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There is a growing need for the ability to model and generate samples of de-

pendent random variables as primitive inputs to stochastic models. We consider

the case where this dependence is modeled in terms of a partially-specified finite-

dimensional random vector. A random vector sampler is commonly required to

match a given set of distributions for each of its components (the marginal dis-

tributions) and values of their pairwise covariances. The NORTA method, which

produces samples via a transformation of a joint-normal random vector sample, is

considered the state-of-the-art method for matching this specification. We begin

by showing that the NORTA method has certain flaws in its design which limit its

applicability.

A covariance matrix is said to be feasible for a given set of marginal distribu-

tions if a random vector exists with these properties. We develop a computational

tool that can establish the feasibility of (almost) any covariance matrix for a fixed

set of marginals. This tool is used to rigorously establish that there are feasi-

ble combinations of marginals and covariance matrices that the NORTA method

cannot match. We further determine that as the dimension of the random vector

increases, this problem rapidly becomes acute, in the sense that NORTA becomes

increasingly likely to fail to match feasible specifications. As part of this analysis,

we propose a random matrix sampling technique that is possibly of wider interest.



We extend our study along two natural paths. First, we investigate whether

NORTA can be modified to approximately match a desired covariance matrix that

the original NORTA procedure fails to match. Results show that simple, elegant

modifications to the NORTA procedure can help it achieve close approximations to

the desired covariance matrix, and these modifications perform well with increasing

dimension.

Second, the feasibility testing procedure suggests a random vector sampling

technique that can exactly match (almost) any given feasible set of marginals and

covariances, i.e., be free of the limitations of NORTA. We develop a strong char-

acterization of the computational effort needed by this new sampling technique.

This technique is computationally competitive with NORTA in low to moderate

dimensions, while matching the desired covariances exactly.
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CHAPTER 1

RANDOM VECTOR GENERATION

1.1 Introduction

An important part of the setup of a stochastic simulation involves modeling the

input environment of the system being studied. It is crucial that the uncertainty

in this input be represented in an appropriate manner. There is a growing need for

the ability to specify and generate dependent observations as primitive inputs to

stochastic models. For example, in a manufacturing setting, the processing times of

a single job at different stations may be correlated due to characteristics of the job

such as size. In determining reservoir release rules, the inflows of water to different

reservoirs are invariably correlated. Nelson (2003) report an agricultural insurance

study where they find that dependence information between various factors like

weather, crop yields etc. are important to the validity of the simulation study.

In generating random test problems for a given algorithm, it is advantageous to

ensure that some elements of the problem are correlated (Hill and Reilly 1994;

2000, Hodgson et al. 2000). Further applications have recently been reported in

cost analysis (Lurie and Goldberg 1998), and in decision and risk analysis (Clemen

and Reilly 1999).

Dependence information can be incorporated in an input process in two ways.

The first captures “temporal” dependence that arises over time and is traditionally

studied in terms of time series. The second kind can be characterized as consisting

of a finite number of dependent random variables, jointly called a random vector.

We examine the second case here; Biller and Ghosh (2005), Law and Kelton (2000)

provide overviews of the first case.

1



2

The “ideal” approach to modeling a random vector is to specify its full joint

distribution since a joint distribution completely determines all its properties. This

approach works wonderfully in the univariate case, where many specialized meth-

ods take advantage of the availability of a univariate distribution function. These

methods however do not extend well to higher dimensions, the culprit being the

rather dramatically named “curse of dimensionality”. The primary difficulty in

this case is that a tremendous amount of information is typically required to spec-

ify (and fit) such a joint distribution. Furthermore, special methods must be

devised to generate random vectors with the given joint distribution, and this can

be a practically insurmountable problem for a model of even moderate complexity

(Law and Kelton 2000, p. 479).

Another approach is to approximate the joint distribution using distributions

from a chosen parametric family. Thus, given data or any relevant information,

one then tries to estimate reasonable parameter values. This approach is also

hampered by the dimensionality problem, and is typically limited to situations

where the marginal distributions are all from the same parametric family. For

methods of this type see, for example, Devroye (1986) and Johnson (1987). But

the case where the marginals are not all from the same parametric family affords

far greater modeling generality, and is perhaps the case of more interest from a

practical standpoint.

A practical alternative is to partially specify the random vector. The most

common situation is to require that a generation procedure match the univariate

distributions of each of the components of the random vector (its marginal dis-

tributions) together with some dependence measure that, one hopes, captures the

essence of the dependence structure while being convenient to work with. The
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dependence measure is usually some form of covariance and could be Spearman’s

rank covariance, Pearson’s product-moment covariance, Kendall’s τ , or any other

convenient covariance measure. We will focus on Pearson’s product-moment co-

variance and Spearman’s rank covariance because of their wide use and acceptance

in application settings (they are defined below); Nelsen (1999, Chapter 5) defines

Kendall’s τ and other such measures.

Another argument in support of modeling random vectors using marginals and

covariances relates to the use of diffusion approximations for modeling stochas-

tic systems. In many cases the limiting diffusions depend only on the first two

moments of the input distributions. Therefore, there is some insensitivity in per-

formance measures computed from these models to the exact form of the input

distributions. In general then, if a form of this insensitivity is present in a model,

then the approach discussed here for modelling random vectors is quite reasonable.

Note that a partial specification does not necessarily uniquely specify the joint

distribution. Indeed, the specification could even be inconsistent.

Definition 1.1.1 We say that a correlation specification is feasible for a given

set of marginal distributions if a random vector with the specified characteristics

exists.

Any method that generates random vectors from partial specifications should ide-

ally be able to handle all feasible specifications.

The Pearson product-moment covariance between two random variables X and

Y , defined when E(X2 + Y 2) < ∞, is given by

Cov(X, Y ) = EXY − EXEY.

A related measure is the product-moment correlation defined as (let Var(X) = σ2
X
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and Var(Y ) = σ2
Y )

Cor(X, Y ) = Cov(X, Y )/(σXσY ).

Specifying covariances is equivalent to specifying correlations, since the marginal

distributions are also pre-specified. We shall henceforth use either term when

describing specifications.

If X and Y are independent, then Cov(X, Y ) = 0 and Cor(X, Y ) = 0. On the

other hand, zero covariance (or correlation) between X and Y does not generally

imply that they are independent.

The product-moment correlation measure is easily shown to range in value

between −1 and +1.

Correlations (and covariances) are measures of the degree of linear dependence

between X and Y : If X is a linear function of Y so that X = a+bY with probability

one, then Cor(X, Y ) = +1 if b > 0 and Cor(X, Y ) = −1 if b < 0. Conversely, if the

correlation between X and Y has magnitude 1, then a linear relationship between

X and Y holds with probability one, and its sign reflects the direction of the linear

dependence. This property limits the effectiveness of modeling using correlations

since “non-linear” dependence information cannot be properly captured. Consider

this simple example: let X and Y be two random variables defined such that the

vector (X, Y )′ is uniformly likely to be any point on the 2−dimensional unit circle.

An easy calculation yields that Cov(X, Y ) = Cor(X, Y ) = 0 but they are clearly

dependent since the (non-linear) relationship X2 + Y 2 = 1 holds.

Another fact that is not given the attention it perhaps deserves is that though

the possible values of correlation range in [−1, +1], the actual set of values that

can be achieved depends on the (univariate) distributions of the random variables

and in general this set is a strict subset of [−1, +1]. For example, the correlation
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between a random variable uniformly distributed on (0, 1] and another exponen-

tially distributed with mean 1 can be shown to range in [−0.866, 0.866]. It is thus

not possible to find a bivariate distribution with these marginals and a correlation

of 0.9.

The Pearson product-moment covariance structure of a d−dimensional random

vector X consists of covariances of every pair of its components Cov(Xi, Xj), 1 ≤

i, j ≤ d, collectively given as the d × d covariance matrix Σ. Since the definition

of covariance is symmetric in its arguments, the covariance matrix is necessarily

symmetric. These matrices are also necessarily positive semidefinite. To see why,

note that atX defines a valid random variable for any d−vector a, and has variance

atΣa. Since variances are non-negative and a could be any arbitrary vector we see

that the matrix Σ is positive semidefinite.

Definition 1.1.2 Any symmetric, positive semidefinite matrix with unit diagonal

elements is called a correlation matrix.

It is often mistakenly presumed that any arbitrary correlation matrix can be

matched a random vector with the desired marginal distributions. Note however

that positive semidefiniteness does not always guarantee feasibility of a correla-

tion matrix for an arbitrary set of marginal distributions. Consider the example

given above of the random vector consisting of a uniformly and an exponentially

distributed component. Matrices of the form







1 ρ

ρ 1






where |ρ| ≤ 1 are positive

semidefinite. However, for this case, the matrix with ρ = 0.9 is not feasible as we

have noted above.

Positive semidefiniteness can be sufficient for special cases of marginal distri-

butions, for instance in the case of normal marginal distributions where a joint
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(or multivariate) normal distribution can always be constructed given a positive

semidefinite correlation matrix (see, for e.g., Tong 1990). Three dimensional ran-

dom vectors with uniform marginals are also known to share this property (Joe

1997, Kurowicka and Cooke 2001), but it is not known if this extends to higher

dimensions. In general then the set of feasible correlation matrices (for a given set

of marginals) is a strict subset of the set of correlation matrices as defined by Defi-

nition 1.1.2. An exact description of this set for general marginals is unfortunately

not known, and is a very interesting open question.

Spearman’s rank covariance measure avoids certain limitations of product-

moment covariances. The rank covariance between two random variables X and

Y is defined to be

rcov(X, Y ) = EF (X)G(Y ) − EF (X)EG(Y )

where F and G are the distribution functions of X and Y . (Passing from X to

F (X) is called the probability transformation.)

Rank correlations are defined as in the product-moment case: If σ2
F = Var(F (X))

and σ2
G = Var(G(Y )), then the rank correlation between X and Y is defined to be

rcor(X, Y ) = rcov(X, Y )/(σF σG).

One can see from its definition that rank covariances are always well-defined,

while product-moment covariances are defined only when the variances of X and

Y are finite (thus, certain heavy-tailed distributions would be left out). This

is because F (X) and G(Y ) are bounded random variables. In fact, if F (G) is

continuous, then F (X) (G(Y )) is uniformly distributed on (0, 1) (Billingsley 1995,

p. 197).
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Another important property of Spearman’s rank covariance is that unlike Pear-

son’s product-moment covariance, it is preserved under strictly increasing trans-

formations of the random variables. This property is very important from a prac-

tical point of view, as it allows us to handle random vectors with continuous

marginals and specified rank correlations easily. One simply generates a random

vector with uniform marginals and the given rank correlations and then transforms

each marginal using the inverse of the corresponding probability integral transform

F−1(·) (Equation (1.2) defines this transformation) to get the desired marginals.

These transformations are strictly increasing and thus preserve the rank correla-

tions.

The rank correlation structure of a random vector is defined by its rank correla-

tion matrix. These matrices are again necessarily symmetric and positive semidef-

inite, but this condition is again not sufficient: the set of feasible rank correlation

matrices is typically a strict subset of the set of correlation matrices as defined in

Definition 1.1.2.

In light of the facts presented above, we shall now briefly review some of the

more popular random vector sampling methods that match a marginals and cor-

relation specification.

Hill and Reilly (1994) describe a method for generating random vectors with

specified marginals and covariances through mixtures of extremal covariance dis-

tributions. They define extremal covariances as certain covariance matrices for

which corresponding joint distribution functions are easily constructed and gener-

ated. The premise of this approach is since extremal covariances are easily sampled,

one could try to match any arbitrary covariance matrix with a convex combination

(probability mixture) of the distributions that produce these extremal covariances.
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It is very effective for random vectors of low dimension (d ≤ 3 say), but the com-

putational requirements quickly become excessive for higher dimensional random

vectors. There is another difficulty with this approach. The set of feasible covari-

ance matrices is compact and convex (refer Proposition 2.2.6), but generally not

a polytope and hence there are sets of marginals with feasible covariance matrix

that cannot be matched using the technique developed by Hill and Reilly.

Meeuwissen and Cooke (1994) describe “tree-dependent” random vectors that

can be rapidly generated, but cannot match all feasible covariance matrices. Cooke

(1997) introduces a generalization of tree-dependent random vectors that is based

on a “vine” representation of a joint distribution. These concepts arise from

Bayesian and graph-theoretic literature. Such random vectors can be rapidly gen-

erated, but it is not yet clear whether they can be used to model any feasible

covariance matrix. Other methods for tackling the problem of generating random

vectors with specified marginals and covariance matrix have been developed; Nel-

son and Yamnitsky (1998), Vincent (1998) and the forthcoming Biller and Ghosh

(2005) give a good survey.

Cario and Nelson (1997) described the “NORmal To Anything” (NORTA)

method for generating random vectors with prescribed covariance matrix. The

NORTA method basically involves a component-wise transformation of a multi-

variate normal random vector, and capitalizes on the fact that multivariate normal

random vectors are easily generated; see e.g., Law and Kelton (2000), p. 480. Cario

and Nelson traced the roots of the method back to Mardia (1970) who looked at

bivariate distributions and product-moment covariances, and to Li and Hammond

(1975) who concentrated on the case where all of the marginals have densities (with

respect to Lebesgue measure). Iman and Conover (1982) implemented the same
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transformation procedure to induce a given rank correlation in the output. Their

method is only approximate, in that the output will have only very approximately

the desired rank correlation.

The NORTA method is very efficient and easily implemented, and has seen use

in a variety of contexts. Clemen and Reilly (1999) use the NORTA procedure to

induce a desired rank correlation in the context of decision and risk analysis. Lurie

and Goldberg (1998) implement a variant of the NORTA method for generating

samples of a predetermined size, which they use in cost analysis. Henderson et al.

(2000) adapt the NORTA method to generate samples of dependent quasi-random

vectors. The NORTA method is also routinely used in portfolio models in industry.

So the NORTA procedure is often the method of choice for generating random

vectors with prescribed marginals and correlation matrix. But can the NORTA

procedure match any feasible covariance matrix for a given set of marginals? Both

Li and Hammond (1975) and Lurie and Goldberg (1998) give examples where this

does not appear to be the case. However, the random vectors that they propose as

counterexamples were not proved to exist, and so the question was not completely

settled.

For 2-dimensional random vectors, the NORTA method can match any feasible

covariance matrix. This follows immediately from the characterizations in Whitt

(1976). However, for dimensions 3 and greater, little is known.

This question formed the starting point from whence we began our investiga-

tion into random vector generation methodologies. Specifically, we were interested

in determining whether there are feasible covariance matrices for a given set of

marginals that the NORTA method cannot match. We were able to prove that

this is indeed the case (refer Chapter 2).
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Since the rest of this thesis presumes a good working knowledge of the NORTA

method, we shall now precisely state the algorithm and the feasibility problem

it faces. We will then conclude this chapter with a roadmap of the progress we

have made on various fronts regarding random vector generation methodology. We

believe that each chapter is substantially self-contained; thus, we shall postpone a

survey of the relevant literature until the introductory part of each chapter.

1.2 The NORTA method

Cario and Nelson (1997) described the “NORmal To Anything” (NORTA) method

for generating i.i.d. replicates of a random vector X∗ = (X∗
1 , . . . , X∗

d) say with

prescribed marginal distributions and covariance structure. In this method, one

starts by generating a random vector Z with a multivariate normal distribution

and transforms Z to obtain a random vector X = (X1, . . . , Xd). Let Fi be the

desired marginal distribution function of X∗
i , for i = 1, . . . , d.

The NORTA method generates i.i.d. replicates of X by the following procedure.

1. Generate an IRd valued multivariate normal random vector Z = (Z1, . . . , Zd)

with mean vector 0 and covariance matrix ΣZ = (ΣZ(i, j) : 1 ≤ i, j ≤ d),

where ΣZ(i, i) = 1 for i = 1, . . . , d. (Refer Sections V.4 and XI.2 in Devroye

(1986) for a generation procedure.)

2. Compute the vector X = (X1, . . . , Xd) via

Xi = F−1
i (Φ(Zi)), (1.1)

for i = 1, . . . , d, where Φ is the distribution function of a standard normal

random variable, and

F−1
i (u) = inf{x : Fi(x) ≥ u}. (1.2)
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The vector X generated by this procedure will have the prescribed marginal

distributions. To see this, note that each Zi has a standard normal distribution,

so that Φ(Zi) is uniformly distributed on (0, 1), and so F−1
i (Φ(Zi)) will have the

required marginal distribution.

The covariance matrix ΣZ should be chosen so that it induces the required

covariance structure on X. The NORTA method can use either Pearson’s product-

moment covariance or Spearman’s rank covariance.

1.2.1 Pearson’s Product-Moment Covariance

Suppose that we wish X∗ to have Pearson product-moment covariance matrix Σ,

where Σ(i, j) = Cov(X∗
i , X∗

j ) for 1 ≤ i, j ≤ d. This is the case that Cario and

Nelson (1997) examined. To ensure that the required covariances are defined,

we make the assumption that E[(X∗
i )2] < ∞ for i = 1, . . . , d. It turns out that

choosing ΣZ to arrive at the correct covariance matrix Σ is a nontrivial problem.

Let X be the random vector generated from (1.1) above and ΣX denote its

covariance matrix. As noted in Li and Hammond (1975) and Cario and Nelson

(1997), each term ΣX(i, j) = Cov(Xi, Xj) is a function of only Cov(Zi, Zj) (also

refer Schmeiser 1990). To see this, note that when Cor(Zi, Zj) 6= ±1,

Cov(Xi, Xj) =

∫ ∞

−∞

∫ ∞

−∞

F−1
i (Φ(zi))F

−1
j (Φ(zj))ϕij(zi, zj) dzi dzj−EXiEXj , (1.3)

where ϕij is the joint density of (Zi, Zj). The expression (1.3) depends only on the

marginal distributions Fi and Fj , and the density ϕij. The joint-normal density

ϕij depends only on the covariance between Zi and Zj. When Cov(Zi, Zj) = ±1,

the joint density ϕij degenerates and the integral representation (1.3) is no longer

valid. However, in this degenerate case the covariance between Xi and Xj is still

a function only of the covariance between Zi and Zj. Hence, the relation (1.3)
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defines a function cij : [−1, 1] → IR mapping Cov(Zi, Zj) to Cov(Xi, Xj), where

Xi and Xj are defined via (1.1).

So the problem of matching a desired covariance matrix reduces to d(d − 1)/2

separate root-finding problems of selecting Cov(Zi, Zj) to match Cov(Xi, Xj) to

Σ(i, j). Unfortunately, there is no general analytical expression for the function

cij , and so we cannot determine the exact ΣZ that is to be used analytically.

Cario and Nelson (1997) established that under very mild conditions, the func-

tion cij is a continuous non-decreasing function of ΣZ(i, j). This result allows us

to perform an efficient numerical search for values ΛZ(i, j) that yield

cij(ΛZ(i, j)) = Σ(i, j) for i < j. (1.4)

We take ΛZ(i, i) = 1 for i = 1, . . . , d, and for i > j, set ΛZ(i, j) = ΛZ(j, i) to ensure

that ΛZ is symmetric. Alternatives to the numerical search suggested by Cario

and Nelson (1997) include the use of a stochastic root-finding algorithm (Chen

2001), or polynomial expansions (van der Geest 1998). Unless otherwise stated,

we henceforth assume that a solution to (1.4) exists, which is easily checked (Cario

and Nelson 1997).

One might hope that if the matrix ΛZ satisfies (1.4), then ΛZ could be used in

the NORTA method to generate i.i.d. replicates of X. Unfortunately, the results

we state in Chapter 2 prove that this is not always the case. The problem arises

when the matrix ΛZ as determined from (1.4) is not positive semidefinite, in which

case it is not a valid covariance matrix for a joint-normal vector.

Li and Hammond (1975) suggested the following example to illustrate this

important fact. Let X∗
1 , X

∗
2 and X∗

3 be 3 random variables uniformly distributed
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on (0, 1] with covariance matrix

Σ =
1

12













1 −0.4 0.2

−0.4 1 0.8

0.2 0.8 1













.

In the special case when X∗ has uniform marginals, the equations (1.4) can be

solved analytically. In particular, Kruskal (1958) showed that the (unique) solution

to (1.4) is given by

ΛZ(i, j) = 2 sin[2πΣ(i, j)]. (1.5)

For the Li and Hammond example, the (unique) matrix ΛZ found from (1.5)

is not positive semidefinite. It is important to observe though, that this is a

counterexample only if the postulated uniform random vector itself exists. Li and

Hammond did not show this.

Lurie and Goldberg (1998) gave an example with nonuniform marginals and

positive definite covariance matrix for which the solution to (1.4) is also not positive

semidefinite. They did not establish that the postulated random vector exists.

When all of the marginals have continuous distribution functions, a natural

alternative to the numerical search procedure mentioned earlier is to “work in

Gaussian space” and thus avoid this problem altogether. In other words, given a

set of data with known (or fitted) marginals with continuous distribution functions,

we first transform the data set into normal random variates using the inverse of

the transformation (1.1). We can then compute an empirical covariance matrix ΣZ

and use this covariance matrix in the NORTA procedure. (Note that (Φ−1(F (X))

is not normally distributed if the distribution function F is not continuous, since

then F (X) does not have a uniform distribution on (0, 1). Therefore, continuity

of the marginals is needed.)
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This approach is certainly simpler than a numerical search procedure, but it

has two important drawbacks. First, it requires a set of input data, which may not

be available in general. But second, and perhaps more importantly, this procedure

does not necessarily ensure that the resulting X variates will have the required

covariance structure. To see why, observe that the transformed normal random

variables mentioned above are unlikely to have a joint normal distribution. There-

fore, ΣZ , when used as the correlations of the jointly normal random variable in

the NORTA procedure, will be unlikely to transform through (1.1) to yield the

desired covariance matrix for X, as one might otherwise expect. This is a subtle

point, but one that is worth bearing in mind.

1.2.2 Spearman’s Rank Covariance

Suppose now that we wish X∗ to have Spearman’s rank covariance matrix Σ,

where Σ(i, j) = rcov(X∗
i , X∗

j ) for 1 ≤ i, j ≤ d. This is the case treated by Clemen

and Reilly (1999). We have remarked earlier that in contrast to product-moment

covariance, the rank covariance is always defined and is preserved under strictly

increasing transformations of the random variables.

If all of the marginal distribution functions Fi are continuous then the NORTA

transformation (1.1) is strictly increasing. In this case, the rank covariance is

preserved by the NORTA transformation, and so if X is the NORTA generated

random vector, then

rcov(Xi, Xj) = Cov(Φ(Zi), Φ(Zj)). (1.6)

But (1.6) is precisely the quantity Σ(i, j) in (1.5). (The rank covariance and

product-moment covariance of uniform marginals are identical.) Therefore, given
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a desired rank covariance matrix Σ, we simply compute the empirical covariance

matrix ΣZ(= ΛZ) via (1.5) and use this within the NORTA procedure.

Observe that if the random vector in the Li and Hammond example (given

above) exists, then it is also an example showing that there are feasible rank

covariance matrices for a given set of marginals that cannot be matched using a

NORTA procedure.

In the case where Fi (say) is not continuous, (1.6) no longer holds. Therefore,

the analytical expression (1.5) cannot be used. However, one could use a numerical

search procedure as in Cario and Nelson (1997) to identify the covariance ΣZ(i, j)

that yields the required rank covariance rcov(Xi, Xj). This follows since the rank

covariance between Xi and Xj is a nondecreasing continuous function of the covari-

ance between Zi and Zj. The nondecreasing property follows immediately from

the proof of Theorem 1 in Cario and Nelson (1997), and the fact that the function

Fi(F
−1
i (Φ(·))) is nondecreasing. Continuity follows from Theorem 2 of Cario and

Nelson.

Thus, one might potentially run into a problem while using NORTA with either

product-moment or rank correlation matrices. The existence of this problem had

not been formally established since the postulated counterexamples were not shown

to exist. Our first contribution was in establishing this.

1.3 A Roadmap

In Chapter 2, we rigorously establish that examples like those given by Li and

Hammond and Lurie and Goldberg exist that show that NORTA fails for some

feasible covariance matrices. We do this by devising a computational procedure

based on linear programming that establishes whether or not a given covariance
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matrix is feasible for a given set of marginals. If so, the method explicitly provides

a joint distribution with the required properties. This then gives the required

construction. To the best of our knowledge, this is the first example of such a

procedure.

Our initial efforts were geared towards establishing that the 3−dimensional

uniform random vector that forms the Li and Hammond example exists. We were

not aware at that time that Joe (1997, on p. 137) had shown (and Kurowicka

and Cooke (2001) had independently corroborated) that any correlation matrix

is automatically feasible for the special case of a 3−dimensional random vector

with uniform marginals, and thus the Li and Hammond example was valid. The

power of our approach is however broader in that it ascertains feasibility of any

d−dimensional random vector (with d ≥ 2) with any arbitrary set of marginals.

Thus, for instance, the Lurie and Goldberg example can also be established to

exist by this approach.

Chapter 3 investigates how the feasibility problem behaves as the dimension

of the random vector increases. Specifically, we determine that the probability

that NORTA fails to work for (uniform marginals and) a correlation matrix chosen

uniformly from the set of all correlation matrices increases with dimension, and

NORTA almost never works in dimensions 20 and higher. This clearly is of concern

when continuous marginal distributions and rank correlations are specified. This

also has important implications for NORTA when used with product-moment cor-

relations and non-uniform marginals, since uniform random vectors are generated

as an intermediary in the NORTA transformation (1.1).

An important part of our analysis in Chapter 3 is the development of a method

for sampling uniformly from the set of all correlation matrices of a given dimen-
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sion. As discussed in Chapter 2, this set can be viewed as a closed, bounded and

full-dimensional subset of a real vector space, and we sample uniformly over this

bounded set. We choose to call our sampling method the onion method for rea-

sons that will be clear once the working of the method is explained. This sampling

technique can be employed more generally in situations where positive semidefinite

matrices with fixed diagonal entries are to be sampled uniformly.

The philosophy of specifying marginals and covariances to model dependent

random variates is clearly an approximate one, since the joint distribution is not

completely specified. Therefore, one should be willing to live with reasonable (this

is, of course, a relative term) discrepancies in the covariance matrix from that

desired. In Chapter 4 we study certain modifications to the initialization phase

of NORTA that can achieve the desired marginals and a covariance matrix that

approximates the desired one. The results indicate that some of these augmented

NORTA procedures can typically get very close to a target covariance matrix, even

in very high dimensions. So in high dimensions, while NORTA is (very) unlikely to

be able to exactly match a desired covariance matrix, some of these methods allow

us to get very close. So, NORTA does perform reasonably in higher dimensions.

NORTA, both in its original and modified forms, can only approximately match

feasible covariance matrices in higher dimensions. But the feasibility testing tech-

nique introduced in Chapter 2 can construct random vectors (in the form of “chess-

board” distributions) for almost any feasible covariance matrix. Now, chessboards

turn out to be easy to generate from. This suggests that a chessboard based

generation technique should be of substantial interest. Its ability to more closely

match certain covariance matrices than NORTA should be seen as a clear advan-

tage of this approach. Moreover, the user retains greater control on the constructed
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distribution since various other dependence characteristics can be matched using

chessboards (Ghosh and Henderson 2001).

We develop this idea in Chapter 5, where we provide a new method for gen-

erating random vectors with specified marginals and covariance matrix based on

chessboard distributions. Constructing chessboards requires a nontrivial amount

of computational effort during initialization. We provide a strong characterization

of the effort needed to construct chessboards. We believe this method will typi-

cally be quite competitive with the NORTA method in low to moderate dimensions

while exactly matching the required characteristics of the random vectors.



CHAPTER 2

CHESSBOARD DISTRIBUTIONS AND FEASIBILITY

This chapter describes a computational procedure for determining whether a

given covariance matrix is feasible or not for a given set of marginal distributions.

We have remarked in Section 1.1 that there is no known characterization of the set

of feasible covariance matrices for any arbitrarily chosen set of marginals. Thus,

short of constructing a joint distribution with these properties, there is no easy

method to check feasibility.

Our procedure, which is based on this observation, attempts to find suitable

distributions using a linear programming approach. We call the constructed dis-

tributions chessboard distributions because of their structure; see Section 2.1.

The procedure can also identify specifications that are infeasible. It works for

almost all covariance matrices, and the set over which it does not work has been

exactly identified; see Section 2.2. To the best of our knowledge, this is the first

example of such a procedure.

We first specialize to the uniform (0, 1] marginals case. (Joint distributions

with uniform (0, 1] marginals are known as copulas. The term was coined in Sklar

(1959), and Nelsen (1999) is a useful recent reference.) Note that in this case

the rank covariance and product-moment covariance are identical. Hence this

procedure can equivalently check whether rank covariance matrices can be matched

to arbitrary marginals with continuous distributions. Section 2.2 describes the

various properties of this method that help rigorously establish the feasibility, or

not, of a given matrix. This, in turn, provides a way to demonstrate that there are

feasible covariance matrices that cannot be matched using the NORTA method.

We extend this computational procedure in Section 2.3 to provide a method for

19
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determining whether or not a given Pearson product-moment covariance matrix is

feasible for a given set of marginal distributions that are not necessarily uniform.

We require that the marginals have densities with respect to Lebesgue measure,

but this is just for convenience. Again our procedure either constructs a distribu-

tion with the required properties, or proves that such a distribution does not exist.

And again, the procedure works for almost all covariance matrices.

2.1 Chessboard Copulas

Chessboard distributions are perhaps closest in nature to the “piecewise-uniform

copulae” developed in Mackenzie (1994). Mackenzie attempts to identify a piecewise-

uniform copula that matches a given set of rank covariances. He assumes that such

copulae exist, and then selects the one with maximum entropy. In contrast, we

do not assume this feasibility, and indeed develop the theoretical properties of the

approach to check this property.

For notational simplicity we confine our attention to the three-dimensional case.

The extension to higher dimensions is straightforward. Our goal is to construct the

density of a random vector X with uniform marginals on (0,1] and product-moment

covariance matrix Σ = (Σij : 1 ≤ i, j ≤ 3). (Recall that the rank covariances and

product-moment covariances of uniform random variables on (0, 1] are identical.)

The chessboard density we construct has a simple structure. We divide (0, 1]3

into a large grid of rectangular regions (cells) with sides parallel to the coordinate

axes. Let n ≥ 1 be an integral parameter that determines the level of division

that is performed. The range (0, 1] of the ith variable is divided into n equal-

length sub-intervals by the set of points yi,k = k
n
, k = 0, . . . , n. Denote the cells
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as C(j1, j2, j3), indexed by j1, j2, j3 = 1, . . . , n. Thus,

C(j1, j2, j3) = {(x1, x2, x3) : yi,ji−1 < xj ≤ yi,ji
, i = 1, 2, 3},

for 1 ≤ j1, j2, j3 ≤ n. The density f of X is piecewise constant, taking the value

n3q(j1, j2, j3) (2.1)

in the cell C(j1, j2, j3), so that

P (X ∈ C(j1, j2, j3)) = q(j1, j2, j3). (2.2)

(We shall occasionally use fn to denote this chessboard density to emphasize that

it is constructed from an n−level of discretization.) Note that the density f is

such that, conditional on lying in a fixed cell C, each component is conditionally

independent of the others, with marginal distributions given by the uniform distri-

bution restricted to the cell. In a sense, the value q(j1, j2, j3) has been “smeared”

uniformly over the cell C(j1, j2, j3).

To ensure that the q(j1, j2, j3)s define a proper density f with uniform marginals,

we require that

n
∑

j2,j3=1

q(j1, j2, j3) = P (X1 ∈ (y1,j1−1, y1,j1]) =
1

n
, ∀j1 = 1, . . . , n,

n
∑

j1,j3=1

q(j1, j2, j3) = P (X2 ∈ (y2,j2−1, y2,j2]) =
1

n
, ∀j2 = 1, . . . , n, (2.3)

n
∑

j1,j2=1

q(j1, j2, j3) = P (X3 ∈ (y3,j3−1, y3,j3]) =
1

n
, ∀j3 = 1, . . . , n,

q(j1, j2, j3) ≥ 0 ∀j1, j2, j3 = 1, . . . , n.

Assuming (2.3) holds, it then follows that X has the desired uniform marginals

and f defines a copula.
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Theorem 2.1.1 If X is distributed as the density f , defined by (2.1), with cell

probabilities q satisfying the constraints (2.3), then X has uniform marginals.

Proof: Let the marginal distribution function of X1 be denoted by G1(·). We

have to show that G1(x) = x for x ∈ (0, 1]. For any x ∈ (y1,i−1, y1,i], we have that

G1(x) =
∑

j1≤i−1

n
∑

j2,j3=1

q(j1, j2, j3) +

n
∑

j2,j3=1

P (y1,i−1 < X1 ≤ x|X ∈ C(i, j2, j3)) · q(i, j2, j3)

=
i − 1

n
+

n
∑

j2,j3=1

∫ x

y1,i−1
1dy

∫ y1,i

y1,i−1
1dy

· q(i, j2, j3)

=
i − 1

n
+

n
∑

j2,j3=1

(x − i−1
n

)

1/n
q(i, j2, j3)

=
i − 1

n
+ x − i − 1

n
= x

as required. The first equation follows by conditioning on the cell in which the

random vector lies. The second holds because of (2.3), and (2.1) which gives that,

conditional on X lying in the cell C(j1, j2, j3), the components X1, X2 and X3

are conditionally independent of each other and the marginal distribution of each

component is uniform conditional on lying in this cell. A similar result holds for

the marginals of X2 and X3, and so X has the right marginals. 2

Remark 2.1.2 The name “chessboard” distribution is motivated by the form of

(2.1) in a 2 dimensional problem. In this case, the unit square is broken down in

n2 squares, and the density f is constant on each square, with value n2q(j1, j2).

There is no need for the cells used in the above construction to be of equal

size. Indeed, Theorem 2.1.1 remains true for more general discretizations; see

Theorem 2.3.1 in Section 2.3.
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Recall that our goal is to match the covariance matrix Σ. We do this using a

linear program. If ΣX
ij = Cov(Xi, Xj) gives the covariances of the random vector

X with density f , then we want to minimize the distance r(ΣX , Σ) between ΣX

and Σ, where

r(ΣX , Σ) =
∑

1≤i<j≤3

∣

∣ΣX
ij − Σij

∣

∣ .

Now, X has uniform marginals so EXi = 1/2 for i = 1, 2, 3. Also, by condi-

tioning on the cell containing X we see that

EX1X2 =
∑

j1,j2,j3

q(j1, j2, j3)E[X1X2|X ∈ C(j1, j2, j3)]

=
∑

j1,j2,j3

q(j1, j2, j3) µ1,j1 µ2,j2, (2.4)

where

µ`,i = E[X`|X ∈ (y`,i−1, y`,i]] =
2i − 1

2n

is the conditional mean of X` given that it lies in the ith subinterval. In (2.4) we

used the conditional independence of the components of X given that X lies in

one of the cells.

It follows that ΣX
12 is a linear function of the q(j1, j2, j3)’s, as is ΣX

13 and ΣX
23.

Using a standard trick in linear programming, we can represent |ΣX
12 − Σ12| and

the other terms in r(ΣX , Σ) in a linear fashion as follows.

Define Z+
ij and Z−

ij to be the positive and negative parts of the difference ΣX
ij −

Σij , i.e.,

Z+
ij = (ΣX

ij − Σij)
+ = max{ΣX

ij − Σij , 0}, and (ΣX
ij − Σij)

− = −min{ΣX
ij − Σij , 0}.

We can now attempt to match ΣX to Σ using the LP

min

2
∑

i=1

3
∑

j=i+1

(Z+
ij + Z−

ij ) (2.5)
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subject to ΣX
ij − Σij = Z+

ij − Z−
ij , i = 1 to 2 and j = i + 1 to 3

Z+
ij ≥ 0, Z−

ij ≥ 0, together with constraints (2.3).

Note that only one of either Z+
ij or Z−

ij can be non-zero since they represent

the positive and negative parts respectively of the same variable. This constraint

however need not be imposed on the program (2.5) because the convexity of the

objective function and other constraints in the program automatically ensures that

it is satisfied at an optimal solution.

This LP is always feasible since we can set q(j1, j2, j3) = n−3 for all j1, j2, j3.

Also, the objective function of the LP is bounded below by 0, so an optimal solution

exists.

If the optimal objective value for the LP is 0, then the solution gives a distri-

bution with the desired marginals and covariance structure, i.e., ΣX = Σ. This

provides the desired construction.

Recall that we also want a test that can establish that certain matrices Σ

cannot be matched. To this end we develop bounds on the Z+
ij and Z−

ij variables.

These additional bounds are important, because if they cannot be satisfied by any

feasible solution to the LP then a random vector with the given covariance matrix

and uniform marginals does not exist, as discussed further in Section 2.2.

The bounds are developed by assuming that a random vector X̃ with uniform

marginals and covariance matrix Σ exists, and modifying the distribution of X̃

to that of a random vector X that has a chessboard distribution. The modifica-

tion consists of keeping the total mass within each cell constant, but making the

conditional distribution within the cell uniform. The distribution of X then gives

a feasible solution to the LP (2.5). We can bound the change in the covariances

resulting from this operation on the distribution.
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Let

q̃(j1, j2, j3) = P (X ∈ C(j1, j2, j3)) = P (X̃ ∈ C(j1, j2, j3)).

Observe that

Cov(X1, X2) − Σ12 = EX1X2 − EX̃1X̃2

=
n

∑

j1,j2,j3=1

{

(µ1,j1µ2,j2 − E[X̃1X̃2|X̃ ∈ C(j1, j2, j3)])·(2.6)

q̃(j1, j2, j3)} .

But

y1,j1−1 y2,j2−1 ≤ E[X̃1X̃2|X ∈ C(j1, j2, j3)] ≤ y1,j1 y2,j2. (2.7)

Combining (2.6) with (2.7) we see that

Cov(X1, X2) − Σ12 ≤
n

∑

j1,j2,j3=1

q̃(j1, j2, j3)(µ1,j1 µ2,j2 − y1,j1−1 y2,j2−1), (2.8)

Cov(X1, X2) − Σ12 ≥
n

∑

j1,j2,j3=1

q̃(j1, j2, j3)(µ1,j1 µ2,j2 − y1,j1 y2,j2). (2.9)

Equation (2.8) gives an upper bound on Z+
12, and (2.9) gives an upper bound on

Z−
12. Similar bounds may be obtained for the other covariances. After substituting

in the explicit expressions for yi,k and µi,k, these bounds simplify to

Z+
ij ≤ 1

2n
− 1

4n2
and Z−

ij ≤ 1

2n
+

1

4n2
1 ≤ i < j ≤ 3. (2.10)

The optimal solution of the linear program (2.5) has to necessarily satisfy the

bounds (2.10) if the desired covariance matrix Σ is feasible for a uniform random

vector. This then gives us a way to check the feasibility of covariance matrices, as

we shall see in the next section.

2.2 Testing Feasibility

We shall now derive some important properties of the chessboard construction

procedure given in the previous section and describe how these help determine
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the feasibility of a given matrix Σ. We can (and do) easily state and prove these

results for a general dimension d (i.e., not just d = 3) without any notational diffi-

culty. Thus, a d−dimensional chessboard density is constructed with an expression

analogous to (2.1), and we let a d−dimensional cell C(j1, . . . , jd) be represented

compactly by C(j; d), and similarly q(j1, . . . , jd) by q(j; d).

For the purpose of proving the results in this section, we assume that the linear

program (2.5) includes the bounds (2.10), and they are collectively referred to as

the augmented LP.

Once the LP procedure is augmented with the bounds (2.10), it is no longer

guaranteed to be feasible. In fact, Theorem 2.2.1 below establishes that if the

augmented LP is infeasible for any value of n ≥ 1, then the covariance matrix Σ is

not feasible for uniform marginals. The proof is basically a summary of the above

discussion, and is given to help clarify these ideas.

Theorem 2.2.1 If the augmented LP is infeasible for some n ≥ 1, then there

cannot exist a random vector X with uniform marginals and the desired covariance

matrix Σ.

Proof: Suppose there exists a random vector X with uniform marginals and

covariance matrix Σ. Then, as above, we can construct a solution q̃ by discretizing

X that satisfies all of the constraints, including the bounds (2.10). Thus the

augmented LP is feasible, which is a contradiction. 2

In fact, one can prove a converse to Theorem 2.2.1.

Theorem 2.2.2 If the covariance matrix Σ is not feasible for uniform (0, 1] marginals,

then there exists an n ≥ 1 such that the augmented LP is infeasible.
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Proof: On the contrary, suppose that the augmented LP is feasible for all n ≥ 1.

Let qn denote an optimal solution to the nth augmented LP, and let µn denote the

probability measure corresponding to the density resulting from the operation (2.1)

applied to qn. Then each µn is the distribution of a random vector with support

contained in (0, 1]3 with uniform(0, 1] marginals. Hence, the sequence (µn : n ≥ 1)

is tight, and by Theorem 29.3 on p. 392 of Billingsley (1986), it possesses a weakly

convergent subsequence (µn(k) : k ≥ 1), converging to µ say.

Now, µ has uniform (0, 1] marginals. This follows from Theorem 29.2, p. 391

of Billingsley (1986) since each µn(k) has uniform(0, 1] marginals, µn(k) ⇒ µ as

k → ∞, and the projection map πj : IRd(d−1)/2 → IR that returns the jth coordinate

of a vector in IRd(d−1)/2 is continuous.

If Cn is the covariance matrix of the distribution µn, then

d−1
∑

i=1

d
∑

j=i+1

|Cn
ij − Σij | ≤

d(d − 1)

4n
+

d(d − 1)

8n2
→ 0 (2.11)

as n → ∞. This follows from the bounds (2.10), and the fact that in any optimal

solution, it is not the case that both Z+
ij and Z−

ij are strictly positive.

Finally, if Xn(k) has distribution µn(k), then (X
n(k)
i X

n(k)
j : k ≥ 1) is a uniformly

bounded sequence of random variables, and therefore uniformly integrable. It

immediately follows that the covariance matrix Λ of µ is given by

Λ = lim
k→∞

Cn(k) = Σ.

Thus, µ has the required marginals and covariance matrix, which is a contradiction,

and the result is proved. 2

Combining Theorems 2.2.1 and Theorem 2.2.2, we see that

Theorem 2.2.3 A covariance matrix is infeasible for uniform marginals if, and

only if, the augmented LP is infeasible for some n ≥ 1.
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Given this very sharp characterization of infeasible covariance matrices, it is

natural to ask whether a similar result holds for feasible covariance matrices. We

would then have the result that a covariance matrix is feasible for a given set of

marginals if and only if there is some finite n such that the optimal objective value

of the augmented LP is zero. Unfortunately, this conjecture is false.

Example 1 Suppose that Z is a 2−dimensional random vector with uniformly

distributed components Z1 = Z2 on (0, 1], so that the

Cov(Z1, Z2) = Var(Z1) = 1/12.

For a bivariate chessboard random vector X of a given size n, the covariance

between X1 and X2 is maximized by concentrating all mass on the cells (i, i), and

so q(i, i) = n−1 for 1 ≤ i ≤ n. In that case, we have that

Cov(X1, X2) =
1

12
− 1

12n2
.

Therefore, Cov(X1, X2) < 1/12 = Cov(Z1, Z2) for all finite n.

Notice that the covariance matrix in this example is singular. This counterex-

ample is a special case of the following result.

Theorem 2.2.4 All chessboard densities have nonsingular covariance matrices.

Proof: On the contrary, suppose that f is a chessboard density with singular

covariance matrix Σ, and let X have density f . Since Σ is singular, there exists

a nonzero vector α such that Σα = 0. Hence, Var(α′X) = α′Σα = 0, and so

α′X = α′EX a.s. Since α is nonzero, we may, by relabelling variables if necessary,

write X1 as a linear function of the other components, say X1 =
∑d

k=2 βkXk a.s.
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This equality must also hold conditional on X being in any cell with q(j; d) > 0.

But the components of X are conditionally independent given that X ∈ C(j; d)

because f is a chessboard density, which is the required contradiction. 2

The importance of Theorem 2.2.4 is that if Σ is feasible for the given marginals

and singular, then no matter how large n may be, the optimal objective value of

the LP will always be > 0, i.e., we cannot exactly match the covariance matrix Σ.

However, we can come arbitrarily close, as the following result shows.

Theorem 2.2.5 Suppose that the covariance matrix Σ is feasible for uniform (0, 1]

marginals. Then for all n ≥ 1, the augmented LP is feasible, and if z(n) is the

optimal objective value of the nth LP, then z(n) → 0 as n → ∞.

Proof: Since Σ is feasible for uniform marginals, the augmented LP is feasible for

all n ≥ 1. (This is just the contrapositive of Theorem 2.2.1.) Let qn denote an

optimal solution to the nth LP, and let fn be the corresponding chessboard density.

If Cn is the covariance matrix corresponding to fn, then the bounds (2.10) imply

that

z(n) =
d−1
∑

i=1

d
∑

j=i+1

|Cn
ij − Σij | ≤

d(d − 1)

4n
+

d(d − 1)

8n2
→ 0

as n → ∞. 2

Therefore, chessboard densities can come arbitrarily close to any required Σ

that is feasible for uniform marginals. In fact, one can prove that chessboard

densities can exactly match a (very) slightly restricted class of feasible covariance

matrices. To state this result we need some notation.

Any covariance matrix Σ of a d dimensional random vector with uniform(0, 1]

marginals can be characterized by d(d−1)/2 covariances, since the diagonal entries
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are determined by the marginals, and the matrix is symmetric. Hence we can, with

an abuse of notation, think of Σ as a (d(d − 1)/2)−dimensional vector in some

contexts, and as a d × d matrix in others.

Let Ω ⊂ [−1/12, 1/12]d(d−1)/2 denote the space of feasible covariance matri-

ces, so that Σ ∈ Ω implies that there exists a random vector with uniform(0, 1]

marginals and covariance matrix Σ. We will show below that Ω is nonempty and

convex (this is well-known), but also closed and full-dimensional (this appears to

be new). In particular then, any covariance matrix on the boundary of Ω is feasi-

ble. We will also show that Σ is contained in the interior of Ω if, and only if, there

is some finite n for which the LP has objective value 0. The collective implications

of this and our previous results will be discussed after the statement and proof of

these results.

Proposition 2.2.6 The set Ω is nonempty, convex, closed and full-dimensional.

Proof: If the components of X are independent, then the covariance matrix Σ is

diagonal, and so Ω contains the zero vector, and is therefore nonempty.

It is well-known that Ω is convex. For if Σ1, Σ2 ∈ Ω, then there exist random

vectors X, Y with uniform(0, 1] marginals, and covariance matrices Σ1 and Σ2

respectively. For λ ∈ (0, 1), let Z be given by X with probability λ, and Y with

probability 1 − λ. Then Z has covariance matrix λΣ1 + (1 − λ)Σ2.

The proof that Ω is closed is virtually identical to that of Theorem 2.2.2 and

is omitted.

We use the NORTA method to prove that Ω is full-dimensional. We will show

that each of the vectors ±ek/12 are contained in Ω, where ek is the vector whose

components are all 0 except for a 1 in the kth position, for k = 1, . . . , d(d − 1)/2.
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The convexity of Ω then ensures that Ω is full-dimensional.

Let Z be a multivariate normal random vector with mean 0 and covariance

matrix consisting of 1’s on the diagonal, and also in the (i, j)th and (j, i)th position

(i 6= j), with the remaining components being 0. That is, Z consists of 2 perfectly

correlated standard normal random variables Zi and Zj, and d − 2 independent

standard normal random variables. Now let U be the random vector with uniform

(0, 1) marginals obtained by setting Um = Φ(Zm) for m = 1, . . . , d. Then Ui and Uj

are perfectly correlated, and independent of all of the remaining components of U .

Thus, U has covariance matrix whose components are all 0 except for the diagonal

elements, and the (i, j), and (j, i)th elements, which are equal to 1/12. Thus,

ek/12 lies in Ω, where k corresponds to the position (i, j). A similar argument

with perfectly negatively correlated Zi and Zj shows that −ek/12 ∈ Ω. Since i 6= j

were arbitrary, the proof is complete. 2

In Theorem 2.2.4 we showed that all chessboard densities have nonsingular

covariance matrices. This is almost sufficient to establish that all boundary points

of Ω do not have chessboard densities. However, it is certainly conceivable that

the boundary of Ω contains nonsingular, as well as singular, covariance matrices.

So we strengthen Theorem 2.2.4 with the following result.

Theorem 2.2.7 If fn is a chessboard density with covariance matrix Σ, then Σ

is contained in the interior of Ω.

Proof: Let X have density fn. We will show that we can both increase, and

decrease, the covariance between X1 and X2 while keeping all other covariances

constant. Symmetry then allows us to conclude that the same result holds for Xi

and Xj with i 6= j. The convexity of Ω then completes the proof.
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Let q be the discretization of fn into its n3 cells, and let C(j; d) be a cell with

q(j; d) > 0. Divide the cell C(j; d) into 4 (equal size) sub-cells,

Cab(j; d) = {x ∈ C(j; d) :
j1 − 1

n
+

a

2n
< x1 ≤

j1 − 1

n
+

a + 1

2n
,

j2 − 1

n
+

b

2n
< x2 ≤

j2 − 1

n
+

b + 1

2n
},

for 0 ≤ a, b ≤ 1.

Generate a new density g by the usual relation (2.1) in all cells except C(j; d).

Within the cell C(j; d), assign a mass of q(j; d)/2 to each of the cells C11(j; d), and

C22(j; d), and then define the density within these cells by (2.1). In other words,

for a point x contained in these two cells, set g(x) = 2ndq(j; d) and set g to be

0 in the cells Cab(j; d) for a 6= b. Then it is straightforward to show that g has

uniform marginals, that the (1, 2)th covariance is strictly increased, and that the

other covariances remain unchanged.

A similar argument placing the mass in the cells Cab(j; d) with a 6= b shows

that the covariance can be strictly decreased, and so the proof is complete. 2

We have thus far shown that if a covariance matrix Σ is not in Ω, then the

augmented LP will be infeasible for some n ≥ 1, and if Σ is on the boundary

of Ω, then the LP approach will yield distributions with covariance matrices that

arbitrarily closely approximate Σ, but never actually achieve it. Our final result

shows that if Σ is contained in the interior of Ω, then there is some n ≥ 1 for which

the optimal objective value of the augmented LP is 0, and so one can exactly match

Σ using a chessboard density. Before proving this result, we need the following

lemma. This lemma basically states that given a fixed vector x, we can choose

certain other vectors arbitrarily close to x, so that x is a convex combination of

these “close” vectors, and if we perturb the close vectors slightly, then x is still a
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convex combination of the perturbed vectors.

For x ∈ IRm and ε > 0, let B(x, ε) denote the (open) set of vectors {y ∈ IRm :

ρ(x, y) < ε}, where ρ is the L1 distance

ρ(x, y) =
m

∑

i=1

|xi − yi|.

Lemma 2.2.8 Let x ∈ IRm, and let ε > 0 be arbitrary. There exist m + 1 points

x1, . . . , xm+1 ∈ B(x, ε), and a δ > 0 such that if

ρ(xi, x
′
i) < δ ∀i = 1, . . . , m + 1,

then x may be written as a convex combination of x′
1, . . . , x

′
m+1.

Proof: Basically, one chooses the xi’s to be the vertices of a simplex centered at

x. To be precise, let r > 0 be a parameter, and set

x1 = ( −a1 −a2 · · · −am−1 −am )′ + x

x2 = ( a1 −a2 · · · −am−1 −am )′ + x

x3 = ( 0 2a2 · · · −am−1 −am )′ + x

...
...

...
...

...
...

...
...

...

xm = ( 0 0 · · · (m − 1)am−1 −am )′ + x

xm+1 = ( 0 0 · · · 0 mam )′ + x,

where

ai = r

√

m

m + 1

√

1

i(i + 1)
.

Then (Dantzig 1991) the xi’s define the vertices of an equilateral simplex whose

center is x, and whose vertices are a (Euclidean) distance rm/(m + 1) from x.

Choose r so that xi ∈ B(x, ε) for all i.
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Observe that the average of the xi’s is x. In fact, it is easy to show that the

(m + 1) × (m + 1) matrix B consisting of the xi’s in columns, supplemented with

a row of 1’s is nonsingular, and so

y = B−1x = (m + 1)−1(1, 1, . . . , 1)′.

Now, observe that B−1 is a continuous function of B, at least in a neighbourhood

of B, and so y = B−1x is locally a continuous function of x1, . . . , xm+1. Hence,

there is a δ > 0 such that if ρ(xi, x
′
i) < δ for all i = 1, . . . , m+1, and D consists of

the vectors x′
i in columns supplemented with a row of 1’s, then y = D−1x consists

of all positive components, and the elements of y sum to 1. 2

We are now ready to state the final result of this section.

Theorem 2.2.9 If Σ is contained in the interior of Ω, then there exists an n ≥ 1

such that the optimal objective value of the augmented LP is 0.

Proof: Let m = d(d − 1)/2, and for now, consider Σ as an m-vector. Let ε > 0

be such that B(Σ, ε) ⊆ Ω, and choose Σ1, Σ2, . . . , Σm+1 ∈ B(Σ, ε) and δ as in

Lemma 2.2.8.

Since Σi ∈ Ω, from Theorem 2.2.5 there exists an n(i) such that the augmented

LP with target covariance matrix Σi has optimal objective value smaller than δ,

for each i = 1, . . . , m + 1. Let n = n(1)n(2) · · ·n(m + 1), and let qi denote a

solution to the augmented LP with target matrix Σi and discretization level n for

i = 1, . . . , m + 1. Then the optimal objective value corresponding to qi is also

less than δ. (Note that if k, n ≥ 1 are integers, then the optimal objective values

z(n) and z(kn) satisfy the relationship z(kn) ≤ z(n), since the chessboard density

obtained from the solution to the nth LP can also be obtained from the (kn)th

LP.)
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Let Σ′
i denote the covariance matrix corresponding to the chessboard density

f i for the solution qi, for i = 1, . . . , m + 1. Then, by Lemma 2.2.8, there exist

nonnegative multipliers λ1, λ2, . . . , λm+1 summing to 1 such that

Σ =
m+1
∑

i=1

λiΣ
′
i. (2.12)

If we set

f =
m+1
∑

i=1

λif
i,

then f is also a chessboard density with discretization level n, and from (2.12), its

covariance matrix is exactly Σ. 2

In summary then, we have shown that if Σ is infeasible for uniform marginals,

then the augmented LP will be infeasible for some n ≥ 1. This includes the case

where Σ is singular and infeasible for uniform marginals. Furthermore, we have

shown that if Σ is contained in the interior of Ω, then the augmented LP will have

optimal objective value 0 for some n ≥ 1, and so one can construct a chessboard

density from the solution to the augmented LP with the required marginals and

covariance matrix. So if Σ is not contained in the boundary of Ω, then we have

an algorithm for determining, in finite time, whether Σ is feasible for the given

marginals or not. One simply solves the augmented LP for n = 1, 2, 3, . . . until the

augmented LP is either infeasible, or has an optimal objective value of 0. In the

latter case, we can deliver an explicit construction of the desired distribution.

The case where Σ lies on the boundary of Ω is more problematical. We have

shown that in this case, Σ is feasible for uniform marginals, but that a chessboard

density cannot be constructed with uniform marginals and covariance matrix Σ.

Therefore, for such matrices, the algorithm outlined above will not terminate in

finite time. However, a chessboard distribution can come arbitrarily close to the
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required covariance matrix. Furthermore, in Chapter 5, we shall prove a result on

how close a chessboard distribution of discretization size n can come to matrices

from the boundary.

Proposition 2.2.6 establishes that the set Ω is a compact set with a non-empty

interior, and thus has a non-zero finite Lebesgue measure (in IRd(d−1)/2), while its

boundary is a zero Lebesgue measure set (this can be proved, for instance, using

Theorem 10.2(iv) in Billingsley 1995). Thus, chessboard distributions can model

almost any (in a Lebesgue measure sense) feasible covariance matrix from Ω.

An application of the theory developed in this section easily shows that the

NORTA method fails to match uniform marginals with all feasible covariances

matrices Σ from the interior of Ω. The steps needed to determine this are straight-

forward. First, we sample the set of all possible covariance matrices for uniform

marginals (symmetric positive semidefinite matrices with 1/12 on the diagonal)

and check each chosen matrix for feasibility using the LP-based procedure out-

lined here. For matrices that turn out feasible, we next check if (1.5) yields a

positive semidefinite estimate ΛZ for the covariance matrix of the joint normal

random vector that forms the base of the NORTA procedure. Any feasible matrix

that fails the second check is an example where NORTA fails. The Li and Ham-

mond example can be validated in this fashion, and one can find other examples

in three and higher dimensions.

We note here that though this section assumed that the chessboard construc-

tion procedure consists of solving the “augmented LP” for increasing values of the

discretization parameter n, in practice the procedure is implemented in a different,

but equivalent, way: the original LP (2.5) is solved first and then the optimal so-

lution to this minimization problem is checked to see whether it satisfies the upper
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bounds (2.10). We do this for two reasons. First, in its original form, the linear

program possesses a special structure (in the two-dimensional case it resembles an

assignment problem) and hence is conceivably easier to solve without the bounds

(2.10) imposed as constraints. This alternative approach aims to preserves this ad-

vantage. Second, this implementation faithfully identifies every infeasible matrix

that the “augmented LP”-solving approach would. In addition it also automati-

cally provides a distribution with a covariance matrix approximately close to the

desired (but infeasible ) one, with a guaranteed upper bound (based on (2.10)) on

the distance between them.

2.3 Chessboards with General Marginals

In this section we generalize the uniform marginals assumption to consider random

vectors with marginal distributions that have densities and finite variance. The

requirement that the marginal distributions have densities is again for convenience.

It allows us to be less stringent with endpoints of intervals than we would otherwise

need to be. The method provided here can determine whether a specified product-

moment covariance matrix is feasible for any set of marginals (with densities). The

theory developed in the earlier sections of this chapter can be translated to this

case in a straightforward manner for the most part.

We shall illustrate this procedure for a 3−dimensional random vector. The

general d−dimensional case is virtually identical. Suppose we wish to construct a

chessboard distribution for X = (X1, X2, X3) such that each of the marginals has

a density fi and finite variance. Furthermore, let Fi represent the corresponding

ith marginal distribution function and dom(Fi) its domain. Let

{yi,ji
: i = 1, 2, 3, ji = 0, . . . , n}
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be the set of points that divide the range of the ith variable dom(Fi) into n sub-

intervals. The range could be infinite, in which case we allow the corresponding

endpoint to be ±∞. Let M−
i and M+

i represent the leftmost and rightmost finite

points respectively. Thus, if Xi were exponentially distributed, M−
i = yi,0 =

0, yi,n = ∞ and M+
i = yi,n−1. The range can be divided in any manner, as long as

the points satisfy two conditions. Firstly, the internal mesh becomes dense, i.e.,

lim
n→∞

sup
i,ji

|yn
i,ji

− yn
i,ji−1| = 0, (2.13)

where the sup excludes infinite endpoints. Secondly, mini |M±
i | → ∞ as n → ∞.

These conditions are satisfied, for example, if we take the points to be of the form

−∞,−√
n,−√

n +
2√
n

,−√
n +

4√
n

, . . . ,
√

n, +∞.

These conditions avoid complications that might arise if the intervals are simply

assumed to be equi-probable. For example, if one of the marginal distribution

functions has a “flat patch”, i.e., there is some i and x < y such that Fi(x) =

Fi(y) ∈ (0, 1), then a technique we shall propose later in this section to derive

bounds similar to (2.10) fails to work for chessboard densities that have intervals

of equal probability.

For 1 ≤ j1, j2, j3 ≤ n define the cell C(j1, j2, j3) to be the (j1, j2, j3)th rectan-

gular region

{x = (x1, x2, x3) : yi,ji−1 < xi ≤ yi,ji
i = 1, 2, 3} ∩ <3.

Define

q(j1, j2, j3) = P (X ∈ C(j1, j2, j3))

to be the probability that the constructed random vector appears in the (j1, j2, j3)th

cell. The chessboard distribution is defined so that within each cell the compo-

nents of X are independent, and are distributed according to the desired marginals
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f1, f2, f3 restricted to the cell C(j1, j2, j3). Let pi,k = P (Xi ∈ (yi,k−1, yi,k]) be the

probability that the ith marginal random variable lies in the kth subinterval. The

density f(x) of X evaluated at x ∈ C(j1, j2, j3) is then given by

q(j1, j2, j3)
f1(x1)

p1,j1

f2(x2)

p2,j2

f3(x3)

p3,j3

. (2.14)

To be consistent with the given marginals, the q(j1, j2, j3) values must satisfy

the constraints

n
∑

j2,j3=1

q(j1, j2, j3) = p1,j1, j1 = 1, . . . , n

n
∑

j1,j3=1

q(j1, j2, j3) = p2,j2, j2 = 1, . . . , n (2.15)

n
∑

j1,j2=1

q(j1, j2, j3) = p3,j3, j3 = 1, . . . , n

q(j1, j2, j3) ≥ 0 1 ≤ j1, j2, j3 ≤ n.

An argument along the lines of the proof of Theorem 2.1.1 shows that if a

chessboard distribution is constructed via (2.14) then it has the correct marginals.

We shall give the proof here because it is useful in understanding the nature of

these chessboard distributions.

Theorem 2.3.1 If q satisfies the constraints (2.15), and X is constructed with

density f as given in (2.14), then X has the desired marginals.

Proof: Let the marginal distribution function of X1 be denoted by G1(·). We

have to show that G1(x) = F1(x) for x ∈ dom(F1). For any x ∈ (y1,i−1, y1,i], we

have that

G1(x) =
∑

j1≤i−1

n
∑

j2,j3=1

q(j1, j2, j3) +
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n
∑

j2,j3=1

P (y1,i−1 < X1 ≤ x|X ∈ C(i, j2, j3)) · q(i, j2, j3)

=
∑

j1≤i−1

p1,j1 +
n

∑

j2,j3=1

∫ x

y1,i−1
f1(y)dy

∫ y1,i

y1,i−1
f1(y)dy

· q(i, j2, j3)

=
∑

j1≤i−1

p1,j1 +

n
∑

j2,j3=1

∫ x

y1,i−1
f1(y)dy

p1,i
q(i, j2, j3)

=
∑

j1≤i−1

p1,j1 +

∫ x

y1,i−1

f1(y)dy = F1(x)

as required. The first equation follows by conditioning on the cell in which the

random vector lies. The second holds because of (2.15), and (2.14) which gives

that, conditional on X lying in the cell C(j1, j2, j3), X1 is independent of the

components X2 and X3 and distributed according to F1 conditional on lying in the

j1th sub-interval corresponding to this cell. A similar result holds for the marginals

of X2 and X3, and so X has the right marginals. 2

Our goal is to match the product-moment covariance matrix of the chessboard

density (2.14), denoted by ΣX , to the desired product-moment covariance matrix

Σ. The diagonal elements of the covariance matrices Σ and ΣX are determined

by the marginal distributions, and so our objective is to minimize the difference

r(Σ, ΣX), where once again we have

r(ΣX , Σ) =
∑

1≤i<j≤3

∣

∣ΣX
ij − Σij

∣

∣ .

Reasoning similar to the uniform marginals case, we find that for i 6= k,

ΣX(i, k) =
∑

j1,j2,j3

γi(ji)γk(jk)q(j1, j2, j3) − EXiEXk, (2.16)

where, for 1 ≤ i ≤ 3 and 1 ≤ m ≤ n,

γi(m) = E[Xi|Xi ∈ (yi,m−1, yim]]
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is the conditional mean of Xi given that it lies in the mth subinterval (which is

determined by its marginal density fi.)

Thus, we have again expressed ΣX(i, k) as a linear function of q. To match the

desired covariance matrix Σ, we solve the linear program

min

2
∑

i=1

3
∑

j=i+1

(Z+
ij + Z−

ij ) (2.17)

subject to ΣX
ij − Σij = Z+

ij − Z−
ij , i = 1 to 2 and j = i + 1 to 3

Z+
ij ≥ 0, Z−

ij ≥ 0, together with constraints (2.15).

where the variables Z±
ij are again defined as they were in Section 2.1.

The properties derived in Section 2.2 for the chessboard copula matching tech-

nique hinge on the crucial fact that one is able to obtain bounds on the objective

function of the LPs (2.5) that vanish as the discretization parameter n → ∞.

These results can be proved for general marginals with densities and finite vari-

ances if a similar vanishing bound can be identified. The technique employed in

the uniform marginal distribution case (Section 2.1) does not carry over to this

case since it depends on the support being finite. We present a technique to de-

rive such bounds under the assumption that the marginal distributions have finite

variance. We can assume this at no additional cost since it is needed to ensure

the existence of product-moment covariances. This then extends the power of the

chessboard-based covariance matching technique to the general marginals case.

We shall restrict our description to the case where the support of the marginal

densities are all (−∞, +∞). We assume this only to keep the explanation simple;

the method itself is applicable generally. We take |M−
i | = |M+

i | 4= Mi. Suppose

there exists a random vector X̃ with the prescribed covariance matrix Σ. We again

redistribute the probability mass of its distribution within cells (thus keeping the
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cell probability masses constant) so that the conditional density given a cell is

one of independent random variables with the desired marginals. Let X denote a

random vector with the redistributed probability mass. We provide a bound on

the change in covariance due to this redistribution.

Let S represent the the part of the support of X (and X̃) bounded by the

rectangle [−M1, M1]× [−M2, M2]. As per our notation, S is given by the collection

of cells C(j1, j2, j3) with indices j1 and j2 ranging over 2, . . . , n − 1. The absolute

change in covariance due to the redistribution operation, |EX1X2 − EX̃1X̃2|, can

be split into two terms:

|EX1X2 − EX̃1X̃2|

≤
∣

∣

∣
E[X1X2I{(X1, X2) ∈ S}] − E[X̃1X̃2I{(X̃1, X̃2) ∈ S}]

∣

∣

∣
+ (2.18)

∣

∣

∣
E[X1X2I{(X1, X2) ∈ Sc}] − E[X̃1X̃2I{(X̃1, X̃2) ∈ Sc}]

∣

∣

∣

where I{A} is the indicator function taking the value 1 on the event and 0 other-

wise.

The first term in (2.18) represents the change due to the redistribution opera-

tion in a compact part S of the support. This can thus be bounded in a fashion

similar to that used in Section 2.1. Assumption (2.13) ensures that this bound

goes to 0 as n → ∞.

Now, consider the second term in (2.18), which includes cells of infinite length.

This term can be bounded by

|E[X1X2I{(X1, X2) ∈ Sc}]| +
∣

∣

∣
E[X̃1X̃2I{(X̃1, X̃2) ∈ Sc}]

∣

∣

∣
. (2.19)

The first of these terms can be rewritten as

E[X1X2I{(X1, X2) ∈ Sc}] = E[X1X2 I{ {|X1| > M1} ∪ {|X2| > M2} }],
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≤ E[X1I{|X1| > M1}X2] +

E[X1X2I{|X2| > M2}]. (2.20)

Since the variances of all components of X are finite, the first expression in (2.20)

can be bounded, with help from the Cauchy-Schwarz inequality, as

|E[X1I{|X1| > M1}X2]| ≤ E[ | X1I{|X1| > M1} |2 ]
1/2

E[X2
2 ]1/2

= E[X2
1 I{|X1| > M1} ]

1/2
E[X2

2 ]1/2. (2.21)

The second term in (2.21) is a constant that depends on the marginal distribution

of X2. As for the first term, observe that (X2
1 I{|X1| > M1}) → 0 almost surely

as M1 → ∞ since X1 has finite second moments. Moreover, it is also bounded by

X2
1 , which has a finite mean EX2

1 , and so the Dominated Convergence Theorem

(Billingsley 1995, Theorem 16.4), implies that E[X2
1 I{|X1| > M1}] converges to

0 as M1 → ∞. The same holds for the second term in (2.20).

Putting together the bound in (2.21) with equations (2.20), (2.19) and finally

(2.18) then gives us a bound on the objective function of the LP (2.17). These

bounds are similar to those obtained for the objective function of the chessboard

copula LP in Section 2.1 in the sense that they converge to 0 as n → ∞. This

is all that was required to help prove the results in Section 2.2. For the uniform

marginals case, we were also able to simplify the expressions for the bounding value

to determine that it was of the order of magnitude n−1. The corresponding value

here depends intimately on the tail behaviour of the marginal distributions, which

determine the rate at which E[X2
1 1{|X1| > M1}] → 0.

We will now show how these bounds help us prove results analogous to those in

Section 2.2 for this case. We shall state all the results, but will omit the proofs that

are virtually identical to the uniform marginals case. Again, following Section 2.2,
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we shall present the following results for the case of a general dimension d.

Theorem 2.3.2 A covariance matrix is infeasible for the given marginals if, and

only if, the chessboard LP (2.17) augmented with the appropriate bounds is infea-

sible for some n ≥ 1.

Proof: The “if” part of the proof follows from the preceding discussion: if a

random vector X exists with the covariance matrix, then we can obtain a feasible

solution q̃ for the augmented LP from its distribution. This makes the LP feasible,

which is a contradiction.

For the “only if” part, let us assume the contrary, that is, suppose the aug-

mented LP is feasible for all n ≥ 1. Let qn denote an optimal solution to the nth

augmented LP, and let µn denote the probability measure corresponding to the

density resulting from the operation (2.14) applied to qn. Then each µn is the

distribution of a random vector with marginals possessing finite second moments.

Hence, the sequence (µn : n ≥ 1) is tight, and by Theorem 29.3 on p. 392 of

Billingsley (1986), it possesses a weakly convergent subsequence (µn(k) : k ≥ 1),

converging to µ say.

Now, µ has the right marginals. This follows from the Mapping theorem (The-

orem 29.2, p. 391 of Billingsley 1986) since each µn(k) has the marginals we desire,

µn(k) ⇒ µ as k → ∞, and the projection map πj : IRd(d−1)/2 → IR that returns the

jth coordinate of a vector in IRd(d−1)/2 is continuous.

If Cn is the covariance matrix of the distribution qn, then

d−1
∑

i=1

d
∑

j=i+1

|Cn
ij − Σij | → 0

as n → ∞. This follows from the bounds derived in the prelude to this theorem.
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Finally, if Xn(k) has distribution µn(k), then (X
n(k)
i X

n(k)
j : k ≥ 1) is uniformly

integrable. To see this, note that (let m = n(k))

sup
m

E [|Xm
1 Xm

2 I {|Xm
1 Xm

2 | > K}|]

≤ sup
m

E
[

|Xm
1 Xm

2 | I
{

|Xm
1 | >

√
K

}

+ |Xm
1 Xm

2 | I
{

|Xm
2 | >

√
K

}]

This holds because, for any two positive numbers x and y, {xy > K} ⊆ {max{x, y} >

√
K} ⊆ {x >

√
K} ∪ {y >

√
K}. An argument along the lines of those given in

the context of the bounding expression in (2.21) shows that the expression on the

right side converges to 0 as K → ∞. This establishes the uniform integrablity

result.

It immediately follows (Theorem 25.12 in Billingsley 1995) that the covariance

matrix Λ of µ is given by

Λ = lim
k→∞

Cn(k) = Σ.

Thus, µ has the required marginals and covariance matrix, which is a contradiction,

and the result is proved. 2

The following result follows from the availability of the bounds:

Theorem 2.3.3 Suppose that Σ is feasible. Then for all ε > 0, there exists a

chessboard distribution with covariance matrix Λ with the property that r(Σ, Λ) < ε.

Thus, chessboards can come arbitrarily close to any required Σ that is feasible

for the desired marginals. One can also prove that chessboards can match almost

any feasible product-moment covariance matrix. As before, we define Ω to be the

set of feasible covariance matrices, viewed as a subset of (d(d−1)/2)−dimensional

Euclidean space. We immediately have that

Proposition 2.3.4 The set Ω is nonempty, convex, closed and full-dimensional.



46

The proof is virtually identical to Proposition 2.2.6; one just needs to substi-

tute the maximum and minimum covariance values achievable between any two

components in the NORTA part of the proof.

The following result is the final property of importance that we shall need.

It carries over almost exactly from the uniform marginals case. Again, one only

needs to pay attention to the fact that the marginal distributions are potentially

different here when reworking the proofs in Theorem 2.2.7 and Theorem 2.2.9.

Theorem 2.3.5 There is a chessboard distribution of the form (2.14) with the

desired marginals and covariance matrix Σ if, and only if, Σ ∈ Ω◦.

We have now constructed a procedure that can determine whether a given set

of marginal distributions and product-moment covariance matrix is infeasible, or

not. And if feasible, the procedure returns a joint distribution that has the given

properties. This procedure works for almost all covariance matrices, in the sense

that it does not terminate in finite time for covariance matrices on the boundary

of Ω. For such covariance matrices, the procedure gets arbitrarily close, but never

exactly matches the desired covariance matrix.

This procedure, as described here, is not suited for adoption as a practical

method to match covariance matrices with general marginals (with densities). It

has been provided here more in the spirit of a “proof-of-concept” to establish that

such a procedure indeed exists. Significant wrinkles remain to be ironed out before

this can be successfully implemented. For instance, it is not clear what the best

choice of the set of dividing points {yi,ji
} should be, and how it interacts with the

rate at which E[X2
i 1{|Xi| > Mi}] → 0, which is determined by the tail behaviour

of the ith marginal distribution. We plan to pursue these issues further.
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The procedure can conceivably be extended to the case where the marginal dis-

tributions do not necessarily have densities with respect to the Lebesgue measure.

While we have unfortunately not been able to devote much attention to this, we

conjecture that this should be a relatively straightforward exercise.



CHAPTER 3

NORTA METHOD IN HIGHER DIMENSIONS

The NORTA method for modeling partially specified random vectors faces a

limitation in matching a given set of marginals with a (product-moment or rank)

correlation matrix. Recall that the problem arises because the correlation matrix

of the base joint normal random vector is constructed in a way that does not

necessarily ensure that it is positive semidefinite. It might indeed turn out to be

indefinite, in which case it cannot be a valid covariance matrix for a joint normal

distribution, and NORTA will fail. Chapter 2 discusses how valid examples that

demonstrate this possibility can be identified.

The focus of this chapter will be on how this flaw in NORTA affects its ap-

plicability as the dimension of the desired random vector increases. Section 3.1

reviews some characteristics of this problem when matching 3−dimensional ran-

dom vectors. Motivated by some observations in this section, Section 3.2 proposes

a simulation experiment to test NORTA in higher dimensions. The results are

discussed in Section 3.4.

The methodological meat of this chapter lies in Section 3.3 where we develop

a new method for sampling uniformly from the set of all correlation matrices of a

given dimension. As discussed later, this set can be viewed as a closed, bounded

and full-dimensional subset of a real vector space, and we sample uniformly over

this bounded set. We choose to call our sampling method the onion method

for reasons that will be clear once the working of the method is explained. The

method is easily generalized to generate from the set of symmetric positive definite

matrices with arbitrary (fixed) positive diagonal entries. Thus a possible use of

an appropriately modified version of the sampling scheme might be to study the

48
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performance of algorithms that operate on such matrices.

A note on the terminology in this chapter: the earlier, and subsequent, chap-

ters discuss matching a covariance matrix using NORTA. We shall refer to the

equivalent problem of matching correlation matrices in this chapter. Specifying a

covariance matrix is equivalent to specifying a correlation matrix since the marginal

distributions are also being specified simultaneously. The problem we shall investi-

gate in this chapter affects NORTA’s performance with any marginal distributions,

and using correlation matrices helps us cleanly define it independent of the partic-

ular desired marginal distributions.

3.1 The Story in 3 Dimensions

The NORTA method models a random vector X by matching its marginal distri-

butions Fi with a desired correlation matrix Σ. Recall that X is obtained from

a joint normal random vector Z via the transformation (1.2). This transforma-

tion procedure can occasionally fail to match a feasible marginal and correlation

specification when the correlation matrix ΛZ estimated for the base joint normal

random vector turns out to be indefinite. Each component of ΛZ is estimated

independently from the corresponding component of the target correlation matrix

Σ using the relation (1.4). The problem then happens because the joint normal

correlation matrix ΛZ is estimated in a way that does not necessarily ensure that

it is positive semidefinite.

Li and Hammond (1975) first proposed an example of a 3−dimensional ran-

dom vector with uniform marginals and a specifically chosen correlation matrix to

demonstrate this flaw in NORTA. For the special case of uniform marginals, the
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relation (1.4) is known to be the closed form (1.5), which we reproduce here:

ΛZ(i, j) = 2 sin[
π

6
Σ(i, j)]. (3.1)

Hence, it is easy to check whether any feasible correlation matrix (for a uniform

random vector) fails with NORTA. Li and Hammond had not however established

that a uniform random vector with their proposed correlation matrix exists, i.e.,

is feasible. Joe (1997, (on p. 137)) asserts that for 3-dimensional random vectors

with uniform marginals, as in the Li and Hammond example, any correlation

matrix is feasible. Hence the example exists. Furthermore, Chapter 2 develops

a computational procedure that can determine, for almost any (in a Lebesgue

measure sense) given correlation matrix, whether it is feasible for a given set of

marginal distributions (assumed to be continuous and have bounded support) or

not. Applying this procedure to the Li and Hammond example gives a construction

of the random vector.

Let us call feasible correlation matrices that cannot be matched using the

NORTA method NORTA defective matrices. It is interesting to question why

the NORTA defective matrices are, in fact, NORTA defective, and how likely is

this failure.

We will look to answer this question in the case of a 3−dimensional uniform

random vector. This case is particularly easy to study now given the result in

Joe (1997). We simply choose samples of correlation matrices (symmetric, posi-

tive semidefinite matrices with ones on the diagonal) and check them for NORTA

feasibility. We generate a number of such feasible matrices for three-dimensional

uniform random vectors that are NORTA defective. The numerical results suggest

a structure to the failure of NORTA. To explain this observation more carefully

we need to reuse some notation introduced in Chapter 2.
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With an abuse of notation, we can view a d×d correlation matrix as an element

of a d(d − 1)/2 dimensional vector space, since there are d(d − 1)/2 independent

elements above the diagonal, the matrix is symmetric, and the diagonal elements

are equal to 1. Let Ω denote the set of correlation matrices, i.e., symmetric positive

semidefinite matrices with unit diagonal elements. We view this set as a subset

of the real vector space IRd(d−1)/2. This set has been established to be nonempty,

convex, closed and full-dimensional; see Vandenberghe and Boyd (1996).

Note that Chapter 2 defines Ω to be the set of feasible correlation matrices for

d−dimensional random vectors with a fixed set of arbitrary marginals. Thus, Ω as

defined there depends on whether we consider product-moment or rank correlation.

Our definition of Ω here is independent of this distinction. For the special case of

3−dimensional uniform random vectors, these two definitions coincide.

A 3 × 3 correlation matrix Σ is represented by the vector (Σ12, Σ13, Σ23) in Ω,

and Ω is a proper subset of the cube [−1, 1]3. We examined all correlation matrices

with off-diagonal components in the set {-1.0, -0.9, . . ., -0.1, 0, 0.1, . . ., 0.9, 1.0}

for NORTA defectiveness. Taking account of the symmetry of the correlations in

terms of its components (for example (0.5,−0.5, 0.5) and (−0.5, 0.5, 0.5) represent

the same uniform vector), we identified 31 such matrices.

Table 3.1 tabulates these NORTA defective matrices. An inspection of the

NORTA defective matrices in Table 3.1 shows that the determinants and the

smallest eigenvalues of all these matrices are quite close to zero in magnitude.

This means that the corresponding points in Ω lie either on the boundary or in its

close proximity, i.e., the NORTA defective matrices lie close to, or on, the bound-

ary of the set of achievable correlations (Vandenberghe and Boyd (1996) establish

that the boundary of Ω consists of correlation matrices where the (continuous)
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Table 3.1: Matching Chessboards to Correlations in 3 dimensions

Correlations Discretization Determinant Smallest
Σ12 Σ13 Σ23 Level n |Σ| Eigenvalue of Σ

-0.9 -0.6 0.2 18 0.0060 0.0034
-0.9 -0.5 0.1 11 0.0200 0.0105
-0.9 -0.2 0.6 18 0.0060 0.0034
-0.9 -0.1 0.5 11 0.0200 0.0105
-0.8 -0.8 0.3 12 0.0140 0.0087
-0.8 -0.5 -0.1 11 0.0200 0.0097
-0.8 -0.4 -0.2 10 0.0320 0.0151
-0.8 -0.3 -0.3 10 0.0360 0.0169
-0.8 -0.3 0.8 12 0.0140 0.0087
-0.8 0.1 0.5 11 0.0200 0.0097
-0.8 0.2 0.4 10 0.0320 0.0151
-0.8 0.3 0.3 10 0.0360 0.0169
-0.7 -0.7 0.0 12 0.0200 0.0101
-0.7 0.0 0.7 12 0.0200 0.0101
-0.6 -0.2 0.9 18 0.0060 0.0034
-0.5 -0.1 0.9 11 0.0200 0.0105
-0.5 0.1 0.8 11 0.0200 0.0097
-0.4 0.2 0.8 10 0.0320 0.0151
-0.3 0.3 0.8 10 0.0360 0.0169
-0.2 0.4 0.8 10 0.0320 0.0151
-0.1 0.5 0.8 11 0.0200 0.0097
0.0 0.7 0.7 12 0.0200 0.0101
0.1 0.5 0.9 11 0.0200 0.0105
0.2 0.6 0.9 18 0.0060 0.0034
0.3 0.8 0.8 12 0.0140 0.0087
-0.8 -0.6 0.0 – 0 0
-0.8 0.0 0.6 – 0 0
-0.6 0.0 0.8 – 0 0
-0.5 -0.5 -0.5 – 0 0
-0.5 0.5 0.5 – 0 0
0.0 0.6 0.8 – 0 0
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determinant function takes a value zero.)

Table 3.1 also provides the level of discretization n required by the computa-

tional procedure of Section 2.1 to construct a chessboard distribution for these

matrices. For 25 of the 31 matrices that are not on Ω’s boundary, chessboard

distributions that exactly match Σ were constructed with a discretization level

n ≤ 18. Chessboard distributions could not exactly match Σ in the remaining 6

cases, but this is to be expected from Theorem 2.2.4 (it establishes that correlation

matrices of chessboard distributions are non-singular) since in all of these cases Σ

was singular.

These results seem to suggest that NORTA defective Σ matrices are those that

are near-singular, and perhaps are then relatively rare. However, Lurie and Gold-

berg (1998) believe that singular and near-singular correlation matrices actually

represent a common situation in cost analysis for example. This is because corre-

lations between cost elements are typically estimated from unbalanced data sets.

This is likely to lead to indefinite target correlation matrices, so that any small

adjustment to them is almost certainly going to result in an adjusted target matrix

that is singular, or very nearly so.

We can expect to find the same pattern for the case for more general distri-

butions. We reason heuristically as follows. The set Ω also represents the set of

feasible correlation matrices for a standard joint normal random vector (any pos-

itive semidefinite matrix with unit diagonal entries is feasible for joint normals.)

The NORTA method transforms each element of this set back into another ele-

ment. The fact that NORTA fails therefore implies the set Ω is mapped into a

subset of itself. Assuming the transformation (1.4) is continuous, which indeed it

is in great generality (see Cario and Nelson 1997), and not “too nonlinear”, it is
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reasonable to expect that any elements of Ω that are not covered by the trans-

formation will be those that are close to the boundary. Indeed, if one plots the

set of NORTA defective vectors using a three dimensional plotting package, this

is exactly what we see. We note here that the indefinite matrices ΛZ of these 31

cases were observed to lie very close to (and outside) the set Ω.

3.2 In Higher Dimensions

In three dimensions, NORTA appears to fail most often when the correlation matrix

is close to the boundary of the set Ω for 3-dimensional random vectors. Now, in a

sense that can be made precise, “most” points in certain sets (compact sets with

non-empty interiors) in high dimensions lie close to the boundary. For example,

consider the interior of the unit hypercube [−1
2
, 1

2
]m in IRm represented by the

hypercube [−1−ε
2

, 1−ε
2

]m, where ε ∈ (0, 1). The ratio of the volume of the interior

to that of the whole set is (1 − ε)m, which decreases rapidly to 0 as m increases.

This suggests that matrices within the set Ω may be increasingly likely to fail

with NORTA as the dimension of the problem increases, so that the problem that

a user faces in using NORTA may become increasingly acute as the dimension

increases.

Continuing the example considered in Section 3.1, let us consider this possibility

in the context of generating samples of a uniform random vector. This case has

special significance to the NORTA method because, by construction, the method

has to generate a uniform random vector (Φ(Z1), . . . , Φ(Zd)) as an intermediary

step. Furthermore, the rank correlation matrix of a NORTA-generated vector with

continuous marginal distributions coincides with the product-moment correlation
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matrix for the intermediate uniform random vector.

We shall test whether randomly chosen correlation matrices are NORTA de-

fective. In particular, we shall determine the probability of NORTA defectiveness

of randomly chosen correlation matrices for uniform marginals (the probability

space we use is explained shortly). This special case has the advantage that the

explicit form of the function cij (3.1) helps us easily determine NORTA defective-

ness. Again, one simply computes the (symmetric) matrix ΛZ as given by (3.1)

and checks whether it is positive semidefinite or not. Note that if ΛZ is positive

semidefinite then a joint normal random vector Z with this correlation matrix

exists, and this vector transforms through NORTA to a random vector with the

desired correlation matrix. On the other hand a correlation matrix must be pos-

itive semidefinite, so if ΛZ is indefinite, then it is not a correlation matrix and

NORTA will fail.

We should note here that NORTA might fail for two reasons. First, a given

correlation matrix might not be feasible so that the uniform random vector as

specified does not exist, in which case no generation method can achieve the given

correlation matrix. Second, a given correlation matrix might be feasible, but might

be NORTA defective. Joe (1997) established feasibility of all correlation matrices

only for 3−dimensional uniform random vectors. In general, there is no clear

characterization of the set of feasible correlation matrices for uniform marginal

distributions in dimensions four and above. Therefore, it is unreasonable to expect

a practitioner to specify a feasible correlation matrix, but we can reasonably expect

the practitioner to specify a correlation matrix. The probability we estimate is thus

over all correlation matrices, and not necessarily feasible correlation matrices.

Thus the problem of estimating the probability that NORTA fails reduces to
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the following algorithm.

1. Let n ≥ 1 be given.

2. Let ΣX(1), . . . , ΣX(n) be an i.i.d. sample chosen uniformly from

Ω = {Σ : Σ = ΣT , Σ � 0, Σjj = 1 j = 1, . . . , d}. (3.2)

3. For each i = 1, . . . , n let ΛZ(i) be obtained from ΣX(i) using the component-

wise relation (1.5).

4. Estimate the probability that NORTA fails by the proportion of matrices in

{ΛZ(i) : i = 1, . . . , n} that are not positive semidefinite.

(The matrix inequality A � 0 signifies a constraint that the matrix A be positive

semidefinite.)

Note that in estimating the probability of NORTA defectiveness we have had

to choose a probability distribution on Ω. Recall that Ω can be seen as a con-

vex, compact and full-dimensional (i.e., with a non-empty interior) subset of the

real vector space IRd(d−1)/2. The uniform distribution (with respect to Lebesgue

measure) on Ω is thus a natural choice, and is the one we choose to work with.

Kurowicka and Cooke (2001) report simulation results on a similar problem,

and find that the probability the NORTA procedure fails to work grows rapidly

with dimension. They provide these results to help motivate their copula-vine

method for modeling random vectors. The probability distribution they used is

not uniform over the set of all correlation matrices, so one possible explanation for

their results prior to our study is that their probability distribution gives excessive

weight to matrices for which NORTA fails. However, our results using uniform
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distributions confirm their finding, suggesting that perhaps the NORTA procedure

is unlikely to be effective in high-dimensional problems.

We now come to the question of sampling uniformly from the set Ω to esti-

mate this probability. A straightforward approach (and one that we adopted early

on) is to combine three well-known methods in simulation estimation: acceptance-

rejection, importance sampling and ratio estimation. We used importance sam-

pling and acceptance rejection on the hypercube H = [−1, 1]
d(d−1)

2 (Ω is a strict

subset of H) to choose correlation vectors from Ω. We then used ratio estimation

(Henderson 2001, see, e.g.,) to estimate the probability that NORTA fails. The

probability we aim to estimate can be rewritten as

P (ΛZ 6� 0|ΣX � 0) =
P (ΛZ 6� 0, ΣX � 0)

P (ΣX � 0)
,

where ΣX is uniformly distributed on H and ΛZ is computed from (1.5). An

estimator of this probability is therefore of the form

∑n
i=1[I(ΣX(i) � 0, ΛZ(i) 6� 0) 2−d(d−1)/2

φ(ΣX(i))
]

∑n
i=1[I(ΣX(i) � 0) 2−d(d−1)/2

φ(ΣX(i))
]

, (3.3)

where I represents the indicator function that equals 1 if its argument is true, and

0 otherwise, and the matrices ΣX(i) are chosen independently with density φ from

the hypercube H . We chose the density φ in a heuristic fashion.

This method of estimation works well in lower dimensions but we found that it

became excessively slow as the dimension increased. Indeed, it took more than two

days to generate on the order of a thousand samples of positive-definite matrices

even for a dimension as low as d = 12. With a better choice of φ the algorithm

would presumably be much faster, but it is not clear how to choose φ. A better

sampling technique is needed.
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In related work, Marsaglia and Olkin (1984) survey methods for sampling ran-

dom correlation matrices, but none of the methods they mention samples uniformly

over the set of all correlation matrices (of fixed dimension). Theorems 3.1 and 3.2

of Edelman (1989) show how the distribution of a symmetric positive definite

matrix can be expressed as a function of the distributions of the matrices of its

eigenvalue decomposition. One could conceivably use this result in obtaining a

sampling procedure, though the technique would work on the space of eigenval-

ues and eigenvectors of correlation matrices. Our representation of Ω, through its

unique upper-diagonal elements, as a subset of a real space fits more naturally with

the analysis in the other chapters, and hence we choose not to follow this approach

in our analysis.

Another approach to sampling uniformly from the compact and convex Ω would

be to use a Markov-Chain based random walk sampler, for instance the Hit-n-Run

Algorithm presented by Smith (1984). These samplers set up a random walk on

a convex set such that the stationary distribution of the Markov chain is uniform

over the set. This approach presents two difficulties for our case. Firstly, random

walk samplers require that the boundary of the convex set be easily described. The

boundary of Ω is represented in terms of polynomial functions of the components

of the matrix Σ, and in general not easy to compute. This is seen by noting that

the boundary of Ω consists of matrices with zero determinants, and the determi-

nant is polynomial in the components of a matrix. Secondly, the distribution of

the samples obtained from a Markov-Chain based sampler is only asymptotically

uniform, and moreover subsequent samples are usually not independent. This im-

plies that the probability estimated from any finite sample obtained from such a

sampler would be biased.
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We present a new method to sample exactly and independently from the uniform

distribution on Ω. The onion method is simple to implement since it uses nothing

more than standard tools from the simulation input modelling toolkit, and sample

generation is very fast. Indeed, the most complex and computationally demanding

part of the method involves sampling from univariate beta distributions, which is

a very well-studied problem with many efficient algorithms available (see Law and

Kelton 2000, p. 467).

3.3 The Onion Method

Our goal is to construct a method that samples exactly, and very quickly, from the

uniform distribution on the set Ωd as defined in (3.2), when viewed as a subset of

IRd(d−1)/2. We use the suffix d to emphasize the dependence on the dimension d.

We thus have to construct a procedure that samples uniformly from the convex,

closed, compact and full-dimensional set Ωd, i.e., generate samples from the density

f(Σ) ∝ 1 , for any Σ ∈ Ωd, (3.4)

where f is a function of the d(d − 1)/2 upper-diagonal elements of Σ.

For the random matrix Σ let Σk represent its k×k dimensional principal leading

minor (i.e., the upper-left k × k sub-matrix of Σ), and fk represent the marginal

density of Σk when Σ has the joint density (3.4). Let q be the vector such that

Σk =







Σk−1 q

qt 1






.

We call q the completion of Σk−1 in Σk.

The onion method is iterative in that it starts with the one-dimensional matrix

1 and then “grows out” the matrix to the dimension desired by successively adding
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an extra row (and the corresponding mirrored column) chosen from an appropri-

ate distribution. This successive layering approach is the inspiration behind its

name. Marsaglia and Olkin (1984) use a similar matrix-growing approach in their

algorithm to sample correlation matrices with a given set of eigenvalues, but they

apply it to transform diagonal elements of arbitrary positive definite matrices to

1 in order to form correlation matrices from them. Ouellette (1981) points out

some other uses of the layering approach, notable among them being the numeri-

cal method proposed by Guttman (1946) to compute inverses of large non-singular

matrices.

To be more precise the onion method is as follows.

1. Let Σ1 be the 1 × 1 matrix 1.

2. For k = 2, . . . , d

(a) Let q be a column vector in IRk−1 sampled, independently of all else,

from density ϕk(·; Σk−1) say.

(b) Set Σk =







Σk−1 q

qt 1






.

(c) Next k.

The densities ϕk, which determine the kth layer, are conditional densities that

depend on the partial matrix Σk−1 constructed thus far. We now state the key

result that motivates the iterative sampling scheme, and in particular provides the

form of the ϕks.

Proposition 3.3.1 Let fk be the marginal density of Σk when Σ is distributed as

in (3.4). Then

fk(Σk) ∝ (det(Σk))
d−k

2 ∀ Σk ∈ Ωk , ∀ 2 ≤ k ≤ d.
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The marginal density fk represents the joint marginal density of the compo-

nents Σk−1 and q of Σk, and Proposition 3.3.1 provides an expression for fk in

terms of Σk−1 and q (through Σk). The density ϕk of the completion q can then

be obtained from fk by conditioning on a fixed Σk−1, for each k = 2, . . . , d. The

key to the generation scheme is the fact that the expression obtained for ϕk by

this conditioning argument can be unravelled into separate parts that contain Σk−1

and q in a way that allows for easy generation of q for a fixed Σk−1.

We describe an efficient scheme to sample q from ϕk after we prove Proposi-

tion 3.3.1. We need two preliminary results for the proof.

Lemma 3.3.2 If m ≥ 0 and A is some symmetric p.d. matrix in Ωd, then

C
4
=

∫

IRd
I(xtAx ≤ 1) (1 − xtAx)mdx = L(m, d) · det(A)−

1
2 ,

where 0 < L(m, d) < ∞ does not depend on A.

Proof: Since A is symmetric and positive definite, it has a unique upper triangular

Cholesky factor A1/2 say, so that A = (A
1
2 )tA

1
2 . Applying the linear change of

variables w = A
1
2 x gives

C = | det(A)−
1
2 | ·

∫

IRd
I(wtw ≤ 1) (1 − wtw)mdw

= det(A)−
1
2 · L(m, d).

The function g(w) = I(wtw ≤ 1) (1 − wtw)m is non-negative, bounded and non-

zero only over the compact region that forms the unit ball in IRd. Hence 0 ≤

L(m, d) < ∞. Since g(0) = 1 and g is continuous about 0, L(m, d) > 0. 2

For the second result that we use in the proof of Proposition 3.3.1, first note that

any positive definite symmetric d× d matrix A can be written as a product of two
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matrices, akin to a first step in an LU factorization of A, as

A =







B b

bt 1






=







B 0

bt 1













Id−1 B−1b

0 1 − btB−1b






, (3.5)

where B is a (d − 1) × (d − 1) matrix, b is a (d − 1)−vector and Id−1 is the

(d−1) dimensional square identity matrix. The quantity (1− btB−1b) is called the

Schur complement of B in A. Ouellette (1981) is a useful source of literature on

Schur complements. In particular, Ouellette (1981) points to the result obtained

in Guttman (1946) that rank(A) = rank(B) + I(1 − btB−1b > 0) (The indicator

function I(A) has value 1 if the event A is true and 0 otherwise.) This immediately

gives us the following lemma.

Lemma 3.3.3 A necessary and sufficient condition for A to be positive definite is

that B be positive definite, and 1 − btB−1b > 0.

Ouellette (1981) also describes a result that follows from (3.5) and was first shown

by Frobenius (1968):

det(A) = det(B) (1 − btB−1b). (3.6)

We are now ready to prove Proposition 3.3.1.

Proof of Proposition 3.3.1: We use induction on k from d to 2 to complete

the proof. The result is immediate for k = d, since the density (3.4) in this case is

the density we are aiming for in the first place. This establishes the base case.

Let Ψk = {q ∈ IRk| qt(Σk)
−1q < 1}. Then, by Lemma 3.3.3, Ψk represents the

set of all completion vectors q of Σk in Σk+1. For any general k, assuming that

the induction hypothesis holds for k + 1, we get

fk(Σk) =

∫

Ψk

fk+1(Σk+1) dq (3.7)
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∝
∫

Ψk

det(Σk+1)
d−k−1

2 dq (3.8)

=

∫

Ψk

det(Σk)
d−k−1

2 (1 − qtΣ−1
k

q)
d−k−1

2 dq (3.9)

∝ det(Σk)
d−k−1

2 · det(Σk)
1
2 (3.10)

= det(Σk)
d−k
2 .

The first step (3.7) above expresses the marginal density of Σk as the function

that results from integrating out the (k + 1)st column, the completion vector q,

from the marginal density of Σk+1 over the set Ψk. The inductive hypothesis gives

(3.8). The equality (3.9) uses (3.6), and (3.10) follows from Lemma 3.3.2.

Thus the induction hypothesis holds for k, and hence is true for all k from d to 2.

2

We now determine the densities ϕk used in the iterative generation procedure

from the marginal densities of Proposition 3.3.1. As mentioned before, the densities

fk represent the joint densities of Σk−1 and its corresponding completion vector q

in Σk. Hence, if Σk−1 were fixed at A say, we would have that for a q ∈ Ψk−1,

ϕk(q) = fk(Σk)|{Σk−1 = A}

∝ det













A q

qt 1













d−k
2

= det(A)
d−k

2 · (1 − qtA−1q)
d−k

2 .

Therefore, given Σk−1, the conditional density for its completion vector q is

ϕk(q) ∝ (1 − qtΣ−1
k−1

q)
d−k

2 ∀ q ∈ Ψk−1. (3.11)

Next comes the question of generating from densities of the form (3.11). For

this we employ a sequence of variable transformations. First we apply the linear
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transformation w = Σ
−1/2
k−1

q, where Σ
−1/2
k−1

represents the (unique) upper triangular

Cholesky factor of Σ−1
k−1

, to get that

ϕk(q)dq ∝ ϕ̃k(w)dw,

where ϕ̃k(w) ∝ (1−wtw)(d−k)/2, and w ∈ IBk−1, the unit ball in IRk−1 (the constant

Jacobian term that arises out of the transformation is included in the proportion-

ality constant). Hence, to sample q from ϕk we could equivalently generate a w

from ϕ̃k and set q to be the appropriate linear transformation of w.

Now, ϕ̃k is radially symmetric, as is the set IBk−1. Thus if we apply a polar

transformation w = (r, θ), where r is the L2-norm of w and θ = (θ1, . . . , θk−2)

represents the angles of the polar transformation (refer Kendall (1961) p. 15 for a

treatment of polar transformations in higher dimensions), then

ϕ̃k(w)dw ∝ (1 − r2)
d−k
2 J(r, θ) drdθ1 . . . dθk−2

= (1 − r2)
d−k
2 rk−2dr (cos θ1)

k−3 (cos θ2)
k−4 . . . cos θk−3 dθ1 . . . dθk−2

∝ h(r)dr

where J(r, θ) represents the Jacobian term of the variable transformation and ex-

pands out as given in the second equation, and h(r) = (1−r2)
d−k

2 rk−2. The second

equation implies that the distribution of r is independent of the distributions of

the angles θi. Moreover, the radial symmetry of the integrand also gives us that

ϕ̃k(w) affects only the distribution of r, and the angles need to be sampled such

that a point is chosen uniformly on the surface of the unit hyper-ball IBk−1.

This suggests that we can sample a w from ϕ̃k by instead first sampling a

radius from a normalized version of h and then multiplying it by a point chosen

uniformly over the surface of the unit ball IBk−1. Such a point can be generated by

normalizing a joint-normal independent random vector (i.e., one with the identity
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matrix as its correlation matrix) to have unit norm. The radius has to be sampled

from h, but note that under yet another change of variable y = r2, we have that

h(r)dr ∝ yα1−1(1 − y)α2−1dy,

which (after normalization) is simply a univariate beta density function with pa-

rameters α1 and α2. For our case, the parameters α1 and α2 turn out to be (k−1)/2

and (d − k)/2 respectively. Law and Kelton (2000, (p. 467)) points to extensive

literature on generating from beta distributions. In our study, we implement the

algorithm given by Schmeiser and Babu (1980; 1983).

To recap, at the kth stage of the iterative generating procedure, to generate a

realization q of q from ϕk given the matrix Σk−1 already constructed, we do the

following:

• Sample y from a beta distribution with α1 = (k − 1)/2 and α2 = (d − k)/2,

• Set r =
√

y,

• Sample a unit vector θ uniformly from the surface of IBk−1,

• Set w = rθ, and finally

• Set q = Σ
1
2
k−1

w.

This completes the description of the onion method.

This exact sampling method is very competitive when estimating statistical

properties of the set Ωd when compared to methods like the one described in Sec-

tion 3.2. First, since sampling from ϕi can be reduced to the problem of sampling

from a univariate beta distribution and a joint-normal independent random vector,

the method scales very well with dimension. In our study we were able to generate
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samples consisting of many thousands of matrices up to dimension d = 25 in a

matter of hours. Second, this method does not involve a ratio-estimation step,

which means that the estimation is more straightforward to implement. Third, for

a given sample size, we also found the results to be more accurate, in the sense

that confidence-interval widths are smaller for this sampling method.

As noted before, this method can be generalized and applied very easily to

generate uniformly from sets of symmetric positive-definite matrices with any ar-

bitrary (fixed) positive diagonal elements. One simply has to modify the method

by substituting the diagonal values of 1 assumed in this section with the corre-

sponding positive values at the appropriate places (the definition of Ψk in the proof

of Proposition 3.3.1 is one such place). The constants of the variate generation

method would be affected accordingly (for instance, the beta variate generation

would not be over (0, 1]).

One can also use this method to sample from any bounded non-uniform density

f defined on a set of symmetric positive definite matrices of the kind mentioned

above. One simply uses the acceptance-rejection framework of random variate

generation to do this, namely by first generating a point s uniformly from the set

and then checking whether fmax ∗ U ≤ f(s) (where U is an independent uniform

random variable, and fmax = maxx f(x)) in order to accept s as a sample.

The beta distribution used to sample the polar variable r above can be replaced

with any distribution over the positive real line. Thus the onion method can also

sample from any member of the family of distributions on the set of symmetric

p.s.d. random matrices that are radially symmetric under an affine transformation

(the first transformation in the sequence above).
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Figure 3.1: Probability of NORTA defectiveness

3.4 NORTA’s Performance: A Plot

We used the exact sampling approach of Section 3.3 to estimate the probability

that NORTA fails for various dimensions. For each dimension, we sampled 15, 000

correlation matrices uniformly from Ωd, and estimated the probability that NORTA

fails in dimension d via the procedure outlined in Section 3.2. Figure 3.1 plots

the estimated probabilities against dimension. Also shown are 95% confidence

intervals.

The plot establishes that the problem rapidly becomes acute as the dimension

increases, and NORTA becomes very hard to work with when generating even

moderately sized random vectors of dimensions 20 and above.

We stress here that the increasing rate of failure of correlation matrices with

the NORTA procedure observed in Figure 3.1 could be the combined effect of two

causes. First, the chosen correlation matrix might not be feasible, in which case this
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matrix fails not only with NORTA but with any method. Second, the correlation

matrix might be feasible but NORTA defective. One needs a characterization of

feasible correlation matrices to be able to differentiate between these two effects.

In the absence of any such characterization, the set of correlation matrices remains

the natural set for a user to choose from, and so the probability we calculate is

important from the practical standpoint.

It would thus seem that NORTA can only be successful in low-dimensional

problems. NORTA’s transformation-based generation approach is very simple and

easily implemented. One would thus like to see if the advantages of this approach

can be preserved while compromising slightly on the accuracy, for instance by

requiring that correlations be matched approximately well. Recall that in Sec-

tion 3.1, the indefinite matrices ΛZ were observed to lie very close to the set of

feasible correlation matrices for joint normal random vectors (i.e., the set of positive

semidefinite matrices with ones on the diagonal). This fact suggests the modified

versions of NORTA that we study in the next chapter.



CHAPTER 4

AUGMENTED NORTA PROCEDURES

To recoup, we saw in Chapter 2 that NORTA fails with certain specified

marginals and correlation matrices. The reason these matrices are NORTA de-

fective is that the correlation matrix ΛZ determined for the base joint normal

random vector of NORTA turns out to be indefinite, and hence infeasible. We

have established in Chapter 3 that the NORTA procedure is increasingly unlikely

to work with (uniform marginals and) any matrix chosen uniformly from the set of

correlation matrices as the dimension of the random vector increases. It would thus

seem that NORTA can only be successful in low-dimensional problems. NORTA

is very general in its approach, and quite easily implemented, and so we may wish

to employ the method to generate random vectors with the required marginals

and, at least approximately, the right correlation matrix. In this chapter, we shall

discuss some approaches that make this possible.

Recall that in Chapter 2, we had observed that the indefinite matrices ΛZ lie

very close to the set of feasible correlation matrices for joint normal random vectors.

For joint normals, this is the set of positive semidefinite matrices with ones on the

diagonal, which means that all correlation matrices are feasible. This suggests that

the setup stage of NORTA should be augmented with an extra step that is used, if

ΛZ turns out indefinite, to find a correlation matrix ΣZ that produces a NORTA

correlation matrix ΣX for the desired marginals that is “close” to the desired Σ.

The augmented NORTA procedure can thus be described as:

1. Given the desired marginals Fi and covariance matrix Σ, estimate the joint-

normal covariance matrix ΛZ using numerical search/closed form expression.

2. If ΛZ is positive semidefinite, then set ΣZ = ΛZ .

69
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3. If ΛZ is indefinite, heuristically determine an approximately close correlation

matrix ΣZ .

4. Run NORTA with ΣZ .

Most of the approaches we describe here tackle the problem in Step 2 by find-

ing a correlation matrix ΣZ that is “close” to the indefinite ΛZ . In other words,

these methods work in the “Gaussian space”. Why is this approach reasonable?

In Theorem 2 of Cario and Nelson (1997), it is shown that under a certain moment

condition, the output covariance matrix is a continuous function of the input co-

variance matrix ΣZ used in the NORTA procedure. So if ΣZ is “close” to ΛZ , then

we can expect the covariance matrix of the NORTA generated random vectors to

be close to the desired matrix Σ. The moment condition always holds when we

are attempting to match rank covariances, and we can expect it to hold almost

invariably when matching product-moment correlations. Therefore, it is eminently

reasonable to try and minimize some measure of distance r(ΛZ , ΣZ) say, between

ΛZ and ΣZ .

Lurie and Goldberg (1998) described a method for identifying a positive semidef-

inite covariance matrix ΣZ for use within the NORTA method that yields approxi-

mately the desired product-moment covariance matrix Σ. Their approach involves

a complicated nonlinear optimization, and must be specialized for approximating

the rank correlation or product-moment correlation, depending on the case desired.

Furthermore, although they report that their optimization procedure always con-

verges in practice, they do not have a proof of this result. Finally, their approach

appears to be limited to fixed sample sizes. We present alternative methods based

on semidefinite programming and matrix algebra that do not share these limita-

tions.
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4.1 SDP-augmented NORTA

We do not distinguish between the cases where ΛZ is chosen to induce a given

rank, product-moment, or other correlation in the output random vector X. If ΛZ

is indefinite, then we use a semidefinite program (SDP) to find a matrix ΣZ that

is “close” to ΛZ and is positive semidefinite and has ones on the diagonal. The

SDP falls under the broad class of matrix completion problems; see Alfakih and

Wolkowicz (2000), or Johnson (1990). For this case, given ΛZ as data, we wish to

solve the problem ΣZ to

minimize r(ΣZ , ΛZ)

subject to ΣZ � 0, (4.1)

ΣZ(i, j) = ΣZ(j, i), and

ΣZ(i, i) = 1.

where the matrix inequality A � 0 signifies a constraint that the matrix A be

positive semidefinite.

The metric r(·, ·) can be chosen as desired. In particular, given that we have

previously considered correlation matrices to belong to the real space IRd(d−1)/2,

we choose either the l1 metric

r(A, B) =
∑

i>j

|Aij − Bij|

or the l∞ metric

r(A, B) = max
i>j

|Aij − Bij |

as defined for IRd(d−1)/2. Either of these metrics make the minimization problem

an SDP-constrained problem with a linear objective function. To see why, we shall

use the same trick used in formulating the LPs in Chapter 2. We define variables
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Z+
ij and Z−

ij to be the positive and negative parts respectively of the difference

ΣZ(i, j)−ΛZ(i, j), with Z+
ij , Z

−
ij ≥ 0. In particular, we have that for 1 ≤ i < j ≤ d,

ΣZ(i, j) = ΛZ(i, j) + Z+
ij − Z−

ij , and

|ΣZ(i, j) − ΛZ(i, j)| = Z+
ij + Z−

ij .

Thus, if r is set to be either the l1 or l∞ norm, we can write the objective function

of (4.1) as a linear function of the Z+
ij s and Z−

ij s.

The matrix inequality (semidefiniteness) constraint in (4.1) can also be rewrit-

ten in the Z±
ij s. The diagonal elements of ΣZ are set to have value 1. This leaves

the non-negativity constraints on the variables Z±
ij . It is well known (Wolkow-

icz et al. 2000) in SDP formulations that any set of linear inequalities of the form

Ax+b ≥ 0 can be transformed to a matrix inequality of the form diag(Ax+b) � 0

(for a vector y, let diag(y) denote the diagonal matrix with diagonal entries equal

to the elements of y.) The non-negativity constraints can be easily handled in this

manner, and the problem is thus reformulated as an SDP-constrained problem

with a linear objective problem (The set of constraints that ensure that only one

of Z+
ij or Z−

ij be non-zero are automatically satisfied since the objective function

and constraints are convex.) This is a convex optimization problem and therefore

any local minimum is, in fact, a global minimum. Efficient algorithms, and public

domain codes implementing them, are available for solving semidefinite programs

of this type to optimality; see Wolkowicz et al. (2000).

It is worth noting that ΣX , the NORTA generated covariance matrix from ΣZ ,

may not be the closest NORTA feasible covariance matrix to Σ, because the op-

timization was performed “in Gaussian space”. This is in contrast to the Lurie

and Goldberg (1998) procedure. But, preliminary tests in 3 dimensions indicate

that this SDP augmentation yields NORTA generated random vectors with corre-
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Figure 4.1: l1 Performance of the SDP-augmented NORTA method

lation matrices that are close to the desired ones. We study the performance of

this augmented NORTA method as the random vector dimension increases, using

a setting identical to that in Chapter 3. We choose our measure of performance

to be the expected l1 distance that we have to move from the desired correlation

matrix to reach a NORTA feasible one. For each dimension, 15,000 matrices were

generated uniformly from the set of correlation matrices and the semidefinite pro-

gram, with r taken as the l1 distance, solved for the cases where NORTA was

found to fail. Figure 4.1 plots the results. The solid line gives the expected l1

distance ||ΣX − Σ||l1 with 95% confidence intervals as marked, with the average

taken only over matrices that fail to work with NORTA. The dotted line gives the

corresponding expected distance as measured in the l∞ metric.

We see that the expected l1 distance, which represents the total absolute change

in the correlation values, increases as the dimension d increases at what might be

perceived as a linear rate, although a super-linear rate seems more likely. If the

rate of increase is indeed linear, then, since there are d(d − 1)/2 matrix entries
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Figure 4.2: l∞ performance of the SDP-augmented NORTA method

above the diagonal, the average change per entry is (eventually) decreasing with

dimension. Of course, it is possible that a small number of entries change by a

large amount. The l∞ distance is also shown, and we see that indeed, at least one

entry is changed by an increasing amount as the dimension increases.

It might be preferable from a modelling standpoint to instead minimize the

l∞ distance, so that one tries to minimize the maximum deviation between the

achievable and target correlations. The results in this case are shown in Figure 4.2.

The experiment performed is identical to the earlier case except for the change in

metrics. The solid line gives the expected l∞ distance with 95% confidence intervals

as marked, with the average taken only over matrices that fail with NORTA. The

dotted line gives the corresponding expected distance as measured in the l1 metric.

We see that the expected l∞ distance appears to remain constant at around 0.005

or even decrease with dimension. The corresponding l1 distance seems to grow at

a super-linear rate.

While the total absolute change in correlations seems to grow in either case,
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Figure 4.2 suggests that one could attempt a hybrid of the l1 and l∞ approaches

by, for instance, minimizing the l1 distance subject to an upper bound on the l∞

distance, and thus avoid changing any single component of the correlation matrix

by too large a value while keeping the total change within reasonable limits.

We remark here that the SDP framework used here in searching for a “close”

positive definite matrix in the SDP problem (4.1) allows us a certain degree of

control on how the search is performed. For instance, we can also restrict the

change in certain components by adding additional constraints to the SDP.

In summary, the SDP-augmented NORTA problem performs well in moderate

dimensions: It generates random vectors with correlation matrices that are close

to the desired ones, while keeping changes to the individual correlations within

reasonable limits.

Computational results show that the SDP problem in the SDP-augmented

method is solved within a reasonable amount of time for dimensions less than

10. However we find that the SDP problem (4.1), especially when the l∞ metric

is used as r, becomes increasingly harder to solve as the dimension increases. In

the instances where l∞ SDP problems were solved for d = 10, the publicly avail-

able implementations of the solvers took, on an average, around 10 minutes to

terminate for each sample problem! This indicates that the setup time for the

SDP-augmented NORTA might be excessive in dimensions 10 and higher.

While tweaking the SDP formulations might possibly reduce the time taken

by the solvers, we shall take a different approach. We have noted before that the

SDP-based augmentation optimizes in “Gaussian space”, and the non-linearity of

the transformation (1.1) makes it possible that the resulting NORTA correlation

matrix might not be the NORTA feasible correlation matrix closest to the desired
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Σ. Fast heuristics that provide a reasonably close approximation to the desired Σ

might thus be equally effective as a NORTA augmentation step. We shall study

three such heuristics.

4.2 The “Just-Use-Sigma” (JUS) Method

As the name suggests, this method uses the desired correlation matrix Σ as the

normal correlation matrix ΣZ . This obviously does not have any computational

overhead, and hence this method can be used in any dimension. It is always

assured to work, assuming that the desired matrix Σ is indeed a correlation matrix.

Moreover, one can exactly predict the output correlations the NORTA method

produces if the function cij defined via (1.3), which relates the NORTA output

correlations with those of the joint normal, is known in closed form.

This approach has another characteristic in its favour, which is that one can

estimate an upper bound on the l∞ or maximum absolute change in correlations.

To see why, recall that the function cij has been shown to be continuous and non-

decreasing under certain mild moment conditions (Cario and Nelson 1997). So,

assuming that this condition is satisfied, supρ∈[−1,1] |cij(ρ) − ρ| can be estimated

and thus gives an upper bound on the l∞ change in correlations. For instance, in

the case where the target marginals are all uniform, cij is given by (1.5) and the

l∞ change bound can be calculated to be 0.01808.

4.3 The Eigenvalue Correction (EC) Method

This heuristic aims to provide a good feasible approximation to the optimal so-

lution of the SDP optimization problem (4.1). The premise of this approach is

quite straightforward. The matrix ΛZ is indefinite, and hence has a few negative
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eigenvalues. This heuristic identifies a positive semidefinite matrix by replacing

these negative eigenvalues.

The matrix ΛZ is factorized as UD0U
t, where D0 is a diagonal matrix consisting

of the eigenvalues {λ0
i , i = 1, . . . , d} of ΛZ and U is an orthogonal matrix whose

columns are the eigenvectors of ΛZ (a matrix A is orthogonal if AtA = AAt = I,

the identity matrix.) Since ΛZ is indefinite, one or more of its eigenvalues λ0
i are

negative. We shall replace any negative eigenvalue by 0, and let Σ̄Z represent

the matrix with this new set of eigenvalues together with the same eigenvectors

U . Now, the “zero-out” operation guarantees that Σ̄Z is a positive semidefinite

matrix, but Σ̄Z is unlikely to have ones on its diagonal as we require. This is easily

fixed by scaling the rows and columns of Σ̄Z by appropriate (non-zero) constants.

This then gives us the correlation matrix ΣZ we desire.

The procedure is easily implemented and scales very well with dimension. It

dispenses with the need for optimization solvers. The eigenvalue factorization step

is essentially the only limitation, but this matrix algebra procedure is well studied,

easily coded and very fast practical routines are available (see, for instance Golub

and Van Loan 1996, Chapter 8).

We note that in practice the negative eigenvalues are replaced with a positive

number ε smaller than all the positive eigenvalues, rather than 0. This will ensure

that the NORTA covariance matrix ΣZ constructed is positive definite, and thus

avoids numerical instability issues that arise while finding the Cholesky factoriza-

tion of a positive semidefinite ΣZ (the Cholesky factor is needed to generate the

joint normal base random vector.) While we discuss zeroing out negative eigenval-

ues here mainly to keep the discussion clean, all the results hold equally well for

when they are replaced by ε.
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The EC method identifies a matrix that is optimal for a modified version of

the SDP problem (4.1). To see why, suppose r is the Frobenius norm:

||A||F = (
∑

i,j

A2
ij)

1/2.

This norm is equivalent to the l2 norm used on the matrix when considered to

be an element in the vector space IRd×d. It is also orthogonal invariant (Golub

and Van Loan 1996, define a norm r to be orthogonal invariant if r(Σ1, Σ2) =

r(PΣ1Q, PΣ2Q) for any orthogonal matrices P and Q.).

Next, suppose the constraints on the diagonal elements in (4.1) are relaxed,

and the matrix variable ΣZ is constrained to be of type UDU t, where U is the

eigenvector matrix of ΛZ and D is a variable diagonal matrix. Then, SDP (4.1)

can be simplified to

min r(D, D0) s.t. D � 0,

where the orthogonal invariance of r is used to ensure that r(ΣZ , ΛZ) = r(D, D0).

But, the Frobenius norm on diagonal matrices is simply r(D, D0) = ||λ − λ0||2,

where λ = De (e is a vector of ones), a vector of the diagonal elements of the diag-

onal matrix D and || · ||2 is the ordinary l2 vector-norm. Moreover, the constraint

D � 0 is equivalent to λ ≥ 0. The problem thus reduces to a rather simple form

that one can solve using the KKT conditions to show that the optimal solution λ∗

is λ0 with the negative elements zeroed out.

The solution Σ̄Z = UD∗U t will however probably not have ones on the diagonal,

and thus not be a correlation matrix, since we relaxed the corresponding constraint.

This is rectified by pre- and post-multiplying Σ̄Z with a diagonal scaling matrix

O with diagonal elements O(i, i) = 1/
√

Σ̄Z(i, i). We set the final output ΣZ =

OΣ̄ZO.
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This method thus searches for a feasible solution for SDP (4.1) in a restricted

portion of the feasible set of the SDP problem. In the original problem, one has

the freedom to change the matrix variables by changing both their eigenvalues

and eigenvectors to find the optimal solution to the problem. In this scheme, we

do vary both, but in a very specific way, and hence the ΣZ value output by this

approach is only a feasible solution to the SDP constraints.

To summarize, the EC method finds a correlation matrix ΣZ thus:

1. Factorize ΛZ into its eigenvalue and eigenvector matrices D0 and U .

2. Replace all negative values in D0 with a small positive constant ε. Let D∗

represent the resulting diagonal matrix.

3. Let Σ̄Z = UD∗U t,

4. Define a diagonal matrix O, with O(i, i) = 1/
√

Σ̄Z(i, i).

5. Set ΣZ = OΣ̄ZO.

4.4 The Least Squares (LS) Based Method

This final approach is similar to the EC method in that it solves a restricted version

of the SDP problem (4.1) to find a good feasible solution to the original problem.

The EC method searches for a good approximation to the optimal solution of the

SDP (4.1) in a restricted space of eigenvalues and eigenvector combinations. This

approach, on the other hand, completely fixes the eigenvectors and optimizes over

only the eigenvalues.

We again let r be the Frobenius norm. The matrix ΣZ is again fixed to be of

form UDU t, where U is the eigenvector matrix of ΛZ and D is a variable diagonal
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matrix. However, unlike the earlier case, we shall not drop the “ones-on-diagonal”

constraint. The optimization problem reduces to

min ||D0 − D||F (4.2)

s.t. D(i, i) ≥ 0

and (UDU t)(i, i) = 1, (4.3)

where D0 denote the diagonal matrix of eigenvalues of ΛZ .

As before, let λ = De be the vector of diagonal elements of D. Constraint (4.3)

is a set of d linear equations in d variables (λis), and one might thus expect that

λ0( = D0e ), the eigenvalues of ΛZ , is the unique solution to (4.3) since ΛZ has

ones on its diagonal. This is however not the case, and this set of constraints is

under-determined. Firstly, the equations (4.3) can be rewritten as Aλ = e where

A is a d×d matrix defined as A(i, j) = U(i, j)2. Now, since the eigenvector matrix

U is orthogonal, the vector e is a right-eigenvector for A, i.e., Ae = e. But, ΛZ is

already known to satisfy 4.3, i.e., Aλ0 = e. Thus, A(λ0 − e) = 0. The vector λ0

however cannot be e since ΛZ is indefinite. So, (λ0 − e) is non-zero, implying that

A is rank-deficient. The constraint Aλ = e thus has multiple solutions.

The problem (4.2) can be recast as:

min ||y||2 s.t. Ay = 0, y + λ0 ≥ 0,

where y is a d−vector such that y = λ − λ0. Notice that this version of the

problem resembles a Least Squares minimization problem. We know that A is a

rank-deficient matrix, i.e., rank(A) = a < d. So, the Ay = 0 constraint implies that

we optimize over the null space of A, which has dimension (d−a). In other words,

we can use Ay = 0 to “factor out” as many as a variables out of the LS optimization

problem (Lawson and Hanson 1974). This is done by first orthogonally factorizing
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A as A = HRKt where H and K are orthogonal matrices such that of dimension

d × d, and R =







R11 0

0 0






where R11 is an a × a matrix of full rank (One

instance of such a factorization is the singular value decomposition of A.) We

define Kty =







u1

u2






= u, where u1 and u2 are vectors of dimension a and (d−a)

respectively. Then, Ay = 0 becomes R11u1 = 0, independent of u2. Now, since R11

is of full rank, u1 = 0. Thus, the problem above simplifies to an LS problem on a

(d − a)-dimensional subspace:

min ||u2||2 s.t. K







0

u2






+ λ0 ≥ 0. (4.4)

This problem is commonly termed a linear-inequality constrained LS problem, and

efficient numerical procedures are available to solve this exactly; see, e.g., Lawson

and Hanson (1974, Pg 165, Chapter 23, where they call it the LDP problem).

The correlation matrix to be output ΣZ is calculated from the optimal solution

of the LS problem (4.4). To summarize this approach (given an indefinite ΛZ with

ones on its diagonal):

1. Factorize ΛZ into its eigenvalue and eigenvector matrices D0 and U . Let

λ0 = D0e.

2. Define a matrix A as A(i, j) = U(i, j)2.

3. Let A = HRKt be an orthogonal factorization of A.

4. Solve the Least Squares problem (4.4) using standard numerical procedures.

Let u∗ =







0

u∗
2






, where u∗

2 is the optimal solution obtained for (4.4).

5. Define y∗ = Ku∗ and λ∗ = y∗ + λ0.
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6. Set ΣZ = UD∗U t, where D∗e = λ∗ is a diagonal matrix.

We had seen earlier that the EC method searches for a good approximation

to the optimal solution of the SDP (4.1) in a restricted space of eigenvalues and

eigenvector combinations. The LS approach, on the other hand, completely fixes

the eigenvectors U and optimizes over only the d variables λi. This reduces the

number of variables from an order O(d2) in the original problem to O(d). Thus

this scheme might produce approximations that are not quite as tight as the EC

method.

4.5 A Comparison

We gauge the performance of the methods proposed above in a setup identical

to that used for the SDP-augmented NORTA: we specialize to the case where

NORTA is used to generate uniform random vectors, and the expected l1 and

l∞ change in correlations serve as the performance measure. For each dimension,

15,000 matrices were chosen uniformly from the set of correlation matrices and each

of the three heuristics described above, along with the l1 and l∞ SDP-augmented

approaches, were utilized to augment the NORTA setup in the cases where NORTA

was found to fail. (The l1 SDP-augmentation method solves the SDP (4.1) with the

l1 metric and similarly for the l∞ SDP-augmentation.) As usual, we measure the

performance by the expected distance, as measured by a suitably chosen metric,

that we have to move from the desired correlation matrix Σ to reach a NORTA

feasible one ΣX .

Figure 4.3 plots the observed expected l1 change in correlations against dimen-

sion for each method. In each case, the expected l1 distance moved seems to change

slightly super-linearly with dimension. We notice that the l1 SDP-augmented
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Figure 4.3: l1 performance of all NORTA augmentation methods

method outperforms the rest. One might expect this since the SDP (4.1) is solved

to optimality with r as l1. Of the rest the Eigenvalue Correction (EC) method

clearly performs better. The “Just-Use-Sigma” (JUS) method seems to fare about

as well as, or better than, the Least Squares (LS) procedure, which is perhaps a

disappointing outcome. The SDP approaches’ increasing computational difficulty

with dimensionality is also illustrated by the fact that these methods could only

be tracked till dimension 11.

Figure 4.4 presents the l∞ results, where the expected l∞ change in correlations

is plotted against dimension for each method. As one might expect, in this case

the l∞ SDP augmented method performs the best. The JUS method is clearly

bounded by 0.01808 as predicted. The interesting fact one notices here is that

the EC method again outperforms the rest of the methods. Moreover the average
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Figure 4.4: l∞ performance of all NORTA augmentation methods

change by the EC method seems to be bounded by 0.01. This would suggest that

the EC method provides a nice compromise between computational tractability

and accuracy in approximation.

The fact that the expected absolute change in the correlations for the EC

method seems bounded by 0.01 is an unexpected boon. We do not know of a the-

oretical reason for this behaviour of the EC method, but we experimentally study

this property further. Specifically, we again sample 15,000 correlation matrices in

dimensions 10 to 100 and find the maximum l∞ change induced by the EC method

among the NORTA defective samples in each dimension. A plot of this result

is given in Figure 4.5. We see that the maximum l∞ change actually falls with

dimension. This can be heuristically explained by an observation we had made

earlier, in that though almost all correlation matrices fail in higher dimensions,
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almost all the indefinite ΛZ probably lie close to the set of correlation matrices.

Thus a change of the same magnitude in the correlations suffices to find a correla-

tion matrix for most of the indefinite ΛZ . We also note here that the EC method

worked in dimensions as high as 100 in a matter of seconds, which indicates that

it is computationally quite agreeable.

We conclude that despite the feasibility problem, the NORTA method is a

viable method even in high-dimensional problems. We recommend augmenting

NORTA with the EC heuristic as:

1. Given the desired marginals Fi and covariance matrix ΣX , estimate the co-

variance matrix ΛZ using numerical search/closed form expression.

2. If ΛZ is positive semidefinite, then set ΣZ = ΛZ .

3. If ΛZ is indefinite, use the EC algorithm in Section 4.3 to find an “approxi-

mately close” correlation matrix ΣZ .

4. Run NORTA with ΣZ .



CHAPTER 5

GENERATION USING CHESSBOARD DISTRIBUTIONS

The previous chapter argues that though NORTA fails to work for a large por-

tion of feasible covariance specifications in higher dimensions, a modified NORTA

procedure can be successfully adopted to produce random vectors with the right

marginals and a covariance matrix that approximates the desired one. This, we

feel, is essentially the best option for generating random vectors of high dimen-

sionality.

We can, however, do a better job of matching feasible covariances in moderate

dimensions. This chapter will discuss how chessboard distributions can be used to

model partially specified random vectors. Our motivation for studying chessboard

distributions comes from a broader need in stochastic simulation for an easily

applied class of distributions that can capture a range of features of a desired

distribution. Indeed, researchers in a variety of fields have sought such a class.

See, for example, Devroye (1986), Johnson (1987) and Biller and Ghosh (2005) for

a survey of these efforts. We shall limit the discussion here to the random vector

specification we have studied throughout this thesis, the case where one specifies

the (one dimensional) marginal distributions and some measure of dependence

that is usually the (Spearman) rank covariance matrix or the (Pearson) product

moment covariance matrix, but we do note that one can consider other features

such as joint probabilities of certain regions and so forth (Ghosh and Henderson

2001) while modeling using chessboard distributions.

The chief argument in favour of adopting a chessboard-based generation ap-

proach is the fact that chessboards can match almost any (in a precise sense, see

Section 5.2) feasible covariance specification. But, the setup time needed in solving

86
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the linear programs that define a chessboard distribution can be expensive, and

hence their practical viability might be limited to modeling moderate dimensional

random vectors. The new results we develop (Section 5.3) on their modeling power

show that they can perform quite satisfactorily in moderate dimensions.

We believe that for non-Gaussian marginals, it is more appropriate to use rank

covariance than product-moment covariance. Recall that the product-moment

covariance between two random variables X and Y with distribution functions F

and G respectively is given by

EXY − EXEY,

and the rank covariance is given by

EF (X)G(Y ) − EF (X)EG(Y ).

The product moment covariance is well-defined when X and Y have finite second

moment, while the rank covariance is always defined. In the case where F and G

are continuous, F (X) and G(Y ) are uniformly distributed. Hence, one can reduce a

study of rank covariance of random vectors with arbitrary continuous distributions

to one of product moment covariance of uniform random variables on (0, 1]. (We

adopt the convention of open intervals on the left and closed on the right. The

choice is immaterial for absolutely continuous distributions.)

We therefore focus on the case of generating a random vector with uniform

marginals and a desired product moment covariance matrix. The distribution

function of a random vector with uniform marginals on (0, 1] is known as a copula.

The term was coined in Sklar (1959), and Nelsen (1999) is a useful recent reference.

We describe chessboard distributions as a subclass of a new class of distributions

that we call replicated copulas. Our interest in replicated copulas lies primarily in
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their use in furthering our understanding of chessboard distributions, but they are

interesting in their own right. In Section 5.1 we review some high-level facts about

chessboard distributions and introduce replicated copulas. Then, in Section 5.2 we

review what we feel are the main results of Chapter 2 that are of interest to us here.

Many of these results are extended to replicated copulas without any additional

work. We shall then present such results in terms of replicated copulas, but omit

giving the full proofs. We shall also shed further light on the class of distributions

that cannot be exactly matched by chessboard distributions and certain replicated

copulas (Theorem 5.2.4). We continue in Section 5.3 by developing some new

results that help determine the computational effort needed in modeling partial

random vectors with chessboard distributions. In particular, we provide bounds

on the relative size (in a certain precise sense) of the subset of feasible covariance

specifications that can be matched to a chessboard distribution discretized to a

level n.

5.1 Chessboard Distributions and Replicated Copulas

A chessboard copula is a member of a class of copulas with a special structure.

We call this the family of replicated copulas. The structure of a replicated copula

for a random vector X is easily described. For notational convenience we confine

our discussion to the three-dimensional case; the d dimensional case is similar. We

divide (0, 1]3 into a large grid of rectangular regions (cells) with sides parallel to

the coordinate axes. Let n ≥ 1 be an integral parameter that determines the level

of division that is performed. The range (0, 1] of the ith variable is divided into n

equal-length sub-intervals by the set of points {yi,k = k
n
, k = 0, . . . , n}. Denote the

cells as C(j1, j2, j3), indexed by j1, j2, j3 = 1, . . . , n. Within each cell C(j1, j2, j3)
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the replicated distribution follows an appropriately scaled and translated version

of a copula C(j1, j2, j3). We call this copula the (j1, j2, j3)th base copula. Suppose

Z = (Z1, Z2, Z3) is a random vector distributed as C(j1, j2, j3). Then, conditional

on being in cell C(j1, j2, j3), the replicated random vector X can be obtained from

Z as

X1 =
Z1

n
+ y1,j1−1, and similarly for X2, X3. (5.1)

The base copulas could be the same or could vary over different cells. We limit

this discussion to replicated copulas that have the same base copula in each cell.

So, in essence we divide the region (0, 1]3 into non-overlapping cells and replicate a

given copula within the cells. Theorem 5.1.1 below shows that a function created

by this replication operation is a valid copula.

Johnson and Kotz (2004) study similar replicated bivariate distributions, which

they term cloned distributions. They also assume the mass assigned to each cell to

be the same, while we allow it to vary. To be more precise, let q(j1, j2, j3) = P (X ∈

C(j1, j2, j3)) be the mass assigned to the copula replicated at cell C(j1, j2, j3).

Then, the cloned distributions of Johnson and Kotz (2004) assume that each

q(j1, j2, j3) = 1/n3. Our copula construction technique allows the q(j1, j2, j3) val-

ues to vary. This helps us match desired dependence measures like the covariance

matrix subject to the constraint that the constructed copula is a valid joint distri-

bution function.

Theorem 5.1.1 shows that the copula created for the replicated random vector

is a valid distribution function. To ensure this, we will require the q(j1, j2, j3)

satisfy

n
∑

j2,j3=1

q(j1, j2, j3) = P (X1 ∈ (y1,j1−1, y1,j1]) =
1

n
, ∀j1 = 1, . . . , n,
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n
∑

j1,j3=1

q(j1, j2, j3) = P (X2 ∈ (y2,j2−1, y2,j2]) =
1

n
, ∀j2 = 1, . . . , n, (5.2)

n
∑

j1,j2=1

q(j1, j2, j3) = P (X3 ∈ (y3,j3−1, y3,j3]) =
1

n
, ∀j3 = 1, . . . , n,

q(j1, j2, j3) ≥ 0 ∀j1, j2, j3 = 1, . . . , n.

Theorem 5.1.1 If the distribution of X is a replicated copula with cell probabilities

q satisfying the constraints (5.2), then X has uniform marginals.

A proof of this result for the chessboard copula case can be found in The-

orem 2.1.1. We present this slightly generalized version because it is useful in

understanding the nature of replicated distributions.

Proof: Let the marginal distribution function of X1 be denoted by F1(·). We

have to show that F1(x) = x for x ∈ (0, 1]. Let Z represent a random vector

corresponding to the base copula C. The components of X and Z are related as in

(5.1). For any x ∈ (y1,i−1, y1,i], we have that

F1(x) =
∑

j1≤i−1

n
∑

j2,j3=1

q(j1, j2, j3) +

n
∑

j2,j3=1

P (y1,i−1 < X1 ≤ x|X ∈ C(i, j2, j3)) · q(i, j2, j3)

=
i − 1

n
+

n
∑

j2,j3=1

P (0 < Z1 ≤ n(x − y1,i−1)) · q(i, j2, j3)

=
i − 1

n
+

n
∑

j2,j3=1

n(x − i − 1

n
)q(i, j2, j3)

=
i − 1

n
+ x − i − 1

n
= x

as required. The first equation follows by conditioning on the cell in which the

random vector lies, and the second is obtained from (5.2) and the transformation

that relates X with Z. The third equation uses the fact that Z1 is uniformly
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distributed and the final equation again uses (5.2). A similar result holds for X2

and X3, and so the joint distribution has uniform marginals. 2

Replicated copulas can be used to achieve desired covariance matrices by solv-

ing a linear program formulated with the q(j1, j2, j3)s as variables. The LP for-

mulation is similar to that in the case of chessboard distributions, and is given

in Section 5.2. Much of the theory developed for covariance matching with chess-

board copulas extends to the replicated case in a straightforward fashion, as we

shall see shortly. So, this technique concludes either by finding q(j1, j2, j3)s that

give a joint distribution for X with the desired properties, or by determining that

no joint distribution can be constructed for X with these properties.

Chessboard copulas, as introduced in Chapter 2, are replicated copulas where

the base copula is that of independent uniform random variables. Chessboard

distributions are essentially the “piecewise-uniform copulae” that Mackenzie (1994)

developed. Mackenzie (1994) identifies chessboard copulas with maximum entropy

that match a given covariance matrix, assuming that the covariance matrix can

be matched. We did not make this assumption in Chapter 2, and developed the

chessboard family partly to provide a procedure to check whether given covariance

matrices can be matched. The product-form copula has a density such that each

component is independent of the other, and hence its replication in cells makes the

components of X conditionally independent (conditional on being in the cell) with

marginal distributions given by the uniform distribution restricted to the cell. This

special form has an advantage in that it leads to a simple scheme for generating

samples from the chessboard copula.

There are many possible methods for generating random vectors with repli-

cated copulas. The methods vary in terms of their time and storage requirements
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for setup, and for generating random vectors once the setup is complete. We shall

now describe a generic approach that requires a moderate amount of time and

storage for setup, but once the setup is complete requires very little time to gen-

erate random vectors. Let d denote the dimension of the random vector X with

marginal distribution functions F1, . . . , Fd−1 and Fd. Suppose that q(·; d) and C

together represent the replicated distribution constructed for X. (We use q(·; d)

to compactly denote q(·, . . . , ·); similarly, we use C(j; d) for the cell C(j1, . . . , jd),

where j denotes the vector of indices (j1, . . . , jd). ) The algorithm is as follows.

1. Generate the index vector j of the cell containing X from the probabilities

q(·; d).

2. Generate X from its conditional distribution given that it lies in the cell

C(j; d): an appropriately scaled version of C.

The first step can be performed efficiently using, for example, the alias method.

The alias method, developed by Walker (1977) and discussed in detail in Law and

Kelton (2000), can generate the appropriate cell in constant time, and requires

O(m) storage and O(m) setup time, where m is the number of positive q(j; d)

values. If q(·; d) is an extreme-point solution to the linear programs similar to

those developed in Chapter 2, then there are on the order of nd strictly positive cell

probabilities. This follows from a standard result in linear programming that any

extreme point solution to a system of m linear equalities in nonnegative variables

has at most m strictly positive values. The exact number of positive values depends

on the number of equality constraints in the LP and the degree to which the

extreme-point solution is degenerate. (A degenerate extreme-point solution is one

with less than m strictly positive values.)
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The fact that m = O(nd) is relatively small can be viewed as an advantage

with respect to variate generation since it reduces the setup time required to im-

plement the alias method. However, it can also be viewed as a disadvantage in

terms of modeling power. For a given dimension d and discretization level n there

are nd cells. Of these, O(nd) receive strictly positive probabilities q(j; d). So as

the dimension d increases, the fraction of cells receiving positive probabilities is

vanishingly small. This means that the set of values that the random vector X

can assume is somewhat limited.

Mackenzie (1994) avoids this problem by maximizing the entropy of the discrete

distribution q(·; d). In this case, all of the cells receive positive probability. How-

ever, the problem of maximizing the entropy of q subject to linear constraints is a

convex optimization problem that is more difficult to solve than the LPs discussed

in this thesis.

Suppose cell C(j; d) is chosen in Step 1 above. Conditional on X lying in

this cell, the components (X1, . . . , Xd) of X are jointly distributed according to a

transformed version of C. Suppose Z = (Z1, . . . , Zd) is a random vector distributed

as C. A sample of X can be obtained by first sampling a Z and then transforming

Z as in (5.1). Thus, for instance, if C is the product-form copula, as in Chapter 2,

then in Step 2, we can independently generate each component from its respective

conditional (marginal) distribution. The efficiency of this step clearly depends

on the form of C. The product-form base copula requires d independent uniform

random variables to generate a sample of Z. On the other hand, if the base copula

were the maximally-correlated copula, where Z1 = Z2 = . . . = Zd, then only one

uniform random variable need be generated to get a sample of Z.

Thus, in general, we can sample rapidly from a replicated copula once such a



94

copula is constructed to match a given covariance matrix. One important issue

that needs to be addressed is the time it takes for the replicated copula to be set

up. We shall address this aspect with respect to chessboard copulas in Section 5.3

after summarizing and extending some of the key results of Chapter 2 to replicated

copulas.

5.2 Extending Chessboard Results to Replicated Copulas

Replicated copulas can be constructed by formulating covariance matching linear

programs similar to those introduced for constructing chessboard distributions with

uniform marginals and covariance matrix.

If ΣX be the covariance matrix of a replicated random vector X, then we want

to minimize the distance r(ΣX , Σ) between ΣX and the desired Σ, where

r(ΣX , Σ) =
∑

1≤i<j≤3

∣

∣ΣX
ij − Σij

∣

∣ .

Now, X has uniform marginals so EXi = 1/2 for i = 1, 2, 3. Also, by condi-

tioning on the cell containing X we see that

EX1X2 =
∑

j1,j2,j3

q(j1, j2, j3)E[X1X2|X ∈ C(j1, j2, j3)]

=
∑

j1,j2,j3

q(j1, j2, j3) µ12(j1, j2),

where

µlm(i, k) = E [ XlXm | Xl ∈ (yl,i−1, yl,i] and Xm ∈ (ym,k−1, ym,k] ]

is the conditional joint moment of Xl and Xm given that Xl lies in the ith subin-

terval and Xm in the kth one.

In general then, the quantity EX1X2 is a weighted sum of (and hence linear in)

q(j1, j2, j3)s, as is ΣX
13 and ΣX

23. Using the standard trick introduced in Section 2.1,
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we can attempt to match ΣX to Σ using the LP

min

2
∑

i=1

3
∑

j=i+1

(Z+
ij + Z−

ij ) (5.3)

subject to ΣX
ij − Σij = Z+

ij − Z−
ij , i = 1 to 2 and j = i + 1 to 3

Z+
ij ≥ 0, Z−

ij ≥ 0, together with constraints (5.2),

where the variables Z±
ij are again defined as in Section 2.1. The LP is always feasible

since q(j1, j2, j3) = n−3, for all j1, j2, j3, represents a feasible solution. Also, the

objective function of the LP is bounded below by 0, so an optimal solution exists.

The properties derived in Section 2.2 for chessboard LPs depend on the bounds

derived in (2.10) on the objective function (2.5). These bounds can be modified

for the objective function of the LP (5.3) above.

The bounds are developed by assuming that a random vector X̃ with uniform

marginals and covariance matrix Σ exists, and modifying the distribution of X̃

to that of a random vector X that has a replicated structure. The modification

consists of keeping the total mass within each cell constant, but making the con-

ditional distribution within the cell that of the (scaled version of) the base copula.

The distribution of X then gives a feasible solution to the LP (minus the bounds),

and we can bound the change in the covariances resulting from this modification

of the distribution.

Let

q̃(j1, j2, j3) = P (X ∈ C(j1, j2, j3)) = P (X̃ ∈ C(j1, j2, j3)).

Observe that

Cov(X1, X2) − Σ12 = EX1X2 − EX̃1X̃2

=

n
∑

j1,j2,j3=1

(µ12(j1, j2) − E[X̃1X̃2|X̃ ∈ C(j1, j2, j3)]) ·
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q̃(j1, j2, j3). (5.4)

But

y1,j1−1 y2,j2−1 ≤ E[X̃1X̃2|X̃ ∈ C(j1, j2, j3)] ≤ y1,j1 y2,j2. (5.5)

Combining (5.4) with (5.5) we see that

Cov(X̃1, X̃2) − Σ12 ≤
n

∑

j1,j2,j3=1

q̃(j1, j2, j3)(µ12(j1, j2) − y1,j1−1 y2,j2−1) (5.6)

Cov(X̃1, X̃2) − Σ12 ≥
n

∑

j1,j2,j3=1

q̃(j1, j2, j3)(µ12(j1, j2) − y1,j1 y2,j2). (5.7)

The bounding expressions can be simplified, once the µ12s are determined from

the base copula, to a form similar to that of (2.10). Note that each difference term

in the summations above is bounded by 1/n. These bounds can thus be shown to

converge to 0 as n → ∞ at the rate 1/n.

The question that naturally arises is whether the replicated copula construction

technique is as effective as the chessboard technique of Section 2.2 is. This is indeed

the case, as we shall see now. We summarize some key results from Chapter 2.2

that detail the power of the chessboard construction technique to match covariance

specifications and extend them to replicated copulas. In giving these results, we

allow the random vector to have arbitrary, but finite, dimension d > 1.

Theorem 5.2.1 A covariance matrix is infeasible for uniform marginals if, and

only if, the replicated-copula LP (5.3), augmented with the bounds (5.6) and (5.7),

is infeasible for some n ≥ 1.

Theorem 2.2.3 proves the chessboard case, and the same proof holds for repli-

cated copulas, where the LP (2.5) is supplemented with the appropriate bounds.

This result establishes that if one of the augmented LPs is infeasible for any dis-

cretization level n, then the proposed covariance matrix is infeasible. Furthermore,
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the theorem establishes that if a covariance matrix is infeasible, then one will even-

tually discover this by solving an LP with n sufficiently large.

A more positive characterization of the modeling power of chessboards, to the

effect that “chessboards can match all feasible covariance matrices”, however does

not hold. Recall from Example 1 in Section 2.2 that chessboard distributions can-

not exactly match all feasible covariance matrices. This is potentially a limitation

that even replicated copulas face. Theorem 5.3.3 at the end of Section 5.3 shows

that replicated copulas constructed with the same base copula replicated over all

cells cannot match all feasible covariances for a finite level of discretization n.

Theorem 2.2.5, though, says that the error in the covariance matrix when using

chessboard distributions can be made arbitrarily small. This extends to replicated

copulas, so that they can arbitrarily-closely approximate any feasible covariance

matrix. The proof of Theorem 5.2.2 is virtually identical to that of Theorem 2.2.5

and omitted.

Theorem 5.2.2 Suppose that Σ is feasible. Then for all ε > 0, there exists a

replicated distribution with covariance matrix Λ with the property that r(Σ, Λ) < ε.

Theorem 2.2.7 shows that chessboard distributions can not only closely ap-

proximate any feasible covariance matrix, but they can exactly match “almost all”

feasible covariance matrices. To state this result precisely, we reuse some termi-

nology and a definition stated in Chapter 2. We can view a d × d covariance

matrix as an element of the real vector space IRd(d−1)/2. This follows because there

are d(d − 1)/2 elements above the diagonal, the matrix is symmetric, and the

diagonals are determined by the marginal distributions. Let Ω denote the set of

feasible covariance matrices. We view Ω as a subset of d(d − 1)/2 dimensional

Euclidean space, and Ω is also a subset of the hypercube [−1/12, 1/12]d(d−1)/2.
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Proposition 2.2.6 in Chapter 2 had established that the set Ω is nonempty, convex,

closed and full-dimensional.

Let A◦ and ∂A denote the interior and boundary of the set A respectively.

Theorem 2.2.7 and Theorem 2.2.9 from Chapter 2 can be combined to give that

Theorem 5.2.3 There is a chessboard distribution with covariance matrix Σ if,

and only if, Σ ∈ Ω◦.

Thus, chessboards can match any covariance matrix that fall within the in

(non-empty) interior of the set Ω, but cannot match those on the boundary. The

“if” part of Theorem 5.2.3 remains true for replicated copulas and is shown by the

same arguments as in Theorem 2.2.7, but it is also possible for replicated copulas

to achieve some points on the boundary of Ω. For instance, continuing Example 1,

suppose that the base copula corresponds to a perfectly correlated pair of uniform

random variables. Then one can achieve a covariance of 1 with n = 1.

Proposition 2.2.6 establishes that the set Ω has a non-zero finite Lebesgue

measure (in IRd(d−1)/2), while ∂Ω is a zero Lebesgue measure set. It follows from

Theorem 5.2.3 that chessboard distributions can model almost any (in a Lebesgue

measure sense) feasible covariance matrix from Ω, and replicated copulas can do

at least as well. Given a feasible covariance matrix, the procedure to determine

a corresponding replicated distribution is then straightforward: one solves the

augmented LP based on (2.5) for a chosen level of discretization n and if the

optimal objective value is greater than 0, the parameter n is increased successively

till the objective value drops to 0 or an acceptable value.

Theorem 5.2.3 establishes that a distribution F that achieves a covariance

matrix Σ ∈ ∂Ω will not have a chessboard distribution structure. We can prove

a slightly stronger result regarding the structure of any such distribution F that
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has a covariance matrix in ∂Ω (and uniform marginals). This will have a bearing

on the power of replicated distributions in modeling covariance matrices from the

boundary ∂Ω.

The distribution F can be decomposed into a singular part Fs and an absolutely

continuous part Fac with respect to Lebesgue measure restricted to (0, 1]3 (the

Lebesgue Decomposition; see Billingsley 1995, p. 414). Thus,

F = Fac + Fs.

Moreover, the absolutely continuous part has a density fac in the sense of the

Radon-Nikodym derivative of Fac.

Theorem 5.2.4 Suppose that fac is defined as above where Σ ∈ ∂Ω. There cannot

exist an open set G such that

fac(x) ≥ φ > 0 a.e. in G. (5.8)

A property holds almost everywhere (a.e.) on the set G if it is true for all x ∈ G

except over a subset of Lebesgue measure 0.

Proof: For notational ease we give a proof in the 3-dimensional case. The gen-

eral case is virtually identical. Suppose such a G exists. We can reassign fac to

have value φ over any measurable subset of measure zero where the fac cannot be

bounded away from 0, without changing the function Fac. Thus, we assume that

fac is bounded away from 0 by at least φ over all x ∈ G. We can choose an open

ball B(x, ε) within G and an open cubical region C with sides aligned to the axes

within B(x, ε) such that the interior of C is non-empty. Split fac into two parts

fC and fC̄ defined as:

fC(x) =











φ x ∈ C

0 elsewhere
and fC̄(x) =











fac(x) − φ x ∈ C

fac(x) elsewhere
.
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Let u and v be the endpoints that define C so that

C = {(x, y, z) ∈ (0, 1]3 : u1 < x ≤ v1, u2 < y ≤ v2, u3 < z ≤ v3}.

Divide the cell C into 4 (equal size) sub-cells,

Cab = {(x, y, z) ∈ C : u1 + (a − 1)
v1 − u1

2
< x ≤ u1 + a

v1 − u1

2
,

u2 + (b − 1)
v2 − u2

2
< x ≤ u2 + b

v2 − u2

2
}

for 1 ≤ a, b ≤ 2.

Define a new distribution H from F as follows. The singular parts Hs and

Fs coincide, as do the hC̄ and fC̄ parts respectively of the absolutely continuous

density. The density hC is defined such that it assigns a value 2φ to each of the cells

C11, and C22, and set hC to be 0 in the cells Cab for a 6= b. Then it is straightforward

to show that H has uniform marginals, that the (1, 2)th covariance is strictly

increased, and that the other covariances remain unchanged. A similar argument

increasing the density in the cells Cab with a 6= b shows that the covariance can be

strictly decreased.

Convexity of Ω then implies that Σ must lie in the interior Ω◦ which is a

contradiction, and the proof is complete.2

It is conceivable that the support of distributions that match matrices from

∂Ω could consist of sets of zero Lebesgue measure in IRd or exotic sets like Cantor

sets with no interior but non-zero measure. Generating random vectors with such

distributions could thus prove difficult.

Theorem 5.2.4 also tells us that if one uses a base copula with sets as described

by (5.8) in its support, then one cannot construct replicated copulas to exactly

match covariance matrices from ∂Ω.

In summary then, replicated distributions
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• can detect if a given matrix is infeasible,

• can arbitrarily closely approximate any feasible covariance matrix,

• can exactly match any feasible covariance matrix in the interior of the set of

feasible covariance matrices, but

• might not exactly match any covariance matrix on the boundary of the set

of feasible covariance matrices. (Replicated copulas might match some co-

variances on the boundary.)

5.3 More on Modeling Power

In Section 5.1, we propose a method to generate from chessboard distributions (and

in general all replicated distributions). We have posited that once the chessboard

distribution is set up, generation should be fast. However, for the method to be

viable, one should be able to set up the distribution in a reasonable amount of time.

Critical to this is the time it takes to obtain a solution for the linear programs based

on (2.5). Efficient algorithms are available to solve linear programs, and they are

theoretically known to be solvable in time which is at worst a polynomial function

of the size (in binary representation of all the data) of the problem. The setup

time thus depends on the size n of the discretization that is used. We now turn to

the question of how large n needs to be to match covariance matrices in Ω◦ for a

fixed dimension d of the random vector.

Let Ωn represent the set of covariance matrices that chessboard distributions of

size n can match. That Ωn is non-empty is easily seen: an argument along the lines

of the proof of Theorem 2.2.7 or Theorem 5.2.4 shows that a non-empty convex

full-dimensional set of covariances centered around the origin of IRd(d−1)/2 (which
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corresponds to a random vector with independent components) is contained within

Ωn. It is also convex since for any two matrices in Ωn, any convex combination

of them can be achieved by the corresponding convex combination of their chess-

board distributions. We have shown in Theorem 2.2.9 and in Theorem 5.2.3 that

chessboards can achieve any feasible covariance matrix in the interior of Ω for some

finite n. Thus, in a sense the sequence {Ωn, n ≥ 1} should grow to cover the whole

of Ω as n → ∞; we shall establish this rigorously. Let IL represent the Lebesgue

measure on the real vector space IRd(d−1)/2. Then, the theorem below gives the

main result we shall establish in this section:

Theorem 5.3.1 Suppose Ωn represents the set of covariance matrices that chess-

boards of size n match. Let m(d) = d(d − 1)/2 and ` =
√

m(d). Then,

a) Ωn ⊆ U(
1

n2
), and

b) L(
`

n
) ⊆ Ωn.

The sets L(·) and U(·) will be defined shortly. But, we shall first state a

corollary to this theorem that is of practical interest:

Corollary 5.3.2

IL(Ω) − K(d)

n
≤ IL(Ωn) ≤

(

1 +
1

n2

)−m(d)

IL(Ω),

where K(d) is some positive value that depends on d.

The implications of Corollary 5.3.2 are clear. The rate at which chessboard

distributions can cover the set Ω of feasible covariance matrices is at least of the

order 1
n
, but can be no faster than a factor of the order

(

1 + 1
n2

)−m(d)
(≈

(

1 − m(d)
n2

)

when n is large). Of course, the lower bound is of interest only when the expres-

sion evaluates to a positive value. This result then establishes the efficiency of
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the chessboard copula-based random vector modeling technique. Recall that no

complete characterization of the set Ω is currently known, and hence the position

of a specific covariance matrix relative to Ω can not be easily given. Thus, it might

still be hard to predict the size of the chessboard distribution needed to achieve a

given covariance matrix.

We shall prove each set inclusion assertion of Theorem 5.3.1 separately. We

need some notation and definitions first. We write B(x, ε) = {y : ||x − y||2 < ε}

to represent the (open) ε−ball centered at x, defined under the l2 metric on the

space IRm(d). B(0, 1), the unit open ball centered at the origin, is simply denoted

B. Thus, B(x, ε) = x + εB, where the notation vM denotes the set {vx : x ∈ M}

for any scalar v, and y + M = {y + x : x ∈ M}.

Call any compact, convex set with a non-empty interior a convex body. The

Minkowski subtraction set operation on two convex bodies M and N can be defined

(Schneider 1993a, Chapter 3) as

M ∼ N
4
= {x ∈ M : x + N ⊂ M}.

This set operation is given various other names in the literature, but we shall follow

the conventions used in Schneider (1993a). A convex body E is said to be centered

if it contains the origin as an interior point. Sangwine-Yager (1988) defines, for an

ε > 0, the εth relative inner parallel body of a convex body M with respect to a

centered convex body E to be M ∼ εE. The relative inradius r(M ; E) is defined

to be

r(M ; E) = sup{ε : x + εE ⊂ M, for some x ∈ M}.

By this definition, we have that the set M ∼ εE has a non-empty interior for any

0 < ε < r(M ; E), and hence would have a positive Lebesgue measure. Sangwine-

Yager (1988) notes that the set M ∼ (r(M ; E)E) has zero Lebesgue measure.
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When the ball B is used as E, the sets M ∼ εB are simply called the εth inner

parallel body, and r(M ; B) the inradius of M .

The families of sets U(ε) and L(ε), used in Theorem 5.3.1, are indexed by ε and

defined as

U(ε)
4
= Ω ∼ εΩ, and (5.9)

L(ε)
4
= Ω ∼ εB. (5.10)

Recall from Section 2.2 that the origin is contained in the interior of Ω (see, for

example, the proof of Theorem 2.2.7.) A matrix z belongs to U(ε) if the set z + εΩ

also belongs to U(ε). The sets U(ε) have a non-empty interior for all 0 < ε < 1 (by

the definition of the relative inradius, r(Ω; Ω) = 1.)

Similarly, a matrix z belongs to L(ε) if the ε−ball B(z, ε) ⊂ Ω. This has a

simple interpretation, in that L(ε) is the subset of points in Ω that are at least an

ε l2−distance away from the boundary ∂Ω. Again, the sets L(ε) can be empty for

large ε, but by the preceding discussion are non-empty for 0 < ε < r(Ω; B).

Brannen (1997), Sangwine-Yager (1988), Schneider (1993a;b) give various bounds

on the Lebesgue measures of these relative inner parallel bodies. These bounds

show that IL(U(ε)) → IL(Ω) and IL(L(ε)) → IL(Ω) as ε → 0 (recall that the bounded

convex set Ω is of finite non-zero Lebesgue measure.) We shall use a simple version

of these bounds in the proof of Corollary 5.3.2.

We are now ready to prove the first part of Theorem 5.3.1.

Proof of Theorem 5.3.1(a): For notational ease we prove the result for d = 3.

The case d > 3 is proved similarly. We establish the result by showing that

a certain operation on any n-sized chessboard distribution, which has covariance

matrix Σ ∈ Ωn, constructs a distribution function that represents a new covariance
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matrix in Ω not too far from Σ. One can obtain a bound on the distance between

these matrices, which then gives the result.

Let {q(j1, j2, j3)} represent an LP solution that constructs a chessboard distri-

bution corresponding to covariance matrix Σ. Then

Σ12 = EX1X2 − EX1EX2

=

n
∑

j1,j2,j3=1

E[X1X2|X ∈ C(j1, j2, j3)] · q(j1, j2, j3) −
1

4
. (5.11)

Let Z = (Z1, Z2, Z3) be a random vector endowed with the base copula being

replicated within the cells and ΣZ ∈ Ω be its covariance matrix. In our case of

a chessboard distribution, Z is a vector of independent uniform random variables

and ΣZ = (0, 0, 0). Let yi,ji
, i = 1, 2, 3, ji = 0, . . . , n be the points that define the

grid as in (5.1). Since EZi = 1/2, i = 1, 2, 3, we see that

E[X1X2|X ∈ C(j1, j2, j3)] = E

[(

Z1

n
+ y1,j1−1

)(

Z2

n
+ y2,j2−1

)]

=
EZ1Z2

n2
+

EZ1 y2,j2−1 + EZ2 y1,j1−1

n
+ y1,j1−1 y2,j2−1

=
EZ1Z2

n2
+

y2,j2−1 + y1,j1−1

2n
+ y1,j1−1 y2,j2−1

=
EZ1Z2

n2
+ t(j1, j2), (5.12)

where t(j1, j2) is a function only of the indices j1 and j2.

Suppose now that we replace the product-form copula in each cell of the chess-

board distribution with another copula represented by the random vector Z ′. The

result is still a valid replicated copula because of Theorem 5.1.1, and represents

the distribution of a random vector X ′ say. If Σ′ is the covariance matrix of X ′,

then

Σ′
12 =

n
∑

j1,j2,j3=1

E[X ′
1X

′
2|X ′ ∈ C(j1, j2, j3)] · P (X ′ ∈ C(j1, j2, j3)) −

1

4
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=
n

∑

j1,j2,j3=1

(

EZ ′
1Z

′
2

n2
+ t(j1, j2)

)

· q(j1, j2, j3) −
1

4
. (5.13)

Let ΣZ′

be the covariance matrix of Z ′. The net change in covariance due to

the replacement operation is, from (5.11), (5.12) and (5.13),

Σ′
12 − Σ12 =

n
∑

j1,j2,j3=1

1

n2
(EZ ′

1Z
′
2 − EZ1Z2) · q(j1, j2, j3)

=
1

n2
(ΣZ′

12 − ΣZ
12)

=
1

n2
ΣZ′

12 . (5.14)

We have used the fact that ΣZ
12 = 0, since Z represents the product-form copula.

Equation (5.14) holds for every component of the covariance matrix. Hence,

Σ′ = Σ +
1

n2
ΣZ′

.

Observe that Z ′ can have any arbitrary covariance matrix in Ω, including those

from the boundary ∂Ω. Thus, the set Σ + 1
n2 Ω ⊂ Ω, and we have established that

for any Σ ∈ Ωn, Σ ∈ U( 1
n2 ). This gives us the result. 2

The proof shows that Ωn is a subset of U( 1
n2 ). This result is tight in a certain

sense. From Example 1, a chessboard of size n can come to within 1
12n2 of achieving

a covariance value of 1
12

. Thus, since Σ = 1
12

− 1
12n2 belongs to the boundary of

U( 1
n2 ), Ωn can have some points in common with the boundary ∂U( 1

n2 ). Whether

Ωn = U( 1
n2 ) is however unknown.

We have shown that the set Ωn can be “bounded above” by the set U( 1
n2 ). We

will now show that the Ωn can be lower-bounded by sets from the L family.

We need a preliminary result for the proof below. Note that all norms in a

real vector space are equivalent; refer, for example, Pg. 53 of Golub and Van Loan

(1996). Thus, we have that for any x ∈ IRm(d)

||x||∞ ≤ ||x||2 ≤ ` ||x||∞. (5.15)
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Proof of Theorem 5.3.1(b): The result is trivial if L( `
n
) is empty. We shall

thus assume it is non-trivial. In Section 2.1, we had introduced a technique to

derive bounds for the objective function of the chessboard LP (2.5), and these led

to the bounds in (2.10). Part of our argument here is identical to that given while

deriving (2.10).

Choose a Σ ∈ ∂Ω. Since Ω is closed, there exists a joint distribution function (a

copula), call it F , that achieves this covariance matrix. We modify F to construct a

chessboard copula F n. The modification consists of keeping the total mass assigned

to each cell by F constant, but making the conditional distribution within the cell

uniform. The distribution function constructed by this process is a valid chessboard

distribution since it satisfies the constraints (5.2). Let Σn represent the covariance

matrix of F n. We showed in Section 2.1 how a bound can be derived for the change

in the individual covariances from Σ to Σn resulting from this modification of the

distribution F . Specifically, Equation (2.10) derives the bounds to be

(Σ(i, j) − Σn(i, j))+ ≤ 1

2n
− 1

4n2
and

(Σ(i, j) − Σn(i, j))− ≤ 1

2n
+

1

4n2
1 ≤ i < j ≤ 3,

where (x)+ refers to the positive part of x, max{x, 0}, and (x)− refers to its negative

part, −min{x, 0}. We thus have that

|Σ(i, j) − Σn(i, j)| = (Σ(i, j) − Σn(i, j))+ + (Σ(i, j) − Σn(i, j))−

≤ 1

n
∀ 1 ≤ i < j ≤ 3. (5.16)

(The bound can actually be tightened because only one of either the positive or

the negative part is non-zero, but this looser bound is sufficient for our purpose.)

Equation (5.16) essentially tells us that the maximum difference between the

components of Σn and Σ is less than 1
n
. In other words, Σn is within an l∞−distance
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1
n

from Σ. From (5.15), we then have that Σn ∈ B(Σ, `
n
). Hence, for any Σ ∈ ∂Ω,

we can pick a matrix Σn ∈ Ωn such that Σn ∈ B(Σ, `
n
).

Now, suppose the assertion in the theorem is false, and there exists a Λ ∈ L( `
n
)

that does not belong to Ωn. Since the set Ωn is convex, the celebrated Separating

Hyperplane Theorem (for e.g., Luenberger 1969, Theorem 3, Section 5.12) gives us

a hyperplane H through Λ that separates the point Λ from Ωn.

Consider a line N passing through Λ orthogonal to the hyperplane H. Buse-

mann (1958, Chapter 1) tells us that since Λ is in the interior of Ω, this line

intersects the boundary ∂Ω of the convex Ω at exactly two points, say Σ1 and

Σ2. By definition, the point Λ from within L( `
n
) does not belong to the sets

B(Σi, `
n
), i = 1, 2. Moreover, since the line N is orthogonal to the hyperplane

H, we have from the Projection Theorem (Luenberger 1969, Pg. 51) that Λ is the

unique point in H that minimizes the l2 distance between the points Σi, i = 1, 2

and points in H. Thus, H separates the sets B(Σi, `
n
), i = 1, 2 from Λ. Moreover,

the sets lie on opposite sides of H since Λ ∈ Ω◦. Thus, at least one ball is separated

from Ωn by the hyperplane H. But this contradicts the earlier observation that

one can always choose a point that belongs to Ωn from each ball B(Σi, `
n
), i = 1, 2.

This completes the proof. 2

We will now prove Corollary 5.3.2, the final result in this chapter. We need

the following result in its proof. Brannen (1997, Theorem 1) give a lower bound

(which they quote from Sangwine-Yager 1988) for the Lebesgue measure of a

relative inner parallel body M ∼ εE:

IL(M ∼ εE) ≥ IL(M) − εS(M ; E) + R(m(d), ε),

where S(M ; E) represents the relative surface area of M with respect to E, and the
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function R(m(d), ε) consists of non-negative terms in ε. Both Brannen (1997) and

Sangwine-Yager (1988) show that R(m(d), ε) can be expressed as a polynomial in

ε of degree two or higher. So, if S(M ; E) is a finite positive value and ε < 1, then

the Lebesgue measure of the inner parallel set grows at least at the rate ε, i.e.,

IL(M ∼ εE) ≥ IL(M) − kε (5.17)

for some positive k, where k possibly depends on the dimension m(d).

Equation (5.17) requires that the function S(M ; E) be positive. Brannen

(1997), Sangwine-Yager (1988) give detailed expressions for this function, but we

shall not require them here except to note that this function is positive if, and only

if, a collection of m(d) line segments can be chosen, where (m(d)− 1) of them are

from the set M and one from E, with linearly independent directions (this is from

Schneider 1993a, Theorem 5.1.7, Pg. 277). This condition holds, for instance, if

the convex bodies M and E have non-empty interiors.

Proof of Corollary 5.3.2:

(5.17) gives that for an n large enough such that
(

`
n

)

< 1,

IL(Ω) − k(d)

(

`

n

)

≤ IL(L
(

`

n

)

),

where k(d) is a positive value that depends on d. This equation, along with The-

orem 5.3.1(b), thus gives us the lower bound in the statement of the result with

K(d) = k(d)`.

For the upper bound, note that

U(
1

n2
) ⊆

(

1 +
1

n2

)−1

Ω.

This is easily seen to be true: if A ∈ U( 1
n2 ), then it follows from the definition of

the sets U (5.9) that A(1 + 1
n2 ) ∈ Ω. Hence, A ∈ (1 + 1

n2 )
−1Ω.
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Now, the Lebesgue measure of the linearly scaled set (1 + 1
n2 )

−1Ω is given

by (1 + 1
n2 )

−m(d)IL(Ω) (see Billingsley 1995, Theorem 12.2). This, along with

Theorem 5.3.1(a), establishes the upper bound on the Lebesgue measure of Ωn

and we are done. 2

An intermediary step in the proof above shows that chessboard distributions

with discretization level n cannot then come closer than within a factor (1+ 1
n2 )

−m(d)

(≈ (1 − m(d)
n2 ) for large n) of the matrices in ∂Ω. This reaffirms the fact that no

chessboard can match a matrix in ∂Ω (Theorem 5.2.3).

Analogous results can be derived for replicated copulas. These results shall not

be discussed here in detail, but we conclude this chapter with an observation about

the modeling power of replicated copulas. Suppose ΣC is the covariance matrix of

the base copula C of the replicated copulas to be used in modeling uniform random

vectors with specified feasible covariance matrices. Theorem 5.3.1(a) can be re-

worked with essentially the same steps till the second expression in (5.14). In the

chessboard case, the ΣZ in this expression is 0, but in the replicated case ΣZ = ΣC .

The rest of the proof works out in a similar fashion, but with slightly different

definitions. To be concrete, the new covariance matrix Σ′ produced by replacing

the base copula with a copula of covariance ΣZ′

will be given by

Σ′ = Σ +
1

n2
(ΣZ′ − ΣC).

Let Ωn be the set of covariances achievable by n−sized replicated copulas with

base copula C. This leads to the fact that

Ωn ⊆ {Σ : Σ +
1

n2
(Λ − ΣC) ∈ Ω, ∀Λ ∈ Ω} = Ω ∼ 1

n2
(Ω − ΣC)

4
=S(n),

where we use the convention (A − b) = {x − b : x ∈ A}. The set (Ω − ΣC) is just

the set Ω translated such that ΣC now coincides with the origin.
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The implications of this are as follows: if ΣC ∈ Ω◦, then the compact, convex set

(Ω−ΣC) still contains the origin in its interior. In this case, the set S(n) will again

be strictly contained within Ω, and hence the ΣC−based replicated copulas can not

match any matrix from ∂Ω for finite n, i.e., the “only if” part of Theorem 5.2.3

will hold for these replicated copulas.

On the other hand, if ΣC ∈ ∂Ω, then the set Ωn (and thus S(n)) would touch

∂Ω at least at the point ΣC because a trivial replicated copula with n = 1 achieves

this covariance. But, even in this case, Ωn cannot match all of Ω for any finite n.

This is easily proved by a counterexample. Suppose it did match every Σ ∈ Ω for

some n ≥ 1. Consider a line N through ΣC and the origin. Since Ω is compact,

convex and the origin is in its interior, this line intersects ∂Ω at exactly one other

point, say Σ̄. By the supposition, a ΣC-based replicated copula, say of size n0,

achieves this value. Then, by the argument above, a Σ′ of value

Σ′ = Σ̄ +
1

n2
0

(Σ̄ − ΣC)

can also be achieved by replacing the base copula with a copula generating Σ̄. This

point is however outside Ω. This proves that the supposition was wrong in the first

place, and we have that:

Theorem 5.3.3 For a fixed base copula, replicated copulas cannot achieve all co-

variances in the feasible set Ω for any finite level of discretization n.

Whether replicated copulas with different base copulas in each cell can match

all of Ω for some finite n is an open problem. We conjecture that this is impossible.
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