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We propose four models for evaluating and benchmarking performance in

Emergency Medical Service (EMS) systems. We begin by studying tiered EMS

systems, whose fleets are comprised of ambulances providing either Advanced

Life Support (ALS) or Basic Life Support (BLS), with the goal of studying the

effects of vehicle mix (that is, the combination of ALS and BLS ambulances de-

ployed) on system performance. The ideal choice of vehicle mix has been the

subject of some debate in the medical literature, and we contribute to this de-

bate by developing a framework with which quantitative comparisons between

vehicle mixes can be made.

Noting that vehicle mix affects how resources are allocated to emergency

calls, we build two stylized, but complementary models to study decision-

making in tiered EMS systems. First, to examine how ambulances would be

dispatched to incoming calls of varying severity, we consider the problem of

routing and admission control in a loss system featuring two classes of servers

and arriving jobs. We formulate this problem as a Markov decision process, and

study its theoretical properties. Second, to study how ambulances would be

deployed to base locations to maximize coverage, we formulate an integer pro-

gram. By combining insights from our models, we conclude there are rapidly-

diminishing marginal returns associated with biasing towards all-ALS fleets.

Next, we consider systems practicing ambulance redeployment, the strategic



relocation of idle ambulances in real time to improve responsiveness to future

calls. Finding an optimal redeployment policy is computationally intractable,

and a number of heuristic policies have been proposed. We complement this

stream of literature by proposing two upper bounds on the performance of op-

timal redeployment policies (which, in turn, serve as benchmarks for existing

heuristic policies). First, we adapt an existing upper bound so that it is provably

valid for EMS providers who operate loss systems. Second, we develop a new

upper bound based upon a perfect information relaxation of the EMS provider’s

problem (in which the decisions-maker is clairvoyant), which we tighten by pe-

nalizing policies that use future information to make decisions. We evaluate

our bounds through extensive computational experiments, and find that they

are reasonably tight in small-scale systems.
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CHAPTER 1

INTRODUCTION

Emergency Medical Service (EMS) providers are tasked with responding to 911

calls, providing medical treatment on scene, and when necessary, transporting

patients to hospitals to receive more definitive care. This task has become in-

creasingly difficult in recent years, as many providers operate in environments

characterized by rising call volumes, increasing medical costs, and frequent de-

lays (such as those resulting from traffic congestion and hospital diversion). As

a result, maintaining a high level of service often requires the careful and effec-

tive management of ambulances and medical personnel.

Considerable attention has been given in the operations research literature

to how this can be achieved. Work in this vein spans nearly half a century, for

which Brotcorne et al. [18], Goldberg [37], Green and Kolesar [38], Ingolfsson

[44], Mason [58], and Swersey [91] provide excellent overviews. This stream

of literature has primarily focused upon three aspects of ambulance operations:

the strategic decision of deploying ambulances to base locations, the tactical de-

cision of dispatching ambulances to arriving calls, and the operational decision

of redeploying idle ambulances in real time in response to improve the system’s

responsiveness to future calls. Each level of decision-making has been studied

extensively, and a wide range of models have been proposed to support EMS

providers. We contribute to this growing body of literature in two ways.

1.1 The Vehicle Mix Decision

In Chapters 2 and 3, we study decision-making in tiered EMS systems, which

operate fleets that can roughly divided into those providing Advanced Life
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Support (ALS), and those providing Basic Life Support (BLS). These types of

ambulances can be differentiated by the equipment and personnel on board.

ALS ambulances staff paramedics, who receive more extensive medical train-

ing, and thus can administer medicine and perform more advanced medical

procedures on scene. They are essential components of many EMS systems,

because paramedic intervention can have a measurable effect on patient out-

comes, particularly in life-or-death situations. However, ALS ambulances are

more expensive to operate, and a significant fraction of emergency calls only

require BLS responses.

Operating a tiered EMS system necessitates selecting a vehicle mix— that is,

a configuration of ALS and BLS ambulances to deploy. The ideal choice of ve-

hicle mix has been a topic of some debate in the medical literature, with the

primary issue being whether or not BLS ambulances should be included in a

fleet at all. Proponents of all-ALS fleets cite the risk (both to the patient and to

the EMS provider) associated with providing only a BLS response to a call re-

quiring a paramedic, if ALS ambulances are not available. Proponents of mixed

fleets argue that BLS ambulances allow providers to operate larger fleets, thus

decreasing overall response times. Both sides of the debate allude to a funda-

mental trade-off that EMS providers face: that between decreasing the likeli-

hood of inadequately treating high-priority calls, and improving the system’s

overall responsiveness.

In Chapters 2 and 3, we contribute to this debate by quantifying this trade-

off, through models that allow quantitative comparisons among vehicle mixes

to be made. This presents two technical challenges. First, comparing fleets re-

quires the use of a performance measure; we do so by associating rewards with

2



calls receiving timely service, and defining performance to be the long-run av-

erage reward collected by the system. While this may appear unnatural, we

demonstrate in Chapter 3 this framework is fairly general, and can accommo-

date a wide range of realistic performance measures. Second, changing the com-

position of the fleet affects how the fleet would be managed: specifically, how

ambulances are deployed to base locations and dispatched to incoming calls,

which complicates the task of computing performance. We instead gather in-

sights by studying two stylized, but complementary models of decision-making

in tiered EMS systems.

Motivated by the question of how dispatchers allocate resources to calls

of varying severity, we begin in Chapter 2 with a stylized model of decision-

making in this setting. Our model is one of routing and admission control in a

loss system featuring two types of servers (“ALS” and “BLS”) and two classes

of arriving jobs (“high-priority” and “low-priority”). We impose constraints

on how jobs can be routed through the system, to mimic the constraints under

which dispatchers operate. For instance, we require that high-priority jobs al-

ways be admitted whenever a server (of either type) is idle, so as to provide

these jobs with some level of service (medical treatment) instead of diverting

them from the system. We assign class-dependent and server-dependent re-

wards to each admitted job, and seek an admission control and routing policy

that maximizes the long-run reward collected by the system. We formulate this

problem as a Markov Decision Process (MDP), study its theoretical properties,

and provide a partial characterization of the optimal policy.

Our MDP model cannot be directly used to guide dispatchers in practical

contexts, as by modeling an EMS system as a loss system, we assume away the
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role that geographical factors (specifically, the locations of ambulances) play in

decision-making. Nonetheless, we study it for two reasons. First, the MDP is

theoretically interesting in its own right (independently of its applications to

the vehicle mix problem), as the corresponding value function, in general, lacks

many of the structural properties, such as convexity and supermodularity, on

which standard techniques rely. This necessitates the use of more unconven-

tional techniques to identify structure in our MDP. Second, we are more inter-

ested in the objective function value attained by an “optimal policy”, rather than

the policy itself, as it provides some indication of how a system operating under

a given vehicle mix would perform.

To supplement our MDP model, we formulate an Integer Program (IP) in

Chapter 3 that studies the complementary problem of making deployment de-

cisions in a tiered EMS system. Here, the goal is to locate a fixed number of

ALS and BLS ambulances so as to maximize a long-run measure of the system’s

ability to respond to high-priority and low-priority calls (which also serves as a

proxy for system performance). We draw conclusions about the effects of vehi-

cle mix on system performance by combining the insights we draw from both

models. This approach may appear flawed, as we consider dispatching and de-

ployment decisions in separate models, and in practice, these decisions interact.

One may argue that a unified model that jointly optimizes with respect to dis-

patching and deployment decisions would result in more reliable conclusions.

However, such a model would likely be computationally intractable. Further-

more, we demonstrate in Chapter 3 that both models yield similar qualitative

results, and any discrepancies in our quantitative results can be reconciled with-

out much difficulty. Thus, our two models reinforce one another, and suggest

that we would obtain similar results from a single, unified model.
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Returning to the question of how vehicle mix affects system performance,

we subject our two models to extensive numerical experiments on a large-

scale EMS system. Our primary finding is that there are rapidly-diminishing

marginal returns associated with biasing one’s fleet towards all-ALS. That is,

there are a wide range of tiered systems that perform comparably to (and in

some cases, outperform) an all-ALS system. This finding is robust to changes to

our input parameters— that is, to modifications to call arrival rates, the relative

frequency of high-priority and low-priority calls, the EMS provider’s reward

structure, and the relative operating costs of ALS and BLS ambulances. From

these results, we draw the conclusion that EMS providers should not have a

strong incentive to change their vehicle mixes, provided that their fleets can ad-

equately respond to high-priority calls. Alternatively, an EMS provider tasked

with selecting a vehicle mix should make the decision based upon local consid-

erations, instead of any notion of an “ideal” vehicle mix.

1.2 Upper Bounds for Ambulance Redeployment

In Chapters 4 and 5, we turn our attention to EMS systems practicing ambu-

lance redeployment (or system status management), which entails strategically

relocating idle ambulances in real time so as to improve the system’s ability to

respond to future call arrivals. The problem of finding an optimal way to do

so is computationally intractable; while this problem, in theory, can be formu-

lated as a stochastic dynamic program, this approach succumbs to the curse of

dimensionality. To find good redeployment policies, a number of heuristic ap-

proaches have been proposed, but a natural question to ask is how close these

policies perform to optimal.
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To address this question, we consider the problem of upper bounding the

performance that is attained by an optimal redeployment policy. Such an upper

bound has two practical applications. First, it serves as a benchmark for heuris-

tic policies; a heuristic that attains a performance close to the upper bound is

very likely to be near-optimal. Second, it can be used to determine whether im-

plementing ambulance redeployment in an EMS system is worthwhile, as the

practice remains controversial, due to the added burden it places on medical

personnel. Specifically, if EMS providers do not consider the resulting increase

in performance substantial, even if the upper bound were attainable, then im-

plementation can safely be ruled out.

We propose two methods for developing upper bounds. In Chapter 4, we

revisit an existing bound by Maxwell et al. [61], which is valid for systems in

which calls arriving when all ambulances are busy can queue. We adapt his

bound so that it is provably valid for loss systems, in which arriving calls can be

redirected to an external service (such as the fire department or a neighboring

EMS) during periods of congestion. This adaptation is nontrivial, and requires

the introduction of novel ideas. In Chapter 5, we consider an “information re-

laxation” of the stochastic dynamic programming formulation of the problem.

Specifically, we assume that the decision-maker is clairvoyant, and knows the

arrival times, locations, and service requirements of all calls at the start of the

horizon. This relaxation allows us to overcome the curse of dimensionality (by

solving an equivalent integer program), but results in an upper bound that is

loose. We then attempt to tighten the upper bound by penalizing, in the spirit

of Brown et al. [20], policies that use future information to make decisions. We

develop a fairly natural and intuitive class of penalties, and demonstrate that

finding the penalty yielding the tightest upper bound can be found by solving
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a convex optimization problem.

We evaluate our upper bounds through extensive computational experi-

ments on a wide range of systems of varying sizes, to investigate where our

bounds perform well, as well as where they tend to be loose. Our “loss system”

bound from Chapter 4 is relatively tight in small-scale to moderately-sized sys-

tems, but struggles in large-scale (city-size) instances, where it barely outper-

forms the perfect information upper bound. Our “information penalty” bound

from Chapter 5 appears to be effective in small-scale systems, particularly when

resources cannot be effectively pooled. However, it appears to be dominated by

our loss system bound, as we could not find a problem instance for which the

comparison is favorable. Nonetheless, we lay down a theoretical framework

upon which an improved penalty (and thus, a tighter upper bound) could po-

tentially be developed.
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CHAPTER 2

TWO-CLASS ROUTING AND ADMISSION CONTROL WITH STRICT

PRIORITIES

2.1 Introduction

A common decision faced by operators of service systems is that of dynami-

cally allocating system resources to incoming demand. Complicating matters

is the fact that in such systems, customers and servers are often heterogeneous.

Servers may have different capabilities, or receive varying levels of training.

Similarly, different types of customers may have varying needs, or take priority

over other customer classes. This situation arises, for instance, in telecommuni-

cations [4, 13, 71], healthcare [10, 65], and rental systems [32, 73, 79]. Decision-

making in this setting has typically been modeled in the literature as a problem

of admission control or routing in a queueing system, canonical examples of

which include the models by Harrison [40] and Miller [67].

However, there may be restrictions in the decisions that can be made in cer-

tain system states. One example of this (the original motivation for the model

we present in this paper) arises in Emergency Medical Service (EMS) systems.

In this setting, arriving calls (customers) are categorized into priorities, based

upon severity, and ambulances (servers) are staffed by personnel who receive

varying levels of medical training. EMS providers are primarily evaluated by

their responsiveness to calls of the highest priority: emergencies for which pa-

tients’ lives are potentially at stake (such as cardiac arrest). As a result, decision-

making with these types of calls is typically forced, in that they receive an im-

mediate response if resources are available. Moreover, if multiple ambulances
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can respond to such a high-priority call, EMS providers prefer to dispatch one

staffed by paramedics (who receive the highest level of medical training), as

doing so can have a measurable effect on patient outcomes. (See, for instance,

Bakalos et al. [7] or Jacobs et al. [47] for discussions of these effects.) How-

ever, EMS providers are often required to provide a minimum level of service

to lower-priority calls. As a result, decision-makers face a trade-off between

keeping resources available to serve higher-priority calls, and allocating these

resources to adequately serve lower-priority calls.

We study this situation through a loss system featuring two types of servers

(Type A and Type B), that is tasked with processing two classes of jobs: Type

H (or high-priority) jobs and Type L (or low-priority) jobs, in which decision-

making with Type H jobs is forced, and Type L jobs are subject to admission

control. Although this model cannot be directly used to guide decision mak-

ing in practical contexts (as the locations of ambulances must also be taken into

account), it is theoretically interesting in its own right. This is because the el-

ement of forced decision-making in our model presents significant technical

challenges. In particular, standard techniques for characterizing the optimal

admission control policy, which involve formulating our model as an MDP and

analyzing the corresponding value function, are inadequate. Although there

are conditions under which standard techniques suffice, in general, the value

function associated with our model lacks classical structural properties, such as

convexity or supermodularity. Moreover, this lack of structure can be directly

attributed to our requirement that decision-making with Type H jobs is forced.

To address these difficulties, we instead identify situations in which we can

provably recover structure in the optimal policy, and proceed in two directions.
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First, we provide a sufficient (but not necessary) condition on our model in-

puts under which our value function is convex and supermodular. Second, we

demonstrate that when we restrict attention to a certain intuitive class of poli-

cies, the optimal policy in this class is “monotone” in a way that we later specify,

the proof of relies on a novel argument using renewal theory. One may won-

der whether the technical challenges our model presents can be circumvented,

for instance by devising an effective heuristic policy, but numerical experiments

suggest that in service systems such as ours, that there is value in taking into

account heterogeneity of both servers and jobs.

The remainder of this chapter is organized as follows. After a review of rel-

evant literature in Section 2.2, we explicitly formulate our model as a Markov

decision process in Section 2.3, and present the corresponding optimality equa-

tions. We identify basic structural properties in our value function in Section

2.4, which we leverage in Section 2.5 to identify conditions under which the op-

timal policy can be characterized. Following a brief numerical study in Section

2.6, we conclude in Section 2.7.

2.2 Literature Review

Markov decision processes have been used to study real-time decision mak-

ing in EMS systems, for which the goal is to identify policies for dispatching

ambulances to emergency calls, or to relocate idle ambulances to improve the

system’s responsiveness to future call arrivals. See, for instance, the models by

Berman [10, 11], Jarvis [49], McLay and Mayorga [65], and Zhang [101]. These

models are detailed, and take into account the effects of ambulance locations

(and heterogeneity) when making decisions, and thus, can be used to guide
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decision-making in practical contexts. Although our model lacks this appli-

cability, we consider a more nuanced objective function that incorporates the

system’s responsiveness to high-priority and low-priority calls, as well as the

level of service that different types of ambulances can provide to these calls. It

can also be used to draw basic insights; we use this model in [24] to study the

effects of fleet composition (the mixture of “Type A” and “Type B” ambulances

deployed) on the performance of EMS systems. Our choice to model the system

as a loss system is partly due to tractability, and partly due to the fact that some

systems divert calls to an external service (such as the fire department) during

periods of congestion.

Routing and admission control in queueing systems has been widely studied

in the literature. Surveys, such as those by Stidham [86] and by Stidham and

Weber [87], provide excellent overviews of work in this area; we restrict our

attention to models closely related to our own— specifically, models featuring

multiple classes of arriving jobs. Perhaps the most influential model of this

type is due to Miller [67], who studies the problem of admission control to a

loss system featuring homogeneous servers and n job classes, as well as class-

dependent rewards. Extensions to Miller’s model have been studied (see, for

instance, Carrizosa et al. [22], Feinberg and Reiman [31], and Lewis et al. [55]),

and his model has also been adapted to study telecommunications systems and

call centers (examples of which include Altman et al. [4], Bhulai and Koole [13],

Blanc et al. [14], Gans and Zhou [33], and Örmeci and van der Wal [71]). Our

model differs from those previously mentioned in two respects. First, it features

two types of servers, and we allow rewards to depend on the type of server to

which jobs are assigned. Second, one of our arrival streams is uncontrolled, as

Type H jobs must be admitted whenever possible. While Blanc et al. [14] also
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consider a model with a similar element of forced decision-making, and Bhulai

and Koole [13] and Gans and Zhou [33] impose a service level constraint on

Type H jobs, they do so in a system with homogeneous servers.

Our model also closely resembles the N-network, which can be viewed as a

variant of our model in whichRHA = RHB, Type L jobs cannot be routed to Type

A servers, and jobs can queue. See, for instance, Bell and Williams [9], Down

and Lewis [29], and Harrison [40]. While our model does not feature a queue,

we allow for servers to be flexible, in that they can serve both types of jobs, and

discourage certain routing decisions through the reward structure we impose.

Finally, we draw a connection between our model and a stream of literature

relating to capacity management in rental systems, a relatively small subfield

of revenue management in which individual resources are not perishable (as

is the case, for instance, with seats on a particular flight itinerary), but can be

reused to generate revenue from multiple customers. In this setting, servers are

viewed as resources that can be rented to customers for random (exponentially

distributed) durations of time. When resources are scarce, there is a decision

as to which resources (if any) to make available to arriving customers. This

problem has been studied, for instance, by Gans and Savin [32], Savin et al. [79],

and Papier and Thonemann [73], all of whom model resources as homogeneous.

In this context, our model can be viewed as that of a rental system with two

classes of resources, in which product substitutions can be made during periods

of high demand. For instance, assigning a Type L job with a Type A server may

correspond to upgrading a low-priority customer, whereas assigning a Type H

job to a Type B server may correspond to downgrading (and compensating) a

high-priority arrival.
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2.3 Model Formulation

Consider a system operating NA Type A and NB Type B servers. Type H and

Type L jobs arrive according to independent Poisson processes with rates λH

and λL, respectively. An arriving Type H job must be admitted into the system

if at least one server is idle, and if this is the case, must be processed by a Type

A server if one is available. Routing a Type H job to a Type B server is less

desirable, but is permitted when all Type A servers are busy, to provide the job

with some level of service during periods of congestion. Type L jobs can be

processed by either type of server, but can be diverted from the system upon

arrival, so as to reserve system resources for future Type H jobs. If a job (of

either type) is admitted (with either type of server), it leaves the system after a

time that is exponentially distributed with rate µ. Jobs that are diverted or that

arrive when all servers are busy immediately leave the system.

Let RHA and RHB denote the reward associated with assigning a Type H job

to a Type A and Type B server, respectively. Similarly, let RL denote the reward

associated with admitting a Type L job (and assigning it to either type of server).

We assume RHA ≥ max{RHB, RL}, but we make no assumptions about the

relative ordering ofRHB andRL. Our goal is to find an admission control policy

for low-priority jobs that maximizes the expected long-run reward collected by

the system, and consider both the discounted reward and the long-run average

reward criteria. We use this objective to quantify the level of service that the

system is able to provide. By setting RHA to be the largest reward in our model,

we prioritize serving Type H jobs adequately, and we can model the trade-off

between serving Type H jobs and Type L jobs through the value of RL relative

to those of RHA and RHB.
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We formulate the problem described as a Markov decision process (MDP).

Let S = {0, 1 . . . , NA} × {0, 1 . . . , NB} be the state space, where (i, j) ∈ S

denotes the state in which i Type A servers and j Type B servers are busy. To

determine the actionsA(i, j) that are available when the system is in state (i, j),

it suffices to only consider arriving Type L jobs. If either i < NA or j < NB, two

actions can be taken: admitting (action 1) or rejecting (action 0) the next Type

L job, if one arrives during the next decision epoch. If j < NB, action 1 entails

assigning the call to a Type B server. Although we do not allow Type L calls to

be assigned to Type A servers in this situation, this is without loss of optimality;

we prove this in Proposition 2.4.3 below. If j = NB, but i < NA, then action 1

entails a Type A service. Finally, if i = NA and j = NB, only a dummy action

(action 0) can be taken.

Because interevent times are exponentially distributed with a rate that is

bounded above by Λ := λH + λL + (NA + NB)µ, our MDP is uniformizable in

the spirit of Lippman [56] and Serfozo [81], and we can consider an equivalent

process in discrete time. Without loss of generality, assume Λ = 1. We define a

policy to be a sequence of decision rules π = {π0, π1, . . .}, where πk : S → {0, 1}

specifies a deterministic action to be taken during the kth decision epoch, given

the state of the system. Let Π be the set of all such policies. Given a fixed policy

π ∈ Π and an initial state (i, j), let Sπk be the state of the system at the start of

the kth decision epoch, and Aπk be the action πk(Sπk ) selected by policy π at this

time. Considering first the case of discounted rewards. We define the expected

total discounted reward collected by π to be

vπα(i, j) = E

[
∞∑
k=0

αkr(Sπk , A
π
k)

∣∣∣∣Sπ0 = (i, j)

]
, (2.1)

where r(s, a) is the reward collected when the system is in state s ∈ S and
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action a ∈ A(s) is taken, and α ∈ [0, 1) is the discount factor. This quantity is

well-defined for each initial state (i, j), since 0 ≤ r(s, a) ≤ RHA for each s and

a. Next, we define vα(i, j) = supπ∈Π v
π
α(i, j). Because state and action spaces

are finite, the supremum is attained, and so vα(i, j) denotes the total discounted

reward obtained by an optimal policy, given a system initialized in state (i, j).

Theorem 6.2.6 of Puterman [75] implies that the value function vα is the unique

solution to the optimality equations:

vα(i, j) = Tαvα(i, j) (2.2)

:= λH

[
1{i<NA}

[
RHA + αvα(i+ 1, j))

]
(2.3)

+ 1{i=NA, j<NB}
[
RHB + αvα(i, j + 1)

]
+ 1{i=NA, j=NB}αvα(i, j)]

]
+ λL

[
1{j<NB}max

{
RL + αvα(i, j + 1), αvα(i, j)

}
+ 1{i<NA, j=NB}max

{
RL + αvα(i+ 1, j), αvα(i, j)

}
+ 1{i=NA, j=NB}αvα(i, j)

]
+ iµ αvα(i− 1, j) + jµαvα(i, j − 1) + (NA +NB − i− j)µαvα(i, j).

The first term on the right-hand side of (2.3) corresponds to the case when a Type

H arrival occurs in the next decision epoch. The reward collected and the result-

ing transition depends on the system state; we capture this dependence using

indicators for brevity. The remaining four terms correspond to cases where a

Type L arrival, a Type A service completion, a Type B service completion, and

a dummy transition occur, respectively. Note that the optimality equations (2.3)

imply that it is optimal to accept a Type L arrival when either j < NB and

RL > α[vα(i, j)−vα(i, j+1)] or i < NA, j = NB, andRL > α[vα(i, j)−vα(i+1, j)].

We also consider a finite-horizon analogue of this problem, in which we ter-
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minate the decision process after n decision epochs. Define the functions vπn+1, α

and vn,α analogously to vπα and vα, but with the sum in (2.1) terminating at n

instead of∞. Here, we allow α = 1. The optimality equations for this problem

can be constructed analogously by replacing vα on the left-hand side of (2.3)

with vn,α, and occurrences of vα on the right-hand side of (2.3) with vn−1,α (and

specifying the boundary condition v0,α(i, j) = 0 for all i and j).

Given any initial state (i, j) and a policy π, we define the long-run average

reward attained to be Jπ = limn→∞ vn, 1(i, j)/n. By Theorem 8.3.2 of Puterman

[75], Jπ is well-defined and independent of (i, j), as the Markov chain induced

by π is irreducible. To see this, suppose (i, j), (i′, j′) ∈ S. Then state (i′, j′) can

be reached from state (i, j) under π via i + j consecutive service completions,

followed by i′ + j′ Type H arrivals. Next, define J = supπ∈Π J
π, the long-run

average reward attained by an optimal policy. By Theorem 8.4.3 of [75], this can

be found by solving the optimality equations

J + h(i, j) = T1h(i, j) (2.4)

for J and h(·), where we defined the operator Tα in (2.2). One property of h that

we use extensively is

h(i, j)− h(i′, j′) = lim
n→∞

[vn,1(i, j)− vn,1(i′, j′)] , (2.5)

which is proven, for instance, in Section 8.2.1 of Puterman [75].

2.4 Basic Structural Properties

We begin our analysis by identifying structural properties of the value functions

vα, vn,α, and h. The first such property we examine confirms two intuitive no-

tions: that additional idle servers are beneficial to the system, and that an idle
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Type A server is preferable to an idle Type B server (which, in turn, implies that

we prefer to assign Type L calls to Type B servers than to Type A servers).

Lemma 2.4.1. For all α ∈ [0, 1), and f = vα, vn,α, or h (depending on the optimality

criterion), we have

1. f(i, j)− f(i+ 1, j) ≥ 0 i = 0, . . . , NA − 1, j = 0, . . . , NB,

2. f(i, j)− f(i, j + 1) ≥ 0 i = 0, . . . , NA, j = 0, . . . , NB − 1, and

3. f(i, j + 1)− f(i+ 1, j) ≥ 0 i = 0, . . . , NA − 1, j = 0, . . . , NB − 1.

Proof. We show Statement 2 holds via a sample path argument; the proofs of

Statements 1 and 3 are similar. Suppose f = vα; the case where f = vn,α follows

via a nearly identical proof, from which the case where f = h follows by lever-

aging Equation (2.5). Fix α ∈ [0, 1), i ∈ {0, . . . , NA}, and j ∈ {0, . . . , NB − 1}.

We construct two processes on the same probability space. Process 2 begins in

state (i, j + 1) and follows the optimal policy π∗, whereas Process 1 starts in

(i, j) and uses a potentially suboptimal policy π that imitates the actions taken

by Process 2.

By construction, arrivals occur simultaneously in both processes, and any job

admitted by Process 2 is also admitted by Process 1. Furthermore, any service

completion occurring in Process 1 also occurs in Process 2. Thus, both process

move in “parallel” (in that the same changes in state occur simultaneously in

both processes) until one of the following events occurs:

1. Process 2 sees a service completion that is not observed by Process 1.

2. A Type H arrival when Process 1 is in state (NA, NB − 1), and Process 2 is

in state (NA, NB).
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Either event causes both processes to couple, in that they transition into the same

state, and behave identically from this time onward. Let ∆ be a random variable

denoting the difference in reward collected by the two processes until coupling

occurs. By Equation (2.1), E∆ = vπα(i, j)− vα(i, j + 1). Thus, it suffices to show

that E∆ ≥ 0, as this implies vα(i, j)−vα(i, j+1) ≥ vπα(i, j)−vα(i, j+1) = E∆ ≥ 0.

Indeed, prior to the coupling event, both processes observe the same transitions

and collect the same rewards. When coupling occurs, Process 1 collects a reward

at least as large as that by Process 2. This implies ∆ ≥ 0 pathwise, and so

E∆ ≥ 0, as desired.

We next establish two upper bounds: one on the benefit of an idle Type B

server, and one on the benefit associated with substituting an idle Type B server

with an idle Type A server.

Lemma 2.4.2. For all α ∈ [0, 1), and f = vα, vn,α, or h, we have that

1. f(i, j+1)−f(i+1, j) ≤ RHA−RHB i ∈ {0, . . . , NA−1}, j ∈ {0, . . . , NB}

2. f(i, j)−f(i, j+1) ≤ max{RHB, RL} i ∈ {0, . . . , NA}, j ∈ {0, . . . , NB−1}

Proof. We show Statement 1 holds via a sample path argument; the proof of

Statement 2 is similar. As in the proof of Lemma 2.4.1, it suffices to show that

the above properties hold when w = vα. Fix α ∈ [0, 1), i ∈ {0, . . . , NA − 1}, and

j ∈ {0, . . . , NB − 1}. Construct two processes on the same probability space.

Process 1 begins in state (i, j + 1) and follows the optimal policy π∗, whereas

Process 2 begins in state (i+ 1, j), and imitates the actions taken by Process 1.

There is a Type A server that is idle in Process 1, but busy in Process 2, and

a Type B server that is busy in Process 1, but idle in Process 2. We construct
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our probability space so that both units complete service simultaneously. Both

processes move in parallel until one of the following occurs:

1. The coupled Type A server (in Process 1) and Type B server (in Process 2)

complete service.

2. A Type H arrival occurs when Process 1 is in state (NA − 1, j′ + 1), and

Process 2 is in state (NA, j
′), for some j′ ∈ {0, 1, . . . , NB−1}. (In this case,

Process 1 admits the job with a Type A server, and Process 2 admits the job

with a Type B server.)

3. A Type L arrival occurs when Processes 1 and 2 are in states (i′ − 1, NB)

and (i′, NB − 1), respectively, for some i′ ∈ {1, 1, . . . , NA} and Process 1

admits the job with a Type A server. (In this case, Process 2 admits the job

with a Type B server.)

Let ∆ be the difference in reward collected by the two processes until coupling

occurs. Since E∆ = vα(i, j + 1) − vπα(i + 1, j), it suffices to show that E∆ ≤

RHA − RHB. We observe that ∆(ω) = 0 on all paths ω in which events 1 or 3

occur, and RHA − RHB on paths in which event 2 occurs (modulo the effects of

discounting). Thus ∆ ≤ RHA −RHB pathwise.

Lemma 2.4.2 has two implications on the structure of optimal policies.

Proposition 2.4.3. If a Type H job arrives when both types of servers are available, then

it is preferable to assign a Type A server. Moreover, if RHB ≤ RL, then it is optimal to

admit low-priority jobs when at least one Type B server is idle.

Proof. We prove the first claim; the second follows using a similar argument. It

suffices to show that our claim holds under the discounted reward criterion. Let

(i, j) be such that i < NA and j < NB, and suppose, contrary to the optimality
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equations (2.3), that we can serve an arriving Type H job in this state with a

Type L server. It is preferable to assign a Type H server if RHA + αvα(i+ 1, j) ≥

RHB + αvα(i, j + 1), which by Statement 1 of Lemma 2.4.2, always holds.

2.5 Optimal Policy

If NB = 0, we can use a result by Miller [67] to characterize the optimal policy.

Proposition 2.5.1 (Miller 1969). If NB = 0, then there exists an optimal policy with

the property that if it admits Type L jobs when i servers are busy, then it also does so

when i′ < i servers are busy.

That is, threshold-type policies are optimal. When NB > 0, it is reasonable to

conjecture that a multi-dimensional analogue to this class of policies is optimal:

Definition 2.5.2. A policy is of monotone switching curve type if there exists a

monotone curve s(·) dividing the state space into two connected regions, one in which

action 0 is taken, and one in which action 1 is taken.

Threshold-type policies are special cases of monotone switching curve poli-

cies. We analyze the cases RL ≤ RHB and RL > RHB separately.

2.5.1 The Case RL ≤ RHB

If RL ≤ RHB, the optimal policy is fairly structured, and our main result in this

section as follows:

Theorem 2.5.3. If RL ≤ RHB, there exists an optimal monotone switching curve

policy with slope of at least −1 under both the discounted reward and long-run average

reward criteria.
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A monotone switching curve policy can be viewed as one that keeps some

number of Type B servers in reserve to respond to future Type H arrivals, and

grows this reserve as more Type A servers become busy. A bound on the slope of

the switching curve implies the size of this reserve does not change dramatically

in response to “small” changes in system state. In particular, if a Type A server

becomes free or busy, the size of the reserve can change by at most one. To prove

Theorem 2.5.3, we use the fact that our value functions vα, vn,α, and h have the

following structural properties:

Lemma 2.5.4. If RL ≤ RHB, then for all α ∈ [0, 1) and f = vα, vn,α, or h, we have

1. (Convexity in j) For all i ∈ {0, 1, . . . , NA} and j ∈ {0, 1, . . . , NB − 2},

f(i, j)− w(i, j + 1) ≤ f(i, j + 1)− f(i, j + 2) (2.6)

2. (Supermodularity) For all i ∈ {0, 1, . . . , NA − 1} and j ∈ {0, 1, . . . , NB − 1},

f(i, j)− w(i, j + 1) ≤ f(i+ 1, j)− f(i+ 1, j + 1). (2.7)

3. (Convexity in i when j = NB) For all i ∈ {0, 1, . . . , NA − 2},

f(i, NB)− f(i+ 1, NB) ≤ f(i+ 1, NB)− w(i+ 2, NB). (2.8)

4. (Slope property) For 0 ≤ i ≤ NA − 1 and 0 ≤ j ≤ NB − 2,

f(i+ 1, j)− f(i+ 1, j + 1) ≤ f(i, j + 1)− f(i, j + 2). (2.9)

The proof, which we defer to Appendix A, follows by demonstrating that prop-

erties (2.6)–(2.9) hold when w = vn,α, via a straightforward induction argument

on n, then reasoning as in Lemma 2.4.1 to show that the same properties hold

for the value functions vα and h.
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Proof of Theorem 2.5.3. We consider only the discounted reward criterion, as

the proof for the long-run average reward criterion is nearly identical. Consider

an optimal policy π∗, and let (i, j+1) be a state in which π∗ takes action 1— that

is, admits Type L jobs into the system. (If such a state does not exist, then our

claim trivially holds.) If j + 1 < NB, then the optimality equations (2.3) imply

RL + αvα(i, j + 2) ≥ αvα(i, j + 1) ⇐⇒ RL ≥ α[vα(i, j + 1) − vα(i, j + 2)].

Statement 1 of Lemma 2.5.4 implies that RL ≥ α[vα(i, j)− vα(i, j + 1)], and so it

is also optimal to take action 1 in state (i, j). If j + 1 = NB, action 1 routes the

Type L job to a Type A server, and

RL + αvα(i+ 1, j + 1) ≥ αvα(i, j + 1) ⇐⇒ RL ≥ α[vα(i, j + 1)− vα(i+ 1, j + 1)]

=⇒ RL ≥ α[vα(i, j)− vα(i+ 1, j)]

=⇒ RL ≥ α[vα(i, j)− vα(i, j + 1)],

where the second line follows by Statement 2 of Lemma 2.5.4, and the third by

Statement 3 of Lemma 2.4.1. Thus, it is again optimal to take action 1 in state

(i, j). Similar reasoning yields the conclusion for all states (i, j′) where j′ < j.

Now consider a state (i + 1, j) at which π∗ admits Type L jobs (assuming

without loss of generality that one exists). If j < NB, then RL ≥ α[vα(i+ 1, j)−

vα(i + 1, j + 1)], and Statement 2 of Lemma 2.5.4 implies RL ≥ α[vα(i, j) −

vα(i, j + 1)]. If j = NB, then RL ≥ α[vα(i + 1, j) − vα(i + 2, j)], and Statement

3 of Lemma 2.5.4 implies that RL ≥ α[vα(i, j) − vα(i + 1, j)]. In either case, it

is optimal to admit Type L jobs in state (i, j). Similar reasoning can be used to

show that Type L jobs are also admitted in state (i′, j) where i′ < i.

Thus, if π∗ admits Type L jobs in state (i, j), then it also does so in all states

(i′, j′) for which i′ ≤ i and j′ ≤ j. For each i ∈ {0, 1, . . . , NA}, define the

function s(i) = max{j : π∗(i, j) = 1}; we claim this function is nonincreasing.
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Indeed, if this is not the case, then there exists an i for which s(i + 1) > s(i),

implying that for some j, the policy admits Type L jobs in state (i+ 1, j+ 1), but

not in state (i, j + 1). Contradiction.

To prove that s has slope of at least −1, it suffices to show that if π∗ admits

Type L jobs when the system is in state (i, j + 1), then it also does so in state

(i + 1, j). Let (i, j + 1) be such a state, and suppose first that j + 1 < NB.

Then RL ≥ α[vα(i, j + 1)− vα(i, j + 2)], and Statement 4 of Lemma 2.5.4 implies

RL ≥ α[vα(i + 1, j) − vα(i + 1, j + 1)]. If j + 1 = NB, then Lemma 2.4.1 implies

RL ≥ α[vα(i, j + 1)− vα(i+ 1, j + 1)] ≥ α[vα(i+ 1, j)− vα(i+ 1, j + 1)].

We conclude this section by noting that when RL = RHB, the optimal policy

is simpler to characterize, as Lemma 2.4.2 implies that this policy must admit

Type L jobs whenever Type B servers are idle. Combining this insight with

Theorem 2.5.3 implies the existence of an optimal threshold-type policy.

2.5.2 The Case RL > RHB

As in the case when RL = RHB, we can leverage Lemma 2.4.2, and consider

decision-making only in states (i, NB), where i < NA. We conjecture that a

threshold-type policy is optimal here. However, we cannot reason as in Section

2.5.1, as the value function vα is, in general, neither convex nor supermodu-

lar. We demonstrate this with an example. While we specifically consider the

discounted reward criterion, we can adopt the example below to the case of

long-run average rewards.

Example 2.5.5. Consider a system where λA = 40, λB = 30, RHA = 1, RHB = 0.1,

RL = 0.9, NA = 2, NB = 28, µ = 1, and α = 0.995. Policy iteration yields
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vα(2, 28) = 28.479, vα(1, 28) = 29.545, vα(2, 27) = 28.914, vα(1, 27) = 30.125,

and vα(0, 28) = 30.620, Thus,

0.580 = vα(1, 27)− vα(1, 28) > vα(2, 27)− vα(2, 28) = 0.435 and

1.075 = vα(0, 28)− vα(1, 28) > vα(1, 28)− vα(2, 28) = 1.066,

and so vα is neither supermodular nor convex.

Example 2.5.5 establishes that the value functions vα and h, in general, are

unstructured. It can be shown that this lack of structure can be directly at-

tributed to our assumption that decision-making with Type H jobs is forced. In

particular, if the decision-maker could subject Type H jobs to admission control,

then we return to a setting in which standard techniques suffice to characterize

optimal policies:

Proposition 2.5.6. Consider a modified system in which Type H jobs are subject to

admission control, in that they can be rejected upon arrival in any system state. Let ṽα,

ṽn,α, and h̃ denote the value functions associated with optimal policies in this setting. If

RL > RHB, then for all α ∈ [0, 1), these functions are convex (that is, convex in i, and

convex in j when i = NA) and supermodular, and there exists an optimal monotone

switching curve policy for Type H jobs.

The proof, which we again defer to Appendix A, is similar to that used to

prove Lemma 2.5.4, in that we prove that the value function vn,α (and conse-

quently, vα and h) has certain structural properties via induction on n. Although

forced-decision making complicates the analysis of our model, to ensure the ex-

istence of an optimal threshold-type policy, it is only necessary to show that the

value functions vn,α, vα, and h satisfy the “single-crossing” property

vα(i− 1, NB)− vα(i, NB) ≤ RL =⇒ vα(i− 1, NB)− vα(i, NB) ≤ RL (2.10)
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for all i ∈ {0, . . . , NA − 2}. Although we conjecture this holds, we have been

unable to develop a proof. Nor have we found a counterexample, as extensive

numerical experiments on a wide range of problem instances have all yielded

optimal threshold-type policies. We proceed by imposing additional assump-

tions that allow us to identify structure, and conclude this section with two

results in this vein.

2.5.2.1 A Sufficient Condition for Convexity

Example 2.5.5 is an unrealistically overloaded system in which the arrival rate

greatly exceeds the system’s service capacity. It may not be of practical interest

to study such systems, even if threshold policies can be shown to be optimal.

By restricting our attention to more reasonable parameter values, we identify

conditions under which the value functions vα and h are convex, implying the

optimality of threshold-type policies. One such condition is the following:

Proposition 2.5.7. Fix α ∈ [0, 1). If

RL ≤ RHB +
µ

λL
RHB +

µ

λH

(
1 +

µ

λL
+
λH
λL

)
RHA, (2.11)

then for all i ∈ {0, 1 . . . , NA−2}, j ∈ {0, 1, . . . , NB}, and n ≥ 0, the value functions

vα, vn,α, and h are convex in i.

The proof, which we provide in the Appendix, is a sample path argument.

The intuition is that vα(i, j)− vn,α(i+ 1, j) can be viewed as the expected differ-

ence in rewards collected by two stochastic processes defined on the same prob-

ability space— one initialized in state (i, j), the other in state (i + 1, j)— until

coupling occurs; call this expectation E∆. The quantity vα(i+1, j)−vn,α(i+2, j)

can be interpreted in a similar fashion; call the corresponding expectation E∆′.
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There may be sample paths on which ∆ > ∆′, and if the probability of this col-

lection of paths is too large, we may have E∆ > E∆′; this is the case in Example

2.5.5. Condition (2.11) guards against this possibility. While this condition is

certainly sufficient to prove convexity, it is certainly not necessary; numerical

experiments suggest that convexity holds for a wide range of parameter values

violating inequality (2.11).

2.5.2.2 Threshold Policies

Policies without threshold structure is unappealing from a practical point of

view. Thus, it may be reasonable to omit such policies from consideration. Re-

stricting attention to the set of threshold-type policies may still yield value func-

tions that are neither convex or supermodular. The optimal policy in Example

2.5.5 never admits Type L jobs when j = NB, and thus is of threshold type.

Nonetheless, the optimal policy in this setting satisfies a monotonicity prop-

erty, in that the optimal choice of threshold is nonincreasing inRHA, nondecreas-

ing inRHB, and nondecreasing inRL. More formally, for i ∈ {−1, 0, . . . , NA}, let

πi denote the threshold-type policy that admits Type L jobs in all states (i′, NB)

where i′ ≤ i. (Policy π−1 never assigns Type A servers to Type L jobs.) Since the

set of threshold-type policies is finite, there exists an optimal policy, but it may

not be unique; we break ties by selecting the policy with the highest threshold.

Proposition 2.5.8. Consider a system with rewards RHA, RHB, and RL, and let πi∗

denote the largest threshold-type policy that is optimal. Suppose we modify the system

so that it has rewards R′HA, R′HB, and R′L, where R′HA ≥ RHA, R′HB ≤ RHB, and

R′L ≤ RL. Let π`∗ be the largest threshold-type policy that is optimal in the modified

system. Then `∗ ≤ i∗.
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The proof, which we again defer to Appendix A, involves a novel application

of renewal theory. We define two stochastic processes on the same probability

space (under the original reward structure), one using the optimal policy πi∗ ,

and one using a suboptimal policy π`, where ` > i∗. We initialize both systems

in some state (i0, j0), and define renewal epochs to be the points in time at which

both processes find themselves in state (i0, j0). When we consider the difference

in rewards collected by the two processes during a single renewal epoch (this

suffices, due to the Renewal Reward Theorem), we find that the gap widens

when we increase RHA, decrease RHB, or decrease RL. Thus, any policy with a

larger threshold than i∗ remains suboptimal when when we modify the reward

structure in this way.

Proposition 2.5.8 is intuitive, as if we modify rewards in our system so as

to more heavily prioritize Type A responses to Type H jobs, or to decrease the

importance of serving Type L jobs, we would be less willing to assign Type A

servers to Type L jobs.

2.6 Computational Study

In this section, we compare our optimal policy to three heuristic policies:

• A myopic policy that admits every incoming job, regardless of the system

state (as long as servers are available),

• A single threshold policy that admits both types of jobs whenever i < NA,

but admits Type L jobs according to a threshold policy when i = NA.

• A diagonal threshold policy that always admits Type H jobs whenever pos-

sible, but rejects Type L jobs if the total number of busy servers exceeds a

threshold t— that is, in all states (i, j) where i+ j > t.
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The primary motivation for the latter two policies is that they are two-

dimensional analogues of the threshold-type policies that were shown to be

optimal in Miller [67]. The single threshold policy considers a one-dimensional

cross-section of the state space, whereas the diagonal threshold policy does not

distinguish between busy Type A and busy Type B servers.

We evaluate the performance of these three policies on a system with ten

Type A and Type B servers, each of which operate at a rate of µ = 1. With-

out loss of generality, we assume RHA = 1, and consider two reward regimes:

one that favors Type H jobs (RHB = 0.6, RL = 0.4), and one that favors Type

L jobs (RHB = 0.4, RL = 0.6). We also consider performance under varying

levels of congestion, ranging from a severely underloaded system (in which

λH = λL = 0.5) to a severely overloaded system (in which λH = λL = 15).

In each of the MDP instances we consider, we solve for the optimal policy nu-

merically using policy iteration. We find the optimal single threshold policy

by computing the stationary distribution of the Markov chain induced by the

policy with threshold t (from which long-run average reward can be easily cal-

culated), and finding the threshold in the set {0, 1, . . . , NA} that maximizes re-

ward. We compute the optimal diagonal threshold policy in a similar fashion.

Our findings are summarized in Figure 2.1.

When the system is lightly loaded, our heuristic policies perform optimally,

as there is no need to reserve servers for Type H jobs when the system is rarely

congested. As the system load increases, the optimal policy performs noticeably

better, as routing decisions affect performance primarily during periods of con-

gestion. The greedy policy, unsurprisingly, performs the poorest, particularly

as arrival rates increase. In moderately-loaded systems, the myopic policy ap-
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Figure 2.1: Optimality gap for three heuristic admission control policies,
as a function of arrival rate, when RHB = 0.6, RL = 0.4
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Figure 2.2: Optimality gap for three heuristic admission control policies,
as a function of arrival rate, when RHB = 0.6, RL = 0.4
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pears to struggle more when RL < RHB. This is also not surprising, given that

setting RL < RHB decreases the number of states in which it is optimal for the

decision-maker to behave greedily.

The single threshold policy is optimal when RHB ≤ RL, but this is a conse-

quence of Proposition 2.4.3. When RHB > RL, it performs comparably to the

optimal policy, but also struggles in more heavily loaded systems. The diago-

nal threshold policy performs quite well when RHB > RL, likely due to the fact

that the structure of the policy closely mimics the monotone switching curve

(with slope of at least−1) that was shown to be optimal in Theorem 2.5.3. How-

ever, it performs noticeably poorer when RHB < RL, as the policy becomes too

conservative in terms of admitting Type L jobs.

Although we could consider a combination policy that uses either the single

threshold or diagonal threshold policy, depending on the reward structure, the

above experiments demonstrate that there is value in taking the heterogeneity

of resources into account when making decisions in our system. We observe

similar behavior when we consider different systems (that are less “balanced”

in terms of the relative values of NA and NB, and of λH and λL), and perform

sensitivity analyses, but we omit the corresponding results for brevity.

2.7 Conclusion

In this chapter, we considered the problem of routing and admission control in

a service system featuring two classes of arriving jobs and two types of servers,

where one arrival stream is uncontrolled, and our reward structure influences

the desirability of each of the four possible routing decisions. We seek opti-

mal policies under both the discounted long-run reward and long-run average
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reward criteria. We characterize the optimal policy by formulating the prob-

lem as a Markov decision process. When RL ≤ RHB, we prove the existence

of an optimal monotone switching curve policy with a slope of at least −1.

WhenRL > RHB, we conjecture that threshold-type policies are optimal, but en-

counter difficulties because the value function, in general, is neither convex nor

supermodular. These difficulties can be attributed directly to our assumption

that decision-making with Type H jobs is forced. We instead prove a sufficient

(but not necessary) condition for convexity, and show that when we restrict at-

tention to the set of threshold-type policies, the optimal policy is monotone in

our choice of reward structure. Numerical experiments suggest there is value in

taking heterogeneity of servers into account when making decisions.

We propose two directions for future research. The first involves finding, for

the caseRL > RHB, stronger conditions under which threshold-type policies are

optimal. This may entail strengthening the sufficient condition (2.11) presented

in Section 2.5.2.1, via a more refined analysis of sample paths, as our upper

bound on the probability of the collection of “bad” paths is somewhat loose.

Alternatively, this may involve proving our conjecture that the value functions

vα and h satisfy the single-crossing property (2.10). A second direction for fu-

ture research is to study a model in which jobs can be placed in buffers. This is

especially relevant in emergency medical service systems (the original motiva-

tion for our model), as Type L emergency calls may be queued during periods

of congestion until ambulances finish with more urgent calls. Incorporating

buffers into our model would likely increase the dimension of the state space.

Although it may still be possible to study such a system analytically, this may

entail could involve numerically finding near-optimal heuristic policies.
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CHAPTER 3

THE VEHICLE MIX DECISION IN EMERGENCY MEDICAL SERVICE

SYSTEMS

3.1 Introduction

Ambulances in Emergency Medical Service (EMS) systems can be differentiated

by the medical personnel on board, and thus, by the types of treatment they can

provide. These personnel can be roughly divided into two groups: Emergency

Medical Technicians (EMTs) and paramedics. EMTs use non-invasive proce-

dures to maintain a patient’s vital functions until more definitive medical care

can be provided at a hospital, while paramedics are also trained to administer

medicine and to perform more sophisticated medical procedures on scene. The

latter may be necessary for stabilizing a patient prior to transport to a hospital,

or for slowing the deterioration of the patient’s condition en route. Thus, they

may improve the likelihood of survival for patients suffering from certain life-

threatening pathologies, such as cardiac arrest, myocardial infarction, and some

forms of trauma. See, for instance, Bakalos et al. [7], Gold [36], Isenberg and

Bissell [46], Jacobs et al. [47], McManus et al. [66], and Ryynänen et al. [77] for

discussions of the effects of paramedic care on patient outcomes.

An ambulance staffed by at least one paramedic are referred to as an Ad-

vanced Life Support (ALS) unit (we use the terms “ambulance” and “unit” inter-

changeably), whereas an ambulance staffed solely by EMTs is known as a Basic

Life Support (BLS) unit. While ALS ambulances are more expensive to oper-

ate (due to higher personnel and equipment costs) they are viewed as essential

components of most EMS systems, as such systems are frequently evaluated by
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their ability to respond to life-threatening emergencies.

The selection of a vehicle mix— that is, a combination of ALS and BLS ambu-

lances to deploy— has been a topic of some debate in the medical community,

with the primary issue being whether BLS units should be included in a fleet at

all. Proponents of all-ALS systems, such as Ornato et al. [72] and Wilson et al.

[99], cite the risk of sending a BLS unit to a call requiring a paramedic, either due

to errors in the dispatch process or to system congestion. An ALS unit may also

need to be brought on scene before transport can begin, thus diverting system

resources, and allowing the patient’s condition to deteriorate. Proponents of

tiered systems, such as Braun et al. [17], Clawson [26], Slovis et al. [85] and Stout

et al. [89], argue that BLS ambulances enable EMS providers to operate larger

fleets, leading to decreased response times. This may be more desirable, as they

observe that a significant fraction of calls do not require an ALS response. Both

sides of the debate allude to a trade-off inherent in the vehicle mix decision—

that between improving a system’s responsiveness and reducing the risk of in-

adequately responding to calls.

A number of secondary considerations may influence the decision-making

process. For instance, Henderson [43] notes that dispatchers in a tiered sys-

tem must also assess whether an ALS or BLS response is needed, complicating

triage, and delaying the response to a call. As another example, Braun et al.

[17] and Stout et al. [89] observe that EMS providers may have difficulty hiring

and training the number of paramedics needed to operate an all-ALS system,

as well as providing these paramedics with opportunities to hone and maintain

their skills. While many of these issues are quantifiable, they have received less

attention in the literature, and we do not consider them here.
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In this paper, we contribute to this debate by constructing models under

which quantitative comparisons among vehicle mixes can be made. To do so,

we consider a system in which the EMS provider has a fixed annual operating

budget B, and for which annual operating costs for ALS and BLS ambulances

are CA and CB, respectively (where CA ≥ CB). We define a vehicle mix to be an

integer pair (NA, NB)— corresponding to the number of ALS and BLS ambu-

lances deployed, respectively—for which CANA + CBNB ≤ B. Let f(NA, NB)

denote a scalar measure of system performance that is attained when the EMS

provider deploys the vehicle mix (NA, NB).

Our notion of performance, which we formally describe in Chapter 3, is an

aggregate measure of the system’s ability to respond both to life-threatening

and less urgent calls. Regardless of how we define it, performance depends on

two closely-related decisions: dispatching decisions, the policy by which ambu-

lances are assigned to emergency calls in real time, and deployment decisions, the

base locations to which ambulances are stationed. These decisions, in turn, are

affected by an EMS provider’s choice of vehicle mix. Thus, it is reasonable for

f(NA, NB) to be the output of an optimization procedure. However, we do not

intend for any “optimal solutions” we obtain to directly aid decision-making in

practical contexts. Doing so would require tailoring our model to a specific EMS

system, and we are more interested in obtaining general insights.

While we could construct a model that jointly optimizes with respect to both

dispatching and deployment decisions, such a model may not be tractable. To

obtain general insights, we require a procedure that can be quickly applied to

large collections of problem instances. Thus, instead of studying one sophisti-

cated model, we base our analysis upon two more stylized models. If we make
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the (admittedly large) assumption that the locations of arriving calls and am-

bulances can be ignored, we need only optimize with respect to dispatching

decisions, and the resulting problem can be modeled as a Markov decision pro-

cess (MDP); here, we use the model we formulated in Chapter 2. Alternatively,

if we assume that the EMS provider operates under a fixed dispatching policy,

the resulting problem of deployment can be modeled as an integer program (IP).

Both models treat (NA, NB) as input, and we take f(NA, NB) in each case to be

the objective function value associated with an optimal solution.

We contend that there is value in using both models to study the vehicle mix

problem. An analysis conducted using the MDP model alone would leave open

the question of whether taking geographical factors into account would lead to

qualitatively different results. Furthermore, an analysis conducted solely using

the IP model largely omits the real-time decision-making aspects of the problem,

and raises similar concerns. Thus, we view our two models as complementary

to one another. Numerical experiments indicate that our models yield similar

qualitative insights, but different quantitative results. However, we demon-

strate below that these discrepancies can be reconciled, allowing us to draw

stronger conclusions than is possible with either model alone.

Our paper’s primary finding is that there are rapidly diminishing marginal

returns associated with biasing a fleet towards all-ALS, suggesting there is a

wide range of vehicle mixes that perform comparably to (and, in some cases,

outperform) an all-ALS fleet. This can be interpreted in several ways. For sys-

tems that already operate all-ALS fleets, our analysis suggests that there is not

a compelling reason to switch to a different vehicle mix. For systems that oper-

ate a mixture of ALS and BLS ambulances, the benefit that can be attained by a
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conversion to an all-ALS fleet may not justify the costs involved. With respect

to the vehicle mix debate, we contend that the most appropriate fleet for a given

system should depend more heavily on the secondary considerations described

above, or at least, that these considerations can be weighted more heavily in the

decision-making process without significantly affecting performance.

The remainder of this chapter is organized as follows. Following a literature

review in Section 3.2, we describe and formally construct in Section 3.3 our MDP

model for ambulance dispatching in a tiered EMS system. We perform a com-

putational study on this model in Section 3.4, which is based upon a large-scale

EMS system loosely modeled after Toronto EMS. In Section 3.5, we formulate

our IP model for ambulance deployment, and conduct a numerical study in Sec-

tion 3.6 similar to that in Section 3.4. We conclude and discuss future research

directions in Section 3.7.

3.2 Literature Review

There is a sizable body of literature relating to the use of operations research

models to guide decision-making in EMS systems. We do not give a detailed

overview here, and instead refer the reader to surveys, such as those by Brot-

corne et al. [18], Goldberg [37], Green and Kolesar [38], Henderson [43], Ingolf-

sson [44], Mason [58], McLay [63], and Swersey [91]. We draw primarily from

two streams of literature.

The first stream of literature we consider pertains to dynamic models, which

are used to analyze real-time decisions faced by an EMS provider. Such mod-

els typically assume that ambulances have already been deployed to bases, and

instead consider how to dispatch these ambulances to incoming calls, or alterna-
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tively, how to redeploy idle ambulances to improve coverage of future demand.

The first such model is due to Jarvis [49], who constructs an MDP for dispatch-

ing in a small-scale EMS, while McLay and Mayorga [64] consider a variant in

which calls can be misclassified. Work relating to ambulance redeployment was

initiated through a series of papers by Berman [10, 11, 12], and Zhang [101] con-

ducts a more refined analysis for the case of a single-ambulance fleet. The afore-

mentioned models succumb to the curse of dimensionality, and so to analyze

large-scale systems, Maxwell et al. [59] and Schmid [80] develop redeployment

policies using approximate dynamic programming. While our model is less de-

tailed than those cited above, it captures the essential features of a tiered EMS

system, and is amenable to sensitivity analysis, and can thus be used to obtain

quick insights. Our model can also be extended to include a fairly wide range

of system dynamics, such as call queueing, without significantly increasing the

size of the state space; see Appendix B.

The second stream of literature we consider relates to integer programming

models for ambulance deployment, canonical examples of which include Tore-

gas et al. [92], Church and ReVelle [25], and Daskin [27]. These models base their

objective functions upon some measure of the system’s responsiveness to emer-

gency calls. This can be quantified via the proportion of emergency calls that

survive to hospital discharge, as in Erkut et al. [30] and in Mayorga et al. [62], or

more commonly, via the concept of coverage: the long-run average number of

calls to which an ambulance can be dispatched within a given time threshold.

These models have been extended to study the problem of deploying multiple

types of emergency vehicles; see, for instance, Charnes and Storbeck [23], Man-

dell [57], and McLay [63]. Our IP model is most similar in spirit to that of Daskin

[27], in that we use a similar notion of coverage in our objective function, and
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is also closely related to that of McLay [63], who considers calls of varying pri-

ority. However, our IP takes into account more of the nuances of dispatching

in a tiered EMS system, by affording some flexibility in the dispatching policy.

We also consider a more general notion of coverage that quantifies the system’s

ability to respond both to high-priority and low-priority calls.

Closely related is a stream of literature pertaining to descriptive models of

EMS systems, which aims to develop accurate and detailed performance mea-

sures for a system operating under a given set of deployment decisions. Lar-

son’s [53] hypercube model and its variants, such as those by Jarvis [50] and

Larson [54], are perhaps the most influential of this kind. Simulation has been

widely used since Savas [78]; see, for instance, Henderson and Mason [42].

While descriptive models allow for more thorough comparisons between can-

didate deployment decisions, they are not as amenable to optimization.

There is a related body of literature on the flexible design of manufactur-

ing and service systems. The seminal work in this area is due to Jordan and

Graves [51], who observe that much of the benefit associated with a “fully flex-

ible” system (which, in their case, represents the situation in which all plants in

manufacturing system can produce every type of product) can be realized by a

strategically-configured system with limited flexibility. A similar principle has

been shown to hold for call centers Wallace and Whitt [97], as well as for more

general queueing systems Gurumurthi and Benjaafar [39], Tsitsiklis and Xu [93].

Theoretical justifications thereof are provided in Akşin and Karaesmen [2] and

Simchi-Levi and Wei [82]. In relating our work to this body of literature, we can

define “flexibility” as the fraction of the budget that an EMS provider expends

on ALS ambulances, but our paper’s conclusions do not directly follow from
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this work. This is because servers in our model are geographically distributed,

and their locations affect the system’s ability to respond to incoming demand.

The models we formulate provide a way to quantify these changes, and in turn,

to study their effects on performance.

3.3 An MDP-Based Dispatching Model

3.3.1 Setup

Consider an EMS system operating NA ALS and NB BLS units. Incoming emer-

gency calls are divided into two classes: urgent, high-priority calls for which

the patient’s life is potentially at risk, and less urgent low-priority calls. We as-

sume that high-priority and low-priority calls arrive according to independent

Poisson processes with rates λH and λL, respectively, and that they only require

single-ambulance responses.

Service times are exponentially distributed with rate µ, independent of the

priority of the call and of the type of ambulance dispatched. While we use

the exponential distribution for tractability, our assumption of a single µ may

be reasonable in large-scale systems, as on-scene treatment times are typically

small relative to those for other components of the emergency response, such as

travel and hospital drop-off times. Arrivals occurring when all ambulances are

busy do not queue, but instead leave the system without receiving service. This

is consistent with what occurs in practice, as EMS providers may redirect calls

to external services, such as a neighboring EMS or the fire department, during

periods of severe congestion, but we revisit this assumption in Section 3.3.3.

Dispatches to high-priority calls must be made whenever an ambulance is

available, but a BLS unit can be sent instead if all ALS units are busy, so as to
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provide the patient with some level of medical care. In this case, we assume that

the BLS unit can adequately treat the high-priority call, but that such a dispatch

is undesirable, in a way that we clarify below; we also revisit this assumption

in Section 3.3.3. Similarly, dispatches to low-priority calls must be made if a

BLS ambulance is available, but if this is not the case, the dispatcher may either

respond with an ALS unit (if one is available), or redirect the call to an external

service (to reserve system resources for potential future high-priority calls).

Let RHA and RHB be the rewards associated with an ALS response and a

BLS response to a high-priority call, respectively, and RL be the reward for a

response (of either type) to a low-priority call. We assume RHA = 1 (without

loss of generality) and RHA ≥ max{RHB, RL}, but make no assumptions about

the relative ordering of RHB and RL, as this may depend, for instance, on the

skill gap between EMTs and paramedics, or on the incentives of the EMS in

question. This is an unconventional modeling choice, but it yields an objective

function that incorporates the system’s responsiveness to both high-priority and

low-priority calls. Typically, these two goals conflict, and we can adjust their rel-

ative weights by changing the reward structure. Our framework is also flexible.

By letting RHA, for instance, be the probability of patient survival when an ALS

ambulance responds to a high-priority call (and definingRHB andRL similarly),

we can mimic the reward structure adopted by McLay and Mayorga [64]. If an

EMS provider is concerned solely with high-priority calls, we can let RHA = 1,

RHB = 0, and RL = 0. More generally, these rewards can represent a measure

of the utility that the EMS provider derives from a successful dispatch. Never-

theless, identifying suitable choices for RHA, RHB, and RL may be difficult, and

we discuss this issue further in Section 3.4. We seek a policy that maximizes the

long-run average reward collected by the system.
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3.3.2 MDP Formulation

Our MDP model, as specified in Section 3.3.1, is nearly identical to the one we

formulated in Section 2.3, but with the added requirement that BLS responses

must be provided to low-priority calls whenever possible. To avoid repetition,

we refer the reader to our MDP formulation in Section 2.3, and only specify how

the model we build in this chapter differs.

This time, there is only a decision to make when all BLS ambulances are

busy, and at least one ALS ambulances is avaialble, and so we define the action

space to be A =
⋃

(i, j)∈S A(i, j), where

A(i, j) =


{0, 1} if i < NA and j = NB,

{0} otherwise.

As before, Action 1 dispatches an ALS unit to the next arriving low-priority call,

while Action 0 redirects the call (or performs a dummy action) instead.

Our MDP is once again uniformizable in the spirit of Lippman [56] and Ser-

fozo [81]; let R((i, j), a) denote the expected reward collected over a single uni-

formized time period, given that the system begins the period in state (i, j), and

the dispatcher takes action a ∈ A(i, j). We have

R((i, j), a) =



λHRHA + λLRL if i < NA, j < NB, a = 0,

λHRHB + λLRL if i = NA, j < NB, a = 0,

λHRHA if i < NA, j = NB, a = 0,

λHRHA + λLRL if i < NA, j = NB, a = 1,

0 if i = NA, j = NB, a = 0.

(3.1)

Let P
(
(i′, j′) | (i, j), a

)
denote the one-stage transition probabilities from state

(i, j) to state (i′, j′) under action a ∈ A(i, j). There are several cases to consider,
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as the system dynamics change slightly at the boundary of the state space. For

brevity, we consider only the case when 0 < i < NA and j = NB, in which case

P
(
(i′, j′) | (i, j), a

)
=



λH + I(a = 1)λL if (i′, j′) = (i+ 1, j),

iµ if (i′, j′) = (i− 1, j),

jµ if (i′, j′) = (i, j − 1),

1− λH − I(a = 1)λL − (i+ j)µ if (i′, j′) = (i, j).

The first transition corresponds to an arrival of a high-priority call (or a low-

priority call, if the dispatcher performs Action 1), the second and third to ser-

vice completions by ALS and BLS units, respectively, and the fourth to dummy

transitions due to uniformization.

Defining, without loss of optimality, a policy to be a stationary, deterministic

mapping π : S → {0, 1} that assigns an action to every system state, we can find

an optimal policy by solving for a set of optimality equations analogous to (2.4)

in Section 2.3. We do this numerically using a policy algorithm: specifically, the

one specified in Section 8.6.1 of Puterman [75].

3.3.3 Extensions to the MDP

Our MDP model can be modified to relax some of the above assumptions with-

out dramatically increasing the size of the state space. In Appendix B.1, we

formulate an extended MDP in which low-priority calls can be placed in queue

during periods of congestion, and in which ALS units may need to be brought

on scene to assist BLS first responses to high-priority calls. For our compu-

tational work in Section 3.4, we study only the base model we formulated

above, as our extended model yields very similar numerical results; see Ap-

pendix B.1.6.
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3.4 Computational Study of the MDP

We consider a hypothetical system loosely modelled after that operated in

Toronto, Canada. We use the term “loosely” because we select inputs to our

model using a dataset obtained from Toronto EMS, but we assume that the in-

terarrival and service time distributions do not vary with time. Thus, the results

we obtain below my be indicative of— but not necessarily predict— how the ve-

hicle mixes we consider below would perform in practice.

3.4.1 Experimental Setup

Our dataset contains records of all ambulance dispatches occurring within the

Greater Toronto Area between January 1, 2007 and December 31, 2008; we re-

strict our attention to calls originating from the City of Toronto. Emergency calls

are divided into eight priority levels, two of which require a “lights and sirens”

response. We treat calls belonging to these two priority levels as high-priority,

and all other emergency calls as low-priority. Estimating arrival rates by tak-

ing long-run averages over the two-year period for calls originating within the

City of Toronto, we obtain λH = 8.1 and λL = 13.1 calls per hour. We define

service time as the length of the interval beginning with an ambulance dispatch

and ending with the call being cleared (either on scene or following drop-off at

a hospital). Because the mean service times for low-priority and high-priority

calls do not differ substantially in the dataset (by less than 5%), our assump-

tion of a single service rate for all calls is reasonable. We set µ = 3/4 per hour,

corresponding to a mean service time of 80 minutes.

To start our analysis, we let RHA = 1, RHB = 0.5, and RL = 0.6; we inves-

tigate below the sensitivity of our findings to the latter two quantities. To esti-
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mate CA and CB, we assume that an ambulance requires three crews to operate

24 hours per day, that an ALS crew consists of two paramedics, that a BLS crew

consists of 2 EMTs, and that ALS and BLS vehicles cost $110,000 and $100,000

to equip and operate annually, respectively. Assuming that annual salaries for

paramedics and EMTs are $90,000 and $70,000 per year, respectively, we obtain

CA = 650,000 and CB = 520,000, which we normalize to CA = 1.25 and CB = 1.

To determine our system’s operating budget B, we assume that the average

utilization of ambulances in our system is 0.4. Since λH+λL = 21.2 and µ = 0.75,

we would need approximately 70 ambulances to achieve the desired utilization.

Assuming our system operates an all-ALS fleet (as in Toronto), we obtain NA =

70 and B = 87.5. Restricting our attention to fleets that use as much of the

budget as possible, we evaluate vehicle mixes in the set

Γ = {(NA, NB) : NA ≤ 70 and NB = b87.5− 1.25NAc} . (3.2)

3.4.2 Findings

Using the inputs specified above, we construct an MDP instance for each vehicle

mix (NA, NB) in the set Γ specified in (3.2). We solve each instance numerically

using policy iteration, and record the long-run average reward attained under

the corresponding optimal policy. Plotting the resulting values with respect to

NA, we obtain Figure 3.1 below.

The curve in Figure 3.1 increases fairly steeply when NA is small, indicat-

ing there is significant benefit associated with including ALS ambulances in

a fleet. However, for larger values of NA, the curve plateaus. This suggests

that the marginal benefit associated with continuing to increase NA diminishes
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Figure 3.1: Long-run average reward attained by the optimal dispatching
policy, as a function of NA.

rapidly. One might suspect that the marginal benefits decrease too rapidly. In-

deed, the long-run average reward attainable under any dispatching policy is

upper bounded by λHRHA + λLRL = 15.96, but every vehicle mix for which

NA ≥ 20 performs within 0.1% of this upper bound. We would not expect to

find systems attaining this level of service in practice.

This behavior can be attributed to resource pooling. In formulating our MDP,

we implicitly assumed that any ambulance can respond to any incoming call.

In practice, most ambulances will be too far from a particular call to respond

in time, and so only a subset of the fleet be effectively pooled. Thus, the MDP-

based system can more readily respond to calls during periods of congestion;

see, for instance, Whitt [98] for a formal discussion of this phenomenon.

To offset the effects of resource pooling, two alternatives include accelerating

call arrivals, or reducing the number of ambulances in the system by decreasing

the budget B; we adopt the latter approach here. Shrinking the fleet allows
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us to more easily see the effects of the vehicle mix decision under an optimal

dispatching strategy, and in turn, draw insights from our MDP. This is because

we subject the system to periods of congestion, which occur in practice, and

represent the situations in which vehicle mix may have the greatest impact on

system performance.

It is not at all obvious to what extent the fleet should be shrunk. We proceed

by first selecting a service level, which we define as the long-run fraction of

time in which at least one ambulance is available. If we assume that the EMS

provider operates an all-ALS fleet, and adopts a dispatching policy in which

low-priority calls are not redirected unless all ambulances are busy, then we can

model the system as an M/M/NA/NA queue, and find the blocking probability

under a given budget using the Erlang loss formula. We consider five different

budgets: 48.75, 46.25, 43.75, 41.25, and 37.50, which allow for all-ALS fleets of

size 39, 37, 35, 33, and 30, respectively. These fleets can provide service levels of

0.990, 0.980, 0.965, 0.943, and 0.898, respectively, and operate under utilizations

of 0.846, 0.808, 0.779, 0.749, and 0.717, respectively. Solving the corresponding

MDP instances, and plotting the resulting five curves yields Figure 3.4.2 below.

While the curves in Figure 3.4.2 maintain the same basic structure observed

in Figure 3.1, they taper off for larger values of NA, suggesting that in certain

situations, an all-ALS fleet may be detrimental. This is intuitive, as all-ALS sys-

tems tend to operate smaller fleets than their tiered counterparts, and a larger

fleet may be preferable in heavily congested systems. To explore this idea fur-

ther, we examine two related performance measures: the level of service pro-

vided to high-priority and to low-priority calls. Figure 3.3 plots these perfor-

mance measures for the case B = 43.75.

46



0 8 16 24 32 40
Number of ALS Units in Fleet, NA

11

12

13

14

15

16

Lo
n
g
-R

u
n
 A

v
g
. 

R
e
w

a
rd

B = 48.75 (NA = 39, SL = 0.990)

B = 46.25 (NA = 37, SL = 0.980)

B = 43.75 (NA = 35, SL = 0.965)

B = 41.25 (NA = 33, SL = 0.943)

B = 37.50 (NA = 30, SL = 0.898)

Figure 3.2: Long-run average reward as a function of vehicle mix, for sev-
eral reduced values of the budget B.
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Figure 3.3: Long-run proportion of calls receiving an appropriate dispatch
as a function of NA, when B = 41.25.

As we expect, increasing NA improves the system’s responsiveness to high-

priority calls, but worsens the system’s responsiveness to low-priority calls.

This results in a trade-off that is influenced by the relative importance of re-
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sponding to high-priority and low-priority calls, as captured by the rewards

RHA, RHB, and RL. In this case, the marginal improvement attained by increas-

ing NA is eventually offset by the loss in ability to respond to low-priority calls.

Because Figures 3.1 and 3.4.2 more succinctly describe this trade-off, we restrict

our attention to plots of long-run average reward for the remainder of the paper.

3.4.3 Sensitivity Analysis

We next study the robustness of our findings by constructing curves analogous

to those in Figures 3.1 and 3.4.2, but for problem instances in which we vary

our model’s input parameters. We also study the extended MDP model briefly

described in Section 3.3.3. In the experiments that follow, we set B = 43.75.

We begin with a sensitivity analysis with respect to CA, the annual cost of

deploying an ALS unit. Figure 3.4 depicts five curves, each similar in spirit to

that in Figure 3.1, but for values of CA ranging from 1.05 to 1.45. Although we

do not expect ALS units to cost 45% more than BLS units to operate in practice,

we choose a wide range of values for illustrative purposes. Not surprisingly, op-

erating an all-ALS fleet can be suboptimal when CA is large. Perhaps the more

interesting observation is that when CA is small, an all-ALS fleet is not necessar-

ily the obvious choice. As we observed in Figure 3.3, an EMS provider would

consider a fleet with more ALS ambulances if there is a strong incentive to pro-

vide ALS responses to high-priority calls. However, a high level of service can

be achieved without an all-ALS fleet, and the marginal benefit associated with

increasing NA shrinks rapidly— even when ALS ambulances are inexpensive.

Next, we consider the robustness of our findings to our rewards. Because

we assume RHA = 1, we need only perform a sensitivity analysis with respect
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CA  = 1.05 (NA  41)
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CA  = 1.45 (NA  30)

Figure 3.4: Long-run average reward as a function of vehicle mix, for var-
ious choices of CA.

to RHB and RL. We restrict our attention to the all-ALS fleet (35, 0) and the

tiered system (19, 20): the optimal vehicle mix from our “base case” analysis

in Figure 3.4.2. We consider a collection of 625 MDP instances where RHB and

RL take on one of 25 values in the set {0.02, 0.06, . . . , 0.94, 0.98}. Plotting the

relative difference in long-run average reward collected by the two systems for

each instance, we obtain Figure 3.5.

In each problem instance, the tiered system outperforms the all-ALS fleet.

This is unsurprising for instances where RHB and RL are close to 1 (as emer-

gency calls become effectively indistinguishable, and the tiered system deploys

eight more ambulances), but is counterintuitive for instances when RHB and

RL are small. Even when performance is determined almost entirely by the

system’s responsiveness to high-priority calls, the all-ALS fleet does not out-

perform the tiered system. This suggests that the tiered system can adequately

respond to these calls, which is consistent with Figure 3.3. We also observe
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Figure 3.5: Contour plot of the relative difference between the long-run
average reward collected by the tiered system (19, 20) and that
by the all-ALS fleet (35, 0), for various values of RHB and RL.

that the two systems perform comparably in all of our problem instances; the

largest observed difference was roughly 2.53%. We obtain similar results when

comparing the all-ALS fleet to other tiered systems, although we omit the cor-

responding plots of these results in the interest of brevity. This suggests our

findings are insensitive to our choice of rewards, which is encouraging, as se-

lecting appropriate values of RHB and RL is difficult.

We conclude this section with a brief examination of the extended MDP

model alluded to in Section 3.3.3. This model allows low-priority calls to be

placed in a finite buffer, and considers the possibility that high-priority calls

receiving a BLS first response may later receive treatment from an ALS ambu-

lance. Plotting the “base case” curves for both the original and extended models,

we obtain Figure 3.6 below. We truncate the curves at NA = 1, as an all-BLS fleet
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cannot adequately treat high-priority calls in the extended model.
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Figure 3.6: Long-run average reward as a function of vehicle mix, for the
original and extended MDP models (see Section 3.3.3 and Ap-
pendix B.1).

Fleets operating too few ALS ambulances perform noticeably worse in the

extended model. This is because high-priority calls will primarily be assigned

to BLS ambulances, and many of these ambulances will be forced to idle until

ALS units become free. However, for vehicle mixes under which high-priority

demand can be adequately met, our two models are roughly in agreement. We

conduct a more detailed analysis of the extended model in Appendix B.1.6.

3.4.4 Discussion

Taken together, our numerical experiments suggest that a wide range of tiered

systems perform comparably to all-ALS fleets. The relatively small gap in long-

run average reward that we observe between the two types of systems appears

to be robust to changes in operating costs, arrival patterns, reward structure,
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and changes to system dynamics. In Section 3.6, we perform a similar set of nu-

merical experiments, to determine whether we draw similar conclusions when

we study our IP model, in which we mitigate the effects of resource pooling by

geographically dispersing the fleet.

3.5 An IP-Based Deployment Model

3.5.1 Formulation

Consider an EMS system whose service area is represented by a connected

graph G = (N,E), where N is a set of demand nodes and E is a set of edges.

High-priority and low-priority calls originate from node i ∈ N at rates λHi and

λLi , respectively. The EMS provider operates a fleet of NA ALS and NB BLS

ambulances, which can be deployed to a set of base locations N̄ ⊆ N . For con-

venience we set N̄ = N , but this assumption can easily be relaxed.

We define tij as the travel time along the shortest path between nodes i and

j. A call originating from node i can only be treated by an ambulance based at

node j if tij ≤ T , where T is a prespecified response time threshold. This gives

rise to the neighborhoods Ci = {j ∈ N : tij ≤ T}— the set of bases from which

an ambulance can promptly respond to a call originating from node i. If a ALS

and b BLS units are deployed within Ci, we say that node i is covered by a ALS

and b BLS units.

Let pA denote the busy probability associated with each ALS ambulance: the

long-run fraction of time that a given ALS unit is not available for dispatch; we

define pB similarly for BLS ambulances. We treat pA and pB as model inputs,

and discuss our procedure for approximating these quantities in Section 3.5.2.
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We assume that ambulances of the same type operate under the same utiliza-

tion, and that all ambulances are busy independently of one another. Thus, if

node i is covered by a ALS units and b BLS units, then (pA)a (pB)b is the long-

run proportion of time that the system cannot respond to calls originating from

that node. Calls to which an ambulance cannot be immediately dispatched are

redirected to an external service. We revisit these assumptions in Section 3.5.3.

As in the MDP model, we allow BLS units to be dispatched to high-priority

calls, and ALS units to be dispatched to low-priority calls, but we do not require

that ALS ambulances respond to every low-priority call arriving when all BLS

ambulances are busy. Let φ denote the long-run proportion of low-priority calls

receiving an ALS response in this situation. This quantity does not specify how

decisions are made in real time, but provides a succinct measure of the system’s

willingness, in the long run, to dispatch ALS ambulances to low-priority calls.

As with pA and pB, we assume φ to be given, and discuss in Section 3.5.2 how it

can be approximated. Finally, we define rewards RHA, RHB, and RL as before.

We build our objective function as follows. Suppose that node i is covered

by a ALS and b BLS ambulances, and consider the level of coverage provided

to low-priority calls at that node. With probability 1 − (pB)b, a BLS unit can be

dispatched. Conditional on this not being the case, an ALS unit is available with

probability 1 − (pA)a, but a dispatch only occurs with probability φ. Thus, the

expected reward collected by the system from a single low-priority call is

RL(a, b) = RL[1− (pB)b + φ (pB)b (1− (pA)a)]. (3.3)

Similar reasoning yields that the system collects, in expectation, a reward

RH(a, b) := RHA (1− (pA)a) +RHB (pA)a(1− (pB)b) (3.4)
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from a single high-priority call. This implies that the system obtains reward

from node i at a rate λHi RH(a, b) + λLi RL(a, b) per unit time. We want to deploy

ambulances such that the sum of this quantity over all nodes inN is maximized.

Let xAi and xBi be the number of ALS units and BLS units stationed at node i ∈ N ,

respectively, and let yiab take on the value 1 if node i ∈ N is covered by exactly

a ALS units and b BLS units, and 0 otherwise. We thus obtain the formulation

max
∑
i∈N

λHi

NA∑
a=0

NB∑
b=0

yiabRH(a, b) +
∑
i∈N

λLi

NA∑
a=0

NB∑
b=0

yiabRL(a, b) (IP)

s.t.
∑
i∈N

xAi ≤ NA (3.5)

∑
i∈N

xBi ≤ NB (3.6)

NA∑
a=0

a

NB∑
b=0

yiab ≤
∑
j∈Ci

xAj ∀i ∈ N (3.7)

NB∑
b=0

b

NA∑
a=0

yiab ≤
∑
j∈Ci

xBj ∀i ∈ N (3.8)

NA∑
a=0

NB∑
b=0

yiab ≤ 1 ∀i ∈ N (3.9)

xAi ∈ {0, 1, . . . , NA} ∀i ∈ N (3.10)

xBi ∈ {0, 1, . . . , NB} ∀i ∈ N (3.11)

yiab ∈ {0, 1} ∀i ∈ N, a, b (3.12)

Constraints (3.5) and (3.6) state that at most NA ALS units and NB BLS units

can be deployed. Constraints (3.7), (3.8), and (3.9) link the x−variables to the

y−variables, by ensuring for each node i that if
∑

j∈Ci x
A
j = ā and

∑
j∈Ci x

B
j = b̄,

then yiab = 1 iff a = ā and b = b̄. This holds because the coefficients associated

with the y−variables are strictly increasing in a and b. Finally, constraints (3.10),

(3.11), and (3.12) restrict the our decision variables to integer values.
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3.5.2 Approximating pA, pB, and φ

To approximate the quantities pA, pB, and φ, we use the inputs of our integer

program to construct an instance of our MDP form Section 3.3.1, and examine

the stationary distribution induced by an optimal dispatching policy. The MDP

model takes as input the arrival rates λH and λL, and a service rate µ. We set

λH =
∑

i λ
H
i and λL =

∑
i λ

L
i , and for our computational work in Section 3.6,

we again use µ = 0.75. Let ν be the stationary distribution of the Markov chain

induced by an optimal policy. We approximate the busy probabilities pA and pB

using the average utilizations of ALS and BLS ambulances, respectively:

pA ≈
1

NA

∑
(i, j)∈S

iν(i, j) and pB ≈
1

NB

∑
(i, j)∈S

jν(i, j) . (3.13)

To approximate φ, we could similarly use the quantity

φ ≈

NA−1∑
i=0

ν(i, NB) · I
(
A(i, NB) = 1 under the optimal policy

)
NA−1∑
i=0

ν(i, NB)

. (3.14)

The denominator of (3.14) denotes the long-run fraction of time that all ALS am-

bulances are busy and at least one BLS ambulance is available. The numerator

gives the long-run fraction of time in which the dispatcher sends an ALS am-

bulance to a low-priority call. Equations (3.13) and (3.14) are approximations,

as pA, pB, and φ depend on how ambulances are located within the system.

Nevertheless, these approximations allow us to capture, to an extent, the de-

pendencies of these parameters on vehicle mix and on dispatching decisions.

3.5.3 Extensions to the IP

Perhaps the most significant assumptions we make in formulating (IP) are that

calls do not queue, that ambulances are busy independently of one another, and
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that these probabilities do not depend on location. The former assumption can

be relaxed by estimating pA, pB, and φ from the output of an MDP that includes

call queueing, such as that in Appendix B.1, and by modifying the objective

function to take queued calls into account.

The independence assumption can be relaxed using correction factors, which

adjust the probabilities obtained under this assumption by a multiplicative con-

stant to account for dependence. This idea is due to Larson [54], and has been

used, for instance, in Ingolfsson et al. [45] and McLay [63] to formulate IP-based

models for ambulance deployment. In Appendix B.2, we formulate an extended

IP model that incorporates correction factors to our objective function.

Relaxing the assumption of location-independent busy probabilities is diffi-

cult, as the utilization of a single ambulance depends upon how all other am-

bulances are deployed, resulting in nonlinear interactions. Budge et al. [21] de-

velop an iterative procedure for the case when ambulances have already been

deployed. Ingolfsson et al. [45] alternate between solving an integer program

for a given set of utilizations, and using the resulting optimal solution to com-

pute updated values, also in an iterative fashion. However, these approaches

are computationally intensive.

For our computational work in Section 3.6, we study the IP model we for-

mulated above, as the extended IP model yields qualitatively similar results; see

Online Appendix B.2.3.
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3.6 Computational Study of the IP

3.6.1 Experimental Setup

We base our computational experiments upon the same hypothetical EMS con-

sidered in Section 3.4. To construct our graph G, we bound the service area

within a rectangular region. Using latitude and longitude information included

with call records in the dataset, we find that a 26 × 19 mile region suffices. We

divide this region into a 52× 38 grid of 0.5 × 0.5 mile cells (demand nodes).

To compute call arrival rates associated with each node, we map each call

to a cell in the grid, and take a long-run average over the two-year period for

which we have data. We define the distance between two nodes as the Manhat-

tan distance between the centers of their corresponding cells. For each node i,

we define the neighborhood Ci as the set of bases from which an ambulance can

be brought on scene within 9 minutes. This response interval includes the time

taken by the dispatcher to assign an ambulance to a call, and by the correspond-

ing crew to prepare for travel to the scene. Assuming this process takes two

minutes, and that ambulances travel at 30 miles per hour, Ci contains all nodes

lying no more than 3.5 miles away from node i. As before, we set RHA = 1,

RHB = 0.5, RL = 0.6, CA = 1.25, and CB = 1, and again evaluate vehicle mixes

in the set Γ = {(NA, NB) : NA ≤ 70 and NB = b87.5− 1.25NAc}.

3.6.2 Findings

For each vehicle mix in the set Γ, we solve the corresponding instance of (IP)

to within 1% of optimality, and store the resulting objective function value. Al-

though we introduce some error by not finding the optimal integer solution, the

impact on our overall findings is negligible. To decrease computation times, we
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remove any decision variables yiab for which either a ≥ 30 or b ≥ 30. Thus,

we consider any demand node that is covered by more than 30 ALS or BLS

ambulances to be covered by exactly 30 ambulances of the corresponding type

instead. In doing so, we do not render infeasible any solutions that cover a node

with more than 30 units, but we disregard the contributions of these excess units

to the objective function. We thereby underestimate coverage, but not to a sig-

nificant degree, as p30
A and p30

B are very small for reasonable choices of pA and pB.

Since a and b can be as large as 70 and 87, respectively, this dramatically reduces

the number of decision variables in the model.

We use the procedure from Section 3.5.2 to approximate pA, pB, and φ, but

find that for each of the problem instances we consider above that φ = 1.0.

That is, when we solve the MDP instances corresponding to our IP instances,

the optimal policy always provides ALS responses to low-priority calls when

BLS ambulances are busy. These anomalous results can again be attributed to

resource pooling. While a dispatcher may sometimes want to reserve ALS am-

bulances for future high-priority calls, this is not the case in the MDP model, as

the system rarely becomes congested enough for the above policy to have detri-

mental effects. To identify more suitable values for φ, we instead solve modified

MDP instances in which we accelerate arrivals using a scaling factor s. The re-

sulting optimal policies may more closely reflect decisions made in practice, as

they are derived from more heavily congested systems. Applying (3.14) to these

policies, we obtain new values for φ, which we then use to construct modified

IP instances in which all other inputs (arrival rates, pA, and pB) are kept fixed.

It is not at all clear how arrivals should be scaled, and so we begin our nu-

merical study by examining the sensitivity of our results to s. Figure 3.7 below
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plots long-run average reward with respect to vehicle mix for values of s rang-

ing from 1.50 to 2.50. The resulting curves are analogous to that in Figure 3.1 of

Section 3.4, which we also include below.
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Figure 3.7: Long-run average reward attained by a near-optimal deploy-
ment policy for various arrival rate scaling factors s, overlaid
with the analogous curve from the MDP model.

All of the curves in Figure 3.7 exhibit the same trend: a relatively sharp in-

crease for small values of NA, followed by rapidly diminishing marginal re-

turns. The curves obtained from the IP model almost completely overlap when

NA is less than about 30, as ALS ambulances in the corresponding systems are

overwhelmed by high-priority calls. Scaling factors have very little effect on

the optimal policies of the corresponding MDPs, and so we obtain very simi-

lar values for φ. As we move towards an all-ALS fleet, we observe a decline in

performance for more extreme values of s. This is because in a heavily-loaded

system, the dispatcher may prefer to reserve ALS ambulances for high-priority

calls (which are more likely to occur when s is large), resulting in smaller values

of φ. However, this translates into an overly conservative dispatching policy,
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and thus lower performance, within the context of the IP model. Nonetheless, it

is encouraging that our findings are not particularly sensitive to the dispatching

policy that we employ in the IP model, as captured by the parameter φ. In the

experiments that follow, we restrict our attention to the case when s = 2.

Another observation we draw from Figure 3.7 is that our models yield very

different numerical results, particularly for smaller values of NA. This may

again be due to the effects of resource pooling; in the MDP model, any am-

bulance can respond to any call, whereas in the IP model, this is not the case.

To test this hypothesis, we consider a collection of IP instances in which we

artificially magnify the effects of resource pooling, to see whether we obtain

quantitative results that are more consistent with those from the MDP.

In our IP model, the degree of resource pooling is captured by a single input

parameter: the response time threshold T . Increasing this threshold increases

the number of ambulances that can cover a given demand node. By letting T

grow sufficiently large (in this case, to 45 minutes), we obtain a system with

complete resource pooling, as in the MDP model. Thus, we proceed by taking

the 71 problem instances generated above, and constructing modified instances

in which T is increased, but all other parameters are unchanged. Figure 3.8

illustrates the curves we obtain by setting T to 18 and 45 minutes, respectively.

As we increase T , the gap between the two curves narrows, but interestingly,

for larger values of T , the IP model yields objective values larger than those ob-

tained by the MDP model, particularly when NA is small. This can partly be at-

tributed to our assumption that ambulances are busy independently of one an-

other. In particular, during periods of congestion, this assumption could lead to

optimistic estimates of ambulance availability. Indeed, our extended IP model,
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Figure 3.8: Long-run average reward attained under the IP and MDP mod-
els, for two choices of the response time threshold T .

which employs correction factors, improves the fit slightly; see Appendix B.2.3.

The above experiments suggest that our two models yield similar qualitative

results, and that much of the observed discrepancy in our quantitative results
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can be accounted for by resource pooling. Thus, we contend that our models are

generally in agreement, and that both support our claim of rapidly diminishing

marginal returns associated with biasing a fleet towards all-ALS.

3.6.3 Sensitivity Analysis

We begin with a sensitivity analysis with respect to CA that similar to that in

Section 3.4; Figure 3.9 below is analogous to Figure 3.4. We again observe the
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Figure 3.9: Long-run average reward as a function of vehicle mix for sev-
eral choices of CA.

same general trends. This theme recurs if we perform sensitivity analyses with

respect to rewards or arrival rates, suggesting that the agreement between our

two models is also robust to changes to our input parameters.

We conclude this section with a sensitivity analysis with respect to ambu-

lance travel speeds. Because ambulances must arrive on scene within a response

time threshold T , changes to these speeds can affect the distance an ambulance

can travel to cover a call. While we examined this to an extent in Figure 3.8,
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we consider a more realistic range of values here. Figure 3.10 below illustrates

the curves we obtain for speeds ranging from 21.43 to 38.57 mph. We choose

these values so that the resulting ambulance coverage radii, in miles, are integer

multiples of 0.5. (Recall that we discretized the service area into 0.5 × 0.5 mile

squares.) We observe that the profile of the curves does not change dramatically

0 10 20 30 40 50 60 70
Number of ALS Units in Fleet, NA

10

11

12

13

14

15

16

Lo
n
g
-R

u
n
 A

v
g
. 
R

e
w

a
rd

38.57 mph (4.5 mi. radius)
34.29 mph (4.0 mi. radius)
30.00 mph (3.5 mi. radius)
25.71 mph (3.0 mi. radius)
21.43 mph (2.5 mi. radius)

Figure 3.10: Long-run average reward as a function of vehicle mix for sev-
eral choices of ambulance travel speeds.

with the speed at which ambulances travel. This is encouraging, as travel speed

can depend on the time of day, as well as on geographical factors. While we

assume away these effects in our IP, Figure 3.10 suggests that doing so does not

substantially change our results.

3.7 Conclusion

In this chapter, we studied the effects of the vehicle mix decision on the per-

formance of an EMS system. Inherent in this decision is a trade-off between

improving the quality of service provided to high-priority calls, and increasing
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the size of the fleet. We analyzed this trade-off via two complementary opti-

mization models of decision making in a tiered EMS system. Specifically, we

formulated a Markov decision process that examined the operational problem

of ambulance dispatching, as well as an integer program that modeled the tac-

tical problem of deploying ambulances within a geographical region. To aid

decision-making, we assigned rewards for individual responses to emergency

calls, which formed the basis of a performance measure allowing quantitative

comparisons between vehicle mixes to be made. Numerical experiments sug-

gest that while ALS ambulances are essential components of EMS fleets, a wide

range of mixed fleets can perform comparably to (or occasionally, outperform)

all-ALS fleets. This was corroborated by both of our models, and appears to be

robust to reasonable changes to the values of our input parameters. As a conse-

quence, when constructing an ambulance fleet, secondary considerations, such

as those described in the introduction, can be weighed into the decision-making

process without significantly decreasing performance. Mathematically model-

ing these considerations, and their effects on the performance of a given vehicle

mix, may be a direction for future research.

While our focus in this chapter was to construct models that can be used

to quickly obtain basic insights, a natural question to ask is what additional

insights can be drawn from a more sophisticated model. Another possible di-

rection for future research would be to consider a model for dispatching in a

tiered EMS system that takes the locations of ambulances into account. Such a

model would have a considerably larger state space, but could be approached

using Approximate Dynamic Programming (ADP), as in Maxwell et al. [59] or

in Schmid [80]. This model could incorporate dynamics such as time-varying

call arrival rates, multiple call priorities, and patient transport to hospitals.
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CHAPTER 4

A BOUND ON THE PERFORMANCE OF OPTIMAL REDEPLOYMENT

POLICIES IN LOSS SYSTEMS

4.1 Introduction

Ambulance redeployment is the practice of strategically repositioning idle am-

bulances (either from home bases or following service completions) to improve

the system’s responsiveness to future calls [88]. It has become more prevalent

in recent years, as Emergency Medical Serivce (EMS) providers search for ways

to improve performance in an increasingly challenging operating environment.

The problem of finding an optimal redeployment policy can be formulated

as a stochastic dynamic program, and has been done, for instance, by Berman

[10, 11, 12] and McLay and Mayorga [64]. However, such a model would need

to include the location and status of every ambulance in the state space. This

approach is impractical in large-scale systems, as it succumbs to the curse of

dimensionality, and would likely yield a policy that is too unwieldy to imple-

ment. As a result, a number of methods for obtaining good policies have been

proposed, and techniques for doing so include using approximate dynamic pro-

gramming [59, 80], solving integer programs in real time [35, 69, 70, 101], devel-

oping heuristics [6, 48, 94, 95], and building compliance tables, which specify

where ambulances should be positioned, given coarse information about the

state of the system [3, 34, 90, 96].

However, an important question to ask is whether any of these heuristic

policies can be shown to be near-optimal. To address this concern, methods

have been proposed to construct bounds on the performance of a fairly gen-
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eral class of redeployment policies; see Maxwell et al. [61] and Yue et al. [100].

These bounds are typically not tight, but they may still be informative. For in-

stance, they allow a municipality to determine if performance targets are achiev-

able by a proposed ambulance schedule, which was the primary motivation

for Maxwell et al. [61]. Alternatively, bounds provide an indication of the in-

crease in performance that can be realized by implementing redeployment poli-

cies. Because these policies remain controversial, due to the heavier burden

they place on emergency medical staff [15], bounds may help in determining

whether such an operational change is worthwhile.

Computational experiments suggest that the bound in Maxwell et al. [61] is

tighter than that in Yue et al. [100], but the former bound assumes that arriving

calls can queue when all ambulances are busy. Many EMS systems make use of

external resources (such as police and fire vehicles, or ambulances from other

municipalities) during “red alert” situations. This is the case in some large-scale

systems [68, 74, 83, 84], as well as many small- to medium-scale systems that

pool resources with neighboring EMS providers. When this is the case, it may

be more reasonable to model the EMS as a loss system. This is a subtle difference,

but presents a significant technical challenge, as the bound in Maxwell et al. [61]

is not valid for such systems.

In this paper, we propose a new upper bound that is provably valid in loss

systems. Although we draw upon ideas in Maxwell et al. [61] to do so, sig-

nificant new ideas are required. In contrast to Maxwell et al. [61], and like in

Yue et al. [100], we obtain an upper bound via optimization along each sam-

ple path, by constructing an integer program for which the decisions made by

almost any redeployment policy correspond to a feasible solution. Since we
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model the EMS as a loss system, we cannot directly compare our bound to that

by Maxwell et al. [61], but computational experiments suggest that our upper

bound is tighter than one originating from a perfect information relaxation of

the problem in the style of Yue et al. [100].

The remainder of this chapter is organized as follows. In Section 4.2, we ex-

plicitly formulate our model of the ambulance redeployment problem. In Sec-

tion 4.3, we review the concepts from Maxwell et al. [61] that we use in develop-

ing our upper bound, and demonstrate by counterexample that their bound is

not valid for loss systems. We introduce our modification to their upper bound

in Section 4.4, and prove its validity. Finally, we numerically evaluate our upper

bound in Section 4.5, and conclude in Section 4.6.

4.2 Problem Formulation

Consider an EMS system operating A ambulances, whose service area is repre-

sented by a graph G = (N, E), where N is a set of demand nodes, and E is a

set of edges. Ambulances can be deployed to a set of base locations B ⊆ N . Let

t(i, j) denote the travel time between demand node i and base j; we assume this

quantity is deterministic and time-stationary. Calls arrive according to an arbi-

trary stochastic process that we assume is independent of the system state, as

well as of any decisions made by the EMS provider. We further assume that the

locations of these calls are i.i.d. random variables; let pi denote the probability

that an arriving call originates from node i ∈ N .

Ambulances must immediately be dispatched to arriving calls whenever one

is available, but we place no constraints on which ambulance must be sent. We

say that a call receives a timely response if an ambulance reaches the call’s location
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within a response threshold tresp (typically, 9 minutes in practical applications).

The response interval typically includes the time required for the dispatcher to

triage and assign an ambulance to the call, and for the crew in the responding

ambulance to prepare for travel to the scene, which we refer to as the chute time.

If a call receives a response (regardless of whether or not the response is timely),

the ambulance travels to the call’s location, and spends a random amount of

time on scene treating the patient; let F denote the distribution function of this

random variable. We assume, for convenience, that calls do not require trans-

port to a hospital following treatment on scene (and so service completes at the

call’s location), but this assumption can be easily relaxed, as we briefly explain

later. Calls arriving when all ambulances are busy leave the system.

At any time, the EMS provider may redeploy idle ambulances, so as to in-

crease the likelihood of timely responses to future call arrivals, and may do so

in an arbitrary fashion. A redeployment move entails relocating an ambulance

from a node i to a base j; we need not specify the process by which this move oc-

curs, provided that its location at any point is a node in the graph. Specifically,

our upper bound is valid if we assume that the ambulance idles at node i for

t(i, j) time units, then immediately relocates to base j, or makes a sequence of

smaller “jumps” within the graph, or any variant thereof, but we do not allow

for “continuous” motion within the graph. The only restriction we place on the

redeployment policies we consider is that they do not anticipate— that is, they

do not use information about future call arrivals.

We evaluate the performance of a policy via the expected number of calls

receiving timely responses over a finite horizon [0, T ], which, by the strong law

of large numbers, is roughly equivalent (for large enough T ) to the objective of
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maximizing the long-run average proportion of timely responses to calls. For

convenience, we will sometimes refer to the former quantity as the total reward

collected by the system.

4.3 Preliminaries

We begin by reviewing the tools from Maxwell et al. [61] that we use in devel-

oping our bound.

4.3.1 A Bounding Reward Function

Let v : {0, 1, . . . , A} → [0, 1] be a nondecreasing function for which v(a) is

an upper bound on the probability that a call arriving when a ambulances are

available receives a timely response. In practice, this probability depends both

upon the locations of the a ambulances, and upon the call’s arrival time, but v(a)

is a valid upper bound regardless of these factors. We let v(0) = 0 in our model,

as calls leave the system when no ambulances are available. (This is in contrast

to Maxwell et al. [61], who let v(0) = v(1), as a call arriving when a = 0 may still

receive a timely response if a busy ambulance is about to become available.)

To see how this function can be used to construct an upper bound, consider

an alternate EMS system in which the decision maker collects a reward v(a)

when a call arrives while a ambulances are available (instead of a reward of

either 0 or 1, depending on whether the response is timely). Maxwell et al. [61]

show that each redeployment policy π, in expectation, performs at least as well

in the alternate system as in reality. More formally, let Rπ and V π be the reward

collected by policy π in the original and alternate systems, respectively.
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Lemma 4.3.1. For every policy π, E[Rπ] ≤ E[V π].

See Maxwell et al. [61] for a proof. They also demonstrate that for a given a,

v(a) can be obtained by solving an instance of the Maximal Covering Location

Problem (MCLP), which is due to Church and ReVelle [25]. This entails solving

an integer program which locates a ambulances on a graph so as to maximize

the proportion of calls “covered” by an ambulance, where a demand node is

considered to be covered if the closest ambulance can provide a timely response.

4.3.2 Bounding Service Time Distributions

Next, let {Ga : 0 ≤ a ≤ A} be a collection of distribution functions, where

Ga : [0,∞) → [0, 1] is a stochastic lower bound on the service time distribution

associated with a call arriving when a ambulances are available (regardless of

their locations). Here, we define service time to be the sum of the chute time,

the travel time to the call’s location, and the on-scene treatment time. (In our

case, G0 is a Dirac delta function centered at 0, but we define G0 := G1 to be

consistent with Maxwell et al. [61].) Assume the distributions are stochastically

nonincreasing in a— that is, for all x ≥ 0, we have that G0(x) ≤ G1(x) ≤ · · · ≤

GA(x). Maxwell et al. [61] observe that given x and a, Ga(x) can be computed by

solving a p-median problem, which locates a ambulances within a graph so as

to maximize the probability that the service time associated with the next call is

at most x time units. They formulate this problem as an integer linear program.

Remark: Maxwell et al. [61] show the p-median problem can be formulated so

that the distributions {Ga : 0 ≤ a ≤ A} are stochastic lower bounds even when

patients may require transport to hospitals. Let H ⊆ N be the set of hospitals

in the system, qih be the probability that a call arriving to node i is transported
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to hospital h (we may have
∑

h∈H qih < 1 for some i), and Fh be the distribution

of the patient transfer time at hospital h. Defining service time to also include

any time needed to transport the patient to the hospital, as well as to complete

the transfer, Maxwell et al. [61] numerically convolve F with the Fh to obtain

the service time distribution associated with an arrival to node i. They use these

distributions to obtain inputs for the p-median problem.

4.3.3 A Counterexample

To obtain an upper bound that is valid for any redeployment policy π, Maxwell

et al. [61] construct a queueing system, which they call their bounding system,

with A servers (ambulances) in which jobs (calls) arrive according to the same

stochastic process as in the original EMS system. Rewards and service times are

state-dependent, in that a call arriving when a ambulances are idle generates

reward v(a), and spends a random amount of time in service that is governed

by the distribution function Ga. Calls arriving when all ambulances are busy

are placed in an infinite buffer, and served in a first-in, first-out fashion.

They demonstrate using a coupling argument that the reward collected by

the bounding system, in expectation, is at least as large as the performance at-

tained by an optimal policy in the original EMS system. Suppose that C de-

notes the number of calls arriving in the interval [0, T ], that they arrive at times

T1, . . . , TC , and that Aπc represents the number of ambulances available at time

Tc under policy π. Let Ãc be analogous to Aπc for the bounding system. The va-

lidity of their upper bound follows from Lemma 4.3.1, and from showing that

Ãc ≥ Aπc holds pathwise for all π and c.

In loss systems, this relation may not hold pathwise. There may be times at
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which the bounding system can respond to a call, but the original EMS system

may be forced to turn away the call, leading to work that only the bounding

system is forced to process. Thus, there may exist sample paths ω on which

Ãc(ω) < Aπc (ω) for some c. This suggests there may be loss systems for which

the bound is not valid, and we demonstrate this by counterexample:

Example 4.3.2. Consider a graph with two nodes, with p1 = p2 = 0.5, connected by

an edge which takes 1 minute to traverse. In this system, A = 2, T = 60, and at the

start of the horizon, one ambulance is stationed at each node. The arrival process is

deterministic, with calls arriving at 8, 16, 24, 29, 38, and 40 minutes after the start of

the horizon. The response time threshold is set to 0 minutes, and so timely responses

can only be provided from ambulances situated at the call’s location. On-scene treatment

times are also deterministic, and last 10 minutes.

Suppose the EMS provider dispatches the closest available ambulance to incoming

calls, and never redeploys ambulances following service completions. Then a direct cal-

culation shows that this policy, in expectation, provides 3.25 timely responses. Comput-

ing the bound from Maxwell et al. [61], we find that v(0) = v(1) = 0.5 and v(2) = 1,

that G0 and G1 correspond to random variables that take on the values 10 and 11 with

probability 0.5, and that G2 is a Dirac delta function centered at 10. Using simulation

or analytical methods, we find their method yields an upper bound of 3. Since we have

found a policy that attains a strictly higher objective value, the upper bound is not valid.

4.4 A Modified Upper Bound

4.4.1 Construction

To develop an upper bound that is valid for loss systems, we construct a random

variable Z such that when it is jointly defined with V π on the same probability
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space, Z dominates V π pathwise under any policy π. We begin by specifying the

sample space Ω associated with our model. Random quantities in our model

include C, the call arrival times T1, . . . , TC , the locations L1, . . . , LC to which

these calls arrive, and the corresponding on-scene treatment times. We charac-

terize the randomness associated with the latter by tagging the cth arriving call

with a Uniform(0, 1) random variable Uc, from which the corresponding on-

scene treatment time can be obtained by computing F−1(Uc). While this char-

acterization is somewhat indirect, it facilitates our construction of Z. A sample

path thus consists of realizations of C, the total number of arriving calls, and of

Tc, Lc, and Uc for each call c.

As in Maxwell et al. [61], we also construct a bounding system with A am-

bulances, and in which calls arrive according to the same stochastic process.

Rewards and service times are state-dependent in the same way as specified

in Section 4.3.3. Contrary to Maxwell et al. [61], calls arriving when all ambu-

lances are busy are lost, the full sample path is revealed to the decision-maker

at the beginning of the horizon, and calls can be rejected from the system, even

when ambulances are available. The latter assumption may appear counterintu-

itive, but it may be preferable to respond to fewer calls, and to collect the larger

rewards associated with admitting these calls in “higher” system states. The

bounding decision-maker seeks a “policy”— that is, a subset of calls to admit

into the system— that maximizes total reward. We define Z(ω) to be the reward

collected by an optimal policy in the bounding system under sample path ω.

Given such an ω, we can compute Z(ω) by solving an integer program. Let

v and {Ga : 0 ≤ a ≤ A} be as in Section 4.3. Suppressing ω for clarity, we

let xca be a binary variable that takes on the value 1 if call c is served when a
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ambulances are available, and yc denote the number of available ambulances

when the cth call arrives. Finally, let Qc be a set of pairs (`, a) such that if the `th

call is admitted when a ambulances are available, service of the call completes

after time Tc−1, but before time Tc (again, with ω suppressed for clarity). More

formally, (`, a) ∈ Qc iff Tc−1 < T` +G−1
a (Uc) ≤ Tc. Our formulation is as follows:

Z(ω) := max
C∑
c=1

A∑
a=1

v(a)xca (IP(ω))

s.t.
A∑
a=1

xca ≤ 1 ∀c ∈ {1, . . . , C} (4.1)

A∑
a=1

a xca ≤ yc ∀c ∈ {1, . . . , C} (4.2)

yc = yc−1 −
A∑
a=1

xc−1,a +
∑

(`, a)∈Qc

x`,a ∀c ∈ {2, . . . , C} (4.3)

y1 = A (4.4)

xtc ∈ {0, 1}, yc ∈ {0, 1, . . . , A}

Constraints (4.1) enforce, for each call c, that xca = 1 for at most one choice

of a. Constraints (4.2) serve two purposes: ensuring that no calls are admitted

when all ambulances are busy, and setting xc,yc = 1 whenever the cth arriving

call is admitted. The latter occurs naturally because the objective coefficients

v(a) are nondecreasing in a, and so we would not have xca = 1 for some a < yc.

Constraints (4.3) preserve “flow balance”: the number of idle ambulances when

the cth call arrives matches the number of ambulances available at time Tc−1,

minus one if an ambulance was dispatched to call c − 1, plus the number of

ambulances that become idle between time Tc−1 and time Tc. Finally, constraint

(4.4) enforces that all ambulances are initially idle.

Remark: The integer program (IP(ω)) can be viewed as an adaptation of that by

Yue et al. [100], who also consider a relaxation in which the decision-maker has
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perfect information. Although our model does not consider the locations of am-

bulances in the bounding system, knowing the number of available ambulances

at a given point in time suffices to compute our upper bound.

4.4.2 Validity for Loss Systems

To verify that Z can be used to upper bound the performance of any redeploy-

ment policy in loss systems, we prove the following:

Lemma 4.4.1. For every sample path ω and policy π, V π(ω) ≤ Z(ω).

Proof. Proof: Fix π and ω. Let Sπ(ω) ⊆ {1, 2, . . . , C(ω)} be the set of calls to

which π dispatches an ambulance on this path (in the original system). We have

V π(ω) =
∑

c∈Sπ(ω)

v(Aπc (ω)).

We use Sπ(ω) to construct a feasible (but not necessarily optimal) solution (x̄, ȳ)

to (IP(ω)) that attains an objective value of at least V π(ω), implying that Z(ω)

must be at least as large. Consider the first call (c = 1), and set ȳc = A. If

1 ∈ Sπ(ω), then we set x̄1,ȳc = 1, and use Constraint (4.3) to obtain ȳ2. If this is

not the case, we set x̄1a = 0 for all a, but still use Constraint (4.3) to obtain ȳ2.

We proceed in a similar fashion for all remaining calls, in order of increasing c;

this results in a solution that serves the same calls as policy π.

We claim that (x̄, ȳ) satisfies ȳc ≥ Aπc (ω) for all calls c. This has two conse-

quences. First, we have that (x̄, ȳ) is feasible, as calls are never admitted when

all ambulances are busy, and the constraints of (IP(ω)) are satisfied by construc-

tion. Second, we have that the bounding system collects at least as much reward

from each call as the original system, as v(·) is nondecreasing. Combining these

two implications yields Z(ω) ≥ V π(ω), as desired.
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It remains to verify the claim, which we do by proving a slightly stronger

claim: that the service time for each call that is treated in the original system is

at least as large as the corresponding service time in the bounding system. We

proceed via induction on c. Consider first the base case (c = 1). If 1 6∈ Sπ(ω),

then the base case holds trivially, as the call is not served. Otherwise,G−1
A (Uc(ω))

lower bounds the service time of the call in the original system, by construction

of the dominating service time distributions Ga.

Now suppose the claim holds until the cth call arrives, where c > 1. The

induction hypothesis implies ȳc ≥ Aπc (ω). The case where c 6∈ Sπ(ω) is again

trivial. Otherwise, G−1
Aπc (ω)(Uc(ω)) lower bounds the service time of the call

in the original system. Although it may be that ȳc > Aπc (ω), we have that

G−1
ȳc (Uc(ω)) ≤ G−1

Aπc (ω)(Uc(ω)), as the distributions Ga are stochastically decreas-

ing in a by construction. This completes the induction, and we are done.

We have thus shown the following result:

Theorem 4.4.2. Let π be a redeployment policy satisfying the criteria specified in Sec-

tion 4.2, and let Z be as defined in Section 4.4.1. Then E[Z] is an upper bound on the

expected reward collected by any policy π on the horizon [0, T ].

We estimate E[Z] using Monte Carlo methods, by generating and averaging

i.i.d. replications of Z, and solving an instance of (IP(ω)) for each replication.

Example 4.4.3. Consider once again the system from Example 4.3.2 in Section 4.3.3.

We observe that all of the randomness in this system is captured by the random vari-

ables U1, . . . , U6. Because G1 corresponds to a random variable taking on one of two

values with probability 0.5, and G2 is a Dirac delta function, each sample path ω can

be summarized by specifying whether Uc ≤ 0.5 or Uc > 0.5 for each call c. Thus, to
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compute E[Z], we need only consider 26 = 64 sample paths. Enumerating over each

possibility, we find that Z(ω) = 3.5 for each ω. This implies E[Z] = 3.5, which indeed

upper bounds the performance of the heuristic policy we considered in Example 4.3.2.

4.5 Computational Study

In this section, we conduct numerical experiments on a variety of EMS systems

(some realistic, some not realistic) to evaluate the tightness of our upper bound.

4.5.1 Reference Bounds

We cannot directly compare our bound to that of Maxwell et al. [61], as we as-

sume that the EMS operates as a loss system. However, we provide context via

a lower bound obtained by simulating the performance of a heuristic redeploy-

ment policy, and an alternative upper bound stemming from an “information

relaxation” of the original problem.

4.5.1.1 Lower Bound

Our heuristic policy is adapted from that developed by Jagtenberg et al. [48].

Their policy dispatches the closest available ambulance to arriving calls, and

when an ambulance becomes idle, redeploys it to the base providing the largest

marginal increase in coverage, where coverage is computed as in the objective

function of Daskin’s MEXCLP [27]. We do not write this objective function here,

but note that it is a function of ρ, an estimate of average ambulance utilization, as

well as Θ, the locations of idle ambulances at the time a redeployment decision

is made; we write this quantity as Cvg(Θ, ρ).

We make two modifications to this policy to improve its performance. First,
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when computing coverage, we consider ambulances undergoing redeployment

to be idle at their destination bases. Second, we take into account the travel time

associated with redeployment moves, as a short relocation yielding a moderate

improvement in coverage may be preferable to a long relocation achieving a

slightly higher increase in coverage. Letting ∆Cvgj(Θ, ρ) denote the marginal

increase in coverage associated with placing an additional ambulance at base j,

i the location of the ambulance to be redeployed, and α ≥ 0, we let

Vij :=
∆Cvgj(Θ, ρ)

max{t(i, j)α, 1}

denote the “value” associated with a redeployment move from node i to base j.

Our heuristic policy relocates the ambulance to the base attaining the largest Vij

value. We use a maximum in the denominator to avoid potential divisions by

zero, and to avoid excessively inflating the value of short redeployments. This

is a generalization of the metric used by Jagtenberg et al. [48], which we can

recover by setting α = 0. We can generalize their policy further by treating ρ

as a parameter that can be used to tune the redeployment policy, rather than as

measure of system-wide utilization. This allows us to improve our lower bound

via a two-dimensional grid search over ρ and α.

4.5.1.2 Information-Based Upper Bound

Our alternative upper bound stems from a perfect information relaxation of the

original problem. This entails solving a problem in which the decision-maker

knows the arrival times, locations, and service requirements associated with ev-

ery call at the start of the horizon— quantities that are unknown before calls

arrive. The optimal objective value associated with this relaxed problem, in ex-

pectation, upper bounds the performance of any policy in the original problem;

this follows by formulating the problem described in Section 4.2 as a stochastic
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dynamic program, and using results from Brown et al. [20]; see Chapter 5.

If we assume, contrary to our problem formulation in Section 4.2, that the

decision-maker can reject arriving calls when ambulances are available, then

we can solve the relaxed problem for a given sample path by instead solving

an equivalent linear program that is similar in spirit to the integer program ap-

pearing in Yue et al. [100]; we refer the reader to Chapter 5 for the formulation,

and for the corresponding proofs. This additional assumption loosens the upper

bound, but is nonetheless valid, and provides us with another way to evaluate

our upper bound from Section 4.4.

4.5.2 Findings

4.5.2.1 A First Example

We begin by considering a small hypothetical EMS in which our upper bound

is fairly tight. The service area, illustrated in Figure 4.1 below, is a 9 mile × 9

mile square region, which we divide into 81 square cells. We treat each cell as a

demand node, and define the distance between any two nodes to be the Man-

hattan distance between the centroids of the corresponding cells. Calls arrive

according to a homogeneous Poisson process with rate λ. To treat these calls,

the EMS provider operates 4 bases and deploys 4 ambulances, each of which

travel at a constant speed of 30 miles per hour. We assume that the response

time threshold is 9 minutes, and that the chute time is 1 minute. Thus, an am-

bulance can provide an adequate response if it travels no more than 4 miles to

reach a call. Service times follow a Weibull distribution with a scale parame-

ter of 30 and a shape parameter of 3, which has a mean of 26.8 minutes and a

standard deviation of 9.7 minutes.
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Figure 4.1: Distribution of demand and base locations (squares) in our hy-
pothetical EMS system. Darker cells indicate areas with higher
demand (larger pi–values).

We compute the bounding function v by solving the appropriate MCLP in-

stances to optimality. Similarly, we compute the bounding service time distri-

butions {Ga : 1 ≤ a ≤ A} by solving the corresponding p-median problems

for times ranging from 1 to 90 minutes in increments of 1 minute, also to within

0.5% of optimality. We compute our lower and upper bounds by averaging 1000

i.i.d. replications, each with a length of 24 hours, for the cases when λ = 2 and 3

calls per hour (representing situations in which the system is lightly and mod-

erately loaded). To obtain our lower bound, we simulate our heuristic policy

on the same sample paths for values of ρ and α ranging from 0.05 to 0.95 in in-

crements of 0.05, and store the objective value attained by the best policy. We

summarize our results in Table 4.1.

In this example, the gap between our lower bound and our upper bound is

narrow; our heuristic policy adequately responds to within 4% of the calls that

can be reached under the optimal redeployment policy. By contrast, the perfect
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λ = 2 λ = 3

Lower Bound 0.807 0.686
Upper Bound 0.838 0.746

Perfect Info Upper Bound 0.963 0.909

Table 4.1: Estimated lower and upper bounds on the proportion of timely
responses in a 24-hour period, for two choices of arrival rates.
Half-widths of 95% confidence intervals are at most 0.001.

information upper bound is loose, which is somewhat striking, as the systems

are not heavily loaded; average ambulance utilization under the heuristic policy

is roughly 0.26 when λ = 2, and 0.39 when λ = 3. This suggests that there is

significant value in learning call locations in advance, as is the case in the perfect

information upper bound— which is intuitive, as this information allows the

decision-maker to position ambulances closer to arriving calls, thus increasing

the likelihood of timely responses.

4.5.2.2 Realistic Models.

Next, we study two EMS systems loosely modeled after those operated in Ed-

monton, Canada and Melbourne, Australia. Our models are realistic in that we

use transportation networks based upon simplified versions of the road net-

works in both cities, and we obtain input parameters by drawing from the

same datasets used by Maxwell et al. [61], which reflect real data. However,

we use the term “loosely” because we make simplifying assumptions— specif-

ically, that system dynamics (including the arrival process, edge travel times,

and the size of the fleet) are time-homogeneous, and that calls do not require

transport to a hospital. Thus, we do not intend for the results below to reflect

how the systems in Edmonton and Melbourne actually perform. Rather, we are

simply using the data available to us to gain insight into how our upper bound

performs on larger, more realistic systems.
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Our graph of Edmonton, which is identical to that used in Maxwell et al. [61],

contains 4,725 demand nodes, which are served by 16 ambulances distributed

among 11 bases. Our graph of the city of Melbourne (also from Maxwell et al.

[61]) features 1,413 demand nodes, 97 ambulances, and 87 bases. As in the Sec-

tion 4.5.2.1, arrivals occur according to a homogeneous Poisson process, and we

use the same response time threshold, chute time, and service time distribution.

We again compute the function v by solving MCLP instances to optimal-

ity, but we compute the distributions {Ga : 1 ≤ a ≤ A} by solving the lin-

ear programming relaxations of the corresponding p-median problems (due to

their size). In doing so, we do not invalidate the upper bound, but we loosen

it slightly. However, computational experiments suggest that the integrality

gap is fairly small. To compute our lower and upper bounds, we again use 1000

replications, each with a length of 24 hours; computational experiments indicate

that a heuristic policy where α = 0.50 and ρ = 0.70 works well in Edmonton,

and a heuristic policy where α = 0.85 and ρ = 0.75 works well in Melbourne.

We summarize our results in Table 4.2.

Edmonton Melbourne
λ = 6 λ = 8 λ = 32 λ = 40

Lower Bound 0.802 0.771 0.844 0.824
Upper Bound 0.853 0.849 0.888 0.887

Perfect Info Upper Bound 0.854 0.856 0.887 0.886

Table 4.2: Estimated lower and upper bounds in systems loosely modeled
after Edmonton and Melbourne EMS. Half-widths of 95% confi-
dence intervals are at most 0.001.

Our upper bounds appear to be insensitive to the level of congestion in either

system. This may seem counterintuitive, as the numbers in Table 4.2 suggest

that even in situations when the decision-maker has perfect information, a sig-

nificant proportion of arrivals are not being adequately treated. However, these
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results can be explained by the fact that in both cities, a nontrivial fraction of de-

mand originates from locations that cannot be reached by any base within the

response time threshold— 0.144 in Edmonton and 0.112 in Melbourne. Thus,

our upper bounds are close to the theoretical maximum possible performance

that can be attained in either system.

Although the gap between our lower and upper bounds is not large, our

upper bound does not improve upon the theoretical upper bound or the perfect

information upper bound. To better understand the discrepancy we observe

between the results in this section and those in Section 4.5.2.1, we conduct a

third set of experiments on a range of EMS systems with varying characteristics.

4.5.2.3 Exploratory Models.

Figure 4.2 illustrates the 9 hypothetical EMS systems we consider. They are

adapted from the “artificial cities” considered in Maxwell et al. [61]. The sys-

tems vary by the number of demand modes (1, 2, or 5), as well as by the dis-

persion of demand within the service area (low, medium, or high). The EMS

provider in each system responds to calls within a 15 mile × 15 mile square

region, which is divided into 225 square cells, and operates 25 bases. As in Sec-

tion 4.5.2.1, we compute distances using the Manhattan metric, and the same

service time distribution, chute time, response time threshold, and ambulance

travel speed. We consider fleets operating 7 and 10 ambulances, with arrival

rates of 3 and 6 per hour, respectively. Table 4.3 lists the bounds we obtain in

our 9 systems, averaged over 1000 i.i.d. replications.

The perfect information upper bound is loose in each of our experiments,

and appears to be insensitive to how demand is distributed within the system.
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Figure 4.2: Distribution of demand and base locations in our 9 hypothet-
ical EMS systems. Darker cells indicate areas with higher de-
mand (larger pi–values).

This is intuitive, as when utilization is low, variation in the locations of arriving

calls have a smaller effect on performance when perfect information is available.

The decision-maker can, to an extent, plan for future arrivals by positioning

ambulances appropriately, regardless of where they may occur.

Our upper bound is tighter than the perfect information bound, particularly

when demand is more dispersed, or when the system operates a smaller fleet.

This indicates that the advantage of our upper bound may lie in its ability to

take into account uncertainty in demand, and in more accurately modeling the

performance of the system during periods of congestion. Nonetheless, the gap

between our lower and upper bounds is significant.
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7 ambulances, λ = 3 Sys. 1 Sys. 2 Sys. 3 Sys. 4 Sys. 5
Lower Bound 0.918 0.869 0.825 0.928 0.852
Upper Bound 0.972 0.949 0.926 0.979 0.967

Pf Info Upper Bound 0.996 0.993 0.990 0.996 0.991
Sys. 6 Sys. 7 Sys. 8 Sys. 9

Lower Bound 0.799 0.859 0.853 0.836
Upper Bound 0.953 0.960 0.956 0.946

Pf Info Upper Bound 0.985 0.995 0.995 0.993

10 ambulances, λ = 6 Sys.1 Sys. 2 Sys. 3 Sys. 4 Sys. 5
Lower Bound 0.939 0.895 0.857 0.919 0.898
Upper Bound 0.985 0.973 0.961 0.988 0.982

Pf Info Upper Bound 0.998 0.997 0.995 0.996 0.995
Sys. 6 Sys. 7 Sys. 8 Sys. 9

Lower Bound 0.880 0.878 0.874 0.861
Upper Bound 0.975 0.979 0.977 0.971

Pf Info Upper Bound 0.993 0.995 0.995 0.994

Table 4.3: Lower and upper bound estimates in 9 hypothetical EMS sys-
tems. Half-widths of 95% confidence intervals are at most 0.001.

We conjecture this may be due to the upper bound being loose, rather than

to the heuristic policy being poor. This is because the bounding functions v and

{Ga : 1 ≤ a ≤ A} were developed by making the optimistic assumption that at

any given time, ambulances are “optimally positioned”— that is, in a way that

maximizes the likelihood of timely responses and short service times. When the

system becomes congested, ambulances may be in a suboptimal configuration,

resulting in the probability of a timely response being smaller than the function

v would suggest. Furthermore, the distribution function Ga may underestimate

the travel time of the responding ambulance, as dispatches may need to be made

from distant bases when the system is congested. These effects may be more

pronounced in large-scale systems.

This conjecture is consistent with our previous results: our bound performs

well in the small-scale system in Section 4.5.2.1, but struggles with the larger-
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scale models in Section 4.5.2.2. Taken together, our experiments suggest that our

upper bound is best suited for small-scale systems, but tends to improve upon

the perfect information bound even when used outside of this setting.

4.6 Conclusion

In this chapter, we constructed an upper bound on the performance of ambu-

lance redeployment policies in loss systems. Our work builds upon that by

Maxwell et al. [61], whose bound is valid only for systems that maintain queues

for calls that cannot be immediately served. The adaptation is nontrivial, and re-

quires the introduction of new ideas. In particular, we formulate an integer pro-

gram to which the set of decisions made by any nonanticipative redeployment

policy (along a given sample path) correspond to a feasible solution. Compu-

tational experiments suggest that while our bound tends to be tighter than that

originating from a perfect information relaxation of the ambulance redeploy-

ment problem, it is most effective in small-scale EMS systems. We conjecture

that improving the gap between our lower and upper bounds hinges less upon

improving the heuristic policy than upon developing refinements of the bound-

ing functions v and {Ga : 1 ≤ a ≤ A}.

A natural question to ask is whether upper bounds can be obtained using

other approaches. One way to do so may be to study bounds based upon relax-

ations of the stochastic dynamic programming formulation of the problem. This

could entail, for instance, relaxing a coupling constraint, introducing Lagrange

multipliers, and proceeding as in Adelman and Mersereau [1]. Alternatively,

one could consider an information relaxation of the original problem. Although

we consider a perfect information relaxation in our numerical study in Section
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4.5, one might tighten the upper bound by applying an “information penalty”

to decisions violating nonanticipativity constraints in the style of Brown et al.

[20]. We attempt this in Chapter 5, but we have yet to find a penalty that mean-

ingfully improves upon the perfect information upper bound. We also propose

the construction of a more effective penalty as a direction for future research.

87



CHAPTER 5

AN INFORMATION PENALTY UPPER BOUND FOR AMBULANCE

REDEPLOYMENT

5.1 Introduction

In this chapter, we build upon our work in Chapter 4 by developing a new up-

per bound on the performance of optimal ambulance redeployment policies.

We do so by applying the methodology proposed by Brown et al. [20], who con-

sider the problem of upper bounding the value of a stochastic dynamic program

(which we define to be the expected reward obtained by an optimal policy) in

situations where computing this quantity directly is computationally intractable

(for instance, when the curse of dimensionality is in effect). They consider an

information relaxation of the original dynamic program, by removing constraints

requiring the decision-maker to act only upon information available at the time

the action must be taken. This may entail a perfect information relaxation, in which

the decision-maker is effectively clairvoyant, and learns the realizations of any

random quantities at the start of the horizon, or more generally, any system in

which more information is revealed to the decision-maker than is the case under

the natural filtration. The exact means by which this is done is problem-specific,

but chosen so that the relaxed problem becomes computationally tractable. Be-

cause nonanticipative policies remain feasible in the relaxed problem, this ap-

proach trivially results in an upper bound on the value of the dynamic program.

However, this approach often yields loose upper bounds, and so Brown et al.

[20] tighten them through a function that penalizes policies that use future in-

formation to make decisions (but not nonanticipative policies). They demon-
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strate that there exists a choice of penalty function that makes the upper bound

tight, but computing this penalty is no easier than solving the original problem.

Nonetheless, this “ideal penalty” provides some guidance as to how effective

penalties can be constructed, and so Brown et al. [20] propose a class of penal-

ties based upon approximations to the true value function. Although they point

out that “in practice, there will typically be a trade-off between the quality of

the bound and the computational effort required to compute it” [20], the goal is

to find a tractable penalty that closes a significant portion of the gap.

This information penalty framework builds upon a body of literature relating

to pricing American and Bermudan options; see, for instance, Andersen and

Broadie [5], Desai et al. [28], Haugh and Kogan [41], and Rogers [76]. Here,

finding the exact valuation of an option also entails solving a high-dimensional

stochastic dynamic program. A number of heuristic approaches (lower bounds)

have been proposed, upper bounds have been devised by considering a “dual”

problem in which the decision-maker is clairvoyant, but in which any benefit

obtained from using this additional information to make decisions is counter-

acted by a “dual martingale”. Brown et al. [20] view their work as an extension

of this martingale duality approach to more general stochastic dynamic pro-

grams; they use it to generate effective upper bounds for problems in portfolio

management [19], inventory control [20], and airline revenue management [20].

Lai et al. [52] successfully apply this methodology to the problem of storing and

trading natural gas.

Our attempts at applying this framework to the ambulance redeployment

problem have been less successful. We can show that solving the perfect infor-

mation relaxation of the EMS provider’s problem is computationally tractable,
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and there exists a fairly natural choice of penalty function for which solving the

penalized problem is no more difficult. However, the resulting upper bound

does not outperform our “loss system” bound from Chapter 4. In moderate-

to-large scale systems, our information penalty bound fails to improve even

upon the perfect information upper bound. We suspect that improving perfor-

mance may come at the expense of ease of computation, and may entail solving

a large-scale nonlinear optimization problem. We propose the development of

an improved penalty, as a direction for future research.

The remainder of this chapter is organized as follows. After describing the

EMS provider’s problem in 5.2, we formulate it as a stochastic dynamic program

in Section 5.3, from which it can very easily be seen that the curse of dimension-

ality is in effect. In Section 5.4, we consider the perfect information relaxation of

this problem, and prove in Section 5.5 that it can be solved in a computationally

tractable manner. We introduce our penalty function in Section 5.6, and demon-

strate that the penalized problem is no more difficult to solve than the perfect

information relaxation. Finally, in Section 5.7, we conduct an extensive numeri-

cal study to evaluate the performance of our upper bound, and to compare it to

our “loss system” bound from Chapter 4.

5.2 The Model

Consider an EMS system similar to that in Chapter 4, in that its service area is

represented by a graph G = (N, E), and that it operates fleet of A ambulances

deployed to a set of base locations B ⊆ N . We will sometimes abuse notation

slightly and also let A denote the set of ambulances {1, . . . , A} in the fleet. Con-

trary to the previous model, time is discrete; let T = {0, 1, 2, . . . , T + 1} denote
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the decision horizon. At the start of time period t ∈ T , a call arrives to node

i ∈ N with probability pti, where p :=
∑

i∈V pti ≤ 1. We assume that at most

one call can arrive per time period, and that calls (e.g., their arrival times, loca-

tions, and service requirements) are independent of one another, as well as of

any actions taken by the decision-maker. Thus, the arrival process in our model

can be thought of as a discrete-time analogue of a non-homogeneous Poisson

process. We use periods 0 and T + 1 to initialize and terminate our model, re-

spectively, and so we assume that calls do not arrive at these times— specifically,∑
i∈V pti = 0 if t = 0 or t = T + 1.

If a call does arrive, a dispatcher may respond to the call with a single ambu-

lance, provided that the ambulance can reach its location within a prespecified

response time threshold tresp. More formally, suppose that a call arrives to node

i ∈ N . Define the neighborhood

Bi = {j ∈ B : t(i, j) ≤ tresp}, (5.1)

where t(i, j) is the travel time between node i and base j. That is, Bi is the

set of bases from which a timely dispatch to demand node i can be provided.

We assume that dispatches to node i can only be made from bases in Bi, and

that the decision-maker can ignore arriving calls— even when ambulances are

available— so as to improve the system’s ability to respond to future calls. This

assumption is simply for convenience; the upper bounds we develop hold re-

gardless of the dispatching policy the EMS provider employs; see Remarks 5.3.2

and 5.4.1 below. Calls that do not receive a dispatch leave the system immedi-

ately, and do not queue.

If an ambulance is dispatched, it travels to the call’s location, and upon ar-

rival, immediately begins treatment on-scene. Let τ be a random variable de-
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noting the time spent on scene; we assume that these random variables are in-

dependent and identically distributed. This assumption can be relaxed some-

what; see Remark 5.3.1. After treatment is completed, we assume, for conve-

nience, that the patient does not require transport to a hospital; we discuss in

Remarks 5.3.1 and 5.5.4 how our methodology could be extended to incorpo-

rate hospitals. Before the ambulance can be dispatched to future calls, it must

be redeployed to a base first. Once a base has been selected, the ambulance im-

mediately begins traveling to its destination base, after which it becomes idle.

The EMS provider collects a reward of r for each timely dispatch to an in-

coming call; assume, without loss of generality, that r = 1. We seek a policy for

assigning ambulances to incoming calls, as well as for for redeploying ambu-

lances following on-scene treatment, that maximizes the expected total reward

collected over the horizon T .

5.3 Stochastic Dynamic Programming (DP) Formulation

To reduce the size of our state space, we do not keep track of ambulances’ ex-

act locations. Instead, we assume that if an ambulance is dispatched to a call

originating from node i, it immediately relocates to node i, but does not become

available for redeployment until the appropriate travel time and on-scene treat-

ment time elapses. Similarly, we assume that if an ambulance is redeployed

from node i to base j, that it immediately relocates to base j, but does not be-

come available for t(i, j) time periods.

5.3.1 State Space

At time t ∈ T , the state of the system can be fully characterized by:
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1. The status sa = (`a, fa, ca) of each ambulance a ∈ A in the system, where

• `a is the ambulance’s location within the graph

• fa is the time at which the ambulance is scheduled to become free,

following either on-scene treatment or a redeployment move. If the

ambulance is idle, then fa = t.

• ca is the call being treated by the ambulance at time t, and φ otherwise

2. The location i of the arriving call in at time t, or φ if no arrival occurs

Let Sa = V × T × T denote the possible states for ambulance a; we index calls

in our model by their arrival times. We can thus express the state space of our

model as S = S1 × · · · × SA × N ′, where N ′ = N ∪ {φ}. We sometimes write

elements of S as ordered pairs (s, i), where s denotes the status of the fleet, and

i the location of the arriving call. Because we will sometimes be interested in

the status of individual ambulances, we define `a(s), fa(s), and ra(s) to be the

status of ambulance a implied by s.

5.3.2 Action Space

At the start of time period t ∈ T , the decsion-maker may need to make up to

two types of decisions:

• If a call arrives, the idle ambulance a to dispatch to the call, if any

• If one or more ambulances complete on-scene treatment, the bases to

which to redeploy them

Let Dt(s, i) denote the set of dispatching decisions that can be made at time t

when the system is in state (s, i). If i = φ, only the null action φ can be taken. If
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i 6= φ, the decision-maker may dispatch an idle ambulance stationed within the

neighborhoodBi, or ignore the call (and take the null action φ). If all ambulances

are either busy or out of range, only action φ is available. We thus write

Dt(s, i) =


{φ} i = φ

{φ} ∪
{
a ∈ A : `a(s) ∈ Bi, fa(s) = t, ca(s) = φ

}
i 6= φ

.

Next, let Mt(s, i) denote the redeployment moves that can be made from state

(s, i) at time t. We represent elements of this set as tuples mt = (mt1, . . . , mtA),

where mta specifies the redeployment action performed on ambulance a at time

t. If ambulance a cannot yet be redeployed (that is, if either fa > t or ca = φ),

only a dummy redeployment φ can be made. Otherwise, we allow mta to take

on values in the set of bases B. We thus write

Mt(s, i) =
{

(m1, . . . ,mA) : ma ∈ B ∪ {φ}, with ma = φ if fa(s) > t or ra(s) = φ
}

If t = 0, there are no decisions to make: we assume no calls arrive at the start

of the horizon, and that ambulances are initially idle at their home bases. Thus,

D0(s, i) = M0(s, i) = {φ} for states (s, i). If t = T + 1, calls do not arrive at the

end of the horizon, but ambulances can still be redeployed, though these moves

do not have any impact. We thus define the action space A of our model to be

A =
T⋃
t=1

⋃
(st, it)∈S

Dt(st, it)×Mt(st, it).

5.3.3 State Transitions

Suppose that the system is in state (st, it) at time t, and the decision-maker

performs actions dt ∈ Dt(s, i) and mt ∈ Mt(s, i). Let (St+1, It+1) be the state of

the system at the start of the next decision epoch. We capitalize St+1 and It+1,
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as both are random variables, given the information available to the decision-

maker at time t. That is, the location of the next arriving call, if any, is random,

and if a dispatch is made, the time until the ambulance becomes available is also

random (as τ is random). By assumption, It+1 does not depend on dt or mt, and

P (It+1 = i) =


pt+1,i i ∈ N

1−
∑

i∈N pt+1,i i = φ

By contrast, St+1 depends upon the state of the fleet and any dispatching or

redeployment decisions made at time t. Thus, we sometimes write this quantity

as St+1(st, dt, mt). To compute this, we consider each ambulance a individually.

Case 1: If dt 6= a and mta = φ, then the ambulance is either idle, responding to a

call, or en route to its destination base. We thus perform the update

`a(St+1) = `a(st) (5.2)

fa(St+1) = max{t+ 1, fa(st)} (5.3)

ca(St+1) = ca(st), (5.4)

The ambulance’s location does not change, as we assume that ambulances move

immediately to their destination, but remain busy. The same applies to the call

to which the ambulance has been assigned, if any.

Case 2: If dt = a, then ambulance a moves immediately to node i and remains

busy for the time necessary to travel on scene and treat the call. We thus have

`a(St+1) = i (5.5)

fa(St+1) = max{t+ 1, t+ t(i, `a(st)) + τ} (5.6)

ca(St+1) = t (5.7)

Note that fa(St+1) is a random variable, as τ is random.
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Case 3: Finally, suppose mta 6= φ. Ambulance a moves immediately to base mta,

and remains busy for the requisite travel time, and we have

`a(St+1) = i (5.8)

fa(St+1) = max{t+ 1, t+ τ(`a(st), mta)} (5.9)

ca(St+1) = φ (5.10)

Note that we only set ca to φ when the ambulance is redeployed, rather than

immediately upon a service completion.

We will sometimes write St+1(st, dt, mt) as St+1(st, πt) to emphasize the pol-

icy by which decisions are made, rather than the individual decisions them-

selves. When we consider a specific sample path ω, as in Section 5.4, the sta-

tus of the fleet at time t + 1 is deterministic, allowing us to write, for instance,

St+1(st, dt, mt, ω).

5.3.4 Optimality Equations

We define a policy π as a collection of decision rules (π0, π1, . . . , πT+1), where

each πt : S → A is a deterministic mapping that specifies a feasible decision to

take for every possible system state— that is, πt(st, it) ∈ Dt(st, it) ×Mt(st, it)

for all states (st, it).

By requiring π to have the above form, we restrict our attention to nonantic-

ipative policies, a notion that we formally describe in Section 5.4. Let Π denote

the set of all such policies; this is finite, as the state space and the number of

feasible decisions in each state are finite. We assign decisions to rewards using
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the mapping r : A → {0, 1}, where

r(dt, mt) =


1 dt 6= φ

0 dt = φ

. (5.11)

Although r(dt, mt) depends only on the dispatching decision dt, we include mt

as an argument for convenience. We seek a policy π that solves

V ∗ := max
π∈Π

E

[
T+1∑
t=1

r(πt)

]
, (5.12)

where r(πt) denotes the (random) reward collected by policy π at time t. We

refer to (5.12) as the nonanticipative problem, which we can solve using backward

induction, via the optimality equations

Vt(st, it) = max
dt∈Dt(st, it)
mt∈Mt(st, it)

{
r(dt, mt) + E

[
Vt+1 (St+1(st, dt, mt), it+1)

]}
(DP)

for each t < T + 1, which we pair with the boundary conditions

VT+1 (sT+1, iT+1) = 0 ∀(sT+1, iT+1). (5.13)

The quantity Vt(st, it) can be interpreted as the expected number of calls that can

be reached under the optimal policy from time t until the end of the horizon, if

that the state of the fleet is st, and a call has just arrived to node it. Given an

initial configuration of the fleet s0, define

V ∗ =
∑
i∈N ′

p1i V1 (s0, i1) .

Remark 5.3.1. Our formulation can be extended to incorporate location-dependent on-

scene treatment times, as well as the possibility of patient transports to hospital. Define

τi to be the on-scene treatment time associated with node i calls. After this completes,

we assume that the patient requires transport to hospital h ∈ H with probability ρih,

where H ⊆ N is the set of hospitals in the system. We could have
∑

h∈H ρih < 1. If
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transport is necessary, the ambulance travels to the appropriate hospital, spends a ran-

dom time τh transferring the patient to the hospital, then becomes idle. The formulation

and optimality equations would largely be unchanged: the only modification is to the

state transitions associated with the ambulance a dispatched to the call. Specifically,

`a(sSt+1) would represent the ambulance’s location after serving a call (which could

be on-scene or at a hospital), and fa(st+1) must be modified to take into account the

possibility of hospital transport.

Remark 5.3.2. If the EMS provider must adhere to certain constraints when perform-

ing dispatches, our formulation can also be modified accordingly. The only change

would be to the setDt(s, i) defined in Section 5.3.3. If, for instance, the closest available

ambulance must be sent (regardless of whether or not it is in range), we could write

Dt(s, i) =


{φ} i = φ{
a ∈ {1, 2, . . . , A

}
: fa(s) = t, ma(s) = φ

}
i 6= φ

.

5.4 Perfect Information Relaxation

The state space of our dynamic program has 3A+ 1 dimensions, and so finding

V ∗ via the optimality equations (DP) is intractable, even for moderately-sized

systems. We proceed by considering the perfect information relaxation of the

decision-maker’s problem, in which the realizations of any random variables in

our model are known at the beginning of the horizon. Uncertainty in our model

is fully characterized by the sequence of call arrivals over the horizon T : specif-

ically their arrival times, arrival locations, and service requirements. For t ∈ T ,

let It denote the location of the call arriving at time t (It = φ if none), and τt the

call’s service requirement (if applicable, φ otherwise). Because we assume that

no calls arrive at time 0 and at time T+1, we have that I0 = τ0 = IT+1 = τT+1 = φ.
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Let Ω denote the set of all sample paths in our model, where a sample path

consists of realizations of the random variables It and τt for all time periods t.

Next, let F = {Ft}t∈T be the natural filtration, where Ft represents the decision-

maker’s state of knowledge at time t. More formally:

Ft = σ (I0, τ0, . . . , It−1, τt−1, It) . (5.14)

We omit τt from Ft, as we assume that the decision-maker does not know a

call’s service requirement until after a dispatching decision is made. We con-

sider a policy π to be nonanticipative if πt is Ft–measurable for all t. That is,

any decision made at time t can only depend upon information revealed to the

decision maker according to Ft.

If the decision-maker has perfect information, then each πt can

FT+1−measurable. That is, decisions at any time period can be made with full

knowledge of the sample path ω. Let ΠPI denote the collection of all such antic-

ipative policies. The perfect information relaxation of (DP) entails solving

V PI := max
π∈ΠPI

E

[
T+1∑
t=0

r(πt)

]
= E

[
max
π∈ΠPI

T+1∑
t=0

r(πt)

]
. (5.15)

The second equality follows because π can be FT+1—measurable, implying that

the decision-maker has the freedom to optimize along individual sample paths.

Clearly, V ∗ ≤ V PI , as Π ⊆ ΠPI , and given a path ω ∈ Ω, we can solve for

the optimal policy on that path via backward induction, this time using the

optimality equations

V
PI(ω)
t (st, it) = max

dt∈Dt(st,it)
mt∈Mt(st,it)

{
r(dt) + V

PI(ω)
t+1 (St+1(st, dt, mt, ω), It+1(ω))

}
,

(PIDP(ω))

along with a boundary condition analogous to (5.13). We parametrize our opti-

mality equations by ω to emphasize the fact that the perfect information prob-

lem must be solved on a path-by-path basis. The right-hand side of (PIDP(ω))
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no longer contains an expectation, as the system evolves deterministically once

we know ω. Given an initial configuration s0 of the fleet, it follows that

V PI =

∫
ω

V
PI(ω)

0 (s0, φ) dP(ω)

Evaluating this integral is intractable, as |Ω|will either be infinite (if τsvc follows

a continuous distribution), or grow exponentially with T (if τsvc follows a dis-

crete distribution). However, we can use Monte Carlo simulation to estimate

V PI . Given i.i.d. replications ω1, . . . , ωn, we obtain the sampled estimate

V̂ PI ≈ 1

n

n∑
k=1

V PI(ωk) =
1

n

n∑
k=1

V
PI(ωk)

0 (s0, φ).

Remark 5.4.1. The quantity V PI remains an upper bound even if the EMS provider’s

dispatching policy is constrained as in Remark 5.3.2. In this case, (PIDP(ω)) can be

viewed as a perfect information relaxation in which the decision-maker is granted addi-

tional freedom when performing dispatches.

5.5 Solving the Perfect Information Problem

Given a sample path ω, finding V PI(ω) using backward induction remains in-

tractable, as the curse of dimensionality is still in effect. However, the perfect

information relaxation problem can be formulated as an equivalent integer pro-

gram. Suppose the decision-maker deploys aj ambulances to base j ∈ B at the

start of the horizon. Let C ⊆ T be the subset of time periods at which calls ar-

rive. For each c ∈ C, we define the neighborhoodBc, the set of bases from which

an ambulance can reach call c’s location within the response time threshold tresp.

Given a base j ∈ Bc, define the quantity let f(j, c) = c + t(j, Ic) + τc denote the

time at which an ambulance responding from base j to call cwould become free.

Since we have fixed ω, both Ic and τc are deterministic, but we suppress ω for
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clarity. Next, we define the sets

Qtj = {(c, k) : c ∈ C, k ∈ B, f(k, c) + t(Ic, j) = t}, (5.16)

the set of call-base pairs (c, k) for which a dispatch from base k to call c, followed

by a redeployment to j, results in the ambulance becoming idle at time t. Finally,

xcj =

1 if call c served by ambulance from base j ∈ Bc

0 otherwise

ytj = At time t, the number of ambulances idle at base j

ztcj =


1 if at time t, ambulance responding to call c begins redeployment

to base j

0 otherwise

Our integer programming formulation is as follows:

max
∑
c∈C

∑
j∈Bc

xcj (IP1(ω))

s.t.
∑
j∈Bc

xcj ≤ 1 ∀c ∈ C (5.17)

xcj ≤ ycj ∀c ∈ C, j ∈ B (5.18)∑
k∈B

zf(j,c),c,k = xcj ∀c ∈ C, j ∈ Bc (5.19)

yt+1,j = ytj − xtjI(t ∈ C, j ∈ Bt) (5.20)

+
∑

(c, k)∈Qt+1,j

zf(k,c),c,j ∀t ∈ T , j ∈ B (5.21)

y0j = aj ∀j ∈ B (5.22)

xcj ∈ {0, 1} ∀c ∈ C, j ∈ B (5.23)

ytj ∈ {0, 1, . . . , A} ∀t ∈ T , j ∈ B (5.24)

ztcj ∈ {0, 1} ∀t ∈ T , c ∈ C, j ∈ B (5.25)
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Like (PIDP(ω)), the integer program (IP1(ω)) aims to maximize the number of

calls receiving timely responses. Constraints (5.17) ensure that at most one am-

bulance that is in range can be dispatched to a call, while Constraints (5.18) only

allow these dispatches to be made from bases with idle ambulances.

Constraints (5.19) require ambulances to be redeployed immediately after

they complete service with a call. Specifically, if xcj = 1, then a redeployment

must occur at time f(j, c), the time at which the responding ambulance com-

pletes the call. Constraints (5.21) maintain flow balance at each base over time.

Specifically, the number of ambulances idle at base j at time t + 1 equals the

number idle at time t, minus the number of ambulances dispatched from j at

time t, plus the number of ambulances that finish redeployment to j between

time t and t+ 1. Finally, Constraints (5.22) initialize the system.

We can solve (IP1(ω)) in lieu of (PIDP(ω)):

Lemma 5.5.1. The problems (PIDP(ω)) and (IP1(ω)) are equivalent.

We prove this equivalence in Appendix C.1, which hinges upon showing that

any feasible solution to one problem can be converted to a feasible solution to

the other with the same objective value, and vice versa.

Although Lemma 5.5.1 allows us to circumvent the curse of dimensional-

ity, (IP1(ω)) is not easy to solve for large-scale systems, as there are roughly

O(|T | |C| |B|) decision variables and O(|T | |B| + |C| |B|) constraints. As an ex-

ample, the EMS system in Melbourne, Australia operates 87 bases, and receives

on average roughly 25 calls per hour. If we define a time period in our model

to be one minute, and consider a horizon length of 24 hours (so |T | = 1440), a

naı̈ve implementation of (IP1(ω)) would have on the order of millions of deci-
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sion variables and hundreds of thousands of constraints. Consequently, (IP1(ω))

may not be significantly easier to solve than (DP) or (PIDP(ω)).

We proceed by simplifying our integer program (IP1(ω)). To do so, we ob-

serve that we need not treat dispatch decisions separately from redeployment

decisions in our model, as the decision-maker has perfect information. To see

why this is the case, fix a sample path ω, and consider a feasible solution to

(IP1(ω)). Suppose that in this solution, xcj = 1 for some call c and base j. Let t

be the time at which treatment of the call completes, which can easily be com-

puted from the sample path ω. If t ≤ T + 1, Constraint (5.19) requires that the

ambulance be redeployed to another base k, and the decision-maker selects a

base at this time. However, to a decision-maker with perfect information, there

is nothing to gain by making dispatching and redeployment decisions at two

separate points in time (specifically, at time c and time t), as the information

available at both points in time is identical. Thus, if we reformulate our integer

program so that redeployment decisions must be made immediately after calls

arrive, we obtain a model that is equivalent to (IP1(ω)).

We proceed by removing the decision variables ztcj , omitting any constraints

including these decision variables, and modifying the x–variables so that they

also specify where ambulances are redeployed. Specifically, define

xcjk =


1 if call c served by ambulance from base j ∈ Bc that is later

redeployed to base k

0 otherwise
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Letting the variables ytj be as before, we reformulate (IP1(ω)) is as follows:

max
∑
c∈C

∑
j∈Bc

∑
k∈B

xcjk (IP2(ω))

s.t.
∑
j∈Bc

∑
k∈B

xcjk ≤ 1 ∀c ∈ C (5.26)

∑
k∈B

xcjk ≤ ycj ∀c ∈ C, j ∈ Bc (5.27)

yt+1,j = ytj − xtjI(t ∈ C, j ∈ Bt) (5.28)

+
∑

(c, k)∈Qt+1,j

xckj ∀t ∈ T , j ∈ B (5.29)

y0j = aj ∀j ∈ B (5.30)

xcjk ∈ {0, 1} ∀c ∈ C, j ∈ Bc, k ∈ B (5.31)

ytj ∈ {0, 1, . . . , A} ∀t ∈ T , j ∈ B (5.32)

Constraints (5.26), (5.27), and (5.29) are analogous to Constraints (5.17), (5.18),

and (5.21) in (IP1(ω)), respectively.

Lemma 5.5.2. Integer programs (IP1(ω)) and (IP2(ω)) are equivalent.

The proof again hinges upon showing that any feasible solution to (IP1(ω)) can

be converted into a feasible solution to (IP2(ω)) with the same objective value,

and vice versa. Constructing solutions is straightforward, as if xcjk = 1 for some

triplet (c, j, k) in (IP2(ω)), then we can set xcj = 1 and stck = 1 in (IP1(ω)) (for

the appropriate value of t), and vice versa. It remains to check feasibility of the

resulting solutions, and we do this in Appendix C.2.

While (IP2(ω)) has significantly fewer decision variables and constraints

than (IP1(ω)), solving it may still be impractical for large-scale systems; in the

case of Melbourne, we would need to solve an integer program with poten-

tially hundreds of thousands of decision variables and constraints. However,
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linear programs of this size are solved routinely, and so solving the linear pro-

gramming relaxation of (IP2(ω)) is tractable. Doing so would loosen our upper

bound if (IP2(ω)) has an integrality gap. However, this has not been the case in

any of the problem instances we have encountered. This leads us to conjecture

that (IP2(ω)) does not have an integrality gap:

Conjecture 5.5.3. Integer program (IP2(ω)) has no integrality gap: that is, for any

sample path ω, any optimal solution to the linear programming relaxation of (IP2(ω))

attains an objective value of V PI(ω).

We suspect that a proof would entail demonstrating that the coefficient ma-

trix associated with (IP2(ω)) is totally unimodular. We can show this for a re-

laxation of (IP2(ω)) in which Constraints (5.26) are relaxed, which can be re-

formulated as an equivalent min-cost (or, in this case, max-reward) network

flow problem, implying total unimodularity. Reintroducing Constraints (5.26)

eliminates this network structure, but we suspect that total unimodularity is

preserved. We elaborate upon these ideas in Appendix C.3.

If our conjecture holds, then solving the perfect information relaxation to

the ambulance redeployment problem entails solving a moderately-sized linear

program, which is tractable even in large-scale EMS systems.

Remark 5.5.4. The integer programs (IP1(ω)) and (IP2(ω)) can be extended to take

hospital transfers into account, in the spirit of Remark 5.3.1. This would entail modi-

fying the constants f(j, c) and sets Mtj to take into account the possibility of hospital

transports. Since having perfect information entails knowing of any potential transfers

at the beginning of the horizon, this modification does not present significant difficulties,

and all of the results presented above can be adapted to this setting.
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Remark 5.5.5. Our integer program (IP2(ω)) is based heavily upon that by Yue et al.

[100], who consider the problem of ambulance dispatching when the decision-maker has

perfect information. We adapt their model to allow for ambulances to be redeployed

following on-scene treatment.

5.6 A Penalty Function

5.6.1 Preliminaries

Although the computational issues associated with computing V PI appear to

have been resolved, the perfect information relaxation yields a weak upper

bound, as we demonstrate through computational experiments in Section 5.7.

To tighten the upper bound, we introduce a penalty function as in Brown et al.

[20]. Recall that doing so entails the penalizing policies that use future informa-

tion to make decisions.

We begin by revisiting Brown et al.’s definition of a penalty function, and

adapt it to our setting. Let π = (π0, . . . , πT+1) ∈ ΠPI , and define, for each time t, a

function zt(st, it, πt) denoting the penalty assessed to the decision-maker when

taking action πt(st, it) = (dt, mt) when the system is in state (st, it). To avoid

penalizing nonanticipative polices, Brown et al. [20] only consider penalties z =

(z1, . . . , zT+1) that are dual feasible, in that they satisfy

E

[
T+1∑
t=0

zt(S
π
t , It, πt)

]
≤ 0 ∀π ∈ Π, (5.33)

where Sπt denotes the (random) state of the system under policy π at time t.

That is, a dual feasible penalty does not penalize nonanticipative policies in

expectation. Let Z be the collection of all such penalties. Given z ∈ Z , we can
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incorporate it into the perfect information relaxation (PIDP(ω)) as follows:

V PI(z) : = max
π∈ΠPI

E

[
T+1∑
t=0

r(πt)− zt(Sπt , It, πt)

]
(5.34)

= E

[
max
π∈ΠPI

T+1∑
t=0

r(πt)− zt(Sπt , It, πt)

]
,

Brown et al. [20] call (5.34) a dual problem with respect to the original stochastic

DP, and we will sometimes refer to it as a penalized problem. Given a path ω, we

can again find the optimal policy along that path via backward induction

V
PI(z,ω)
t (st, it) = max

dt∈Dt(st, it)
mt∈Mt(st, it)

{
r(dt)− zt(st, it, (dt, mt)) (5.35)

+ V
PI(z,ω)
t+1

(
St+1(st, dt, mt, ω), It+1(ω)

)}
,

along with the boundary conditions V PI(z,ω)
T+1 (sT+1, φ) = 0 for all sT+1. If z is

dual feasible, then V PI(z) upper bounds V ∗, a result that is analogous to weak

duality in linear programming.

Lemma 5.6.1. If z = (z0, z1, . . . , zT+1) is dual feasible, then V ∗ ≤ V PI(z).

Proof. Following the proof in Brown et al. [20], we have that

V ∗ = max
π∈Π

E

[
T+1∑
t=0

r(πt)

]

≤ max
π∈Π

E

[
T+1∑
t=0

r(πt)− zt (Sπt , It, πt)

]

≤ max
π∈ΠPI

E

[
T+1∑
t=0

r(πt)− zt (Sπt , It, πt)

]
= V PI(z),

where the second line follows by definition of dual feasibility, and the third

because Π ⊆ ΠPI .

We seek a penalty that makes the upper bound as tight as possible, which entails
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solving the optimization problem

inf
z∈Z

V PI(z) = inf
z∈Z

max
π∈ΠPI

E

[
T+1∑
t=0

r(πt)− zt(Sπt , It, πt)

]
. (5.36)

Brown et al. [20] prove the existence of a penalty yielding a zero-variance, tight

upper bound: a result that is analogous to strong duality in linear programming.

Lemma 5.6.2. Let (V ∗1 , . . . , V
∗
T+1) be the value functions associated with an optimal

nonanticipative policy, in that they solve the optimality equations (DP). Given π ∈ ΠPI

and a sample path ω, define for each t < T + 1 the penalty

z∗t (st, it, πt, ω) = V ∗t+1 (St+1(st, πt, ω), It+1(ω)) (5.37)

− E
[
V ∗t+1 (St+1(st, πt), It+1)

∣∣Ft]
Then for every sample path ω and initial system state s0, we have V PI(z∗) = V ∗.

Remark: The conditional expectation on the right-hand side of (5.37) is with

respect to the location of the next arriving call (if any) and the time required to

serve the call arriving in the current time period (provided a dispatch is made).

We defer the proof to Appendix C.4. Although Lemma 5.6.2 implies the exis-

tence of a penalty that makes the upper bound tight, finding the value functions

V ∗t is no easier that solving (DP) to optimality. To find a “good” penalty— one

that is computationally tractable, but that yields a looser upper bound— Brown

et al. [20] consider a more general class of penalties:

Lemma 5.6.3. Let (Ṽ1, . . . , ṼT+1) be a collection of functions where for each t, Ṽt : S →

R. Define, for each sample path ω, policy π ∈ ΠPI , and t < T + 1, the penalty

zt (st, it, πt, ω) = Ṽt+1 (St+1(st, πt, ω), It+1(ω)) (5.38)

− E
[
Ṽt+1 (St+1(st, πt), It+1)

∣∣Ft]
along with the boundary condition zT+1 = 0. Then z = (z0, . . . , zT+1) is dual feasible.

108



We defer the proof to Appendix C.5. Note that we recover the “ideal

penalty” from Lemma 5.6.2 by setting Ṽt = V ∗t for each t. In this case, the

right-hand side of (5.38) has a fairly intuitive interpretation. In particular, the

difference (5.38) is positive if action πt(st, it) is more appealing to a decision-

maker with perfect information than to one obtaining information according to

the filtration F . Thus, z∗t (st, it, πt) can be viewed as the value of information

associated with taking action πt at time t when the system is in state (st, it), and

z∗ =
∑T+1

t=0 z
∗
t as the value of information over the horizon T— or, alternatively,

the value of knowing the full sample path ω at time 0.

Together, Lemmas 5.6.2 and 5.6.3 provide guidance as to how good penal-

ties can be constructed. Although computing V ∗t is a hopeless task, we could

instead develop an approximation Ṽt to the true value function V ∗t , and con-

struct a penalty as in (5.38). Brown et al. [20] observe that for such a penalty to

be effective, the approximation need not satisfy Ṽt ≈ V ∗t for each t, but

E
[
Ṽt+1 (St+1(st, πt), It+1)

∣∣FT+1

]
− E

[
Ṽt+1 (St+1(st, πt), It+1)

∣∣Ft]
≈ E

[
V ∗t+1 (St+1(st, πt), It+1)

∣∣FT+1

]
− E

[
V ∗t+1 (St+1(st, πt), It+1)

∣∣Ft]
instead. In other words, a good penalty need not be based upon a Ṽt that ap-

proximates the true value function well, but that approximates the value func-

tion differences in (5.38) well.

5.6.2 A Tractable Penalty

In selecting a penalty for our problem, we face a trade-off between tractability

and performance. Although several value function approximations have been

proposed in the literature (see, for instance Maxwell et al. [59, 60] and Schmid

[80]), we encounter computational issues when we attempt to use these approx-
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imations as the basis for a penalty function. Although we could apply (5.38)

to construct a penalty and modify (IP2(ω)) accordingly, we obtain an objective

function that is nonlinear, which is not amenable to optimization (even in the

absence of an integrality gap). Thus, we restrict attention to penalties that can

be written as linear functions of the decision variables appearing in (IP2(ω)). We

begin by considering a penalty based upon the value function approximation

V cvg
t (st, it) =

∑
j∈Bit

ytj, (5.39)

the number of ambulances that can cover the call arriving at time t (if any),

given that the status of the fleet st at that time. That is, we approximate the

reward-to-go from time t onward by a linear function of the coverage the system

can provide to the call arriving at time t. Thus, V cvg can be viewed as a one-

step look-ahead approximation of the true value function V ∗. This is a fairly

crude approximation, but looking more than one step ahead would result in a

nonlinear objective function. We observe that ytj can easily be computed from

st by counting the number of idle ambulances at base j:

ytj =
A∑
a=1

I(`a(st) = j, fa(st) = t, ca(st) = φ).

We use V cvg to build a penalty as in (5.38). Given ω, Equation (5.39) implies

V cvg
t+1 (St+1(st, πt, ω), It+1(ω)) =

∑
j∈BIt+1(ω)

yt+1,j =
∑
j∈B

1
(
j ∈ It+1(ω)

)
yt+1, j

To compute E
[
Ṽt+1 (St+1(st, πt), It+1)

∣∣Ft], we make two observations. First,

the expectation need only be taken over It+1, the location of the call arriving

at time t + 1. Second, the number of idle ambulances at time t + 1 is a deter-

ministic function of st and πt. This is because we implicitly assume in our DP

formulation that the decision-maker knows the time at which ambulances be-

come free once they have been dispatched (and by making the additional mild
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assumption that ambulances dispatched at time t would be busy at time t + 1

with probability 1). It follows that

E
[
V cvg
t+1 (St+1(st, πt), It+1)

∣∣Ft] =
∑
i∈N

pt+1,i

∑
j∈Bi

yt+1,j.

For convenience, we rewrite this conditional expectation as

E
[
V cvg
t+1 (St+1(st, πt), It+1)

∣∣Ft] =
∑
j∈B

yt+1, j

∑
i∈N :
j∈Bi

pt+1,i =:
∑
j∈B

ρt+1,j yt+1, j,

and so the value function approximation V cvg induces the penalty

zcvgt (st, it, πt, ω) =
∑
j∈B

1
(
t+ 1 ∈ C, j ∈ It+1(ω)

)
yt+1, j −

∑
j∈B

ρt+1,j yt+1, j (5.40)

=
∑
j∈B

[
1
(
t+ 1 ∈ C, j ∈ It+1(ω)

)
− ρt+1,j

]
yt+1, j

Incorporating this penalty into the objective function of (IP2(ω)), yields the pe-

nalized integer program

max
∑
c∈C

∑
j∈Bc

∑
k∈B

xcjk (PIP(ω))

−
T∑
t=0

∑
j∈B

[
1
(
t+ 1 ∈ C, j ∈ It+1(ω)

)
− ρt+1,j

]
yt+1, j

s.t. Constraints (5.27) – (5.32)

We can reason as in Lemmas 5.5.1 and 5.5.2 to show that (PIP(ω)) is equivalent to

the penalized DP (5.35) when we substitute in the penalty zcvg = (zcvg1 , . . . , zcvgT ).

Furthermore, (PIP(ω)) is no more difficult to solve than (IP2(ω)), as both models

have the same constraints and linear objective functions. Provided Conjecture

5.5.3 holds, we can solve (PIP(ω)) via its linear programming relaxation.

Remark 5.6.4. Our value function approximation (5.39) double-counts coverage, in

that it distinguishes between situations in which one ambulance can respond to a call,
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and multiple ambulances can do so. One may wonder if it is more appropriate to disre-

gard any ambulances covering a location beyond the first, as we only allow one response

to an incoming call. Although we agree that this would yield a better approximation,

incorporating this penalty into (IP2(ω)) is challenging. This is because we require addi-

tional logical decision variables that take on the value 1 if
∑

j∈Bi ytj > 0 for the appro-

priate time t and node i, and 0 otherwise. Doing so requires adding big–M constraints,

which introduces a significant integrality gap, and renders the model intractable.

5.6.3 Tuning Our Penalty Function

We can tighten the upper bound generated by (PIP(ω)) by considering a slight

generalization of the penalty zcvg. In particular, consider the penalty arising

from the value function approximation

V cvg, γ
t (st, it) =

∑
j∈Bit

γtj ytj, (5.41)

where the γtj are coefficients that allow us to vary how ambulances contribute

to coverage with location and time. Note that we recover our original value

function approximation (5.39) by setting γtj = 1 for all t and j. Given a collection

γ = {γtj : t ∈ T , j ∈ B}, the approximation V cvg, γ induces the penalty

zcvg,γt (st, it, πt, ω) =
∑
j∈B

[
1
(
j ∈ It+1(ω)

)
γt+1, j − γt+1, j ρt+1,j

]
yt+1, j, (5.42)

and incorporating this modified penalty into (IP2(ω)) yields the integer program

max
∑
c∈C

∑
j∈Bc

∑
k∈B

xcjk (PIP(γ, ω))

−
T∑
t=0

∑
j∈B

[
1
(
j ∈ It+1(ω)

)
γt+1, j − γt+1, j ρt+1,j

]
yt+1, j

s.t. Constraints (5.27) – (5.32)
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As is the case with (PIP(ω)), the integer program (PIP(γ, ω)) has the same con-

straints as (IP2(ω)), so we can again solve an LP relaxation, provided that Con-

jecture 5.5.3 holds. Let V PIP (γ) be a family of random variables, parameterized

by γ, for which V PIP (γ, ω) is the objective value attained by an optimal solution

to (PIP(γ, ω)). Because zcvg, γ is a dual feasible penalty by Lemma 5.6.3, it fol-

lows that E[V PIP (γ)] ≥ V ∗ for any choice of coefficients γ. To make our upper

bound as tight as possible, we would solve the optimization problem

min
γ

E
[
V PIP (γ)

]
. (5.43)

Assuming that we can evaluate the objective function at a given γ, solving (5.43)

is a straightforward task, as the objective function is convex in γ:

Lemma 5.6.5. The function E
[
V PIP (γ)

]
is convex in γ.

We present the proof in Appendix C.6. Although we need only solve a con-

vex optimization problem, we again run into technical issues because we can-

not evaluate the expectation in (5.43). Instead, we consider a sample average

approximation to this expectation: specifically, by solving

min
γ
V̂ PIP (γ) := min

γ

1

n

n∑
i=1

V PIP (γ, ωi) (5.44)

over i.i.d. replicates ω1, . . . , ωn instead. The sampled upper bound function

ÛB(γ) is also convex in γ, as we show in Lemma 5.6.5 that V PIP (γ, ω) is convex

in γ, and a convex combination of convex functions is itself convex.

To solve the convex optimization problem (5.44), we use gradient descent.

Computing a gradient is straightforward once we have solved the correspond-

ing integer programming instances to optimality. That is, fix γ and a path ω, and
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let
(
x∗(γ, ω), y∗(γ, ω)

)
be an optimal solution to (PIP(γ, ω)). We have

∂

∂γtj
V PIP (γ, ω) =

∂

∂γtj

(∑
c, j, k

x∗cjk(γ, ω)−
T∑
t=0

∑
j∈B

[
1
(
j ∈ It+1(ω)

)
γt+1, j

− γt+1, j ρt+1,j

]
y∗t+1, j(γ, ω)

)
=
[
1
(
j ∈ It(ω)

)
− ρtj

]
y∗tj(γ, ω),

from which it follows that

∂

∂γtj
ÛB(γ) =

1

n

n∑
i=1

[
1
(
j ∈ It(ωi)

)
− ρtj

]
y∗tj(γ, ωi). (5.45)

We initialize our gradient search procedure by setting γ = 0 (that is, by consider-

ing an unpenalized problem), computing ÛB(0) by solving the corresponding

instances of (IP2(ω)), and applying (5.45) to the resulting optimal solutions to

compute ∇ÛB(0). We move in the direction of the gradient over a prespecified

step size (provided this decreases the objective function), recompute the gradi-

ent, and repeat until either the improvement in the objective within an iteration

falls below a certain threshold, or a certain number of iterations have elapsed:

whichever occurs first. Let γ∗ be the vector we obtain upon termination.

We cannot use ÛB(γ∗) to evaluate the performance of our upper bound, as

this is a biased estimate of UB(γ). To remove bias, we generate an independent

collection of i.i.d. replicates ωn+1, . . . , ω2n, and compute the estimate

1

n

2n∑
i=n+1

V PIP (γ∗, ωi).

5.7 Computational Results

In this section, we study the performance of our upper bound by applying it to

a wide range of EMS systems, and by comparing it to the “loss system” bound
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we developed in Chapter 4. In the experiments that follow, we use the term

duality gap to describe to the relative difference between the objective attained

by an optimal policy and that attained by a given upper bound.

5.7.1 A Toy Example

We begin with a toy EMS system, for which the optimal policy (and its corre-

sponding objective value) can be computed exactly. Its service area, which we

illustrate in Figure 5.1, is a 5 mile × 5 mile square region, which we subdivide

into four 2.5 mile × 2.5 mile cells with demand concentrated at their centroids.

As in our experiments in Section 4.5, we assume that ambulances travel at 30

mph, that the chute time is 1 minute, and that the response time threshold tresp

is 9 minutes. Thus, an ambulance can provide a timely response to a call if it is

based at or adjacent to the call’s location.

In our computational study from Section 4.5, we assumed that arrivals fol-

low a Poisson process and that service times are Weibull distributed. We do

the same here, but we must adapt these distributions to a discrete-time setting.

In particular, for each time period t, we assume that a call arrives into our sys-

tem with probability p =
∑

i∈N pti, and the location to which this call arrives

follows the distribution illustrated in Figure 5.1. That is, our arrival process

is a discrete-time analogue of a homogeneous Poisson process. Similarly, we

consider a service time distribution that is a discretization of a Weibull random

variable with scale parameter 20 and shape parameter 3 (which has a mean of

17.9 min. and a standard deviation of 6.5 min.), in that we round service times

up to the nearest multiple of t.

We again consider a horizon length of 1 day, and divided this into 1-minute
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Figure 5.1: Distribution of demand and base locations (white squares) in
our toy EMS system. Darker cells indicate areas with higher
demand (larger pti–values).

increments; thus, T = 1440. We study fleets containing 1 and 2 ambulances,

as well as two arrival regimes, to examine the performance of our bound in

lightly-loaded and moderately-loaded systems. To compute the performance

V ∗ attained by an optimal policy in each of the four systems, we solve the cor-

responding DP instances using the optimality equations (DP). We compare this

to a sampled estimate of the perfect information upper bound, which we obtain

by generating 5000 i.i.d. replications ω1, . . . , ω5000, solving the corresponding

instances of (IP2(ω)), and averaging the resulting optimal objective values.

To estimate our “information penalty” upper bound from Section 5.6, we

formulate an instance of the convex optimization problem (5.44), using replica-

tions ω1, . . . , ω5000. We find a near-optimal choice of coefficients γ by applying

10 iterations of gradient descent, with an initial step size of 5.0. We step in the

direction of the gradient only if it improves the objective function; otherwise,

we halve our step size and repeat. Once this procedure completes, we obtain
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an unbiased estimate of our upper bound by solving generating 5000 new i.i.d.

replicates, and solving the corresponding instances of (PIP(ω)). To provide a

baseline, also compare our upper bounds to the loss system bound from Chap-

ter 4, which we compute as in Section 4.5. Table 5.1 summarizes our results.

At first glance, the system appears to perform poorly when A = 1, but this

can be attributed to the fact that when only one ambulance is available, it can

only provide timely responses to calls at most 70% of the time, and so 0.700

is a theoretical upper bound on system performance. Our loss system upper

bound is almost tight, and yields duality gaps on the order of 1%. By contrast,

our perfect information bound is fairly loose, which is unsurprising, given the

numerical results in Chapter 4. However, our information penalty bound only

marginally improves upon the perfect information upper bound.

A = 1 ambulance
p = 1/300 p = 1/200

(0.2 calls/hr) (0.3 calls/hr)
Optimal Value 0.644 0.619

Loss System Upper Bound 0.649 ± 0.002 0.627 ± 0.002
Perfect Info Upper Bound 0.849 ± 0.003 0.845 ± 0.002
Penalized Upper Bound 0.849 ± 0.003 0.832 ± 0.002

A = 2 ambulances
p = 1/80 p = 1/40

(0.75 calls/hr) (1.5 calls/hr)
Optimal Value 0.907 0.807

Loss System Upper Bound 0.907 ± 0.001 0.817 ± 0.001
Perfect Info Upper Bound 0.963 ± 0.002 0.902 ± 0.001
Penalized Upper Bound 0.958 ± 0.002 0.902 ± 0.001

Table 5.1: 95% confidence intervals of our upper bounds for the toy EMS
system in Figure 5.1, averaged over 5000 i.i.d. replications.

Our bound’s poor performance can be attributed to the fact that our penalty

function is overparameterized. Because T = 1440 and |B| = 2, finding the op-
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timal coefficients γ entails a search in 2880–dimensional space. This presents

computational issues because the objective function to our optimization prob-

lem is a noisy (although unbiased) estimate of the true objective E
[
V PIP (γ)

]
.

Thus, 5000 replications may be insufficient to mitigate the effects of noise when

optimizing in such a high-dimensional space.

To address these concerns, we consider two slightly less general classes of

penalties, by imposing constraints on the values that γtj can take on. First, we

consider a family of penalties where for each time t, we require γtj = γtk for all

bases j and k— that is, penalties of the form

zcvg,γt (st, it, πt, ω) = γt+1

∑
j∈B

[
1
(
j ∈ It+1(ω)

)
− ρt+1,j

]
yt+1, j. (5.46)

We call this our time-dependent penalty function. Finding the best such penalty

again entails solving a convex optimization problem, which can be shown by

a proof nearly identical to that used for Lemma 5.6.5. We can again find near-

optimal coefficients (γ1, . . . , γT+1) via gradient search, using an expression sim-

ilar to (5.45) to evaluate the gradient of the objective at a particular value of

γ. Second, we consider a class of penalties where for each base j, we require

γtj = γt′j for all time periods t and t′— that is, penalties of the form

zcvg,γt (st, it, πt, ω) =
∑
j∈B

γj

[
1
(
j ∈ It+1(ω)

)
− ρt+1,j

]
yt+1, j. (5.47)

We call this our base-dependent penalty function, for which we can again find

the tightest such upper bound using gradient descent. Applying our modified

bounds to the previous problem instances, we obtain Table 5.2.

Our base-dependent penalty function consistently yields the tightest upper

bound, and closes a significant portion of the gap between the perfect informa-

tion upper bound and the optimal objective value. Although it is still outper-
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A = 1 ambulance
p = 1/300 p = 1/200

(0.2 calls/hr) (0.3 calls/hr)
Optimal Value 0.644 0.619

Loss System Upper Bound 0.649 ± 0.002 0.627 ± 0.002
Perfect Info Upper Bound 0.849 ± 0.003 0.845 ± 0.002
Penalized Upper Bound 0.846 ± 0.003 0.839 ± 0.002

Time-Dependent Penalty Bound 0.849 ± 0.003 0.832 ± 0.002
Base-Dependent Penalty Bound 0.666 ± 0.000 0.672 ± 0.000

A = 2 ambulances
p = 1/80 p = 1/40

(0.75 calls/hr) (1.5 calls/hr)
Optimal Value 0.907 0.807

Loss System Upper Bound 0.907 ± 0.001 0.817 ± 0.001
Perfect Info Upper Bound 0.963 ± 0.002 0.902 ± 0.002
Penalized Upper Bound 0.963 ± 0.002 0.902 ± 0.001

Time-Dependent Penalty Bound 0.958 ± 0.001 0.884 ± 0.001
Base-Dependent Penalty Bound 0.944 ± 0.001 0.858 ± 0.000

Table 5.2: 95% confidence intervals of our alternative upper bounds for the
toy EMS system in Figure 5.1, averaged over 5000 i.i.d. replica-
tions.

formed by our loss system upper bound, it is reasonably tight, and yields dual-

ity gaps on the order of 5%. It is worth mentioning that given a sufficiently large

sample (to mitigate the effects of noise), our original penalty function should, in

theory, outperform our modified penalties, as the optimal time-dependent and

base-dependent penalties yield feasible solutions to the optimization problem

(5.44). However, even with 5000 samples, optimizing in a lower-dimensional

space appears to improve our bound’s performance.

5.7.2 Small-Scale Systems

We now turn our attention to more reasonably-sized EMS systems, and begin

with the small-scale system from Section 4.5.2.1, for which we reproduce the

illustration in Figure 5.2. Recall that we considered an EMS system operating a
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fleet of 4 ambulances within a 9 mile × 9 mile service area, subdivided into 81

square cells. Ambulances again travel at 30 mph, and the chute time is again 1

minute. Arrivals follow a homogeneous Poisson process, that we discretize as in

the previous section. Service times are follow a Weibull distribution with scale

parameter 30 and shape parameter 3, rounded up to the nearest integer. This

time, the curse of dimensionality prevents us from solving (DP) exactly, but we

can obtain some indication of the duality gap by again using our heuristic policy

from Section 4.5.1.1 as a lower bound. Estimating our bounds using 5000 i.i.d.

replications, we obtain Table 5.3.
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Figure 5.2: Distribution of demand and base locations (squares) in our
first small-scale EMS system. Darker cells indicate areas with
higher demand (larger pi–values).

There are slight discrepancies between our numerical results in Table 5.3 and

those from Section 4.5.2.1. However, they can be attributed to the fact that we

modeled the system in continuous time in Chapter 4. Once again, our base-

dependent penalty outperforms our other two penalty functions, but the im-

provement over the perfect information bound is much more modest; in both

cases, the penalty closes only roughly 10% of the duality gap. Moreover, our loss
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A = 1 ambulance
p = 1/30 p = 1/20

(2 calls/hr) (3 calls/hr)
Heuristic Lower Bound 0.810 ± 0.001 0.691 ± 0.001

Loss System Upper Bound 0.843 ± 0.001 0.752 ± 0.000
Perfect Info Upper Bound 0.965 ± 0.001 0.911 ± 0.001
Penalized Upper Bound 0.965 ± 0.001 0.890 ± 0.001

Time-Dependent Penalty Bound 0.958 ± 0.001 0.871 ± 0.000
Base-Dependent Penalty Bound 0.952 ± 0.001 0.869 ± 0.000

Table 5.3: 95% confidence intervals of our lower and upper bounds for our
first small-scale EMS system, averaged over 5000 i.i.d. replica-
tions.

system bound again outclasses our information penalty bounds— this time, by

a much wider margin. This drop in performance (relative to our toy EMS sys-

tem) can likely be attributed to two factors: a larger service area (which increases

the value of perfect information, and widens the duality gap) and a larger fleet

(which increases the degree to which resources can be pooled).

To test these hypotheses, we study an (unrealistic) EMS system, illustrated

in Figure 5.3, in which resources cannot be effectively pooled. Although the ser-

vice area, as in our first small-scale system, is a 9 mile× 9 mile square, demand is

much more dispersed, and ambulances travel at half the speed (15 mph). Thus,

the system in Figure 5.3 can be viewed as a 3 × 3 grid of closed subsystems,

each with a base at its centroid. Ambulances stationed at a base can only pro-

vide timely responses to demand nodes within the same subsystem, but can

be redeployed between subsystems. Service times again follow a (discretized)

Weibull distribution with scale parameter 30 and shape parameter 3.

We consider fleets containing 5 and 7 ambulances, operating under situa-

tions in which the fleet is lightly-loaded and moderately-loaded. Computing

our bounds as before, we obtain Table 5.4.
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Figure 5.3: Distribution of demand and base locations (squares) in our sec-
ond small-scale EMS system.

A = 5 ambulances
p = 1/60 p = 1/30

(1 call/hr) (2 calls/hr)
Heuristic Lower Bound 0.602 ± 0.001 0.502 ± 0.001

Loss System Upper Bound 0.650 ± 0.001 0.572 ± 0.001
Perfect Info Upper Bound 0.944 ± 0.002 0.934 ± 0.001

Base-Dependent Penalty Bound 0.708 ± 0.000 0.658 ± 0.000
A = 7 ambulances

p = 1/30 p = 1/20
(2 calls/hr) (3 calls/hr)

Heuristic Lower Bound 0.707 ± 0.001 0.620 ± 0.001
Loss System Upper Bound 0.758 ± 0.001 0.701 ± 0.000
Perfect Info Upper Bound 0.978 ± 0.001 0.971 ± 0.001

Base-Dependent Penalty Bound 0.864 ± 0.000 0.806 ± 0.000

Table 5.4: 95% confidence intervals of our lower and upper bounds for our
second small-scale EMS system, averaged over 5000 i.i.d. repli-
cations.

Our base-dependent penalty function again outperforms our other two

penalty functions, and so we omit the latter bounds from Table 5.4. Although

the loss system bound is again tighter than our information-based bound, our

penalty indeed appears to be more effective at closing the duality gap in systems
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less capable of resource pooling. This effect also appears to diminish as we grow

the fleet, as our bound is weaker when A = 7 than when A = 5. Taken together,

our experiments suggest that our information penalty bound is well-suited to

small-scale systems, which tend to operate smaller fleets, and to spread their

ambulances further geographically.

5.7.3 A Realistic System

Given that our information penalty bound appears to diminish in effective-

ness with larger systems, a natural question to ask is how the bound performs

with more realistically-sized problem instances. In this vein, we next consider a

graph based upon a simplification of the road network in Edmonton, Canada.

Our graph is due to Maxwell et al. [61], but is smaller than the one we study in

Section 4.5.2.2. The system we study here contains 189 nodes, and again oper-

ates 16 ambulances distributed across 11 bases. The travel speed of ambulances

in the system, chute time, arrival process, and service time distribution are as in

the previous section. Computing our bounds in the usual way, and averaging

over 5000 i.i.d. replications, we obtain Table 5.5.

A = 16 ambulances
p = 1/10 p = 2/15 p = 1/10

(6 calls/hr) (8 calls/hr) (10 calls/hr)
Heuristic Lower Bound 0.901 ± 0.001 0.879 ± 0.001 0.844 ± 0.001

Loss System Upper Bound 0.927 ± 0.001 0.927 ± 0.001 0.923 ± 0.000
Perfect Info Upper Bound 0.926 ± 0.001 0.928 ± 0.001 0.928 ± 0.000

Base-Dependent Penalty Bound 0.926 ± 0.001 0.928 ± 0.001 0.928 ± 0.000

Table 5.5: 95% confidence intervals of our lower and upper bounds on a
system modelled after Edmonton EMS, averaged over 5000 i.i.d.
replications.

This time, our information penalty fails to improve upon the perfect infor-
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mation upper bound. When we attempt to solve the minimization problem

(5.44), moving against the gradient does not decrease the objective, indicating

that we attain our tightest upper bound when γ = 0— that is, in the absence

of a penalty. Although the loss system bound also appears to struggle in this

setting, Table 5.5 confirms the insights we drew from our small-scale systems.

Edmonton operates a reasonably large fleet, and resources can pool easily; six

ambulances are sufficient to cover 90% of demand (that is, to respond promptly

to the next call arrival with probability 0.9).

This degree of resource pooling may not be anomalous, as increased call

volumes make redundant coverage a necessity in urban areas, suggesting that

our penalty function would be just as ineffective when applied to large-scale

EMS systems. Indeed, we obtain similar results when we study the exploratory

EMS systems we study in Section 4.5.2.3; our penalty function again fails to

improve upon the perfect information upper bound. We omit the corresponding

numerical results for brevity.

5.7.4 Discussion

The above computational experiments suggest that the value function approx-

imation that we use in building our penalty is poor. We hypothesize that the

reason for this is twofold. First, a one-step look-ahead approximation may not

adequately capture the effects that decisions have on the system’s ability to re-

spond to future calls. Second, we model coverage as being a linear function of

the number of idle ambulances in the system, and in practice, there are dimin-

ishing marginal returns associated with redundant coverage. One may attempt

to address the former concern by a value function approximation with a wider
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look-ahead window. However, even a two-step look-ahead approximation is

challenging to implement, as for a given time t, the state of the system at time

t+ 2 is a function of the decisions at time t+ 1, which in turn is a function of the

decisions made at time t; this results in nonlinear interactions.

To address the latter concern, one might consider a value function approxi-

mation that is concave in the number of idle ambulances in the system. Maxwell

et al. [60] construct one such approximation based upon the Erlang loss formula.

Although the resulting penalty can be written in closed-form using the deci-

sion variables in (IP2(ω)), the objective function of the corresponding penalized

problem becomes nonlinear.

Implementing either approach would entail finding or developing a pro-

cedure with which the resulting nonlinear optimization problem (with integer

decision variables) is computationally tractable. Alternatively, there may exist

a more effective penalty that can be written as a linear function of the decision

variables in (IP2(ω)). We believe this to be unlikely, as we considered several

variations of the one-step look-ahead penalty without improving performance.

However, we propose both as directions for future research.

5.8 Conclusion

In this chapter, we devised an upper bound on the performance of optimal am-

bulance redeployment policies by applying the “information penalty” frame-

work of Brown et al. [20]. We begin by formulating the EMS provider’s decision

problem as a high-dimensional stochastic dynamic program, then demonstrate

that a relaxation of this problem in which the decision-maker has perfect infor-

mation is tractable, and can be solved via an equivalent integer program (that
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we conjecture to not have an integrality gap). To tighten the perfect information

upper bound, we introduce a penalty function that affects policies using future

information to make decisions (but not nonanticipative policies). We introduce

a parametrized family of penalties (based upon a one-step look-ahead value

function approximation) for which the penalized problem is no more difficult

than to solve than the perfect information relaxation. Furthermore, we show

that the penalty in this family yielding the tightest upper bound can be found

by solving a convex optimization problem.

Numerical experiments, however, have yielded fairly discouraging results.

Our information penalty upper bound appears to be fairly effective in small-

scale systems, particularly in situations to which resources cannot be effectively

pooled. However, it is consistently outperformed by our loss system bound

from Chapter 4. Furthermore, when we consider larger, more realistic EMS

systems, the penalty bound fails to improve even upon the perfect informa-

tion bound. We conjecture that a tighter bound can be obtained by basing our

penalty upon a more accurate value function approximation, but this presents

technical challenges, as developing such a bound would likely entail solving a

nonlinear integer optimization problem.
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APPENDIX A

APPENDIX FOR CHAPTER 2

A.1 Proof of Lemma 2.5.4

A.1.1 Preliminaries

We make use of the following intermediate result, which states that in a finite-

horizon setting, the benefit associated with being in a “better” system state in-

creases with the length of the horizon.

Lemma A.1.1. For all n ≥ 1, α ∈ [0, 1), and applicable i and j, we have

1. vn,α(i, j)− vn,α(i+ 1, j) ≥ vn,α(i, j)− vn,α(i+ 1, j)

2. vn,α(i, j)− vn,α(i, j + 1) ≥ vn,α(i, j)− vn,α(i, j + 1)

3. vn,α(i, j + 1)− vn,α(i+ 1, j) ≥ vn,α(i, j + 1)− vn,α(i+ 1, j)

Proof. We verify Statement 1 with a sample path argument; the proofs of State-

ments 2 and 3 are similar. Start two processes on the same probability space: one

in state (i, j) and one in state (i+1, j), each with n periods remaining in the hori-

zon. Let ∆n denote the difference in reward collected by the two processes until

either coupling occurs or n time periods have elapsed. We show ∆n ≤ ∆n+1

pathwise. On sample paths ω where coupling occurs in the first n periods,

∆n(ω) = ∆n+1(ω). On all other paths, Process 1 has at least as many servers

available as Process 2 after n periods, and collects a reward in the remaining

period at least as large as that by Process 2. Thus, ∆n(ω) ≤ ∆n+1(ω).
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To prove Lemma 2.5.4, it suffices to show that for every n that

vn,α(i, j)− vn,α(i, j + 1) ≤ vn,α(i, j + 1)− vn,α(i, j + 2) (A.1)

vn,α(i, j)− vn,α(i, j + 1) ≤ vn,α(i+ 1, j)− vn,α(i+ 1, j + 1) (A.2)

vn,α(i, NB)− vn,α(i+ 1, NB) ≤ vn,α(i+ 1, NB)− vn,α(i+ 2, NB) (A.3)

vn,α(i+ 1, j)− vn,α(i+ 1, j + 1) ≤ vn,α(i, j + 1)− vn,α(i, j + 2), (A.4)

and we proceed via induction over the time periods. The base case (n = 0) is

trivial, as we assume v0,α = 0. Now suppose that (A.1)–(A.4) hold over horizons

of length up to n: our induction hypothesis. In the analysis that follows, we as-

sume, for convenience, that α = 1, allowing us to suppress α in our arguments;

nearly identical reasoning can be used for the case where α < 1.

A.1.2 Inductive Step, Inequality (A.1)

Fix i ∈ {0, 1, . . . , NA} and j ∈ {0, 1, . . . , NB − 2}. We want to show that

vn+1, α(i, j)− vn+1, α(i, j + 1) ≤ vn+1, α(i, j + 1)− vn+1, α(i, j + 2). (A.5)

Using finite-horizon analogues of the optimality equations (2.3), we can write

vn+1, α(i, j)− vn+1, α(i, j + 1) (A.6)

= λH

[
1{i<NA}

(
vn,α(i+ 1, j)− vn,α(i+ 1, j + 1)

)
+ 1{i=NA}

(
vn,α(i, j + 1)− vn,α(i, j + 2)

)]
+ λL

[
max

{
RL + vn,α(i, j + 1), vn,α(i, j)

}
−max

{
RL + vn,α(i, j + 2), vn,α(i, j + 1)

}]
+ iµ

[
vn,α(i− 1, j)− vn,α(i− 1, j + 1)

]
+ jµ

[
vn,α(i, j − 1)− vn,α(i, j)

]
+ µ
[
vn,α(i, j)− vn,α(i, j)

]
+ (NA +NB − i− j − 1)µ

[
vn,α(i, j)− vn,α(i, j + 1)

]
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It suffices to show that each term in brackets on the right-hand side of (A.6) is

bounded above by vn+1, α(i, j + 1) − vn+1, α(i, j + 2). Consider the first term. If

i < NA, we have that

vn,α(i+ 1, j)− vn,α(i+ 1, j + 1) ≤ vn,α(i, j + 1)− vn,α(i, j + 2)

≤ vn+1, α(i, j + 1)− vn+1, α(i, j + 2),

where the first inequality follows by (A.4) and our induction hypothesis, and

the second by Lemma A.1.1. Similar reasoning applies if i = NA. Now consider

the second term. There are three possibilities:

1. RL + vn,α(i, j + 1) ≥ vn,α(i, j) and RL + vn,α(i, j + 2) < αvn,α(i, j + 1),

2. RL + vn,α(i, j + 1) ≥ vn,α(i, j) and RL + vn,α(i, j + 2) ≥ vn,α(i, j + 1),

3. RL + vn,α(i, j + 1) < vn,α(i, j) and RL + vn,α(i, j + 2) < vn,α(i, j + 1).

We cannot haveRL+vn,α(i, j+1) < vn,α(i, j) andRL+vn,α(i, j+2) ≥ vn,α(i, j+1),

as by the induction hypothesis, vn,α is convex in j. Consider the first case; the

analysis for the latter two cases is straightforward. We have

max
{
RL + vn,α(i, j + 1), vn,α(i, j)

}
−max

{
RL + vn,α(i, j + 2), vn,α(i, j + 1)

}
= RL + vn,α(i, j + 1)− vn,α(i, j + 1)

< vn,α(i, j + 1)− vn,α(i, j + 2)

≤ vn+1, α(i, j + 1)− vn+1, α(i, j + 2),

where the first inequality follows by assumption, and the second by Lemma

A.1.1. Now consider the third term. The induction hypothesis— specifically,

inequalities (A.1) and (A.2)— and Lemma A.1.1 yield

vn,α(i− 1, j)− vn,α(i− 1, j + 1) ≤ vn,α(i, j)− vn,α(i, j + 1)

≤ vn,α(i, j + 1)− vn,α(i, j + 2)

≤ vn+1, α(i, j + 1)− vn+1, α(i, j + 2).
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The remaining terms follow in a similar fashion.

A.1.3 Inductive Step, Inequality (A.2)

Fix i ∈ {0, . . . , NA − 1} and j ∈ {0, . . . , NB − 1}. We want to show that

vn+1, α(i, j)− vn+1, α(i, j + 1) ≤ vn+1, α(i+ 1, j)− vn+1, α(i+ 1, j + 1), (A.7)

and proceed using a sample path argument. Start four processes on the same

probability space, each with n+ 1 periods remaining in the horizon. Processes 1

and 4 begin in states (i, j) and (i+ 1, j+ 1), respectively, and follow the optimal

policy π∗. Processes 2 and 3 begin in states (i, j + 1) and (i+ 1, j), respectively,

and use potentially suboptimal policies π2 and π3, respectively. These policies

deviate from π∗ only during the first time period; we describe them later.

Let ∆ be the difference in reward collected by Processes 1 and 2 until they

couple; define ∆′ analogously for Processes 3 and 4. Equation (2.1) implies

E∆ = vn+1, α(i, j)− vπ2n+1, α(i, j + 1)

E∆′ = vπ3n+1, α(i+ 1, j)− vn+1, α(i+ 1, j + 1)

It suffices to show E∆ ≤ E∆′, as

vn+1, α(i, j)− vn+1, α(i, j + 1) ≤ vn+1, α(i, j)− vπ2n+1, α(i, j + 1)

≤ vπ3n+1, α(i+ 1, j)− vn+1, α(i+ 1, j + 1)

≤ vn+1, α(i+ 1, j)− vn+1, α(i+ 1, j + 1).

There is one Type B server that is busy in Processes 2 and 4, but idle in Pro-

cesses 1 and 3; call it Server I. We construct our probability space so that Server

I completes service in all four processes simultaneously (but triggers a dummy

completion in Processes 1 and 3). Similarly, there is one Type A server that is
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busy in Processes 3 and 4, but idle in Processes 1 and 2; call it Server II. We

probabilistically link this server across all four processes as we did with Server

I. In the first time period, seven transitions are possible:

1. A Type H arrival

2. A Type L arrival

3. A Type A service completion.

4. A completion by Server I.

5. A completion by Server II.

6. A completion by any other Type B server.

7. A dummy transition due to uniformization.

For k = 1, . . . , 7, let Ak be the event in which the kth transition occurs; these

events partition the sample space. By the Tower Property, it suffices to show

that E[∆ |Ak] ≤ E[∆′ |Ak] for each k.

Case 1 (Event A1): If i + 1 < NA, all four processes admit the Type H job with

a Type A server, and transition to states (i + 1, j), (i + 1, j + 1), (i + 2, j) and

(i+ 2, j+ 1), respectively. Since all four processes subsequently use π∗, we have

E[∆ |A1] = vn,α(i+ 1, j)− vn,α(i+ 1, j + 1)

E[∆′ |A1] = vn,α(i+ 2, j)− vn,α(i+ 2, j + 1).

By the induction hypothesis and (A.1), we have E[∆ |A1] ≤ E[∆′ |A1], as de-

sired. If i + 1 = NA, but j + 1 < NB, then Processes 3 and 4 must admit the job

with Type B servers, and once again, by the induction hypothesis and (A.1),

E[∆ |A1] = vn,α(i+ 1, j)− vn,α(i+ 1, j + 1)

≤ vn,α(i+ 1, j + 1)− vn,α(i+ 1, j + 2) = E[∆′ |A1],
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Finally, if i+ 1 = NA and j + 1 = NB, then Process 3 admits the job with a Type

B server, whereas Process 4 must turn the job away. We thus have

E[∆ |A1] = vn,α(i+ 1, j)− vn,α(i+ 1, j + 1)

≤ RHB + vn,α(i+ 1, j + 1)− vn,α(i+ 1, j + 1) = E[∆′ |A1],

where the inequality follows this time by Lemma 2.4.2.

Case 2 (Event A2): Suppose event A2 occurs. Processes 2 and 3 take (potentially

suboptimal) actions based upon those taken by Processes 1 and 4. Specifically:

• If Processes 1 and 4 admit the arriving Type L job, so do Processes 2 and 3.

• If Processes 1 and 4 reject the arriving Type L job, so do Processes 2 and 3.

• If Process 1 admits the job, and Process 4 rejects, then Process 2 rejects and

Process 3 admits.

We need not consider the case when Process 1 rejects the job in state (i, j), and

Process 4 admits the job in state (i+1, j+1), as by the induction hypothesis, we

can assume that π∗ is a monotone switching curve policy. Suppose j + 1 < NB.

If Processes 1 and 4 both admit the job, then

E[∆ |A2] = vn,α(i, j + 1)− vn,α(i, j + 2)

≤ vn,α(i+ 1, j + 1)− vn,α(i+ 1, j + 2) = E[∆′ |A2],

by (A.2) and the induction hypothesis. If Processes 1 and 4 both reject, all four

processes remain in the same state, and we can again leverage (A.2) and the

induction hypothesis. Finally, if Process 1 admits and Process 4 rejects, we have

E2[∆ |A2] = RL + vn,α(i, j + 1)− vn,α(i, j + 1)

= RL + vn,α(i+ 1, j + 1)− vn,α(i+ 1, j + 1) = E[∆′ |A2].
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The case j + 1 = NB follows via similar arguments, which we omit for brevity.

Case 3 (Event A3): The four processes transition to states (i− 1, j), (i− 1, j+ 1),

(i, j), and (i, j + 1), respectively, and

E[∆ |A3] = vn,α(i−1, j)−vn,α(i−1, j+1) ≤ vn,α(i, j)−vn,α(i, j+1) = E[∆′ |A3],

by (A.2) and the induction hypothesis.

Case 4 (Event A4): Processes 1 and 2 both transition to state (i, j), and coupling

occurs. Processes 3 and 4 transition to state (i + 1, j), and couple as well. Thus

E[∆ |A4] = E[∆′ |A4] = 0.

Case 5 (Event A5): Processes 1 and 3 both transition to state (i, j), while Pro-

cesses 2 and 4 both transition to state (i + 1, j). We thus have E[∆ |A5] =

E[∆′ |A5] = vn,α(i, j)− vn,α(i+ 1, j).

Case 6 (Event A6): The four processes transition to states (i, j − 1), (i, j), (i +

1, j − 1), and (i+ 1, j), respectively, and

E[∆ |A6] = vn,α(i, j−1)−vn,α(i, j) ≤ vn,α(i+1, j−1)−vn,α(i+1, j) = E[∆′ |A6],

by (A.2) and the induction hypothesis.

Case 7 (Event A7): The four processes do not change state, and E[∆ |A7] ≤

E[∆′ |A7] by (A.2) and the induction hypothesis.

Thus, E∆ ≤ E∆′, as desired.
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A.1.4 Inductive Step, Inequality (A.3)

Fix i ∈ {0, 1, . . . , NA − 2}. We want to show that

vn+1, α(i, NB)− vn+1, α(i+ 1, NB) ≤ vn+1, α(i+ 1, NB)− vn+1, α(i+ 2, NB). (A.8)

As in the inductive proof of (A.1), we can rewrite the right-hand side of (A.8) as

vn+1, α(i, NB)− vn+1, α(i+ 1, NB) (A.9)

= λH
[
vn,α(i+ 1, NB)− vn,α(i+ 2, NB)

]
+ λL

[
max

{
RL + vn,α(i+ 1, NB), vn,α(i, NB)

}
−max

{
RL + vn,α(i+ 2, NB), vn,α(i+ 1, NB)

}]
+ iµ

[
vn,α(i− 1, NB)− vn,α(i, NB)]

+ µ
[
vn,α(i, NB)− vn,α(i, NB)

]
+ jµ

[
vn,α(i, NB − 1)− vn,α(i+ 1, NB − 1)

]
+ (NA +NB − i− j)µ

[
vn,α(i, NB)− vn,α(i+ 1, NB)

]
It again suffices to show that each term on the right-hand side of (A.9) is

bounded above by vn+1, α(i + 1, NB) − vn+1, α(i + 2, NB). We consider only the

second term, as the analysis of the remaining terms is straightforward. There

are again three possibilities:

1. RL+vn,α(i+1, NB) ≥ vn,α(i, NB) andRL+vn,α(i+2, NB) < vn,α(i+1, NB),

2. RL+vn,α(i+1, NB) ≥ vn,α(i, NB) andRL+vn,α(i+2, NB) ≥ vn,α(i+1, NB)

3. RL+vn,α(i+1, NB) < vn,α(i, NB) andRL+vn,α(i+2, NB) < vn,α(i+1, NB).

We cannot have RL + vn,α(i + 1, NB) < vn,α(i, NB) and RL + vn,α(i + 1, NB) ≥

vn,α(i, NB), as by the induction hypothesis, vn,α is convex in i when j = NB.

Consider the first case; the analysis for the latter two cases is straightforward.
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We have

max
{
RL + vn,α(i+ 1, NB), vn,α(i, NB)

}
−max

{
RL + vn,α(i+ 2, NB), vn,α(i+ 1, NB)

}
= RL + vn,α(i+ 1, NB)− vn,α(i+ 1, NB)

< vn,α(i+ 1, NB)− vn,α(i+ 2, NB)

≤ vn+1, α(i+ 1, NB)− vn+1, α(i+ 2, NB),

as desired.

A.1.5 Inductive Step, Inequality (A.4)

Fix i ∈ {0, . . . , NA − 1} and j ∈ {0, . . . , NB − 2}. We want to show that

vn+1, α(i+ 1, j)− vn+1, α(i+ 1, j + 1) ≤ vn+1, α(i, j + 1)− vn+1, α(i, j + 2), (A.10)

and again use a sample path argument. Start four processes on the same proba-

bility space, each with n+ 1 periods remaining in the horizon. Processes 1 and 4

begin in states (i + 1, j) and (i, j + 2), respectively, and follow the optimal pol-

icy π∗. Processes 2 and 3 begin in states (i+ 1, j + 1) and (i, j + 1), respectively,

and use potentially suboptimal policies π2 and π3, respectively. These policies

deviate from π∗ only during the first time period, in a way that we specify later.

Let the random variable Θ denote the difference in reward collected by Pro-

cesses 1 and 2 until coupling occurs; define Θ′ analogously for Processes 3 and

4. It suffices to show that EΘ ≤ EΘ′. There are i Type A and j Type B servers

that are busy in all four processes, and NA − i− 1 Type A and NB − j − 2 Type

B servers that are idle in all four processes. We probabilistically the remaining

three servers (one Type A, two Type B) as in Table A.1.
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Server I Server II Server III

Process 1, (i+ 1, j) Idle Type B Busy Type A Idle Type B

Process 2, (i+ 1, j + 1) Busy Type B Busy Type A Idle Type B

Process 3, (i, j + 1) Idle Type B Busy Type B Idle Type A

Process 4, (i, j + 2) Busy Type B Busy Type B Idle Type A

Table A.1: Marking scheme for servers in the sample path argument for
Equation (A.4).

Note that our marking scheme does not require units to be of the same type

in every process, but are linked so that completions of all servers marked as

Server I (similarly, Servers II and III) occur simultaneously in all four processes.

In the first time period, eight transitions are possible:

1. A Type H arrival

2. A Type L arrival

3. A completion by Server I.

4. A completion by Server II.

5. A completion by Server III.

6. A completion by an unmarked Type A server.

7. A completion by an unmarked Type B server.

8. A dummy transition due to uniformization.

For k = 1, . . . 8, letBk be the event in which transition k occurs. Again, it suffices

to show that E[Θ |Bk] ≤ E[Θ′ |Bk] for each k.

Case 1 (Event B1): If i + 1 < NA, the analysis is straightforward. If i + 1 =

NA, then Processes 1 and 2 assign the Type H job to a Type B server, whereas
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Processes 3 and 4 route the job to a Type A server. We have that

E[Θ |B1] = vn,α(i+ 1, j + 1)− vn,α(i+ 1, j + 2)

= vn,α(i+ 1, j + 1)− vn,α(i+ 1, j + 2) = E[Θ′ |B1].

Case 2 (EventB2): Processes 2 and 3 take (potentially suboptimal) actions based

upon those taken by Processes 1 and 4. In particular:

• If Processes 1 and 4 admit the arriving Type L job, so do Processes 2 and 3.

• If Processes 1 and 4 reject the arriving Type L job, so do Processes 2 and 3.

• If Process 1 admits the job, and Process 4 rejects, then Process 2 rejects and

Process 3 admits.

We need not consider the case when Process 1 rejects the job in state (i + 1, j),

and Process 4 admits the job in state (i, j + 2), as by the induction hypothesis,

we can assume that π∗ is a monotone switching curve policy with a slope of at

least −1. The analysis for the case where both Processes 1 and 4 reject the job is

straightforward, as a dummy transition occurs.

Now suppose Processes 1 and 4 both admit the job. If j+2 < NB, the analysis

is again straightforward. If j + 2 = NB, then Process 4 assigns a Type A server

to the job, whereas all other processes assign Type B servers, and

E[Θ |B2] = vn,α(i+ 1, j + 1)− vn,α(i+ 1, j + 2)

≤ vn,α(i, j + 2)− vn,α(i+ 1, j + 2) = E[Θ′ |B2],

where the inequality follows by Lemma 2.4.1. Finally, consider the case where

Process 1 admits the job, and Process 4 rejects. Transitions to states (i+ 1, j+ 1),

(i + 1, j + 1), (i, j + 2), and (i, j + 2) occur. Processes 1 and 2 couple, as do

Processes 3 and 4, and we have that E[Θ |B2] = E[Θ′ |B2] = RL.
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Case 3 (Event B3): The four processes transition to states (i + 1, j), (i + 1, j),

(i, j + 1), and (i, j + 1), respectively. Processes 1 and 2 couple, as do Processes

3 and 4, and we have that E[Θ |B3] = E[Θ′ |B3] = 0.

Case 4 (Event B4): The four processes transition to states (i, j), (i, j + 1), (i, j),

and (i, j + 1). Processes 1 and 3 couple, as do Processes 2 and 4, and we have

E[Θ |B4] = E[Θ′ |B4].

Case 5 (Event B5): A dummy transition occurs, and E[Θ |B5] ≤ E[Θ′ |B5] fol-

lows immediately from the induction hypothesis.

Case 6 (Event B6): The four processes transition to states (i, j), (i, j + 1), (i −

1, j+1), and (i−1, j+2), and E[Θ |B6] ≤ E[Θ′ |B6] by the induction hypothesis.

Case 7 (Event B7): The analysis is identical to that for Case 5.

Thus, EΘ ≤ EΘ′, as desired.

A.2 Proof of Proposition 2.5.7

Fix α ∈ (0, 1), and suppose

RHB ≤ RL ≤ RHB +
µ

λL
RHB +

µ

λH

(
1 +

µ

λL
+
λH
λL

)
RHA. (A.11)

Condition (A.11) is sufficient for the value functions vα and h to be convex in i:

Lemma A.2.1. If RL > RHB, then for every n ≥ 0 and applicable i and j, we have that

vn,α(i, j)− vn,α(i+ 1, j) ≤ vn,α(i+ 1, j)− vn,α(i+ 2, j) (A.12)

vn,α(i, j)− vn,α(i, j + 1) ≤ vn,α(i, j + 1)− vn,α(i, j + 2) (A.13)

vn,α(i, j)− vn,α(i+ 1, j) ≤ vn,α(i+ 1, j)− vn,α(i+ 1, j + 1) (A.14)

+RHA −RHB
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We defer the proof until Appendix A.2.1, as it is lengthy, and involves argu-

ments very similar to those used in the proof of Proposition 2.5.4 in Appendix

A.1. In proving Lemma A.2.1, we make use of an intermediate result:

Lemma A.2.2. If condition (A.11) holds, then for each n ≥ 0, we have

vn,α(NA − 1, NB)− vn,α(NA, NB) ≤ RHA. (A.15)

Proof. By a fairly unconventional another sample path argument. Start two pro-

cesses in the same probability space. Process 1 begins in state (NA − 1, NB)

and follows the optimal policy π∗, whereas Process 2 begins in state (NA, NB)

and uses a potentially suboptimal policy π that rejects Type L jobs arriving in

any states (i, j) where j = NB. Let ∆ denote the difference in reward collected

by the two processes until coupling occurs. We have E∆ = vα(NA − 1, NB) −

vπα(NA, NB), and it suffices to show E∆ ≤ RHA. Both processes move in parallel

until one of the following occurs:

1. A service completion from the Type A server that is idle in Process 1, but

busy in Process 2.

2. A Type L arrival when j = NB that Process 1 admits (but Process 2, by

assumption, redirects).

3. A Type H arrival when Process 1 is in state (NA − 1, NB), and Process 2 is

in state (NA, NB).

4. A Type H arrival when the two processes are in states (NA − 1, j) and

(NA, j), for some j < NB.

Let Ω1, Ω2, Ω3, and Ω4 be the sets of paths on which Events 1, 2, 3, and 4 occur,

respectively; these sets partition Ω. We further partition the set Ω4. After Event
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4 occurs, Processes 1 and 2 are in states (NA, j) and (NA, j + 1), respectively,

and Process 1 has collected RHA−RHB more reward than Process 2. From here,

Process 2 switches to a policy that imitates the decisions made by Process 1 (and

that no longer rejects jobs in states (i, j) where j = NB, unless Process 1 does so).

Both processes continue to move in parallel until one of the following occurs.

4.1 A Type L service completion seen by Process 2, but not by Process 1.

4.2 A Type H arrival when Process 1 is in state (NA, NB − 1), and Process 2 is

in state (NA, NB).

4.3 A Type L arrival when Process 1 is in state (NA, NB − 1), and Process 2 is

in state (NA, NB).

Let Ω1
4, Ω2

4 and Ω3
4 be the set of paths on which events 4.1, 4.2, and 4.3 occur,

respectively. Then

∆(ω) =



0 ω ∈ Ω1

RL ω ∈ Ω2

RHA ω ∈ Ω3

RHA −RHB ω ∈ Ω1
4

RHA ω ∈ Ω2
4

RHA +RL −RHB ω ∈ Ω3
4

, (A.16)

from which it follows that

E∆ = RLP(Ω2) +RHAP(Ω3) + (RHA −RHB)P(Ω1
4) (A.17)

+RHAP(Ω2
4) + (RHA +RL −RHB)P(Ω3

4)

Note that ∆(ω) > RHA only when ω ∈ Ω3
4, and so we proceed by showing

that P(Ω3
4) is relatively small. Suppose, for the time being, that the following
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inequalities hold (which we later prove):

P(Ω1) ≥ µ

λH
P(Ω4) (A.18)

P(Ω1
4) ≥ µ

λL
P(Ω3

4) (A.19)

P(Ω2
4) =

λH
λL

P(Ω3
4) (A.20)

We demonstrate that (A.11), when combined with inequalities (A.18)–(A.20),

imply E∆ ≤ RHA. Indeed:

RL ≤ RHB +
µ

λL
RHB +

µ

λH

(
1 +

µ

λL
+
λH
λL

)
RHA

⇐⇒ (RL −RHB)P (Ω3
4) ≤

[
µ

λL
RHB +

µ

λH

(
1 +

µ

λL
+
λH
λL

)
RHA

]
P (Ω3

4)

=⇒ (RL −RHB)P (Ω3
4) ≤ RHBP(Ω1

4) +RHA
µ

λH

[
P(Ω1

4) + P(Ω2
4) + P(Ω3

4)
]

=⇒ (RL −RHB)P (Ω3
4) ≤ RHBP(Ω1

4) +RHAP(Ω1)

=⇒ −RHAP (Ω1)−RHBP(Ω1
4) + (RL −RHB)P (Ω3

4) ≤ 0

=⇒ −RHAP (Ω1) + (RL −RHA)P(Ω2)−RHBP(Ω1
4) + (RL −RHB)P (Ω3

4) ≤ 0

⇐⇒ E∆−RHA ≤ 0,

where the second line follows by inequalities (A.19) and (A.20), the third by

(A.18) and the fact that P(Ω4) = P(Ω1
4) + P(Ω2

4) + P(Ω3
4), and the final line by

Equation (A.17).

It remains to show that (A.18) – (A.20) hold. We prove (A.18) here; inequali-

ties (A.19) and (A.20) follow in a similar fashion. Because our MDP is uniformiz-

able, and we have specified the policies by which Processes 1 and 2 operate, we

can model them jointly as a discrete-time Markov chain. Randomness in this

Markov chain is fully characterized by a sequence of i.i.d. uniform random vari-

ables {Un : n ≥ 1}, where Ui governs the state transition occurring immediately

before the ith decision epoch.
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However, each sample path ω can be described more succinctly. Recall that

in formulating our MDP, we assumed that Λ = λH + λL +NAµ+NBµ = 1. This

allows us to partition the interval [0, 1] into one subinterval of width λH , one

subinterval of width λL, and (NA+NB) subintervals of width µ. We can associate

each subinterval with a possible state transition. For instance, we can use the

subinterval [0, λH) for transitions resulting from a Type H arrival, and [λH +

λL, λH + λL + µ) for service completions resulting from a specific Type A server

in the system (or for a dummy transitions if the server is idle). Thus, a sample

path ω can be summarized by the type of transition that occurs in each decision

epoch; we describe this using a sequence of random variables {Xn : n ≥ 1}. We

allow the Xn to take on a value in the set {H, L, A1, . . . , ANA , B1, . . . , BNB}.

Fix ω ∈ Ω4, and let T (ω) be the time at which Event 4 occurs on this path;

note XT (ω)(ω) = H . Consider a transformed sample path ω′ that is identical to

ω, except that its T (ω)th element is A1 instead of H . (Assume, without loss of

generality, that the first Type A server is the one that is initially idle in Process

1, but busy in Process 2.) Let Ω′1 be the set of all paths in Ω4 that are transformed

in this way; observe that Ω′1 ⊆ Ω1. It suffices to show P(Ω′1) = µ
λH

P(Ω4). Indeed:

P(Ω′1) =
∞∑
n=1

P(Ω′1, T = n)

=
∞∑
n=1

∑
(x1, ..., xn−1):T=n

P(X1 = x1, . . . , Xn−1 = xn−1, Xn = H)

=
∞∑
n=1

∑
(x1, ..., xn−1):T=n

P(X1 = x1, . . . , Xn−1 = xn−1)P(Xn = H)

=
∞∑
n=1

∑
(x1, ..., xn−1):T=n

P(X1 = x1, . . . , Xn−1 = xn−1)

[
µ

λH
P(Xn = A1)

]

=
∞∑
n=1

µ

λH
P(Ω4, T = n) =

µ

λH
P(Ω4)

where the second line follows because the Xn are i.i.d. Thus, (A.18) holds.
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A.3 Proof of Proposition 2.5.8

For convenience, we refer to the system with rewards (RHA, RHB, RL) as the

original system, and the system with rewards (R′HA, R
′
HB, R

′
L) as the modified

system. Consider the long-run average reward criterion (the proof for the dis-

counted reward criterion is similar). Because the MDP is unichain, the long-run

average reward under any policy is constant and independent of the starting

state. Let πi be the threshold policy in which Type L jobs are admitted in all

states (i′, NB) where i′ ≤ i. We use π−1 to denote the policy that never admits

Type L jobs when all Type B servers are busy. Finally, let Ji and J ′i denote the

long-run average reward obtained attained by policy πi under the original and

modified systems, respectively.

For the original system, let πi∗ denote the best policy int the collection

{π−1, π0, π1, . . . , πNA}; if multiple policies are optimal, let πi∗ denote the one

with the largest threshold. To avoid trivialities, assume i∗ < NA. By construc-

tion, Ji∗ > Ji for all i > i∗. It suffices to show that J ′i∗ > J ′i for all i > i∗ as well.

Fix i > i∗, and construct two stochastic processes on the same probability space,

both under the original system. The process {X(t) : t ≥ 0} follows policy πi∗ ,

whereas {X̃(t) : t ≥ 0} follows πi. Assume X(0) = X̃(0) = (i∗ + 1, NB). Let

τ0 = 0, and for n ≥ 0, define the stopping times

τn+1 = inf
{
t > τn : (X(t), X̃(t)) = ((i∗ + 1, NB), (i∗ + 1, NB))

}
,

the times at which both processes return to state (i∗ + 1, NB). By memoryless-

ness, {τn : n ≥ 1} constitute a renewal process. Let R(t) and R̃(t) denote the

reward collected by processes X and X̃ by time t. Similarly, let Ri and R̃i de-

note the reward collected by X and X̃ during the ith renewal epoch. By the
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Renewal Reward Theorem,

Ji∗ = lim
t→∞

E
[
R(t)

t

]
=

ER1

Eτ1

Ji = lim
t→∞

E

[
R̃(t)

t

]
=

ER̃1

Eτ1

. (A.21)

The above limits are well-defined, as {(X(t), X̃(t)) : t ≥ 0} is an irreducible

continuous-time Markov chain with finite state space, implying Eτ1 <∞. Thus

Ji∗ − Ji =
ER1 − ER̃1

Eτ1

> 0. (A.22)

Consider ER1 − ER̃1, the expected difference in reward collected by X and X̃

over a single renewal epoch. Discrepancies between the reward collected by X

and X̃ can occur in four ways. Let

1. N1 be the number of Type L jobs that X rejects due to policy considera-

tions, but X̃ admits, and assigns to Type A servers.

2. N2 be the number of Type H jobs that X admits, but X̃ rejects because all

servers are busy.

3. N3 be the number of Type H jobs that X assigns to Type A servers, but X̃

is forced to assign to Type B servers.

4. N4 be the number of Type L jobs that X admits, but X̃ rejects, either be-

cause all servers are busy, or due to policy considerations.

We make two claims, that we later prove: that the above list of discrepancies is

comprehensive, and that N1 ≥ N4 pathwise. Supposing these to be true for the

time being, it follows that

E[R1−R̃1] = −RLE[N1]+RHAE[N2]+(RHA−RHB)E[N3]+RLE[N4] > 0. (A.23)

We can similarly construct two processes {X ′(t) : t ≥ 0} and {X̃ ′(t) : t ≥ 0}, un-

der the modified system. Let R′1, and R̃′1 be defined as in (A.21). Since changing
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rewards does not affect the evolution of the processes X ′ and X̃ ′, we have

E[R′1 − R̃′1] = −R′LE[N1] +R′HAE[N2] + (R′HA −R′HB)E[N3] +R′LE[N4]

= R′HAE[N2] + (R′HA −R′HB)E[N3]−R′LE[N1 −N4]

≥ RHAE[N2] + (RHA −RHB)E[N3]−RLE[N1 −N4]

> 0.

By an equation analogous to (A.22), J ′i∗ > J ′i , and it is preferable under the

modified system to set the threshold to i∗ than to any i > i∗. It remains to

prove the two aforementioned claims: that the events described by the random

variables N1, . . . , N4 are the only transitions in which processes X and X̃ do not

collect the same reward, and that N1 ≥ N4 pathwise.

To show the first claim, it suffices to show that if X̃ admits a Type H (Type

L) job with a Type A (Type B) server, X does as well. Let XA(t) and XB(t) be the

number of free Type A and Type B servers in process X at time t, respectively.

Define X̃A(t) and X̃B(t) analogously. Since X and X̃ are defined on the same

probability space, every service completion seen by X̃ is also observed by X . It

follows that XA(t) ≥ X̃A(t) and XB(t) ≥ X̃B(t) for all t on every sample path.

To show the second claim, consider XA(t) + XB(t) −
[
X̃A(t) − X̃B(t)

]
. This

difference increases by one whenever X̃ admits a Type L job with a Type A

server thatX is forced to reject (that is, whenN1 increases by one), and decreases

by one when X admits a job that X̃ rejects (that is, when N3 or N4 increases by

one). At the start of any renewal epoch, this difference equals zero, and so we

must have N1 = N3 +N4.
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A.4 Proof of Proposition 2.5.6

If Type H calls are subject to admission control, the optimality equations must be

modified slightly. For brevity, we include only those for the long-run discounted

reward criterion.

vα(i, j) = λH

[
1{i<NA}max {RHA + αvα(i+ 1, j), αvα(i, j)} (A.24)

+ 1{i=NA, j<NB}max {RHB + αvα(i, j + 1), αvα(i, j)}

+ 1{i=NA, j=NB}αvα(i, j)
]

+ λL

[
1{j<NB}max{RL + αvα(i, j + 1), αvα(i, j)}

+ 1{i<NA, j=NB}max{RL + αvα(i+ 1, j), αvα(i, j)}

+ 1{i=NA, j=NB}αvα(i, j)
]

+ iµ αvα(i− 1, j) + jµαvα(i, j − 1) + (NA +NB − i− j)µαvα(i, j)

In this modified setting, the structural properties stated in Section 2.4 of the

main paper all still hold; they follow via identical sample path arguments as the

ones presented therein. It suffices to show that vn,α (and consequently, vα and h)

satisfies the following structural properties:

vn,α(i, j)− vn,α(i+ 1, j) ≤ vn,α(i+ 1, j)− vn,α(i+ 2, j) (A.25)

vn,α(i, j)− vn,α(i, j + 1) ≤ vn,α(i+ 1, j)− vn,α(i+ 1, j + 1) (A.26)

vn,α(NA, j)− vn,α(NA, j + 1) ≤ vn,α(NA, j + 1)− vn,α(NA, j + 2) (A.27)

We proceed via induction on n. The base case (n = 0) is trivial, as we assume

vα, 0(i, j) = 0 for all i and j. Now suppose that (A.25)—(A.27) hold over hori-

zons of length up to n: our induction hypothesis. In the analysis that follows,

we assume, for convenience, that α = 1, allowing us to suppress α in our argu-

ments; nearly identical reasoning can be used for the case where α < 1.
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A.4.1 Inductive Step, Inequality (A.25)

Fix i ∈ {0, . . . , NA − 2} and j ∈ {0, . . . , NB}. We want to show that

vn+1, α(i, j)− vn+1, α(i+ 1, j) ≤ vn+1, α(i+ 1, j)− vn+1, α(i+ 2, j), (A.28)

and proceed using a sample path argument. Start four processes on the same

probability space, each with n + 1 periods remaining in the horizon. Processes

1 and 4 begin in states (i, j) and (i + 2, j), respectively, and follow the optimal

policy π∗. Processes 2 and 3 both begin in state (i + 1, j), and use potentially

suboptimal policies π2 and π3, respectively, that deviate from π∗ only during

the first time period. Specifically, Processes 2 and 3 take actions that depend on

those made by Processes 1 and 4 when a job arrives:

• If Processes 1 and 4 admit the arriving job, so do Processes 2 and 3.

• If Processes 1 and 4 reject the arriving job, so do Processes 2 and 3.

• If Process 1 admits the job, and Process 4 rejects, then Process 2 rejects and

Process 3 admits.

We need not consider the case where Process 1 rejects in state (i, j) and Process 4

admits in state (i+2, j), as by the induction hypothesis, we can assume that π∗ is

a monotone switching curve policy. Let ∆ be the difference in reward collected

by Processes 1 and 2 until coupling occurs; define ∆′ analogously for Processes

3 and 4. We show that E∆ ≤ E∆′. There are i Type A and j Type B servers that

are busy in all four processes, and NA − i− 2 Type A and NB − j Type B servers

that are idle in all four processes. We probabilistically link the remaining two

Type A servers according to the scheme in Table A.2.

Note we probabilistically link servers linked so that completions of all

servers marked as Server I (similarly, Server II) occur simultaneously in all four

processes. Eight transitions are possible in the first time period:
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Server I Server II

Process 1, State (i, j) Idle Idle

Process 2, State (i+ 1, j) Busy Idle

Process 3, State (i+ 1, j) Idle Busy

Process 4, State (i+ 2, j) Busy Busy

Table A.2: Marking scheme for units in the sample path argument for
Equation (A.25).

1. A Type H arrival

2. A Type L arrival

3. A completion by Server I.

4. A completion by Server II.

5. A completion by any other Type A server.

6. A Type A service completion.

7. A dummy transition due to uniformization.

For k = 1, . . . 7, let Ak be the event in which transition k occurs; it suffices to

show that E[∆ |Ak] ≤ E[∆′ |Ak] for each k. We proceed case-by-case.

Case 1 (Event A1): If Processes 1 and 4 both admit the job, then by construction

of policies π2 and π3, Processes 2 and 3 do so as well, and

E[∆ |A1] = vn,α(i+1, j)−vn,α(i+2, j) ≤ vn,α(i+2, j)−vn,α(i+3, j) = E[∆′ |A1].

by the induction hypothesis and (A.25). If Processes 1 and 4 both reject, a

dummy transition occurs, and the analysis is straightforward. Finally, if Pro-

cess 1 admits, and Process 4 rejects, then

E[∆ |A1] = vn,α(i+1, j)−vn,α(i+1, j) ≤ vn,α(i+2, j)−vn,α(i+2, j) = E[∆′ |A1].
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Now suppose i + 2 = NA. Process 4 must admit Type H jobs with a Type B

server (provided j < NB). If Process 1 and 4 both admit the job, then

E[∆ |A1] = vn,α(i+ 1, j)− vn,α(i+ 2, j)

≤ vn,α(i+ 1, j + 1)− vn,α(i+ 2, j + 1)

≤ vn,α(i+ 2, j) +RHA − vn,α(i+ 2, j + 1)−RHB = E[∆′ |A1].

The inequalities follow by the induction hypothesis and (A.26), respectively.

Case 2 (Event A2): If j < NB, then all four processes admit the Type L job, and

the analysis is straightforward. If j = NB, then admitting in all four processes

entails using a Type A server. If Processes 1 and 4 both admit the job, then

E[∆ |A2] = vn,α(i+1, j)−vn,α(i+2, j) ≤ vn,α(i+2, j)−vn,α(i+3, j) = E[∆′ |A2],

by (A.25) and the induction hypothesis. If Processes 1 and 4 both reject, a

dummy transition occurs, and the analysis is again straightforward. Finally,

if Process 1 admits and Process 4 rejects, we have

E[∆ |A2] = RL + vn,α(i+ 1, j)− vn,α(i+ 1, j)

= RL + vn,α(i+ 2, j)− vn,α(i+ 2, j) = E[∆′ |A2].

Case 3 (Event A3): Processes 1 and 2 both transition to state (i, j), and coupling

occurs. Processes 3 and 4 transition to state (i + 1, j), and couple as well. Thus

E[∆ |A3] = E[∆′ |A3] = 0.

Case 4 (Event A4): Processes 1 and 3 both transition to state (i, j), while Pro-

cesses 2 and 4 both transition to state (i + 1, j). Thus E[∆ |A4] = E[∆′ |A4] =

vn,α(i, j)− vn,α(i+ 1, j).
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Case 5 (Event A5): The four processes transition to states (i − 1, j), (i, j), (i, j),

and (i+ 1, j), respectively, and

E[∆ |A5] = vn,α(i− 1, j)− vn,α(i, j) ≤ vn,α(i, j)− vn,α(i+ 1, j) = E[∆′ |A5],

by (A.25) and the induction hypothesis.

Case 6 (Event A6): The four processes transition to states (i, j− 1), (i+ 1, j− 1),

(i+ 1, j − 1), and (i+ 2, j − 1), respectively, and

E[∆ |A6] = vn,α(i, j − 1)− vn,α(i+ 1, j − 1)

≤ vn,α(i+ 1, j − 1)− vn,α(i+ 2, j − 1) = E[∆′ |A6],

by (A.25) and the induction hypothesis.

Case 7 (Event A7): A dummy transition occurs; the analysis is straightforward.

Thus, Equation (A.28) holds, as desired.

A.4.2 Inductive Step, Inequality (A.26)

Fix i ∈ {0, . . . , NA − 1} and j ∈ {0, . . . , NB − 1}. We want to show that

vn+1, α(i, j)− vn+1, α(i, j + 1) ≤ vn+1, α(i+ 1, j)− vn+1, α(i+ 1, j + 1). (A.29)

The proof follows by a sample path argument nearly identical to that used in the

proof of Proposition 2.5.4, to show that the value function in that setting is su-

permodular. Thus, we restrict attention to points in the proof that deviate from

the original proof. We construct four stochastic processes and define random

variables ∆ and ∆′ as before; it again suffices to show that E∆ ≤ E∆′. We mark

servers as before, and operate Processes 2 and 3 according to the same subopti-

mal policies described in Section A.4.1. Of the seven transitions that can occur
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in the next time period, the analysis for the latter five cases (in which arrivals

do not occur) is identical. We consider remaining two possibilities below:

Case 1: Suppose a Type H arrival occurs in the next time period. This time, there

is a decision to make in all four processes with respect to the Type H arrival.

Consider first the case where i+1 < NA. If Processes 1 and 4 both admit the job,

then the four processes transition to states (i+ 1, j), (i+ 1, j + 1), (i+ 2, j) and

(i+ 2, j + 1), respectively, and

E[∆ |A1] = vn,α(i+ 1, j)− vn,α(i+ 1, j + 1)

≤ vn,α(i+ 2, j)− vn,α(i+ 2, j + 1) = E[∆′ |A1].

If Processes 1 and 4 both reject the job, dummy transitions occur and

E[∆ |A1] = vn,α(i, j)−vn,α(i, j+1) ≤ vn,α(i+1, j)−vn,α(i+1, j+1) = E[∆′ |A1].

Finally, if Process 1 admits and Process 4 rejects, then

E[∆ |A1] = vn,α(i+ 1, j)− vn,α(i+ 1, j + 1)

= vn,α(i+ 1, j)− vn,α(i+ 1, j + 1) = E[∆′ |A1].

Now suppose i+ 1 < NA. If Process 1 and 4 admit both admit the job (the latter

with a Type B server), so do Processes 2 and 3 (the latter, again, with a Type B

server), and by (A.26), we have that

E[∆ |A1] = vn,α(i+ 1, j)− vn,α(i+ 1, j + 1)

≤ vn,α(i+ 1, j + 1)− vn,α(i+ 1, j + 2) = E[∆′ |A1].

If Processes 1 and 4 both reject, a dummy transition occurs, and the analysis is

straightforward. Finally, if Process 1 admits and Process 4 rejects,

E[∆ |A1] = vn,α(i+1, j)−vn,α(i+1, j+1) = vn,α(i+1, j)−vn,α(i+1, j+1) = E[∆′ |A1].
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Case 2: Suppose a Type L arrival occurs. Since it is optimal for Type L jobs to

be admitted when Type B servers are available, the analysis when j + 1 < NB is

straightforward. Suppose j + 1 = NB. If Processes 1 and 4 both admit, then

E[∆ |A2] = vn,α(i+ 1, j + 1)− vn,α(i+ 1, j + 1)

≤ vn,α(i+ 1, j + 1)− vn,α(i+ 2, j + 1) = E[∆′ |A2],

by Lemma 2.4.1 and the induction hypothesis. If Processes 1 and 4 both reject, a

dummy transition occurs. Finally, if Process 1 admits and Process 4 rejects, then

E[∆ |A2] = RL + vn,α(i, j + 1)− vn,α(i, j + 1)

= RL + vn,α(i+ 1, j + 1)− vn,α(i+ 1, j + 1) = E[∆′ |A2].

Thus, Equation (A.26) holds, as desired.

A.4.3 Inductive Step, Inequality (A.27)

Fix j ∈ {0, 1, . . . , NB − 2}. We want to show that

vn+1, α(NA, j)−vn+1, α(NA, j+1) ≤ vn+1, α(NA, j+1)−vn+1, α(NA, j+2). (A.30)

We can rewrite the left-hand side of (A.30) as

vn+1, α(NA, j)− vn+1, α(NA, j + 1) (A.31)

= λH

[
max

{
RHB + vn,α(NA, j + 1), vn,α(NA, j)

}
−max

{
RHB + vn,α(NA, j + 2), vn,α(NA, j + 1)

}]
+ λL

[
RL + vn,α(NA, j + 1)−RL − vn,α(NA, j + 2)

]
+NAµ

[
vn,α(NA − 1, j)− vn,α(NA − 1, j + 1)]

+ jµ
[
vn,α(NA, j − 1)− vn,α(NA, j)

]
+ µ
[
vn,α(NA, j)− vn,α(NA, j)

]
+ (NA +NB − i− j)µ

[
vn,α(NA, j)− vn,α(NA, j + 1)

]
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In the second term, we leverage the fact that when RL > RHB, it is optimal to

admit Type L jobs whenever Type B servers are available. It suffices to show that

each term on the right-hand side of (A.31) is bounded above by vn+1, α(NA, j +

1)− vn+1, α(NA, j + 2). Consider the first term. There are three possibilities:

1. RHA+vn,α(NA, j+1) ≥ vn,α(NA, j) andRHA+vn,α(NA, j+2) < vn,α(NA, j+1)

2. RHA+vn,α(NA, j+1) ≥ vn,α(NA, j) andRHA+vn,α(NA, j+2) ≥ vn,α(NA, j+1)

3. RHA+vn,α(NA, j+1) < vn,α(NA, j) andRHA+vn,α(NA, j+2) < vn,α(NA, j+1)

We need not consider the remaining possibility, as by the induction hypothesis,

vn,α is convex in j when i = NA. Consider the first case: We have that

max
{
RHA + vn,α(NA, j + 1), vn,α(NA, j)

}
−max

{
RHA + vn,α(NA, j + 2), vn,α(NA, j + 1)

}
= RHA

< vn,α(NA, j + 1)− vn,α(NA, j + 2)

≤ vn+1, α(NA, j + 1)− vn+1, α(NA, j + 2)

where the first inequality follows by assumption, and the second by Lemma

A.1.1. Similar reasoning applies for the remaining two possibilities. Now con-

sider the third term on the right-hand side of (A.31). The induction hypothesis—

specifically, inequalities (A.25) and (A.26)— yields

vn,α(NA − 1, j)− vn,α(NA − 1, j + 1) ≤ vn,α(NA, j)− vn,α(NA, j + 1)

≤ vn,α(NA, j + 1)− vn,α(NA, j + 2)

≤ vn+1, α(NA, j + 1)− vn+1, α(NA, j + 2).

The remaining terms follow in a similar fashion.
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A.5 Proof of Lemma A.2.1

We begin with an intermediate result:

Lemma A.5.1. If RL > RHB, then for every n ≥ 0 and applicable i and j, we have that

vn,α(i, j)− vn,α(i, j + 1) ≤ λH
λH + λL

RHB +
λL

λH + λL
RL. (A.32)

Inequality (A.32) is slightly stronger than that in Statement 2 of Lemma 2.4.2

(which states that vn,α(i, j) − vn,α(i, j + 1) ≤ RL), by leveraging the fact that

optimal policies always admit Type L calls when Type B servers are available.

Proof. We use a sample path argument. Fix α ∈ [0, 1], i ∈ {0, . . . , NA}, and j ∈

{0, . . . , NB−1}, and construct two stochastic processes on the same probability

space. Process 2 begins in state (i, j+1) and follows the optimal policy π∗, while

Process 1 begins in state (i, j) and follows the suboptimal policy that imitates

the decisions made by Process 2, with one exception: Process 1 admits any job

that arrives when Process 2 is in state (NA, NB). Let ∆ denote the difference in

reward collected by the two processes until coupling occurs; it suffices to show

E∆ ≤ λH
λH + λL

RHB +
λL

λH + λL
RL.

Both processes move in parallel until they couple, which can occur in two ways:

1. Process 2 sees a Type B service completion not observed by Process 1.

2. Process 1 is in state (NA, NB − 1), Process 2 is in state (NA, NB), and an

arrival occurs.

Let A1 and A2 be the events in which coupling occurs via the first and second

possibilities, respectively. Conditional on A1 occurring, we have ∆ = 0. Condi-

tional on A2 occurring, with probability λH/(λH + λL), a Type H arrival occurs,
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and ∆ = RHB. Similarly, with probability λL/(λH +λL), a Type L arrival occurs,

and ∆ = RL. It follows that

E[∆ |A2] =
λH

λH + λL
RHB +

λL
λH + λL

RL,

and we are done.

To prove Lemma A.2.1, we again use induction over the time periods. The

base case (n = 0) is trivial, as we assume vα, 0(i, j) = 0 for all i and j. Now

suppose that (A.12)–(A.14) hold over horizons of length k ≤ n: our induction

hypothesis. In the analysis that follows, we assume once again (for notational

convenience) that α = 1; nearly identical reasoning can be used when α < 1.

A.5.1 Inductive Proof, Inequality (A.12)

Fix i ∈ {0, . . . , NA − 2} and j ∈ {0, . . . , NB}. We show that

vn+1, α(i, j)− vn+1, α(i+ 1, j) ≤ vn+1, α(i+ 1, j)− vn+1, α(i+ 2, j), (A.33)

using a sample path argument. Start four processes on the same probability

space, each with n + 1 periods remaining in the horizon. Processes 1 and 4

begin in states (i, j) and (i + 2, j), respectively, and follow the optimal policy

π∗. Processes 2 and 3 begin in state (i + 1, j), and use potentially suboptimal

policies π2 and π3, respectively, that deviate from π∗ during the first time period.

The actions Processes 2 and 3 take when a job arrives depend on those taken by

Processes 1 and 4:

• If Processes 1 and 4 admit the arriving job, so do Processes 2 and 3.

• If Processes 1 and 4 reject the arriving job, so do Processes 2 and 3.

• If Process 1 admits the job, and Process 4 rejects, then Process 2 rejects and

Process 3 admits.
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We can ignore the case where Process 1 rejects in state (i, j) and Process 4 admits

in state (i + 2, j), as by the induction hypothesis, we can assume that π∗ is a

monotone switching curve policy.

Let ∆ be the difference in reward collected by Processes 1 and 2 until cou-

pling occurs; define ∆′ analogously for Processes 3 and 4; it suffices to show

E∆ ≤ E∆′. There are i Type A and j Type B servers that are busy in all four

processes, and NA − i − 2 Type A and NB − j Type B servers that are idle in

all four processes. We probabilistically link the remaining two Type A servers

according to the scheme in Table A.3.

Server I Server II

Process 1, State (i, j) Idle Type A Idle Type A

Process 2, State (i+ 1, j) Busy Type A Idle Type A

Process 3, State (i+ 1, j) Idle Type A Busy Type A

Process 4, State (i+ 2, j) Busy Type A Busy Type A

Table A.3: Marking scheme for units in the sample path argument for
Equation (A.12).

In the first time period, seven transitions are possible:

1. A Type H arrival

2. A Type L arrival

3. A completion by Server I.

4. A completion by Server II.

5. A completion by any other Type A server.

6. A completion by a Type B server.

7. A dummy transition due to uniformization.
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For k = 1, . . . 7, let Ak be the event in which transition k occurs. It suffices to

show that E[Θ |Ak] ≤ E[Θ′ |Ak] for each k, and we proceed case-by-case.

Case 1 (Event A1): If i + 2 < NA, the analysis is straightforward. If i + 2 = NA,

Process 4 routes the job to a Type A server, and we have

E[Θ |A1] = vn,α(i+ 1, j)− vn,α(i+ 2, j)

≤ vn,α(i+ 2, j)− vn,α(i+ 2, j + 1) +RHA −RHB = E[Θ′ |A1],

by the induction hypothesis and (A.14). Finally, if i + 2 = NA and j = NB, then

Processes 3 and 4 find themselves in state (i+ 2, j), and by (A.12), we have

E[Θ |A1] = vn,α(i+ 1, j)− vn,α(i+ 2, j) ≤ RHA = E[Θ′ |A1].

Case 2 (Event A2): By Proposition 2.4.3, we need only consider the case where

j = NB, as all four processes would otherwise admit the arriving Type L job, and

the analysis is straightforward. Processes 2 and 3 take (potentially suboptimal)

actions based upon those taken by Processes 1 and 4. In particular:

• If Processes 1 and 4 admit the arriving Type L job, so do Processes 2 and 3.

• If Processes 1 and 4 reject the arriving Type L job, so do Processes 2 and 3.

• If Process 1 admits the job, and Process 4 rejects, then Process 2 rejects and

Process 3 admits.

We need not consider the remaining possibility, as by the induction hypothesis,

we can assume that π∗ is a threshold-type policy. The analysis for the case where

both Processes 1 and 4 reject the job is straightforward; all four processes either

reject the job or admit it with a Type A server, and we leverage the induction

hypothesis. For the remaining possibility, the four processes transition to states
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(i + 1, j), (i + 1, j), (i + 2, j), and (i + 2, j), respectively, and Processes 1 and 3

alone collect a reward RL. Thus, we have that E[Θ |A2] = RL = E[Θ′ |A2].

Case 3 (Event A3): Transition to states (i, j), (i, j), (i+ 1, j), and (i+ 1, j) occur.

Processes 1 and 2 couple, as do Processes 3 and 4, and E[Θ |A3] = E[Θ′ |A3] = 0.

Case 4 (EventA4): Transitions to states (i, j), (i+1, j), (i, j), and (i+1, j) occur.

Processes 1 and 3 couple, as do Processes 2 and 4, and E[∆ |A4] = E[∆′ |A4].

Case 5 (EventA5): Transitions to states (i−1, j), (i, j), (i, j), and (i+1, j) occur.

The induction hypothesis implies E[∆ |A5] = E[∆′ |A5].

Case 6 (Event A6): Transitions to states (i, j− 1), (i+ 1, j− 1), (i+ 1, j− 1), and

(i+ 2, j − 1) occur, and the induction hypothesis applies.

Case 7 (Event A7): A dummy transition occurs, and our induction hypothesis

applies.

Thus, Inequality (A.12) holds for horizons of length n+ 1.

A.5.2 Inductive Proof, Inequality (A.13)

Fix i ∈ {0, . . . , NA − 2} and j ∈ {0, . . . , NB}. We want to show that

vn+1, α(i, j)− vn+1, α(i, j + 1) ≤ vn+1, α(i, j + 1)− vn+1, α(i, j + 2), (A.34)

and proceed using a sample path argument. Start four processes on the same

probability space, each with n + 1 periods remaining in the horizon. Processes

1 and 4 begin in states (i, j) and (i, j + 2), respectively, and follow the optimal

policy π∗. Processes 2 and 3 both begin in state (i, j + 1), and use potentially

suboptimal policies π2 and π3 that mimic those described in Section A.5.1.
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Let Θ be the difference in reward collected by Processes 1 and 2 until cou-

pling occurs; define Θ′ analogously for Processes 3 and 4. It suffices to show

EΘ ≤ EΘ′. There are i Type A and j Type B servers that are busy in all four

processes, and NA − i Type A and NB − j − 2 Type B servers that are idle in

all four processes. We probabilistically link the remaining two Type B servers

according to the scheme in Table A.4.

Server I Server II

Process 1, State (i, j) Idle Type B Idle Type B

Process 2, State (i, j + 1) Busy Type B Idle Type B

Process 3, State (i, j + 1) Idle Type B Busy Type B

Process 4, State (i, j + 2) Busy Type B Busy Type B

Table A.4: Marking scheme for units in the sample path argument for
Equation (A.13).

In the first time period, seven transitions are possible:

1. A Type H arrival

2. A Type L arrival

3. A completion by a Type A server.

4. A completion by Server I.

5. A completion by Server II.

6. A completion by any other Type B server.

7. A dummy transition due to uniformization.

For k = 1, . . . 7, let Bk be the event in which transition k occurs. It suffices to

show that E[Θ |Bk] ≤ E[Θ′ |Bk] for each k, and we proceed case-by-case.

Case 1 (Event B1): For the time being, assume that either i < NA or j + 2 < NB;

we handle later the special case in which both inequalities do not hold. If i < NA,
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then the four processes transition to states (i+ 1, j), (i+ 1, j + 1), (i+ 1, j + 1),

and (i + 1, j + 2), respectively, and the induction hypothesis applies. If i = NA

but j + 2 < NB, transitions to states (i, j + 1), (i, j + 2), (i, j + 2), and (i, j + 3)

occur instead, and we again leverage the induction hypothesis.

Case 2 (Event B2): As with Case 1, assume that either i < NA or j + 2 < NB for

the time being. If j+2 < NB, the analysis is straightforward. Suppose j+2 = NB

but i < NA. If Processes 1 and 4 both reject, the analysis is straightforward. If

Processes 1 and 4 both admit, Processes 2 and 3 use a Type A server, and

E[Θ |B2] = vn,α(i, j + 1)− vn,α(i+ 1, j + 1)

≤ vn,α(i, j + 1)− vn,α(i+ 1, j + 1)−RHA +RHB

≤ vn,α(i+ 1, j + 1)− vn,α(i+ 1, j + 2)

= E[Θ′ |B2],

where the first inequality follows by Lemma 2.4.2, and the second by the induc-

tion hypothesis on inequality (A.14). Finally, if Process 1 accepts and Process 4

rejects, then E[Θ |B2] = RL = E[Θ′ |B2].

Case 3 (Event B3): Transitions to states (i− 1, j), (i− 1, j+ 1), (i− 1, j+ 1), and

(i− 1, j + 2) occur, and the induction hypothesis applies.

Case 4 (EventB4): Transitions to states (i, j), (i, j), (i, j+1), and (i, j+1) occur,

and it follows that E[Θ |B4] = E[Θ′ |B4] = 0.

Case 5 (EventB5): Transitions to states (i, j), (i, j+1), (i, j), and (i, j+1), occur,

and we have E[Θ |B5] = E[Θ′ |B5].

Case 6 (EventB6): Transitions to states (i, j−1), (i, j), (i, j), and (i, j+1) occur,

and the induction hypothesis applies.
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Case 7 (Event B7): A dummy transition occurs, and our induction hypothesis

applies.

It remains to show E[Θ |B1] ≤ E[Θ′ |B1] and E[Θ |B2] ≤ E[Θ′ |B2] when i = NA

and j+2 = NB. However, E[Θ |B1] = vn,α(i, j+1)−vn,α(i, j+2) and E[Θ |B1] =

RHB, and so the former inequality may not hold in general. We instead prove a

slightly weaker claim, that E[Θ |B1∪B2] ≤ E[Θ′ |B1∪B2], which suffices to show

that E[Θ] ≤ E[Θ′]. Conditional on B1 ∪ B2 occurring, a Type H job arrives with

probability λH/(λH+λL), and a Type L job arrives with probability λL/(λH+λL).

Noting that E[Θ |B2] = vn,α(i, j + 1)− vn,α(i, j + 2) as well, we have

E[Θ |B1 ∪B2] =
λH

λH + λL
E[Θ |B1] +

λL
λH + λL

E[Θ |B2]

= vn,α(i, j + 1)− vn,α(i, j + 2)

≤ λH
λH + λL

RHB +
λL

λH + λL
RL

≤ λH
λH + λL

E[Θ′ |B1] +
λL

λH + λL
E[Θ′ |B2]

= E[Θ′ |B1 ∪B2],

as desired. Thus, Inequality (A.13) holds for horizons of length n+ 1.

A.5.3 Inductive Proof, Inequality (A.14)

Fix i ∈ {0, . . . , NA − 2} and j ∈ {0, . . . , NB}. We show that

vn+1, α(i, j)− vn+1, α(i+ 1, j) ≤ vn+1, α(i+ 1, j)− vn+1, α(i+ 1, j + 1) (A.35)

+RHA −RHB

using a sample path argument. Start four processes on the same probability

space, each with n+1 periods remaining in the horizon. Processes 1 and 4 begin

in states (i, j) and (i + 1, j + 1), respectively, and follow the optimal policy π∗.
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Processes 2 and 3 begin in state (i+1, j), and use potentially suboptimal policies

π2 and π3 that mimic those described in Section A.5.1.

Let Ψ be the difference in reward collected by Processes 1 and 2 until cou-

pling occurs; define Ψ′ analogously for Processes 3 and 4. It suffices to show

EΨ ≤ EΨ′ + RHA − RHB. There are i Type A and j Type B servers that are busy

in all four processes, andNA−i−1 Type A andNB−j−1 Type B servers that are

idle in all four processes. We probabilistically link the remaining Type A server

and Type B server according to the scheme in Table A.5.

Server I Server II

Process 1, State (i, j) Idle Type A Idle Type B

Process 2, State (i+ 1, j) Busy Type A Idle Type B

Process 3, State (i+ 1, j) Idle Type B Busy Type A

Process 4, State (i+ 1, j + 1) Busy Type B Busy Type A

Table A.5: Marking scheme for units in the sample path argument for
Equation (A.14).

In the first time period, seven transitions are possible:

1. A Type H arrival

2. A Type L arrival

3. A completion by Server I.

4. A completion by Server II.

5. A completion by an unmarked Type A server.

6. A completion by an unmarked Type B server.

7. A dummy transition due to uniformization.

For k = 1, . . . 7, let Ck be the event in which transition k occurs. It suffices to

show for each k that E[Ψ |Ck] ≤ E[Ψ′ |Ck] +RHA −RHB for each k.
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Case 1 (Event C1): Assume, for the time being, that either i + 1 < NA or that

j + 1 < NB; we handle later the special case in which both inequalities are

violated. If i + 1 < NA, the analysis is straightforward. If i + 1 = NA but

j + 1 < NB, then Process 1 admits the call with a Type A server, while all other

processes use Type B servers instead, and

E[Ψ |C1] = vn,α(i+ 1, j) +RHA − vn,α(i+ 1, j + 1)−RHB

≤ vn,α(i+ 1, j + 1) +RHA − vn,α(i+ 1, j + 2)−RHB

= E[Ψ′ |C1] +RHA −RHB,

where the inequality follows by the induction hypothesis on inequality (A.13).

Case 2 (Event C2): As in Case 1, assume temporarily that either i + 1 < NA or

j + 1 < NB. If j + 1 < NB, the analysis is straightforward. If j + 2 = NB but

i + 1 < NA, suppose that Processes 2 and 3 always admit the incoming Type L

job (with Type B servers), regardless of the actions taken by the other processes.

If Process 4 admits (with a Type A server), then

E[Ψ |C2] = vn,α(i, j + 1)− vn,α(i+ 1, j + 1)

≤ vn,α(i+ 1, j + 1)− vn,α(i+ 2, j + 1) = E[Ψ′ |C2]

by the induction hypothesis on (A.12). If Process 4 rejects instead, then

E[Ψ |C2] = vn,α(i, j + 1)− vn,α(i+ 1, j + 1)

≤ vn,α(i+ 1, j + 1) +RL − vn,α(i+ 1, j + 1) +RHA −RHB

= E[Ψ′ |C2] +RHA −RHB,

where the inequality follows by combining both statements of Lemma 2.4.2.

Case 3 (Event C3): Transitions to states (i, j), (i, j), (i+1, j), and (i+1, j) occur.

Coupling results, and E[Θ |C3] = E[Θ′ |C3] = 0.
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Case 4 (Event C4): Transitions to states (i, j), (i+1, j), (i, j), and (i+1, j) occur.

Coupling results, and we have E[∆ |C4] = E[∆′ |C4].

Case 5 (Event C5): Transitions to states (i−1, j), (i, j), (i, j), and (i, j+1) occur,

and the induction hypothesis applies.

Case 6 (Event C6): Transitions to states (i, j− 1), (i+ 1, j− 1), (i+ 1, j− 1), and

(i+ 1, j) occur, and the induction hypothesis applies.

Case 7 (Event C7): Our induction hypothesis applies immediately.

It remains to show that E[Ψ |B1] ≤ E[Ψ′ |B1] and E[Ψ |B2] ≤ E[Ψ′ |B2] when

i = NA and j + 2 = NB. Once again, these inequalities may not hold in general,

and so we again show that E[Ψ |B1 ∪B2] ≤ E[Ψ′ |B1 ∪B2]. Reasoning similar to

that used in the inductive proof of inequality (A.13) yields

E[Ψ |B1 ∪B2] =
λH

λH + λL

[
vn,α(i+ 1, j)− vn,α(i+ 1, j + 1) +RHA −RHB

]
+

λL
λH + λL

[
vn,α(i, j + 1)− vn,α(i+ 1, j + 1)

]
≤ λH
λH + λL

[
vn,α(i+ 1, j)− vn,α(i+ 1, j + 1) +RHA −RHB

]
+

λL
λH + λL

[
vn,α(i+ 1, j)− vn,α(i+ 1, j + 1) +RHA −RHB

]
≤ λH
λH + λL

[
RHB +RHA −RHB

]
+

λL
λH + λL

[
RL +RHA −RHB

]
=

λH
λH + λL

[
vn,α(i+ 1, j + 1) +RHB − vn,α(i+ 1, j + 1)

]
+

λL
λH + λL

[
vn,α(i+ 1, j + 1) +RL − vn,α(i+ 1, j + 1)

]
+RHA −RHB

= E[Ψ′ |B1 ∪B2] +RHA −RHB,

where the first inequality follows by Lemma 2.4.2, and the second by Lemma

A.5.1.
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APPENDIX B

APPENDIX FOR CHAPTER 3

B.1 An Extended MDP Model

We consider an extension of our MDP from Section 3.3 that allows low-priority

calls to queue, and ALS units to assist BLS responses to high-priority calls. As

before, we assume that high-priority and low-priority calls arrive according to

independent Poisson processes with rates λH and λL, respectively, and that ser-

vice times are exponentially distributed with rate µ. If a low-priority call arrives

when all BLS units are busy, and does not immediately receive an ALS response,

it enters a queue with capacity C, to be served when the system becomes less

congested. If a high-priority call arrives when only BLS units are available, we

assume that with probability p, the call cannot adequately be treated on-scene.

In this case, the BLS unit remains on scene in a “limbo” state, during which it

cannot respond to other calls. When an ALS unit becomes available, it is imme-

diately brought on scene, freeing the BLS unit, and allowing the high-priority

patient to leave the system after an exponentially distributed service time (also

with rate µ). We still assume that high-priority calls do not queue, as such a

queue would only be utilized when all ambulances are busy, in which case, ex-

ternal resources would likely be brought in.

B.1.1 State Space

The state of the system can be fully characterized by four quantities: the number

of busy ALS ambulances, the number of busy BLS ambulances, the number of

low-priority calls in queue, and the number of BLS units in limbo. However,
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but by leveraging our assumption that service times are identically distributed,

a two-dimensional state space suffices. In particular, define

S0 = {0, 1, . . . , NA, NA + 1, . . . , NA +NB} × {0, 1, . . . , NB, NB + 1, . . . , NB + C} ,

and suppose (i, j) ∈ S0. If i ≤ NA and j ≤ NB, we can interpret (i, j) as before. If

i > NA, then BLS units are in limbo, and if j > NB, then the queue is nonempty.

Specifically, if the system is in state (i, j), where i = NA + i′ and j = NB +

j′ for some i′, j′ > 0, then all ALS units are busy, i′ BLS units are in limbo,

NB − i′ BLS units are busy serving low-priority calls, and j′ low priority calls

are in queue. This construction is valid because we assumed that BLS units

will only be dispatched to high-priority calls when all ALS units are busy, and

low-priority calls queue only when all BLS units are busy.

Not all states in S0 are reachable: for instance, the state (NA + 1, 0). More

generally, if the system is in state (i, j), where i > NA, then j ≥ i − NA must

hold. Thus, we redefine our state space to be S = {(i, j) ∈ S0 : j ≥ (i−NA)+},

where for a real number x, we define x+ = max{x, 0}.

B.1.2 Action Space

As before, we assume that whenever possible, the system provides ALS re-

sponses to high-priority calls, and BLS responses to low-priority calls. If a BLS

unit completes service while the queue is nonempty, the unit immediately be-

gins service on a queued call. If an ALS unit becomes free while a BLS unit is in

limbo and a low-priority call is in queue, assisting the BLS unit takes priority.

Thus, there are only decisions to be made when ALS units are available, all

BLS units are busy with low-priority calls, and the queue is nonempty— that is,
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in states where i < NA and j > NB. In this case, the decision-maker must choose

between dispatching an ALS unit to a queued low-priority call (Action 1), or

reserving system resources for future high-priority calls (Action 0). We assign

all other states a dummy action (Action 0). Thus, we define A = ∪(i,j)∈SA(i, j),

where A(i, j) = {0, 1} if i < NA and j > NB, and {0} otherwise.

We make two remarks about our construction of A. First, if i < NA and

j = NB, an arriving low-priority call enters the queue. However, Action 1 can

be taken immediately, in which case, the call spends no time in queue. Second,

we need not consider situations where multiple ALS units are simultaneously

dispatched to queued calls, as a dispatch would have been performed when the

previous low-priority call entered the queue.

B.1.3 Uniformization

Our extended MDP is also uniformizable; without loss of generality, assume

Λ = 1. If the system begins a uniformized time period in state (i, j) ∈ S , then

the next event is

• With probability λH , the arrival of a high-priority call,

• With probability λL, the arrival of a low-priority call,

• With probability min{i, NA}µ, an ALS service completion,

• With probability [min{j,NB} − (i−NA)+]µ, a BLS service completion

• With probability (NA−i)++[(NB − j)+ + (i−NA)+]µ, a dummy transition

due to uniformization.

The fourth probability follows because if i > NA, then i − NA BLS units are in

limbo, implying that only min{j,NB}− (i−NA) BLS units can complete service.
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B.1.4 Rewards

DefineRHA,RHB, andRL as before. We assume that the system collects a reward

RHB from each BLS response to a high-priority call, regardless of whether or not

an ALS unit provides assistance. We also assume that the system collects reward

when serving queued low-priority calls, but also incurs a holding cost h per unit

time for each such call in queue. Assuming that actions take effect at the start of

the period, and events at the end, we obtain the one-stage rewards

R((i, j), a) =



λHRHA + λLRL if i < NA, j < NB, a = 0,

λHRHB + λLRL if i ≥ NA, j < NB, a = 0,

I(i < NA)λHRHA − h(j −NB) if i ≤ NA, j ≥ NB, a = 0,

+I(j > NB)NBµRL

I(i+ 1 < NA)λHRHA +RL if i < NA, j > NB, a = 1,

+ I(j −NB > 1)NBµRL

−h(j −NB − 1)

NAµRL + (NB − (i−NA))µRL if i ≥ NA, j > NB, a = 0.

−h(j −NB)

The first two terms are straightforward. The third term follows because the

system collects reward from incoming high-priority calls only if an ALS unit

is available, and incurs holding cost from queued low-priority calls. If a BLS

service completion is the next event to occur, a dispatch is immediately made to

a call in queue, and the system collects an additional reward RL.

In the fourth term, the system collects a rewardRL from taking Action 1, and

the queue shrinks by one. The system may collect an additional reward RL if

there is another call in queue, and a BLS service completion occurs at the end of
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the period. If Action 1 results in all ALS units becoming busy, the system does

not collect reward if a high-priority call arrives. In the fifth term, all ambulances

are busy, the queue is nonempty, and BLS units are in limbo. The system pays

holding costs, but may collect a reward RL if a BLS unit becomes free.

B.1.5 Transition Probabilities

Because the probabilities P
(
(i′, j′) |(i, j), a

)
are fairly cumbersome, we do not

fully specify them here, and consider only the two most interesting cases.

Case 1: If i < NA, j > NB, and a = 1, an immediate transition to state (i+1, j−1)

occurs, and

P
(
(i′, j′) |(i, j), 1

)
=



I(i+ 1 < NA)λH (i′, j′) = (i+ 2, j − 1)

λL (i′, j′) = (i+ 1, j)

(i+ 1)µ (i′, j′) = (i, j)

NBµ (i′, j′) = (i+ 1, j − 2)

I(i+ 1 = NA)λH + (NA − i− 1)µ (i′, j′) = (i+ 1, j − 1)

We use an indicator because if i + 1 = NA, all ALS units become busy after

Action 1 is performed, and subsequent high-priority calls are redirected.

Case 2: If i > NA and j < NB, only Action 0 is available, and

P
(
(i′, j′) |(i, j), 0

)
=



pλH if (i′, j′) = (i+ 1, j + 1),

(1− p)λH + λL if (i′, j′) = (i, j + 1),

NAµ if (i′, j′) = (i− 1, j − 1),

[j − (i−NA)]µ if (i′, j′) = (i, j − 1),

(i−NA)µ if (i′, j′) = (i, j).
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The (i − NA) BLS units in limbo trigger dummy transitions. All arriving calls

receive a BLS response, and with probability pλH , the responding unit is brought

into limbo. If an ALS unit becomes idle, a BLS unit is immediately freed from

limbo and becomes idle.

To maximize long-run average reward, we can again restrict our attention to

policies that are stationary, deterministic mappings π : S → {0, 1}. Since our

extended MDP is also irreducible, it can be solved via by setting up optimality

equations analogous to those in 2.4, and applying a policy iteration algorithm.

B.1.6 Computational Study

We base our study on the same hypothetical EMS considered in Section 3.6, and

again set RHA = 1, RHB = 0.5, RL = 0.6, µ = 0.75, CA = 1.25, and CB = 1

as our base values. Again, to compensate for the effects of resource pooling,

we introduce congestion in our system by shrinking the operating budget B to

43.75. The input parameters p, h, and C cannot be readily estimated from our

dataset, so we select p = 0.5, h = 0.6, and C = 10. We choose h so that our

system does not collect any reward from a low-priority call if it spends more

than one hour in queue.

Evaluating long-run average reward in both MDP models for each vehicle

mix in the set Γ = {(NA, NB) : NA ≤ 70 and NB = b43.75− 1.25NAc}, we ob-

tain Figure 3.4.2 in Chapter 3. As previously noted, both models yield similar

quantitative results, but the extended MDP model more heavily penalize vehi-

cle mixes operating too few ALS ambulances. Sensitivity analyses with respect

to our input parameters yield similar results. Figure B.1 below illustrates the

curves we obtain as we vary CA, and is analogous to Figure 3.4 in Chapter 3,
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which we reproduce here for reference. As in Figure 3.4.2, the extended MDP
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Figure B.1: Long-run average reward vs. vehicle mix for several choices of
CA, for both MDP models.

predicts a lower performance for fleets operating too few ALS ambulances. The

model also penalizes fleets expending too much of the budget on ALS ambu-

lances when CA is large. If we restrict our attention to more carefully chosen
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fleets, we again observe the same general trends. We obtain similar results

when performing other sensitivity analyses, which we omit for brevity. Taken

together, our experiments suggest that our qualitative conclusions may not be

particularly sensitive to our modeling assumptions.

B.2 An Extended Integer Program

In formulating our IP model in Section 3.5, we assumed that ambulances are

busy independently of one another. However, knowing that a particular am-

bulance is busy may indicate that the system is congested, thus increasing the

probability that other ambulances may be busy. Indeed, some studies have sug-

gested that this assumption may lead to optimistic estimates of coverage; see,

for instance Baron et al. [8] and Borrás and Pastor [16]. In this section, we con-

sider an IP model in which we relax the independence assumption using cor-

rection factors, in a manner similar to that of Larson [54].

B.2.1 Formulation

Suppose demand node i is covered by aALS and b BLS ambulances. The system

obtains reward from this node at a rate λHi RH(a, b) + λLi RL(a, b) per unit time.

Under our original IP model:

RH(a, b) = RHA (1− (pA)a) +RHB (pA)a(1− (pB)b) (B.1)

RL(a, b) = RL[1− (pB)b + φ (pB)b (1− (pA)a)], (B.2)

Let pHA(a, b) be the long-run proportion of high-priority calls receiving an ALS

response, provided the corresponding demand node is covered by a ALS and b

BLS ambulances. We define pHB(a, b), pLA(a, b), and pLB(a, b) in a similar fash-
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ion. This allows us to rewrite (B.1) and (B.2) as follows:

RH(a, b) = RHA pHA(a, b) +RHB pHB(a, b) (B.3)

RL(a, b) = RL [ pLA(a, b) + pLB(a, b) ] . (B.4)

Consider first the probability pHA(a, b). If we assume independence, then

pHA(a, b) = 1− (pA)a =
a−1∑
j=0

(pA)j(1− pA). (B.5)

The jth term in the above sum denotes the probability that the first j ambulances

the dispatcher contacts are busy, but the next ambulance considered is available.

Following Larson [54], we multiply each term in the right-hand side of (B.5) by

a correction factor. To do so, consider an M/M/a/a queueing system with arrival

rate λ and service rate µ. Letting P0 and Pa denote the long-run probability that

all servers are idle and busy, respectively, it is straightforward to show

P0 =

(
a∑
i=0

(aρ)i

i!

)−1

Pa =
(aρ)a

a!
P0,

where ρ = λ/aµ is the offered load of the system. If servers are sampled with-

out replacement while the system is in steady state, the probability that j busy

servers are selected before an idle one is found is Q(a, ρ, j) pj(1 − p), where

p = ρ(1− Pa)/a denotes average server utilization, and

Q(a, ρ, j) = P0

a∑
k=j

(a− j − 1)! (a− k) ak ρk−j

(k − j)! a! (1− ρ)
. (B.6)

Here, Q(a, ρ, j) can be viewed as a multiplicative constant that corrects the

probability we would have obtained, had we incorrectly assumed that servers

are busy independently of one another. These factors have been applied to IP

models of ambulance deployment, to relax the independence assumption; see,

for instance, McLay [63]. In our setting, we could replace (B.5) with

pHA(a, b) =
a−1∑
j=0

Q(a, ρA, j) (pA)j(1− pA). (B.7)
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To compute the above probability, we need to determine ρA, the load offered

to ALS ambulances in the system. This is nontrivial, as ALS ambulances re-

spond to calls of both priorities, and the workload they receive depends on the

dispatching policy. We approximate ρA using a procedure that we describe in

Appendix B.2.2 below. Reasoning similar to the above yields the approximation

pLB(a, b) =
b−1∑
j=0

Q(b, ρB, j) (pB)j(1− pB), (B.8)

where ρB denotes the offered load associated with BLS ambulances in the sys-

tem; again, see Appendix B.2.2. We next consider the proportion of low-priority

calls receiving ALS responses. With probability 1−pLB(a, b), all BLS ambulances

are busy when a low-priority call arrives. Conditional on this occurring, we use

pHA(a, b) to approximate the probability that at least one ALS ambulances is

available. This is a simplification, but it is milder than our original indepen-

dence assumption. Since an ALS ambulance is dispatched to a proportion φ of

these calls, we obtain the approximation

pLA(a, b) = φ pHA(a, b) [1− pLB(a, b)]. (B.9)

Reasoning in a similar fashion yields

pHB(a, b) = pLB(a, b) [1− pHA(a, b)]. (B.10)

We formulate the objective function of our extended IP model by combining

(B.3), (B.4), and (B.7) – (B.10). The constraints do not change, as we did not use

the independence assumption to formulate them.
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B.2.2 Approximating Offered Loads

To approximate the systemwide offered loads ρA and ρB, we again use the in-

puts of our IP model to build an instance of the dispatching MDP from Section

3.3. Let π∗ denote the optimal policy, and ν the stationary distribution of the

Markov chain induced by this policy. Let fHA denote the long-run proportion

of high-priority calls receiving an ALS response under π∗. Since this occurs

when at least one ALS ambulance is available, the PASTA property implies

fHA =

NA−1∑
i=0

NB∑
j=0

ν(i, j).

Defining fLB, fLA, and fHB analogously, we obtain

fLB =

NA∑
i=0

NB−1∑
j=0

ν(i, j)

fLA =

NA∑
i=0

NB∑
j=0

ν(i, j) I(π∗(i, j) = 1)

fHB =

NB−1∑
j=0

ν(NA, j)

Approximating the fraction of high-priority and low-priority calls routed to

ALS ambulances using fHA/(fHA+fHB) and fLA/(fLA+fLB), respectively, yields

ρA ≈
1

µ

[
fHA

fHA + fHB
λH +

fLA
fLA + fLB

λL

]
ρB ≈

1

µ

[
fHB

fHA + fHB
λH +

fLB
fLA + fLB

λL

]
.

B.2.3 Computational Study

We base our numerical work upon the same hypothetical EMS from Section 3.6.

As in previous “base case” experiments, we use RHA = 1, RHB = 0.6, RL = 0.5,
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CA = 1.25, CB = 1, and µ = 0.75, and evaluate the set of vehicle mixes in the set

Γ = {(NA, NB) : NA ≤ 70 and NB = b87.5− 1.25NAc}.

We approximate pA, pB, and φ using the procedure from Section 3.5.2. Recall

that we approximated φ using the output of a modified MDP in which arrivals

were scaled up to more accurately model how dispatching decisions would be

made in a congested system. We use the same MDP to compute fHA, fHB, fLA,

and fLB. Solving the resulting IP instances, and plotting the curves alongside

those from Figure 3.7 in Section 3.6, we obtain Figure B.2. While the extended
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Figure B.2: Long-run average reward vs. vehicle mix, under the MDP
model and both IP models.

IP model indeed yields less optimistic results than the original IP model, the

curves in Figure B.2 have the same basic structure. When we increase the degree

of resource pooling in the system (via the response time threshold T ), we see nu-

merical results that more closely match those produced by the MDP; see Figure

B.3. In the case of complete resource pooling, the extended IP is still optimistic

relative to the MDP, suggesting that the correction factors do not completely

account for server dependence. Nonetheless, the fit is improved.
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Figure B.3: Long-run average reward under the MDP and both IP models,
for two response time thresholds T .

We conclude with a sensitivity analysis with respect to CA identical to that

used to generate Figure 3.9, and obtain Figure B.4. For larger values of CA, the

extended IP model predicts a more aggressive drop in performance as we move

towards an all-ALS fleet, but we again see the same qualitative trends. This
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pattern repeats if we perform sensitivity analyses on ambulance travel speeds

and rewards, but we omit plots in the interest of brevity. Taken together, our
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Figure B.4: Long-run average reward under the MDP and both IP models,
for two response time thresholds T .

experiments suggest that both IP models yield the same qualitative insight: that

of rapidly diminishing marginal returns associated with increasing NA.
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APPENDIX C

APPENDIX FOR CHAPTER 5

C.1 Proof of Lemma 5.5.1

Fix a sample path ω and an initial state s0. We prove the result by showing that a

feasible solution to (PIDP(ω)) can be converted into one for (IP1(ω)) that attains

the same objective value, then by showing the converse.

C.1.1 From the DP to the IP

A feasible solution to (PIDP(ω)) can be characterized by the initial system state

s0, as well as the dispatching decisions d = (d0, . . . , dT+1) and redeployment

moves m = (m0, . . . ,mT+1) taken in each time period. Let s = (s0, . . . , sT+1)

denote the status of the fleet over the horizon T , as implied by the decisions d

and m. We construct a feasible solution to (IP1(ω)) as follows. Given a call c,

base j ∈ Bc, and another base k ∈ B, let

xcj =


1 if dc = a and `a(sc) = j for some ambulance a

0 otherwise

ytj =
A∑
a=1

I(Ambulance a is idle at base j at time t)

=
A∑
a=1

I(`a(st) = j, fa(st) = t, ca(st) = φ)

ztck =


1 if dc = a, fa(sc) = t, and mta = k for some ambulance a

0 otherwise

That is, xcj = 1 if there is an ambulance a at base j that responded to call c,

and ztck = 1 if that ambulance becomes free at time t, and is subsequently rede-
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ployed to base k. We set y0j to be the number of ambulances initially stationed

at base j, as implied by s0.

Let XDP = (d, m) denote our original feasible solution to (PIDP(ω)), and

XIP = (x, y, z) the solution to (IP1(ω)) constructed above. To show that the

solutions attain identical objective values, we observe that the reward collected

by XDP equals the number of calls c for which dc 6= φ, and the reward collected

by XIP is simply the number of x–variables taking on nonzero values. If dc 6= φ

for some call c, then by construction, there exists exactly one base j for which

xcj = 1. Conversely, if xcj = 1 for some call c and base j, then we must have

dc 6= φ. It follows that the two solutions attain identical objective values.

It remains to show that XIP is feasible. Constraints (5.22) are satisfied im-

mediately, by construction of XIP . Constraint (5.17) also follows easily, as

∑
j∈Bc

xcj =
∑
j∈Bc

A∑
a=1

I(dc = a and `a(sc) = j)

=
A∑
a=1

I(dc = a)
∑
j∈Bc

I(`a(sc) = j)

≤
A∑
a=1

I(dc = a) ≤ 1,

where the first equality follows by construction, and the second inequality be-

cause a feasible solution to (PIDP(ω)) can dispatch only one ambulance to a call.

To show Constraints (5.18) hold, fix a call c and a base j, and suppose xcj = 1.

Ambulance a responded to the call from base j, and becauseXDP is feasible, this

occurs only if fa(sc) = t and ma(sc) = φ. By construction, we must have ycj ≥ 1.

If xcj = 0, then (5.18) immediately follows from nonnegativity of the ycj . Next,
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we consider Constraint (5.19). Fix a call c and base j ∈ Bc. We have

∑
k∈B

zf(j,c),c,k =
∑
k∈B

A∑
a=1

I(dc = a, `a(sc) = j, mf(j,c),a = k)

=
A∑
a=1

∑
k∈B

I(dc = a, `a(sc) = j, mf(j,c),a = k)

=
A∑
a=1

I(dc = a, `a(sc) = j) = xcj.

The first equality follows by construction of the z–variables. The third equality

follows by feasibility of XDP : if an ambulance is dispatched from base j ∈ Ftc

to call c, it must immediately be redeployed to a base at time f(j, c). The final

equality follows by construction of the x–variables.

It remains to show that Constraints (5.21) hold. Fix a time t and a base j,

and assume that t ∈ C, j ∈ Bt, and xtj = 1; the analysis is simpler if any of

these conditions are violated. Because xtj = 1, an idle ambulance a responded

to the call arriving at time t, and its status in the next time period is such that

`a(st+1) = t 6= φ. Thus, ambulance a contributes to the sum used to compute

ytj , but not to the corresponding sum for yt+1,j . Now suppose zf(k,c),c,j = 1 for

some (k, c) ∈ Qt+1,j ; again, the analysis is simpler if this is not the case. This

corresponds to an ambulance a′ that was dispatched to call c from base k, then

redeployed to base j at time f(k, c). By construction, ambulance a′ becomes free

at time t+1, and we would have `a′(st+1) = j, fa′(st+1) = t+1, and ca′(st+1) = φ.

Thus, ambulance a′ contributes to the sum used to compute yt+1,j , but not to the

corresponding sum for ytj . Thus, to compute yt+1,j , we start with ytj , decrement

if an ambulance was dispatched from that base at time t, and increment for each

ambulance completing redeployment to the base at time t+ 1.

It follows that XIP is feasible for (IP1(ω)).
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C.1.2 From the IP to the DP

One again, fix a sample path ω and an initial allocation {aj : j ∈ B}, and let

XIP = (x, y, z) be a feasible solution to (IP1(ω)). We construct a feasible solu-

tion to XDP iteratively, and begin by setting fa(s0) = 0 and ca(s0) = φ for each

ambulance a, reflecting the fact that each ambulance is idle at the start of the

horizon. We next allocate ambulances to bases arbitrarily, provided that base j

is assigned exactly aj ambulances, and set `a(s0) accordingly.

When advancing from time t to t+ 1, we use the values of the decision vari-

ables in XDP to determine the values of dt+1, mt+1, and st+1. If an ambulance is

dispatched (that is, t ∈ C and xtj = 1 for some base j ∈ Bc), we find an ambu-

lance a for which `a(st) = j, fa(st) = t, and ca(st) = φ (breaking ties arbitrarily),

set dt = a, and update ambulance a’s status as in (5.5)–(5.7). If an ambulance

is redeployed— that is, ztck = 1 for some base k— we find the ambulance a sit-

uated at call c’s location for which fa(st) = t and ca(st) = c, set mta = k, and

update its status as in equations (5.8)–(5.10). For all remaining ambulances, we

set mta = φ and update their statuses as in (5.2)–(5.4).

Let XDP = (d,m, s) be the resulting solution for (PIDP(ω)). Clearly, XIP

and XDP have identical objective values, as for each call c, dc 6= φ if and only if

xcj = 1 for some base j ∈ Bc. It remains to show feasibility, for which it suffices

to prove two claims. First, we show if xtj = 1, the status st of the fleet is such

that there is an idle ambulance at base j. Second, we show that
∑

k∈B ztck = 1 if

and only if st is such that an ambulance has just completed service with call c.

To verify the first claim, reasoning similar to that from Section C.1.1 gives

ytj =
A∑
a=1

I(`a(st) = j, fa(st) = t, ca(st) = φ),

and so feasibility of dispatching decisions follows from feasibility of XIP and
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Constraints (5.18). To verify the second claim, we observe that if
∑

k∈B ztck = 1,

then xcj = 1 for some base j, and Constraints (5.19) imply that f(j, c) = t. In

constructing XDP , we would have set dc = a for some ambulance a located at

base j, implying that fa(st) = f(j, c) and ca(st) = c. Thus, there would be an

ambulance at call c’s location that is ready to redeploy at time t. Conversely,

if an ambulance a is ready to redeploy at time t, then there must exist a base j

and call c for which f(j, c) = t and dc = a. By construction, this occurs only if

xcj = 1, and
∑

k∈B ztck = 1 again follows by Constraints (5.19).

It follows that XDP is feasible for (PIDP(ω)), and we are done.

C.2 Proof of Lemma 5.5.2

Once again, we prove that (IP1(ω)) and (IP2(ω)) are equivalent by showing that

feasible solutions to one integer program can be converted into feasible solu-

tions of the other with the same objective values.

C.2.1 From (IP1(ω)) to (IP2(ω))

Let X1 = (x1, y1, z1) be a feasible solution to (IP1(ω)). We construct a solution

X2 = (x2, y2) as follows. First, we set y2 = y1: that is, we let y2
tj = y1

tj for each

time period t and base j. To construct x2 from x1 and z1, consider a call c and

base j ∈ Bc. There are two possibilities:

Case 1: If f(j, c) ∈ T (that is, if dispatching an ambulance from base j to call

c would result in a service completion before the end of the horizon), then for

each base k ∈ B, set x2
cjk = x1

cj zf(j,c),c,k.

Case 2: If f(j, c) 6∈ T , service completes after time T + 1, then the decision
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variable zf(j,c),c,k does not appear in (IP1(ω)) for any base k. However, (IP2(ω))

requires us to select a base to redeploy the responding ambulance each time a

dispatch is made. Since this decision would have no impact on the objective

function, we arbitrarily select base 1. Thus, x2
cjk = x1

cj I(k = 1) for each k ∈ B.

Both solutions attain identical objective values, as∑
c∈C

∑
j∈Bc

∑
k∈B

x2
cjk =

∑
c∈C

∑
j∈Bc

f(j,c)∈T

∑
k∈B

x2
cjk +

∑
c∈C

∑
j∈Bc

f(j,c) 6∈T

∑
k∈B

x2
cjk

=
∑
c∈C

∑
j∈Bc

f(j,c)∈T

∑
k∈B

x1
cj z

1
f(j,c),c,k +

∑
c∈C

∑
j∈Bc

f(j,c)6∈T

∑
k∈B

x1
cj I(k = 1)

=
∑
c∈C

∑
j∈Bc

f(j,c)∈T

x1
cj

∑
k∈B

z1
f(j,c),c,k +

∑
c∈C

∑
j∈Bc

f(j,c)6∈T

x1
cj

=
∑
c∈C

∑
j∈Bc

f(j,c)∈T

x1
cj +

∑
c∈C

∑
j∈Bc

f(j,c)6∈T

x1
cj =

∑
c∈C

∑
j∈Bc

x1
cj.

The second equality follows by construction of x2, and the fourth by feasibility

of (x1, y1, z1), as well as constraint (5.19). It remains to verify that X2 is feasible

for (IP2(ω)). Constraint (5.26) holds because for each call c, we have∑
j∈Bc

∑
k∈B

x2
cjk =

∑
j∈Bc

f(j,c)∈T

∑
k∈B

x2
cjk +

∑
j∈Bc

f(j,c)6∈T

∑
k∈B

x2
cjk

=
∑
j∈Bc

f(j,c)∈T

∑
k∈B

x1
cj z

1
f(j,c),c,k +

∑
j∈Bc

f(j,c)6∈T

∑
k∈B

x1
cj I(k = 1)

=
∑
j∈Bc

∑
k∈B

f(j,c)∈T

x1
cj z

1
f(j,c),c,k +

∑
j∈Bc

f(j,c)6∈T

x1
cj

≤
∑
j∈Bc

f(j,c)∈T

x1
cj +

∑
j∈Bc

f(j,c)6∈T

x1
cj ≤ 1,

where the first inequality follows by Constraint (5.19), and the second by (5.17).

To verify Constraints (5.27) hold, fix c and j ∈ Bc, and assume f(j, c) ∈ T ; the
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analysis for the case where f(j, c) 6∈ T is similar. We have that

∑
k∈B

x2
cjk =

∑
k∈B

x1
cj z

1
f(j,c),c,k ≤ x1

cj ≤ ycj,

where the inequality follows by Constraint (5.19), and the second by feasibility

of (x1, y1, z1). To show that Constraints (5.29) hold, fix t and j, and suppose that

t ∈ C and j ∈ Bt; the analysis is similar if either condition is violated. Working

with the right-hand side of the constraint, we find

y2
tj −

∑
k∈B

x2
tjk +

∑
(c, k)∈Qt+1,j

x2
ckj

= y1
tj −

∑
k∈B

f(j,t)∈T

x1
tj z

1
f(j,t),t,k −

∑
k∈B

f(j,t) 6∈T

x1
tj I(k = 1) +

∑
(c, k)∈Qt+1,j

x1
ck z

1
f(k,c),c,j

= y1
tj − x1

tj I(f(j, t) ∈ T )− x1
tj I(f(j, t) 6∈ T ) +

∑
(c, k)∈Qt+1,j

x1
ck z

1
f(k,c),c,j

= y1
tj − x1

tj +
∑

(c, k)∈Qt+1,j

x1
cj

= y1
t+1,j = y2

t+1,j,

where the second equality follows by (5.19), and the third because z1
f(k,c),c,j = 1

implies xck = 1. Finally, Constraints (5.30) follow immediately by construction.

Thus, X2 is feasible for (IP2(ω)).

C.2.2 From (IP2(ω)) to (IP1(ω))

Conversely, let X2 = (x2, y2) be a feasible solution to (IP1(ω)). We construct a

solution X1 = (x1, y1, z1) as follows. As before, we set y1 = y2. To build x1 from

x2 and z2, fix c, j ∈ Bc, and k ∈ B. There are again two possibilities:

Case 1: If f(j, c) ∈ T , then we let x1
cj =

∑
k∈B x

2
cjk and z1

f(j,c),c,k = x2
cjk.
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Case 2: If f(j, c) 6∈ T , then the decision variable zf(j,c),c,k does not exist in (IP1(ω))

for any k, and we simply let x1
cj =

∑
k∈B xcjk.

That the two solutions have identical objective values follows immediately, as

∑
c∈C

∑
j∈Bc

x1
cj =

∑
c∈C

∑
j∈Bc

∑
k∈B

x2
cjk.

When examining feasibility of X1, we note that Constraints (5.17), (5.18), and

(5.22) can all be shown to hold in a similarly straightforward fashion. Turning

to Constraints (5.19), and picking c and j ∈ Bc for which f(j, c) ∈ T , we find

∑
k∈B

z1
f(j,c),c,k =

∑
k∈B

x2
cjk = x1

cj.

Finally, we examine Constraints (5.21). Fix t and j, and assume t ∈ C and j ∈ Bt;

the analysis for the case where this does not hold is similar. Starting with the

right-hand side of the corresponding constraint, we find

y1
tj − x1

tj +
∑

(c,k)∈Mt+1,j

z1
f(k,c),c,j = y2

tj −
∑
k∈B

x2
tjk +

∑
(c,k)∈Qt+1,j

x2
cjk = y2

t+1,j = y1
t+1,j,

as desired. Thus, X1 is feasible for (IP1(ω)).

It follows that (IP1(ω)) and (IP2(ω)) are equivalent.

C.3 Discussion of Conjecture 5.5.3

To prove Conjecture 5.5.3 holds, it suffices to show that the coefficient matrix as-

sociated with the integer program (IP2(ω)) is totally unimodular, as this would

imply that every basic feasible solution to (IP2(ω)) is integer-valued, from which

the existence of an optimal integer solution trivially follows. We suspect that the

following result would be pivotal in such a proof:
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Lemma C.3.1. Consider a relaxation (IP2R(ω))of the integer program (IP2(ω)) in

which Constraints 5.26 are relaxed (which dictate that at most one ambulance can re-

spond to any incoming call). Then the coefficient matrix associated with (IP2R(ω))is

totally unimodular.

The proof, which we state below, hinges upon showing that (IP2R(ω))can be

reformulated as an equivalent min-cost (or in our case, max-reward) network

flow problem (NF(ω)), as it is well-known that coefficient matrices with “net-

work structure” have this property. When we reintroduce Constraints 5.26, we

destroy the problem’s network structure.

However, we conjecture that the proof can be completed by demonstrat-

ing that the extreme points of the feasible polytope associated with (IP2(ω)) are

integer-valued. This is certainly the case for the relaxed model (IP2R(ω)), and

we can view Constraints (5.26) as hyperplanes that cut into this polytope. We

may be able to reason as follows: pick any call c, and consider the intersection

of the feasible region of (IP2(ω)) with the hyperplane

∑
j∈Bc

∑
k∈B

xcjk ≤ 1. (C.1)

The resulting intersection is a polytope, which we claim is the convex hull of the

extreme points of (IP2R(ω)) satisfying (C.1). From here, it suffices to show that

a similar equivalence holds as we introduce the remaining hyperplanes.

To prove this claim, we could show the hyperplane (C.1) does not create

any fractional extreme points. We believe that any such fractional solution can

be expressed as a convex combination of feasible solutions that satisfy the con-

straints of (IP2(ω)) as well as (C.1), resulting in a contradiction. One observation

that may be critical in such a proof is that there is a one-to-one correspondence

187



between extreme points of (IP2R(ω)), and feasible integer-valued solutions to

the network flow problem (NF(ω)).

Remark C.3.2. Our conjecture holds in the special case where A = 1: that is, when the

fleet contains a single ambulance. Here, any fractional feasible solution x to (NF(ω))

can be decomposed into a convex combination of integer-valued flows via a fairly

straightforward procedure. We begin by finding a path u1 from source to sink con-

sisting of edges with positive flow. Next, we “extract” flow from our feasible solution by

identifying the arc on u1 with the smallest flow value (call the corresponding value λ1),

then decrementing the flow sent along each arc in u1 by λ1. We repeat this process until

no flow remains in the feasible solution, and obtain paths u1, . . . , uP for some finite

P , that correspond to values λ1, . . . , λP . For p = 1, . . . , P , let xp denote the feasible

solution to (NF(ω)) in which one unit of flow is sent along path up. It follows that

x =
P∑
p=1

λp xp.

If A > 1, we suspect that a generalization of the above procedure can be used to decom-

pose fractional solutions to (NF(ω)) in a similar fashion. One difficulty that arises is

that flows (from source to sink) must now be extracted in groups of A, and likely must

be done in a structured way.

C.3.1 Proof of Lemma C.3.1

As mentioned above, it suffices to show that (IP2R(ω)) can be reformulated as

an equivalent min-cost network flow problem, which we call (NF(ω)). We begin

by constructing our instance of (NF(ω)), then demonstrating that any feasible

solution to one problem can be converted into a feasible solution to the other

with the same objective value.
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To construct our graph, we begin by associating a node (t, j) with each base

j ∈ B and time period t ∈ T , and assigning each such node the supply value

btj = 0. Next, we introduce a source node σ and a sink node τ , and set bσ = A

and bτ = −A, where A is the number of ambulances in the fleet. For each node

j, we connect an arc from σ to the node (j, 0), and set its capacity to be aj ,

the number of ambulances stationed at node j at the start of the horizon; this

“initializes” our system. Similarly, for each j, we connect an uncapacitated arc

from node (j, T + 1) to the sink τ ; these edges help to “terminate” the problem

at the end of the horizon. Next, for each base j and time t < T + 1, we connect

an uncapacitated arc from node (t, j) to node (t+1, j); sending one unit of flow

along this arc corresponds to idling ambulance at base j from time t to t+ 1.

Finally, consider any time c at which a call arrives, and let ic denote its lo-

cation. For each j ∈ Bc and k ∈ B, we connect an arc from node (c, j) to node

(k, t(j, c, k)), where t(j, c, k) = min{f(j, c) + t(ic, k), T + 1}, and associate with

this arc a reward of 1. Sending one unit of flow along this arc corresponds to

dispatching an ambulance from base j to call c, and subsequently redeploying

the ambulance to base k; note that t(j, c, k) is the time at which such an ambu-

lance would become idle at base k. Flow sent along this arc cannot “generate”

more reward prior to time t(j, c, k), reflecting the fact that a responding ambu-

lance would be busy until that time. We define t(j, c, k) using a minimum, as we

can assume, without loss of generality, that ambulances that would not become

idle until after the end of the horizon instead complete service at time T + 1. To

maintain the equivalence with (IP2R(ω)), we also assume, again without loss

of generality that the sets QT+1,j are modified such that calls that would they

include calls that would become free after time T + 1.
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Let we denote the flow sent along arc e. A feasible flow must satisfy∑
j∈B

wσ, (0, j) =
∑
j∈B

w(T+1, j), τ = A (C.2)

∑
v∈I(t,j)

wv, (t, j) =
∑

v∈O(t,j)

w(t, j), v ∀t ∈ T , j ∈ B (C.3)

w(c, j), (t(j,c,k), k) ≤ 1 ∀c ∈ C, j ∈ Bc, k ∈ B, (C.4)

where I(t, j) and O(t, j) denote the set of nodes with arcs pointing into and out

of node (t, j), respectively. We assign feasible flows the objective function value∑
c∈C

∑
j∈Bc

∑
k∈B

w(c, j), (t(j,c,k), k).

It remains to prove that (IP2R(ω))and (NF(ω))are equivalent.

First, let (x, y) be a feasible solution to (IP2R(ω)). To construct a feasible

flow, we begin by setting wu, (0, j) = aj for each base j. Next, for each triplet

(c, j, k) where xcjk = 1, we set w(c, j), (t(j,c,k), k) = 1. Finally, for each time period

t < T + 1 and base j, we send ytj −
∑

k∈B xcjk I(t ∈ C, j ∈ Bc) units of flow from

node (t, j) to node (t+ 1, j). The resulting flow w clearly has the same objective

value as (x, y), and so it remains to check feasibility.

Constraints (C.2) and (C.4) follow immediately by construction. Now con-

sider the flow balance constraints (C.3). Suppose, for convenience, that t ∈ C

and j ∈ Bc (the analysis for the other cases is similar), and consider the right-

hand side of (C.3). By construction, the set I(t, j) consists of node (t − 1, j), as

well as any call-base pairs (c, k) for which t(c, k, j) = t— that is, any pairs in the

set Qtj . It follows that∑
v∈I(t,j)

wv, (t, j) = w(t−1, j), (t, j) +
∑

(c,k)∈Qtj

w(c, k), (t, j)

= yt−1, j +
∑

(c,k)∈Qtj

xckj.
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Now consider the left-hand side of (C.3). The set O(t, j) consists of (t + 1, j),

and, for each base k, the node (t(c, j, k), k). It follows that

∑
v∈O(t,j)

w(t, j), v = w(t, j), (t+1, j) −
∑
k∈B

w(t, j), (t(c,j,k), k)

= ytj −
∑
k∈B

xtjk.

Thus, Constraints (C.3) hold, as feasible solutions to (IP2R(ω)) satisfy (5.29),

and so the flow w is indeed feasible.

Conversely, let w be a feasible flow. For each triplet (c, j, k) for which c ∈ C,

j ∈ Bc, and k ∈ B, we set xcjk to be the flow transmitted along the arc connecting

nodes (c, j) and (t(j, c, k), k), provided the reward associated with this arc is 1

(set xcjk = 0 otherwise). Now consider the y–variables. Next, we set ytj to be

cumulative flow transmitted into node (t, j) if t > 1, and ytj = aj if t = 0. The

resulting solution (x, y) clearly has the same objective as the flow w, and so it

remains to check for feasibility.

Constraints (5.30) follow immediately. Constraints (5.27) hold because feasi-

ble flows satisfy Constraints (C.3). That is, for each call c and base j, we have

∑
j∈Bc

∑
k∈B

xcjk =
∑
j∈Bc

∑
k∈B

w(c, j), (t(j,c,k), k) ≤
∑

v∈O(t,j)

w(c, j), v =
∑

v∈I(c,j)

wv, (c, j) = ycj

Finally, to verify that Constraints (5.29) hold, we observe for any time t and

base j, yt+1,j is defined as the cumulative flow into node (t + 1, j), and by con-

struction of w, this consists of flow originating from node (t, j), as well as prior

“dispatches” that send flow into node (t + 1, j), which is precisely the right-

hand side of (5.29). Thus, (x, y) is feasible for (IP2R(ω)), from which it follows

that (IP2R(ω)) and (NF(ω)) are equivalent.
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C.4 Proof of Lemma 5.6.2

As in Brown et al. [20], we show for each sample path ω that

V
PI(z∗,ω)
t (st, it) = V ∗t (st, it) (C.5)

and proceed using backward induction. The base case, when t = T+1, is trivial.

Now suppose that (C.5) holds from time t+ 1 up until T + 1. By (5.34), we have

V
PI(z∗,ω)
t (st, it) = max

dt,mt

{
r(dt)− z∗t (st, (dt, mt))

+ V
PI(z∗,ω)
t+1

(
St+1(st, dt, mt, ω), It+1(ω)

)}
= max

dt,mt

{
r(dt)− V ∗t+1 (St+1(st, dt, mt, ω), It+1(ω))

+ E
[
V ∗t+1 (St+1(st, πt), It+1)

∣∣Ft]
+ V

PI(z∗,ω)
t+1

(
St+1(st, dt, mt, ω), It+1(ω)

)}
= max

dt,mt

{
r(dt) + E

[
V ∗t+1 (St+1(st, dt, mt), It+1)

∣∣Ft] }
= V ∗t (st, it)

where the second line follows by construction of z∗, the third by the induction

hypothesis, and the fourth because V ∗ solves the optimality equations (DP).

C.5 Proof of Lemma 5.6.3

We adapt the proof from Brown et al. [20]. Let π ∈ Π be a nonanticipative policy,

and fix a time period t and state (st, it), and consider the first term on the right-

hand side of (5.38). Given H ∈ FT+1, the perfect information filtration, we have∫
H

Ṽt+1

(
St+1(st, πt, ω), It+1(ω)

)
dP(ω)

=

∫
H

E
[
Ṽt+1

(
St+1(st, πt, ω), It+1(ω)

)∣∣∣FT+1

]
dP(ω),
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where the equality holds because Ṽt+1 (St+1(st, πt, ω), It+1(ω)) is clearly FT+1–

measurable. The definition of conditional expectation implies

Ṽt+1

(
St+1(st, πt), It+1

)
= E

[
Ṽt+1

(
St+1(st, πt), It+1

)∣∣∣FT+1

]
.

Since the second term on the right-hand side of (5.38) does not depend on ω,

zt (st, it, πt) = E
[
Ṽt+1

(
St+1(st, πt), It+1

)∣∣∣FT+1

]
−E

[
Ṽt+1 (St+1(st, πt), It+1)

∣∣Ft] .
To prove the claim, it suffices to show E [zt(st, it, πt) | Ft] = 0, as the law of

iterated expectations would imply E [zt(st, it, πt)] = 0 for all t, from which in-

equality (5.33) follows easily. Indeed:

E
[
zt (st, it, πt) |Ft

]
= E

[
E
[
Ṽt+1

(
St+1(st, πt), It+1

)∣∣∣FT+1

] ∣∣∣Ft]
− E

[
E
[
Ṽt+1 (St+1(st, πt), It+1)

∣∣Ft] ∣∣∣Ft]
= E

[
Ṽt+1

(
St+1(st, πt), It+1

)∣∣∣Ft]
− E

[
Ṽt+1 (St+1(st, πt), It+1)

∣∣Ft] = 0,

where the first equality follows because πt is Ft–measurable (because π is

nonanticipative), implying that St+1(st, πt) is Ft–measurable as well. It follows

that Ṽt+1

(
St+1(st, πt)

)
is also Ft–measurable (as well as FT+1–measurable), and

can be pulled outside the inner conditional expectation in both terms.

C.6 Proof of Lemma 5.6.5

Consider any sample path ω. It suffices to show that V PIP (γ, ω) is convex in γ,

as convexity is preserved through integration. We do this by finding a subgra-

dient for the function V PIP (γ, ω). Fix γ, and let
(
x∗(γ), y∗(γ)

)
be the optimal

solution to (PIP(γ, ω)). Similarly, fix another γ′, and let
(
x∗(γ′), y∗(γ′)

)
be the
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corresponding optimal solution to (PIP(γ′, ω)). We have that

V PIP (γ, ω)− V PIP (γ′, ω)

=
∑
c, j, k

x∗cjk(γ)−
T∑
t=0

∑
j∈B

[
1
(
j ∈ It+1(ω)

)
γt+1, j − γt+1, j ρt+1,j

]
y∗t+1, j(γ)

−

[∑
c, j, k

x∗cjk(γ
′)−

T∑
t=0

∑
j∈B

[
1
(
j ∈ It+1(ω)

)
γ′t+1, j − γ′t+1, j ρt+1,j

]
y∗t+1, j(γ

′)

]

≤
∑
c, j, k

x∗cjk(γ)−
T∑
t=0

∑
j∈B

[
1
(
j ∈ It+1(ω)

)
γt+1, j − γt+1, j ρt+1,j

]
y∗t+1, j(γ)

−

[∑
c, j, k

x∗cjk(γ)−
T∑
t=0

∑
j∈B

[
1
(
j ∈ It+1(ω)

)
γ′t+1, j − γ′t+1, j ρt+1,j

]
y∗t+1, j(γ)

]

= −
T∑
t=0

∑
j∈B

[
1
(
j ∈ It+1(ω)

)
− ρt+1,j

]
y∗t+1, j(γ) γt+1, j

−

[
−

T∑
t=0

∑
j∈B

[
1
(
j ∈ It+1(ω)

)
− ρt+1, j

]
y∗t+1, j(γ) γ′t+1, j

]

=
T∑
t=0

∑
j∈B

[
1
(
j ∈ It+1(ω)

)
− ρt+1,j

]
y∗t+1, j (γ′t+1, j − γt+1, j)

=
T∑
t=0

∑
j∈B

∇t+1, j (γ′t+1, j − γt+1, j),

where the inequality follows because
(
x∗(γ), y∗(γ)

)
is a feasible for (PIP(γ′, ω)).

Thus,∇ is a subgradient of the function V PIP (γ, ω), and we are done.
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