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Abstract

Adaptive Monte Carlo methods are simulation efficiency improvement techniques designed to adap-
tively tune simulation estimators. Most of the work on adaptive Monte Carlo methods has been devoted
to adaptively tuning importance sampling schemes. We instead focus on adaptive methods based on con-
trol variate schemes. We introduce two adaptive control variate methods, and develop their asymptotic
properties. The first method uses stochastic approximation to adaptively tune control variate estimators.
It is easy to implement, but it requires some non-trivial tuning of parameters. The second method is
based on sample average approximation. Tuning is no longer required, but it can be computationally
expensive. Numerical results for the pricing of barrier options are presented to demonstrate the methods.

1 Introduction

Suppose that we wish to estimate EX, where X is a real-valued random variable. Suppose also that
{Y (θ) : θ ∈ Θ} is a parametric collection of random variables such that EY (θ) = 0 for any θ in the
parameter set Θ. Then X − Y (θ) is an unbiased estimator for EX, where Y (θ) serves as a control
variate, and the parameter θ can be selected so as to minimize the variance of X − Y (θ). When the
parameterization is linear, we can appeal to the standard theory of (linear) control variates, e.g., [Law
and Kelton, 2000]. Identifying the θ that minimizes the variance is straightforward in the linear case
because the variance is a convex quadratic in θ. When the parameterization is nonlinear, the problem is
not so straightforward. We propose two adaptive procedures that tune the parameter θ while estimating
EX, and study the large sample properties of the procedures.

It was shown in Glynn and Whitt [1989] that, from an asymptotic perspective (asymptotic in the
simulation runlength), there is no advantage gained by nonlinear parameterizations over linear parame-
terizations. However, the form of the parameterization considered in Glynn and Whitt [1989] is different
from the form considered in this paper. Glynn and Whitt [1989] analyzed the asymptotic performance of
control variate estimators which have the form f(X̄n, Ȳn), where n is the simulation runlength, X̄n and
Ȳn are sample averages of X and the control Y respectively, and f is a function that combines the two
sample averages. They showed that from the asymptotic point of view, we may restrict the choice of f
to linear functions. Indeed, in our parametrization, X and the control variate Y (θ) are linearly related
so the negative result does not apply.
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Our interest in this problem stems from several application areas. An extended example in this paper
(see Sections 2 and 6) shows that one can apply adaptive control variates in pricing certain financial
derivatives. A second example arises in the simulation analysis of multiclass processing networks. When
these networks are heavily loaded, simulation estimators can suffer from large variance, and so some
form of variance reduction is needed. The simulation estimators developed in Henderson and Meyn
[1997, 2003] give large variance reductions, but the asymptotic rates of growth in the variance are the
same as for the näıve estimator; see Meyn [2005]. One approach to potentially improving these estimators
is to develop parameterized estimators. A third class of examples arises in the problem of estimating the
“expected cost to absorption” in a Markov chain. This problem has received a great deal of attention
because of its applications in radiation transport problems; see, e.g., Kollman et al. [1999].

The common thread underlying these applications is that they involve the simulation of a Markov
process. This allows us to construct a parameterized family of control variates using the approximating
martingales developed in Henderson and Glynn [2002]. Once we have a parameterized class of control
variates at hand, we then need a procedure for selecting a control from within the class.

The first of our procedures is based on a stochastic approximation scheme. At iteration k, several
independent replications of X − Y (θk−1) are generated, conditional on the parameter choice θk−1 from
the previous iteration. The sample mean and the gradient (with respect to θ) of the sample variance
are then computed, and the parameter θk−1 is updated to θk in a stochastic approximation step. This
procedure is easily implemented and exhibits good performance with appropriately chosen step sizes. But
the selection of the step size is nontrivial and the finite-time performance of the algorithm is strongly
impacted by the choice of step sizes.

The second procedure is based on the theory of sample average approximation. In an initial stage, a
random sample is generated and a sample variance function, as a function of θ, is defined with respect
to the generated sample. The sample variance function can then be viewed as a deterministic function
of θ, and the optimal value of θ that minimizes this sample variance function is determined using a non-
linear optimization solver. Then one makes a “production run” using the value of θ returned from the
optimization step. The initial optimization can be computationally expensive when compared with one
step of the stochastic approximation procedure. However, sample average approximation does not require
tuning parameters beyond the choice of runlength, and for very long simulation runs, a vanishingly small
fraction of the effort is required in the initial optimization.

Henderson and Simon [2004] also develop an adaptive control variate method for finite-horizon simu-
lations. They give conditions under which adaptive control variate estimators converge at an exponential
rate. One of the key assumptions there is the existence of a “perfect” control variate, i.e., a parameter
value θ∗ such that var(X − Y (θ∗)) = 0. For the applications we have in mind this assumption is unlikely
to hold. Bolia and Juneja [2005] use the martingale control variates developed in Henderson and Glynn
[2002], as we do, but in the case of linearly parameterized controls. Maire [2003] expresses the estimation
problem as an integration problem over the unit hypercube, and uses the expansion of the integrand
for an approximate orthonormal basis as a control variate. An iterative procedure estimates the coeffi-
cients of the expansion so that the variance of each estimated coefficient has a polynomial decay. The
residual terms are not estimated iteratively so, in general, the convergence rate of the procedure cannot
exceed the canonical rate. Henderson et al. [2003] develop adaptive control variate schemes for Markov
chains in the steady-state setting. They use a stochastic approximation procedure for tuning control
variate estimators developed in Tadić and Meyn [2004] and provide conditions for minimization of an
approximation of the steady-state variance.

We view the primary contributions of this paper as follows. We demonstrate how nonlinearly pa-
rameterized control variates can arise naturally in Markov chain simulations. We develop 2 algorithms
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that are designed to identify a variance-minimizing parameterization. We show how the algorithms
should balance the effort spent in searching for good parameterizations and the effort spent in conduct-
ing repeated simulation runs at a fixed parameter selection. We give proofs of consistency and central
limit theorems. Finally, we discuss implementation issues regarding the practical use of these adaptive
methods.

This paper is organized as follows. Section 2 sketches some of the main ideas in pricing barrier
options using adaptive control variates, as motivation for the remainder of the paper. Section 3 outlines
the general problem and discusses estimation of the gradient of the variance function. Section 4 explores
the use of stochastic approximation and Section 5 explores sample average approximation. In Section 6
we describe the results of some limited experiments with the example of Section 2. Finally, Section 7
contains some concluding remarks.

Unless otherwise stated, all vectors are column vectors and all norms are Euclidean. Suffixes can
either indicate different instances of a random vector or components of a single vector, with the context
clarifying what is intended.

2 A Motivating Example

In this section we describe the problem of pricing barrier options, and explain how parameterized controls
can be found. Our goal in this section and Section 6 is not to develop the most efficient known estimators
for pricing barrier options, but rather to demonstrate the adaptive control variate methodology in a
familiar, but nontrivial, setting, and bring out some of the practical issues involved in applications.

A barrier option is a derivative security that is either activated (knocked-in) or extinguished (knocked-
out) when the price of the underlying asset reaches a certain level (barrier) at any time during the lifetime
of the option; see, e.g., Glasserman [2004].

The price of the underlying stock at time t is denoted by S(t), for t ≥ 0. Suppose that the underlying
stock price is monitored at discrete times ti = i∆t, i = 0, 1, 2, . . . , l, where T is the (deterministic)
expiration date of the option and ∆t = T/l is the time between consecutive monitoring dates. For
notational convenience, let Si denote the underlying stock price at the ith monitoring point (i.e., S(ti)).
Assume that the initial stock price S0 takes a value in an interval H and the barrier is the boundary of
H. When the stock price crosses the barrier, the option is knocked out and the payoff is zero. If the
option has not been knocked out by time T , then the payoff at time T is (Sl −K)+, where K > 0 is the
strike price. Hence, the option payoff depends on the complete path {Si, i = 0, . . . , l}. Define

τ = inf{n ≥ 0 : Sn /∈ H} and
Ai = 1{τ>i}, i = 0, . . . , l.

Then Ai is the indicator that determines whether the option is alive at time ti or not. We assume that
the market is arbitrage free. Then the price of a knock-out call option is given by

e−rT E[Al(Sl −K)+],

where r is the (assumed constant) risk-free interest rate and the expectation is taken under the risk-
neutral measure. Since the discount factor e−rT is constant, pricing the option reduces to estimating the
expected payoff with the initial stock price x, i.e., estimating

E[Al(Sl −K)+|S0 = x].
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Assume that the underlying stock price process {S(t) : t ≥ 0} is a (time homogeneous) Markov
process. Then {Sn : n = 0, 1, 2, . . .}, where Sn is the stock price at time tn = n∆t, is a discrete time
Markov chain on the state space [0,∞). For i = 0, 1, . . ., define

U∗(x, i) =

{
E[Ai(Si −K)+|S0 = x], if x ∈ H, and
0 if x = 0 or x /∈ H,

so that U∗(x, i) is the expected payoff of the option with the initial stock price x and maturity ti. Our
goal is to estimate U∗(x, l).

We now describe the martingale that serves as a control variate, drawing from the general results of
Henderson and Glynn [2002, Section 4]. Let S̃i = SiAi, for i ≥ 0. Then {S̃n : n ≥ 0} is a Markov process
on the state space S = H ∪ {0} (assuming that S0 ∈ H ∪ {0}). For a real-valued function f : S → R, let
P (x, ·)f(·) = E[f(S̃1)|S̃0 = x], provided that the expectation exists. Let U : S ×{0, 1, . . . , l− 1} → R be
a real-valued function with U(0, ·) = 0 and for 1 ≤ n ≤ l let

Mn(U) =
n∑

i=1

[U(S̃i, l − i)− P (S̃i−1, ·)U(·, l − i)],

provided that the conditional expectations in this expression are finite. Then it is straightforward to
show that (Mn(U) : 1 ≤ n ≤ l) is a martingale and Ex(Ml(U))) = 0 for any U , provided that the
usual integrability conditions hold, where Ex denotes expectation under the initial condition S̃0 = x.
Therefore, U∗(x, l) can be estimated via i.i.d. replications of

(S̃l −K)+ −Ml(U), (1)

with S̃0 = x, where Ml(U) serves as a control variate.
But how should we select the function U? Our notation suggests that U = U∗ would be a good

choice, and this is indeed the case. To see why, note that for all x ∈ S and i > 0,

U∗(x, i) = E[Ai(Si −K)+|S0 = x]
= E[(S̃i −K)+|S̃0 = x],
= E[E[(S̃i −K)+|S̃1, S̃0 = x]|S̃0 = x]
= E[U∗(S̃1, i− 1)|S̃0 = x]

=
∫

S
U∗(y, i− 1)P (x, dy)

= P (x, ·)U∗(·, i− 1),

where P is the transition probability kernel of {S̃n : n ≥ 0}. It follows that

Ml(U∗) =
l∑

i=1

[U∗(S̃i, l − i)− U∗(S̃i−1, l − (i− 1))]

= U∗(S̃l, 0)− U∗(S̃0, l)
= (S̃l −K)+ − U∗(x, l).

Hence, if U = U∗, then the estimator (1) of E[Al(Sl −K)+|S0 = x] has zero variance.
So it is desirable that U ≈ U∗. Suppose that U(x, i) = U(x, i; θ), where θ ∈ Θ ⊆ Rp is a p−dimensional

vector of parameters.
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Remark 1 In our general notational scheme, X is the payoff (S̃l −K)+ at time T = l∆t, EX is the
expected payoff U∗(x, l), and Y (θ) is Ml(U(·, ·; θ)).

A linear parameterization arises if

U(x, i; θ) =
p∑

k=1

θkUk(x, i),

where Uk(·, ·) are given basis functions, k = 1, . . . , p. In this case, for 1 ≤ n ≤ l,

Mn(U) =
n∑

i=1

[
p∑

k=1

θkUk(S̃i, l − i)− P (S̃i−1, ·)
p∑

k=1

θkUk(·, l − i)

]

=
p∑

k=1

θk

[
n∑

i=1

Uk(S̃i, l − i)− P (S̃i−1, ·)Uk(·, l − i)

]

=
p∑

k=1

θkMn(Uk), (2)

so that the control Mn(U) is simply a linear combination of martingales corresponding to the basis
functions Uk, k = 1, . . . , p. In this sense, the linearly parameterized case leads us back to the theory of
linear control variates. Notice that recomputing the control for a new value of θ is straightforward – one
simply reweights the previous values of the martingales corresponding to the basis functions. See Kim
and Henderson [2004a] for further discussion.

The situation is more complicated when U(x; θ) arises from a nonlinear parameterization. An example
of such a parameterization with p = 4 is given by

U(x, i; θ) = θ1x
θ2 + θ3x + θ4.

Now Y (θ) is a nonlinear function of a random object Y (the path (S̃i : 0 ≤ i ≤ l)) and a parameter
vector θ. It is difficult to recompute the value of X − Y (θ) when θ changes. Essentially one needs to
store the sample path of the chain, explicitly or implicitly, in order to be able to do this.

For nonlinear parameterizations, we need a method for selecting a good choice of θ. This is the
subject of the next 3 sections. We will return to the barrier option pricing example in Section 6.

3 The Nonlinear Case: Preliminaries

Suppose that Y (θ) = h(Y, θ) is a nonlinear function of a random element Y and a parameter vector
θ ∈ Θ ⊂ Rp. Let H denote the support of the probability distribution of (X, Y ), i.e., H is the smallest
closed set such that P ((X,Y ) ∈ H) = 1. Let H2 be the set

{y : ∃x with (x, y) ∈ H},

i.e., the set of y values that appear in H.

Assumption A1 The parameter set Θ is compact. For all y ∈ H2, the real-valued function h(y, ·) is
C1 (i.e., continuously differentiable) on U , where U is a bounded open set containing Θ.
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Assumption A2 The random variable X is square integrable. Also, for all θ ∈ U , EY 2(θ) < ∞ and
EY (θ) = Eh(Y, θ) = 0.

For convenience we define X(θ) = X − Y (θ). Define

v(θ) = varX(θ) = var(X − Y (θ))

to be the variance of the estimator as a function of θ. As before our overall goal is to estimate EX. Our
intermediate goal is to identify θ∗ which minimizes v(θ) over θ ∈ Θ. In general we cannot expect to find
a closed form expression for θ∗ as in the linear case, and so we approach this problem from the point of
view of stochastic optimization. Regardless of which stochastic optimization method we adopt, we need
to impose some structure in order to make progress. We now develop some machinery that will allow us
to conclude that v(·) is differentiable.

Assumption A3 For all y ∈ H2, h(y, ·) is Lipschitz on U , i.e., there exists C(y) > 0 such that for all
θ1, θ2 ∈ U ,

|h(y, θ1)− h(y, θ2)| ≤ C(y) ‖θ1 − θ2‖,
where ‖ · ‖ is a metric on Rp. Therefore,

sup
θ∈U

∣∣∣∣
∂h(y, θ)

∂θi

∣∣∣∣ ≤ C(y)

for all y ∈ H2 and i = 1, ..., p.

Remark 2 Recall that a C1 function is Lipschitz on a compact set. If h(y, ·) is C1 on Rp (or on an open
set containing the closure of U), then A3 is immediate.

To establish the required differentiability, and to obtain an estimator of the gradient of v, we use
Infinitesimal Perturbation Analysis (IPA). Let f(θ) = Ef(θ, ξ) for some random variable ξ whose dis-
tribution does not depend on θ. Recall that the idea in IPA is to take ∇θf(θ, ξ), the gradient of f(θ, ξ)
for fixed ξ, as an estimate of ∇θf(θ). If ∇θf(θ, ξ) is uniformly dominated by an integrable function of
ξ, then the gradient and expectation operators can be exchanged and this yields an unbiased estimator.
See L’Ecuyer [1995] for detailed sufficient conditions for the interchange to be valid.

An unbiased gradient estimator can be obtained by noting that the sample variance of i.i.d. observa-
tions is an unbiased estimator of the variance, so that under A2, and for any m ≥ 2,

v(θ) = EV (m, θ) := E
1

m− 1

m∑

i=1

(Xi(θ)− X̄m(θ))2 = E
m

m− 1

(
1
m

m∑

i=1

X2
i (θ)− X̄2

m(θ)

)
, (3)

where (X1, Y1), ..., (Xm, Ym) are i.i.d. replications of (X, Y ) and

X̄m(θ) =
1
m

m∑

j=1

Xj(θ),

for all θ ∈ U . (We include the terms h(Yj , θ) in the sample average X̄m(θ) even though we know that
they have zero mean, because they reduce variance.) Assumption A1 implies that for each (x, y) ∈ H,
x − h(y, ·) is a C1 function on U . This provides the pathwise differentiability of V (m, θ) on U . We also
need some integrability conditions.

6



Assumption A4 E

(
C(Y )

[
1 + sup

θ∈U
|X(θ)|

])
< ∞, where C(Y ) appears in A3.

We can construct an unbiased gradient estimator from (3) as

gm(θ0) = ∇V (m, θ0)

=
1

m− 1

m∑

i=1

∇θ(Xi(θ)− X̄m(θ))2
∣∣∣∣∣
θθ0

=
−2

m− 1

m∑

i=1

(Xi(θ)− X̄m(θ))∇θ


h(Yi, θ)− 1

m

m∑

j=1

h(Yj , θ)




∣∣∣∣∣∣
θ=θ0

.

Proposition 1 If A1 - A4 hold then v(·) is C1 on U and for θ0 ∈ U ,

g(θ0) := ∇θv(θ)|θ=θ0

= Egm(θ0) (4)

Proof. We apply Proposition 1 in L’Ecuyer [1995] to the sample variance V (m, θ) component by
component. Consider the jth component, for some j = 1, . . . , p. The only condition that requires
explicit verification is that ∂V (m, θ)/∂θj is dominated by an integrable function of (X,Y) = ((Xi, Yi) :
1 ≤ i ≤ m). We have that

∂V (m, θ)
∂θj

=
m

m− 1

(
−1
m

m∑

i=1

2Xi(θ)
∂h(Yi, θ)

∂θj
+ 2X̄m(θ)

1
m

m∑

i=1

∂h(Yi, θ)
∂θj

)
. (5)

The first term in the parentheses in (5) is integrable by A4. For the second term, we apply A3 and split
the sums to obtain

∣∣∣∣∣X̄m(θ)
1
m

m∑

i=1

∂h(Yi, θ)
∂θj

∣∣∣∣∣

≤ 1
m2

m∑

i=1

sup
θ∈U

|Xi(θ)|C(Yi) +
1

m2

m∑

i=1

∑

j 6=i

sup
θ∈U

|Xi(θ)|C(Yj). (6)

If E supθ∈U |Xi(θ)| is finite then A4 implies integrability of this bound and the proof will be complete.
Fix θ0 ∈ U . By A3,

|X1(θ)| ≤ |X1|+ |h(Y1, θ)|
≤ |X1|+ |h(Y1, θ0)|+ |h(Y1, θ)− h(Y1, θ0)|
≤ |X1|+ |h(Y1, θ0)|+ C(Y1)‖θ − θ0‖.

But ‖θ − θ0‖ is bounded on the bounded set U , and so supθ∈U |X1(θ)| is integrable.
So under the assumptions A1 - A4, the variance function v(θ) is continuously differentiable in θ ∈ U ,

and we have an IPA-based unbiased gradient estimator at our disposal. We are now equipped to attempt
to minimize v(θ) over θ ∈ Θ.
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4 Stochastic Approximation

Stochastic approximation is a class of stochastic optimization methods used to solve problems with
differentiable objective functions. See Spall [2003] for an accessible introduction and references. In the
presence of nonconvexity the algorithm may only converge to a local minimum. The general form of the
algorithm is a recursion where an approximation θn for the optimal solution is updated to θn+1 using
an estimator gn(θn) of the gradient g(θn) of the objective function evaluated at θn. For a minimization
problem, the recursion is of the form

θn+1 = ΠΘ(θn − angn(θn)), (7)

where ΠΘ denotes a projection of points outside Θ back into Θ, and {an} is a sequence of positive real
numbers such that ∞∑

n=1

an = ∞ and
∞∑

n=1

a2
n < ∞. (8)

We use IPA to obtain gn(θn), as discussed in the previous section.
Our stochastic approximation algorithm for finding θ∗ and estimating EX is given in Figure 1. Let

m ≥ 2 be a fixed positive integer.

Initialization: Choose θ0.
For k = 1 to n

Generate the i.i.d. sample (Xk,i, Yk,i) ∼ (X, Y ), i = 1, ..., m, independent of all else.
Compute

Ak(θk−1) =
1
m

m∑

i=1

[Xk,i − h(Yk,i, θk−1)],

gk−1(θk−1) =
−2

m− 1

m∑

i=1

[Xk,i − h(Yk,i, θk−1)−Ak(θk−1)]

∇θ


h(Yk,i, θ)− 1

m

m∑

j=1

h(Yk,j , θ)




∣∣∣∣∣∣
θ=θk−1

θk = ΠΘ(θk−1 − ak−1gk−1(θk−1)).

Next k

Set µn = n−1
∑n

k=1 Ak(θk−1).

Figure 1: The stochastic approximation algorithm

We first show consistency of the estimator µn of µ = EX. We apply the following martingale strong
law of large numbers which can be found in Liptser and Shiryayev [1989, p. 144]. Let (Fn : n ≥ 0) be a
filtration, i.e. an increasing sequence of σ-fields.

Theorem 2 (Liptser and Shiryayev 1989) Let (Mn,Fn : n ≥ 0) be a square-integrable martingale
with M0 = 0. Let (Ln : n ≥ 0) be nondecreasing in n with Ln ∈ Fn for all n. Define

Vn =
n∑

k=1

E((Mk −Mk−1)2|Fk−1)
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and assume that ∞∑

n=1

Vn+1 − Vn

(1 + Ln)2
< ∞ a.s. and P (L∞ = ∞) = 1,

where L∞ = limn→∞ Ln. Then
Mn

Ln
→ 0 a.s.

Let Fn = σ{(Xk,i, Yk,i) : 1 ≤ k ≤ n, 1 ≤ i ≤ m} be the sigma field containing the information from
the first n steps of the stochastic approximation algorithm. Let F0 be the trivial sigma field and θ0 be
any deterministic guess for θ∗. (If θ0 is not deterministic then we can extend F0 appropriately, so there
is no loss of generality in this convention.)

Proposition 3 Assume A1-A4. Then µn → µ a.s. as n →∞.

Proof. For k ≥ 1 and n ≥ 1, define

ζk(θk−1) = Ak(θk−1)− µ and

Mn =
n∑

k=1

ζk(θk−1).

Then
µn = µ +

Mn

n
,

and hence it suffices to show that Mn/n → 0 a.s. as n →∞.
Define M0 = 0. Since E(ζk(θk−1)|Fk−1) = 0 for all k ≥ 1, (Mn,Fn : n ≥ 0) is a martingale. Moreover,

for all n ≥ 1,

E(M2
n) =

n∑

k=1

var(Ak(θk−1))

=
n∑

k=1

1
m

E(v(θk−1)) < ∞,

where the finiteness follows from the fact that v(·) is continuous on the compact set Θ and therefore
bounded. Define Ln = n for all n ≥ 0 and

Vn =
n∑

k=1

E((Mk −Mk−1)2|Fk−1) =
n∑

k=1

E(ζ2
k(θk−1)|Fk−1) =

1
m

n∑

k=1

v(θk−1).

Then P (L∞ = ∞) = 1 and

∞∑

n=1

Vn+1 − Vn

(1 + Ln)2
=

1
m

∞∑

n=1

v(θn)
(1 + n)2

≤ supθ∈Θ v(θ)
m

∞∑

n=1

1
(1 + n)2

< ∞ a.s.

Therefore, by Theorem 2, Mn/n → 0 a.s. as n →∞.
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Remark 3 The proof of Proposition 3 is based on the square integrability of X1(·) and the continuity
of v(·) on Θ. The square-integrability condition may seem too strong. But if θk → θ∗ a.s. as k → ∞
for some random variable θ∗ that takes on countably many values, then under the Lipschitz continuity of
h(y, ·) and finite first moment conditions, µn is still strongly consistent.

We now assess the rate of convergence of µn through a central limit theorem. We use the following
martingale central limit theorem which can be found in Liptser and Shiryayev [1989, p. 444]. A martingale
difference sequence (ξk,n,Fk,n : n ≥ 1, 1 ≤ k ≤ n) is a collection of mean-zero random variables ξk,n and
filtrations (Fk,n : k = 1, . . . , n) such that ξk,n is measurable with respect to Fk,n for all n ≥ 1 and
1 ≤ k ≤ n, and E(ξk,n|Fk−1,n) = 0 for all n ≥ 1 and k = 1, . . . , n. Here we have adopted the convention
that F0,n is the trivial sigma field for all n ≥ 1, so that θ0 is a deterministic approximation for θ∗.

Theorem 4 (Liptser and Shiryayev 1989) Assume that (Fk,n : 1 ≤ k ≤ n, n ≥ 1) is nested i.e.
Fk,n ⊆ Fk,n+1, for all k ≤ n, n ≥ 1. Let η2 be a G-measurable random variable where

G ⊆ σ (∪n≥1Fn,n) .

Let Z be a random variable with characteristic function

E(eitZ) = E exp
(
− t2

2
η2

)
, t ∈ R,

so that Z is a mixture of mean-zero normal random variables. Let (ξk,n,Fk,n : n ≥ 1, 1 ≤ k ≤ n) be a
martingale difference sequence with E(ξ2

k,n) < ∞, for all n ≥ 1, 1 ≤ k ≤ n. Assume that

(i)
∑n

k=1 E(ξ2
k,nI(|ξk,n| > δ)|Fk−1,n) → 0 in probability, for all δ ∈ (0, 1],

(ii)
∑n

k=1 E(ξ2
k,n|Fk−1,n) → η2 in probability, and

(iii)
∑bncnc

k=1 E(ξ2
k,n|Fk−1,n) → 0 in probability

for a certain sequence (cn)n≥1 with cn ↓ 0, ncn →∞ as n →∞. Then

Sn =
n∑

k=1

ξk,n ⇒ Z

as n →∞, where ⇒ denotes convergence in distribution.

The central limit theorem below assumes that θn converges to some random variable θ∗ a.s. Estab-
lishing this result requires some care, so we state our main results assuming that this convergence holds
and then give sufficient conditions for the convergence of θn. The theory does not require that θ∗ be
a minimizer of v(θ) over Θ although we would certainly prefer this to be the case. Before stating the
central limit theorem we need another assumption. Let

E = {ω : θk(ω) → θ∗(ω) as k →∞}

so that P (E) = 1 and let
Γ = {θ∗(ω) = lim

k→∞
θk(ω) : ω ∈ E} ⊆ Θ

be the set of limiting values of θk.
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Assumption A5 For any γ ∈ Γ, there is a neighbourhood N (γ) of γ such that the collection {X2(θ) :
θ ∈ N (γ)} is uniformly integrable.

Remark 4 A set of sufficient conditions for A5 is A1-A3 and EK2(Y ) < ∞.

Theorem 5 Assume A1-A5 and that θn → θ∗ for some random variable θ∗ a.s. as n → ∞. Let Z be
a random variable with characteristic function

E(eitZ) = E exp
(
− t2

2
v(θ∗)

)
, t ∈ R,

i.e., Z = v1/2(θ∗)N(0, 1) is a mixture of mean-zero normal random variables. Then
√

mn(µn − µ) ⇒ Z

as n →∞.

Proof. To show the central limit theorem we apply Theorem 4. Let

ξk,n =
√

m(Ak(θk−1)− µ)√
n

so that
√

mn(µn − µ) =
n∑

k=1

ξk,n.

As in Proposition 3, (ξk,n,Fk,n : n ≥ 1, 1 ≤ k ≤ n) is a martingale difference sequence with Eξ2
k,n =

Ev(θk−1)/n < ∞, where Fk,n = Fk for all n. Fix δ > 0 and let

Wn =
n∑

k=1

E(ξ2
k,nI(|ξk,n| > δ)|Fk−1,n).

If ζk(θk−1) = Ak(θk−1)− µ, then

Wn =
m

n

n∑

k=1

E[ζ2
k(θk−1)I(ζ2

k(θk−1) > nδ2/m)|Fk−1,n]

=
m

n

n∑

k=1

E[ζ2
k(θk−1)I(ζ2

k(θk−1) > nδ2/m)|θk−1].

For any θ ∈ Θ, let ζ(θ) = 1
m

∑m
j=1(Xj − h(Yj , θ)− µ), where (X1, Y1), ..., (Xm, Ym) are i.i.d. replications

of (X, Y ), independent of (Xk,i, Yk,i), i = 1, ..., m, k ≥ 1. Then

Wn =
m

n

n∑

k=1

f(θk−1, nδ2/m),

where
f(θ, b) = E[ζ2(θ)I(ζ2(θ) > b)].
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Let ω ∈ E be fixed, and let γ = θ∗(ω). Assumption A5 ensures that the collection (ζ2(θ) : θ ∈ N (γ))
is uniformly integrable and so for all ε > 0, there exists Kε > 0 such that f(θ, Kε) ≤ ε for all θ ∈ N (γ).
Fix ε > 0. Let n1 = n1(ω) ≥ 1 be such that θn(ω) ∈ N (γ) for all n ≥ n1 and let n2 ≥ 1 be such that
nδ2/m ≥ Kε for all n ≥ n2. Let n∗ = max{n1, n2}+ 1. Then

Wn =
m

n

n∑

k=1

f(θk−1, nδ2/m)

=
m

n

n∗∑

k=1

f(θk−1, nδ2/m) +
m

n

n∑

k=n∗+1

f(θk−1, nδ2/m)

≤ m

n

n∗∑

k=1

f(θk−1, 0) +
m

n

n∑

k=n∗+1

f(θk−1,Kε).

Hence

0 ≤ lim sup
n→∞

Wn ≤ 0 + lim sup
n→∞

m

n

n∑

k=n∗+1

ε = mε.

Since ε and ω ∈ E were arbitrary, we conclude that Wn → 0 as n →∞ a.s.
The second and third conditions of Theorem 4 are easily dealt with. We see that

n∑

k=1

E(ξ2
k,n|Fk−1) =

n∑

k=1

m

n
E((Ak(θk−1)− µ)2|Fk−1) =

1
n

n∑

k=1

v(θk−1) → v(θ∗)

as n → ∞ a.s., since {θk} converges a.s., and v is continuous. For the third condition, let cn = n−1/2.
Then

bncnc∑

k=1

E(ξ2
k,n|Fk−1) =

1
n

bn1/2c∑

k=1

v(θk−1) ≤ n1/2 supθ∈Θ v(θ)
n

→ 0

as n →∞. The central limit theorem is therefore a consequence of Theorem 4.
Hence we see that the stochastic approximation estimator µn satisfies a strong law and central limit

theorem as n →∞. In general, it will be the case that the optimal variance v(θ∗) is positive a.s. so that
the rate of convergence of µn is the canonical n−1/2 rate. This is the best that can be hoped for with
the Monte Carlo nature of the estimation procedure we used.

The central limit theorem above still holds when v(θ∗) = 0 a.s. In this case,
√

n(µn − µ) ⇒ 0 as
n → ∞ so the rate of convergence is faster than n−1/2. The actual rate of convergence depends on the
rate at which θn → θ∗ a.s. We do not explore this case further here. See Henderson and Simon [2004]
for an exploration of increased convergence rates when θ∗ is deterministic and v(θ∗) = 0.

Recall that we chose m ≥ 2 to obtain an unbiased gradient estimator. The theorem above shows that
the estimator µn converges at the rate (mn)−1/2, so the additional averaging of m terms in each step of
the algorithm does not slow down the rate of convergence, at least to first order. Therefore the choice of
m ≥ 2 is not significant from a large sample theory point of view. In small samples, there may be some
benefit to carefully choosing m. We do not explore that possibility here.

The central limit theorem suggests a confidence interval procedure, provided that the variance can
be estimated. Suppose that θk → θ∗ a.s. for some deterministic θ∗ ∈ Θ, so that the variance appearing
in the central limit theorem is deterministic and equal to v(θ∗). Several estimators immediately suggest
themselves. One could use (a) the sample variance of all mn samples, (b) the average of the sample
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variances of the m samples in each iteration, or (c) the sample variance of the n averages. Kim and
Henderson [2004b] show that each of these estimators is consistent and satisfies a central limit theorem
(under appropriate conditions), and compares the estimators based on their limiting variance. The
conclusion is that estimators (a) and (b) behave almost identically when m is large, but when m is small,
(a) is slightly preferred to (b). In view of these results, we used (b) because it seems easier to compute
than (a). More precisely, our variance estimator is

S2
n =

1
n

n∑

k=1

(
1

m− 1

m∑

i=1

(Xk,i(θk−1)−Ak(θk−1))2
)

. (9)

We now give conditions under which θn converges to some random variable θ∗ a.s. as n → ∞.
Theorem 6 below is an immediate specialization of Kushner and Yin [2003, Theorem 2.1, p. 127]. We
first need some definitions.

A box B ⊂ Rp is a set of the form

B = {x ∈ Rp : a(i) ≤ x(i) ≤ b(i), i = 1, . . . , p},
where a(i), b(i) ∈ R and a(i) ≤ b(i), i = 1, ..., p. For x ∈ B define the set C(x) as follows. For x in the
interior of B, C(x) = {0}. For x on the boundary of B, C(x) is the convex cone generated by the outward
normals of the faces on which x lies. A first-order critical point x of a C1 function f : B → R satisfies

−∇f(x) = z for some z ∈ C(x).

A first-order critical point is either a point where the gradient ∇f(x) is zero, or a point on the boundary
of B where the gradient “points towards the interior of B”. Let S(f,B) be the set of first-order critical
points of f in B. We define the distance from a point x to a set S to be

d(x, S) = inf
y∈S

‖x− y‖.

The projection y = ΠBx is a pointwise projection defined by

y(i) =





a(i) if x(i) < a(i),
x(i) if a(i) ≤ x(i) ≤ b(i), and
b(i) if b(i) < x(i),

for each i = 1, . . . , p.
Let (Gn : n ≥ 0) be a filtration, where the initial guess θ0 is measurable with respect to G0, and Gn

(an estimate for the gradient of f at θn) is measurable with respect to Gn+1 for all n ≥ 0.

Theorem 6 Let B be a box in Rp and f : Rp → R be C1. Suppose that for n ≥ 0, θn+1 = ΠB(θn−anGn)
with the following additional conditions.

(i) The conditions (8) hold.

(ii) supn E‖Gn‖2 < ∞.

(iii) E[Gn|Gn] = ∇f(θn) for all n ≥ 0.

Then,
d(θn, S(f,B)) → 0

as n → ∞ a.s. Moreover, suppose that S(f, B) is a discrete set. Then, on almost all sample paths, θn

converges to a unique point in S(f,B) as n →∞.
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Notice that the point in S(f,B) that θn converges to can be random. We can apply Theorem 6 in
our context, but first we need one more assumption.

Assumption A6 The random variables X, K(Y ) and Y (θ0), for some fixed θ0 ∈ Θ, all have finite 4th
moments.

Remark 5 When A1-A3 and A6 hold, EY 4(θ) is bounded in θ ∈ Θ.

Corollary 7 Let Θ be a box in Rp and suppose A1 - A4, A6 hold. Then d(θn, S(v, Θ)) → 0 as n →∞
a.s. Moreover, suppose that S(v, Θ) is a discrete set. Then, on almost all sample paths, θn converges to
a unique point in S(v, Θ) as n →∞.

Proof. The only condition of Theorem 6 that needs verification is the condition supn E‖Gn‖2 < ∞. In
our case, Gn = gn(θn), and

‖gn(θn)‖2 ≤ sup
θ∈Θ

‖gn(θ)‖2.

But the distribution of gn(θ) does not depend on n, so the result follows if

sup
θ∈Θ

E‖g1(θ)‖2 < ∞.

The argument is similar to one used in Propositon 1 and is omitted. It is this argument that requires
the stronger moment assumption A6.

Corollary 7 does not ensure that θn converges to a deterministic θ∗ as n → ∞. For that we need
to impose further conditions. One simple condition is that the set of first-order critical points S(v, Θ)
consists of a single element θ∗. This condition is unlikely to be easily verified in practice.

We will see in Section 6 that the stochastic approximation procedure works well so long as the
parameters of the procedure are chosen appropriately. However, as with any stochastic approximation
procedure, it can be difficult to select good values for these parameters. For this reason we also consider
a second estimator based on quite a different approach.

5 Sample Average Approximation

The stochastic approximation method above estimates the parameter θ∗ that solves the optimization
problem

P : min
θ∈Θ

v(θ)

and the target mean µ simultaneously. An alternative is a two-phase approach where we first compute
an estimate θ̂ of θ∗, and in a second phase estimate µ using

µ̂n =
1
n

n∑

i=1

[Xi − h(Yi, θ̂)]. (10)

If θ̂ is a deterministic approximation for θ∗, then the ordinary strong law and central limit theorem
immediately apply. In general, however, θ̂ will be a random variable that depends on sampling in the
initial phase, as occurs with the sample average approximation (SAA) method that we now adopt. (See
Shapiro [2004] for an introduction to this approach.)
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Let m ≥ 2 be given and suppose that we generate, and then fix, the random sample (X̃1, Ỹ1), (X̃2, Ỹ2),
..., (X̃m, Ỹm). For a fixed θ, the sample variance of (X̃i(θ) : 1 ≤ i ≤ m) is

V (m, θ) =
m

m− 1

(
1
m

m∑

i=1

X̃2
i (θ)− X̄2

m(θ)

)
, (11)

where

X̄m(θ) =
1
m

m∑

i=1

X̃i(θ).

The SAA problem corresponding to P is

Pm : min
θ∈Θ

V (m, θ),

i.e., we minimize the sample variance. Once the sample is fixed, the SAA problem can be solved using
any convenient optimization algorithm. The algorithm can exploit the IPA gradients derived earlier,
which are exact gradients of V (m, θ). In our implementation we used a quasi-Newton procedure that
exploits the IPA gradients.

The term “sample average approximation” may seem inappropriate because the function V (m, ·) in
(11) is not a sample average. It is, instead, a nonlinear function of sample averages. But the standard
theory for sample average approximation is readily extended to this setting, and we give the extensions
that we require below. So the term is not unreasonable and we retain it.

Let θ̂m be a first-order critical point for problem Pm obtained from the first phase. In the second
phase, we then estimate µ via the sample average (10), using θ̂m in place of θ̂. Our sample average
approximation algorithm for estimating µ is given in Figure 2.

The first stage: Choose a positive integer m ≥ 2.
Generate the i.i.d. sample (X̃i, Ỹi) ∼ (X, Y ), i = 1, ..., m.
For a fixed θ, define
V (m, θ) = m

m−1

(
1
m

∑m
i=1 X̃2

i (θ)− ( 1
m

∑m
i=1 X̃i(θ))2

)
,

where X̃i(θ) = X̃i − h(Ỹi, θ).
Find θ̂m, a first order critical point for the problem

minθ∈Θ V (m, θ).

The second stage:
Generate the i.i.d. sample (Xj , Yj) ∼ (X,Y ), j = 1, ..., n, independent of the sample (X̃i, Ỹi),
i = 1, ..., m.
Compute µ̂n = n−1

∑n
j=1 Xj − h(Yj , θ̂m).

Figure 2: The sample average approximation algorithm

We next show that µ̂n satisfies a strong law and central limit theorem. These results require a little
care, because θ̂m is a random variable. We first need a uniform version of the strong law. Proposition 8
appears as Proposition 7 in Shapiro [2004]. We say that f(y, θ) is dominated by an integrable function
f(·) if Ef(Y ) < ∞ and for every θ ∈ Θ, |f(Y, θ)| ≤ f(Y ) a.s.
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Proposition 8 (Shapiro 2003) Suppose that for every y ∈ H2, the function f(y, ·) is continuous on
(the compact set) Θ, and f(y, θ) is dominated by an integrable function. Then Ef(Y, θ) is continuous as
a function of θ ∈ Θ and

sup
θ∈Θ

∣∣∣∣∣
1
n

n∑

i=1

f(Yi, θ)−Ef(Y, θ)

∣∣∣∣∣ → 0

as n →∞ a.s.

We can now state a version of the strong law and central limit theorem for the case where θ̂ is random.
There is no need for θ̂ to be a solution of Pm; it can be any random variable taking values in Θ. To
emphasize the dependence of µ̂n on θ we write µ̂n(θ).

Theorem 9 Suppose that A1-A3 hold, that EK(Y ) < ∞, and that the samples used in constructing θ̂
are independent of those used in computing µ̂n. Then µ̂n(θ̂) → µ as n →∞ a.s., and

√
n(µ̂n(θ̂)− µ) ⇒ v1/2(θ̂)N(0, 1)

as n →∞, where N(0, 1) is independent of θ̂.

Proof. For the strong law note that

|µ̂n(θ̂)− µ| ≤
∣∣∣∣∣
1
n

n∑

i=1

(Xi − µ)

∣∣∣∣∣ +

∣∣∣∣∣
1
n

n∑

i=1

h(Yi, θ̂)

∣∣∣∣∣

≤
∣∣∣∣∣
1
n

n∑

i=1

(Xi − µ)

∣∣∣∣∣ + sup
θ∈Θ

∣∣∣∣∣
1
n

n∑

i=1

h(Yi, θ)

∣∣∣∣∣ . (12)

The first term in (12) converges to 0 as n → ∞ by the strong law of large numbers. The second term
converges to 0 by an application of Proposition 8.

For the central limit theorem, first note that conditional on θ̂, µn is an average of i.i.d. random
variables with finite variance. Hence the ordinary central limit theorem ensures that for each fixed
x ∈ R,

P
(√

n(µ̂n(θ̂)− µ) ≤ x | θ̂
)
→ Φ

(
x

v1/2(θ̂)

)
1{v(θ̂)>0} + 1{x≥0}1{v(θ̂)=0} (13)

as n →∞, where Φ is the distribution function of a normal random variable with mean 0 and variance
1 and 1{·} is an indicator function. The dominated convergence theorem ensures that we can take
expectations through (13), and so

P (
√

n(µ̂n(θ̂)− µ) ≤ x)

→ E

[
Φ

(
x

v1/2(θ̂)

)
1{v(θ̂)>0} + 1{x≥0}1{v(θ̂)=0}

]

= P (v1/2(θ̂)N(0, 1) ≤ x)

for all x ∈ R, which is the desired central limit theorem.
Hence the strong law and central limit theorem continue to hold in the case where θ̂ is random. In

particular, if we first solve, or approximately solve, Pm to get θ̂m, and then compute µn(θ̂m), then the
resulting estimator is “well behaved” as the number of samples n gets large.
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Now, as the computational budget gets large, one would naturally want to eventually zero in on a
fixed θ∗ that solves P using some vanishing fraction of the budget, and use the remainder of the budget
to estimate µ. This can be modelled by assuming that m = m(n) is a function of n such that m(n) →∞
as n →∞. In this case, µ̂n(θ̂m(n)) behaves the same as µ̂n(θ∗) as n →∞, at least to first order.

Theorem 10 Suppose that θ̂m(n) → θ∗ as n → ∞ a.s., for some random variable θ∗. Suppose further
that A1 - A3 hold and the samples used in computing θ̂m(n) are independent of those used to compute
µ̂n for every n. Then µ̂n(θ̂m(n)) → µ as n →∞ a.s. If, in addition, EK2(Y ) < ∞, then

√
n(µ̂n(θ̂m(n))− µ) ⇒ v1/2(θ∗)N(0, 1)

as n →∞.

Proof. The proof of the strong law is very similar to the analogous result in the previous section and is
therefore omitted. To prove the central limit theorem, note that

√
n(µ̂n(θ̂m(n))− µ) =

√
n(µ̂n(θ∗)− µ) +

√
n(µ̂n(θ̂m(n))− µ̂(θ∗))

= D1,n −D2,n, say.

Notice that θ∗ is independent of the samples to compute µ̂n for every n. By Theorem 9, it suffices to
show that

D2,n =
1√
n

n∑

j=1

[h(Yj , θ̂m(n))− h(Yj , θ
∗)] ⇒ 0

as n →∞.
Chebyshev’s inequality ensures that for any fixed ε > 0

P (|D2,n| > ε) ≤ ε−2ED2
2,n

=
1

nε2

n∑

j=1

E[h(Yj , θ̂m(n))− h(Yj , θ
∗)]2 (14)

=
1
ε2

E[h(Y1, θ̂m(n))− h(Y1, θ
∗)]2. (15)

Now, [h(Y1, θ̂m(n))− h(Y1, θ
∗)]2 → 0 as n →∞ a.s. Moreover,

[h(Y1, θ̂m(n))− h(Y1, θ
∗)]2 ≤ K2(Y1) ‖θ̂m(n) − θ∗‖2. (16)

The normed term in (16) is bounded, and so the dominated convergence theorem implies that (15)
converges to 0 as n →∞.

It remains to give conditions under which θ̂m → θ∗ as m → ∞ a.s. If problem P has a unique
optimal solution θ∗ and θ̂m solves problem Pm exactly then, as in Shapiro [2004], this would follow
using standard arguments and an extension of a uniform law of large numbers to nonlinear functions of
means. (Recall from (11) that V (m, θ) is essentially a nonlinear function of sample means, rather than a
sample mean itself.) However, the best that we can hope for from a computational point of view is that
θ̂m is a first-order critical point for the problem Pm. So, to obtain convergence to a fixed θ∗, we first
prove convergence of first-order critical points to those of the true problem P. Our next result extends
Theorem 3.1 in Bastin et al. [2004] for sample averages to nonlinear functions of sample averages.
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Let f(θ, ξ) be a Rd-valued function of θ ∈ Θ ⊂ Rp and a random vector ξ and let f̄(θ) = Ef(θ, ξ).
Let

f̄m(·) =
1
m

m∑

i=1

f(·, ξi)

denote a sample average of m i.i.d. realizations of the function f(·, ξ). Suppose that g(x) is a real-valued
C1 function of x ∈ D ⊂ Rd, where D is an open set containing the range of f̄ and f̄m for all m. We seek
conditions under which first-order critical points of g ◦ f̄m = g(f̄m(·)) on Θ converge to those of g ◦ f̄ .

Theorem 11 Consider the functions defined immediately above. Let H denote the support of the prob-
ability distribution of ξ. Suppose that Θ is convex and compact, the samples ξ1, ..., ξm are i.i.d. and

(i) for all ξ ∈ H, f(·, ξ) = (f1(·, ξ), . . . , fd(·, ξ)) is C1 on an open set containing Θ,

(ii) the component functions fj(θ, ξ) (j = 1, . . . , d) are dominated by an integrable function, and

(iii) the gradient components ∂fj(θ, ξ)/∂θi are dominated by an integrable function (i = 1, . . . , p, j =
1, . . . , d).

Let θ̂m ∈ S(g ◦ f̄m, Θ) be the set of first-order critical points of g ◦ f̄m on Θ. Then d(θ̂m, S(g ◦ f̄ , Θ)) → 0
as m →∞ a.s.

Proof. If d(θ̂m, S(g ◦ f̄ , Θ)) 6→ 0, then by passing to a subsequence if necessary, we can assume that for
some ε > 0, d(θ̂m, S(g ◦ f̄ , Θ)) ≥ ε for all m ≥ 1. Since Θ is compact, by passing to a further subsequence
if necessary, we can assume that θ̂m converges to a point θ∗ ∈ Θ. It follows that θ∗ 6∈ S(g ◦ f̄ , Θ). On
the other hand, by Propositon 8, f̄m(θ̂m) → f̄(θ∗) and ∇θf̄m(θ̂m) → ∇θf̄(θ∗) as m →∞ a.s.

Since Θ is convex, each θ̂m satisfies the first order condition

〈g′(f̄m(θ̂m))∇θf̄m(θ̂m), u− θ̂m〉 ≥ 0, for all u ∈ Θ, a.e.

Taking the limit as m →∞, we obtain that

〈g′(f̄(θ∗))∇θf̄(θ∗), u− θ∗〉 ≥ 0, for all u ∈ Θ, a.e.

Therefore, θ∗ ∈ S(g ◦ f̄ , Θ) and we obtain a contradiction.
We now obtain the following corollary.

Corollary 12 Suppose that A1-A4 hold, Θ is convex and EK2(Y ) < ∞. Then d(θ̂m, S(v, Θ)) → 0 as
m →∞ a.s.

Proof. If g(x, y) = x− y2, then

V (m, θ) =
m

m− 1

(
1
m

m∑

i=1

X2
i (θ)− X̄2

m(θ)

)
=

m

m− 1
g

(
1
m

m∑

i=1

X2
i (θ),

1
m

m∑

i=1

Xi(θ)

)
.

Notice that

S(V (m, ·),Θ) = S(g

(
1
m

m∑

i=1

X2
i (·), 1

m

m∑

i=1

Xi(·)
)

, Θ),

i.e., the sets of first-order critical points of these two functions coincide.
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By the proof of Proposition 1 and Remark 4,

X(θ), X2(θ),
∂h(Y, θ)

∂θi
and 2X(θ)

∂h(Y, θ)
∂θi

are all dominated by an integrable function (i = 1, . . . , p). By Theorem 11, it follows that

d(θ̂m, S(g(EX2(·), EX(·)),Θ)) = d(θ̂m, S(v, Θ)) → 0

as m →∞.
Corollary 12 shows that θ̂m converges to the set of first-order critical points of v as m → ∞. This

does not guarantee that the sequence {θ̂m} converges almost surely, as was the case for stochastic
approximation. In general we cannot guarantee this because when there are multiple critical points, the
particular critical point chosen depends, among other things, on the optimization algorithm that is used.
Of course, a simple sufficient condition that ensures convergence is the existence of a unique first-order
critical point. This condition is clearly difficult to verify in practice.

The limiting results above establish that our procedure is a sensible one. However, these results do
not shed light on how much effort to devote to searching for θ∗ versus how much to allocate to the
“production run” that estimates µ. The computational effort required to compute θ̂m and µ̂n(θ̂m) for a
given θ̂m is approximately proportional to m and n. Letting m = m(c) and n = n(c) be functions of the
total computational budget c we therefore have

α1m(c) + α2n(c) ≈ c,

for some constants α1 and α2. Without loss of generality we assume that α1 = α > 1 and α2 = 1.
Now, m(c) and n(c) must satisfy m(c), n(c) → ∞ as c → ∞ to ensure that θ̂m(c) → θ∗ and

µ̂n(c)(θ̂m(c)) → µ. The mean squared error of µ̂n(θ̂m) is then

mse(µ̂n(θ̂m)) = var(µ̂n(θ̂m)) =
1
n

Ev(θ̂m).

We wish to determine m that minimizes n−1Ev(θ̂m), where n = c − αm. We proceed heuristically as
follows.

The asymptotic behavior of the optimal solution θ̂m of the approximation problem (Pm) provides a
guideline for determining the optimal m. Suppose that assumptions A1-A4 hold. In addition, assume
that for all y ∈ H2, h(y, ·) is C2 (i.e., twice continuously differentiable) on U and that ∇2

θh(y, ·) is
uniformly dominated by an integrable function. Then, under some uniform integrability conditions, v(·)
is a C2 function on U . If Θ is convex, problem P has a unique optimal solution θ∗, and the Hessian
matrix ∇2v(θ∗) is positive definite, then θ̂m tends to θ∗ at a stochastic rate of order m−1/2 [Shapiro,
1993]. Under additional uniform integrability conditions, E‖θ̂m − θ∗‖ = O(m−1/2). From the second
order Taylor approximation to v(θ̂m) and using the continuity of the Hessian matrix ∇2v(·), we obtain

v(θ)− v(θ∗) ≤ λ‖θ − θ∗‖2, (17)

for all θ in a convex compact neighborhood W of θ∗ and for some constant λ which depends on the
eigenvalues of ∇2v(θ), θ ∈ W. Therefore, we expect that

E[v(θ̂m)]− v(θ∗) = O(m−1).
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Assume that E[v(θ̂m)]− v(θ∗) ∼ γ
m , for some constant γ. Then the asymptotically optimal m∗ is

m∗ ≈ argmin
{

1
n

E(v(θ̂m)) =
v(θ∗)m + γ

m(c− αm)
: 1 ≤ m ≤ c

α

}

=

√
(γα)2 + γαv(θ∗)c− γα

αv(θ∗)
. (18)

Expression (18) is asymptotically (i.e., as c →∞) of the form m ≈ R
√

c, where

R =
√

γ

αv(θ∗)
.

Thus we see that the optimal choice of m∗ is of the order
√

c. The coefficient R provides some insight.
When α is large, solving the approximation problem (Pm) is expensive, so we trade off some computa-
tional accuracy for more production runs. Similarly, if the optimal variance v(θ∗) is large, then it is not
worth spending too much effort finding θ∗. From (17), we can view γ as a measure of the curvature of
v(·) at θ∗. Therefore, if the curvature is high, then we invest more effort in finding θ∗.

6 Numerical Results

We now return to the discretely monitored barrier call option example presented in Section 2. We
assume that under the risk-neutral measure, the underlying stock price {S(t) : t ≥ 0} is governed by the
dynamics

dS(t)
S(t)

= rdt + σdW (t), (19)

where (W (t) : t ≥ 0) is a standard Brownian motion, the risk-free interest rate r and volatility σ are
constants and S0 is fixed; see Glasserman [2004] for more about this model. In order to simulate the
price process, we generate independent replications of the stock price using the form

Si = Si−1 exp
(
(r − σ2/2)∆t + σ

√
∆tZi

)
, i = 1, ..., l,

where Z1, ..., Zl are i.i.d. standard (mean 0 and variance 1) normal random variables.
We consider a double barrier knock-out call option. Let Hl and Hu denote the lower and upper barrier

levels, respectively, and S = [Hl,Hu] ∪ {0}. Then S̃i is defined as S̃i = 1{τ>i}Si, where τ = inf{n ≥ 0 :
Sn < Hl or Sn > Hu}. Suppose that U(·, ·; θ) is given, where U(0, ·; θ) = 0 for all θ ∈ Θ. Let

Ml(U(θ)) =
l∑

i=1

U(S̃i, l − i; θ)− P (S̃i−1, ·)U(·, l − i; θ)

under some fixed initial state S̃0 = x. Then X(θ) = (S̃l −K)+ −Ml(U(θ)) is an estimator of U∗(x, l) =
Ex[(S̃l −K)+].

In order to obtain an efficient estimator X(θ) it is important to find a good parameterization for
the function U(x, i; θ). The function should approximate the expected payoff U∗(x, i) reasonably well
and at the same time should enable the computation of the control variate Ml(U(θ)) with a moderate
amount of computational effort. To get a sense of how to choose the parameterization, we estimated the
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expected payoff function U∗(·, ·). (In general, one needs at least some idea of how this function behaves in
order to choose an effective parameterization.) Figure 3 displays surface plots of the estimated expected
payoff function U∗(x, i). For any fixed i = 1, .., l − 1, U∗(x, i) initially increases as x increases. But as
x approaches the upper barrier Hu, U∗(x, i) reaches a maximum and then decreases. For each fixed i,
U∗(·, i) is nearly concave, at least for the higher levels of volatility in Figure 3. Let our parameterization
have the form

U(x, i; θ) =





0 if x = 0,
(x−K)+ if i = 0, and
θ4(i−1)+1x

θ4(i−1)+2 + θ4(i−1)+3x + θ4i if i = 1, 2..., l − 1 and x 6= 0,

where θ = (θ1, θ2, ..., θ4(l−1)) ∈ Θ, Θ = {y ∈ R4(l−1) : a(j) ≤ y(j) ≤ b(j), j = 1, 2, ..., 4(l − 1)} and
a(j) ≥ 0, j = 1, 2, ..., 4(l − 1). (Parameterizations that better fit the true value function are certainly
possible, but we wanted to get a sense of how well we could do with very simple parameterizations.)
Then U(x, i; ·) : R4(l−1) → R is C1 for all (x, i) ∈ S × {0, 1, ..., l − 1} and U(·, i; ·) : (0 ∞)× R4(l−1) → R
is C1 for all i ∈ {0, 1, ..., l − 1}. Details on both the verification of A1-A6, and the computation of the
control variate Ml(U(θ)) are given in the appendix.
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Figure 3: Surface plots of the estimated expected payoff U∗(x, i). Left: σ = .4, l = 6 and barriers at Hl = 75
and Hu = 115. Center: σ = .6, l = 6 and barriers at Hl = 80 and Hu = 105. Right: σ = .6, l = 6 and
barriers at Hl = 85 and Hu = 100.

We examine the performance of the proposed estimators relative to the standard Monte Carlo tech-
nique. We assume that the annual drift ν is 5% and the initial stock price S0 is 90. The option has
K = S0 and maturity T = .25. Tables 1-3 report numerical results for options with various volatilities,
monitoring dates and barriers. We use the terms näıve, SA and SAA to represent the estimators obtained
through näıve Monte Carlo estimation, the stochastic approximation method and the sample average
approximation method, respectively. In the stochastic approximation algorithm, we took m = 500 and

ak =
e

C + kα
,

where e, C > 0 and α ∈ (1/2, 1] are tunable constants. This form of the gain sequence is advocated in
Spall [2003]. We used (9) as an estimator of v(θ∗). For the SAA estimator, we first replicated m = 500
samples. We obtained θ̂m by applying a quasi-Newton method with a line search (supplied as part of the
MATLABTM package) using IPA gradients to solve the sample average approximation problem Pm. We
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allocate 10% of the CPU time on this optimization stage. As an estimator of the variance v(θ̂), we used
the sample variance of X(θ̂) over n replicates, where θ̂ is viewed as fixed, in the sense of Theorem 9.

In Tables 1-3, the “SA ratio” denotes the ratio of the sample variance of (S̃l −K)+ to the estimated
variance obtained from the SA estimator, both based on mn samples. Similarly, the “SAA ratio” is the
ratio of the sample variance (S̃l−K)+ to that of X(θ̂m) for given θ̂m, both over n replicates. So “SA ratio”
and “SAA ratio” present the variance reduction ratios without considering the computational effort of
computing the control variates and estimating θ∗. The fourth and sixth columns in Tables 1-3 show that
both the SA and SAA estimators produce a significant variance reduction. Comparing the two columns,
we see that the SAA estimators outperform the SA estimators. A problem with the SA estimator is that
it is very sensitive to the step size parameters ak and the initial point θ0. We performed preliminary
simulations with this method, tuning the parameters heuristically until reasonable performance was
observed.

The values VNaive, VSA and VSAA are, respectively, the estimated variances obtained from the näıve,
SA and SAA estimators using the same CPU time. These estimated variances provide a fair comparison
among the three estimators. The fifth and seventh columns in Tables 1-3 show that in most cases the
SAA estimators outperform both the SA and näıve estimators. The SA estimators outperform the näıve
estimators in the cases with barriers at Hl = 80 and Hu = 105, and with barriers at Hl = 85 and
Hu = 100. But when Hl = 75 and Hu = 115, we do not observe an apparent advantage in variance
reduction with the SA estimators compared to the näıve estimators. In this last case, under a fixed
computational budget, the SA estimators do not achieve a sufficient variance reduction to outweigh the
computational effort to compute the control variates and estimate θ∗. However, if the simulation run
length n is long enough then from Theorems 5 and 10 we would expect the SA and SAA estimators to
be fairly similar in performance.

We see that our adaptive methods work better for σ = .6 than for σ = .4. In fact, the best performance
for the SAA method is obtained with σ = .6 and barriers at Hl = 80 and Hu = 105. Both the SA and SAA
methods show the worst performance with σ = .4 and barriers at Hl = 75 and Hu = 115. These results
show that finding a good parameterization is crucial to obtaining an efficient estimator. As observed in
Figure 3, for each fixed i, U∗(·, i) is nearly concave for high volatilities so our parameterization works
well. (When θ4(l−i)+1 < 0 and θ4(l−i)+2 > 1, U(·, i; θ) is concave.) However, when the gap between the
two barriers is wide and the volatility is low, the option has low knock-out probability and hence as i
decreases the shape of the function U∗(x, i) closely resembles the shape of the payoff (x−K)+. Therefore
our parameterization does not approximate the expected payoff function well, and as a consequence our
methods do not show satisfactory performance in this case.

In most cases the variance reduction ratio decreases as the number of monitoring dates l increases.
One explanation for this is that as l increases, the number of parameters in the control variate increases,
and so more effort is required in the optimization stage.

7 Final Remarks

We have developed two adaptive Monte Carlo methods for the case in which parameterized control
variates are available. The first method is based on a stochastic approximation technique. It is easy to
implement and the computational effort per replication is low, but its performance is sensitive to the
tuning parameters. The second method uses a sample average approximation approach. This method is
robust, but it involves solving a non-linear optimization problem in the initial optimization phase, which
can be computationally expensive.
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Volatility Frequency of monitoring CPU time (sec) SA ratio VNaive/VSA SAA ratio VNaive/VSAA

σ = .4 l = 3 374 23 3.5 96 19
l = 6 1839 3.3 0.26 25 2.7
l = 12 7846 4.2 0.20 3.6 0.24

σ = .6 l = 3 189 49 8.2 543 112
l = 6 1599 5.4 0.51 76 10
l = 12 5716 6.3 0.36 9.1 0.72

Table 1: Estimated variance reduction ratio with barriers at Hl = 75 and Hu = 115.

Volatility Frequency of monitoring CPU time (sec) SA ratio VNaive/VSA SAA ratio VNaive/VSAA

σ = .4 l = 3 90 33 5.7 179 39
l = 6 731 13 1.3 65 8.5
l = 12 5651 2.0 0.12 9.8 0.83

σ = .6 l = 3 94 170 30 1058 238
l = 6 1180 45 5.8 158 27
l = 12 1611 12 1.1 25 3.0

Table 2: Estimated variance reduction ratio with barriers at Hl = 80 and Hu = 105.

Volatility Frequency of monitoring CPU time (sec) SA ratio VNaive/VSA SAA ratio VNaive/VSAA

σ = .4 l = 3 129 84 15 142 33
l = 6 915 63 8.7 146 27
l = 12 1337 15 1.5 27 3.6

σ = .6 l = 3 87 119 23 174 45
l = 6 238 245 42 387 83
l = 12 508 28 3.8 9.0 1.6

Table 3: Estimated variance reduction ratio with barriers at Hl = 85 and Hu = 100.
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The simulation experiments in Section 6 should not be viewed as comprehensive comparisons, but
rather a demonstration of the feasibility of the two methods. The sample average approximation method
outperforms the stochastic approximation scheme and the näıve approach. In most cases the stochastic
approximation scheme outperforms the näıve approach, but not always. The computational expense
per replication brought by introducing the adaptive control variate is justified only when a sufficient
reduction in variance is achieved. A good parameterization is essential in this regard. In choosing
parameterizations, it is helpful to have some knowledge or intuition about the form of the true value
functions.
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Appendix: Additional Details of the Numerical Example

We first discuss the verification of our assumptions for a general class of martingales, and then specialize
to the particular parameterization we used.

First assume that Θ is convex and compact. Suppose that there exists a bounded open set U such
that Θ ⊂ U , U(x, i; ·) : U → R is C1 for all (x, i) ∈ S × {0, 1, ..., l − 1}, and U(·, i; ·) : [Hl,Hu] × U → R
is Lipschitz for all i ∈ {0, 1, ..., l − 1}. (These assumptions are all satisfied in our particular example.)
Since {0, 1, ..., l − 1} is finite and U is bounded, there exists a C > 0 such that for all θ1, θ2 ∈ U and
(x, i) ∈ S × {0, 1, ..., l},

|U(x, i; θ1)− U(x, i; θ2)| ≤ C‖θ1 − θ2‖,
and

D = sup
θ∈U ,(x,i)∈S×{0,1,...,l−1},k=1,...,p

{
|U(x, i; θ)|,

∣∣∣∣
∂U(x, i; θ)

∂θk

∣∣∣∣
}

< ∞.

Moreover, for any θ1, θ2 ∈ U ,

|Ml(U(θ1))−Ml(U(θ2))|

≤
l∑

i=1

|U(S̃i, l − i; θ1)− U(S̃i, l − i; θ2)|

+
l∑

i=1

|P (S̃i−1, ·)U(·, l − i; θ1)− P (S̃i−1, ·)U(·, l − i; θ2)|

≤ lC‖θ1 − θ2‖+
l∑

i=1

P (S̃i−1, ·)C‖θ1 − θ2‖

≤ 2lC‖θ1 − θ2‖.
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For any θ ∈ U ,

|X(θ)| ≤ (S̃l −K)+ +
l∑

i=1

(
|U(S̃i, l − i; θ)|+ P (S̃i−1, ·)|U(·, l − i; θ)|

)

≤ Hu + 2lD,

and similarly,
∣∣∣∣

∂

∂θi
X(θ)

∣∣∣∣ ≤ 2lD.

Since all of these bounds are finite we can easily verify that assumptions A1-A6 are satisfied.
Next we discuss the computation of the martingale for the particular parameterization we chose.

First, we compute the transition kernel P (x, ·) for x ∈ S. If x = 0,

P (0, y) = P(S̃1 = y|S̃0 = 0) =

{
1 if y = 0 and
0 otherwise.

For Hl ≤ x ≤ Hu,

P (x, [−∞, y]) = P(S̃1 ≤ y, |S̃0 = x) =





0 if y < 0,

P(S1 < Hl or S1 > Hu|S0 = x) if 0 ≤ y < Hl,
P(S1 ≤ y|S0 = x) + P (S1 > Hu|S0 = x) if Hl ≤ y ≤ Hu, and
1 if y > Hu.

Therefore,

P (x, y) =

{
0 if y /∈ S, and
P(S1 < Hl or S1 > Hu|S0 = x) if y = 0.

If Hl ≤ y ≤ Hu, then, letting

Γ =
(

r − 1
2
σ2

)
∆t + ln x, C =

1
σ
√

∆t

1√
2π

exp(− Γ2

2σ2∆t
),

and Φ be the distribution function of a standard normal random variable, we have that

dP (x, [−∞, y])
dy

=
dP(x exp((r − 1

2σ2)∆t + σ
√

∆tZ) ≤ y)
dy

=
dΦ( ln( y

x
)−(r− 1

2
σ2)∆t

σ
√

∆t
)

dy

=
1

σ
√

2π∆ty
exp

(
− 1

2σ2∆t
(ln y − (r − 1

2
σ2)∆t− ln x)2

)

=
1

σ
√

2π∆ty
exp

(
− Γ2

2σ2∆t
− (ln y)2

2σ2∆t
+

Γ
σ2∆t

ln y

)

= C exp
(
−(ln y)2

2σ2∆t
+ (

Γ
σ2∆t

− 1) ln y

)
.
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To compute Ml(U(θ)), it suffices to compute P (x, ·)U(·, i) for x ∈ S and i = 0, ..., l − 1. For Hl ≤
A < B ≤ Hu and p ≥ 0, let

Ψ(x; p,A, B) :=
∫ B

A
yp C exp

(
−(ln y)2

2σ2∆t
+ (

Γ
σ2∆t

− 1) ln y

)
dy

= C

∫ ln B

ln A
exp

(
− u2

2σ2∆t
+ (

Γ
σ2∆t

+ p)u
)

du

= C exp(
β2

4α
)
√

π

α

[
Φ

(√
2α(lnB − β

2α
)
)
− Φ

(√
2α(lnA− β

2α
)
)]

= exp(pΓ +
p2σ2∆t

2
)
[
Φ

(
ln B − Γ
σ
√

∆t
− pσ

√
∆t

)
− Φ

(
lnA− Γ
σ
√

∆t
− pσ

√
∆t

)]
,

where
α =

1
2σ2∆t

and β =
Γ

σ2∆t
+ p.

Then

P (x, ·)U(·, i; θ) =





0 if x = 0,
Ψ(x; 1,K, Hu)−KΨ(x; 0,K,Hu) if i = 0 and x 6= 0, and
θ4(i−1)+1Ψ(x; θ4(i−1)+2,Hl, Hu)
+θ4(i−1)+3Ψ(x; 1, Hl,Hu)) + θ4iΨ(x; 0,Hl,Hu) if i = 1, 2..., l − 1 and x 6= 0.

Computing the control variate M(U(θ)) therefore involves the evaluation of the distribution function
of a normal random variable. The error in the approximation to the normal distribution function used
in our simulation experiment is of the order 10−6 and it may therefore very slightly bias our adaptive
control variate estimators. We do not explore this issue further in this paper.
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