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Abstract

We consider the problem of optimally allocating the seats on a single flight leg to the demands
from multiple fare classes that arrive sequentially. It is well-known that the optimal policy for this
problem is characterized by a set of protection levels. In this paper, we develop a new stochastic
approximation method to compute the optimal protection levels under the assumption that the
demand distributions are not known and we only have access to the samples from the demand
distributions. The novel aspect of our method is that it works with the nonsmooth version of the
problem where the capacity can only be allocated in integer quantities. We show that the sequence
of protection levels generated by our method converges to a set of optimal protection levels with
probability one. We discuss applications to the case where the demand information is censored by
the seat availability. Computational experiments indicate that our method is especially advantageous
when the total expected demand exceeds the capacity by a significant margin and we do not have
good a priori estimates of the optimal protection levels.
Keywords: Revenue management, stochastic approximation, dynamic programming, subgradient
optimization.



A canonical problem in the revenue management literature involves optimally allocating the seats on a
single flight leg to the demands from multiple fare classes that arrive sequentially. Given the demand
from the current fare class and the number of unsold seats, the decision is how many seats to sell to
the current fare class. It is well-known that the optimal policy to this problem is characterized by one
protection level per fare class. In particular, letting n be the number of fare classes, there exists a set
of protection levels {y∗j : j = 1, . . . , n} such that the optimal policy keeps the number of unsold seats
just after making the decisions for fare class j as close as possible to y∗j . In other words, letting xj be
the number of unsold seats just before making the decisions for fare class j and [·]+ = max{0, ·}, it
is optimal to make [xj − y∗j ]

+ seats available for sale to fare class j. If the demand from fare class j

does not exceed [xj − y∗j ]
+, then we satisfy all of the demand. Otherwise, we sell [xj − y∗j ]

+ seats. This
structure of the optimal policy arises from the fact that the value functions in the dynamic programming
formulation of the problem are concave in the number of unsold seats. In this case, the computation
of the optimal protection levels through the Bellman equations requires solving a number of convex
optimization problems, which is a simple task as long as the demand distributions are known.

In this paper, we develop a stochastic approximation method to compute the optimal protection
levels when the demand distributions are not known and we only have access to the samples from the
demand distributions. We work with a particular version of the problem where the demand distributions
are discrete and the fare classes that generate lower revenues arrive earlier than the ones that generate
higher revenues. We develop a new method that uses the dynamic programming formulation of the
problem in conjunction with the samples from the demand distributions to approximate the stochastic
subgradients of the value functions. By showing that our approximate stochastic subgradients are indeed
accurate in the limit, we establish that the iterates of our stochastic approximation method converge
to a set of optimal protection levels with probability one (w.p.1). Furthermore, we consider the case
where the demand information is censored by the seat availability. We show that our method remains
applicable when we only observe the number of seats sold to a fare class and whether any demand from
this fare class is turned down. In particular, if a portion of the demand from a fare class cannot be
satisfied, then we do not need to know the exact quantity of the demand that is turned down.

There has been work on using stochastic approximation methods to compute the optimal protection
levels, but our paper makes several unique contributions. Brumelle and McGill (1993) characterize
the conditions that should be satisfied by the optimal protection levels and van Ryzin and McGill
(2000) exploit these conditions to develop a stochastic approximation method. However, this method
is tightly related to the conditions in Brumelle and McGill (1993) and it is not clear whether it can be
extended to another problem class. In contrast, we work with the dynamic programming formulation
of the problem and it is possible to extend our method to numerous inventory control problems where
the value functions are convex and the base stock policies are optimal; see Kunnumkal and Topaloglu
(2007). Furthermore, the step directions used by our method are related to the stochastic subgradients
of the value functions, whereas this is not the case for the method proposed by van Ryzin and McGill
(2000). Stochastic subgradients of the value functions are useful when making tactical decisions such
as setting the capacity of the flight leg. It is also possible to establish that the theoretical convergence
rate of a variant of our method is more favorable than that of the method proposed by van Ryzin and
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McGill (2000). Huh and Rusmevichientong (2006) also propose a stochastic approximation method to
compute the optimal protection levels. There are similarities between their method and ours as both
exploit the dynamic programming formulation of the problem, but Huh and Rusmevichientong (2006)
use the results from the online convex optimization literature pioneered by Zinkevich (2003), whereas
we use the stochastic approximation theory. Finally, both van Ryzin and McGill (2000) and Huh and
Rusmevichientong (2006) assume that the demand distributions are continuous. To our knowledge, our
method is the only one that works with discrete demand distributions and has a convergence guarantee
for the performance of the policy. To deal with discrete demand distributions, van Ryzin and McGill
(2000) propose a randomized version of their method, but the performance of the policy obtained by
this method is not necessarily optimal.

It is important to note that the total expected revenue for the seat allocation problem is not concave
when viewed as a function of the protection levels. To illustrate, we assume that there are three fare
classes and let {r1, r2, r3}, {D1, D2, D3} and {y1, y2, y3} respectively be the revenues, demand random
variables and protection levels for the three fare classes. If there are xj unsold seats just before making
the decisions for fare class j, then we make [xj−yj ]+ seats available for sale to fare class j. In this case,
the number of seats sold to fare class j is given by the random variable Pj(xj , yj) = min{[xj−yj ]+, Dj}
and the number of unsold seats just before making the decisions for fare class j + 1 is given by the
random variable Xj+1(xj , yj) = xj − Pj(xj , yj). Therefore, letting c be the initial capacity, the total
expected revenue obtained by using the protection levels {y1, y2, y3} can be written as

R(c, y1, y2, y3) = r1 E
{
P1(c, y1)

}
+ r2 E

{
P2(X2(c, y1), y2)

}
+ r3 E

{
P3(X3(X2(c, y1), y2), y3)

}

and the optimal protection levels can be found by solving the problem

max
(y1,y2,y3)

R(c, y1, y2, y3). (1)

Figure 1 plots R(c, y1, y2, 0) as a function of (y1, y2) for a particular problem instance and indicates
that the total expected revenue may not be concave when viewed as a function of the protection levels.
Therefore, if we naively attempt to compute the optimal protection levels by solving problem (1) through
a stochastic approximation method, then we may get stuck at a locally optimal solution. Our results
in this paper, however, show that it is indeed possible to develop a stochastic approximation method to
compute the optimal protection levels as long as we use step directions that are based on the dynamic
programming formulation of the problem.

Besides computing the optimal protection levels, our method allows us to exploit the well-known
advantages of stochastic approximation methods. In particular, our method only requires the ability to
obtain samples from the demand distributions. Parametric representations of the demand distributions
are not necessary. Furthermore, our method remains applicable when we only observe the number of
seats sold to a fare class and whether any demand from this fare class is turned down. In other words,
we do not need to know the exact quantity of the demand that is turned down when a portion of the
demand from a fare class cannot be satisfied. Therefore, we can still compute the optimal protection
levels by using our method when the demand information is censored by the seat availability.
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The rest of the paper is organized as follows. Section 1 briefly reviews the other related literature.
Section 2 gives a dynamic programming formulation of the seat allocation problem and summarizes the
important results from the existing literature. Section 3 describes our stochastic approximation method
and Section 4 proves its convergence. Section 5 considers the case where the demand information is
censored by the seat availability. Section 6 provides computational experiments. Section 7 concludes.

1 Review of Other Related Literature

Most of the literature on the single flight leg problem assumes that there are multiple fare classes and
the demands from different fare classes occur over nonoverlapping time intervals. This ensures that we
can formulate the problem as a dynamic program with the number of decision epochs being equal to
the number of fare classes. Motivated by the fact that the leisure travelers tend to book earlier than
the business travelers, it is also a common assumption that the fare classes that generate lower revenues
arrive earlier than the ones that generate higher revenues. An important consequence of the second
assumption is that the optimal protection levels are nested. In other words, the optimal protection level
for a given fare class is larger than the optimal protection levels for the fare classes that arrive later.

Littlewood (1972), Curry (1990), Wollmer (1992) and Brumelle and McGill (1993) employ the
two assumptions in the previous paragraph and show the optimality of protection level policies and the
nestedness of the optimal protection levels. Robinson (1995) shows that protection level policies are still
optimal under the assumption that the demands from different fare classes occur over nonoverlapping
time intervals, but the fare classes that generate lower revenues do not necessarily arrive earlier. Lee and
Hersh (1993) and Lautenbacher and Stidham (1999) focus on the single leg problem when the demands
from different fare classes do not necessarily occur over nonoverlapping time intervals and show that
variations of protection level policies are still optimal. We refer the reader to Talluri and van Ryzin
(2004) for a coverage of the related revenue management literature.

Although airlines generally operate hub-and-spoke networks, many local airlines are very interested
in the seat allocation problem on a single flight leg. Furthermore, the seat allocation problem on a single
flight leg has important implications for the hub-and-spoke networks. To begin with, it justifies, at least
to a certain extent, the use of protection level policies for complex networks. In addition, there are a
variety of techniques to decompose the revenue management problem over a network into a sequence
of single flight leg problems; see Section 3.4.4 in Talluri and van Ryzin (2004). In this case, it becomes
important to solve the seat allocation problem on a single flight leg under a variety of assumptions.

The use of stochastic approximation methods for solving optimization problems under uncertainty
is well-known. Kushner and Clark (1978), Ermoliev (1988) and Bertsekas and Tsitsiklis (1996) give a
coverage of the theory of stochastic approximation methods. There are numerous papers that use these
methods for solving the revenue management problem over a network. In particular, van Ryzin and
Vulcano (2004), Bertsimas and de Boer (2005) and van Ryzin and Vulcano (2006) describe methods to
compute protection levels, Topaloglu (2007) describes a method to compute bid prices and Karaesmen
and van Ryzin (2004) describe a method to compute overbooking limits. As far as other application
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areas are concerned, L’Ecuyer and Glynn (1994), Fu (1994), Glasserman and Tayur (1995), Bashyam
and Fu (1998) and Mahajan and van Ryzin (2001) focus on queueing and inventory control. Kunnumkal
and Topaloglu (2007) show that a method similar to ours can be used to compute the optimal base stock
levels in inventory control problems. However, since they work with continuous demand distributions,
their proof technique is considerably different from ours.

2 Problem Formulation

We want to use c seats available on a single flight leg to satisfy the demands from n fare classes that
arrive sequentially. We index the fare classes such that the demand from fare class 1 arrives first and
the demand from fare class n arrives last. If we sell a seat to fare class j, then we generate a revenue
of rj . We assume that the revenues satisfy 0 < r1 ≤ r2 ≤ . . . ≤ rn so that the demands from the
cheaper fare classes arrive earlier. The demands from different fare classes are random and we use Dj to
denote the demand from fare class j. We assume that Dj is a positive and integer random variable, and
{Dj : j = 1, . . . , n} are independent of each other. We are interested in maximizing the total expected
revenue from n fare classes.

Using xj to denote the remaining capacity just before making the decisions for fare class j, uj to
denote the number of seats sold to fare class j and dj to denote a particular realization of Dj , the
optimal policy can be found by solving the optimality equation

vj(xj , dj) = max
0≤uj≤min{xj ,dj}

{
rj uj + E

{
vj+1(xj − uj , Dj+1)

}}
, (2)

with vn+1(·, ·) = 0. The constraints in the problem above ensure that the number of seats sold do not
exceed the remaining capacity and the demand from fare class j. Alternatively, if we let yj = xj − uj

be the remaining capacity just after making the decisions for fare class j, then (2) can be written as

vj(xj , dj) = max
[xj−dj ]+≤yj≤xj

{
− rj yj + E

{
vj+1(yj , Dj+1)

}}
+ rj xj , (3)

where the constraints follow from the fact that yj = xj − uj ≥ xj −min{xj , dj} = max{0, xj − dj} and
yj = xj − uj ≤ xj .

It is possible to show that {vj(·, Dj) : j = 1, . . . , n} are piecewise-linear concave functions with
points of nondifferentiability being a subset of integers; see Brumelle and McGill (1993). Using this
result, Brumelle and McGill (1993) show that the optimal policy is characterized by a set of protection
levels {y∗j : j = 1, . . . , n}, where y∗j can be computed as a maximizer of the function

fj(yj) = −rj yj + E
{
vj+1(yj , Dj+1)

}
(4)

over the interval [0, c]. This is to say that if the remaining capacity just before making the decisions for
fare class j is xj , then it is optimal to make [xj − y∗j ]

+ seats available for sale to fare class j. In this
case, if the demand from fare class j is dj , then we sell min{[xj − y∗j ]

+, dj} seats to fare class j. The
protection level terminology is due to the fact that it is optimal to protect y∗j seats for the demand from
fare classes {j + 1, . . . , n} when making the decisions for fare class j.
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Using the fact that the demands from the cheaper fare classes arrive earlier, Brumelle and McGill
(1993) also show that the optimal protection levels are nested. That is, the optimal number of seats to
protect for the demand from fare classes {j, . . . , n} is at least as large as the optimal number of seats
to protect for the demand from fare classes {j + 1, . . . , n}. To state this mathematically, we let

Y∗j = argmax
0≤yj≤c

fj(yj). (5)

Therefore, we can use any element of Y∗j as the optimal protection level when making the decisions
for fare class j. The fact that the optimal protection levels are nested implies that minyj∈Y∗j yj ≥
minyj+1∈Y∗j+1

yj+1 and maxyj∈Y∗j yj ≥ maxyj+1∈Y∗j+1
yj+1 for all j = 1, . . . , n − 1. In this case, we can

choose y∗1 ∈ Y∗1 , y∗2 ∈ Y∗2 , . . . , y∗n ∈ Y∗n such that y∗1 ≥ y∗2 ≥ . . . ≥ y∗n.

We note that our dynamic programming formulation differs from the existing literature in two
relatively minor aspects. First, we index the fare classes such that fare classes 1 and n respectively
correspond to the cheapest and most expensive fare classes, whereas the existing literature usually
indexes the fare classes in the reverse order. The motivation for our choice is that it is common to refer
to a cheaper fare class as a lower fare class and it is more consistent to index a cheaper fare class with a
smaller integer. Second, we use a two-dimensional state variable in (2), whereas the existing literature
generally uses a one-dimensional state variable. It is possible to use a one-dimensional state variable in
(2) by simply letting v̂j(xj) = E{vj(xj , Dj)} and taking the expectations of both sides to obtain

v̂j(xj) = E

{
max

0≤uj≤min{xj ,Dj}

{
rj uj + v̂j+1(xj − uj)

}}
.

However, the optimality equation in (2) will be more useful for the development in the paper. We also
note that it is possible to relax the assumption that the cheaper fare classes arrive earlier, but we obtain
weaker results without this assumption. We briefly describe this extension in Section 7.

3 Stochastic Approximation Method

In this section, we use the dynamic programming formulation of the seat allocation problem to develop
a stochastic approximation method that computes the optimal protection levels.

The optimal protection level for fare class j is a maximizer of fj(·) over the interval [0, c]. On the
other hand, by (4), we can compute a stochastic subgradient of fj(·) at yj through

∆j(yj , dj+1) = −rj + v̇j+1(yj , dj+1), (6)

where we use v̇j+1(yj , dj+1) to denote a subgradient of vj+1(·, dj+1) at yj . In other words, if we
use ∂vj+1(yj , dj+1) to denote the subdifferential of vj+1(·, dj+1) at yj , then we have v̇j+1(yj , dj+1) ∈
∂vj+1(yj , dj+1). Interchanging the orders of all expectations and subgradients throughout the paper
trivially follows from the fact that the demand distributions are discrete and the capacity is finite. In
this case, letting {yk

j : j = 1, . . . , n} be the estimates of the optimal protection levels at iteration k,
{Dk

j : j = 1, . . . , n} be the demand random variables at iteration k and {αk
j : j = 1, . . . , n}k be a
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sequence of step size parameters, we can update our estimates of the optimal protection levels by the
iterative algorithm

yk+1
j = min

{[
yk

j + αk
j ∆j(yk

j , Dk
j+1)

]+
, c

}
, (7)

where the operator min{[·]+, c} ensures that the estimates of the optimal protection levels always lie in
the interval [0, c]. The algorithm in (7) is motivated by the fact that the optimal protection level for
fare class j is a maximizer of fj(·) over the interval [0, c] and ∆j(yk

j , Dk
j+1) is a stochastic subgradient of

fj(·) at yk
j . If the sequence of protection levels {yk

j : j = 1, . . . , n}k is generated by the algorithm in (7),
then we can use standard results on stochastic approximation methods to show that {yk

j : j = 1, . . . , n}k

converges to a set of optimal protection levels w.p.1.

The algorithm in (7) is clearly not realistic since the computation in (6) requires the knowledge of
{v̇j(·, ·) : j = 1, . . . , n}. The stochastic approximation method that we propose in this section is based
on constructing tractable approximations to the stochastic subgradients of {fj(·) : j = 1, . . . , n}. We
begin by constructing tractable approximations to {v̇j(·, ·) : j = 1, . . . , n}. Since fj(·) is concave and
the optimal protection level y∗j is a maximizer of fj(·) over the interval [0, c], we have

max
[xj−dj ]+≤yj≤xj

{
fj(yj)

}
=





fj([xj − dj ]+) if y∗j < [xj − dj ]+

fj(y∗j ) if [xj − dj ]+ ≤ y∗j ≤ xj

fj(xj) if xj < y∗j

(8)

for all xj ∈ [0, c]. On the other hand, we can write (3) as

vj(xj , dj) = max
[xj−dj ]+≤yj≤xj

{
fj(yj)

}
+ rj xj ,

in which case (8) and the definition of fj(·) in (4) imply that

vj(xj , dj) =





−rj [xj − dj ]+ + rj xj + E
{
vj+1([xj − dj ]+, Dj+1)

}
if y∗j < [xj − dj ]+

−rj y∗j + rj xj + E
{
vj+1(y∗j , Dj+1)

}
if [xj − dj ]+ ≤ y∗j ≤ xj

E
{
vj+1(xj , Dj+1)

}
if xj < y∗j

(9)

for all xj ∈ [0, c]. Noting that y∗j ≥ 0, we have 0 < [xj − dj ]+ whenever the condition in the first case
above holds. Therefore, we can replace [xj − dj ]+ in the first case by xj − dj . On the other hand, the
condition in the second case above is equivalent to xj − dj ≤ y∗j ≤ xj and 0 ≤ y∗j ≤ xj . Since we always
have y∗j ≥ 0, we can replace the condition in the second case by xj − dj ≤ y∗j ≤ xj . These imply that
we can write (9) as

vj(xj , dj) =





rj dj + E
{
vj+1(xj − dj , Dj+1)

}
if y∗j < xj − dj

rj [xj − y∗j ] + E
{
vj+1(y∗j , Dj+1)

}
if xj − dj ≤ y∗j ≤ xj

E
{
vj+1(xj , Dj+1)

}
if xj < y∗j .

(10)

In this case, it is easy to see that we can compute a subgradient of vj(·, dj) at xj through the recursion
over the fare classes

v̇j(xj , dj) =





E
{
v̇j+1(xj − dj , Dj+1)

}
if y∗j < xj − dj

rj if xj − dj ≤ y∗j ≤ xj

E
{
v̇j+1(xj , Dj+1)

}
if xj < y∗j .

(11)
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This recursion can heuristically be justified by differentiating both sides of (10) with respect to xj .
However, the value function is not necessarily differentiable and we formally show in the appendix that
the recursion in (11) indeed gives a subgradient of vj(·, dj) at xj .

To construct tractable approximations to the stochastic subgradients of {fj(·) : j = 1, . . . , n}, we
“mimic” the computation in (11) by using the estimates of the optimal protection levels. In particular,
letting {yk

j : j = 1, . . . , n} be the estimates of the optimal protection levels at iteration k and using
O(·) to denote the operator that rounds a scalar to a nearest integer by breaking ties arbitrarily, we
recursively define

ρk
j (xj , dj , dj+1, . . . , dn) =





ρk
j+1(xj − dj , dj+1, . . . , dn) if O(yk

j ) < xj − dj

rj if xj − dj ≤ O(yk
j ) ≤ xj

ρk
j+1(xj , dj+1, . . . , dn) if xj < O(yk

j ),

(12)

with ρk
n+1(·, ·, . . . , ·) = 0. We propose using ρk

j (xj , dj , dj+1, . . . , dn) to approximate v̇j(xj , dj). More
specifically, at iteration k, we replace v̇j+1(yj , dj+1) in (6) with ρk

j+1(yj , dj+1, . . . , dn) and use

sk
j (yj , dj+1, . . . , dn) = −rj + ρk

j+1(yj , dj+1, . . . , dn) (13)

to approximate a stochastic subgradient of fj(·) at yj . Therefore, we propose the following algorithm
to compute the optimal protection levels.

Algorithm 1
Step 1. Initialize the estimates of the optimal protection levels {y1

j : j = 1, . . . , n} such that c ≥ y1
1 ≥

y1
2 ≥ . . . ≥ y1

n = 0. Initialize the iteration counter by setting k = 1.
Step 2. Letting {Dk

j : j = 1, . . . , n} be the demand random variables at iteration k, set

yk+1
j = max

{
min

{[
yk

j + αk
j sk

j (y
k
j , Dk

j+1, . . . , D
k
n)

]+
, c

}
,O(yk+1

j+1 )
}

(14)

for all j = 1, . . . , n, with the convention that yk+1
n+1 = 0.

Step 3. Increase k by 1 and go to Step 2.

We let Fk be the filtration generated by {{y1
1, . . . , y

1
n}, {D1

1, . . . , D
1
n}, . . . , {Dk−1

1 , . . . , Dk−1
n }}. Given

Fk, we assume that the conditional distribution of {Dk
j : j = 1, . . . , n} is the same as the distribution

of {Dj : j = 1, . . . , n}. We assume that the step size parameters {αk
j : j = 1, . . . , n} are positive and

Fk-measurable, in which case the estimates of the optimal protection levels {yk
j : j = 1, . . . , n} are also

Fk-measurable. In the next section, we show that if the sequence {yk
j : j = 1, . . . , n}k is generated by

Algorithm 1, then it converges to a set of optimal protection levels w.p.1.

Several remarks are in order for our approximation to v̇j(xj , dj) and Algorithm 1. First, we do not
need to compute expectations when computing ρk

j (xj , dj , dj+1, . . . , dn). We also round the estimates
of the optimal protection levels to nearest integers when computing ρk

j (xj , dj , dj+1, . . . , dn). In Section
5, we show that rounding becomes useful when the demand information is censored by the seat avail-
ability. Second, comparing (6) with (13) indicates that if v̇j(·, ·) and E

{
ρk

j (·, ·, Dk
j+1, . . . , D

k
n) | Fk

}
are

“close” to each other for all j = 1, . . . , n, then the expected step directions E
{
∆j(·, Dk

j+1) | Fk
}

and
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E
{
sk
j (·, Dk

j+1, . . . , D
k
n) | Fk

}
are also “close” to each other. This implies that using the step direction

sk
j (y

k
j , Dk

j+1, . . . , D
k
n) instead of ∆j(yk

j , Dk
j+1) does not bring too much error in expectation. Indeed,

our convergence proof is heavily based on this observation, which we make mathematically precise in
Lemma 2 below. Third, the way that we update our estimates of the optimal protection levels in (14)
ensures that yk+1

j ≥ O(yk+1
j+1 ) for all k = 1, 2, . . ., which implies that O(yk+1

j ) ≥ O(yk+1
j+1 ). Therefore,

we have c ≥ O(yk
1 ) ≥ O(yk

2 ) ≥ . . . ≥ O(yk
n) ≥ 0 for all k = 1, 2, . . . and the rounded estimates of the

optimal protection levels at each iteration are nested. It is also important to note that the update in
(14) is of Gauss-Seidel variant. More specifically, we need the value of yk+1

j+1 to compute the value of
yk+1

j . Therefore, Step 2 in Algorithm 1 has to be carried out starting from fare class n and moving
backwards through the fare classes.

4 Convergence Proof

In this section, we show that the iterates of Algorithm 1 converge to a set of optimal protection levels
w.p.1. We begin with some preliminary results in Section 4.1 and complete the proof in Section 4.2

4.1 Preliminaries

The next lemma establishes a uniform bound on our step directions.

Lemma 1 There exists a finite scalar M such that we have

∣∣ρk
j (xj , D

k
j , Dk

j+1, . . . , D
k
n)

∣∣ ≤ M and
∣∣sk

j (xj , D
k
j+1, . . . , D

k
n)

∣∣ ≤ M

w.p.1 for all xj ∈ [0, c], j = 1, . . . , n, k = 1, 2, . . ..

Proof If we let R = maxj∈{1,...,n} rj , then by using (12) and moving backwards through the fare classes,
it is easy to see that

∣∣ρk
j (xj , D

k
j , Dk

j+1, . . . , D
k
n)

∣∣ ≤ R. By (13), the result follows by letting M = 2R. 2

The next lemma shows that if {yk
j : j = 1, . . . , n} get close to the optimal protection levels, then

the step directions in Algorithm 1 are related to the stochastic subgradients of the value functions.
In Lemma 2 and throughout the rest of the paper, since {yk

j : j = 1, . . . , n} are Fk-measurable, we
treat {yk

j : j = 1, . . . , n} as known constants when dealing with a conditional expectation of the form
E{· | Fk}. Furthermore, since {vj(·, Dj) : j = 1, . . . , n} are piecewise-linear concave functions with
points of nondifferentiability being a subset of integers, it is easy to see that Y∗j in (5) is a closed
interval with integer end points. We let Y∗j = [L∗j , U

∗
j ] throughout the rest of the paper, where L∗j and

U∗
j are integers.

Lemma 2 Assume that the sequence {yk
j : j = 1, . . . , n}k is generated by Algorithm 1. If it holds that

yk
j ∈

(
L∗j − 1

2 , U∗
j + 1

2

)
, yk

j+1 ∈
(
L∗j+1 − 1

2 , U∗
j+1 + 1

2

)
, . . . , yk

n ∈
(
L∗n − 1

2 , U∗
n + 1

2

)
,

then we have E
{
ρk

j (xj , D
k
j , Dk

j+1, . . . , D
k
n) | Fk, Dk

j

} ∈ ∂vj(xj , D
k
j ) w.p.1 for all xj ∈ [0, c].
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Proof We show the result by induction over the fare classes. It is easy to show the result for fare class
n. Assuming that the result holds for fare class j + 1, we now show that the result holds for fare class
j. The assumption in the lemma implies that we can find y∗j ∈ Y∗j such that y∗j = O(yk

j ). Furthermore,
since we have yk

j+1 ∈
(
L∗j+1− 1

2 , U∗
j+1 + 1

2

)
, . . . , yk

n ∈
(
L∗n− 1

2 , U∗
n + 1

2

)
by the assumption in the lemma,

the induction assumption implies that E
{
ρk

j+1(·, Dk
j+1, . . . , D

k
n) | Fk, Dk

j+1

} ∈ ∂vj+1(·, Dk
j+1).

Taking the conditional expectations in (12) and recalling that we use v̇j+1(xj , dj+1) to denote an
element of ∂vj+1(xj , dj+1), we obtain

E
{
ρk

j (xj , dj , D
k
j+1, . . . , D

k
n) | Fk

}

= E
{
E

{
ρk

j (xj , dj , D
k
j+1, . . . , D

k
n) | Fk, Dk

j+1

} | Fk
}

=





E
{
E

{
ρk

j+1(xj − dj , D
k
j+1, . . . , D

k
n) | Fk, Dk

j+1

} | Fk
}

if y∗j < xj − dj

rj if xj − dj ≤ y∗j ≤ xj

E
{
E

{
ρk

j+1(xj , D
k
j+1, . . . , D

k
n) | Fk, Dk

j+1

} | Fk
}

if xj < y∗j

=





E
{
v̇j+1(xj − dj , D

k
j+1) | Fk

}
if y∗j < xj − dj

rj if xj − dj ≤ y∗j ≤ xj

E
{
v̇j+1(xj , D

k
j+1) | Fk

}
if xj < y∗j ,

(15)

where the second equality follows from the fact that we can find y∗j ∈ Y∗j such that y∗j = O(yk
j ) and

the third equality follows from the induction assumption that E
{
ρk

j+1(·, Dk
j+1, . . . , D

k
n) | Fk, Dk

j+1

} ∈
∂vj+1(·, Dk

j+1). Comparing (15) with (11) and noting that the distribution of Dk
j+1 conditional on Fk

is the same as the distribution of Dj+1, we obtain E
{
ρk

j (xj , dj , D
k
j+1, . . . , D

k
n) | Fk

} ∈ ∂vj(xj , dj). 2

Roughly speaking, the next lemma shows that if the estimates of the optimal protection levels at
iteration k are close to the optimal protection levels and the step sizes are small, then the estimates of
the optimal protection levels at iteration k + 1 are also close to the optimal protection levels.

Lemma 3 Assume that the sequence {yk
j : j = 1, . . . , n}k is generated by Algorithm 1 and M is as in

Lemma 1. If it holds that

yk
j ∈

(
L∗j − 1

4 , U∗
j + 1

4

)
, yk

j+1 ∈
(
L∗j+1 − 1

4 , U∗
j+1 + 1

4

)
, . . . , yk

n ∈
(
L∗n − 1

4 , U∗
n + 1

4

)
and

αk
j ∈

[
0, 1

4M

]
, αk

j+1 ∈
[
0, 1

4M

]
, . . . , αk

n ∈
[
0, 1

4M

]
,

then we have O(yk+1
j ) ∈ Y∗j w.p.1.

Proof All statements in the proof are in w.p.1 sense. We show the result by induction over the fare
classes. Since rn > 0, we have Y∗n = {0} by (5) and sk

n(·) < 0 by (13). Therefore, (14), the initial
condition that y1

n = 0 in Step 1 of Algorithm 1 and the fact that sk
n(·) < 0 imply that yk

n = 0 for all
k = 1, 2, . . .. In this case, we have yk

n = 0 ∈ Y∗n for all k = 1, 2, . . . and the result trivially holds for fare
class n. Assuming that the result holds for fare class j + 1, we now show that the result holds for fare
class j. By Lemma 1 and the assumption in the current lemma, we have

L∗j − 1
2 < yk

j + αk
j sk

j (y
k
j , Dk

j+1, . . . , D
k
n) < U∗

j + 1
2 . (16)
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Since we have yk
j+1 ∈

(
L∗j+1 − 1

4 , U∗
j+1 + 1

4

)
, . . . , yk

n ∈
(
L∗n − 1

4 , U∗
n + 1

4

)
and αk

j+1 ∈
[
0, 1

4M

]
, . . . , αk

n ∈[
0, 1

4M

]
by the assumption in the lemma, the induction assumption implies that O(yk+1

j+1 ) ∈ Y∗j+1. We
consider three cases.

Case 1. Assume that yk
j + αk

j sk
j (y

k
j , Dk

j+1, . . . , D
k
n) ≥ c ≥ O(yk+1

j+1 ). Since we have O(yk+1
j+1 ) ∈ Y∗j+1 ⊂

[0, c] by the induction assumption and yk
j + αk

j sk
j (y

k
j , Dk

j+1, . . . , D
k
n) ≥ c, we obtain yk+1

j = c by (14).
On the other hand, we have U∗

j + 1
2 > yk

j + αk
j sk

j (y
k
j , Dk

j+1, . . . , D
k
n) ≥ c by (16). Since U∗

j is an integer
smaller than c, we obtain U∗

j = c. Therefore, we have O(yk+1
j ) = c ∈ [c, c] ⊂ [L∗j , U

∗
j ].

Case 2. Assume that c > yk
j + αk

j sk
j (y

k
j , Dk

j+1, . . . , D
k
n) ≥ O(yk+1

j+1 ). Since Algorithm 1 ensures that
yk

j ≥ 0 for all j = 1, . . . , n, k = 1, 2, . . ., we have c > yk
j + αk

j sk
j (y

k
j , Dk

j+1, . . . , D
k
n) ≥ O(yk+1

j+1 ) ≥ 0 and
we obtain yk+1

j = yk
j + αk

j sk
j (y

k
j , Dk

j+1, . . . , D
k
n) by (14). Therefore, we have O(yk+1

j ) ∈ [L∗j , U
∗
j ] by (16).

Case 3. Assume that c ≥ O(yk+1
j+1 ) > yk

j + αk
j sk

j (y
k
j , Dk

j+1, . . . , D
k
n). We have yk+1

j = O(yk+1
j+1 ) by (14)

and O(yk+1
j+1 ) > L∗j − 1

2 by (16). Since we have O(yk+1
j+1 ) ∈ Y∗j+1 by the induction assumption, the fact

that the optimal protection levels are nested implies that L∗j+1 ≤ O(yk+1
j+1 ) ≤ U∗

j+1 ≤ U∗
j . Therefore, we

obtain L∗j − 1
2 < O(yk+1

j+1 ) = yk+1
j = O(yk+1

j+1 ) ≤ U∗
j , which implies that O(yk+1

j ) ∈ [L∗j , U
∗
j ]. 2

In Section 4.2, we give a convergence result for Algorithm 1 that shows that the distance between
yk

j and the optimal protection level that is closest to yk
j converges to zero w.p.1. For fare class j, we

define the optimal protection level that is closest to yk
j as

Cj(yk
j ) = argmin

y∗j∈Y∗j

∣∣y∗j − yk
j

∣∣ = argmin
y∗j∈[L∗j ,U∗j ]

∣∣y∗j − yk
j

∣∣. (17)

The next lemma shows a contraction type of result for Algorithm 1.

Lemma 4 Assume that the sequence {yk
j : j = 1, . . . , n}k is generated by Algorithm 1 and M is as in

Lemma 1. If it holds that

yk
j+1 ∈

(
L∗j+1 − 1

4 , U∗
j+1 + 1

4

)
, yk

j+2 ∈
(
L∗j+2 − 1

4 , U∗
j+2 + 1

4

)
, . . . , yk

n ∈
(
L∗n − 1

4 , U∗
n + 1

4

)
and

αk
j+1 ∈

[
0, 1

4M

]
, αk

j+2 ∈
[
0, 1

4M

]
, . . . , αk

n ∈
[
0, 1

4M

]
,

then we have
∣∣yk+1

j − Cj(yk+1
j )

∣∣ ≤ ∣∣yk
j + αk

j sk
j (y

k
j , Dk

j+1, . . . , D
k
n)− Cj(yk

j )
∣∣ w.p.1.

Proof All statements in the proof are in w.p.1 sense. We consider the same three cases in the proof of
Lemma 3.

Case 1. Assume that yk
j +αk

j sk
j (y

k
j , Dk

j+1, . . . , D
k
n) ≥ c ≥ O(yk+1

j+1 ). By the same argument in Lemma 3,
we have yk+1

j = c. Since Cj(yk+1
j ) is the closest optimal protection level to yk+1

j and U∗
j ≤ c, we obtain

Cj(yk+1
j ) = U∗

j . Since we trivially have Cj(yk
j ) ≤ U∗

j ≤ c, we obtain yk
j + αk

j sk
j (y

k
j , Dk

j+1, . . . , D
k
n) ≥ c =

yk+1
j = c ≥ U∗

j = Cj(yk+1
j ) = U∗

j ≥ Cj(yk
j ) and the result follows.

Case 2. Assume that c > yk
j + αk

j sk
j (y

k
j , Dk

j+1, . . . , D
k
n) ≥ O(yk+1

j+1 ). By the same argument in Lemma
3, we have yk+1

j = yk
j + αk

j sk
j (y

k
j , Dk

j+1, . . . , D
k
n). Therefore, we have

∣∣yk
j + αk

j sk
j (y

k
j , Dk

j+1, . . . , D
k
n) −

Cj(yk
j )

∣∣ =
∣∣yk+1

j − Cj(yk
j )

∣∣ ≥ ∣∣yk+1
j − Cj(yk+1

j )
∣∣, where the last inequality follows from (17).
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Case 3. Assume that c ≥ O(yk+1
j+1 ) > yk

j +αk
j sk

j (y
k
j , Dk

j+1, . . . , D
k
n). By the same argument in Lemma 3,

we have yk+1
j = O(yk+1

j+1 ). If O(yk+1
j+1 ) ∈ Y∗j , then we have

∣∣yk+1
j −Cj(yk+1

j )
∣∣ =

∣∣O(yk+1
j+1 )−Cj(O(yk+1

j+1 ))
∣∣ =

0 by (17) and the result follows. We now assume that either O(yk+1
j+1 ) > U∗

j or O(yk+1
j+1 ) < L∗j . We

immediately eliminate the former possibility by noting that we have O(yk+1
j+1 ) ∈ Y∗j+1 by Lemma 3 and

the assumption in the current lemma, which, together with the fact that the optimal protection levels
are nested, implies that O(yk+1

j+1 ) ≤ U∗
j+1 ≤ U∗

j . Therefore, we have yk
j + αk

j sk
j (y

k
j , Dk

j+1, . . . , D
k
n) <

O(yk+1
j+1 ) = yk+1

j = O(yk+1
j+1 ) < L∗j . This implies that

∣∣yk+1
j − Cj(yk+1

j )
∣∣ = L∗j − yk+1

j < L∗j − yk
j −

αk
j sk

j (y
k
j , Dk

j+1, . . . , D
k
n) ≤ Cj(yk

j )− yk
j − αk

j sk
j (y

k
j , Dk

j+1, . . . , D
k
n). 2

4.2 Convergence of Algorithm 1

We have the following convergence result for Algorithm 1.

Proposition 5 Assume that the sequence {yk
j : j = 1, . . . , n}k is generated by Algorithm 1. If the

sequence of step size parameters {αk
j : j = 1, . . . , n}k is positive and satisfies

∑∞
k=1 αk

j = ∞ and∑∞
k=1[α

k
j ]

2 < ∞ w.p.1 for all j = 1, . . . , n, then we have limk→∞
∣∣yk

j − Cj(yk
j )

∣∣ = 0 w.p.1 for all
j = 1, . . . , n.

Proof All statements in the proof are in w.p.1 sense. We show the result by induction over the fare
classes. Since we have Y∗n = {0} and yk

n = 0 for all k = 1, 2, . . . by the argument in the proof of Lemma
3, the result holds for fare class n. Assuming that the result holds for fare classes {j + 1, j + 2, . . . , n},
we now show that the result holds for fare class j. The proof is in three parts. The first part shows
that an inequality of the form E

{
Y k+1 | Fk

} ≤ Y k−Xk + Zk holds for appropriately defined sequences
{Xk}k, {Y k}k and {Zk}k. The second part shows that {Xk}k, {Y k}k and {Zk}k are positive and Fk-
measurable, and {Zk}k satisfies

∑∞
k=1 Zk < ∞. In this case, we conclude by using the supermartingale

convergence theorem that the sequence {Y k}k converges and
∑∞

k=1 Xk < ∞; see Proposition 4.2 in
Bertsekas and Tsitsiklis (1996). The third part uses these results to complete the proof.

Part 1. To capture the cases where the assumption of Lemma 4 holds, we define the event Ak
j as

Ak
j =

{
yk

j+1 ∈
(
L∗j+1 − 1

4 , U∗
j+1 + 1

4

)
, yk

j+2 ∈
(
L∗j+2 − 1

4 , U∗
j+2 + 1

4

)
, . . . , yk

n ∈
(
L∗n − 1

4 , U∗
n + 1

4

)

and αk
j+1 ∈

[
0, 1

4M

]
, αk

j+2 ∈
[
0, 1

4M

]
, . . . , αk

n ∈
[
0, 1

4M

]}
.

Using 1(·) to denote the indicator function, since
∣∣yk+1

j − Cj(yk+1
j )

∣∣ ≤ c, Lemma 4 implies that
∣∣yk+1

j − Cj(yk+1
j )

∣∣2

≤ 1(Ak
j )

∣∣yk
j + αk

j sk
j (y

k
j , Dk

j+1, . . . , D
k
n)− Cj(yk

j )
∣∣2 + [1− 1(Ak

j )] c
2

≤ ∣∣yk
j − Cj(yk

j )
∣∣2 − 1(Ak

j ) 2 αk
j sk

j (y
k
j , Dk

j+1, . . . , D
k
n)

[Cj(yk
j )− yk

j

]
+ [αk

j ]
2 M2 + [1− 1(Ak

j )] c
2,

where the last inequality follows from Lemma 1. Taking the conditional expectations and noting that
1(Ak

j ) is Fk-measurable, we obtain

E
{∣∣yk+1

j − Cj(yk+1
j )

∣∣2 | Fk
} ≤ ∣∣yk

j − Cj(yk
j )

∣∣2

− 1(Ak
j ) 2 αk

j

[Cj(yk
j )− yk

j

]
E

{
sk
j (y

k
j , Dk

j+1, . . . , D
k
n) | Fk

}
+ [αk

j ]
2 M2 + [1− 1(Ak

j )] c
2.
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If we let Y k =
∣∣yk

j − Cj(yk
j )

∣∣2, Xk = 1(Ak
j ) 2 αk

j

[Cj(yk
j ) − yk

j

]
E

{
sk
j (y

k
j , Dk

j+1, . . . , D
k
n) | Fk

}
and Zk =

[αk
j ]

2 M2 + [1− 1(Ak
j )] c

2, then the inequality above is of the form E
{
Y k+1 | Fk

} ≤ Y k −Xk + Zk.

Part 2. Clearly, {Y k}k and {Zk}k are positive and {Xk}k, {Y k}k and {Zk}k are Fk-measurable. We
now show that {Xk}k is positive. If 1(Ak

j ) = 0, then we have Xk = 0. If, on the other hand, we have
1(Ak

j ) = 1, then we obtain E
{
ρk

j+1(y
k
j , Dk

j+1, . . . , D
k
n) | Fk, Dk

j+1

} ∈ ∂vj+1(yk
j , Dk

j+1) by Lemma 2 and the
definition of the event Ak

j . That is, if 1(Ak
j ) = 1, then we have E

{
ρk

j+1(y
k
j , Dk

j+1, . . . , D
k
n) | Fk, Dk

j+1

}
=

v̇j+1(yk
j , Dk

j+1). Therefore, by (13), if 1(Ak
j ) = 1, then we have

E
{
sk
j (y

k
j , Dk

j+1, . . . , D
k
n) | Fk

}
= −rj + E

{
E

{
ρk

j+1(y
k
j , Dk

j+1, . . . , D
k
n) | Fk, Dk

j+1

} | Fk
}

= −rj + E
{
v̇j+1(yk

j , Dk
j+1) | Fk

}
,

in which case (4) implies that E
{
sk
j (y

k
j , Dk

j+1, . . . , D
k
n) | Fk

}
is a subgradient of fj(·) at yk

j . Consequently,
we have 1(Ak

j )
[Cj(yk

j )− yk
j

]
E

{
sk
j (y

k
j , Dk

j+1, . . . , D
k
n) | Fk

} ≥ 1(Ak
j )

[
fj(Cj(yk

j ))− fj(yk
j )

] ≥ 0, where the
last inequality follows from the fact that Cj(yk

j ) ∈ Y∗j and (5). Therefore, {Xk}k is positive.

We now show that
∑∞

k=1 Zk < ∞. Noting the induction assumption that limk→∞
∣∣yk

j+1−Cj+1(yk
j+1)

∣∣ =
0, limk→∞

∣∣yk
j+2 − Cj+2(yk

j+2)
∣∣ = 0, . . . , limk→∞

∣∣yk
n − Cn(yk

n)
∣∣ = 0 and the fact that limk→∞ αk

j = 0 for
all j = 1, . . . , n, there exists a finite iteration counter K such that 1(Ak

j ) = 1 for all k = K, K + 1, . . ..
Therefore, we have

∑∞
k=1 Zk ≤ ∑∞

k=1[α
k
j ]

2M2 + Kc2 < ∞.

Part 3. Since we have E
{
Y k+1 | Fk

} ≤ Y k − Xk + Zk and
∑∞

k=1 Zk < ∞, we can conclude by the
supermartingale convergence theorem that the sequence {Y k}k = {∣∣yk

j − Cj(yk
j )

∣∣2}k converges and we
have

∑∞
k=1 Xk < ∞. By the discussion in Part 2, for all k = K, K + 1, . . ., we have 1(Ak

j ) = 1 and

Xk = 2 αk
j

[Cj(yk
j )− yk

j

]
E

{
sk
j (y

k
j , Dk

j+1, . . . , D
k
n) | Fk

} ≥ 2 αk
j

∣∣fj(Cj(yk
j ))− fj(yk

j )
∣∣.

Therefore, we have
∑∞

k=K αk
j

∣∣fj(Cj(yk
j )) − fj(yk

j )
∣∣ ≤ ∑∞

k=1 Xk < ∞, which, together with the fact
that

∑∞
k=1 αk

j = ∞, implies that liminfk→∞
∣∣fj(Cj(yk

j )) − fj(yk
j )

∣∣ = 0. Consequently, there exists a
subsequence {ŷk

j }k of {yk
j }k such that limk→∞

∣∣fj(Cj(ŷk
j )) − fj(ŷk

j )
∣∣ = 0. Since the sequence {ŷk

j }k

takes values in the bounded interval [0, c], we can take a further subsequence {ỹk
j }k of {ŷk

j }k such that
limk→∞ ỹk

j = ỹj for some ỹj ∈ [0, c].

Noting the definition of Cj(·) and letting F ∗
j = max0≤yj≤c fj(yj), we clearly have fj(Cj(ỹk

j )) = F ∗
j for

all k = 1, 2, . . .. Therefore, by the fact that limk→∞
∣∣fj(Cj(ỹk

j ))− fj(ỹk
j )

∣∣ = 0, we have limk→∞ fj(ỹk
j ) =

F ∗
j . On the other hand, by the continuity of fj(·) and the fact that limk→∞ ỹk

j = ỹj , we have
limk→∞ fj(ỹk

j ) = fj(ỹj). From the last two statements, we obtain fj(ỹj) = F ∗
j so that ỹj ∈ Y∗j , which

implies that
∣∣ỹk

j −Cj(ỹk
j )

∣∣ ≤ ∣∣ỹk
j − ỹj

∣∣ for all k = 1, 2, . . .. Therefore, since {∣∣ỹk
j − ỹj

∣∣2}k converges to zero,
{∣∣ỹk

j − Cj(ỹk
j )

∣∣2}k also converges to zero. Recalling that the whole sequence {Y k}k = {∣∣yk
j − Cj(yk

j )
∣∣2}k

converges, we obtain limk→∞
∣∣yk

j − Cj(yk
j )

∣∣2 = 0. 2

A simple corollary to Proposition 5 is that there exists a finite iteration number K̄ w.p.1 such that
we have L∗j − 1

2 < yk
j < U∗

j + 1
2 for all j = 1, . . . , n, k = K̄, K̄ + 1, . . .. Therefore, we have O(yk

j ) ∈ Y∗j
for all j = 1, . . . , n, k = K̄, K̄ + 1, . . . and the policy that uses {O(yk

j ) : j = 1, . . . , n} as the protection
levels is optimal w.p.1 after a finite number of iterations.
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5 Censored Demands

Demand censorship refers to the situation where we can observe the number of seats sold to a fare class,
but not the actual amount of demand from a fare class. In this case, our demand observations are
“truncated” when the amount of demand from a fare class exceeds the number of seats that we make
available for sale. In this section, we show that we can compute the step direction in (13) as long as
we can observe the number of seats sold to a fare class and whether any demand from this fare class is
turned down. In particular, if a portion of the demand from a fare class cannot be satisfied, then we
do not need to know the exact quantity of the demand that is turned down. This result implies that
Algorithm 1 remains applicable when the demand information is censored.

If the demand information is censored, then we do not observe the demand random variables {Dk
j :

j = 1, . . . , n} in Step 2 of Algorithm 1. Instead, we simulate the behavior of the policy characterized
by the protection levels {O(yk

j ) : j = 1, . . . , n}, and observe the number of seats sold to different fare
classes and whether any demand from different fare classes is turned down. In this case, Step 2 of
Algorithm 1 has to be replaced with the following steps.

Step 2.a. Set the initial capacity xk
1 to c and set j = 1.

Step 2.b. Make [xk
j −O(yk

j )]+ seats available for sale to fare class j.
Step 2.c. Observe the number of seats sold to fare class j as P k

j = min{[xk
j −O(yk

j )]+, Dk
j }. Observe

whether any demand from fare class j is turned down as

Bk
j = 1(Dk

j > [xk
j −O(yk

j )]+).

Compute the capacity just before making the decisions for fare class j + 1 as xk
j+1 = xk

j − P k
j .

Step 2.d. If j < n, then increase j by 1 and go to Step 2.b.
Step 2.e. For all j = 1, . . . , n, set

yk+1
j = max

{
min

{[
yk

j + αk
j sk

j (y
k
j , Dk

j+1, . . . , D
k
n)

]+
, c

}
,O(yk+1

j+1 )
}

.

When the demand information is censored, we only have access to {P k
j : j = 1, . . . , n} and {Bk

j :
j = 1, . . . , n}, but not to the demand random variables themselves. The next proposition shows that
this information is adequate to compute the step direction in (13).

Proposition 6 Having access to {yk
j : j = 1, . . . , n}, {xk

j : j = 1, . . . , n}, {P k
j : j = 1, . . . , n} and

{Bk
j : j = 1, . . . , n} is adequate to compute sk

j (y
k
j , Dk

j+1, . . . , D
k
n) for all j = 1, . . . , n.

Proof It is possible to show the final result by induction over the fare classes, but we use a constructive
proof, which is easier to follow and shows the computations involved more clearly. We begin by using
induction over the fare classes to show that

xk
j ≥ O(yk

j−1) ≥ O(yk
j ) (18)

for all j = 2, . . . , n. We only focus on the first inequality above since Algorithm 1 ensures that the
rounded estimates of the optimal protection levels are nested and we always haveO(yk

1 ) ≥ O(yk
2 ) ≥ . . . ≥

14



O(yk
n) for all k = 1, 2, . . .. The result in (18) is easy to show for the second fare class. Assuming that the

result holds for fare class j, we have xk
j+1 = xk

j −min{[xk
j −O(yk

j )]+, Dk
j } = xk

j −min{xk
j −O(yk

j ), Dk
j } =

max{O(yk
j ), xk

j − Dk
j } ≥ O(yk

j ) ≥ O(yk
j+1), where the last inequality uses the fact that Algorithm 1

ensures that the rounded estimates of the optimal protection levels are nested. Therefore, (18) holds.

We now focus on computing sk
j (y

k
j , Dk

j+1, . . . , D
k
n). We note that by (13), this requires computing

ρk
j+1(y

k
j , Dk

j+1, . . . , D
k
n). We consider two cases.

Case 1. Assume that Bk
j+1 = 1. In this case, we deduce that Dk

j+1 > [xk
j+1−O(yk

j+1)]
+. Therefore, we

have Dk
j+1 ≥ [xk

j+1−O(yk
j+1)]

+ +1 ≥ O(yk
j )−O(yk

j+1)+ 1 ≥ yk
j −O(yk

j+1), where the second inequality
follows from (18). This chain of inequalities and (14) imply that yk

j − Dk
j+1 ≤ O(yk

j+1) ≤ yk
j and we

obtain ρk
j+1(y

k
j , Dk

j+1, D
k
j+2, . . . , D

k
n) = rj+1 by (12).

Case 2. Assume that Bk
j+1 = 0. In this case, we deduce that Dk

j+1 ≤ [xk
j+1 − O(yk

j+1)]
+ so that

Dk
j+1 = min{[xk

j+1−O(yk
j+1)]

+, Dk
j+1} = P k

j+1. Therefore, since we have access to the value of P k
j+1, we

also have access to the value of Dk
j+1. We consider two subcases.

Case 2.a. Assume that Dk
j+1 ≥ yk

j −O(yk
j+1). We have yk

j −Dk
j+1 ≤ O(yk

j+1) ≤ yk
j , where the second

inequality follows from (14) and we obtain ρk
j+1(y

k
j , Dk

j+1, D
k
j+2, . . . , D

k
n) = rj+1 by (12).

Case 2.b. Assume that Dk
j+1 < yk

j − O(yk
j+1). We have ρk

j+1(y
k
j , Dk

j+1, D
k
j+2, . . . , D

k
n) = ρk

j+2(y
k
j −

Dk
j+1, D

k
j+2, . . . , D

k
n) by (12).

Therefore, if Cases 1 or 2.a holds, then we are done. Otherwise, it remains to compute ρk
j+2(y

k
j −

Dk
j+1, D

k
j+2, . . . , D

k
n) for a known value of yk

j − Dk
j+1. The result follows by continuing in the same

fashion for the subsequent fare classes. 2

Our view of demand censorship in this section is more restrictive than the view of demand censorship
in the existing literature. In the existing literature, if the demand information is censored, then we
observe the number of seats sold to a fare class, but not necessarily whether any demand from this fare
class is turned down. In this section, however, we assume that we observe both the number of seats
sold to a fare class and whether any demand from this fare class is turned down. This discrepancy is
purely due to the fact that we work with discrete demand distributions. When the demand distributions
are continuous, the probability that the demand from a fare class is equal to the number of seats that
we make available for sale is zero. In this case, if the number of seats that we make available for
sale is equal to the number of seats that we sell, then we can safely assume that a portion of the
demand from this fare class is not satisfied. However, it is not possible to assume the same thing when
the demand distributions are discrete. Indeed, many discussions of demand censorship with discrete
demand distributions assume that we can observe both the number of seats sold to a fare class and
whether any demand from this fare class is turned down; see Huh, Levi, Rusmevichientong and Orlin
(2008). In this sense, our view of demand censorship is in alignment with these discussions. In the next
section, we give a heuristic modification of our stochastic approximation method that only requires the
ability to observe the number of seats sold to a fare class. This heuristic modification does not have a
convergence guarantee, but it still performs remarkably well.
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From a purely arithmetical standpoint, it is straightforward to see that having access to {Bk
j : j =

1, . . . , n} is necessary to compute sk
j (y

k
j , Dk

j+1, . . . , D
k
n) and having access to only {yk

j : j = 1, . . . , n},
{xk

j : j = 1, . . . , n} and {P k
j : j = 1, . . . , n} is not adequate. To illustrate, we use a numerical example

with n = 3, c = 4 and

yk
1 = 3.2, yk

2 = 2.1, yk
3 = 0

Dk
1 = 1, Dk

2 = 1, Dk
3 = 2.

By Steps 2.a-2.d above, we have xk
1 = 4, P k

1 = min{[xk
1 − O(yk

1 )]+, Dk
1} = 1, xk

2 = 4 − 1 = 3, P k
2 =

min{[xk
2−O(yk

2 )]+, Dk
2} = 1, xk

3 = 3−1 = 2 and P k
3 = min{[xk

3−O(yk
3 )]+, Dk

3} = 2. By (13), computing
sk
1(y

k
1 , Dk

2 , Dk
3) requires computing ρk

2(y
k
1 , Dk

2 , Dk
3) and we have

ρk
2(y

k
1 , Dk

2 , Dk
3) =

{
ρk
3(3.2−Dk

2 , Dk
3) if O(2.1) < 3.2−Dk

2

r2 if 3.2−Dk
2 ≤ O(2.1) ≤ 3.2

by (12). Therefore, to compute sk
1(y

k
1 , Dk

2 , Dk
3), we need to know whether Dk

2 < 1.2 or Dk
2 ≥ 1.2.

However, if we only have access to {yk
1 , yk

2 , yk
3}, {xk

1, x
k
2, x

k
3} and {P k

1 , P k
2 , P k

3 }, then we know that
1 = P k

2 = min{[xk
2 −O(yk

2 )]+, Dk
2} = min{1, Dk

2} ≤ Dk
2 , but not whether Dk

2 < 1.2 or Dk
2 ≥ 1.2.

6 Computational Experiments

In this section, we compare the performance of our stochastic approximation method with that of the
stochastic approximation method proposed by van Ryzin and McGill (2000).

6.1 Experimental Setup

Our test problems are based on the test problems in van Ryzin and McGill (2000), but we introduce
some variety by working with 4, 8 or 12 fare classes. We assume that the demand from each fare class
is normally distributed. To satisfy our assumptions, we discretize the demand random variables by
rounding them to the nearest integer. Table 1 gives the revenues associated with the fare classes, along
with the means and standard deviations of the demand random variables. For the test problems with
4 fare classes, we use c ∈ {124, 164}, in which case the total expected demand is 25% more or 5% less
than the initial capacity. Similarly, for the test problems with 8 and 12 fare classes, we respectively use
c ∈ {260, 344} and c ∈ {409, 541}.

We choose the initial protection levels in three different ways. In particular, we use

y1
j =

rj+1 + . . . + rn

r1 + . . . + rn
c (19)

y1
j =

µj+1 + . . . + µn

µ1 + . . . + µn
c (20)

y1
j =

µj+1 rj+1 + . . . + µn rn

µ1 r1 + . . . + µn rn
c, (21)

where µj is the mean of the demand random variable for fare class j. These initial protection levels are
motivated by the observation that if the revenue associated with a fare class is large and the demand
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from a fare class is likely to be large, then we should protect a large number of seats for this fare class.
We note that (19) uses the revenues, (20) uses the means of the demand random variables and (21)
uses both the revenues and means of the demand random variables. Accordingly, we refer to the sets of
initial protection levels computed by (19), (20) and (21) respectively as Y 1

R, Y 1
M and Y 1

RM . After some
experimentation, we decided to use the step size parameter αk

j = (n− j + 1) 200
rn (10+k) in our stochastic

approximation method. We note that this choice of step size parameters results in a bit more aggressive
updates for the protection levels for the cheaper fare classes.

We label our test cases by (n, κ, Y 1) ∈ {4, 8, 12} × {0.95, 1.25} × {Y 1
R, Y 1

M , Y 1
RM}, where n is the

number of fare classes, κ is the ratio of the total expected demand to the initial capacity and Y 1 is the
initial protection levels. This provides 18 test cases to consider in our experimental setup. We run all
of our benchmark strategies for 100 iterations on 25 sample paths and present the average results over
the 25 sample paths. We use common random numbers when comparing the performances of different
benchmark strategies.

6.2 Benchmark Strategies

We compare the performances of three benchmark strategies. The first benchmark strategy is Algorithm
1 described in Section 3. By the discussion in Section 5, this benchmark strategy requires that we can
observe both the number of seats sold to different fare classes and whether any demand from different
fare classes is turned down. We refer to this benchmark strategy as A1.

The second benchmark strategy is a heuristic modification of A1 and it only requires that we can
observe the number of seats sold to different fare classes. This heuristic modification is obtained by
replacing Step 2 of Algorithm 1 with the following steps.

Step 2.a. Set the initial capacity xk
1 to c and set j = 1.

Step 2.b. Make [xk
j −O(yk

j )]+ seats available for sale to fare class j.
Step 2.c. Observe the number of seats sold to fare class j as P k

j = min{[xk
j−O(yk

j )]+, Dk
j }. Heuristically

compute whether any demand from fare class j is turned down as

B̃k
j = 1(P k

j = [xk
j −O(yk

j )]+).

Compute the capacity just before making the decisions for fare class j + 1 as xk
j+1 = xk

j − P k
j .

Step 2.d. If j < n, then increase j by 1 and go to Step 2.b.
Step 2.e. Compute {sk

j (y
k
j , Dk

j+1, . . . , D
k
n) : j = 1, . . . , n} under the assumption that the number of

seats sold to different fare classes is given by {P k
j : j = 1, . . . , n} and whether any demand from different

fare classes is turned down is given by {B̃k
j : j = 1, . . . , n}. For all j = 1, . . . , n, set

yk+1
j = max

{
min

{[
yk

j + αk
j sk

j (y
k
j , Dk

j+1, . . . , D
k
n)

]+
, c

}
,O(yk+1

j+1 )
}

.

In Step 2.c, if we have P k
j < [xk

j − O(yk
j )]+, then no demand from fare class j is turned down and

we set B̃k
j = 0. On the other hand, if we have P k

j = [xk
j −O(yk

j )]+, then either a portion of the demand
from fare class j is turned down or the demand from fare class j is equal to the number of seats that
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we make available for sale. In this case, we heuristically assume that a portion of the demand from fare
class j is turned down and set B̃k

j = 1, irrespective of whether a portion of the demand from fare class
j is actually turned down or not. We refer to this benchmark strategy as A2.

The third benchmark strategy is the stochastic approximation method proposed by van Ryzin and
McGill (2000). We refer to this benchmark strategy as VM.

6.3 Computational Results

In Figure 2, we begin by comparing the performances of A1 and A2 on a number of test cases. We give
the label for each test case in the charts. The dashed and solid data series in the charts respectively plot
the total expected revenues corresponding to the protection levels obtained by A1 and A2 as a function
of the iteration counter. All of the total expected revenues are given in terms of the percentage of the
optimal total expected revenues. Figure 2 indicates that the performance of A2 is indistinguishable
from that of A1. The data series corresponding to A1 and A2 in many charts essentially coincide and
it is difficult to see that there are actually two data series. This observation uniformly holds for all of
the test cases that we worked with. Since A2 only requires that we can observe the number of seats
sold to different fare classes, we compare A2 with VM in the subsequent discussion.

Figures 3, 4 and 5 respectively show the results for the test cases with 4, 8 and 12 fare classes. In
these figures, the charts on the left, in the middle and on the right respectively correspond to the test
cases where the initial protection levels are Y 1

R, Y 1
M and Y 1

RM . The top rows correspond to the test
cases where κ = 0.95, whereas the bottom rows correspond to the test cases where κ = 1.25. The thin
and thick data series in the charts respectively plot the total expected revenues corresponding to the
protection levels obtained by A2 and VM as a function of the iteration counter.

We begin by considering the charts in the bottom rows of Figures 3, 4 and 5. These charts correspond
to the test cases where κ = 1.25 and they indicate that A2 tends to perform better than VM when the
total expected demand exceeds the capacity by a significant margin. We observe that the performance
gaps between A2 and VM are substantial when the initial protection levels are Y 1

R. If the initial
protection levels are Y 1

RM , then A2 performs better than VM by a small but consistent margin. The
performances of A2 and VM are quite similar when the initial protection levels are Y 1

M . We note that
the protection levels Y 1

R are not very good as the total expected revenues obtained by these protection
levels are less than 90% of the optimal total expected revenues. This can be seen by checking the first
data points in the charts. On the other hand, the total expected revenues obtained by Y 1

RM and Y 1
M

are respectively about 95% and 98% of the optimal total expected revenues. Therefore, A2 appears to
perform better than VM especially when the total expected demand exceeds the capacity by a significant
margin and the initial protection levels are not very close to the optimal protection levels.

The charts in the top rows of Figures 3, 4 and 5 indicate that the performance of A2 is comparable
to that of VM when the total expected demand is below the capacity. If the initial protection levels are
Y 1

M or Y 1
RM , then VM tends to perform slightly better than A2, whereas if the initial protection levels

are Y 1
R, then A2 tends to perform slightly better than VM. These charts are consistent with the earlier
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observation that A2 appears to perform better than VM when the initial protection levels are not close
to the optimal protection levels. We also note that the performance gap between A2 and VM can still
be significant as shown in the top row of Figure 5 with the initial protection levels Y 1

R.

In the bottom rows of Figures 4 and 5, it appears that VM cannot obtain a good set of protection
levels within a reasonable number of iterations when the initial protection levels are Y 1

R. To make sure
that VM does not prematurely stop making progress, we run VM for 1,000 iterations for these two test
cases and Figure 6 plots the total expected revenues corresponding to the protection levels obtained by
VM as a function of the iteration counter. It turns out that VM eventually obtains good protection
levels but this may take a large number of iterations.

Our computational experiments indicate that the performances of A1 and A2 are at least comparable
to that of VM and there are situations with tight capacities where A1 and A2 perform significantly better
than VM. Furthermore, A1 and A2 tend to perform better than VM when the initial protection levels
are not very close to the optimal protection levels. Therefore, A1 and A2 appear to be reasonable
substitutes for VM. We also note that A1 and A2 provide stochastic subgradients of the value functions
with respect to the seat availability, which may be useful when making tactical decisions such as setting
the capacity of the flight leg.

7 Conclusions and Extensions

In this paper, we developed a stochastic approximation method to compute the optimal protection
levels for the seat allocation problem under the assumption that the demand distributions are discrete.
Although the problem that we consider is nonsmooth and the total expected revenue is not concave
when viewed as a function of the protection levels, we were able to show that the iterates of our method
converge to a set of optimal protection levels. We also showed that our method remains applicable
when we can observe the number of seats sold to a fare class and whether any demand from this fare
class is turned down. Computational experiments demonstrated that our method can be advantageous
when the total expected demand exceeds the capacity by a significant margin and we do not have good
a priori estimates of the optimal protection levels.

It is possible to extend our method to cover the case where the revenues do not necessarily satisfy
r1 ≤ r2 ≤ . . . ≤ rn. If we do not have r1 ≤ r2 ≤ . . . ≤ rn, then the optimal protection levels are not
necessarily nested and it is not guaranteed that y∗1 ≥ y∗2 ≥ . . . ≥ y∗n. However, if we modify (14) in Step
2 of Algorithm 1 as

yk+1
j = min

{[
yk

j + αk
j sk

j (y
k
j , Dk

j+1, . . . , D
k
n)

]+
, c

}
, (22)

then we can use the same argument in Section 4 to show that the iterates of Algorithm 1 still converge
to a set of optimal protection levels w.p.1. This variant of Algorithm 1 works when we do not necessarily
have r1 ≤ r2 ≤ . . . ≤ rn.

For the variant of Algorithm 1 in (22), if we assume that the step size parameter αk
j is the same for

all fare classes and it is equal to αk, then we can follow the same line of reasoning in van Ryzin and
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McGill (2000) to show the convergence rate

E
{∣∣yk

j − Cj(yk
j )

∣∣2} ≤ Λj [αk]β (23)

for all j = 1, . . . , n, where β and Λj are finite scalars, Λn = 0 and Λj increases exponentially fast as j

decreases from n to 1. In contrast, van Ryzin and McGill (2000) show the convergence rate

E
{∣∣yk

j − Cj(yk
j )

∣∣2} ≤ Λj [αk]β/2n−j
,

which is slower than the convergence rate in (23).

Finally, we note that the proof of Proposition 6 depends on the fact that the rounded estimates of
the optimal protection levels are nested. Therefore, the variant of Algorithm 1 in (22) does not work
under the assumption that the demand information is censored by the seat availability. Developing
stochastic approximation methods that work when the demand information is censored and we do not
necessarily have r1 ≤ r2 ≤ . . . ≤ rn is an important area for further research.

References

Bashyam, S. and Fu, M. C. (1998), ‘Optimizaton of (s, S) inventory systems with random lead times
and a service level constraint’, Management Science 44(12), 243–256.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996), Neuro-Dynamic Programming, Athena Scientific, Belmont,
MA.

Bertsimas, D. and de Boer, S. (2005), ‘Simulation-based booking limits for airline revenue management’,
Operations Research 53(1), 90–106.

Brumelle, S. L. and McGill, J. I. (1993), ‘Airline seat allocation with multiple nested fare classes’,
Operations Research 41, 127–137.

Curry, R. E. (1990), ‘Optimal airline seat allocation with fare classes nested by origins and destinations’,
Transportation Science 24, 193–204.

Ermoliev, Y. (1988), Stochastic quasigradient methods, in Y. Ermoliev and R. Wets, eds, ‘Numerical
Techniques for Stochastic Optimization’, Springer-Verlag, Berlin.

Fu, M. (1994), ‘Sample path derivatives for (s, S) inventory systems’, Operations Research 42(2), 351–
363.

Glasserman, P. and Tayur, S. (1995), ‘Sensitivity analysis for base-stock levels in multiechelon
production-inventory systems’, Management Science 41(2), 263–281.

Huh, W. T., Levi, R., Rusmevichientong, P. and Orlin, J. B. (2008), Adaptive data-driven inventory
control policies based on Kaplan-Meier estimator, Technical report, School of Operations Research
and Information Engineering, Cornell University.

Huh, W. T. and Rusmevichientong, P. (2006), Adaptive capacity allocation with censored demand data:
Application of concave umbrella functions, Technical report, Cornell University, School of Operations
Research and Information Engineering.

Karaesmen, I. and van Ryzin, G. (2004), ‘Overbooking with substitutable inventory classes’, Operations
Research 52(1), 83–104.

Kunnumkal, S. and Topaloglu, H. (2007), ‘Using stochastic approximation algorithms to compute opti-
mal base-stock levels in inventory control problems’, Operations Research (to appear).

20



Kushner, H. J. and Clark, D. S. (1978), Stochastic Approximation Methods for Constrained and Uncon-
strained Systems, Springer-Verlang, Berlin.

Lautenbacher, C. J. and Stidham, S. (1999), ‘The underlying markov decision process in the single-leg
airline yield management problem’, Transportation Science 33, 136–146.

L’Ecuyer, P. and Glynn, P. (1994), ‘Stochastic optimization by simulation: Convergence proofs for the
GI/G/1 queue in steady state’, Management Science 40, 1245–1261.

Lee, T. and Hersh, M. (1993), ‘A model for dynamic airline seat inventory control with multiple seat
bookings’, Transportation Science 27, 252–265.

Littlewood, K. (1972), Forecasting and control of passengers, in ‘Proceedings of the 12th AGIFORS’,
New York, pp. 95–117.

Mahajan, S. and van Ryzin, G. (2001), ‘Stocking retail assortments under dynamic customer substitu-
tion’, Operations Research 49(3), 334–351.

Robinson, L. (1995), ‘Optimal and approximate control policies for airline booking with sequential
nonmonotonic fare classes’, Operations Research 43, 252–263.

Talluri, K. T. and van Ryzin, G. J. (2004), The Theory and Practice of Revenue Management, Kluwer
Academic Publishers.

Topaloglu, H. (2007), ‘A stochastic approximation method to compute bid prices in network revenue
management problems’, INFORMS Journal on Computing (to appear).

van Ryzin, G. and McGill, J. (2000), ‘Revenue management without forecasting or optimization: An
adaptive algorithm for determining airline seat protection levels’, Management Science 46(6), 760–
775.

van Ryzin, G. and Vulcano, G. (2004), Computing virtual nesting controls for network revenue manage-
ment under customer choice behavior, Technical Report DRO-2004-09, Columbia Business School.

van Ryzin, G. and Vulcano, G. (2006), ‘Simulation-based optimization of virtual nesting controls for
network revenue management’, Operations Research (to appear).

Wollmer, R. D. (1992), ‘An airline seat management model for a single leg route when lower fare classes
book first’, Operations Research 40, 26–37.

Zinkevich, M. (2003), Online convex programming and generalized infinitesimal gradient ascent, in ‘Pro-
ceedings of the Twentieth International Conference on Machine Learning (ICML-2003)’, Washington,
D.C.

21



0

10

20 0
10

20
30

130

147

165

182

200

y2 y1

exp.
rev.

Figure 1: Total expected revenue R(c, y1, y2, 0) as a function of the protection levels (y1, y2). Problem
parameters are c = 20, r1 = 8, r2 = 10, r3 = 14, D1 ∼ Uniform{0, . . . , 20}, D2 ∼ Uniform{0, . . . , 15},
D3 ∼ Uniform{0, . . . , 20}.

fare class 1 2 3 4

revenue 1050 567 527 350
mean 17.3 45.1 73.6 19.8

std. dev 5.8 15 17.4 6.6

fare class 1 2 3 4 5 6 7 8

revenue 1155 1050 623.7 579.7 567.7 527 385 350
mean 19 17.3 49.6 81 45.1 73.6 21.8 19.8

std. dev. 6.4 5.8 16.5 19.1 15 17.4 7.3 6.6

fare class 1 2 3 4 5 6 7 8 9 10 11 12

revenue 1260 1155 1050 680.4 632.4 623.7 579.7 567 527 420 385 350
mean 20.8 19 17.3 54.1 88.3 49.6 81 45.1 73.6 23.8 21.8 19.8

std. dev. 7 6.4 5.8 18 20.9 16.5 19.1 15 17.4 7.9 7.3 6.6

Table 1: Parameters of our test problems.
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Figure 2: Comparison of A1 and A2.
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Figure 3: Computational results for the test cases with 4 fare classes.
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Figure 4: Computational results for the test cases with 8 fare classes.
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Figure 5: Computational results for the test cases with 12 fare classes.
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Figure 6: Performance of VM on test cases (8, 1.25, Y 1
R) and (12, 1.25, Y 1

R).
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Appendix: Obtaining a Subgradient of vj(·, dj)

In this section, we use induction over the fare classes to show that the recursion in (11) gives a subgra-
dient of vj(·, dj) at xj . It is easy to show the result for fare class n. Assuming that the result holds for
fare class j + 1 and v̇j(xj , dj) is defined as in (11), we show that

vj(x̃j , dj)− vj(xj , dj) ≤ v̇j(xj , dj) [x̃j − xj ]

for all xj , x̃j ∈ [0, c]. Since the roles of xj and x̃j are interchangeable, we consider six cases.

Case 1. Assume that y∗j < xj − dj and y∗j < x̃j − dj . We have vj(x̃j , dj) − vj(xj , dj) = E
{
vj+1(x̃j −

dj , Dj+1)
} − E{

vj+1(xj − dj , Dj+1)
} ≤ E

{
v̇j+1(xj − dj , Dj+1)

}
[x̃j − xj ] = v̇j(xj , dj) [x̃j − xj ], where

the first equality is by (10), the inequality is by the induction assumption that v̇j+1(xj − dj , Dj+1) is a
subgradient of vj+1(·, Dj+1) at xj − dj and the second equality is by (11).

Case 2. Assume that y∗j < xj − dj and x̃j − dj ≤ y∗j ≤ x̃j . By the induction assumption that
v̇j+1(xj−dj , Dj+1) is a subgradient of vj+1(·, Dj+1) at xj−dj , we have E

{
vj+1(y∗j , Dj+1)

}−E{
vj+1(xj−

dj , Dj+1)
} ≤ E

{
v̇j+1(xj − dj , Dj+1)

}
[y∗j − xj + dj ]. Since y∗j is a maximizer of fj(·) over [0, c] and

y∗j < xj − dj , we also have E
{
v̇j+1(xj − dj , Dj+1)

} ≤ rj by (4). Noting that x̃j − dj − y∗j ≤ 0, we obtain
rj [x̃j − dj − y∗j ] ≤ E

{
v̇j+1(xj − dj , Dj+1)

}
[x̃j − dj − y∗j ]. By (10), we have

vj(x̃j , dj)− vj(xj , dj) = rj [x̃j − y∗j ] + E
{
vj+1(y∗j , Dj+1)

}− rj dj − E
{
vj+1(xj − dj , Dj+1)

}

≤ E{
v̇j+1(xj − dj , Dj+1)

}
[x̃j − dj − y∗j ] + E

{
v̇j+1(xj − dj , Dj+1)

}
[y∗j − xj + dj ]

= E
{
v̇j+1(xj − dj , Dj+1)

}
[x̃j − xj ]

= v̇j(xj , dj) [x̃j − xj ],

where the inequality follows from the two inequalities that we derive at the beginning of this case and
the last equality is by (11).

Case 3. Assume that y∗j < xj−dj and x̃j < y∗j . By the induction assumption, we have E
{
vj+1(y∗j , Dj+1)

}

−E{
vj+1(xj − dj , Dj+1)

} ≤ E{
v̇j+1(xj − dj , Dj+1)

}
[y∗j − xj + dj ]. Since y∗j is a maximizer of fj(·) over

[0, c], we have E
{
vj+1(x̃j , Dj+1)

}−E{
vj+1(y∗j , Dj+1)

} ≤ rj [x̃j − y∗j ]. Adding these two inequalities, we
obtain E

{
vj+1(x̃j , Dj+1)

}−E{
vj+1(xj−dj , Dj+1)

} ≤ E{
v̇j+1(xj−dj , Dj+1)

}
[y∗j −xj +dj ]+rj [x̃j−y∗j ].

Similar to Case 2, since y∗j is a maximizer of fj(·) over [0, c] and y∗j < xj −dj , we also have E
{
v̇j+1(xj −

dj , Dj+1)
} ≤ rj . In this case, by (10), we have

vj(x̃j , dj)− vj(xj , dj) = E
{
vj+1(x̃j , Dj+1)

}− rj dj − E
{
vj+1(xj − dj , Dj+1)

}

≤ −rj dj + E
{
v̇j+1(xj − dj , Dj+1)

}
[y∗j − xj + dj ] + rj [x̃j − y∗j ]

≤ E{
v̇j+1(xj − dj , Dj+1)

}
[x̃j − xj ]

= v̇j(xj , dj) [x̃j − xj ],

where the first inequality follows from the inequality that we derive at the beginning of this case, the
second inequality follows from the fact that E

{
v̇j+1(xj − dj , Dj+1)

} ≤ rj , x̃j < y∗j and dj ≥ 0, and the
last equality is by (11).
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Case 4. Assume that xj − dj ≤ y∗j ≤ xj and x̃j − dj ≤ y∗j ≤ x̃j . By (10) and (11), we have
vj(x̃j , dj)− vj(xj , dj) = rj [x̃j − xj ] = v̇j(xj , dj) [x̃j − xj ].

Case 5. Assume that xj − dj ≤ y∗j ≤ xj and x̃j < y∗j . Since y∗j is a maximizer of fj(·) over [0, c], we
have E

{
vj+1(x̃j , Dj+1)

}− E{
vj+1(y∗j , Dj+1)

} ≤ rj [x̃j − y∗j ]. Therefore, by (10), we have

vj(x̃j , dj)− vj(xj , dj) = E
{
vj+1(x̃j , Dj+1)

}− rj [xj − y∗j ]− E
{
vj+1(y∗j , Dj+1)

}

≤ rj [x̃j − xj ] = v̇j(xj , dj) [x̃j − xj ],

where the last equality is by (11).

Case 6. Assume that xj < y∗j and x̃j < y∗j . This case follows from the same argument in Case 1.
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