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Abstract

In this paper, we develop a stochastic approximation method to solve a monotone estimation problem
and use this method to enhance the empirical performance of the Q-learning algorithm when applied
to Markov decision problems with monotone value functions. We begin by considering a monotone
estimation problem where we want to estimate the expectation of a random vector η. We assume
that the components of E{η} are known to be in increasing order. The stochastic approximation
method that we propose is designed to exploit this information by projecting its iterates onto the set
of vectors with increasing components. The novel aspect of the method is that it uses projections
with respect to the max norm. We show the almost sure convergence of the stochastic approximation
method. After this result, we consider the Q-learning algorithm when applied to Markov decision
problems with monotone value functions. We study a variant of the Q-learning algorithm that uses
projections to ensure that the value function approximation that is obtained at each iteration is also
monotone. Computational results indicate that the performance of the Q-learning algorithm can be
improved significantly by exploiting the monotonicity property of the value functions.



Stochastic approximation methods are often used for solving online learning, simulation optimization
and stochastic control problems. The practical appeal of these methods usually comes from the fact that
they are incremental and iterative in nature. In particular, stochastic approximation methods do not
require the knowledge of the probability distributions of the underlying random variables. Instead, they
iteratively use samples of the random variables that are generated either through computer simulation
or by observing the real system. For this reason, stochastic approximation methods are often referred
to as model free methods.

In this paper, we develop a stochastic approximation method to solve a monotone estimation problem
and use this method to enhance the empirical performance of the Q-learning algorithm when applied
to Markov decision problems with monotone value functions. We begin by considering a monotone
estimation problem, where the goal is to estimate the expectation of a random vector η. We assume that
the components of the vector E{η} are known to be in increasing order and our stochastic approximation
method is designed to exploit this information. In particular, our stochastic approximation method
iteratively obtains samples of η to generate a sequence of approximations to E{η}. We use projections
to ensure that each approximation in the sequence also has increasing components. We show the almost
sure convergence of the sequence of approximations to E{η}. After this result, we consider the Q-learning
algorithm when applied to Markov decision problems with monotone value functions. The Q-learning
algorithm works very much like a stochastic approximation method and generates a sequence of value
function approximations by using samples of the current state of the system, the decision chosen by
the user and the cost incurred in the state transition. The links between the Q-learning algorithm and
stochastic approximation methods are recognized in the literature, and, similarly to many stochastic
approximation methods, the Q-learning algorithm may suffer from slow empirical convergence. In this
paper, we focus on Markov decision problems with monotone value functions. Such Markov decision
problems arise in a variety of settings including queue admission, batch service, marketing, and aging
and replacement problems. We develop a variant of the Q-learning algorithm that ensures that the value
function approximation that is obtained at each iteration is also monotone. Our goal is to enhance the
empirical performance of the Q-learning algorithm by imposing the monotonicity property of the value
function on the value function approximations.

Our work draws on two papers in particular. The first paper is Powell, Ruszczynski, and Topaloglu
[2004], where the authors propose a stochastic approximation method to construct approximations
to the convex recourse functions that arise in stochastic programs. The primary idea behind their
stochastic approximation method is to project the recourse function approximations onto the set of
convex functions to ensure that the recourse function approximations are convex. Our use of projections
in the Q-learning algorithm to impose the monotonicity of the value function on the value function
approximations is inspired by their work. However, a crucial distinguishing feature of our work is that
we use projections with respect to the max norm, whereas Powell et al. [2004] use projections with
respect to the Euclidean norm. There are several reasons for our use of projections with respect to the
max norm. First, our proof of convergence for the new variant of the Q-learning algorithm relies on an
order preserving property of the projection, which can roughly be stated as follows. We let x0 and y0

be two vectors in <n with increasing components and assume that x1 and y1 are respectively obtained
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from x0 and y0 by perturbing only the jth components of x0 and y0. Letting πx1 and πy1 respectively
be the projections of x1 and y1 onto the set of vectors with increasing components, the order preserving
property states that if we have x1 ≤ y1, then we also have πx1 ≤ πy1 . Kunnumkal and Topaloglu [2007]
show that the order preserving property is quite tedious to establish when the projections are with
respect to the Euclidean norm, but it follows almost by definition when the projections are with respect
to the max norm. Second, our computational experience indicates that projections with respect to the
max norm may provide better empirical convergence rate than projections with respect to the Euclidean
norm. Third, projections with respect to the max norm can be computed quite efficiently. In particular,
we show that there is a closed form expression for the projections that we use in this paper and this
closed form expression can be computed in O(n) time when dealing with a vector in <n. Furthermore,
projections with respect to the max norm can, in general, be computed by solving a linear program.

The second paper that is closely related to our work is Tsitsiklis [1994]. Tsitsiklis [1994] provides
an alternative convergence proof for the Q-learning algorithm by posing the Q-learning algorithm as a
stochastic approximation method. In this paper, we extend his convergence proof in two directions to be
able to embed projections into the Q-learning algorithm. First, we establish the almost sure convergence
of a stochastic approximation method that uses projections with respect to the max norm. Second, we
show that our projections satisfy the aforementioned order preserving property. It is important to
note that projections with respect to the max norm do not have the nonexpansiveness property in
the sense of Proposition 2.2.1.c in Bertsekas, Nedic, and Ozdaglar [2003] and the convergence proof
that we use for our stochastic approximation method relies on a somewhat nonstandard argument. In
particular, our proof technique considers a version of our stochastic approximation method that does
not use projections at all. This version is trivially known to be convergent. Our approach relies on
showing that the distance between the iterates of the projected and unprojected versions diminishes as
the iterations progress. It turns out that Vazquez-Abad, Cassandras, and Julka [1998] and van Ryzin
and McGill [2000] also use similar auxiliary unprojected stochastic approximation methods. However,
they need to keep track of the iterates of their auxiliary stochastic approximation methods when they
apply their approaches in practice, whereas we use the unprojected auxiliary stochastic approximation
method as an aid in establishing convergence and the practical application of our approach does not
require keeping track of the iterates of the auxiliary stochastic approximation method. We also note
that the stochastic approximation method that we develop in this paper may be of independent interest,
since we are not aware of other stochastic approximation methods that work under projections with
respect to the max norm.

There is a large body of literature revolving around stochastic approximation methods and the books
by Kushner and Clark [1978], Benveniste, Metivier, and Priouret [1991], Bertsekas and Tsitsiklis [1996]
and Kushner and Yin [2003] provide comprehensive coverage of the theory. The use of projections
in stochastic approximation methods is common, but the role of projections has traditionally been
to ensure the boundedness or feasibility of the iterates. Examples of using projections to ensure the
boundedness of the iterates can be found in Ljung [1977] and Andradottir [1995], whereas Vazquez-Abad
et al. [1998], Vazquez-Abad [1999] and Bertsekas et al. [2003] use projections to ensure the feasibility of
the iterates. On the other hand, we use projections to impose structural properties on the iterates and
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the use of projections in learning algorithms to impose the structure of the value function on the value
function approximations appears to be rare. We have not seen other papers that use projections in
learning algorithms to impose structural properties, with only one exception being Powell et al. [2004].

The Q-learning algorithm dates back to Watkins [1989] and Watkins and Dayan [1992] and this
algorithm is now considered as a standard tool for solving Markov decision problems. The basic idea
behind the algorithm is to obtain information about the system by using sampled trajectories. The
algorithm starts with an arbitrary value function approximation and constructs a sequence of value
function approximations by iteratively updating the previous approximation. One of the appealing
features of the Q-learning algorithm is that it updates the previous value function approximation only
by using a sample of the current state of the system, the decision chosen by the user, the next state
following the state transition and the cost incurred along the way. In particular, the full set of transition
probabilities and the costs are not required. As a result, the Q-learning algorithm is often referred to
as a model free method to solve Markov decision problems. Barto, Bradtke, and Singh [1995], Sutton
and Barto [1998] and Si, Barto, Powell, and Wunsch II [2004] give a nice overview of the different ways
in which the Q-learning algorithm may be applied in practice.

The literature on approximate dynamic programming is also related to our paper. There is recent
work in this area indicating that the performance of approximate dynamic programming algorithms can
be improved by exploiting structural properties. For example, Godfrey and Powell [2001], Topaloglu
and Powell [2003], Papadaki and Powell [2003], Powell et al. [2004] and Topaloglu [2005] consider
dynamic programs where the value functions are known to be convex. These papers propose approximate
dynamic programming algorithms that ensure that the estimates of the value functions obtained during
the intermediate iterations are also convex. Similarly, a generic approach to approximate dynamic
programming involves using value function approximations of the form

∑P
p=1 rp Bp(·), where (r1, . . . , rP )

are adjustable parameters and (B1(·), . . . , BP (·)) are fixed basis functions. The challenge is to choose
the basis functions and adjust the parameters so that

∑P
p=1 rp Bp(·) represents a good value function

approximation; see Bertsekas and Tsitsiklis [1996], Tsitsiklis and Van Roy [1997], Tsitsiklis and Van
Roy [2001], de Farias and Van Roy [2003] and Powell [2007]. The basis function terminology here comes
from the fact that the set of possible value function approximations of the form

∑P
p=1 rp Bp(·) that can

be generated by adjusting the parameters (r1, . . . , rP ) are limited by the span of the fixed functions
(B1(·), . . . , BP (·)). The emerging theme from this literature is that the basis functions should be chosen
to reflect the known structural properties of the value function as closely as possible.

We make the following research contributions in this paper. 1) We show the almost sure convergence
of a stochastic approximation method that can be used to estimate the expectation of a random vector
η. We assume that the components of E{η} are known be in increasing order and our stochastic
approximation method exploits this information by projecting its iterates onto the set of vectors with
increasing components. 2) We consider Markov decision problems with monotone value functions and
develop a variant of the Q-learning algorithm that uses our stochastic approximation method to ensure
that the value function approximation that is obtained at each iteration is also monotone. We establish
the almost sure convergence of the new variant of the Q-learning algorithm. 3) We present computational

4



results on a batch service problem that compare the new variant of the Q-learning algorithm with the
standard version and report significant gains in empirical performance.

The rest of the paper is organized as follows. In Section 1, we describe our stochastic approximation
method and establish its convergence. In Section 2, we work with Markov decision problems with
monotone value functions and show how to use our stochastic approximation method in the context
of the Q-learning algorithm to ensure that the value function approximation that is obtained at each
iteration is also monotone. In Section 3, we present our computational results.

1 The Stochastic Approximation Method

We begin by defining some notation that we use throughout the paper. We use v(j) to denote the jth
component of v ∈ <n. For fixed scalars L and U , we define V(L,U) ⊂ <n as V(L,U) = {v ∈ <n : L ≤
v(1) ≤ . . . ≤ v(n) ≤ U} so that V(L,U) is the set of vectors in <n whose components are increasing
and bounded between L and U . We let 1(·) be the indicator function and ‖ · ‖ be the max norm on <n

defined as ‖v‖ = maxj∈{1,...,n} |v(j)|. We write w.p.1 for with probability 1.

In this section, we analyze the stochastic approximation method given in Algorithm 1 below. The
goal of this stochastic approximation method is to generate a sequence {vk} of approximations to the
expectation E{η} of a random vector η by using a sequence {ηk} of “samples” of η. We assume that
the components of E{η} are known to be in increasing order.

Algorithm 1

(1) Choose v1 ∈ V(L,U). Set k = 1.

(2) Letting ηk be a random variable taking values in <n, Jk be a random variable taking values in
{1, . . . , n} and αk ≥ 0 be a step size parameter, set

zk(j) = vk(j) + αk 1(j = Jk) [ηk(j)− vk(j)] (1)

for all j ∈ {1, . . . , n}.
(3) Set vk+1 ∈ argminw∈V(L,U) ‖zk − w‖.
(4) Increase k by 1 and go to Step 2.

We would like to show that limk→∞ vk = E{η} w.p.1. In Step 2, we observe the realizations of
the random variables ηk and Jk. One interpretation of the random variable ηk is that we obtain a
sample of η through the random variable ηk. For example, η may correspond to a random output from
a simulation model, in which case ηk would correspond to the output from the kth replication of the
simulation model. To observe a realization of ηk, we simply need to run the simulation model once
and observing a realization of ηk does not necessarily require knowing the distribution of η. In Step
3, we project zk onto V(L,U) so that we have vk+1 ∈ V(L,U). This step ensures that the sequence
of approximations {vk} have increasing components and its purpose is to exploit the information that
E{η} has increasing components. We note that the result of the projection operator in Step 3 may not
be unique. We shortly address this issue.
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We use Fk to denote the history of Algorithm 1 up to the beginning of iteration k, which is captured
by the random variables {η1, . . . , ηk−1, J1, . . . , Jk−1}. In this case, if the step size parameter αk is a
deterministic function of Fk, then the whole evolution of Algorithm 1 up to the beginning of iteration k

is deterministically specified by the knowledge of Fk. We assume that the initial iterates of all stochastic
approximation methods that we consider are deterministic so that they do not need to be included in
the history. We assume that the following statements hold for Algorithm 1.

(A1) Using η̄ to denote E{η}, there exist finite scalars L, U and A such that we have η̄ ∈ V(L, U),
E{ηk(Jk) | Fk, Jk} = η̄(Jk) and E{[ηk(j)]2 | Fk, Jk} ≤ A w.p.1 for all j ∈ {1, . . . , n}, k = 1, 2, . . ..

(A2) The step size parameter αk is positive and is a deterministic function of Fk for all k = 1, 2, . . ..

(A3) The random variable Jk and the step size parameter αk satisfy
∑∞

k=1[1(j = Jk)αk] = ∞ w.p.1
and

∑∞
k=1 E{1(j = Jk) α2

k} < ∞ for all j ∈ {1, . . . , n}.

By (A1), the components of E{η} are increasing and bounded between the finite scalars L and U .
To ensure that E{ηk(Jk) | Fk, Jk} = η̄(Jk), we can sample ηk from the probability distribution of η and
independent of Fk and Jk. If we sample ηk in this fashion, then we trivially have E{[ηk(j)]2 | Fk, Jk} ≤
A < ∞ as long as η has finite variance. Nevertheless, ηk can be dependent on the history of the
algorithm and our results continue to hold as long as (A1)-(A3) are satisfied. (A2) and (A3) are
standard assumptions on step size parameters.

The next proposition shows that an element of the set argminw∈V(L,U) ‖zk−w‖ in Step 3 of Algorithm
1 can be computed by mere inspection. In this proposition, we omit the subscripts for the iteration
number and write Step 2 of Algorithm 1 as

z(j) = v(j) + α1(j = J) [η(j)− v(j)], (2)

where v ∈ V(L,U). Letting z(0) = L and z(n + 1) = U for notational uniformity, since we have
v ∈ V(L,U) and z differs from v only in the Jth component, we have either z ∈ V(L,U) or z(J) > z(J+1)
or z(J − 1) > z(J). We are now ready to show the result.

Proposition 1 Let v ∈ V(L,U), z be as in (2) and

M =





z(J) if z ∈ V(L,U)

min
{

z(J) + z(J + 1)
2

, U

}
if z(J) > z(J + 1)

max
{

z(J − 1) + z(J)
2

, L

}
if z(J − 1) > z(J)

(3)

ΠL,U
z (j) =





min{z(j),M} if j ∈ {1, . . . , J − 1}
M if j = J

max{z(j),M} if j ∈ {J + 1, . . . , n}
(4)

for all j ∈ {1, . . . , n}. Then, we have ΠL,U
z ∈ argminw∈V(L,U) ‖z − w‖.
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Proof The proof proceeds in three parts. First, we show that ΠL,U
z ∈ V(L,U). After this, we show

that ‖z −ΠL,U
z ‖ = |z(J)−M |. Finally, we show that ‖z −w‖ ≥ |z(J)−M | for all w ∈ V(L,U). These

three parts collectively imply that ΠL,U
z ∈ argminw∈V(L,U) ‖z − w‖. We provide the complete proof in

the appendix. 2

Since we have ΠL,U
zk ∈ argminw∈V(L,U) ‖zk − w‖ and ΠL,U

zk can be computed by mere inspection, we
assume throughout the paper that we let vk+1 = ΠL,U

zk in Step 3 of Algorithm 1. We note that the
computation in (3) can be carried out in constant time, whereas the computation in (4) can be carried
out in O(n) time. Therefore, we can compute ΠL,U

z in O(n) time.

The next proposition gives a convergence result for Algorithm 1. Its proof is divided between the next
two subsections. The first subsection establishes some preliminary results and the second subsection
finishes the proof. These two subsections can be skipped without loss of continuity if the reader is only
interested in the practical implications of Proposition 2.

Proposition 2 Let the sequence {vk} be generated by Algorithm 1. Assume that (A1)-(A3) hold and
vk+1 in Step 3 of Algorithm 1 is chosen as ΠL,U

zk . Then, we have limk→∞ vk = E{η} w.p.1.

1.1 Preliminary Results

In this subsection, we consider the following stochastic approximation method.

Algorithm 2

(1) Choose w1 ∈ V(L,U). Set k = 1.

(2) Letting ηk, Jk and αk be as in Step 2 of Algorithm 1, set

wk+1(j) = wk(j) + αk 1(j = Jk) [ηk(j)− wk(j)]

for all j ∈ {1, . . . , n}.
(3) Increase k by 1 and go to Step 2.

Our understanding is that the random variables {ηk} and {Jk} in Algorithm 1 are the same as the
random variables {ηk} and {Jk} in Algorithm 2. In other words, Algorithms 1 and 2 are subjected to the
same sequence of random variables when they are compared trajectory by trajectory. Algorithm 2 is a
standard stochastic approximation method and it is widely known that if {wk} is generated by Algorithm
2 and (A1)-(A3) hold, then we have limk→∞wk = E{η} w.p.1; see Proposition 4.1 in Bertsekas and
Tsitsiklis [1996]. The proof of Proposition 2 shows that the distance between the iterates of Algorithms
1 and 2 gets arbitrarily small as the iterations progress, in which case we obtain limk→∞ vk = E{η}
w.p.1. We begin with the next two preliminary lemmas.

Lemma 3 Let {vk} be generated by Algorithm 1, {wk} be generated by Algorithm 2 and ε > 0. Assume
that (A1)-(A3) hold and vk+1 in Step 3 of Algorithm 1 is chosen as ΠL,U

zk . Then, there exists a random
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iteration number K such that, w.p.1, K is finite and

min
{

[1− αk 1(j = Jk)] [vk(j)− wk(j)], min
i∈{j+1,...,n}

{
[1− αk 1(i = Jk)] [vk(i)− wk(i)]

}
− ε,−ε

}

≤ vk+1(j)− wk+1(j)

≤ max
{

[1− αk 1(j = Jk)] [vk(j)− wk(j)], max
i∈{1,...,j−1}

{
[1− αk 1(i = Jk)] [vk(i)− wk(i)]

}
+ ε, ε

}

for all j ∈ {1, . . . , n}, k ≥ K.

Proof The proof uses the fact that limk→∞wk = E{η} w.p.1 and follows from a lengthy but simple
accounting argument that keeps track of how vk+1(j) and wk+1(j) are computed in Algorithms 1 and
2. We provide the complete proof in the appendix. 2

Lemma 4 Let {vk} be generated by Algorithm 1, {wk} be generated by Algorithm 2, j ∈ {1, . . . , n} and
ε > 0. Assume that (A1)-(A3) hold and vk+1 in Step 3 of Algorithm 1 is chosen as ΠL,U

zk . Then, we
have the following results.

(1) If there exists a finite iteration number K w.p.1 such that vk+1(j) − wk+1(j) ≥ min{[1 − αk 1(j =
Jk)] [vk(j) − wk(j)],−ε} for all k ≥ K, then there exists a finite iteration number K̃ w.p.1 such that
vk+1(j)− wk+1(j) ≥ −ε for all k ≥ K̃.

(2) If there exists a finite iteration number K w.p.1 such that vk+1(j) − wk+1(j) ≤ max{[1 − αk 1(j =
Jk)] [vk(j) − wk(j)], ε} for all k ≥ K, then there exists a finite iteration number K̃ w.p.1 such that
vk+1(j)− wk+1(j) ≤ ε for all k ≥ K̃.

Proof We only show Part 1 and Part 2 follows similarly. All statements in the proof are in w.p.1
sense. In other words, we use a deterministic analysis to compare the trajectories of Algorithms 1
and 2 over one sample path, but we omit the dependence of {vk} and {wk} on the sample path for
notational brevity. Noting the assumption in Part 1, we let K be a finite iteration number such that
vk+1(j)− wk+1(j) ≥ min{[1− αk 1(j = Jk)] [vk(j)− wk(j)],−ε} for all k ≥ K. By (A3), there exists a
finite iteration number N such that N ≥ K and αk ∈ [0, 1] for all k ≥ N . We first show that

vk+1(j)− wk+1(j) ≥ min

{
k∏

κ=N

[1− ακ 1(j = Jκ)] [vN (j)− wN (j)],−ε

}
(5)

holds for all k ≥ N by using induction on k. By our choice of K and the fact that N ≥ K, one can see
that (5) holds for k = N . Assuming that (5) holds for k ≥ N , our choice of K implies that

vk+2(j)− wk+2(j)

≥ min
{

[1− αk+1 1(j = Jk+1)] [vk+1(j)− wk+1(j)],−ε
}

≥ min

{
[1− αk+1 1(j = Jk+1)] min

{
k∏

κ=N

[1− ακ 1(j = Jκ)] [vN (j)− wN (j)],−ε

}
,−ε

}

= min

{
k+1∏

κ=N

[1− ακ 1(j = Jκ)] [vN (j)− wN (j)],−ε

}
,
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where the second inequality uses the induction assumption and the fact that αk+1 ∈ [0, 1]. The chain
of inequalities above complete the induction argument and establish that (5) holds.

Lemma 3.3. in Bertsekas and Tsitsiklis [1996] shows that limk→∞
∏k

κ=N [1 − ακ 1(j = Jκ)] = 0 as
long as (A3) holds. In this case, (5) implies that there exists a finite iteration number K̃ such that
K̃ ≥ N and vk+1(j)− wk+1(j) ≥ −ε for all k ≥ K̃. 2

1.2 Convergence Proof for Algorithm 1

In this subsection, we prove Proposition 2 by using Lemmas 3 and 4. We let {wk} be generated by
Algorithm 2 and choose an arbitrary ε > 0. As we mention above, by Proposition 4.1 in Bertsekas and
Tsitsiklis [1996], we have limk→∞wk = E{η} w.p.1. We now show that there exists a finite iteration
number K w.p.1 such that ‖vk − wk‖ ≤ nε for all k ≥ K. Since limk→∞wk = E{η} w.p.1 and ε is
arbitrary, we obtain limk→∞ vk = E{η} w.p.1. All statements in the proof are in w.p.1 sense.

We first use induction on j to show that there exists a finite iteration number K̃ such that vk(j)−
wk(j) ≥ −nε for all j ∈ {1, . . . , n}, k ≥ K̃. By Lemma 3, there exists a finite iteration number K(n)
such that

vk+1(n)− wk+1(n) ≥ min
{

[1− αk 1(n = Jk)] [vk(n)− wk(n)],−ε
}

for all k ≥ K(n), in which case, Lemma 4 implies that there exists a finite iteration number K̃(n) such
that vk+1(n) − wk+1(n) ≥ −ε for all k ≥ K̃(n). Assuming that there exists a finite iteration number
K̃(j) such that vk+1(i) − wk+1(i) ≥ −(n − j + 1)ε for all i ∈ {j, . . . , n}, k ≥ K̃(j), we now show that
there exists a finite iteration number K̃(j − 1) such that vk+1(i) − wk+1(i) ≥ −(n − j + 2)ε for all
i ∈ {j − 1, . . . , n}, k ≥ K̃(j − 1). By Lemma 3, there exists a finite iteration number K(j) such that
K(j) > K̃(j) and

vk+1(j − 1)− wk+1(j − 1)

≥ min
{

[1− αk 1(j − 1 = Jk)] [vk(j − 1)− wk(j − 1)],

min
i∈{j,...,n}

{
[1− αk 1(i = Jk)] [vk(i)− wk(i)]

}
− ε,−ε

}

≥ min
{

[1− αk 1(j − 1 = Jk)] [vk(j − 1)− wk(j − 1)],−(n− j + 1)ε− ε,−ε
}

for all k ≥ K(j), where the second inequality uses the fact that vk(i) − wk(i) ≥ −(n − j + 1)ε for all
i ∈ {j, . . . , n}, k > K̃(j). In this inequality, we also assume that K(j) is large enough so that αk ∈ [0, 1]
for all k ≥ K(j). Therefore, we obtain

vk+1(j − 1)− wk+1(j − 1) ≥ min
{

[1− αk 1(j − 1 = Jk)] [vk(j − 1)− wk(j − 1)],−(n− j + 2)ε
}

for all k ≥ K(j) so that Lemma 4 implies that there exists a finite iteration number K̃(j− 1) such that
K̃(j−1) ≥ K(j) and vk+1(j−1)−wk+1(j−1) ≥ −(n− j +2)ε for all k ≥ K̃(j−1). Therefore, we have
vk+1(i)−wk+1(i) ≥ −(n− j + 2)ε for all i ∈ {j− 1, . . . , n}, k ≥ K̃(j− 1). This completes the induction
argument, and letting K̃ = K̃(1), we have vk+1(j)− wk+1(j) ≥ −nε for all j ∈ {1, . . . , n}, k ≥ K̃.
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Using a similar argument, we can also show that there exists a finite iteration number K̃ ′ such
that vk+1(j) − wk+1(j) ≤ nε for all j ∈ {1, . . . , n}, k ≥ K̃ ′. Letting K = max{K̃, K̃ ′} + 1, we have
‖vk − wk‖ ≤ nε for all k ≥ K and this establishes Proposition 2.

2 Applications to the Q-Learning Algorithm

We consider discounted cost Markov decision problems with finite sets of states and actions. We
denote the sets of states and actions respectively by {1, . . . , n} and A. If the system is in state j

and we take action a, then the system transitions to state s with probability pjs(a) and we incur a
finite cost of g(j, a, s). The costs in the future time periods are discounted by a factor λ ∈ [0, 1). For
notational brevity, we assume that every action is admissible in every state. We are interested in finding
a Markovian policy that minimizes the discounted total expected cost. In particular, a Markovian policy
µ is a mapping from the set of states to the set of actions, prescribing which action to take in each
possible state. Therefore, the states visited by the system under policy µ evolve according to the Markov
chain that transitions from state j to state s with probability pjs(µ(j)). If we let {Xµ

t : t = 0, 1, . . .}
be the states visited by this Markov chain, then the discounted total expected cost incurred by starting
from state j and using policy µ can be written as

V µ(j) = lim
T→∞

E

{
T∑

t=0

λt g(Xµ
t , µ(Xµ

t ), Xµ
t+1) |Xµ

0 = j

}
.

Letting Θ be the set of all possible Markovian policies, the optimal policy µ∗ satisfies V µ∗(j) =
minµ∈Θ V µ(j) for all j ∈ {1, . . . , n}.

Bertsekas and Tsitsiklis [1996] show that the optimal policy can be found by computing the Q-factors
{Q̃a(j) : j = 1, . . . , n, a ∈ A} through the optimality equation

Q̃a(j) =
n∑

s=1

pjs(a)
{

g(j, a, s) + λminb∈A Q̃b(s)
}

. (6)

In this case, the optimal policy takes an action in the set argmina∈A Q̃a(j) whenever the state of
the system is j. The Q-factor Q̃a(j) corresponding to state-action pair (j, a) can be interpreted as the
discounted total expected cost that we incur when the initial state of the system is j and we immediately
take action a and follow the optimal policy afterwards. Throughout the paper, we view the Q-factors
as matrices taking values in <n×|A|. For Q̃ ∈ <n×|A|, we use Q̃a ∈ <n to denote the column of Q̃

corresponding to action a and Q̃a(j) ∈ < to denote the jth component of the vector Q̃a. In other words,
Q̃ ∈ <n×|A| captures the Q-factors for all state-action pairs, whereas Q̃a ∈ <n is the vector of Q-factors
corresponding to action a.

The Q-learning algorithm is intended to solve the optimality equation in (6) through stochastic
approximation. The algorithm starts with arbitrary Q-factor approximations {Qa

1(j) : j = 1, . . . , n, a ∈
A}. At the kth iteration of the algorithm, we observe a state-action pair (Jk, Ak). Given that the
system transitions to state Sk after taking action Ak in state Jk, we update the Q-factor approximation
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for the state-action pair (Jk, Ak) as

QAk
k+1(Jk) = QAk

k (Jk) + αk [g(Jk, Ak, Sk) + λ minb∈AQb
k(Sk)−QAk

k (Jk)]. (7)

The Q-factor approximations for the other state-action pairs remain unchanged. If certain assumptions
on the state-action pair (Jk, Ak) and the step size parameter αk are satisfied, then it can be shown that
we have limk→∞Qa

k(j) = Q̃a(j) w.p.1 for all j ∈ {1, . . . , n}, a ∈ A, where {Q̃a(j) : j = 1, . . . , n, a ∈ A}
is the solution to the optimality equation in (6); see Section 5.6 in Bertsekas and Tsitsiklis [1996].

2.1 New Variant of the Q-Learning Algorithm

The Q-learning algorithm, in general, does not exploit the structural properties of the underlying Markov
decision problem and may take a large number of iterations to provide a good policy. In this section, we
investigate a variant of the Q-learning algorithm that is applicable to Markov decision problems where
the Q-factors are known to satisfy the monotonicity property

Q̃a(j) ≤ Q̃a(j + 1) (8)

for all j ∈ {1, . . . , n−1}, a ∈ A. There is a variety of Markov decision problems in the queue admission,
batch service, marketing, and aging and replacement settings, where the Q-factors satisfy the property
above. In Section 3, we present two problems in the batch service setting. Furthermore, the next
corollary to Theorem 6.11.6 in Puterman [1994] gives sufficient conditions under which the Q-factors
satisfy the monotonicity property in (8).

Lemma 5 Let {Q̃a(j) : j = 1, . . . , n, a ∈ A} be the solution to the optimality equation in (6). Assume
that

∑n
s=1 pjs(a) g(j, a, s) is increasing in j for all a ∈ A and

∑n
s=s′ pjs(a) is increasing in j for all

s′ ∈ {1, . . . , n}, a ∈ A. Then, we have Q̃a(j) ≤ Q̃a(j + 1) for all j ∈ {1, . . . , n− 1}, a ∈ A.

Proof Letting V (j) = mina∈A Q̃a(j), the proof first shows that V (j) is increasing in j. After this, the
result follows by a simple substitution in (6). We provide the details in the appendix. 2

We note that one can often check the assumptions of Lemma 5 by using the problem structure
without having access to the actual values of the transition probabilities and costs. For example, for a
queue admission application where the state is the number of entities in the system and the action is the
service rate, the assumption that

∑n
s=1 pjs(a) g(j, a, s) is increasing in j implies that the expected one

period cost is increasing in the number of entities in the system. This is certainly the case when the cost
components of interest are the waiting cost of keeping the entities in the system and the service cost of
running the server. On the other hand, the assumption that

∑n
s=s′ pjs(a) is increasing in j implies that

the probability that the number of entities in the system at the next time period exceeds s′ increases as
the number of entities in the system at the current time period increases. This assumption is satisfied
by essentially any plausible arrival process.

The basic idea behind our variant of the Q-learning algorithm is to use projections to impose the
monotonicity property in (8) on the Q-factor approximations. Our goal is to improve the empirical
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performance of the Q-learning algorithm by imposing the structural properties of the Q-factors on the
Q-factor approximations. In particular, we study the following variant of the Q-learning algorithm.

Algorithm 3

(1) Choose Qa
1 ∈ V(−C,C) for all a ∈ A, where C is a sufficiently large scalar. Set k = 1.

(2) Observe a state-action pair (Jk, Ak) and a subsequent state Sk.

(3) Letting αk ≥ 0 be a step size parameter, set

Ra
k(j) = Qa

k(j) + αk 1(j = Jk, a = Ak) [g(j, a, Sk) + λ minb∈AQb
k(Sk)−Qa

k(j)] (9)

for all j ∈ {1, . . . , n}, a ∈ A.

(4) Set Qa
k+1 = Π−C,C

Ra
k

for all a ∈ A, where Π−C,C
Ra

k
is as in (4).

(5) Increase k by 1 and go to Step 2.

The updating procedure in Step 3 of Algorithm 3 is the same as the one in (7). In Step 4, we
project Ra

k onto V(−C,C) so that Qa
k+1 satisfies the monotonicity property in (8). Our goal is to

show that limk→∞Qa
k(j) = Q̃a(j) w.p.1 for all j ∈ {1, . . . , n}, a ∈ A. Letting Gk be the history of

Algorithm 3 captured by the random variables {J1, . . . , Jk−1, A1, . . . , Ak−1, S1, . . . , Sk−1}, we assume
that the following statements hold.

(B1) We have P{Sk = s | Gk, Jk, Ak} = pJks(Ak) w.p.1 for all k = 1, 2, . . ..

(B2) Letting {Q̃a(j) : j = 1, . . . , n, a ∈ A} be the solution to the optimality equation in (6), we have
Q̃a ∈ V(−C, C) for all a ∈ A, where C is as in Steps 1 and 4 of Algorithm 3.

(B3) The step size parameter αk is positive and is a deterministic function of Gk for all k = 1, 2, . . ..

(B4) The random variables Jk and Ak, and the step size parameter αk satisfy
∑∞

k=1[1(j = Jk, a =
Ak) αk] = ∞ w.p.1 and

∑∞
k=1 E{1(j = Jk, a = Ak) α2

k} < ∞ for all j ∈ {1, . . . , n}, a ∈ A.

By (B1), the subsequent state Sk is sampled according to the transition probabilities of the Markov
decision problem. (B2) assumes that the Q-factors satisfy the monotonicity property in (8) and they
are uniformly bounded by C. Since the uniform bound C is also used in Algorithm 3, one needs to
know or estimate this bound to be able to apply Algorithm 3. If we know the problem data, then
letting C = maxj,s∈{1,...,n},a∈A |g(j, a, s)|/(1 − λ) suffices. Otherwise, we need to estimate C through
some insight into the problem at hand, but we can always choose C quite large as our computational
experience indicates that choosing C too large does not affect the performance of Algorithm 3 in an
undesirable fashion. One can construct simple sequences {Jk}, {Ak} and {αk} that satisfy (B3) and
(B4). For example, sampling (Jk, Ak) uniformly over {1, . . . , n} × A and letting αk = 1/k suffice.

It is interesting to note that Proposition 2 does not immediately provide a convergence result for
Algorithm 3. In particular, if we compare (1) in Algorithm 1 with (9) in Algorithm 3, then we can see
that the index j in Algorithm 1 corresponds to the state-action pair (j, a) in Algorithm 3. Furthermore,
the random variables Jk and ηk(Jk) in Algorithm 1 respectively correspond to the state action pair
(Jk, Ak) and the random variable g(Jk, Ak, Sk)+λ minb∈AQb

k(Sk) in Algorithm 3. (A1), which is needed
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for Proposition 2 to hold, requires that the expectation of ηk(Jk) conditional on Fk and Jk is equal to
the Jkth component of a fixed vector η̄. On the other hand, noting that the Q-factor approximations
{Qa

k(j) : j = 1, . . . , n, a ∈ A} keep changing over the iterations, it is unrealistic to expect that the
expectation of g(Jk, Ak, Sk) + λ minb∈AQb

k(Sk) conditional on Gk and (Jk, Ak) would be equal to the
(Jk, Ak)th component of a fixed matrix.

The next proposition gives a convergence result for Algorithm 3. Its proof is divided between the next
three subsections. Section 2.2 shows an order preserving property of the projection operator in Step 4 of
Algorithm 3. Section 2.3 follows a standard argument to write Algorithm 3 as an alternative stochastic
approximation method. Finally, Section 2.4 shows the convergence of Algorithm 3 by establishing the
convergence of the alternative stochastic approximation method. The order preserving property that we
show in the Section 2.2 becomes useful when establishing the convergence of the alternative stochastic
approximation method.

Proposition 6 Let {Qa
k(j) : j = 1, . . . , n, a ∈ A} be generated by Algorithm 3 and assume that

(B1)-(B4) hold. Then, we have limk→∞Qa
k(j) = Q̃a(j) w.p.1 for all j ∈ {1, . . . , n}, a ∈ A, where

{Q̃a(j) : j = 1, . . . , n, a ∈ A} is the solution to the optimality equation in (6).

2.2 Order Preserving Property

In this section, we show an order preserving property of the projection operator that we use in Algorithm
3. An important implication of this property will be the following. Assume that we run Algorithm 3
twice, once starting with the initial Q-factor approximations {Qa

1(j) : j = 1, . . . , n, a ∈ A} and once
starting with the initial Q-factor approximations {Q̂a

1(j) : j = 1, . . . , n, a ∈ A}. Other than the
difference in the initial conditions, the two runs of Algorithm 3 are subjected to the same sequence of
random variables. Letting {Qa

k(j) : j = 1, . . . , n, a ∈ A} and {Q̂a
k(j) : j = 1, . . . , n, a ∈ A} be the

Q-factor approximations obtained at the kth iteration of the two runs, the order preserving property
ensures that if we have Qa

1 ≤ Q̂a
1 for all a ∈ A in the initial conditions, then we also have Qa

k ≤ Q̂a
k

w.p.1 for all a ∈ A, k = 1, 2, . . ..

Lemma 7 Let v ∈ V(L,U), v̂ ∈ V(L̂, Û) and J ∈ {1, . . . , n}. Assume that z and ẑ are obtained
respectively from v and v̂ by perturbing only the Jth component. If v ≤ v̂, z ≤ ẑ, L ≤ L̂ and U ≤ Û ,
then we have ΠL,U

z ≤ ΠL̂,Û
ẑ .

Proof The proof follows by keeping track of how ΠL,U
z and ΠL̂,Û

ẑ are computed through (3) and (4).
We provide the details in the appendix. 2

If the two sets of initial Q-factor approximations {Qa
1(j) : j = 1, . . . , n, a ∈ A} and {Q̂a

1(j) : j =
1, . . . , n, a ∈ A} satisfy Qa

1 ≤ Q̂a
1 for all a ∈ A and αk ∈ [0, 1] for all k = 1, 2, . . ., then (9) in Step 3 of

Algorithm 3 implies that

RA1
1 (J1) = [1− α1] QA1

1 (J1) + α1 [g(J1, A1, S1) + λ minb∈AQb
1(S1)]

≤ [1− α1] Q̂A1
1 (J1) + α1 [g(J1, A1, S1) + λ minb∈A Q̂b

1(S1)] = R̂A1
1 (J1)
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and RA1
1 (j) = QA1

1 (j) ≤ Q̂A1
1 (j) = R̂A1

1 (j) w.p.1 for all j ∈ {1, . . . , n} \ {J1}. Therefore, we have
RA1

1 ≤ R̂A1
1 . Similarly, we also have Ra

1 = Qa
1 ≤ Q̂a

1 = R̂a
1 w.p.1 for all a ∈ A \ {A1}. In this case,

Lemma 7 implies that Qa
2 = Π−C,C

Ra
1

≤ Π−C,C

R̂a
1

= Q̂a
2 w.p.1 for all a ∈ A. Continuing in the same fashion

for the subsequent iterations, we obtain Qa
k ≤ Q̂a

k w.p.1 for all a ∈ A, k = 1, 2, . . ..

2.3 The Q-Learning Algorithm as a Stochastic Approximation Method

It is possible to write Algorithm 3 in an alternative fashion by following a standard argument that can
be found in Section 5.6 in Bertsekas and Tsitsiklis [1996]. For this purpose, we define the operator Γ
on <n×|A| and the random variable ωk ∈ <n×|A| as

[ΓQ]a(j) =
n∑

s=1

pjs(a)
{

g(j, a, s) + λminb∈AQb(s)
}

(10)

ωa
k(j) = g(j, a, Sk) + λ minb∈AQb

k(Sk)−
n∑

s=1

pjs(a)
{

g(j, a, s) + λminb∈AQb
k(s)

}
, (11)

where Q = {Qa(j) : j = 1, . . . , n, a ∈ A} is a matrix taking values in <n×|A| and we use [ΓQ]a(j) to
denote the (j, a)th component of ΓQ. With this definition of Γ and ωk, we have [ΓQk]a(j) + ωa

k(j) =
g(j, a, Sk) + λ minb∈AQb

k(Sk) and Step 3 of Algorithm 3 can be written as

Ra
k(j) = Qa

k(j) + αk 1(j = Jk, a = Ak) [[ΓQk]a(j) + ωa
k(j)−Qa

k(j)] (12)

for all j ∈ {1, . . . , n}, a ∈ A.

The operator Γ and the random variable ωk have important properties that become useful when
establishing the convergence of Algorithm 3. To begin with, (6) and (10) imply that Q̃ = ΓQ̃ so that
the solution Q̃ = {Q̃a(j) : j = 1, . . . , n, a ∈ A} to the optimality equation in (6) is a fixed point of the
operator Γ. Furthermore, the operator Γ corresponds to the so called dynamic programming operator
and the discussion that follows (5.63) in Bertsekas and Tsitsiklis [1996] indicates that this operator is
a contraction mapping with respect to the max norm with contraction factor λ. In other words, if we
define the max norm ‖ · ‖ on <n×|A| as ‖Q‖ = maxa∈A ‖Qa‖, then we have

‖ΓQ− Q̃‖ ≤ λ ‖Q− Q̃‖ (13)

for all Q = {Qa(j) : j = 1, . . . , n, a ∈ A} ∈ <n×|A|. Finally, it is possible to interpret the random
variable ωAk

k (Jk) as an error term with zero expectation. To see this, we use (B1) and (11) to obtain

E{ωAk
k (Jk) | Gk, Jk, Ak} =

n∑

s=1

P{Sk = s | Gk, Jk, Ak}
{

g(Jk, Ak, s) + λminb∈AQb
k(s)

}

−
n∑

s=1

pJks(Ak)
{

g(Jk, Ak, s) + λminb∈AQb
k(s)

}
= 0. (14)

2.4 Convergence Proof for Algorithm 3

We are now ready to prove Proposition 6. The proof is an extension of the proof of Proposition 4.4 in
Bertsekas and Tsitsiklis [1996] and it is designed to deal with the effects of the projection operator in
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Step 4 of Algorithm 3. All statements in the proof should be understood in w.p.1 sense. By (B4), there
exists a finite iteration number N such that αk ∈ [0, 1] for all k ≥ N . Therefore, we assume throughout
the proof that αk ∈ [0, 1] for all k = 1, 2, . . . without loss of generality.

By Step 4 of Algorithm 3, we have Qa
k ∈ V(−C, C) for all a ∈ A, k = 1, 2, . . .. Since Q̃a ∈ V(−C, C)

for all a ∈ A by (B2), we have ‖Qk − Q̃‖ ≤ ‖Qk‖ + ‖Q̃‖ ≤ 2C for all k = 1, 2, . . .. Noting that we
have λ ∈ [0, 1), we choose ε > 0 with λ + ε < 1. Letting D0 = 2C, we define the sequence {Dt}
through Dt+1 = [λ + ε] Dt. We have ‖Qk − Q̃‖ ≤ D0 for all k = 1, 2, . . .. To show the result by
induction, we assume that there exists a finite iteration number k(t) such that ‖Qk − Q̃‖ ≤ Dt for all
k ≥ k(t). We show that this assumption implies that there exists a finite iteration number k(t + 1)
such that ‖Qk − Q̃‖ ≤ Dt+1 for all k ≥ k(t + 1). In this case, since we have limt→∞Dt = 0, we obtain
limk→∞ ‖Qk − Q̃‖ = 0.

We fix a ∈ A and let e ∈ <n be the vector whose components are all ones. For k ≥ k(t), we start
with va

k(t) = Q̃a −Dt e and define the sequence of vectors {va
k} as

za
k(j) = va

k(j) + 1(a = Ak) αk 1(j = Jk) [Q̃a(j)− λDt + ωa
k(j)− va

k(j)] (15)

for all j ∈ {1, . . . , n} and va
k+1 = Π−3C,C

za
k

. Identifying 1(a = Ak)αk and Q̃a(j) − λDt + ωa
k(j) in (15)

respectively with αk and ηk(j) in Step 2 of Algorithm 1, it is easy to see that the sequence of vectors
{va

k} are essentially generated by Algorithm 1. We now verify the assumptions in (A1)-(A3) so that we
can use Proposition 2 to give a convergence result for the sequence of vectors {va

k}.

Since Q̃a ∈ V(−C,C) by (B2) and Dt ≤ D0 = 2C, we have −3C ≤ −C − λDt ≤ Q̃a(j) − λDt ≤
Q̃a(j) ≤ C for all j ∈ {1, . . . , n}, which implies that Q̃a − λDt e ∈ V(−3C, C). By (14), we have

E{Q̃Ak
(Jk)− λ Dt + ωAk

k (Jk) | Gk, Jk, Ak} = Q̃Ak
(Jk)− λDt.

Letting G be such that |g(j, a, s)| ≤ G < ∞ for all j, s ∈ {1, . . . , n}, a ∈ A, we have |Q̃a(j) − λDt +
ωa

k(j)| ≤ C + 2C + 2 [G + C] by (11). Therefore, if we identify −3C, C and Q̃a − λDt e respectively
with L, U and E{η} in (A1), then (A1) is satisfied by the updating procedure in (15). By (B3) and
(B4), the other assumptions in (A2) and (A3) that are needed for Proposition 2 to hold are satisfied.
Therefore, we have limk→∞ ‖va

k − Q̃a + λDt e‖ = 0 by Proposition 2.

We next use induction on k to show that va
k ≤ Qa

k for all k ≥ k(t). Since we have va
k(t) = Q̃a −Dt e

and ‖Qk(t) − Q̃‖ ≤ Dt, the result holds for k = k(t). Assuming that va
k ≤ Qa

k, we have

Ra
k(j) = [1− αk 1(j = Jk, a = Ak)]Qa

k(j) + αk 1(j = Jk, a = Ak) [[ΓQk]a(j) + ωa
k(j)]

≥ [1− αk 1(j = Jk, a = Ak)] va
k(j) + αk 1(j = Jk, a = Ak) [Q̃a(j)− λ ‖Qk − Q̃‖+ ωa

k(j)]

≥ [1− αk 1(j = Jk, a = Ak)] va
k(j) + αk 1(j = Jk, a = Ak) [Q̃a(j)− λDt + ωa

k(j)] = za
k(j)

for all j ∈ {1, . . . , n}, where the first equality follows from (12), the first inequality follows from (13)
and the second inequality follows from the assumption that ‖Qk − Q̃‖ ≤ Dt for all k ≥ k(t). Thus,
we have za

k ≤ Ra
k. We have va

k ∈ V(−3C,C) by definition and za
k is obtained from va

k by perturbing
only the Jkth component. Similarly, we have Qa

k ∈ V(−C,C) by definition and Ra
k is obtained from Qa

k

15



by perturbing only the Jkth component. In this case, Lemma 7 and the fact that za
k ≤ Ra

k imply that
va
k+1 = Π−3C,C

za
k

≤ Π−C,C
Ra

k
= Qa

k+1. Therefore, we have va
k ≤ Qa

k for all k ≥ k(t).

For k ≥ k(t), we can also start with v̂a
k(t) = Q̃a + Dt e and define the sequence of vectors {v̂a

k} as

ẑa
k(j) = v̂a

k(j) + 1(a = Ak) αk 1(j = Jk) [Q̃a(j) + λDt + ωa
k(j)− v̂a

k(j)]

for all j ∈ {1, . . . , n} and v̂a
k+1 = Π−C,3C

ẑa
k

. Following the same line of reasoning in the last three

paragraphs, it is possible to show that limk→∞ ‖v̂a
k − Q̃a − λ Dt e‖ = 0 and v̂a

k ≥ Qa
k for all k ≥ k(t).

Since limk→∞ ‖va
k−Q̃a+λDt e‖ = 0 and limk→∞ ‖v̂a

k−Q̃a−λDt e‖ = 0, there exists a finite iteration
number k(t, a) such that k(t, a) ≥ k(t), and va

k − Q̃a + λDt e ≥ −εDt e and v̂a
k − Q̃a − λDt e ≤ ε Dt e

for all k ≥ k(t, a). In this case, since va
k ≤ Qa

k ≤ v̂a
k for all k ≥ k(t), we have −Dt+1 e = −[λ + ε]Dt e ≤

va
k−Q̃a ≤ Qa

k−Q̃a ≤ v̂a
k−Q̃a ≤ [λ+ε] Dt e = Dt+1 e for all k ≥ k(t, a). Letting k(t+1) = maxa∈A k(t, a),

we have ‖Qk − Q̃‖ ≤ Dt+1 for all k ≥ k(t + 1). This completes the proof of Proposition 6.

3 Computational Experiments

This section compares the performances of several versions of the Q-learning algorithm on two batch
service problems. Our goal is to demonstrate how much the empirical performance of the Q-learning
algorithm can be improved by exploiting the monotonicity property of the Q-factors.

3.1 Batch Service Problem with a Single Product

We have a service station with capacity κ to serve the products that arrive randomly over time. The
arriving products queue for service and we incur a cost of h per waiting product per time period. At any
time period, we can decide to fill the service station up to its capacity and serve the products, in which
case we incur a fixed cost of φ and the served products leave the system. The product arrivals at each
time period have a geometric distribution with parameter ρ. We assume that we cannot have more than
n waiting products in the system and the products that arrive into a full system are lost. We use the
number of waiting products as the state variable so that the state space is {0, . . . , n}. The set of actions
is {0, 1} with the interpretation that 0 and 1 respectively correspond to not running and running the
service station. This problem has been studied extensively and its Q-factors satisfy the monotonicity
property in (8); see, for example, Ignall and Kolesar [1972], Kosten [1973], Deb and Serfozo [1973],
Ignall and Kolesar [1974] and Papadaki and Powell [2002].

We compare three versions of the Q-learning algorithm. The first version exactly corresponds to
Algorithm 3. The second version is the standard version of the Q-learning algorithm. This version does
not use projections at all and simply sets Qa

k+1 = Ra
k for all a ∈ A in Step 4 of Algorithm 3. In other

words, the standard version of the Q-learning algorithm follows Steps 1, 2, 3 and 5 as they are stated
in Algorithm 3 and replaces Step 4 of Algorithm 3 with Qa

k+1 = Ra
k for all a ∈ A. The third version is

an alternative version of Algorithm 3 that uses projections with respect to the Euclidean norm. This
alternative version follows Steps 1, 2, 3 and 5 as they are stated in Algorithm 3 and replaces Step 4 of
Algorithm 3 with Qa

k+1 = argminw∈V(L,U) ‖Ra
k − w‖2 for all a ∈ A, where ‖ · ‖2 is the Euclidean norm
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on <n. We refer to Algorithm 3, the standard version of the Q-learning algorithm and the alternative
version of Algorithm 3 respectively as A3, SQ and EQ.

We run A3, SQ and EQ for 10,000 iterations. We sample Jk, Ak and Sk by following the greedy
policy obtained at iteration k. The greedy policy obtained at iteration k takes an action in the set
argmina∈AQa

k(j) when the system is in state j. Starting with an arbitrary initial state, given that
the system is in state Jk at iteration k, we set Ak = argmina∈AQa

k(Jk), breaking ties arbitrarily. We
sample Sk such that P{Sk = s | Jk, Ak} = pJks(Ak) and Sk is independent of the states and actions
{J1, . . . , Jk−1, A1, . . . , Ak−1, S1, . . . , Sk−1} that are observed up to iteration k. We set Jk+1 = Sk at
iteration k+1 and continue in a similar fashion for the subsequent iterations. At each iteration, we stop
following the greedy policy with probability 0.1 and sample (Jk, Ak) uniformly over {0, . . . , n}× {0, 1}.
This ensures that (B4) is satisfied. We make 100 runs to eliminate the effect of sampling noise and
report the average of the results. We use common random numbers when running A3, SQ and EQ.

We vary the values of κ, n, φ, ρ and λ to obtain different test problems. The value of the holding
cost is fixed at 1 throughout. Figures 1 and 2 respectively show the performances of the greedy policies
obtained after 4,000 and 10,000 iterations for different test problems. We label the test problems by
(κ, n, φ, ρ, λ) on the horizontal axis. Letting Ck(j) be the discounted total expected cost that is incurred
by the greedy policy obtained after k iterations when the initial state of the system is j and V ∗(j) be
the discounted total expected cost that is incurred by the optimal policy when the initial state of the
system is j, the performance measure that we use in Figure 1 is

max
j∈{0,...,n}

100
C4,000(j)− V ∗(j)

V ∗(j)
.

This performance measure gives a feel for the worst percent penalty that is incurred by using the greedy
policy obtained after 4,000 iterations instead of the optimal policy. We compute {V ∗(j) : j = 0, . . . , n}
by solving the optimality equation for the problem. We use the same performance measure in Figure
2, but we focus on the greedy policy obtained after 10,000 iterations.

The results indicate that both A3 and EQ significantly improve the performance of SQ and the
performance gap is more noticeable when n is relatively large. Therefore, exploiting the monotonicity
property appears to be particularly helpful when we have to estimate a relatively large number of
Q-factors. The greedy policies obtained by A3 after 4,000 iterations perform noticeably better than
the greedy policies obtained by EQ, but EQ catches up with A3 after 10,000 iterations for many
test problems. Nevertheless, for all of the test problems with λ = 0.99, A3 performs better than
EQ. It is widely known that discounted cost Markov decision problems become computationally more
difficult as the discount factor gets close to one and it is encouraging A3 performs better than EQ when
the discount factor is large. Figure 3 plots maxj∈{0,...,n} 100 [Ck(j) − V ∗(j)]/V ∗(j) for test problem
(200, 300, 200, 0.1, 0.90) as a function of the iteration counter k. The performance gap between A3 and
EQ is significant during the early iterations, but EQ catches up later.

The results are encouraging as they indicate that A3 may be a viable alternative to SQ and EQ
especially for online learning settings where fast response is crucial. The gap between the performances
of A3 and SQ can be quite significant for some test problems, indicating that explicitly exploiting
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Figure 1: Performances of the greedy policies obtained by A3, SQ and EQ after 4,000 iterations.

the known monotonicity property of the Q-factors can significantly improve the performance of the
Q-learning algorithm. This type of behavior holds over a wide range of problem parameters for our
problem class, but we still caution the reader that these are empirical results and one should consider
carrying out numerical experiments before generalizing them to other problem classes.

3.2 Batch Service Problem with Two Products

We have a service station that can serve two types of products. We refer to the two types of products as
type 1 and type 2. The capacity of the service station is κ and we incur a fixed cost of φ every time we
run the service station. The holding costs for the products of type 1 and type 2 are respectively h1 and
h2. We assume that h1 ≥ h2 so that it is desirable to serve the products of type 1 first when the number
of products in the system exceeds the capacity of the service station. The product arrivals of type 1 and
type 2 at each time period have geometric distributions respectively with parameters ρ1 and ρ2. The
arrival processes for the two products are independent. We assume that we cannot have more than n1

products of type 1 and n2 products of type 2 in the system. We use (j, i) ∈ {0, . . . , n1}× {0, . . . , n2} as
the state space. The set of actions is {0, 1} with the same interpretation as in the previous subsection.
Since h1 ≥ h2, if we decide to run the service station, then we fill it up to its capacity with products of
type 1 first. If there is still available capacity, then we fill it with products of type 2.

This problem is studied in Papadaki and Powell [2003] in the finite horizon setting. Following the
approach in Papadaki and Powell [2003], it is possible to show that the Q-factors for this problem satisfy

Qa(j, i) ≤ Qa(j + 1, i) for all j ∈ {0, . . . , n1 − 1}, i ∈ {0, . . . , n2}, a ∈ {0, 1}
Qa(j, i) ≤ Qa(j, i + 1) for all j ∈ {0, . . . , n1}, i ∈ {0, . . . , n2 − 1}, a ∈ {0, 1}.
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Figure 2: Performances of the greedy policies obtained by A3, SQ and EQ after 10,000 iterations.

A3 and EQ cannot impose both of these monotonicity properties on the Q-factor approximations and
we arbitrarily choose to impose the first property. In particular, letting {Qa

k(j, i) : j = 0, . . . , n1, i =
0, . . . , n2, a = 0, 1} be the Q-factor approximations at iteration k, Qa

k(i) be the vector (Qa
k(0, i), . . . ,

Qa
k(n1, i)) and V(−C, C) be the set {v ∈ <n1+1 : −C ≤ v(0) ≤ . . . ≤ v(n1) ≤ C} for an appropriate

scalar C, we project Qa
k(i) onto V(−C,C) for all i ∈ {0, . . . , n2}, a ∈ {0, 1}.

Figure 4 shows the performances of the greedy policies obtained after 5,000,000 iterations. The
performance measure that we use in this figure is the same as the ones that we use in Figures 1 and
2. The values of the holding costs for the two products are fixed at 1 and 0.5 throughout. The system
capacities and the arrival probability distributions for the two products are the same. We label the test
problems by (κ, n, φ, ρ, λ) on the horizontal axis, where n is the common value for n1 and n2, and ρ is
the common value for ρ1 and ρ2.

The results indicate that both A3 and EQ improve the performance of SQ significantly. The gap in
the performance becomes especially large when the discount factor is close to one. As mentioned above,
discounted cost Markov decision problems become computationally more difficult as the discount factor
gets close to one and it is encouraging that A3 and EQ significantly improve on SQ when the discount
factor is large. It is also interesting to note that A3 appears to have a small but noticeable advantage
over EQ for most of the test problems.

4 Conclusions

We analyzed a stochastic approximation method that is useful for estimating the expectation of a
random vector when the expectation is known to have increasing components. We used this stochastic
approximation method to establish the convergence of a variant of the Q-learning algorithm that is
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Figure 3: Performances of the greedy policies obtained by A3, SQ and EQ as a function of the iteration
counter for test problem (200, 300, 200, 0.1, 0.90).

applicable to Markov decision problems with monotone value functions. Computational experiments
on a batch service problem indicated that it is possible to improve the empirical performance of the
Q-learning algorithm by exploiting the monotonicity property of the Q-factors. The state spaces in
our test problems were relatively small and our test problems could be solved to optimality by using
standard dynamic programming tools as long as the transition probabilities and costs are known. Even
for such test problems, the performance of the Q-learning algorithm could be unsatisfactory and the
new variant that we proposed in this paper provided improvements.

It is worthwhile to emphasize that the asymptotic convergence behavior of the new variant of the
Q-learning algorithm cannot be different from the asymptotic convergence behavior of the standard
version. To see this, we note that both versions of the Q-learning algorithm converge to the optimal
Q-factors. Therefore, considering the optimal Q-factors {Q̃a(j) : j = 1, . . . , n, a ∈ A}, if Q̃a lies in
the interior of V(−C, C) for all a ∈ A, then the Q-factor approximations generated by the standard
version of the Q-learning algorithm always stays in V(−C,C) after a finite number of iterations. In
this case, using a projection onto V(−C,C) would not change the convergence behavior of the standard
version. Nevertheless, the number of iterations required for the Q-factor approximations to start staying
in V(−C, C) may be quite large and the new variant of the Q-learning algorithm may improve on the
standard version when we look at the empirical performance over a finite number of iterations.

A natural direction for further research is to exploit properties besides monotonicity. Convexity, in
particular, often appears in inventory control and revenue management settings. Robust variants of the
Q-learning algorithm are likely to be useful for developing model free methods in these settings.
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Figure 4: Performances of the greedy policies obtained by A3, SQ and EQ after 5,000,000 iterations.
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A Appendix: Proof of Proposition 1

To avoid clutter, the proof uses p(j) to denote ΠL,U
z (j). We consider three cases.

Case 1 Assume that z(J) > z(J +1). First, we show that p ∈ V(L, U). Since v ∈ V(L,U) and z differs
from v only in the Jth component, we have

L ≤ z(1) ≤ z(2) ≤ . . . ≤ z(J − 1) ≤ z(J + 1) ≤ . . . ≤ z(n) ≤ U. (16)

By (16), we have z(J) > z(J + 1) ≥ L, which implies that [z(J) + z(J + 1)]/2 > L and we obtain
L ≤ M = min{[z(J) + z(J + 1)]/2, U} ≤ U by (3). Therefore, (4) and (16) imply that L ≤ p(j) ≤ U

for all j ∈ {1, . . . , n}. By (4), we have p(J − 1) ≤ p(J) ≤ p(J + 1), and by (4) and (16), we have
p(1) ≤ p(2) ≤ . . . ≤ p(J − 1) and p(J + 1) ≤ p(J + 2) ≤ . . . ≤ p(n). Therefore, we obtain p ∈ V(L,U).

Second, we show that ‖p − z‖ = z(J) − M . We let J ′ = {j ∈ {J + 1, . . . , n} : z(j) ≤ M} and
J ′′ = {j ∈ {J + 1, . . . , n} : z(j) > M} . By (4), we have p(j) = M ≥ z(j) for all j ∈ J ′, which
noting (16), implies that |p(j)− z(j)| = M − z(j) ≤ M − z(J + 1) ≤ [z(J)− z(J + 1)]/2 for all j ∈ J ′,
where the second inequality follows from (3). We have |p(j)− z(j)| = 0 for all j ∈ J ′′ by (4). We have
p(J) = M ≤ [z(J)+z(J+1)]/2 < z(J), which implies that |p(J)−z(J)| = z(J)−M ≥ [z(J)−z(J+1)]/2.
Finally, (16) implies that [z(J) + z(J + 1)]/2 > z(J + 1) ≥ z(J − 1) ≥ z(J − 2) ≥ . . . ≥ z(1). Since we
also have U ≥ z(J − 1) ≥ z(J − 2) ≥ . . . ≥ z(1) by (16), we have M ≥ z(j) for all j ∈ {1, . . . , J − 1},
which, noting (4), implies that |p(j) − z(j)| = 0 for all j ∈ {1, . . . , J − 1}. Therefore, we obtain
‖p− z‖ = z(J)−M .

Finally, we show that ‖z − w‖ ≥ z(J)−M for all w ∈ V(L,U). We consider two subcases.

Case 1.a Assume that w(J) ≤ M . Since we have z(J) > [z(J)+z(J +1)]/2, (3) implies that M < z(J)
and we obtain ‖z − w‖ ≥ |z(J)− w(J)| = z(J)− w(J) ≥ z(J)−M .

Case 1.b Assume that w(J) > M . Letting w(n + 1) = U , since w ∈ V(L,U), we have U ≥ w(J + 1) ≥
w(J) > M = min{[z(J) + z(J + 1)]/2, U}, which implies that M = [z(J) + z(J + 1)]/2 > z(J + 1) and
we obtain ‖z − w‖ ≥ |z(J + 1)− w(J + 1)| = w(J + 1)− z(J + 1) > M − z(J + 1) = z(J)−M .

Therefore, we obtain ‖z−w‖ ≥ z(J)−M = ‖p−z‖ for all w ∈ V(L,U) so that p ∈ argminw∈V(L,U) ‖z−
w‖. The cases z ∈ V(L,U) and z(J − 1) > z(J) can be handled by using similar arguments. 2

B Appendix: Proof of Lemma 3

The following lemma is useful when showing Lemma 3.

Lemma 8 Let {wk} be generated by Algorithm 2 and ε > 0, and for notational uniformity, wk(0) = L

and wk(n+1) = U for all k = 1, 2, . . .. Assume that (A1)-(A3) hold. Then, there exists a finite iteration
number K w.p.1 such that wk(j) ≤ wk(i) + ε for all j ∈ {0, . . . , n + 1}, i ∈ {j, . . . , n + 1}, k ≥ K.

Proof All statements in the proof are in w.p.1 sense. We let E{η(0)} = L and E{η(n + 1)} = U for
notational uniformity. Since we have limk→∞wk = E{η}, there exists a finite iteration number K such
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that ‖wk−E{η}‖ ≤ ε/2 for all k ≥ K. Noting that E{η} ∈ V(L, U), we obtain wk(j) ≤ E{η(j)}+ ε/2 ≤
E{η(i)}+ ε/2 ≤ ωk(i) + ε/2 + ε/2 for all j ∈ {0, . . . , n + 1}, i ∈ {j, . . . , n + 1}, k ≥ K. 2

We are now ready to prove Lemma 3. We only show the first inequality. The proof of the second
inequality is similar. All statements in the proof are in w.p.1 sense. We let K be as in Lemma 8, k ≥ K,
zk(n + 1) = vk(n + 1) = wk(n + 1) = U and M be computed as in (3) but by using (zk, Jk) instead of
(z, J). We consider three cases.

Case 1 Assume that j ∈ {Jk+1, . . . , n}. Since vk+1 = ΠL,U
zk , (4) implies that vk+1(j) = max{zk(j),M} ≥

zk(j). We have vk+1(j)− wk+1(j) ≥ zk(j)− wk+1(j) = [1− αk 1(j = Jk)] [vk(j)− wk(j)].

Case 2 Assume that j ∈ {1, . . . , Jk − 1}. We consider two subcases.

Case 2.a Assume that zk(j) ≤ M . We have vk+1(j) = min{zk(j), M} = zk(j) by (4), which implies
that vk+1(j)− wk+1(j) = zk(j)− wk+1(j) = [1− αk 1(j = Jk)] [vk(j)− wk(j)].

Case 2.b Assume that zk(j) > M . We first show that zk(Jk − 1) > zk(Jk). To see this, we note that
we have either zk(Jk) > zk(Jk + 1) or zk(Jk − 1) > zk(Jk) because, otherwise, we have zk ∈ V(L,U)
and zk(j) > M = zk(Jk) by (3), which contradict the fact that zk ∈ V(L,U) and j ∈ {1, . . . , Jk − 1}.
On the other hand, if zk(Jk) > zk(Jk + 1), then we have M = min{[zk(Jk) + zk(Jk + 1)]/2, U} ≥
min{zk(Jk + 1), U}. Since vk ∈ V(L,U) and zk differs from vk only in the Jkth component, we have
M ≥ min{zk(Jk + 1), U} = min{vk(Jk + 1), U} = vk(Jk + 1) ≥ vk(Jk − 1) = zk(Jk − 1) ≥ vk(Jk −
2) = zk(Jk − 2) ≥ . . . ≥ vk(1) = zk(1), which contradicts the fact that j ∈ {1, . . . , Jk − 1} and
zk(j) > M . Therefore, we must have zk(Jk − 1) > zk(Jk) and M = max{[zk(Jk − 1) + zk(Jk)]/2, L},
which imply that M = max{[zk(Jk − 1) + zk(Jk)]/2, L} ≥ [zk(Jk − 1) + zk(Jk)]/2 > zk(Jk). We have
vk+1(j) = min{zk(j), M} = M > zk(Jk) by (4), which implies that

vk+1(j)− wk+1(j) > zk(Jk)− wk+1(j) ≥ zk(Jk)− wk+1(Jk)− ε

= [1− αk 1(Jk = Jk)] [vk(Jk)− wk(Jk)]− ε ≥ min
i∈{j+1,...,n}

{
[1− αk 1(i = Jk)] [vk(i)− wk(i)]

}
− ε,

where the second inequality follows from Lemma 8 and the third inequality follows from the fact that
Jk ∈ {j + 1, . . . , n}.

Case 3 Assume that j = Jk. We have vk+1(Jk) = M by (4). We consider two subcases.

Case 3.a Assume that zk(Jk) ≤ M . We obtain vk+1(Jk) − wk+1(Jk) = M − wk+1(Jk) ≥ zk(Jk) −
wk+1(Jk) = [1− αk 1(Jk = Jk)] [vk(Jk)− wk(Jk)].

Case 3.b Assume that zk(Jk) > M . In this case, we must have zk(Jk) > zk(Jk +1). To see this, by (3),
we have either zk(Jk) > zk(Jk +1) or zk(Jk−1) > zk(Jk). However, if zk(Jk−1) > zk(Jk), then we have
M = max{[zk(Jk−1)+zk(Jk)]/2, L} ≥ max{zk(Jk), L} ≥ zk(Jk), which contradicts the assumption that
zk(Jk) > M . Therefore, we must have zk(Jk) > zk(Jk + 1) and M = min{[zk(Jk) + zk(Jk + 1)]/2, U}.
Since vk ∈ V(L,U) and zk(Jk + 1) = vk(Jk + 1) by the definition of Algorithm 1, we have

M = min{[zk(Jk) + zk(Jk + 1)]/2, U} ≥ min{zk(Jk + 1), U}
= min{vk(Jk + 1), U} = vk(Jk + 1) = zk(Jk + 1).
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Therefore, since vk+1(Jk) = M by (4), we obtain

vk+1(Jk)− wk+1(Jk) = M − wk+1(Jk) ≥ zk(Jk + 1)− wk+1(Jk)

≥ zk(Jk + 1)− wk+1(Jk + 1)− ε = [1− αk 1(Jk + 1 = Jk)] [vk(Jk + 1)− wk(Jk + 1)]− ε,

where the second inequality follows from Lemma 8. We prefer not replacing 1(Jk = Jk) with 1 or
1(Jk + 1 = Jk) with 0 for notational uniformity. Since vk(Jk + 1)−wk(Jk + 1) = 0 when Jk = n in the
chain of inequalities above, the result follows by merging the results of the Cases 1, 2.a, 2.b and 3.

C Appendix: Proof of Lemma 5

We let V (j) = mina∈A Q̃a(j) for all j ∈ {1, . . . , n}, in which case the optimality equation in (6) can be
written as

V (j) = min
a∈A

{
n∑

s=1

pjs(a)
{

g(j, a, s) + λV (s)
}}

.

Under the assumptions of Lemma 5, Proposition 4.7.3 and Theorem 6.11.6 in Puterman [1994] use
the optimality equation above to show that V (j) is increasing in j. Noting that

∑n
s=s′ pjs(a) ≤∑n

s=s′ pj+1,s(a) and using the fact that V (j) in increasing in j, Lemma 4.7.2 in Puterman [1994] shows
that we have

∑n
s=1 pjs(a) V (s) ≤ ∑n

s=1 pj+1,s(a) V (s). Since we also have
∑n

s=1 pjs(a) g(j, a, s) ≤∑n
s=1 pj+1,s(a) g(j + 1, a, s) by the assumption in the lemma, (6) implies that

Q̃a(j) =
n∑

s=1

pjs(a)
{

g(j, a, s) + λV (s)
}
≤

n∑

s=1

pj+1,s(a)
{

g(j + 1, a, s) + λV (s)
}

= Q̃a(j + 1).

D Appendix: Proof of Lemma 7

We let M and M̂ be as in (3), but respectively computed by using (L,U, z) and (L̂, Û , ẑ). Since we have
z(j) ≤ ẑ(j) for all j ∈ {1, . . . , n}, if we can show that M ≤ M̂ , then the result follows from (4). We let
v(0) = z(0) = L, v(n + 1) = z(n + 1) = U , v̂(0) = ẑ(0) = L̂ and v̂(n + 1) = ẑ(n + 1) = Û for notational
uniformity and consider three cases.

Case 1 Assume that z ∈ V(L,U). By (3), we have M = z(J) and z(J − 1) ≤ z(J) ≤ z(J + 1). Noting
that z may differ from v only in the Jth component, we obtain v(J − 1) ≤ M ≤ v(J + 1).

Case 2 Assume that z(J) > z(J + 1). By (3), we have M = min{[z(J) + z(J + 1)]/2, U} ≥ min{z(J +
1), U} = min{v(J +1), U} = v(J +1) ≥ v(J−1), where the second equality follows from the fact that z

may differ from v only in the Jth component, and the last equality and the last inequality follow from
the fact that v ∈ V(L, U).

Case 3 Assume that z(J − 1) > z(J). By (3), we have M = max{[z(J − 1) + z(J)]/2, L} ≤ max{z(J −
1), L} = max{v(J − 1), L} = v(J − 1) ≤ v(J + 1).

Combining the three cases above, it is easy to see that the largest possible value of M is min{[z(J) +
z(J +1)]/2, U} and this occurs when z(J) > z(J +1). Similarly, one can show that the smallest possible
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value of M̂ is max{[ẑ(J − 1) + ẑ(J)]/2, L̂} and this occurs when ẑ(J − 1) > ẑ(J). Therefore, even if M

takes its largest possible value and M̂ takes its smallest possible value, we still have

M = min{[z(J) + z(J + 1)]/2, U} ≤ [z(J) + z(J + 1)]/2

≤ [ẑ(J − 1) + ẑ(J)]/2 ≤ max{[ẑ(J − 1) + ẑ(J)]/2, L̂} = M̂,

where the second inequality follows from the fact that ẑ(J − 1) > ẑ(J) ≥ z(J) > z(J + 1).
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