 7 13.3% 4.5% 0.9 % 6.6%

The utilization differences for the overflow model have a mean of 2.5% and a

standard deviation of 2.9% whereas those of the A-Hypercube model are less

biased, with a mean of 0.6%, but less precise, with a standard deviation of 4.8%.

The situation exemplified here is not atypical. As Table 2.2 shows, for the same

set of scenarios as before, overflow-model predicted utilizations have a positive

systematic error that grows as the system utilization grows but smaller stan-

dard deviations than those yielded by A-Hypercube model predictions. On the

other hand, the A-Hypercube predictions have a very small bias. This is not

surprising considering that, as mentioned earlier, the A-Hypercube procedure

renormalizes base utilizations to the system utilization at each step.

We briefly comment now on the computational speed of both methods. The

fixed point procedures were implemented in MATLAB and run on a 3.2 GHz

Pentium IV PC running Linux. For the situation with 12 ambulances and λ =

3 calls/hr, each iteration of the A-Hypercube solution method takes 7.8 ± 2.5

ms whereas each iteration of the overflow method took 240± 65 ms. Thus,

31



  −12  −10    −8    −6    −4    −2     0     2     4     6     8    10    12    14    16    18    20    22    24
0

200

400

600

800

1000

1200

1400

1600

1800

Error in Overflow Model predicted utilizations

F
re

qu
en

cy

  −12  −10    −8    −6    −4    −2     0     2     4     6     8    10    12    14    16    18    20    22    24
0

200

400

600

800

1000

1200

1400

1600

1800

Error in A−Hypercube Model predicted utilizations

F
re

qu
en

cy

Figure 2.5: Differences between vehicle utilizations obtained from the
overflow model and the simulation model (left). Correspond-
ing differences for the A-Hypercube model.

in this implementation each iteration of the A-Hypercube is faster by a factor

of 30. This is expected considering that each iteration of the overflow method

updates a whole matrix of probabilities of size J × B, whereas the A-Hypercube

method deals with a vector of size N, which is generally much smaller. We also

note that the MATLAB implementation of the A-Hypercube method was easy

to vectorize while this was not possible for the overflow method. We anticipate

that the speed ratio of C language implementations of the methods would be

closer to 10:1 or even less. The average number of iterations taken by each of

the methods to converge was, for ε = 10−6, 11.7±2.1 (A-Hypercube) and 16.9±1.7

(overflow). For ε = 10−4, we got means of 6.7 and 10.9 iterations, respectively.

The A-Hypercube method failed to converge in 2 out of the 1000 allocations

studied while the overflow method converged for all of them.

Finally, we note that both ways of initializing the matrix S0 discussed in

Appendix B led to the same fixed point in all cases. We conjecture that the

function f implicitly defined by (A.1)-(A.6) has a unique fixed point, but this is

32



still an open question.

2.6 Conclusions and Future Research

We introduced two models for the static ambulance deployment problem. The

models capture some of the essential queueing dynamics of an emergency med-

ical service system while allowing efficient solution procedures. The island

model is particularly suitable when analyzing multi-region systems managed

by a central planner. It illustrates that ambulances should not be allocated in

proportion to the loads offered to the locations, especially when ambulance uti-

lizations are low. It is primarily intended to provide insight into ambulance-

allocation decisions, and its recommendations should be viewed as a starting

point for further exploration of allocations.

The overflow model estimates the loads offered to the different bases

through a system of equations involving the Erlang loss formula. Whether this

system of equations has a unique solution or not is an open question. Compu-

tational experiments suggest that the predictions of the second model are quite

accurate, and the model is particularly useful for evaluating a large set of possi-

ble ambulance allocations and selecting some allocations to be further evaluated

through simulation. The method is computationally more demanding than the

A-Hypercube model, but still orders-of-magnitude faster than simulation. Its

predictions are more accurate than those of the A-Hypercube for light to moder-

ate ambulance utilization, while the situation is reversed for moderate to heavy

ambulance utilization.

It would be interesting to investigate whether our models can incorporate

33



the fact that the average service time for an ambulance stationed at a base is

affected by the location of the demand assigned to it. Also, provided the neces-

sary input data is available, it would be straightforward to take random travel

times into account in our analysis and test whether this feature improves the

accuracy of the predictions. In particular, if the distribution of travel times from

any base k to any node j is known, one can compute any steady state perfor-

mance measure that is a function of the travel time to the call by conditioning

on j and k in Equation (2.5).

An important assumption underlying both of our models is that demand is

independent at different locations. This seems reasonable when the ambulance

service is operating under typical conditions. But the assumption is violated

when one considers the possibility of catastrophic events that strike multiple

locations simultaneously. To effectively plan for such situations, it would be

necessary to consider fundamentally different strategies.

In summary, we have developed analytical tools to aid EMS system man-

agers in their quantitative evaluations of ambulance allocation decisions. We

believe that our tools will be most valuable in pointing out the promising am-

bulance allocations. In this sense, we do not expect our tools to completely

replace simulation, but rather to complement it, by enabling pre-screening and

fast discarding of many poor ambulance allocations.

2.7 Acknowledgments

We thank Armann Ingolfsson for the data used for the numerical experiments

in Section 2.5, and the referees for very helpful comments that improved both

34



the content and exposition in the paper.

This manuscript is based upon work supported by the National Science

Foundation Grants No. DMI 0400287 and DMI 0422133. All opinions, findings,

and conclusions or recommendations expressed in this manuscript are those

of the authors and do not necessarily reflect the views of the National Science

Foundation.

35



CHAPTER 3

APPROXIMATE DYNAMIC PROGRAMMING FOR AMBULANCE

REDEPLOYMENT

Normal people ... believe that if it

ain’t broke, don’t fix it. Engineers

believe that if it ain’t broke, it

doesn’t have enough features yet.

Scott Adams

We present an approximate dynamic programming (ADP) approach for

making ambulance redeployment decisions in an emergency medical service

system. The primary decision is where we should redeploy idle ambulances so

as to maximize the number of calls reached within a given delay threshold. In

section 3.1 we review past literature on the subject of ambulance redeployment

and on the recent boom in successful applications of approximate dynamic tech-

niques. We also comment on how our approach differentiates itself from pre-

vious works. In section 3.2 we give a formulation of dynamic redeployment

as a dynamic program in a high-dimensional uncountable state space. To deal

with such a space, we adopt an ADP approach (Section 3.3 ) whose main ingre-

dient is a linear approximation architecture to the value function consisting of

6 basis functions that is parameterized by a small number of parameters. The

details on the architecture are presented in Section 3.4 We tune the parameters

of the value function approximations using simulated cost trajectories of the

system. Computational experiments, presented in Sections 3.5 and 3.6 demon-

strate the performance of the approach on emergency medical service systems

in two metropolitan areas. We report practically significant improvements in

36



performance relative to benchmark static policies. We conclude in Section 3.7

and point out some directions for further research.

3.1 Literature review

There are two streams of literature that are related to our work. The first one

is the literature on ADP. A generic approach for ADP involves using value

function approximations of the form
∑P

p=1 rp φp(·), where {rp : p = 1, . . . ,P} are

tuneable parameters and {φp(·) : p = 1, . . . ,P} are fixed basis functions; see

Bertsekas and Tsitsiklis [12], Powell [48]. There are a number of methods to

tune the parameters {rp : p = 1, . . . ,P} so that
∑P

p=1 rp φp(·) yields a good ap-

proximation to the value function. For example, temporal difference learning

and Q-learning use stochastic approximation ideas in conjunction with simu-

lated trajectories of the system to iteratively tune the parameters; see Sutton

[55], Watkins and Dayan [63], Tsitsiklis [59], Bertsekas and Tsitsiklis [12], Tsit-

siklis and Van Roy [60], Si, Barto, Powell and Wunsch II [53]. On the other

hand, the linear-programming approach for ADP finds a good set of values for

the parameters by solving a large linear program whose decision variables are

{rp : p = 1, . . . ,P}; see Schweitzer and Seidmann [52], de Farias and Van Roy [18],

Adelman and Mersereau [3]. For more on the linear-programming approach,

see Chapter 4. Both classes of approaches are aimed at tuning the parameters

{rp : p = 1, . . . ,P} so that
∑P

p=1 rp φp(·) yields a good approximation to the value

function. The choice of the basis functions {φp(·) : p = 1, . . . ,P}, on the other

hand, is regarded as more of an art form, requiring substantial knowledge of

the problem structure. Applications of ADP include inventory control [62], in-

ventory routing [1], option pricing [61], game playing [65, 22], dynamic fleet

37



management [57], and network revenue management [2, 23].

The second stream of literature that is related to our work is the literature

on ambulance redeployment. One class of models involves solving integer pro-

grams in real time whenever an ambulance redeployment decision needs to be

made; see Kolesar and Walker [41], Gendreau, Laporte and Semet [25], Brot-

corne et al. [14], Gendreau, Laporte and Semet [26], Nair and Miller-Hooks [47],

Richards [51]. The objective function in these integer programs generally in-

volves a combination of backup coverage for future calls and relocation cost of

ambulances. These models are usually computationally intensive, since they

require solving an optimization problem every time a decision is made. As a

result, a parallel computing environment is often (but not always) used to im-

plement a working real-time system. A second class of models is based on solv-

ing integer programs in a preparatory phase. This approach provides a lookup

table describing, for each number of available ambulances, where those ambu-

lances should be deployed. Dispatchers attempt to dispatch so as to keep the

ambulance configuration close to the one suggested by the lookup table; see In-

golfsson [35], Goldberg [28]. A third class of models attempts to capture the ran-

domness in the system explicitly, either through a dynamic programming for-

mulation or through heuristic approaches. Berman [7], Berman [8] and Berman

[9] represent the first papers that provide a dynamic programming approach for

the ambulance redeployment problem. However, these papers follow an exact

dynamic programming formulation and, as is often the case, this formulation

is tractable only in oversimplified versions of the problem with few vehicles

and small transportation networks. Andersson [4] and Andersson and Vaer-

band [5] make the ambulance redeployment decision by using a “preparedness”

function that essentially measures the capability of a certain ambulance config-

38



uration to cover future calls. The preparedness function is similar in spirit to

the value function in a dynamic program, measuring the impact of current deci-

sions on the future evolution of the system. However, the way the preparedness

function is constructed is heuristic in nature.

When compared with the three classes of models described above, our ap-

proach provides a number of advantages. In contrast to the models that are

based on integer programs, our approach captures the random evolution of the

system over time since it is based on a stochastic dynamic programming for-

mulation of the ambulance redeployment problem. Furthermore, the decisions

made by our approach in real time can be computed very quickly as this requires

solving a simple optimization problem that minimizes the sum of the immediate

cost and the value function approximation. In lookup table approaches, there

may be more than one way to redeploy the ambulances so that the ambulance

configuration over the transportation network matches the configuration sug-

gested by the lookup table. Therefore, table lookup approaches still leave some

aspects of dispatch decisions to subjective interpretation by dispatchers. Our

approach, on the other hand, can fully automate the decision-making process.

In traditional dynamic-programming approaches, one is usually limited to very

small problem instances, whereas ADP can be used on problem instances with

realistic dimensions. Our approach allows working with a variety of objective

functions, such as the number of calls that are not served within a threshold

time standard or the total response time for the calls. Furthermore, our ap-

proach allows the possibility of constraining the frequency and destinations of

ambulance relocations. This is important since a relocation scheme should bal-

ance improvements in service levels with the additional demands imposed on

ambulance crews.

39



3.2 Ambulance Redeployment as a Markov Decision Process

In this section, we present a dynamic programming formulation of the ambu-

lance redeployment problem. As will shortly be clear, our model involves an

uncountable state space. For an excellent account of the basic terminology, nota-

tion and fundamental results regarding dynamic programming in uncountable

states spaces, we refer the reader to [11].

3.2.1 State Space

Two main components in the state of an EMS system at a given time are the

vectors A = (a1, . . . , aN) and C = (c1, . . . , cM) containing information about the

state of each the N ambulances and each of the M queued calls in the system. To

simplify the presentation, we assume that we do not keep more than M waiting

calls in the system, possibly by diverting them to another EMS system. This is

not really a restriction from a practical perspective since M can be quite large.

The state of each ambulance is given by a tuple a = (σa,oa,da, ta), where σa is the

status of the ambulance, oa and da are respectively origin and destination loca-

tions of the ambulance and ta is the starting time of the ambulance movement.

To serve a call, an ambulance first moves to the call scene and provides service

at the scene for a certain amount of time. Following this, the ambulance pos-

sibly transports the patient to a hospital, and after spending some time at the

hospital, the ambulance becomes free to serve another call. Therefore, the status

of an ambulance σa can be “off shift,” “idle at base,” “going to call,” “at call

scene,” “going to hospital,” “at hospital” or “returning to base.” If the ambu-

lance is stationary at location o, then we have oa = da = o. If the ambulance is in

40



motion, then ta corresponds to the starting time of this movement. Otherwise, ta

corresponds to the starting time of the current phase in the service cycle. For ex-

ample, if the status of the ambulance is “at hospital,” then ta corresponds to the

time at which the ambulance arrived at the hospital. This time is kept in the state

of an ambulance to be able to give a Markov formulation for the non-Markovian

elements in the system, such as nonexponentially distributed service times and

deterministic travel times. Similarly, for a call, we have c = (σc,oc, tc, pc), where

σc is the status of the call, oc is the location of the call, tc is the time at which the

call arrived into the system and pc is the priority level of the call. The status of

a call σc can be “assigned to an ambulance” or “queued for service.”

We model the dynamics of the system as an event-driven process. Events

are triggered by changes in the status of the ambulances or by call arrivals.

Therefore, the possible event types in the system are “call arrives,” “ambulance

goes off shift,” “ambulance comes on shift,” “ambulance departs for call scene,”

“ambulance arrives at call scene,” “ambulance leaves call scene,” “ambulance

arrives at hospital,” “ambulance leaves hospital” and “ambulance arrives at

base.” We assume that we can make decisions (for any ambulance, and not

just the one involved in the event) only at the times of these events. This comes

at the cost of some loss of optimality, since making decisions between the times

of the events may improve performance. From a practical perspective, however,

events are frequent enough to allow ample decision-making opportunities.

By restricting our attention to the times of events, we visualize the system

as jumping from one event time to another. Therefore, we can use the tuple

s = (τ, e,A,C) to represent the state of the system, where τ corresponds to the

current time, e corresponds to the current event type, and A and C respectively

41



correspond to the state of the ambulances and the calls. In this case, the state

trajectory of the system can be written as {sk : k = 1,2, . . .}, where sk is the state

of the system just after the kth event occurs. Note that the time is rolled into our

state variable. Throughout the paper, we use τ(s) and e(s) to respectively denote

the time and the event type when the state of the system is s. In other words,

τ(s) and e(s) are the first two components of the tuple s = (τ, e,A,C).

3.2.2 Controls

We assume that calls are served in decreasing order of priority, and within a

given priority level are served in first-in-first-out order. We further assume that

the closest available ambulance is dispatched to a call. This is not an exact rep-

resentation of reality, but is close enough for our purposes: We will show that

ADP yields an effective redeployment strategy under this dispatch policy.

Let R(s) denote the set of ambulances that are available for redeployment

when the state of the system is s. Let uab(s) = 1 if we redeploy ambulance a to

base b when the state of the system is s, and 0 otherwise. Letting B be the set

of ambulance bases, we can capture the potential reallocation decisions in the

binary matrices u(s) = {uab(s) : a ∈ R(s), b ∈ B}. If we allow a maximum of m(s)

ambulance relocations at this state, then set of feasible decisions is then

U(s) =
{
u ∈ {0,1}|R(s)|×|B| :

∑

a∈A,b∈Bcal

uabuab ≤ m(s),
∑

b∈B
uab ≤ 1 ∀a ∈ R(s)

}
.

The constraints in this definition simply state that each ambulance that is con-

sidered for redeployment can be redeployed to at most one base. An impor-

tant assumption is that the cardinality of U(s) is small so that an optimization

problem over this feasible set can be solved by enumerating over all feasible

42



solutions. This assumption is met if m(s) is kept small, say 1 or 2.

We can use different definitions of R(s) to permit different amounts of reloca-

tion. For example, all available ambulances are considered for relocation if R(s)

denotes the set of ambulances that are either idle at base or returning to base.

But this may lead to impractically many relocations, so we can restrict R(s), for

example to ∅ unless the event e(s) corresponds to an ambulance becoming free

after serving a call, in which case we can take R(s) equal to the singleton set cor-

responding to the newly freed ambulance. Here the ambulance crews are “on

the road” when considered for relocation so there is no additional disruption to

the crews relative to the standard “return to base” policy.

3.2.3 Fundamental Dynamics

Call arrivals are generated across the region R⊂ R2 according to a Poisson point

process with a known arrival intensity C = {C(t, x, y) : t ≥ 0, (x, y) ∈ R}. As men-

tioned above, we have a fixed policy for serving calls, but our general approach

does not depend on the particular form of this policy. If there are no available

ambulances to serve a call, then the call is placed into a waiting queue. An am-

bulance serving a call proceeds through a sequence of events, including arriving

at the scene, treating the patient, transporting and handing over the patient at

the hospital. The main source of uncertainty in this call service cycle are the

times spent between events. We assume that probability distributions for all of

the event durations are known.

Besides these sources of randomness, the major ingredient governing the

dynamics is the decision-making of dispatchers. As a result, the complete tra-

43



jectory of the system is given by {(sk,uk) : k = 1,2, . . .}, where sk is the state of the

system at the time of the kth event and uk is the decision (if any) made by the

dispatcher when the state of the system is sk. We capture the dynamics of the

system symbolically by

sk+1 = f (sk,uk,Xk(sk,uk)),

where Xk(sk,uk) is a random element of an appropriate space encapsulating all

the sources of randomness described above. We do not attempt to give a more

explicit description of the transition function f (·, ·, ·), since this does not add

anything of value to our treatment. It suffices to point out that the preceding

discussion and the fact that we can simulate the evolution of the system over

time imply that an appropriate f (·, ·, ·) exists.

3.2.4 Transition Costs

Along with a transition from state sk to sk+1 through decision uk, we incur a cost

g(sk,uk, sk+1). In our particular implementation, we use the cost function

g(sk,uk, sk+1) =



1 if the event e(sk+1) corresponds to an ambulance arrival

at a call scene, the call in question is urgent and

the response time exceeds ∆

0 otherwise.

(3.1)

Here ∆ is a fixed threshold response time that is on the order of 10 minutes.

Therefore, the cost function (3.1) allows us to count the number of high priority

calls whose response times exceed a threshold response time. We are interested

44



in the performance of the system over the finite planning horizon [0,T], so let

g(s, ·, ·) = 0 whenever τ(s) > T. In our implementation, T corresponds to two

weeks. We have chosen this particular cost function because of its simplicity,

and also because most performance benchmarks in the EMS industry are for-

mulated in terms of the percentage of calls that are reached within a time stan-

dard. Our approach allows other cost functions without affecting the general

treatment.

3.2.5 Objective Function and Optimality Equation

A policy is a mapping from the state space to the action space, prescribing which

action to take for each possible state of the system. Throughout the paper, we

use µ(s) to denote the action prescribed by policy µ when the state of the system

is s. If we follow policy µ, then the state trajectory of the system {sµk : k = 1,2, . . .}
evolves according to sµk+1 = f (sµk, µ(sµk),Xk(s

µ
k, µ(sµk))) and the discounted total ex-

pected cost incurred by starting from initial state s is given by

Jµ(s) = E
[ ∞∑

k=1

ατ(s
µ
k) g(sµk, µ(sµk), sµk+1) | sµ1 = s

]
,

where α ∈ [0,1) is a fixed discount factor. Below we discuss the reasons for

using discounting. The expectation in the expression above involves the ran-

dom variables {sµk : k = 1,2, . . .} and τ(sµk) is the time at which the system visits

the kth state. It is well-known that the policy µ∗ that minimizes the discounted

total expected cost can be found by computing the value function through the

optimality equation

J(s) = min
u∈U(s)

{
E
[
g(s,u, f (s,u,X(s,u))) + ατ( f (s,u,X(s,u)))−τ(s) J( f (s,u,X(s,u)))

]}
(3.2)

45



and letting µ∗(s) be the minimizer of the right-hand side above; see Bertsekas

and Shreve [11].

The difficulty with the optimality equation (3.2) is that the state variable

takes uncountably many values. Even if we are willing to discretize the state

variable to obtain a countable state space, the state variable is still a high-

dimensional vector and solving the optimality equation (3.2) through classi-

cal dynamic-programming approaches is computationally very difficult. In the

next two sections, we propose a method to construct tractable approximations

to the value function.

The discounting in (3.2) may seem odd, as it implies that we are minimizing

the expected discounted number of calls that are not reached within the thresh-

old time. This is purely a computational device, in the sense that the discount

factor is very helpful in stabilizing the ADP approach that we describe in the

next two sections. The key issue is that the effect of relocation decisions can

be small relative to the simulation noise, and discounting appears to mitigate

this to some extent. This observation is in agreement with empirical observa-

tions from the case studies in Chapter 8 of [12]. The increase in stability is also

supported by the theoretical results in Chapter 6.2 of Bertsekas and Tsitsiklis

[12]. When presenting our computational results in Sections 3.5 and 3.6, we re-

port the undiscounted number of calls that are not reached within the threshold

response time. These results indicate that although we construct the value func-

tion approximations with a view towards minimizing the expected discounted

cost, the same value function approximations provide very good performance

in minimizing the expected undiscounted cost.

46



3.3 Approximate Dynamic Programming

The ADP approach that we use to construct approximations to the value func-

tion is closely related to the traditional policy iteration algorithm in the Markov

decision processes literature. We begin with a brief description of the policy it-

eration algorithm. Throughout the rest of the paper, the greedy policy induced

by an arbitrary function Ĵ(·) refers to the policy that takes a decision in the set

argmin
u∈U(s)

{
E
[
g(s,u, f (s,u,X(s,u))) + ατ( f (s,u,X(s,u)))−τ(s) Ĵ( f (s,u,X(s,u)))

]}
(3.3)

whenever the state of the system is s.

Policy Iteration

Step 1. Initialize the iteration counter n to 1 and initialize J1(·) arbitrarily.

Step 2. (Policy improvement) Let µn be the greedy policy induced by Jn(·).

Step 3. (Policy evaluation) Let Jn+1(·) = Jµ
n
(·), where Jµ

n
(s) denotes the expected

discounted cost incurred when starting from state s and using policy µn.

Step 4. Increase n by 1 and go to Step 2.

In our setting the cost function g(·, ·, ·) is nonnegative and the set of feasible

decisionsU(s) is finite, so Proposition 9.17 in Bertsekas and Shreve [11] applies

and hence Jn(·) converges pointwise to the solution to the optimality equation

(3.2).

The difficulty with the policy iteration algorithm is that when dealing with

uncountable state spaces, it is not even feasible to store Jµ
n
(·), let alone compute

the expected discounted cost incurred by using policy µn. We overcome this

47



difficulty by using value function approximations of the form

J(s, r) =

P∑

p=1

rp φp(s).

In the expression above, r = {rp : p = 1, . . . ,P} are tuneable parameters and

{φp(·) : p = 1, . . . ,P} are fixed basis functions. The challenge is to construct the

basis functions and tune the parameters so that J(·, r) is a good approximation to

the solution to the optimality equation (3.2). To achieve this, each basis function

φp(·) should capture some essential information about the solution to the opti-

mality equation. In Section 3.4, we describe one set of basis functions that work

well. Once a good set of basis functions is available, we can use the following

approximate version of the policy iteration algorithm to tune the parameters

{rp : p = 1, . . . ,P}.

Approximate Policy Iteration

Step 1. Initialize the iteration counter n to 1 and initialize r1 = {r1
p : p = 1, . . . ,P}

arbitrarily.

Step 2. (Policy improvement) Let µn be the greedy policy induced by J(·, rn).

Step 3. (Policy evaluation through simulation) Simulate the trajectory of policy

µn over the planning horizon [0,T] for Q sample paths. Let K(q) denote

the number of states visited, {sn
k(q) : k = 1, . . . ,K(q)} the state trajectory of

policy µn in sample path q and Gn
k(q) be the discounted cost incurred by

starting from state sn
k(q) and following policy µn in sample path q.

Step 4. (Projection) Let

rn+1 = argmin
r∈RP

{ Q∑

q=1

K(q)∑

k=1

[
Gn

k(q) − J(sn
k(q), r)

]2
}
.

Step 5. Increase n by 1 and go to Step 2.

48



In Step 3 of approximate policy iteration we use simulation to evaluate

the expected discounted cost incurred by policy µn. Therefore, {Gn
k(q) : k =

1, . . . ,K(q), q = 1, . . . ,Q} are the sampled cost trajectories of the system under

policy µn. In Step 4, we tune the parameters so that the value function approxi-

mation J(·, r) provides a good fit to the sampled cost trajectories.

There is still one computational difficulty in the approximate policy itera-

tion algorithm. When simulating the trajectory of policy µn in Step 3, we need

to solve an optimization problem of the form (3.3) to find the action taken by

the greedy policy induced by J(·, rn). This optimization problem involves an

expectation that is difficult to compute. We resort to Monte Carlo simulation

to overcome this difficulty. In particular, if the state of the system is s and we

want to find the action taken by the greedy policy induced by J(·, rn) in this state,

then we enumerate over all decisions in the feasible setU(s). Starting from state

s and taking decision u, we simulate the trajectory of the system until the next

event and this provides a sample of f (s,u,X(s,u)). By using multiple samples,

we estimate the expectation

E
[
g(s,u, f (s,u,X(s,u))) + ατ( f (s,u,X(s,u)))−τ(s) J( f (s,u,X(s,u)), rn)

]

through a sample average. Once we estimate the expectation above for all u ∈
U(s), we choose the decision that yields the smallest value and use it as the

decision taken by the greedy policy induced by J(·, rn) when the state of the

system is s. This approach is naturally subject to sampling error, but it provides

good performance in practice.

Proposition 6.2 in [12] provides a performance guarantee for the approxi-

mate policy iteration algorithm. (The result is easily extended from finite to

infinite state spaces.) This is an encouraging result as it provides theoretical

49



support for the approximate policy iteration algorithm, but its conditions are

difficult to verify in practice. In particular, the result assumes that we precisely

know the error induced by using regression to estimate the discounted total ex-

pected cost of a policy, and it assumes that expectations are computed exactly

rather than via sampling as in our case. For this reason, we do not go into the

details of this result and refer the reader to Bertsekas and Tsitsiklis [12] for fur-

ther details.

3.4 Basis Functions

In this section, we describe the basis functions {φp(·) : p = 1, . . . ,P} that we use

in our value function approximations. We use P = 6 basis functions, some of

which are based on the queueing insights developed in Restrepo, Henderson

and Topaloglu [49].

3.4.1 Baseline

The first basis function is of the form φ1(s) = 1 − αT−τ(s). The role of this basis

function is to give a very rough estimate of the discounted number of missed

calls between the time associated with state s and the end of the planning hori-

zon. In particular, if we assume that we miss a call every θ time units, then the

discounted number of missed calls over the interval [τ(s),T] is

1 + αθ + α2θ + . . . + αb
T−τ(s)
θ c θ =

1− α
[
b T−τ(s)

θ c+1
]
θ

1− α ≈ 1− αT−τ(s)

1− α .

50



3.4.2 Unreachable Calls

The second basis function computes the number of waiting calls for which an

ambulance assignment has been made, but the ambulance will not reach the

call within the threshold response time. This is easily computed in our set-

ting where travel times are deterministic. In the case of stochastic travel times,

we could use the probability that the ambulance will reach the call within the

threshold response time instead. We do not give a precise expression for this

basis function, since the precise expression is cumbersome yet straightforward

to define.

3.4.3 Uncovered Call Rate

The third basis function captures the rate of call arrivals that cannot be reached

on time by any available ambulance. To define this precisely we need some

additional notation. Recall that calls arrive across the region R ⊂ R2 according

to a Poisson point process with arrival intensity C = {C(t, x, y) : t ≥ 0, (x, y) ∈
R}. Partition the region R into L subregions {ρl : l = 1, . . . , L}, and associate a

representative point or “center of mass” (xl , yl) with each subregion l = 1, . . . , L.

The coverage of subregion l is the number of available ambulances that

can reach the center of mass (xl , yl) within the threshold time standard. Let

d(t, (x1, y1), (x2, y2)) be the travel time between points (x1, y1) and (x2, y2) when

travel starts at time t. Then, letting 1(·) be the indicator function, the coverage

of subregion l can be written as a function of the state of the system as

Nl(s) =
∑

a∈A(s)

1(d(τ(s), (xa(s), ya(s)), (xl , yl)) ≤ ∆).

51



Here, A(s) is the set of available ambulances and (xa(s), ya(s)) is the location of

ambulance a at time τ(s) when the system is in state s. The rate of call arrivals

at time t in subregion l is

Cl(t) =

∫

ρl

C(t, x, y) dx dy.

Therefore, when the state of the system is s, we can compute the rate of call

arrivals that are not covered by any available ambulance by

φ3(s) =

L∑

l=1

Cl(τ(s)) 1(Nl(s) = 0).

3.4.4 Missed Call Rate

The previous 2 basis functions capture calls already received that we know we

cannot reach on time, and the rate of arriving calls that cannot be reached on

time because they are too far from any available ambulance. We could also fail

to reach a call on time due to queueing effects from ambulances being busy with

other calls. The fourth basis function represents an attempt to capture this effect.

This basis function is of the form

φ4(s) =

L∑

l=1

Cl(τ(s)) Pl(s),

where Pl(s) is the probability that all ambulances that could reach a call in sub-

region l on time are busy with other calls. We estimate {Pl(s) : l = 1, . . . , L}
by treating the call service processes in different subregions as Erlang-loss sys-

tems. In Erlang-loss systems, calls arriving when all servers are busy are lost.

In reality such calls are queued and served as ambulances become free, but the

time threshold is almost always missed for such calls, so counting them as lost

seems reasonable. The issue that such calls impose some load on the true sys-

tem but are discarded in an Erlang-loss system creates a slight mismatch, but

52



our computational results show that this function is still highly effective as a

basis function.

The Erlang-loss probability L(λ, µ, c) for a system with arrival rate λ, service

rate µ and c servers is

L(λ, µ, c) =
(λ/µ)c/c!∑c
i=0(λ/µ)i/i!

.

To characterize the Erlang-loss system for subregion l, given that the state of

the system is s, we need to specify the number of servers, and the arrival and

service rates. LetNl(s) be the set of available ambulances that can serve a call in

subregion l within the threshold response time. Then

Nl(s) = {a ∈ A(s) : d(τ(s), (xa(s), ya(s)), (xl , yl)) ≤ ∆}.

We use c = |Nl(s)| as the number of servers in the Erlang loss system for subre-

gion l. Let µl(t) be the service rate in the loss system, i.e., the rate at which an

ambulance can serve a call at time t in subregion l. It is difficult to come up with

a precise value for µl(t). It primarily depends on the time spent at the scene of

a call and any transfer time at a hospital, since travel times are usually small

relative to these quantities. In our practical implementation, we use historical

data to estimate the time spent at the call scenes and the hospitals and add a

small padding factor to capture travel times. Finally, let Λl(s) be the rate of call

arrivals that should be served by ambulances in the setNl(s). Coming up with a

value for Λl(s) is even more difficult than devising a value for µl(t). One option

is to let Λl(s) = Cl(τ(s)), which is the rate of call arrivals at time τ(s) in subregion

l. However, ambulances in the set Nl(s) serve not only calls in subregion l, but

also calls in other subregions. To attempt to capture this let

Λl(s) =
∑

a∈Nl (s)

L∑

i=1

Ci(τ(s)) 1(d(τ(s), (xa(s), ya(s)), (xi , yi)) ≤ ∆), (3.4)

53



so that Λl(s) reflects the total call arrival rate in subregions that are close to any

of the ambulances in the set Nl(s). We then use the approximation

Pl(s) ≈ L(Λl(s), µl(τ(s)), |Nl(s)|). (3.5)

There are at least 2 shortcomings in the estimate for Λl(s) in (3.4) and the

approximation to Pl(s) in (3.5). First, there is double counting in the estimate

of Λl(s). In particular, if 2 ambulances a1,a2 ∈ Nl(s) can both reach subregion

` within the time threshold, then the summation for Λl(s) counts C`(τ(s)) twice.

Second, C`(τ(s)) could be counted in the demand rates for multiple subregions.

To be more precise, if there are three subregions l1, l2, ` and two ambulances

a1 ∈ Nl1(s), a2 ∈ Nl2(s) such that both a1 and a2 can reach subregion ` within the

time threshold, then the summations for Λl1(s) and Λl2(s) both count C`(τ(s)).

Therefore, we typically have
∑L

l=1 Λl(s) >
∑L

l=1 Cl(τ(s)). To overcome this prob-

lem, we dilute the call arrival rates by a factor κ. In particular, we use the call

arrival rate κC`(τ(s)) in (3.4) instead of C`(τ(s)) so that we may roughly have
∑L

l=1 Λl(s) =
∑L

l=1 κCl(τ(s)). We find a good value for κ through preliminary ex-

perimentation. Interestingly, as we will see in our computational results, it is

not necessarily the case that the best choice of κ lies in (0,1). We emphasize that

κ is the only tuneable parameter in our ADP approach that requires experimen-

tation.

3.4.5 Future Uncovered Call Rate

In certain settings, we may not be willing to redeploy ambulances that are al-

ready in transit to a particular location. In this case, from the perspective of cov-

ering future calls, the ambulance destinations are as important as their current

54



locations. This is the motivation underlying the fifth and sixth basis functions.

Our fifth basis function parallels the third one, replacing the true locations of

ambulances by their destinations.

The definition of this basis function is therefore identical to that of φ3, but

the configuration of the ambulances that we use to compute Nl(s) is not the

current one, but rather, an estimated future configuration that is obtained by

letting all ambulances in transit reach their destinations and all stationary am-

bulances remain at their current locations. To be precise, given that the sys-

tem is in state s = (τ,e,A,C) with A = (a1, . . . ,aN) and ai = (σai ,oai ,dai , tai ), we

define a new state ~s(s) = (τ + 1/
∑L

l=1 Cl(τ),e, ~A,C) with ~A = (~a1, . . . , ~aN) and

~ai = (~σai ,dai ,dai , τ + 1/
∑L

l=1 Cl(τ)), where ~σai is the status of ambulance ai when it

reaches its destination dai . In this case, we can write the fifth basis function as

φ5(s) =

L∑

l=1

Cl(τ(~s(s))) 1(Nl(~s(s)) = 0).

The time τ(~s(s)) = τ + 1/
∑L

l=1 Cl(τ) is used as an approximation to the expected

time of the next call arrival. The next call may arrive before or after the ambu-

lances actually reach their destinations, but we heuristically use the time τ(~s(s))

simply to look into the future. The idea is that the estimated future configura-

tion of the ambulances ~A is more likely to hold at the future time τ(~s(s)) than at

the current time τ(s).

3.4.6 Future Missed Call Rate

The sixth basis function, φ6, parallels φ4 in that it captures the rate of calls that

will likely be lost due to queueing congestion. As with the fifth basis function,

55



it uses an estimated future configuration of the ambulances. It is defined as

φ6(s) =

L∑

l=1

Cl(τ(~s(s))) Pl(~s(s)).

3.5 Computational Results on Edmonton

In this section, we present computational results for the EMS system in the city

of Edmonton, Alberta in Canada. We begin with a description of the data set

along with our assumptions.

3.5.1 Experimental Setup

Our data are based on the data set used in the computational experiments in

[36]. The city of Edmonton has a population of 730,000 and covers an area of

around 40× 30 km2. The EMS system includes 16 ambulances, 11 bases and 5

hospitals. We assume for simplicity that all ambulances are of the same type

and operate all day. An ambulance, upon arriving at a call scene, treats the pa-

tient for an exponentially distributed amount of time with mean 12 minutes.

After treating the patient at the call scene, the ambulance transports the patient

to a hospital with probability 0.75. The probability distribution for the hospi-

tal chosen is inferred from historical data. The time an ambulance spends at

the hospital has a Weibull distribution with mean 30 minutes and standard de-

viation 13 minutes. The turn-out time for the ambulance crews is 45 seconds.

In other words, if the ambulance crew is located at a base when it is notified

of a call, then it takes 45 seconds to get ready. An ambulance crew already on

the road does not incur the turn-out time. The road network that we use in

56



our computational experiments models the actual road network on the avenue

level. There are 252 nodes and 934 arcs in this road network. The travel times

are deterministic and do not depend on the time of the day.

There was not enough historical data to develop a detailed model of the call

arrivals so we proceeded with an insightful, but not necessarily realistic, model.

The model maintains a constant overall arrival rate, but the distribution of the

location of calls changes in time. We divided the city of Edmonton into 20× 17

subregions and assumed that the rate of call arrivals in subregion l at time t is

given by

Cl(t) = C
[
γl + δl sin(2πt/24)

]
,

where t is measured in hours. In the expression above, C, γl and δl are fixed

parameters that satisfy C ≥ 0, γl ≥ |δl |, ∑340
l=1 γl = 1 and

∑340
l=1 δl = 0. We have

∑340
l=1 γl +

∑340
l=1 δl sin(2πt/24) = 1 so that we can interpret C as the total call arrival

rate into the system and γl + δl sin(2πt/24) as the probability that a call arriving

at time t falls in subregion l. If δl > 0, then the peak call arrival rate in subregion

l occurs at hours {6,30,54, . . .}, whereas if δl < 0, then the peak call arrival rate

in subregion l occurs at hours {18,42,66, . . .}. The average call arrival rate over

a day in subregion l is Cγl . We estimated C and γl using historical data and C

ranged from 3 to 7 calls per hour. We chose appropriate values of δl so that we

have higher call arrival rates in the business subregions early in the day and

higher call arrival rates in the residential subregions later in the day.

We implemented ADP on top of the BartSim simulation engine developed

by [34]. In all of our computational experiments, we use a discount factor of α =

0.85per day. The simulation horizon is 14 days. We use 30 sample paths in Step

3 of the approximate policy iteration algorithm. After some experimentation,

57



we found that κ = 0.1 in the fourth and sixth basis functions gave the best results.

We use the static redeployment policy as a benchmark. In particular, the

static redeployment policy preassigns a base to each ambulance and redeploys

each ambulance back to its preassigned base whenever it becomes free after

serving a call. We found a good static redeployment policy by simulating the

performance of the system under a large number of possible base assignments

and choosing the base assignment that gave the best performance.

3.5.2 Baseline Performance

In our first set of computational experiments, we test the performance of ADP

under the assumption that the only time we can redeploy an ambulance is when

it becomes free after serving a call. We do not redeploy ambulances at other

times. Following the discussion of Section 3.2.2, this is equivalent to setting

R(s) = ∅, except when e(s) corresponds to an ambulance becoming free after

serving a call, in which case R(s) is the singleton set corresponding to the ambu-

lance just becoming free. The motivation for using this redeployment strategy

is that it minimizes the disturbance to the crews and never redeploys an ambu-

lance that is located at an ambulance base.

Figure 3.5.2 shows the performance of ADP. The horizontal axis gives the

iteration number in the approximate policy iteration algorithm and the verti-

cal axis gives the percentage of calls not reached within the threshold response

time. The plot gives the percentage of calls missed by the greedy policy induced

by the value function approximation at a particular iteration. The dashed hor-

izontal line shows the best performance attained by ADP, while the thin hori-

58



5 10 15 20 25
21

21.5

22

22.5

23

23.5

24

24.5

25

25.5

26

A
ve

ra
ge

 N
um

be
r 

of
 L

os
t C

al
ls

 (
%

 to
ta

l C
al

ls
)

Iteration Number

Figure 3.1: Performance of ADP and the benchmark policy (solid thin
line).

zontal line shows the performance of the best static policy. ADP attains a good

policy within two iterations and then bounces around this policy. The best ADP

policy misses 21.9% (± 0.2%) of the calls, whereas the best static redeployment

policy misses 25.3% (±0.2%) of the calls. (These figures are undiscounted num-

bers of missed calls.)

The ADP approach does not converge on a single policy. This lack of conver-

gence is not a concern from a practical viewpoint since we can simply choose

the best policy that is obtained during the course of the approximate policy it-

eration algorithm and implement this policy in practice.

To emphasize the importance of choosing the basis functions carefully, Fig-

ure 3.5.2 shows the performance of ADP when we use an arrival rate λ = Cl(τ(s))

instead of the quantity in (3.4) in the fourth and sixth basis functions. The best

policy obtained through ADP misses 23.6% (± 0.2%) of the calls. This is in con-

trast with the best policy missing 21.9% (± 0.2%) of the calls in Figure 3.5.2.

59



5 10 15 20 25
23

24

25

26

27

28

29

30

31

32

33

34

A
ve

ra
ge

 N
um

be
r 

of
 L

os
t C

al
ls

 (
%

 to
ta

l C
al

ls
)

Iteration Number

Figure 3.2: Performance of ADP with poorly chosen basis functions.

Furthermore, the fluctuation in the performance of the policies in Figure 3.5.2

is much more drastic when compared with Figure 3.5.2. The results indicate

that choosing the basis functions carefully makes a significant difference in the

performance of ADP.

3.5.3 Comparison with Random Search

For a fixed set of basis functions {φp(·) : p = 1, . . . ,P}, a set of values for the

tuneable parameters r = {rp : p = 1, . . . ,P} characterize a value function approx-

imation J(·, r) and this value function approximation induces a greedy policy.

Therefore, a brute-force approach for finding a good set of values for the tune-

able parameters is to carry out a random search over an appropriate subset of

RP and use simulation to test the performance of the greedy policies induced by

the different sets of values for the tuneable parameters.

60



To implement this idea, we first use ADP to obtain a good set of values for

the tuneable parameters. Letting {r̂p : p = 1, . . . ,P} be this set of values, we

sample r = {rp : p = 1, . . . ,P} uniformly over the box
[
r̂1 − 1

2 r̂1, r̂1 + 1
2 r̂1

] × . . . ×
[
r̂P− 1

2 r̂P, r̂P + 1
2 r̂P

]
and use simulation to test the performance of the greedy pol-

icy induced by the value function approximation J(·, r). We sampled 1,100 sets

of values for the tuneable parameters and this provides 1,100 value function

approximations. Figure 3.5.3 gives a histogram for the percentage of the calls

missed by the greedy policies induced by these 1,100 value function approxi-

mations. The vertical lines correspond to the percentage of calls missed by the

best policy obtained by ADP and the best static redeployment policy. The figure

indicates that very few (3%) of the sampled sets of values for the tuneable pa-

rameters provide better performance than the best policy obtained by ADP. On

the other hand, approximately 28% of the samples provide better performance

than the best static redeployment policy.

The random search procedure we use is admittedly rudimentary and one

can use more sophisticated techniques to focus on the more promising areas

of the search space. Nevertheless, our results indicate that when one looks at

the broad landscape of the possible values for the tuneable parameters, ADP

is quite effective in identifying good parameters. Moreover, the computation

time required by the random search procedure is on the order of several days,

whereas the computation time required by ADP is a few hours.

61



18 20 22 24 26 28 30 32 34 36
0

10

20

30

40

50

60

70

80

90

Average percentage of missed calls

F
re

qu
en

cy

ADP*

Static* 

Figure 3.3: Performance of the 1,100 greedy policies obtained through ran-
dom search.

3.5.4 Making Additional Redeployments

The computational experiments in Section 3.5.2 and 3.5.3 allow redeployments

only when an ambulance becomes free after serving a call. We now explore

the possibility of improving performance by allowing additional ambulance re-

deployments. Define an additional event type “consider redeployment” and

schedule an event of this type with a certain frequency that is detailed below.

Whenever an event of this type is triggered, we consider redeploying the am-

bulances that are either at a base or returning to a base, so that R(s) can contain

multiple ambulances at such times. The set R(s) continues to be a singleton

when e(s) corresponds to an ambulance becoming free after serving a call, and

at all other events, R(s) = ∅.

We use two methods to vary the redeployment frequency. In the first

method, we equally space consider-redeployment events to obtain frequencies

62



between 0 and 15 per hour. In the second method, the frequency of consider-

redeployment events is fixed at 24 per hour, but we make a redeployment only

when the estimated benefit from making the redeployment exceeds the esti-

mated benefit from not making the redeployment by a significant margin. More

precisely, we let ε ∈ [0,1) be a tolerance margin, 0̄(s) denote the |R(s)| × |B| di-

mensional matrix of zeros corresponding to the decision matrix of not making

a redeployment, s′u = f (s,u,X(s,u)) the (random) next state after taking action u

and s′
0̄

= f (s, 0̄(s),X(s, 0̄(s))) the next state after taking action 0̄(s). If we have

argmin
u∈U(s)

{
E
[
g(s,u, s′u) + ατ(s

′
u)−τ(s) J(s′u, r)

]}

≤ (1− ε)E
[
g(s, 0̄, s′0̄) + ατ(s

′
0̄
)−τ(s) J(s′0̄, r)

]
,

then we make the redeployment decision indicated by the optimal solution to

the problem on the left-hand side. Otherwise, we do not make a redeployment.

Larger values of ε decrease the frequency of redeployments. We vary ε between

0.1 and 0.005.

Figure 3.5.4 shows the performance improvement obtained by the additional

redeployments. The horizontal axis gives the frequency of the redeployments

measured as the number of redeployments per ambulance per day. The verti-

cal axis gives the percentage of missed calls. The dashed (solid) data line cor-

responds to the first (second) method of varying the redeployment frequency.

From Figure 3.5.2 we miss 21.9% of the calls without making any additional

redeployments. By making about 10 additional redeployments per ambulance

per day, we can decrease the percentage of missed calls to 20.2%. Beyond this

range, we reach a plateau and additional redeployments do not provide much

improvement. Another important observation is that the second method tends

to provide significantly better performance improvements with the same fre-

63



0 5 10 15 20 25 30
19

19.5

20

20.5

21

21.5

22

22.5
Efficient Frontier: improvement vs. relocations per ambulance−day

Relocations per ambulance−day

A
ve

ra
ge

 N
um

be
r 

of
 M

is
se

d 
C

al
ls

 (
%

 o
f t

ot
al

 c
al

ls
)

 

 

Regularly scheduled relocs. var. freqs

Selective relocs

Figure 3.4: Performance of ADP as a function of the frequency of the ad-
ditional redeployments.

quency of additional redeployments. For example, the second method reduces

the percentage of missed calls to 20.2% with 10 additional redeployments per

ambulance per day, whereas the first method needs 15 additional redeploy-

ments per day to reach the same level. Therefore, it appears that making re-

deployments only when the value function approximation signals a significant

benefit is helpful in avoiding pointless redeployments.

3.6 Computational Results on a Second Metropolitan Area

In this section, we present the performance of ADP on the EMS system operat-

ing in a second metropolitan area. This EMS system is also studied in [51]. We

cannot disclose the name of the metropolitan area due to confidentiality agree-

ments.

64



3.6.1 Experimental Setup

The population of the city in question is more than 5 times that of Edmonton and

its size is around 180× 100km2. The EMS system includes up to 97 ambulances

operating during peak times, 88 bases and 22 hospitals. The turn-out times, call-

scene times and hospital-transfer times are comparable to those in Edmonton.

We were able to use a detailed model for determining to which hospital a patient

needs to be transported. In particular, the destination hospital depends on the

location of the call. Calls originating at a given location are transported to any

of a small set of hospitals – usually no more than 2 or 3 out of the 22 hospitals

in the system. The corresponding probabilities are inferred from historical data.

We assume that all ambulances are of the same type and a call that is not served

within 8 minutes is interpreted as missed. The road network that we use in our

computational experiments models the actual network on the avenue level and

there are 4,955 nodes and 11,876 arcs in this road network.

The call arrival model that we used is quite realistic. The data that we used

were collected from one year of operations of the EMS system and consisted of

aggregated counts of calls for each hour of the week during a whole year, for

each of 100× 100geographic zones. Due to the irregular and non-convex shape

of the metropolitan area, roughly 80%of these zones had zero total call counts

and did not intervene in the dynamics. From the remaining 20% a significant

percentage had very low hourly counts of at most 5 calls. Thus, it was necessary

to apply smoothing procedure for the lowest intensity zones so as to reduce the

sampling noise. In order to do this, we first classified the zones in a few groups

according to their average intensity along the week. Then, for the lowest inten-

sity groups, we computed a total intensity for each hour and then distributed

65



this total intensity uniformly among the zones in this group. In this way we ob-

tained an intensity model that combined a uniform low intensity background

with actual (accurate) counts on the highest intensity zones. The average call

arrival rate was 570 calls per day and fluctuated on any day of the week from a

low of around 300 calls per day to a high of around 750 calls per day.

We used the actual base assignments and ambulance shifts as a benchmark.

In the EMS system, a maximum of 97 ambulances operate at noon. Out of these,

66 ambulances work all day in two 12 hour shifts and the remaining 31 have

single shifts typically ranging from 10 to 12 hours per day. The resulting shift

schedule provides 1,708 ambulance hours per day. Ambulances are redeployed

to their preassigned bases whenever they become free after serving a call. We

refer the reader to Richards [51] for details on the ambulance shifts.

3.6.2 Baseline Performance

Figure 3.6.2 shows the performance of ADP. The interpretations of the axes in

this figure are the same as those in Figures 3.5.2 and 3.5.2. The solid hori-

zontal line plots the percentage of calls missed by the benchmark policy and

the dashed horizontal line plots the best performance obtained using ADP. The

solid data line plots the performance of ADP when we use κ = 2 in the fourth ba-

sis function, whereas the dashed line plots the performance when we use κ = 1.

The value κ = 2 was found by experimentation to give the best policy and least

fluctuations across iterations of all the values tried in the interval (0,2].

For both values of κ, the best ADP policies are attained in one iteration

and these policies perform very similarly. The improvements in the number

66



2 4 6 8 10 12 14

25

30

35

40

45

50

55

A
ve

ra
ge

 #
 o

f m
is

se
d 

ca
lls

 (
%

 o
f t

ot
al

 n
um

be
r 

of
 c

al
ls

)

Iteration Number

 

 

κ = 1.0

κ = 2.0

Figure 3.5: Performance of ADP for two values of κ and the benchmark
policy (solid thin line).

of reached calls are roughly 3.0% and 4.0% in the case of κ = 1 and κ = 2. We

get significantly more stable performance with κ = 2 than with κ = 1. This indi-

cates that it is important to carefully tune the parameter κ through some initial

experimentation.

3.6.3 Effect of Turn-Out Time

Recall that if the ambulance crew is stationed at a base when it is notified of a

call, then it takes 45 seconds to get ready, i.e., the turn-out time is 45 seconds. On

the other hand, an ambulance crew that is already on the road does not incur

turn-out time. A potential argument against ambulance redeployment is that

any gains are simply due to ambulance crews being on the road more often,

and therefore incurring less turn-out time delays.

67



Table 3.1: Effect of turn-out time on the performance gap between ADP
and the benchmark policy.

633 calls per day

Turn out Turn out

= 45 secs. = 0 secs.

% of calls missed 27.5 23.0

by benchmark

% of calls missed 23.9 19.3

by ADP

Improvement 3.6 3.2

Rel. improvement 3.6 / 27.5 3.2 / 23.0

= 0.13 = 0.139

846 calls per day

Turn out Turn out

= 45 secs. = 0 secs.

% of calls missed 35.5 30.7

by benchmark

% of calls missed 30.5 26.3

by ADP

Improvement 4.9 4.5

Rel. improvement 4.9 / 35.5 4.5 / 30.7

= 0.139 = 0.145

To check the validity of this argument, we used ADP under the assumption

that turn-out time is zero. In other words, an ambulance crew does not take

any time to get ready, even if it is located at a base when it is notified of a call.

Table 3.1 shows the results for two different call arrival regimes (633 calls per

day and 846 calls per day). The third and fourth rows show the absolute and

relative improvement of ADP over the benchmark strategy. The results indi-

cate that ADP provides significant improvement over the benchmark strategy

in all cases. At first sight, this improvement seems slightly smaller for the cases

without turn-out time, but the relative improvement is roughly the same in all

cases.

68



3.6.4 Varying Call Arrival Rates and Fleet Sizes

We now explore the effect of different call arrival rates and fleet sizes on the per-

formance of ADP. We first carry out a number of runs under the experimental

setup described in Section 3.6.1, but we vary the call arrival rates by uniformly

scaling them by a constant factor. Recall that the average call arrival rate in

the experimental setup in Section 3.6.1 is around 570 calls per day. Figure 3.6.4

shows the percentage of the calls that are missed by the best policy obtained

by ADP and the benchmark strategy as a function of the average call arrival

rate. The solid data line corresponds to ADP, whereas the dashed data line cor-

responds to the benchmark strategy. ADP provides substantial improvements

over all call arrival regimes. The improvements provided by ADP are more sig-

nificant when the call arrival rate is relatively high. It appears that when the call

arrival rate is high, there is more room for improvement by redeploying ambu-

lances carefully and ADP effectively takes advantage of this greater room for

improvement.

In a second set of computational experiments, we hold the call arrival rate

constant and vary the number of ambulances in the fleet. Figure 3.6.4 shows the

performance of ADP and the benchmark strategy as a function of the fleet size.

Since we do not have access to the base assignments used by the benchmark

strategy for different fleet sizes, we modify the base assignments described in

Section 3.6.1 heuristically. In particular, to produce a base assignment with

fewer ambulances, we choose the ambulances assigned to bases serving low

demand and take them off shift. Similarly, to produce a base assignment with

extra ambulances, we add ambulances to the bases with the highest demand.

The results indicate that ADP performs consistently better than the bench-

69



450 500 550 600 650 700 750 800 850 900 950 1000

20

25

30

35

40

Average # of calls/day

A
ve

ra
ge

 #
 o

f m
is

se
d 

ca
lls

 lo
st

 (
%

 o
f t

ot
al

 n
um

be
r 

of
 c

al
ls

)

 

 

Benchmark Policies

Best ADP policies

Figure 3.6: Performance of ADP and benchmark policy for different call
arrival rates.

mark policy. An important observation from Figure 3.6.4 is that if our goal is to

keep the percentage of the missed calls below a given threshold, say 28%, then

ADP allows us to reach this goal with roughly 5 or 6 fewer ambulances than

the benchmark policy. This translates into significant cost savings in an EMS

system. It is also interesting that the performance of the benchmark policy does

not improve significantly beyond 97 or 98 ambulances in the fleet, whereas ADP

continues to provide progressively lower missed-call rates. This partly reflects

the quality of our heuristic benchmark strategy, but it also indicates that a rede-

ployment strategy can help mitigate poor static allocations and make effective

use of extra capacity.

70



80 85 90 95 100
20

25

30

35

40

45

Number of Ambulances

A
ve

ra
ge

 #
 o

f m
is

se
d 

ca
lls

 (
%

 o
f t

ot
al

 n
um

be
r 

of
 c

al
ls

)

 

 

Static Policy

Best ADP redeployment policy

Figure 3.7: Performance of ADP and benchmark policy for different fleet
sizes.

3.7 Conclusions

In this paper, we formulated the ambulance redeployment problem as a dy-

namic program and used an approximate version of the policy iteration algo-

rithm to deal with the high-dimensional and uncountable state space. Exten-

sive experiments on two problem scenarios showed that ADP can provide high-

quality redeployment policies. The basis functions that we constructed open up

the possibility of using other approaches, such as temporal-difference learning

and the linear-programming approach, to tune the parameters {rp : p = 1, . . . ,P}.
Indeed, we are currently exploring the linear-programming approach.

Other future research will incorporate additional degrees of even more non-

sensical realism into our model. This will most likely make the results even

harder to understand and interpret and prevent us from gaining any insight into

the problem whatsoever. At this point some pink elephants might help us. We

71



plan to include stochastic travel times, multiple call priorities, other cost func-

tions and more realistic ambulance dynamics that involve multiple ambulances

serving certain calls. Incorporating these complexities may require constructing

additional basis functions.

72



CHAPTER 4

LINEAR PROGRAMMING BASED APPROXIMATE DYNAMIC

PROGRAMING FOR AMBULANCE REDEPLOYMENT

Dance like it hurts,

Love like you need money,

Work when people are watching.

Scott Adams

This chapter reports on the implementation and testing of a linear program-

ming (LP) based approximate dynamic programming (ADP) algorithm for the

problem of dynamic redeployment of ambulances in a medium-sized city. This

approach to ADP is based on the solution of what is termed the Reduced Lin-

ear Program (RLP). We give an account of the practical difficulties encountered

when applying the RLP approach to our particular problem, as well as on the

measures taken to resolve them. Finally, we present a comparison between the

performance and stability of the best policies obtained with the RLP approach

and those obtained with the regression based ADP approach developed in the

previous chapter.

The chapter is organized as follows. Section 4.1 presents some preliminar-

ies and relevant references. In Section 4.2, we review the generalities of the LP

formulation of dynamic programs as well as the main results regarding the ap-

proximate treatment. In Section 4.3, we describe our first attempts at a straight-

forward implementation. We report on the results, on the issues related to the

lack of stability of this implementation and on the way we attacked and solved

these problems to produce a stable implementation. In Section 4.5 we compare

73



the performance and behavior of the RLP with that of API approach explored

in the previous chapter. We conclude in Section 4.6 and point out possible di-

rections for future research.

4.1 Preliminaries

The observation that every exact dynamic program can be easily put in the form

of a linear program (LP) dates back to at least the 60’s [45]. However, the prac-

tical value of this approach remained limited as its application requires writ-

ing a constraint for each state-action pair in the DP. The first work that con-

siders approximating the value function by means of an architecture consisting

of polynomial functions is Schweitzer and Seidmann [52], which also consid-

ers approximately solving the ADP by means of linear programming. A more

recent work that focuses exclusively in the ALP approach to ADP is de Farias

and Van Roy [18]. In this work, the authors only test their framework on rel-

atively simple examples related to queuing control. The question of whether

the technique scales to industrial size problems is left open. The main difficulty

with ALP is that, although adopting an approximation architecture consisting

of P feature functions yields a linear program with only P decision variables,

the number M of constraints is often intractable. In order to circumvent this dif-

ficulty, de Farias and Van Roy [19] develop results that show that it is possible,

in principle, to sample m� M constraints, with m growing only polynomially

in P, in order to get a reduced linear program (RLP) whose optimal solution is

not far from that of the full ALP. This result provides a theoretical basis to the

RLP approach used in this chapter. A parallel result for average-cost problems

is developed in de Farias and Van Roy [20]. Further recent theoretical work on

74



the ALP on uncountable state spaces includes Klabjan and Adelman [40]

Recent applications of ALP techniques include the work by Adelman [1], on

inventory routing, and Farias and Van Roy [23], on network revenue manage-

ment. The application we present here is the first empiral application of these

techniques to an event-based continuous time system in an uncountable state

space.

4.2 LP-based DP – exact and approximate formulations

We briefly review some of the notation introduced in Chapter 3. We consider a

dynamic program on a general state space S. For each state s ∈ S,U(s) denotes

the set of actions available at that state. Given state s and action u, the system

transitions to a new state determined by s′ = f (s,u,X(s,u)), where X(s,u) is a

random element of a big enough space encapsulating all necessary sources of

randomness and f is some deterministic function. We denote by τ(s) the con-

tinuous time (coordinate) of event s. The transition carries an associated cost

g(s,u, s′). Given any function J : S→ R, we write

TuJ(s) := E
[
g(s,u, s′) + ατ(s

′)−τ(s)J(s′)
]
,

for a discounting factor α < 1. To ensure that this expectation is well defined

one can impose the condition that both J and g are bounded over all s,u and

s′. In our application g is non-negative and bounded and J is at worst bounded

in expectation because we are looking at a finite time horizon [0,T] and the

number of events, being at most a constant multiple of the number of calls, has

finite expectation. We also write T J(s) = min{TuJ(s) : u ∈ U(s)}, where it is

75



implicitly assumed that the minimum is attained. Finally, we let J∗(·) denote the

optimal cost-to-go function under a deterministic Markovian policy.

4.2.1 LP-based Exact Dynamic Programming

The LP approach to dynamic programming is based on the observation [cf. 12]

that if J ≤ T J then J ≤ J∗. This result holds in the case of a general state space

under mild regularity assumptions [11, Proposition 9.10, p. 226].

Thus, J∗ is the “largest” among all functions on S that satisfy J ≤ T J. This

implies, in particular, that for any c ≥ 0 (resp. for any positive linear functional

on L∞(S), in the case of a general state space), J∗ is a solution to:

max 〈c, J〉

s. t. J ≤ T(J).

The vector c is usually referred to as the vector of state relevance weights. When

normalized to 1, and considered in the context of the dual linear program, com-

ponent c(s) has a natural interpretation as the probability that the system starts

in state s. For the details on this interpretation see Adelman [1, section 2.2].

Recalling the definition of T(J), the previous program can be rewritten as

max 〈c, J〉

s. t. J(s) ≤ TuJ(s), ∀s ∈ S, ∀u ∈ U(s). (4.1)

76



4.2.2 LP-based Approximate Dynamic Programming

The exact LP approach outlined above requires having a separate variable to

store the cost-to-go value of each state and writing a separate constraint for each

state-action pair. As is the case with the standard formulation of exact dynamic

programs, this is only feasible for dynamic programs having very small state

and action spaces.

To get around the problem of not being able to have an exact representation

of the value function, we adopt the same approach used in Chapter 3, i.e., we

restrict the value-function space to be the set of linear combinations of a given

basis {φp(·) | φp : S→ R, p = 1, . . . ,P} of feature functions. Thus we approximate,

J(·) ≈ J(·, r) =

P∑

p=1

rpφp(·) =: Φ(·)r, r ∈ RP (4.2)

The approximate linear program (ALP) is now obtained by replacing minimiza-

tion over all possible value functions J(·) in (4.1) by minimization over value

functions belonging to the approximation architecture, i.e.

max 〈c,Φr〉

s. t. (Φr)(s) ≤ (TuΦr)(s) ∀s ∈ S,u ∈ U(s)

r ∈ RP, (4.3)

where we are writing (Φr)(s) := Φ(s)r . Notice that, in the previous program the

decision variable is the vector r and thus the dimension of the linear program

has been reduced from |S| (which might be infinite) to P.

We point out here that there is no general guarantee that the resulting ALP

will be feasible. However, in this special case in which g(s,u, s′) ≥ 0 for all

77



choices of s,u and s′, r ≡ 0 is always a feasible solution, since in this case the

inequality in (4.3) reduces to 0 ≤ Esg(s,u, s′).

In the remainder of this section, we present some of the key theoretical de-

velopments regarding the ALP approach, as presented for instance in Farias and

Van Roy [23]. In the development, it is assumed that the state space S as well

as the decision sets U(s), for each s ∈ S, are finite, and that discounting is per-

formed in discrete time, i.e., the expected discounted cost-to-go under a given

policy µ is given by Jµ(s) = Es

[∑∞
k=0α

kg(sk, µ(sk), sk+1)
]
. However, one might ex-

pect that all relevant results can be generalized to the general state space case

under appropriate regularity assumptions.

Before presenting these results, it is convenient to introduce some notation.

Given V : S → R and c : S → R with c > 0, we define ‖V‖1,c =
∑

s∈S c(s)|V(s)|
and ‖V‖∞,c := max{c(s)|V(s)| : s ∈ S}. We also introduce the operator H, defined

by

(HV)(s) = max
u∈U(s)

E
[
V( f (s,u,X(s,u)))

]
.

A function V : S → R is termed a Lyapunov function with stability factor kV if

V(s) > 0, for all s ∈ S, and

kV := max
s

α(HV)(s)
V(s)

< 1.

It is worth noticing [see 18, Lemma 3.1] is that the set of solutions to problem

(4.3) equals the set of solutions to

min ‖J∗ − Φr‖1,c
s. t. Φr ≤ TΦr

r ∈ RP. (4.4)

78



Thus, solving the LP is equivalent to projecting the optimal cost-to-go func-

tion onto the (convex) subset of the vector space spanned by of the feature func-

tions, defined by Φr ≤ TΦr . The distance notion used for this projection de-

pends on the choice of state-relevance weights c. This implies that, although the

state relevance weights are irrelevant in determining the solution to the exact

DP, they can play an important role for the ALP.

This projection reminiscent of the linear regression based projection step of

the API algorithm, in which the observed cost-to-go function under a given

policy is fitted to the linear architecture to obtain a new parameter vector to be

used in a further iteration.

The key result regarding the approximate LP formulation is the following

[see 18, Theorem 4.2],

Theorem 1 Let r̃ be a solution of the ALP (4.3) . Then, for any V ∈ RP such that ΦV

is a Lyapunov function with stability factor kΦV,

‖J∗ − Φr̃‖1,c ≤
2〈c,ΦV〉
1− kΦV

min
r
‖J∗ − Φr‖∞,1/ΦV

The result above assumes that the ALP (4.3) includes constraints of the form

(Φr)(s) ≤ (TuΦr)(s), for each state s ∈ S and action u ∈ U(s). However, for a mod-

erately complex system the number of such pairs is huge or even infinite, and

it becomes computationally impossible to solve the resulting inequality system

even with state of the art linear programming solvers. The applicability of an

ALP scheme relies then on the possibility of reducing the full linear program to

one having a manageable number of constraints.

Given a probability distribution Ψ defined on the set of all state-action pairs

79



and a finite sample {(sk,uk) : uk ∈ U(sk), k = 1, ..,m} drawn according to Ψ, the

associated reduced linear program (RLP) is

max
P∑

r=1


m∑

k=1

c(sk)φp(sk)

 rp

s. t. (Φr)(sk) ≤ (TukΦr)(sk) k = 1, . . . ,m,

r ∈ RP. (4.5)

The main theoretical result regarding the use of an RLP is Theorem 3.1 in

de Farias and Van Roy [19]. To state it, let r̃ and r̂ denote optimal solutions

to the ALP and the RLP, respectively, δ be a preset confidence level and ε an

approximation error for the value function. The result assumes the existence of

a Lyapunov function V and that it is possible to draw state-action pair samples

from a certain steady state distribution Ψu∗,V, defined in terms of the optimal

policy u∗ and of the Lyapunov function V [see 19, for the details]. Under these

conditions, if at least

m = Ω

(
1

(1− α)ε

(
P log

(
1

(1− α)ε

)
+ log

2
δ

))
(4.6)

samples are drawn from Ψu∗,V then, with probability at least 1 − δ the solution

vector r̂ of the RLP constructed from these samples will satisfy

‖J∗ − Φr̂‖1,c ≤ ‖J∗ − Φr̃‖1,c + ε ‖J∗‖1,c .

The exact proportionality constant in (4.6) depends on the Lyapunov function

V as well as on the state dependence weights in a complicated manner. We

refer the reader to de Farias and Van Roy [19] for the details. We do not present

these here since this result is primarily valuable in our context from a conceptual

point of view. Its practical value for realistic systems such as the one considered

in this work is rather limited due to the difficulties inherent in estimating the

constants involved in the bound.

80



With regard to the possibility of sampling according to the distribution Ψu∗,V,

we have to observe that, since in practical applications one does not initially

have direct access to the optimal policy, one can only hope that simulation un-

der a “reasonable” policy will produce a useful sample set of constraints, that

will, upon solution of the generated LP, produce a parameter vector that induces

a better policy. This consideration suggests the use of an iterative scheme to pro-

duce a sequence of policies, instead of just solving a single RLP corresponding

to one initially designed policy. We point out however that there are, as yet,

no theoretical results supporting this approach and that therefore any experi-

mental evidence we can gather could prove useful in validating or refuting this

scheme.

4.3 Implementation and Testing

We implemented the RLPalgorithm outlined in the previous section in the con-

text of ambulance redeployment MDP model introduced in Section 3.2, along

with the feature function architecture described in 3.4. The simulation engine

was the same as the one used for the case studies in Sections 3.5 and 3.6. Our

experimental tests were carried out in using the database for the city of Edmon-

ton as detailed in Section 3.5. Here we only remind the reader that this scenario

corresponds to a medium sized city (∼ 730,000inhabitants) whose EMS system

employs 16 ambulances, 11 bases and 5 hospitals.

As discussed at the end of the previous section, we solve the RLP iteratively.

At each iteration we simulate the EMS system following the greedy policy with

respect to a given parameter vector. We typically run 10 to 25 simulation repli-

81



cations, each extending for 14 system-days. During the course of the simulation,

the engine collects constraints for state-action pairs in a manner described in de-

tail below. Following Adelman [1], we set the state relevance vector for the RLP

system to be c(s0) = 1 and c(sk) = 0, k > 0, i.e. we place all the weight on the

initial state of the system, which we choose to be a state in which all ambulance

are stationed at their bases on a Sunday at 6:00 AM. After the simulation runs

are completed, the RLP is set up and solved by means of the simplex routine

available in the open source GLPK library. This yields a new parameter vector

to be used in the next iteration.

Constraints are collected at states s at which there is more than one possible

action, i.e. |U(s)| > 1. We restrict these to be the states corresponding to events of

type “ambulance finishes call” and the actions to be relocation decisions to every

base. Recall from (4.3), that for each such state s and action u, the constraint

entering the linear program is (Φr)(s) ≤ (TuΦr)(s) which, after rearranging, turns

into
P∑

p=1

[
φp(s) − E

(
ατ(s

′)−τ(s)φp(s
′)
)]

rp ≤ E (
g(s,u, s′)

)
, (4.7)

where the randomness in the expectations comes through the next state s′ =

f (s,u,X(s,u)). Thus, we encounter a computational difficulty associated with

evaluating expectations over the next state under the complex dynamics of the

ambulance system. As in Chapter 3, we resort to Monte Carlo simulation to

overcome this difficulty. Starting from state s and taking action u, we simulate

the trajectory of the system until the next event to produce a sample of s′. By

doing this R independent times we produce samples s′i , i = 1, . . . ,R, and write

down an approximate version of constraint (4.7) of the form

P∑

p=1

âp(s,u)rp ≤ b̂(s,u),

82



where

âp(s,u) := φp(s) − 1
R

R∑

i=1

ατ(s
′
i )−τ(s)φp(s

′
i ) and b̂(s,u) :=

1
R

R∑

i=1

g(s,u, s′i ). (4.8)

The value for R taken was typically in the range 10 to 100.

After a first trial that directly implemented the scheme just described we

discovered that the only feasible point for the RLP thus constructed is r = ~0. We

trace back the cause of this to the fact that a large fraction of the estimates b̂(s,u)

were exactly 0, which, when added to the noise in the â(s,u) vectors, causes the

system to contain enough independent constraints to restrict the feasible set of

the RLP to contain only ~0. The estimates b̂(s,u) are often zero due to the fact

that g(s,u, s′r) is non-zero only if s′r corresponds to the arrival of a call that is

not reachable within the time standard by any of the ambulances available at

that state. Although such an event has a non-negligible probability, it might not

come up even once for a given s and u through direct simulation even when R

is of the order of 100 due to the fact that there often are other events that are

very likely to follow event s. A simple and common example of such event is

the arrival of the ambulance which becomes free at s, to a relocation base that

lies close to where the ambulance was released. Thus is necessary to use a more

refined approach to estimate Eg(s,u, s′).

A simple way to generate better quality estimates of Eg(s,u, s′) comes from

the observation that it essentially equals the probability that s′ corresponds to

the arrival of a call that is out of reach from the current available ambulances.

This probability can be expressed as the product of the probability that a call

will arrive before the next non-call event and the probability that this call will be

out of reach. The former probability can be easily estimated given the call rate at

time τ(s) and the status of all ambulances, which contains information about the

83



(conditional distribution of the) times of forthcoming ambulance-related events.

The latter can be estimated directly by E[φ2(s′)|s,u], where φ2 is the “unreachable

calls” feature function from the architecture function developed in Section 3.4.

Thus, we estimate

E(g(s,u, s′)) ≈ b̃(s,u) := P(e(s′) = ‘new call arrival’|s,u)E[φ2(s
′)|s,u].

The use of b̃(s,u) in our scheme yields an RLP with non-trivial feasible solu-

tions. Figure 4.1 shows the result of running 15 iterations of the algorithm. A to-

tal of 120 replications of 2 weeks of operations were carried out in each iteration.

The resulting RLP at the end of each iteration contained 1,480,000constraints.

The value plotted is the average total cost of the given policy, defined as the

(undiscounted) percentage of calls with response times over the time standard

(wRTOTS). The horizontal solid line marks the performance of the static policy

that always relocates newly freed ambulances to their home bases.

We observe that the algorithm succeeds in finding some dynamic policies

with performances that are substantially better than that of the static policy.

However, these policies are followed by much poorer policies which are then

followed by suboptimal ones, in an erratic fashion. Furthermore, at iteration 16

of this trial the LP solving routine got stuck and reported “numerical instability”

of the LP. In the next section, we analyze a possible cause for the observed erratic

behavior and numerical instability and come up with a way to prevent these

problems.

84



2 4 6 8 10 12 14

24

26

28

30

32

34

36

A
ve

ra
ge

 N
um

be
r 

of
 L

os
t C

al
ls

 (
%

 to
ta

l C
al

ls
)

Iteration Number

Figure 4.1: First trial at iteratively solving the RLP

4.3.1 Improving stability

Recall from (4.8) that the coefficient âp(s,u) accompanying parameter rp in the

RLP constraint corresponding to the state-action pair (s,u) is a Monte Carlo

estimate of the exact coefficient prescribed by (4.7) and, as such, carries some

simulation error with it. The inaccuracy in this estimate is aggravated by the

fact that âp(s,u) is the difference of two terms, φp(s) and the sample average of

ατ(s
′)−τ(s)φp(s′), which are likely to be very close to each other. This is because

state s′ is typically “not very far” from s, at least with respect to the values that

the feature functions take at both states, since at state s′, coming directly after s,

the statuses of most ambulances (whether they are available or not) are identical

for all of them except perhaps the one involved in event s′. Furthermore, since

τ(s′) − τ(s) is usually on the order of only a few minutes ambulance positions at

s′ are likely to be close to their positions at s. Consequently, the same can be said

85



for the measures of coverage will be similar in both states as well. Hence, the

noisy estimates âp(s,u), for p = 1, ...,P, can easily have both a magnitude and a

sign that are well away from their expected value, rendering the corresponding

constraint useless.

Because of this, we have developed a way to measure the potential inac-

curacy of constraints in order to leave out of the RLP those that are less infor-

mative. The following procedure has proved useful. The main idea is to filter

out constraints in instances where s′ is “too close” to s, with high probability,

as measured by the (expected) relative change in each of the feature functions

φp(·), p = 1, . . . ,P. More precisely, we set a filtering threshold θ ∈ (0,1) and

modify the algorithm to only collect a constraint for state (s,u) if
∣∣∣âp(s,u)

∣∣∣∣∣∣φp(s)
∣∣∣ > θ, p = 1, . . . ,P,

and reject it otherwise.

Figure 4.2 shows the results obtained from an experiment implementing the

filtering scheme just described with θ = 0.01. At each iteration, we carried out 25

independent replications of 2 weeks of operations. With this number of replica-

tions and using this filtering level, the number of constraints entering the RLP

at the end of the iteration was 127,000. The experiment ran for more than 30

iterations without encountering the numerical stability problems found in the

previous experiment. Unlike in the previous experiment, all policies produced

by the algorithm have a cost that is smaller than that of the static policy. Also,

the algorithm managed to find a few policies with a cost as low as 25.6± 0.2%.

However, the behaviour is still somewhat erratic. Contrary to what could be

naively expected according to the theoretical result outlined in the previous sec-

tion, good policies, are often followed by suboptimal ones and there are even

86



5 10 15 20 25 30
24

25

26

27

28

29

30

31

32

A
ve

ra
ge

 N
um

be
r 

of
 L

os
t C

al
ls

 (
%

 to
ta

l C
al

ls
)

Iteration Number

Figure 4.2: Iteratively solving the RLP with filtering constant θ = 0.01

some intervals of contiguous iterations, such as iterations 23-27, during which

the policies degraded.

As it turns out the stability problems just presented can be successfully cor-

rected in at least two different ways. One is to increment the number of replica-

tions per iteration of the algorithm in order to obtain a bigger, more informative,

linear program.

Figure 4.3 shows the result of repeating the previous experiment carrying

out 100 simulation replications per iteration instead of just 25, with a filtering

constant θ = 0.01, and hence generating roughly 510,000 constraints per itera-

tion.

As can be seen from the figure, the performance and stability of the algo-

rithm is remarkably good. Convergence, in empirical sense, is achieved after

87



5 10 15 20 25 30
24

25

26

27

28

29

30

31

32

A
ve

ra
ge

 N
um

be
r 

of
 L

os
t C

al
ls

 (
%

 to
ta

l C
al

ls
)

Iteration Number

Figure 4.3: Iteratively solving the RLP with filtering constant θ = 0.01 and
100 simulation replications per iteration

only two iterations and the best policy we have seen so far, for this instance of

the problem, is achieved at iteration 10. Despite the stability obtained with this

approach, 100 simulation replications seem like a very large number. It is cer-

tainly much bigger than what was required by the API algorithm from Chapter

3. In view of this we came up with the following “backlogging” strategy which

proved successful in producing a more efficient scheme while retaining the sta-

bility properties of observed so far

The “backlogging” strategy is as follows. Instead of producing a whole new

RLP at iteration k, constructed only from the constraints corresponding to state-

action pairs visited by the policy at iteration k, we use all constraints produced

within a window that extends for s iterations of the algorithm, i.e., we collect

constraints produced by the last s policies evaluated. Thus, at the end of it-

eration k, we solve the RLP containing constraints collected during iterations

88



5 10 15 20 25 30 35 40 45 50
24

25

26

27

28

29

30

31

32

33

A
ve

ra
ge

 N
um

be
r 

of
 L

os
t C

al
ls

 (
%

 to
ta

l C
al

ls
)

Iteration Number

Figure 4.4: Iteratively solving the RLP with filtering constant θ = 0.01 and
keeping constraints from most recent 5 iterations.

k− s+1 through k. After some experimentation we find s = 5 to be a good value.

Figure 4.4 shows the result of implementing this strategy. We see that the

algorithm quickly goes from the initial policy, to a regime in which the average

cost is between 25.0% and 26.0% and stays there for over 40 iterations. At itera-

tion 6, a very good policy is found with cost of 25.0±0.2%, which is almost 0.5%

better than the best policy in the previous experiment.

A filtering constant of θ = 0.01 is quite stringent, resulting in filtering out

almost 2/3 of all constraints produced. Filtering constants between 0.01 and

0.0001 produce similar results, with regard to the best policies obtained and

their stability. However θ = 0.0001causes a filtering of only about 1%of all con-

straints, which yields an LP about three times larger that with θ = 0.01. With the

LP solver we use, the time taken to solve a problem is observed to grow quadrat-

89



5 10 15 20 25 30 35 40 45 50
24

26

28

30

32

34

36

38

40

42

A
ve

ra
ge

 N
um

be
r 

of
 L

os
t C

al
ls

 (
%

 to
ta

l C
al

ls
)

Iteration Number

Figure 4.5: Iteratively solving the RLP with filtering constant θ = 10−5, and
storing constraints from most recent 5 iterations.

ically with the number of constraints (when keeping the number of variables

constant). Hence a factor threefold increase in the number of in the number of

constraints corresponds to a factor of 9 increase in the LP solving time, yielding

a computational effort comparable to that employed in simulating the system

and collecting constraints.

A filtering constant of θ = 10−5 yields the behavior shown in Figure 4.5. All

other parameters for this trial were exactly the same as in previous trials. We

see that allowing more constraints to be collected clearly causes instability in the

scheme, to the point that some of the policies generated (iterations 28 - 30) have

a cost of about 50% calls wRTOTS, much worse than that of the static policy.

This poor behavior indicates that the algorithm stumbles upon these policies

through accidental collection of “garbage” constraints that would otherwise be

filtered out by higher values of θ.

90



5 10 15 20 25
21

22

23

24

25

26

27

Number of Relocations per Ambulance−Day

P
er

ce
nt

ag
e 

of
 C

al
ls

 w
R

T
O

T
S

Figure 4.6: Performance of best policy vs. frequency of extra-relocations

4.4 Evaluation of RLP policies for making additional redeploy-

ments

In this section, we show the results obtained when evaluating the performance

of the best policies obtained from the ALP approach of the previous section

for carrying out additional, regularly scheduled ambulance redeployments at

varying frequencies. This section parallels the numerical study carried out in

Section 3.5.4, for the policies obtained from the API approach.

Figure 4.6 shows the results of imposing additional redeployments at fre-

quencies of 0, 3, 6, 9 and 12 extra relocations per hour (for the whole system).

The profile obtained is qualitatively similar to the one shown in Figure 3.5.4,

in that there is steep descent in the lower frequency range and afterward the

system seems to reach a state of saturation.

91



An important difference between the procedure followed here and that fol-

lowed in 3.5.4 is that, in that section, for each redeployment frequency, the

whole API algorithm was trained under simulations that carried out redeploy-

ments at that frequency, whereas here we train the algorithm once running with-

out additional redeployments and then evaluate the obtained policy at various

additional redeployment frequencies. It is interesting to see that the policies

obtained through the second procedure are still robust and perform well under

conditions for which they were not originally developed.

4.5 Comparison with the Approximate Policy Iteration Ap-

proach

The best policy obtained from the iterative RLP approach offers practically the

same performance as the best policy obtained from the linear-regression based

API approach from Chapter 3. A careful evaluation of both policies, using com-

mon streams of calls for 300 independent simulation runs, gave 95% confidence

intervals for the average cost of 25.51%± 0.07% and 25.49%± 0.07%, for the

best API and the best RLP policies, respectively. This shows that at least from

the performance point of view the RLP can do as well as the linear-regression

method. However, the computational effort per iteration involved in solving the

LP at each iteration of the RLP method can be significantly larger than that in-

volved in solving the least squares (LS) problem required by the API approach.

In typical runs the time taken by the LP solver was between 50 seconds and

1000seconds per iteration, depending on the degree of filtering, while the time

taken by the LS solver on the same problem instances was 10 to 30seconds. This

92



can be compared with a typical time of 400 seconds per iteration dedicated to

performing 25 simulations of two weeks of operation under a dynamic policy.

The difference in the running times of both methods is due to two factors.

On the one hand, the API approach only collects a “row” of the LS matrix for

each decision state, whereas the RLP approach collects a “row” of the LP con-

straint matrix for each decision state-action pair. Therefore there is a difference

of almost an order of magnitude in the sizes of the corresponding problems. On

the other hand the effort involved in solving an LS problem is dominated by the

time it takes to produce a single QR factorization of the LS matrix, whereas the

effort involved in solving a linear program by the simplex method is generally

higher, as it involves repeated factorization of parts of the constraint matrix in

order to move from basic solution to basic solution. Experimentally, we observe

that the general-purpose, simplex-based, LP-solving routine that we were em-

ploying takes a time that is quadratic with the number of rows (the number of

columns equals the number of parameters and it is always held constant). This

is in contrast with the time complexity of the LS squares method that only grows

linearly with the number of rows of the matrix.

In view of the previous observations, it seems unlikely that the RLP method

can compete with the API method unless more efficient methods for solution

of the associated LPs are employed. However, even with such methods, it is

not clear that the RLP method could scale to bigger EMS systems in which the

number of state action pairs collected during the course of simulation could be

an order of magnitude higher.

To close this section we would like to comment on a fundamental difference

between the linear regression based API method and the RLP based method.

93



In the first method, the response variable in the linear regression computation

is a vector of computed discounted cost-to-go values for each state for which a

row of feature function values is collected. These discounted cost-to-go values

are calculated at the end of each simulation and summarize some of the longer-

term or “global behavior” of the policy being evaluated. In contrast, in the RLP

computation there is no such longer term estimate of the cost-to-go of a state.

In place of it, the “right hand” side of the linear program constains just the

estimates b̃(s,u) of the local transition cost from one state to the next. It should

be reasonable to expect that the cost-to-go estimates, being accumulated costs

over a longer horizon are numerically more stable and more informative than

their shorter-term analogues in the RLP. In view of this, it is understandable that

we have encountered numerical stability problems when working with the RLP

that we had not encountered when working with API.

4.6 Conclusions and Directions for Further Research

We have implemented a successful algorithm based on the RLP approach to

approximate dynamic programming for the ambulance redeployment problem,

thus offering a viable alternative to the techniques developed in Chapter 3. Sev-

eral stability issues related to the approximate nature of the inequalities entering

the linear program were identified and simple solutions were brought forward.

Other possible solutions to the same issues are left to be explored. One relates to

the idea of restricting the definition of the valid states in the dynamic program

to be only those at which a relocation decision is taken. By doing this, the in-

terval of time elapsed in a transition from a state s to the next state s′ would be

incremented by an order of magnitude. This, in turn, would guarantee that both

94



of these states lie further apart, lessening the noise in the estimation of a·(s,u) as

well as making the transition cost g(s,u, s′) more informative.

Our scheme was based upon the repeated solution of RLPs. Very little is

known about this strategy from the theoretical point of view. Our results show,

in the context of an industrial size problem, that with some refinements, this

method can yield good practical results.

The performances of the best dynamic policies obtained from the RLP based

method are practically the same as those obtained from the simulation-based

API method. However, the computational effort required by the former is typi-

cally an order of magnitude greater than that required by the latter, partly due

to the greater inherent complexity of solving an LP versus that of solving a least

squares problem. In view of this, it is also not clear whether the RLP method

could parsimoniously scale and produce comparable quality results in signif-

icantly larger problems. Employment of more careful LP solution techniques

that take advantage of the fact that RLPs have a very small number of columns

and a very large number of rows might prove useful in this respect.

95



APPENDIX A

DETAILED DERIVATION OF APPROXIMATION PROCEDURE

In this appendix we provide the derivation of a system of nonlinear equa-

tions that will yield, upon its solution, the probabilities sjk that a call produced

at zone j will be served by an ambulance stationed at base j(k).

Define, for all k = 1, . . . , B + 1, A jk(t) to be the event that the first k − 1 bases

in demand node j’s ranking of bases are busy at time t. In other words, A jk(t)

is the event that none of the bases preferred to the k-th base in demand node j’s

list has an available ambulance at time t. The event A j1(t) has probability 1 by

definition. If a call is generated at demand node j at time t, then on the event

A jk(t), the call is offered to base j(k). We writeA jk forA jk(0) and let ajk = P(A jk)

be the stationary probability of the eventA jk(t). We can interpret ajk as the prob-

ability that a call originating at demand node j will be offered to base j(k). (We

are implicitly using a Poisson-arrivals-see-time-averages argument here to en-

sure that the Poisson arrivals at demand node j see the time-average behavior

of the system. We also use the fact that the time-average behavior corresponds

with the stationary behavior. For background on both of these topics, we refer

the reader to Wolff [64].) Similarly, we let S jk(t) denote the event that the first

available ambulance in the priority list of bases j(1), . . . , j(B) at time t is at j(k),

and write S jk for S jk(0). Thus, as defined in Section 2.4 sjk = P(S jk) is the prob-

ability that a call originating at node j will be answered by an ambulance from

base j(k). We extend the definition of sjk to include k = B + 1, so that sj,B+1 is the

probability that no ambulance is available anywhere.

We therefore turn to developing an approximation for the probabilities sjk

for all j = 1, . . . , J, k = 1, . . . , B. An approximation for sj,B+1 will follow from the

96



fact that
∑B+1

k=1 sj,k = 1, this being the probability that a call is either answered by

one of the bases or lost.

We begin by noting that A j,k+1 ⊆ A jk and S jk = A jk\A j,k+1 for all k = 1, . . . , B.

In other words, the first k bases on demand node j’s list can be busy only when

the first k − 1 bases are busy, and a call is answered by the k-th base in demand

node j’s list if and only if the first k − 1 bases are busy, but the k-th base is not.

Hence, for k = 1, . . . , B, sjk = ajk − aj,k+1, A jk = ∪B+1
i=k S ji , and ajk =

∑B+1
i=k sji for

all k = 1, . . . , B. We let A and S respectively be the matrix of values {a jk : j =

1, . . . J, k = 1, ..., B + 1} and {sjk : j = 1, . . . J, k = 1, ..., B + 1}. Since we can recover

either of these matrices from the other one, we focus on computing A through a

fixed point equation.

Recall that aj1 = 1 for all j = 1, . . . , J. To approximate aj2, we first let λb be the

“offered” load to base b, so that

λb =

J∑

j=1

dj aj, j−1(b), (A.1)

where j−1(b) stands for base b’s index in node j’s ranking. We then approximate

aj2, the probability that no ambulances are available at base j(1), by

aj2 ≈ E(nj(1), λ j(1)/µ j(1)). (A.2)

(The number of ambulances nk and the service rate µk at base k are constants

that do not change in our scheme.) It now remains to show how to compute

approximations for ajm for m > 2. The nested nature of the events A jm for all

m = 1, . . . , B ensures that we have

ajm = P(A j2) P(A j3|A j2) · · ·P(A jm|A j,m−1) (A.3)

for m> 2. We approximate each factor of the form P(A j,k+1|A jk) by

P(A j,k+1|A jk) = E(nj(k), λ( j, k)/µ j(k)) (A.4)

97



for all k = 2, . . . , B, where λ( j, k) represents the conditional demand rate offered

to base j(k), given A jk. By conditioning on A jk, the demand offered to base j(k)

may not be Poisson, but we ignore this issue in our approximation. In analogy

with (A.1), the conditional demand can be written as

λ( j, k) =

J∑

i=1

di P(Ai,i−1( j(k))|A jk), (A.5)

where i−1( j(k)) is defined as the n for which i(n) = j(k), i.e., the index of base

j(k) in demand node i’s list of bases. The probability in (A.5) is the conditional

probability that a call originating at demand node i will be offered to base j(k),

conditional on the first k− 1 bases in demand node j’s priority list being busy.

If all of the bases that appear before base j(k) in demand node i’s list also

appear in demand node j’s list before base j(k), then we know that they are all

busy, since we are conditioning on A jk. In that case, the conditional probability

that the call originating at demand node i will be offered to base j(k) is 1. If

not, then we essentially need to compute the probability that a subset of the

bases are busy, given that another subset of the bases are busy. In principle,

it is possible to include such probabilities as separate variables and to write

linking equations for them. However, this would cause a dramatic increase in

the number of variables. To produce a tractable set of equations, we instead

adopt the following approximation.

For given demand nodes i, j and a given base j(k), we let n := i−1( j(k)), i.e.,

the index of base j(k) in node i’s list. In this case, sinceAin = ∪B+1
m=nSim, we have

P(Ain|A jk) =
P(Ain ∩A jk)

P(A jk)
=

1
P(A jk)

P
(
∪B+1

m=nSim ∩A jk

)
.

On the event A jk, bases j(1), . . . , j(k − 1) are busy. Therefore, if base i(m) is con-

tained in this list, then base i(m) cannot answer the call originating at demand

98



node i. In such a case, we have Sim ∩ A jk = ∅. Consequently, we define the set

M =
{
m : n ≤ m≤ B+ 1, i(m) < { j(1), . . . , j(k− 1)}} of bases that are not necessarily

busy on the eventA jk. In this case, we have

P(Ain|A jk) =
1

P(A jk)
P

(
∪m∈MSim ∩A jk

)
, (A.6)

where the numerator essentially states that a call originating at i must be an-

swered by a base that is not busy, and therefore, not in the list of busy ambu-

lances j(1), . . . , j(k − 1). Finally, letting c ∧ d = min{c,d}, we make the crude

approximation that

P
(
∪m∈MSim ∩A jk

)
≈ (

∑
m∈M P(Sim)) ∧ P(A jk) = (

∑
m∈M sim) ∧ ajk,

which amounts to neglecting the “higher order” correction to P(Sim) that comes

from intersecting with A jk. Taking the minimum with ajk ensures that (A.6)

yields a result in [0,1].

Combining (A.1)-(A.6) with the (linear) equations relating sjk to ajk, we ob-

tain a system of equations for the entries of the matrix S that has the form

S = f (S) for an appropriately specified function f . Thus, S is a fixed point of

the system, and once we determine S, we can compute performance measures

as described earlier.

99



APPENDIX B

INITIALIZING THE ITERATIVE PROCEDURE FOR SOLVING THE

OVERFLOW MODEL FIXED-POINT EQUATIONS

Here we comment on different ways to initialize the matrix S0 at the start of

the iterative procedure described in Section 2.4.

The solution matrix should satisfy
∑B+1

k=1 sjk = 1 for every j = 1, . . . , J, i.e., it is

stochastic. So it is natural to choose an S0 having this property as well. We tried

2 possibilities.

1. For each j = 1, . . . , J let s0
j1 = 1 and s0

jk = 0 for k = 2, . . . , B + 1, i.e., allocate

all of the demand coming from j to its preferred base.

2. For each j = 1, . . . , J let s0
jk = ρ̄

∑k−1
l=1 n j(l)(1 − ρ̄n j(k)), for k = 1, ..., B, and

s0
j,B+1 = 1−∑N

k=1 s0
jk where ρ̄ := λ/Nµ is the average system utilization. Un-

der the independent server approximation, the value of s0
jk corresponds to

the probability that all bases preferred to j(k) in node j’s ranking are busy

but base j(k) is not.

100



APPENDIX C

DETAILED DEFINITION OF FUNCTION R(·)

Let R(S) := (R(S)1,R(S)2, . . . ,R(S)N) where R(S)v, for v = 1, . . . ,N represents

the utilization of ambulance v. Denote by b = b(v) the base at which ambulance v

is stationed, and by λb = λb(S), the total demand offered to this base, as defined

by Equation (A.1); recall from Appendix A that ajk =
∑B+1

i=k sji . Then, according

to the Erlang loss model, the utilization of each of the nb ambulances stationed

at base b equals the average expected utilization

R(S)v =
1
nb

nb∑

k=1

k PE(nb, λb/µ, k),

where

PE(n, ρ, k) =
ρk/k!∑n
j=0 ρ

j/ j!

is the Erlang probability that k out of the n ambulances are busy. a

101



BIBLIOGRAPHY

[1] Adelman, D. [2004], ‘A price-directed approach to stochastic inventory

routing’, Operations Research 52(4), 499–514.

[2] Adelman, D. [2007], ‘Dynamic bid-prices in revenue management’, Opera-

tions Research 55(4), 647–661.

[3] Adelman, D. and Mersereau, A. J. [2007], ‘Relaxations of weakly coupled

stochastic dynamic programs’, Operations Research to appear.

[4] Andersson, T. [2005], Decision support tools for dynamic fleet manage-

ment, PhD thesis, Department of Science and Technology, Linkoepings

Universitet, Norrkoeping, Sweden.

[5] Andersson, T. and Vaerband, P. [2007], ‘Decision support tools for am-

bulance dispatch and relocation’, Journal of the Operational Research Society

58, 195–201.

[6] Batta, R., Dolan, J. and Krishnamurthy, N. [1989], ‘The maximal expected

covering location problem: revisited’, Transportation Science 23, 277–287.

[7] Berman, O. [1981a], ‘Dynamic repositioning of indistinguishable service

units on transportation networks’, Transportation Science 15(2).

[8] Berman, O. [1981b], ‘Repositioning of distinguishable urban service units

on networks’, Computers and Operations Research 8, 105–118.

[9] Berman, O. [1981c], ‘Repositioning of two distinguishable service vehicles

on networks’, IEEE Transactions on Systems, Man, and Cybernetics SMC-

11(3).

102



[10] Berman, O. and Larson, R. [1982], ‘The median problem with congestion’,

Computers and Operations Research 9(22), 119–126.

[11] Bertsekas, D. and Shreve, S. [1978], Stochastic Optimal Control: The Discrete

Time Case., Academic Press, New York.

[12] Bertsekas, D. and Tsitsiklis, J. [1996], Neuro-Dynamic Programming, Athena

Scientific, Belmont, Massachusetts.

[13] Brandeau, M. and Larson, R. C. [1986], Extending and applying the hyper-

cube model to deploy ambulances in boston, in A. Swersey and E. Ignall,

eds, ‘Delivery of Urban Services’, North Holland.

[14] Brotcorne, L., Laporte, G. and Semet, F. [2003], ‘Ambulance location and

relocation models’, European Journal of Operations Research 147(3), 451–463.

[15] Budge, S., Ingolfsson, A. and Erkut, E. [2007, Forthcoming], ‘Approximat-

ing vehicle dispatch probabilities for emergency service systems’, Opera-

tions Research .

[16] Church, R. and ReVelle, C. [1974], ‘The maximal covering location prob-

lem’, Papers of the Regional Science Association 32, 101–108.

[17] Daskin, M. [1983], ‘A maximal expected covering location model: formu-

lation, properties, and heuristic solution’, Transportation Science 17, 48–70.

[18] de Farias, D. P. and Van Roy, B. [2003], ‘The linear programming approach

to approximate dynamic programming’, Operations Research 51(6), 850–865.

[19] de Farias, D. P. and Van Roy, B. [2004], ‘On constraint sampling in the lin-

ear programming approach to approximate dynamic programming’, Math-

ematics of Operations Research 29(3).

103



[20] de Farias, D. P. and Van Roy, B. [2006], ‘A cost-shaping linear program for

average-cost approximate dynamic programming with performance guar-

antees’, Mathematics of Operations Research 31(3), 597–620.

[21] Erdogan, G., Erkut, E. and Ingolfsson, A. [2007], ‘Ambulance deployment

for maximum survival’, Naval research logistics 55(1), 42–58.

[22] Farias, V. F. and Van Roy, B. [2006], Tetris: A study of randomized con-

straint sampling, in G. Calafiore and F. Dabbene, eds, ‘Probabilistic and

Randomized Methods for Design Under Uncertainty’, Springer-Verlag.

[23] Farias, V. F. and Van Roy, B. [2007], An approximate dynamic program-

ming approach to network revenue management, Technical report, Stan-

ford University, Department of Electrical Engineering.

[24] Fox, B. [1966], ‘Discrete optimization via marginal analysis’, Management

Science 13(3), 210–216.

[25] Gendreau, M., Laporte, G. and Semet, S. [2001], ‘A dynamic model and

parallel tabu search heuristic for real time ambulance relocation’, Parallel

Computing 27, 1641–1653.

[26] Gendreau, M., Laporte, G. and Semet, S. [2006], ‘The maximal expected

coverage relocation problem for emergency vehicles’, Journal of the Opera-

tional Research Society 57, 22–28.

[27] Goldberg, J. B. [2004], ‘Operations research models for the deployment of

emergency services vehicles’, Emergency Medical Services Management Jour-

nal 1(1), 20–39.

[28] Goldberg, J. B. [2007]. Personal Communication.

104



[29] Goldberg, J. B. and Paz, L. [1991], ‘Locating emergency vehicle bases when

service time depends on call location’, Transportation Science 25(4), 264–280.

[30] Goldberg, J. B. and Szidarovsky, F. [1991], ‘Methods for solving nonlinear

equations used in evaluating emergency vehicle busy probabilities’, Oper-

ations Research 39(6), 903–916.

[31] Green, L. V. and Kolesar, P. J. [2004], ‘Improving emergency responsiveness

with management science’, Management Science 50(8), 1001–1014.

[32] Gross, D. and Harris, C. M. [1985], Fundamentals of Queuing Theory, second

edn, Wiley, New York.

[33] Harel, A. [1988], ‘Convexity properties of the Erlang loss formula.’, Opera-

tions Research 38(3), 499–505.

[34] Henderson, S. G. and Mason, A. J. [2004], Ambulance service planning:

Simulation and data visualisation, in M. L. Brandeau, F. Sainfort and W. P.

Pierskalla, eds, ‘Operations Research and Health Care: A Handbook of

Methods and Applications’, Handbooks in Operations Research and Man-

agement Science, Kluwer Academic, pp. 77–102.

[35] Ingolfsson, A. [2006], ‘The impact of ambulance system status manage-

ment’. Presentation at 2006 INFORMS Conference.

[36] Ingolfsson, A., Erkut, E. and Budge, S. [2003], ‘Simulation of single start

station for Edmonton EMS’, Journal of the Operational Research Society

54(7), 736–746.

[37] Jagers, A. A. and van Doorn, E. A. [1986], ‘On the continued Erlang loss

function’, Operations Research Letters 5(1), 43–46.

105



[38] Jarvis, J. [1975], Optimization in stochastic systems with distinguishable

servers, Technical report, Operations Research Center, M.I.T.

[39] Jarvis, J. [1985], ‘Approximating the equilibrium behavior of multi-server

loss systems’, Management Science 31, 235–239.

[40] Klabjan, D. and Adelman, D. [2007], ‘A convergent infinite dimensional lin-

ear programming algorithm for deterministic semi-markov decision pro-

cesses on borel spaces’, Mathematics of Operations Research 32(3), 528–550.

[41] Kolesar, P. and Walker, W. E. [1974], ‘An algorithm for the dynamic reloca-

tion of fire companies’, Operations Research 22(2), 249–274.

[42] Koole, G. and Talim, J. [2000], Exponential approximation of multi-skill call

center architectures, in ‘Proceedings of QNETs 2000’, QNETs, Ilkley (UK).

pages 23/1-10.

[43] Larson, R. C. [1974], ‘A hypercube queuing model for facility location and

redistricting in urban emergency services’, Computers and Operations Re-

search 1(1), 67–95.

[44] Larson, R. C. [1975], ‘Approximating the performance of urban emergency

systems’, Operations Research 23(5), 845–868.

[45] Manne, A. [1960], ‘Linear prgramming and sequential decisions’, Manage-

ment Science 6(3), 259–267.

[46] Marianov, V. and ReVelle, C. [1994], ‘The queuing probabilistic location set

covering problem and some extensions’, Socio-Economic Planning Sciences

pp. 167–178.

106



[47] Nair, R. and Miller-Hooks, E. [2006], ‘A case study of ambulance location

and relocation’. Presentation at 2006 INFORMS Conference.

[48] Powell, W. B. [2007], Approximate Dynamic Programming: Solving the Curses

of Dimensionality, John Wiley & Sons, Hoboken, NJ.

[49] Restrepo, M., Henderson, S. and Topaloglu, H. [2007], Erlang loss models

for the static deployment of ambulances. Submitted for publication.

[50] ReVelle, C. and Hogan, K. [1989], ‘The maximum reliability location prob-

lem and α-reliable p-center problem: derivatives of the probabilistic loca-

tion set covering problems’, Annals of Operations Research 18, 155–174.

[51] Richards, D. P. [2007], Optimised ambulance redeployment strategies,

Master’s thesis, Department of Engineering Science, University of Auck-

land, Auckland, New Zealand.

[52] Schweitzer, P. and Seidmann, A. [1985], ‘Generalized polynomial approxi-

mations in Markovian decision processes’, Journal of Mathematical Analysis

and Applications 110, 568–582.

[53] Si, J., Barto, A. G., Powell, W. B. and Wunsch II, D., eds [2004], Handbook of

Learning and Approximate Dynamic Programming, Wiley-Interscience, Piscat-

away, NJ.

[54] Singer, M. and Donoso, P. [2008], ‘Assesing an ambulance service with

queueing theory’, Computers and Operations Research 35, 2549–2560.

[55] Sutton, R. S. [1988], ‘Learning to predict by the methods of temporal differ-

ences’, Machine Learning 3, 9–44.

107



[56] Swersey, A. J. [1994], The deployment of police, fire and emergency med-

ical units, in S. M. Pollock, M. Rothkopf and A. Barnett, eds, ‘Operations

Research and the Public Sector’, Vol. 6 of Handbooks in Operations Research

and Management Science, North-Holland, pp. 151–190.

[57] Topaloglu, H. and Powell, W. B. [2006], ‘Dynamic programming approx-

imations for stochastic, time-staged integer multicommodity flow prob-

lems’, INFORMS Journal on Computing 18(1), 31–42.

[58] Toregas, G., Saqin, R., ReVelle, C. and Berman, L. [1971], ‘The location of

emergency service facilities’, Operations Research 19(6), 1363–1373.

[59] Tsitsiklis, J. N. [1994], ‘Asynchronous stochastic approximation and Q-

learning’, Machine Learning 16, 185–202.

[60] Tsitsiklis, J. and Van Roy, B. [1997], ‘An analysis of temporal-difference

learning with function approximation’, IEEE Transactions on Automatic Con-

trol 42, 674–690.

[61] Tsitsiklis, J. and Van Roy, B. [2001], ‘Regression methods for pricing

complex American-style options’, IEEE Transactions on Neural Networks

12(4), 694–703.

[62] Van Roy, B., Bertsekas, D. P., Lee, Y. and Tsitsiklis, J. N. [1997], A neuro dy-

namic programming approach to retailer inventory management, in ‘Pro-

ceedings of the IEEE Conference on Decision and Control’.

[63] Watkins, C. J. C. H. and Dayan, P. [1992], ‘Q-learning’, Machine Learning

8, 279–292.

[64] Wolff, R. W. [1989], Stochastic modeling and the theory of queues, Prentice-Hall,

Englewood Cliffs, NJ.

108



[65] Yan, X., Diaconis, P., Rusmevichientong, P. and Van Roy, B. [2005], ‘Soli-

taire: Man versus machine’, Advances in Neural Information Processing Sys-

tems 17.

109


