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We consider multi-product dynamic assortment problems with reusable products, in which each arriving

customer chooses a product within an offered assortment, uses the product for a random duration of time,

and returns the product back to the firm to be used by other customers. The goal is to find a policy for

deciding on the assortment to offer to each customer so that the total expected revenue over a finite selling

horizon is maximized. The dynamic programming formulation of this problem requires a high-dimensional

state variable that keeps track of the on-hand product inventories, as well as the products that are currently

in use. We present a tractable approach to compute a policy that is guaranteed to obtain at least 50% of the

optimal total expected revenue. This policy is based on constructing linear approximations to the optimal

value functions. The approximations are computed through an efficient backward recursion over the time

periods in the selling horizon. When the usage duration is infinite or follows a negative binomial distribution,

we also discuss how to efficiently perform rollout on a simple static policy. Performing rollout corresponds

to using separable and nonlinear value function approximations. The resulting policy is also guaranteed to

obtain at least 50% of the optimal total expected revenue. The special case of our model with infinite usage

durations captures the revenue management problem under customer choice over parallel flight legs operating

between the same origin-destination pair. We provide computational experiments based on simulated data

for parallel flights and real parking transaction data for the city of Seattle. Our computational experiments

demonstrate that the practical performance of our policies is substantially better than their performance

guarantees and performing rollout yields noticeable improvements.
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1. Introduction

Revenue management problems focus on making capacity allocation decisions for limited inventories

of products over a finite selling horizon. These problems find applications in areas as diverse as

airline, hotel, electric power, health care, consumer credit, cruise line, and advertising capacity

management (Ozer and Phillips 2012). The dynamic programming formulations of revenue

management problems are generally intractable because they require high-dimensional state

variables that keep track of the remaining inventory of each product. Thus, computing the

optimal policy is computationally difficult and researchers have focused on approximate policies.
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In traditional application areas of revenue management problems, the customers purchase the

products for final consumption. However, some emerging industries focus on renting out computing

capacity, physical storage space, and fashion items. In these industries, each customer requests a

product, uses the product for a possibly random duration of time, and returns the product back

to the firm, at which point the product can be used by other customers. When making capacity

allocation decisions in such environments, the firms must consider the inventories of products

on-hand, along with the products that are currently in use.

In this paper, we consider dynamic assortment problems with reusable products. Customers

randomly arrive into the system. We offer an assortment of products to each arriving customer. The

customer decides to leave the system or chooses a product from the offered assortment. If a product

is chosen, then the customer uses the product for a random duration of time. After a usage duration,

the customer returns the product back. Our goal is to find a policy for deciding on the assortment

to offer to each arriving customer so that the total expected revenue over a finite selling horizon

is maximized. The dynamic programming formulation of this problem requires a high-dimensional

state variable that keeps track of the remaining product inventories, as well as the products that

are currently in use by the customers. Therefore, computing the optimal policy is computationally

difficult. We propose tractable policies that provide performance guarantees.

Main Contributions: Working with a general dynamic assortment optimization problem, we

construct linear approximations to the optimal value functions. We establish a half-approximate

performance guarantee for the greedy policy with respect to the linear approximations, meaning

that the total expected revenue of the greedy policy is guaranteed to be at least 50% of the

optimal total expected revenue. For special cases of random usage durations, corresponding to

negative binomial and infinite usage durations, we can perform rollout on a static policy to

obtain separable and nonlinear approximations to the optimal value functions. The nonlinear value

function approximations also yield a policy with the half-approximate performance guarantee. Our

computational experiments indicate that the practical performance of our policies are remarkably

good, exceeding the theoretical guarantees by substantial margins.

We proceed to elaborating on each one of these contributions in detail. In Section 2, we

formulate a rather general dynamic assortment problem with random usage durations. In particular,

our formulation allows for a general class of choice models for describing the choice process of

the customers and arbitrary distributions for the random usage durations. We use a dynamic

programming formulation whose state variable keeps track of the numbers of time periods that each

unit of a product has been in use, as well as the numbers of units of products that are available on-

hand. Therefore, the number of dimensions of the state variable can be rather large. Working with
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such a dynamic programming formulation, we construct tractable approximations to the optimal

value functions that yield policies with a half-approximate performance guarantee.

In Section 3, we make algorithmic contributions by proposing a new method to construct linear

value function approximations. Our approach uses an efficient backward recursion over the time

periods. At each time period, we solve a myopic static assortment optimization problem, where we

adjust the product revenues by time-dependent constants computed from the recursion and find an

assortment of products that maximizes the expected adjusted revenue (Section 3.1). Such myopic

static assortment optimization problems are tractable under a variety of choice models. We show

that the greedy policy with respect to our linear value function approximations is guaranteed to

obtain at least 50% of the optimal total expected revenue (Section 3.2).

Our proposed method has two novel aspects. First, the half-approximation guarantee provided by

our linear value function approximations appears to be the first of its kind. A common approach for

constructing linear value function approximations is the approximate linear programming approach,

which uses the linear programming representation of the dynamic programming formulation of the

dynamic assortment problem (Adelman 2007, Zhang and Adelman 2009). Existing results show

that this approach yields upper bounds on the optimal value functions, but do not give performance

guarantees for the resulting policies. Our approach comes with a performance guarantee. Second,

our construction of the approximations is more tractable than the existing methods. The number

of constraints in the linear program used in the approximate linear programming approach grows

linearly with the size of the state and action spaces in the dynamic programming formulation of

the dynamic assortment problem. Thus, this linear program can get quite large and it is often

solved by using column generation on its dual. By contrast, our approach does not solve any linear

program, but computes the coefficients of the linear value function approximations one time period

at a time. Interestingly, the proof for our performance guarantee considers the linear program used

in the approximate linear programming approach. However, we use this linear program only to

facilitate our proof, but not to construct our linear value function approximations.

In Section 4, we focus on constructing separable and nonlinear approximations to the optimal

value functions. We start with a static policy that simply offers the same assortment at a particular

time period, irrespective of the state of the system (Section 4.1). We perform rollout on the static

policy to obtain separable and nonlinear value function approximations, by treating each product

separately. The policy obtained through the rollout approach is also guaranteed to yield at least 50%

of the optimal total expected revenue (Section 4.2). We show that we can efficiently perform rollout

on the static policy when the usage duration follows a negative binomial distribution (Section 4.3) or

when the usage duration is infinite (Section 4.4). The case with infinite usage durations corresponds
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to the situation where the customers purchase the product outright, rather than renting. As our

rollout approach computes separable and nonlinear value function approximations, it is similar

to the decomposition techniques used in the literature to decompose the dynamic programming

formulation of multi-product revenue management problems by treating each product separately

(Liu and van Ryzin 2008, Zhang and Adelman 2009, Kunnumkal and Topaloglu 2010). To our

knowledge, the decomposition techniques in the literature have no performance guarantee, whereas

our approach provides a half-approximate performance guarantee.

Our dynamic assortment problem with infinite usage durations corresponds to the choice-based

revenue management problem over parallel flight legs operating between the same origin-destination

pair (Zhang and Cooper 2005, Liu and van Ryzin 2008, Dai et al. 2014). Thus, this special case

represents an important problem class that has been studied in the literature. In our computational

experiments, in addition to the revenue management problem over parallel flight legs, we work

on the problem of dynamically adjusting the menu of offered prices for parking spaces. We treat

each parking space as a reusable product with a random usage duration. We use actual parking

transaction data from the city of Seattle to estimate the model parameters. Our computational

experiments demonstrate that our policies perform well and performing rollout yields noticeable

improvements in terms of policy performance.

Literature Review: There is limited work on revenue management with random usage

durations. Levi and Radovanovic (2010) study a model that assumes independent demands across

products, without any choice behavior for the customers. The authors establish a performance

guarantee for a static policy that does not consider the real-time state of the system. They focus

on the infinite horizon setting with a long-run average revenue criterion, which allows them to

establish their performance guarantees by characterizing the so-called blocking probabilities. By

contrast, we develop policies that consider the real-time state of the system, and focus on the finite

horizon setting, which makes the blocking probabilities hard to characterize. Recently, Owen and

Simchi-Levi (2017) extend the work of Levi and Radovanovic (2010) to model the choice behavior,

but they consider only static policies and work with the long-run average revenue criterion.

Motivated by the online resource allocation setting, Stein et al. (2016), Wang et al. (2016)

and Gallego et al. (2016) consider a problem related to our dynamic assortment problem. This

stream of work focuses on allocating products to customers arriving over time. In relation to this

literature, we make two contributions. Our problem setup involves reusable resources with random

usage durations. Both reusability and random usage durations bring non-trivial challenges and it

is immediately not clear how to extend the existing work in this direction. More importantly, the

existing work requires solving linear programs, whose sizes can be exponentially large in the number
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of products that can be offered to the customers, when the customers choose among products. We

avoid such large-scale linear programs in our approach altogether.

Finally, our work is related to revenue management problems under customer choice. Zhang and

Cooper (2005) compute upper bounds on the optimal value functions for the choice-based parallel

flights problem, and use these bounds to derive a booking limit policy. Gallego et al. (2004) focus

on network revenue management problems and study static policies extracted from a deterministic

linear program. Adelman (2007) constructs linear approximations in network revenue management

problems. To choose the parameters of the approximations, the author uses the linear programming

representation of the dynamic programming formulation for the network revenue management

problem. This linear program has a large number of constraints, so it is solved by using column

generation on its dual. Liu and van Ryzin (2008) build on the deterministic linear program proposed

by Gallego et al. (2004) to develop dynamic programming decomposition methods for decomposing

the dynamic programming formulation of the network revenue management problem by the flight

legs. Zhang and Adelman (2009) construct linear approximations in choice-based network revenue

management problems, and show that the dynamic programming decomposition idea provides

upper bounds on the optimal value functions. Kunnumkal and Topaloglu (2010) discuss another

dynamic programming decomposition method that is based on allocating the revenue from an

itinerary over the different flight legs that it uses. Tong and Topaloglu (2013) and Vossen and

Zhang (2015) show that the number of constraints in the linear program proposed by Adelman

(2007) can be reduced a priori, eliminating the need to use column generation on the dual of the

linear program. Unlike our performance guarantees, the approaches in this stream of literature do

not provide any constant-factor performance guarantee on the resulting policy.

Organization: In Section 2, we formulate the dynamic assortment problem with reusable

products and random usage durations as a dynamic program. In Section 3, we design a policy that

is guaranteed to obtain at least 50% of the optimal total expected revenue. This policy is based on

building linear approximations to the optimal value functions. Then, in Section 4, we focus on a

static policy and perform rollout on the static policy. This approach yields separable and nonlinear

approximations to the optimal value functions, and the resulting policy is also guaranteed to yield

at least 50% of the optimal total expected revenue. In Section 5, we extend our approach to the case

in which we have heterogeneous customer types, we make pricing rather than assortment decisions,

and we can solve the assortment problems only approximately. In Section 6, we give computational

experiments within the settings of making revenue management decisions for parallel flight legs

and making pricing decisions for parking spaces. Conclusions are discussed in Section 7.
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2. Problem Formulation

We have a set of products with limited inventories. At each time period in the selling horizon,

we decide on the set of products to offer. A customer arriving into the system either chooses

to rent one of the offered products or decides to leave the system without renting any of the

products. We capture the choice process of the customers through a discrete choice model. If the

customer chooses to rent one of the offered products, then she uses the product for a random

duration of time by paying an upfront fee and a per-period rental fee for each time period that

she uses the product. After using the product for a random duration of time, the customer returns

the product, at which point, we can rent the product to another customer. Our goal is to find a

policy for maximizing the total expected revenue over the selling horizon. We proceed to describe

the primitives of the problem, followed by the state, and the transition dynamics. We conclude this

section by giving a dynamic programming formulation of the problem.

Problem Primitives: We have n products indexed by N = {1, . . . , n}. For each product i∈N ,

let Ci ∈Z+ denote its initial inventory level. There are T time periods in the selling horizon indexed

by T = {1, . . . , T}. Each time period corresponds to a small interval of time and there is exactly one

customer arrival at each time period. It is not difficult to extend our model to the case where there

is at most one customer arrival at each time period. A customer chooses among the offered products

according to a discrete choice model {φi(S) : i ∈ N , S ⊆N}, where φi(S) is the probability that

the customer chooses product i when we offer the subset S of products. If a customer chooses to

rent product i, then she pays two types of fees. She immediately pays a one-time upfront fee of ri,

and a fee of πi for each time period she rents the product. Depending on the specific application

under consideration, one of the fees ri or πi can be zero.

We use the generic random variable Durationi to represent the random rental duration of

product i. The random variable Durationi has a probability mass function fi : Z++ 7→ [0,1],

where
∑∞

`=1 fi(`) = 1. We describe the rental duration in terms of its hazard rate ρi,` associated

with the probability mass function fi, where for each `∈Z+, we have

ρi,` = Pr{Durationi = `+ 1 | Durationi > `} =
fi(`+ 1)∑∞
s=`+1 fi(s)

.

The hazard rate ρi,` is the probability that each unit of product i is returned after `+ 1 periods,

given that it has been used for more than ` periods. Since
∑∞

s=1 fi(s) = 1, we have ρi,0 = fi(1), so

that ρi,0 is the probability that a unit of product i is used for exactly one time period. The usage

duration of different units are assumed to be independent of each other.

At each time period t, the following sequence of events happen. We observe whether each

customer with a rented unit of product decides to return the unit, and gather the returned
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units. Next, we observe the state of the system, which consists of the current on-hand units and

the outstanding units that are being rented by the customers. Based on the state, we decide which

subset of products to offer to customers at time period t. The customer arriving at time period t

chooses a unit to rent or leaves the system without renting. Finally, we collect the upfront fee for

the rented unit and the rent from all customers still using their rented units.

State and Transition Dynamics: As discussed in the previous paragraph, we observe the

state of the system at each time period after the returns have been realized. To capture the state of

the system at a generic time period, we use qi,0 to denote the number of units of product i available

as on-hand inventory. For `≥ 1, let qi,` denote the number of units of product i that have been used

for exactly ` time periods, after all of the returns have been realized. Therefore, we can describe

the state of the system by using the vector q = (qi,` : i∈N , `= 0,1, . . .). Since
∑∞

`=0 qi,` =Ci, let

Q = {(qi,` : i∈N , `= 0,1, . . .) :
∑∞

`=0 qi,` =Ci ∀ i∈N} denote the set of all possible states. We

assume that we start the system with no units in use and that all Ci units of each product i are

available on-hand. Thus, there will never be a unit in use for more than T time periods, indicating

that the effective set of possible states is always finite.

After the returns are realized, consider the state q at time period t. There are qi,` units of

product i that have been used for exactly ` periods. Each of these units will be used by customers

for at least one more time period, which is time period t. By definition of the hazard rate, with

probability ρi,`, each of the qi,` units will be returned at the beginning of period t+ 1. Therefore,

if there is no purchase at time period t, then the number of units that will be available as on-hand

inventory at time period t + 1 is qi,0 +
∑∞

`=1 Bin(qi,`, ρi,`), where Bin(k, p) denotes a binomial

random variable with parameters k ∈ Z++ and p ∈ (0,1). At time period t+ 1, after the returns

are realized, the number of units of product i that will have been rented out for ` + 1 periods

will be qi,` − Bin(qi,`, ρi,`), where the second term reflects the units that will be returned. So,

given the state q at time period t, if there is no purchase by a customer, then the state X(q) =

(Xi,`(q) : i∈N , `= 0,1, . . .) at time period t+ 1 is given by

Xi,`(q) =

 qi,0 +
∑∞

s=1 Bin(qi,s, ρi,s) if `= 0,
0 if `= 1,
qi,`−1−Bin(qi,`−1, ρi,`−1) if `≥ 2.

(1)

Note that when there is no purchase in the current time period, we have Xi,1(q) = 0 because each

unit that has been in use will either return to the firm or continue to be in use. In the latter case,

its usage duration will be at least two time periods.

Dynamic Programming Formulation: We use F to denote the collection of feasible subsets

of products that we can offer to the customers at each time period, capturing the constraints that



Rusmevichientong, Sumida, and Topaloglu: Dynamic Assortment Optimization for Reusable Products
8

we may impose on the offered subset of products. To formulate the problem as a dynamic program,

we denote a Bernoulli random variable with parameter ρ by Z(ρ); that is, we have Pr{Z(ρ) = 1}= ρ

and Pr{Z(ρ) = 0}= 1− ρ. Lastly, viewing the state q = (qi,` : i∈N , `= 0,1, . . .) as a vector, we let

ei,k be a unit vector with one in the (i, k)-th coordinate and zero everywhere else. Let J t(q) denote

the maximum total expected revenue over the time periods t, t+ 1, . . . , T , given that the system is

in state q at time period t. Then, using 1l{·} to denote the indicator function, we can compute the

optimal value functions {J t : t∈ T } by solving the dynamic program

J t(q) =
∑
i∈N

πi

∞∑
`=1

qi,`

+ max
S∈F

{∑
i∈N

1l{qi,0≥1}φi(S)

(
ri +πi +E

{
Z(ρi,0)J t+1(X(q)) + (1−Z(ρi,0))J t+1 (X(q)−ei,0 +ei,1)

})

+
(

1−
∑
i∈N

1l{qi,0≥1}φi(S)
)
E
{
J t+1(X(q))

}}
, (2)

with the boundary condition that JT+1 = 0. In the dynamic programming formulation above, we

implicitly assume that even if qi,0 = 0 so that we do not have any on-hand inventory for product i,

we can offer an assortment that includes product i. Noting the indicator function, if a customer

chooses a product with zero on-hand inventory, then she leaves the system without renting any

products. The possibility of offering products with zero on-hand inventory may be unrealistic in

certain settings. Later in this section, in Assumption 2.1, we impose rather mild assumptions on

the discrete choice model {φi(S) : i∈N , S ⊆N} and the set of feasible decisions F to ensure that

the optimal policy never offers a product with zero on-hand inventory, even if we are allowed to

do so. In this case, it follows that the dynamic programming formulation above is equivalent to

a dynamic programming formulation that explicitly imposes a constraint to ensure that we must

have non-zero on-hand inventory for each product that we offer.

In the dynamic program in (2), the term
∑

i∈N πi
∑∞

`=1 qi,` =
∑

i∈N πi(Ci − qi,0) captures

the rent payments from customers with already rented units. After observing the returns

at time period t, there are
∑∞

`=1 qi,` = Ci − qi,0 units of product i that are in use. All of

these units will be used during time period t, so the customers who are using these units

will pay the rent in the amount of πi
∑∞

`=1 qi,` for this period. On the other hand, the

term ri +πi +E
{
Z(ρi,0)J t+1(X(q)) + (1−Z(ρi,0))J t+1 (X(q)−ei,0 +ei,1)

}
corresponds to the

expected revenue from a customer who selects product i. Here, ri+πi reflects the upfront payment

and the per-period rent for the first rental period. Noting the definition of the hazard rate, we

have ρi,0 = fi(1). Therefore, the Bernoulli random variable Z(ρi,0) takes a value of 1 if and only if

the customer renting a unit of product i at time period t uses the product for exactly one time
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period. If Z(ρi,0) = 1, then the unit is returned to the firm at the beginning of period t+1, in which

case, the state at time period t+1 is X(q), identical to the state that we would have obtained when

no rentals were made at time period t. On the other hand, if Z(ρi,0) = 0, then the selected unit of

product i will not be returned at the beginning of time period t+1. In this case, when compared to

the state X(q) with no rentals at time period t, we will have one fewer on-hand unit for product i

and one more unit with one time period in use. So, the state of the system at time period t+1 will

be X(q)−ei,0 +ei,1. To simplify our dynamic programming formulation, we observe that since the

rental durations of different units are independent of each other, X(q) and Z(ρi,0) are independent

of each other as well. Therefore, we obtain

E
{
Z(ρi,0)J t+1(X(q)) + (1−Z(ρi,0))J t+1 (X(q)−ei,0 +ei,1)

}
−E

{
J t+1(X(q))

}
= ρi,0 E

{
J t+1 (X(q))

}
+ (1− ρi,0)E

{
J t+1 (X(q)−ei,0 +ei,1)

}
−E

{
J t+1(X(q))

}
= − (1− ρi,0)E

{
J t+1 (X(q))−J t+1 (X(q)−ei,0 +ei,1)

}
,

in which case, simply by rearranging the terms, we can write the dynamic programming formulation

in (2) equivalently as

J t(q) =
∑
i∈N

πi

∞∑
`=1

qi,` + E
{
J t+1(X(q))

}
+ max

S∈F

{∑
i∈N

1l{qi,0≥1} φi(S)
(
ri +πi− (1− ρi,0)E

{
J t+1 (X(q))−J t+1 (X(q)−ei,0 +ei,1)

})}
. (3)

Note that J t+1 (X(q))− J t+1 (X(q)−ei,0 +ei,1) captures the marginal value of renting one unit

of product i to the customer at time period t.

Throughout the paper, we impose a mild assumption on the discrete choice model

{φi(S) : i∈N , S ⊆N} and the set of feasible decisions F to ensure that the optimal policy never

offers a product with zero on-hand inventory. This assumption is given below.

Assumption 2.1 (Substitutability and Feasibility) Adding more products to an assortment

does not increase the selection probability; that is, for all S ⊆N and k ∈ N , φi(S ∪ {k})≤ φi(S)

for all i∈ S. In addition, if a set of products is feasible to offer, then so are all of its subsets; that

is, if A∈F , then S ∈F for all S ⊆A.

The first assumption ensures that products are substitutable, and thus, the probability of

choosing any product never increases if more options become available. This assumption is rather

mild and it holds for all choice models satisfying the random utility maximization principle,

including the multinomial logit, nested logit, paired combinatorial logit, and many others. In
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addition, the feasibility assumption on the collection of subsets F also holds for a broad class

of assortment constraints, such as a shelf-space constraint F =
{
S ⊆N :

∑
i∈S ci ≤B

}
, where

ci is the space consumed by product i and B is the total shelf-space available. Under the

assumption above, it is not difficult to see that the optimal policy never offers a product with

zero on-hand inventory. In the maximization problem in (3), the profit contribution of product i

is 1l{qi,0≥1}× (ri +πi− (1− ρi,0)E{J t+1(X(q))−J t+1(X(q)−ei,0 +ei,1)}). Let S∗ be an optimal

solution to this maximization problem. In this case, observe that we can drop all products

with non-positive profit contributions from S∗ because if we drop such products, then by the

substitutability assumption, the selection probabilities of all other products increase, whereas by

the feasibility assumption, the subset we obtain remains feasible. The new subset that we obtain

in this fashion provides an objective value to the maximization problem in (3) that is at least as

large as that provided by S∗. As the profit contribution of product i is zero when 1l{qi,0≥1} = 0,

there exists an optimal policy that never offers a product with zero on-hand inventory.

Because all products are available at the beginning of the selling horizon, the optimal total

expected revenue is given by J1
(∑

i∈N Ci ei,0
)
. One potential source of difficulty in computing the

optimal value functions {J t : t ∈ T } is that the maximization problem in (3) is a combinatorial

optimization problem that chooses the set of products to offer. However, this problem has been

studied for many different discrete choice models, including the multinomial logit, nested logit,

d-level logit, and paired combinatorial logit, and under many different types of feasible sets F .

Later in the paper, we also discuss how our results extend when we can solve this maximization

problem only approximately. Thus, the difficulty due to having to solve the maximization problem

in (3) is not a huge concern. A more serious source of difficulty is that we need to compute the

value function J t(q) for each q ∈ Q, and the number of possible states |Q| grows exponentially

with n and T . Therefore, throughout the rest of the paper, we focus on developing approximate

policies that are efficient to compute and have provable performance guarantees.

3. Linear Value Function Approximations

We develop an approach to construct linear approximations to the optimal value functions and

analyze the performance of a policy that uses these approximations. In particular, we give a

tractable recursion to come up with linear value function approximations. We show that if we use

the greedy policy with respect to these linear value function approximations, then we obtain a

policy that is guaranteed to obtain at least 50% of the optimal total expected revenue.
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3.1 Specification of Linear Value Function Approximations

We consider an approximation Ĵ t to the optimal value function J t given by

Ĵ t(q) = β̂t +
∑
i∈N

∞∑
`=0

ν̂ti,` qi,`,

where, for `≥ 1, the parameter ν̂ti,` represents the marginal value at time period t of each unit of

product i that has been in use for ` periods, whereas ν̂ti,0 denotes the marginal value of each unit

of product i that is currently available as on-hand inventory at time period t. The parameter β̂t is

a simple intercept. We propose computing ν̂ti,` and β̂t recursively as follows.

• Initialization: Set ν̂T+1
i,` = 0 for all i∈N , `≥ 0 and set β̂T+1 = 0.

• Backward Recursion: For t = T,T − 1, . . . ,1, we compute ν̂ti,` and β̂t by using

{ν̂t+1
i,` : i∈N , `≥ 0} as follows. Let Ât ∈F be an assortment such that

Ât = arg max
S∈F

∑
i∈N

φi(S)
[
ri +πi− (1− ρi,0)

(
ν̂t+1
i,0 − ν̂t+1

i,1

)]
. (4)

Once Ât is computed, for all i∈N , let

ν̂ti,0 = ν̂t+1
i,0 +

1

Ci
φi(Â

t)
[
ri +πi− (1− ρi,0)

(
ν̂t+1
i,0 − ν̂t+1

i,1

)]
(5)

ν̂ti,` = πi + ρi,` ν̂
t+1
i,0 + (1− ρi,`) ν̂t+1

i,`+1 ∀ `= 1,2, . . .

β̂t =
∑
i∈N

Ci ν̂
t
i,0.

The above description completes the specification of the approximate value function Ĵ t. We shortly

give the intuition behind our approach. Because we start the system with all available units as

on-hand inventory, no unit will be in use for more than T time periods. Thus, we only need to

compute ν̂ti,` for `= 0,1, . . . , T , so we can execute the above recursion in finite time.

We provide intuition into the computation of Ât. Intuitively speaking, we can interpret Ât

as an ideal assortment to offer at time period t under the linear value function approximation

when we ignore the inventory availability. In particular, if we replace the value function

J t+1 in the maximization problem on the right side of (3) with the linear approximation

Ĵ t+1(q) = β̂t+1 +
∑

i∈N
∑∞

`=0 ν̂
t+1
i,` qi,` and we drop the indicator function 1l{qi,0≥1} to ignore the

inventory availability, then the objective function of this maximization problem takes the form∑
i∈N φi(S) [ri +πi− (1− ρi,0)

(
ν̂t+1
i,0 − ν̂t+1

i,1

)
], which is the same as the objective function of the

maximization problem in (4). Next, we provide some intuition into the computation of νti,0, which

measures the value of a unit of on-hand inventory for product i at time period t. Roughly speaking,

assume that we offer the ideal assortment Ât at time period t, and if a customer selects product i



Rusmevichientong, Sumida, and Topaloglu: Dynamic Assortment Optimization for Reusable Products
12

at time period t, then we “route” the customer to one of the Ci copies of product i with equal

probability of 1/Ci. In this case, the probability that a unit of product i “sees” a demand at time

period t is φi(Â
t) 1
Ci

. We write the recursion that we use to compute ν̂ti,0 equivalently as

ν̂ti,0 =
1

Ci
φi(Â

t)
[
ri +πi + ρi,0 ν̂

t+1
i,0 + (1− ρi,0) ν̂t+1

i,1

]
+

(
1− 1

Ci
φi(Â

t)

)
ν̂t+1
i,0 .

On the left side above, ν̂ti,0 is the value of a unit of product i on-hand at time period t. If we offer

the ideal assortment Ât at time period t, then a unit of product i “sees” a demand with probability

1
Ci
φi(Â

t). In this case, we collect the upfront fee ri and the rent πi for the first time period. As

discussed earlier, with probability ρi,0 = fi(1), the customer rents product i for exactly one time

period, in which case she returns the product at time period t+ 1. The value of a unit of on-hand

inventory of product i at time period t+ 1 is ν̂t+1
i,0 . With probability 1− ρi,0, the customer rents

product i for more than one time period, in which case the product will have been rented out at

time period t+ 1 for exactly one period. The value of a unit of product i at time period t+ 1

that has been in use for one period is ν̂t+1
i,1 . This discussion provides the intuition for the term

ri + πi + ρi,0 ν̂
t+1
i,0 + (1− ρi,0) ν̂t+1

i,1 on the right side above. With probability 1− 1
Ci
φi(Â

t), the unit

of product i does not “see” a demand, in which case this unit is still available at time period t+ 1

and the value of this unit is given by ν̂t+1
i,0 .

We can give a similar intuition for the recursion that is used to compute ν̂ti,` for all `= 1,2, . . ..

Noting the recursion ν̂ti,` = πi +ρi,` ν̂
t+1
i,0 + (1−ρi,`) ν̂t+1

i,`+1, recall that ν̂ti,` on the left side is the value

of a unit of product i that has been in use for ` periods at time period t. As the state of the system

is accounted for after observing the rental returns in the current time period, this product will

certainly be used until the end of time period t and we will obtain the rental fee of πi. Furthermore,

by the definition of the hazard rate ρi,`, a unit of product that has been in use for ` periods at time

period t will be returned in the next time period with probability ρi,`, in which case, the value of

this on-hand unit at time period t+1 is ν̂t+1
i,0 , yielding the term ρi,` ν̂

t+1
i,0 on the right side. Finally, a

unit of product that has been in use for ` periods at time period t will not be returned in the next

time period with probability 1− ρi,`. Therefore, this unit of product will have been used for `+ 1

periods at the next time period and the value of this unit at time period t+ 1 is ν̂t+1
i,`+1, yielding the

term (1− ρi,`) ν̂t+1
i,`+1 on the right side.

Our choice for β̂t is motivated by the fact that we will use a balancing argument to ultimately

obtain a half-approximate policy. In particular, if all products are available at time period t, then

the two terms in the value function approximation β̂t +
∑

i∈N
∑∞

`=0 ν̂
t
i,` qi,` evaluate to the same

quantity
∑

i∈N Ci ν̂
t
i,0. In the next lemma, we give a useful property for the marginal value ν̂ti,`,

where we show that the marginal value of a unit of product becomes smaller as the end of the

selling horizon approaches. We use this property several times throughout the paper.
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Lemma 3.1 (Properties of the Marginal Values) The marginal value of on-hand inventory

decreases over time; that is, ν̂ti,0 ≥ ν̂t+1
i,0 for all t∈ T and i∈N .

Proof: For notational brevity, let ∆t
i = ri +πi− (1− ρi,0)

(
ν̂t+1
i,0 − ν̂t+1

i,1

)
. Shortly, we show the claim

that φi(Â
t)∆t

i ≥ 0 for all i∈N . In this case, noting the recursion that we use to compute ν̂ti,0, we

have ν̂ti,0 = ν̂t+1
i,0 + 1

Ci
φi(Â

t)∆t
i ≥ νt+1

i,0 , which is the desired result. To see the claim that φi(Â
t)∆t

i ≥ 0

for all i ∈ N , assume on the contrary that there exists some k ∈ N such that φk(Â
t)∆t

k < 0. Let

N+ = {i ∈ N : ∆t
i ≥ 0} and N− = {i∈N : ∆t

i < 0}. By our assumption, there exists some k ∈ N−

such that φk(Â
t)> 0. Furthermore, by Assumption 2.1, φi(Â

t∩N+)≥ φi(Ât) for all i∈ Ât∩N+. By

the same assumption, because Ât ∈F , we have Ât ∩N+ ∈F . In this case, we obtain∑
i∈N

φi(Â
t)∆t

i =
∑
i∈N+

φi(Â
t)∆t

i +
∑
i∈N−

φi(Â
t)∆t

i <
∑
i∈N+

φi(Â
t)∆t

i

=
∑

i∈Ât∩N+

φi(Â
t)∆t

i ≤
∑

i∈Ât∩N+

φi(Â
t ∩N+)∆t

i =
∑
i∈N

φi(Â
t ∩N+)∆t

i,

where the first inequality is by the fact that there exists some k ∈ N− such that φk(Â
t) > 0,

the second equality holds since φi(Â
t) = 0 for all i 6∈ Ât, and the second inequality uses the fact

that φi(Â
t ∩N+)≥ φi(Ât) for all i ∈ Ât ∩N+. Since Ât ∩N+ ∈ F , the chain of inequalities above

contradicts the fact that Ât is an optimal solution to problem (4).

3.2 An Approximate Policy Using Marginal Values

We consider the greedy policy with respect to the value function approximations {Ĵ t : t ∈ T }. If

the system is in state q at time period t, then this policy offers the assortment Ŝt(q) given by

Ŝt(q) = arg max
S∈F

{∑
i∈N

1l{qi,0≥1}φi(S)
[
ri +πi− (1− ρi,0)E

{
Ĵ t+1 (X(q))− Ĵ t+1 (X(q)−ei,0 +ei,1)

}]}

= arg max
S∈F

n∑
i=1

1l{qi,0≥1}φi(S)
[
ri +πi− (1− ρi,0)

(
ν̂t+1
i,0 − ν̂t+1

i,1

)]
. (6)

The main result of this section is stated in the following theorem, which gives a performance

guarantee for the greedy policy with respect to the value function approximations {Ĵ t : t∈ T }.

Theorem 3.2 (Performance of the Greedy Policy) The total expected revenue of the greedy

policy with respect to the value function approximations
{
Ĵ t : t∈ T

}
is at least 50% of the optimal

total expected revenue.

The proof of this theorem makes use of the following lemma. Because we do not have any products

in use at the beginning of the selling horizon, the initial state is
∑

i∈N Ci ei,0. The following lemma

relates
∑

i∈N Ci ν̂
1
i,0 to the optimal total expected revenue J1

(∑
i∈N Ci ei,0

)
.
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Lemma 3.3 (Expected Revenue Upper Bound) J1
(∑

i∈N Ci ei,0
)
≤ 2

∑
i∈N Ci ν̂

1
i,0.

Proof: By Adelman (2007), we can obtain an upper bound on the optimal total expected revenue

by using the objective value provided by any feasible solution to the linear program

min J̃1

(∑
i∈N

Ciei,0

)

s.t. J̃ t(q) ≥
∑
i∈N

πi

∞∑
`=1

qi,` + E
{
J̃ t+1(X(q))

}
+
∑
i∈N

1l{qi,0≥1} φi(S)
[
ri +πi− (1− ρi,0)E

{
J̃ t+1 (X(q))− J̃ t+1 (X(q)−ei,0 +ei,1)

}]
∀q ∈Q, S ∈ F , t∈ T ,

where the decision variables are {J̃ t(q) : q ∈ Q, t ∈ T } and we follow the convention that

J̃T+1 = 0. We proceed to showing that {Ĵ t(q) : q ∈Q, t ∈ T } with Ĵ t(q) = β̂t +
∑

i∈N
∑∞

`=0 ν̂
t
i,` qi,`

is a feasible solution to the linear program above. As all products are available at the beginning of

the selling horizon, there will never be a product that is in use for more than T time periods. Thus,

we can assume that Q is a finite set, which implies that the numbers of decision variables and

constraints above are finite. By the definition of Ĵ t+1(q), along with X(q) in (1), we obtain

E
{
Ĵ t+1(X(q))

}
= β̂t+1 +

∑
i∈N

{
ν̂t+1
i,0

[
qi,0 +

∞∑
`=1

ρi,` qi,`

]
+
∞∑
`=1

ν̂t+1
i,`+1 [qi,`− ρi,` qi,`]

}

= β̂t+1 +
∑
i∈N

{
qi,0 ν̂

t+1
i,0 +

∞∑
`=1

qi,`
[
ρi,` ν̂

t+1
i,0 + (1− ρi,`) ν̂t+1

i,`+1

]}
.

Similarly, E
{
Ĵ t+1 (X(q))− Ĵ t+1 (X(q)−ei,0 +ei,1)

}
= ν̂t+1

i,0 − ν̂t+1
i,1 . So, if we evaluate the right side

of the constraint in the linear program above at {Ĵ t(q) : q ∈Q, t∈ T }, then we obtain∑
i∈N

πi

∞∑
`=1

qi,` + E
{
Ĵ t+1(X(q))

}
+
∑
i∈N

1l{qi,0≥1} φi(S)
[
ri +πi− (1− ρi,0)E

{
Ĵ t+1 (X(q))− Ĵ t+1 (X(q)−ei,0 +ei,1)

}]
=
∑
i∈N

πi

∞∑
`=1

qi,` + β̂t+1 +
∑
i∈N

{
qi,0 ν̂

t+1
i,0 +

∞∑
`=1

qi,`
[
ρi,` ν̂

t+1
i,0 + (1− ρi,`) ν̂t+1

i,`+1

]}
+
∑
i∈N

1l{qi,0≥1} φi(S)
[
ri +πi− (1− ρi,0) (ν̂t+1

i,0 − ν̂t+1
i,1 )

]
=
∑
i∈N

ν̂t+1
i,0 Ci +

∑
i∈N

{
qi,0 ν̂

t+1
i,0 +

∞∑
`=1

qi,`ν̂
t
i,`

}
+
∑
i∈N

1l{qi,0≥1} φi(S)
[
ri +πi− (1− ρi,0) (ν̂t+1

i,0 − ν̂t+1
i,1 )

]
,

where the second equality follows by noting the definitions of β̂t+1 and ν̂ti,`, where we have β̂t+1 =∑
i∈N ν̂

t+1
i,0 Ci and ν̂ti,` = πi + ρi,` ν̂

t+1
i,0 + (1− ρi,`) ν̂t+1

i,`+1. A simple lemma, given as Lemma A.1 in
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Appendix A, shows that if we let ∆t
i = ri + πi − (1 − ρi,0) (ν̂t+1

i,0 − ν̂t+1
i,1 ), then for all S ∈ F , we

have
∑

i∈N 1l{qi,0≥1} φi(S)∆t
i ≤
∑

i∈N φi(Â
t)∆t

i. The proof of this lemma follows from an argument

similar to that in the proof of Lemma 3.1. Thus, noting the chain of equalities above, we upper

bound the right side of the constraint in the linear program as

∑
i∈N

ν̂t+1
i,0 Ci +

∑
i∈N

{
qi,0 ν̂

t+1
i,0 +

∞∑
`=1

qi,` ν̂
t
i,`

}
+
∑
i∈N

1l{qi,0≥1} φi(S)
[
ri +πi− (1− ρi,0) (ν̂t+1

i,0 − ν̂t+1
i,1 )

]
≤

∑
i∈N

ν̂t+1
i,0 Ci +

∑
i∈N

∞∑
`=0

qi,` ν̂
t
i,` +

∑
i∈N

φi(Â
t)
[
ri +πi− (1− ρi,0) (ν̂t+1

i,0 − ν̂t+1
i,1 )

]
=

∑
i∈N

ν̂t+1
i,0 Ci +

∑
i∈N

∞∑
`=0

qi,` ν̂
t
i,` +

∑
i∈N

Ci (ν̂
t
i,0− ν̂t+1

i,0 )

=
∑
i∈N

ν̂ti,0Ci +
∑
i∈N

∞∑
`=0

qi,` ν̂
t
i,` = β̂t +

∑
i∈N

∞∑
`=0

qi,` ν̂
t
i,` = Ĵ t(q),

where the first inequality follows from the fact ν̂ti,0 ≥ ν̂t+1
i,0 by Lemma 3.1, the first equality follows

from the definition of ν̂ti,0 and the third equality follows from the definition of β̂t. By the chain of

inequalities above, for any q ∈ Q, S ∈ F , t ∈ T , if we evaluate the right side of the constraint at

{Ĵ t(q) : q ∈Q, t∈ T }, then the right side of the constraint is upper bounded by Ĵ t(q). Thus, the

solution {Ĵ t(q) : q ∈Q, t ∈ T } is feasible to the linear program, which implies that the objective

value of the linear program evaluated at this solution is an upper bound on the optimal expected

revenue. The objective value of the linear program evaluated at the solution {Ĵ t(q) : q ∈Q, t∈ T } is

Ĵ1
(∑

i∈N Ci ei,0
)

= β̂1 +
∑

i∈N ν̂
1
i,0Ci = 2

∑
i∈N ν̂

1
i,0Ci, where the last inequality uses the definition

of β̂1. Thus, 2
∑

i∈N ν̂
1
i,0Ci is an upper bound on the optimal total expected revenue.

The greedy policy with respect to the value function approximations {Ĵ t : t ∈ T } offers the

assortment Ŝt(q) when the system is in state q at time period t. Let U t(q) denote the total expected

revenue under this greedy policy over the time periods t, . . . , T , given that we are in state q at time

period t. We can compute {U t : t∈ T } by using the recursion

U t(q) =
∑
i∈N

πi

∞∑
`=1

qi,`

+
∑
i∈N

1l{qi,0≥1}φi(Ŝ
t(q))

(
ri +πi +E

{
Z(ρi,0)U t+1(X(q)) + (1−Z(ρi,0))U t+1 (X(q)−ei,0 +ei,1)

})
+
(

1−
∑
i∈N

1l{qi,0≥1}φi(Ŝ
t(q))

)
E
{
U t+1(X(q))

}
,

with the boundary condition that UT+1 = 0. In the recursion above, we use the same line of

reasoning that we used for the dynamic programming formulation in (2), but the decision is

fixed as Ŝt(q). An observation that will shortly be useful is that U t+1 appears with a positive

coefficient on the right side above. Therefore, if we replace U t+1 with a function Ht+1 that satisfies
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U t+1(q)≥Ht+1(q), then the right side of the expression above becomes smaller. By using the same

sequence of manipulations that we used to obtain the dynamic program in (3), we can write the

above recursion equivalently as

U t(q) =
∑
i∈N

πi

∞∑
`=1

qi,` + E
{
U t+1(X(q))

}
+
∑
i∈N

1l{qi,0≥1} φi(Ŝ
t(q))

(
ri +πi− (1− ρi,0)E

{
U t+1 (X(q))−U t+1 (X(q)−ei,0 +ei,1)

})
. (7)

The coefficients of U t+1 are not necessarily all positive on the right side above, but the last two

recursions are equivalent. So, if we replace U t+1 on the right side above with a function Ht+1 that

satisfies U t+1(q)≥Ht+1(q), then the right side of the expression above still gets smaller.

Here is the proof of Theorem 3.2.

Proof of Theorem 3.2: For all t ∈ T and q ∈ Q, let Ht(q) =
∑

i∈N
∑∞

`=0 qi,` ν̂
t
i,`. We will use

induction over the time periods to show that U t(q)≥Ht(q) for all q ∈Q and t∈ T . By definition,

ν̂T+1
i,` = 0 for all i ∈ N , `= 0,1, . . ., so that HT+1 = 0. Furthermore, we have UT+1 = 0. Thus, the

result holds at time period T + 1. Assuming that U t+1(q)≥Ht+1(q) for all q ∈Q, we proceed to

showing that U t(q)≥Ht(q) for all q ∈Q. Noting that Ht+1 is linear, by using the same argument

in the proof of Lemma 3.3, we have

E
{
Ht+1(X(q))

}
=

∑
i∈N

{
qi,0 ν̂

t+1
i,0 +

∞∑
`=1

qi,`
[
ρi,` ν̂

t+1
i,0 + (1− ρi,`) ν̂t+1

i,`+1

]}
.

Similarly, we have E
{
Ht+1(X(q)) − Ht+1 (X(q)−ei,0 +ei,1)

}
= ν̂t+1

i,0 − ν̂t+1
i,1 . Thus, by the

inductive hypothesis and the recursion defining U t(q) in (7), we have

U t(q) ≥
∑
i∈N

πi

∞∑
`=1

qi,` + E
{
Ht+1(X(q))

}
+
∑
i∈N

1l{qi,0≥1} φi(Ŝ
t(q))

(
ri +πi− (1− ρi,0)E

{
Ht+1 (X(q))−Ht+1 (X(q)−ei,0 +ei,1)

})
=

∑
i∈N

πi

∞∑
`=1

qi,` +
∑
i∈N

{
qi,0 ν̂

t+1
i,0 +

∞∑
`=1

qi,`
[
ρi,` ν̂

t+1
i,0 + (1− ρi,`) ν̂t+1

i,`+1

]}
+
∑
i∈N

1l{qi,0≥1} φi(Ŝ
t(q))

[
ri +πi− (1− ρi,0)(ν̂t+1

i,0 − ν̂t+1
i,1 )

]
=

∑
i∈N

{
qi,0 ν̂

t+1
i,0 +

∞∑
`=1

qi,`
[
πi + ρi,` ν̂

t+1
i,0 + (1− ρi,`) ν̂t+1

i,`+1

]}
+ max

S∈F

∑
i∈N

1l{qi,0≥1} φi(S)
[
ri +πi− (1− ρi,0) (ν̂t+1

i,0 − ν̂t+1
i,1 )

]
,

where the last equality follows from the fact that Ŝt(q), by its definition, is an the optimal

solution to the maximization problem on the right side above. By the definition of ν̂ti,`, we have
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ν̂ti,` = πi + ρi,` ν̂
t+1
i,0 + (1− ρi,`) ν̂t+1

i,`+1. In this case, the expression on the right side of the chain of

inequalities above can equivalently be written as∑
i∈N

{
qi,0 ν̂

t+1
i,0 +

∞∑
`=1

qi,` ν̂
t
i,`

}
+ max

S∈F

∑
i∈N

1l{qi,0≥1} φi(S)
[
ri +πi− (1− ρi,0) (ν̂t+1

i,0 − ν̂t+1
i,1 )

]
≥

∑
i∈N

{
qi,0 ν̂

t+1
i,0 +

∞∑
`=1

qi,` ν̂
t
i,`

}
+
∑
i∈N

1l{qi,0≥1} φi(Â
t)
[
ri +πi− (1− ρi,0) (ν̂t+1

i,0 − ν̂t+1
i,1 )

]
≥

∑
i∈N

{
qi,0 ν̂

t+1
i,0 +

∞∑
`=1

qi,` ν̂
t
i,`

}
+
∑
i∈N

qi,0
Ci

φi(Â
t)
[
ri +πi− (1− ρi,0) (ν̂t+1

i,0 − ν̂t+1
i,1 )

}
=

∑
i∈N

{
qi,0 ν̂

t+1
i,0 +

∞∑
`=1

qi,` ν̂
t
i,`

}
+
∑
i∈N

qi,0(ν̂ti,0− ν̂t+1
i,0 )

=
∑
i∈N

∞∑
`=0

qi,` ν̂
t
i,` = Ht(q).

In the chain of inequalities above, to see that second inequality holds, by the discussion in the

proof of Lemma 3.1, we have φi(Â
t) [ri+πi− (1−ρi,0)

(
ν̂t+1
i,0 − ν̂t+1

i,1

)
]≥ 0 for all i∈N . Furthermore,

noting the definition of Q, we have qi,0 ≤Ci whenever q ∈Q, which implies that 1l{qi,0≥1} ≥
qi,0
Ci

. The

first equality follows from the definition of ν̂ti,0. The chain of inequalities above completes the

induction argument so that we have U t(q) ≥ Ht(q) for all q ∈ Q and t ∈ T . As the initial

state of the system is
∑

i∈N Ci ei,0, the total expected revenue collected by the greedy policy

is U 1
(∑

i∈N Ciei,0
)
. In this case, using the last inequality with t = 1 and q =

∑
i∈N Ciei,0, we

obtain U 1
(∑

i∈N Ci ei,0
)
≥H1

(∑
i∈N Ci ei,0

)
=
∑

i∈N Ci ν̂
1
i,0 ≥ 1

2
J1
(∑

i∈N Ci ei,0
)
, where the second

inequality follows by Lemma 3.3.

The greedy policy with respect to the value function approximations {Ĵ t : t ∈ T } is guaranteed

to obtain at least 50% of the optimal total expected revenue. In our computational experiments,

we demonstrate that the practical performance of the policy can be substantially better than

this theoretical performance guarantee. Nevertheless, despite having a performance guarantee, this

greedy policy has a somewhat undesirable attribute. Consider two states q ∈ Q and q′ ∈ Q such

that {i ∈ N : qi,0 ≥ 1} = {i ∈ N : q′i,0 ≥ 1}. In other words, the set of products for which we have

on-hand inventory is the same in the two states. In this case, noting the definition of Ŝt(q), we

have Ŝt(q) = Ŝt(q′). Therefore, the decisions of the greedy policy depend on the set of products

for which we have on-hand inventory, but not on the level of inventory for these products. The

greedy policy does not differentiate between having too much or too little inventory of a product,

as long as we have on-hand inventory for this product. In the next section, we develop a more

sophisticated policy that explicitly takes the inventory levels into consideration, while maintaining

the performance guarantee of the greedy policy. Our computational experiments demonstrate that

the latter policy can perform noticeably better than the greedy policy.
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4. Improving the Policy Performance through Rollout

To develop a policy that explicitly takes the inventory levels of the products into consideration, we

build on a static policy that offers a fixed assortment at each time period. With the assortment Ât

defined in (4), the static policy always offers the assortment Ât at time period t. Using an analysis

similar to the one for the greedy policy with respect to the linear value function approximations

discussed in the previous section, we show that the static policy obtains at least 50% of the optimal

total expected revenue. Furthermore, the value functions associated with the static policy are

separable by the products. We perform rollout on the static policy to obtain a policy that takes the

inventory levels of the products into consideration, while maintaining the performance guarantee

of the static policy. Exploiting the fact that the value functions associated with the static policy

are separable by the products, we show that we can efficiently perform rollout on the static policy

when the usage durations follow a negative binomial distribution or when the customers purchase

the products outright without returning them at all.

4.1 Properties of the Static Policy

We consider a static policy that always offers the assortment Ât at time period t regardless of

the product availabilities, where Ât is defined in (4). If a customer chooses a product that is not

available, then she leaves the system. In the next lemma, we show that the static policy obtains at

least 50% of the optimal total expected revenue. The proof is similar to the analysis of the greedy

policy with respect to the linear value function approximations. The details are in Appendix B.

Lemma 4.1 (Performance of the Static Policy) The total expected revenue of the static

policy that offers assortment Ât at time period t is at least 50% of the optimal total expected revenue.

Let V t(q) denote the total expected revenue under the static policy over the time periods t, . . . , T ,

given that we are in state q at time period t. Similar to the dynamic program in (3), we can

compute {V t : t∈ T } by using the recursion

V t(q) =
∑
i∈N

πi

∞∑
`=1

qi,` + E
{
V t+1(X(q))

}
+
∑
i∈N

1l{qi,0≥1} φi(Â
t)

(
ri +πi− (1− ρi,0)E

{
V t+1(X(q))−V t+1 (X(q)−ei,0 +ei,1)

})
,

with the boundary condition that V T+1 = 0. The following lemma shows that V t(q) decomposes

by products. The proof is in Appendix C. To facilitate our exposition, let qi = (qi,` : `= 0,1, . . .)

denote the numbers of units of product i that have been in use for different numbers of time
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periods. By (1), we observe that the state of the units of product i in the next time period depends

on the state of the units of product i in the current time period, but not on the state of the units

for other products. Therefore, Xi,`(q) is a function of qi only, which implies that we can write

Xi,`(q) as Xi,`(qi), in which case, we can define the vector Xi(qi) = (Xi,`(qi) : `= 0,1, . . .).

Lemma 4.2 (Decomposability by Products) For each t ∈ T and q ∈ Q, we have

V t(q) =
∑

i∈N V
t
i (qi), where for each i∈N , {V t

i : t∈ T } is computed by using the recursion

V t
i (qi) = πi

∞∑
`=1

qi,` + E
{
V t+1
i (Xi(qi))

}
+ 1l{qi,0≥1} φi(Â

t)

(
ri +πi− (1− ρi,0)E

{
V t+1
i (Xi(qi))−V t+1

i (Xi(qi)−e0 +e1)
})

, (8)

with the boundary condition that V T+1
i = 0.

4.2 Rollout Policy Based on the Static Policy

We perform rollout on the static policy to obtain a policy that takes the inventory levels of the

products into consideration. To perform rollout on the static policy, given that we are in a particular

state in the current time period, we choose the decision that maximizes the immediate expected

revenue in the current time period plus the expected revenue from the static policy starting from

the state in the next time period. We refer to the policy obtained by performing rollout on the static

policy as the rollout policy. The rollout policy ultimately corresponds to using V t(q) =
∑

i∈N V
t
i (qi)

as a separable nonlinear approximation to J t(q). Let Strollout(q) be the assortment offered by the

rollout policy given that we are in state q at time period t. As V t+1(q) is the total expected revenue

obtained by the static policy starting in state q at time period t+ 1, Strollout(q) is given by

Strollout(q)

= arg max
S∈F

{∑
i∈N

1l{qi,0≥1} φi(S)

(
ri +πi +E

{
Z(ρi,0)V t+1(X(q)) + (1−Z(ρi,0))V t+1(X(q)−ei,0 +ei,1)

})
+

(
1−

∑
i∈N

1l{qi,0≥1}φi(S)

)
E
{
V t+1(X(q))

}}
= arg max

S∈F

∑
i∈N

1l{qi,0≥1} φi(S)

(
ri +πi− (1− ρi,0)E

{
V t+1(X(q))−V t+1 (X(q)−ei,0 +ei,1)

})
= arg max

S∈F

∑
i∈N

1l{qi,0≥1}φi(S)

(
ri +πi− (1− ρi,0)E

{
V t+1
i (Xi(qi))−V t+1

i (Xi(qi)−e0 +e1)
})

.

In the first equality above, we follow the same argument that we used to construct the dynamic

program in (2), in which we find an assortment that maximizes the immediate expected revenue

and the expected value function in the next time period under the optimal policy, but we use the
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value function of the static policy in the next time period above. The second equality is by the

same reasoning that we used to obtain the dynamic program in (3) from the dynamic program in

(2). The third equality follows from the fact that the value functions of the static policy decompose

by the products, as shown in Lemma 4.2.

It is a well-known result that the policy obtained by performing rollout on a base policy always

performs at least as well as the base policy; see Section 6.1.3 in Bertsekas and Tsitsiklis (1996).

Therefore, the total expected revenue obtained by our rollout policy is at least as large as the total

expected revenue obtained by the static policy. By Lemma 4.1, the rollout policy thus obtains at

least 50% of the optimal total expected revenue as well. In many applications, a policy based on

rollout tends to offer a dramatic improvement over the base policy. The key question is whether the

rollout assortment Strollout(q) can be computed efficiently. Lemma 4.2 shows that the value function

of the static policy is separable by the products, indicating that computing the value functions

of the static policy through the recursion in (8) is more manageable than computing the value

functions of the optimal policy through the dynamic program in (3). As discussed earlier, without

loss of generality, we can assume that the vector qi = (qi,` : `= 0,1, . . .) is finite-dimensional, because

we start with no units in use so that we always have have qi,` = 0 for all `≥ T . However, the state

variable qi = (qi,` : `= 0,1, . . .) in the recursion in (8) is still a high-dimensional vector. In particular,

the state space in this recursion is given by Qi = {(qi,` ∈Z+ : `= 0,1, . . .) |
∑∞

`=0 qi,` =Ci} and

computing the value function V t
i (qi) of the static policy for all qi ∈Qi is difficult.

In the remainder of this section, we consider two cases. First, if the usage duration follows

a negative binomial distribution, then the value functions of the static policy can be computed

efficiently. Second, if the customers purchase the products outright and never return them, then

the value functions of the static policy can be computed efficiently as well. Once we compute the

value functions {V t : t∈ T } of the static policy efficiently, we can solve the maximization problem

above that defines Strollout(q) to find the assortment offered by the rollout policy. Note that the

maximization problem that we solve to obtain the assortment Strollout(q) has the same structure as

the maximization problem on the right side of the dynamic program in (3). Thus, once we compute

the value functions {V t : t∈ T } of the static policy, as discussed at the end of Section 2, there are

numerous choice models that render this maximization problem tractable. Lastly, we emphasize

that even if we cannot compute the value functions {V t : t ∈ T } of the static policy, we can use

simulation to estimate the expected revenue of the static policy, which still allows performing rollout

on the static policy. Section 6.1.3 in Bertsekas and Tsitsiklis (1996) discusses using simulation to

perform rollout. Naturally, the computational requirements of performing rollout inflate when we

use simulation to estimate the total expected revenue of the static policy. Next, we discuss how to

perform rollout efficiently when the usage durations have a negative binomial distribution.
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4.3 Negative Binomial Usage Duration

In this section, we assume that for each product i ∈ N , the usage duration is given Durationi =

1 +NegBin(si, ηi), where NegBin(si, ηi) denotes a negative binomial random variable with

parameters si ∈Z++ and ηi ∈ (0,1) taking values over {0,1, . . .}. A negative binomial random

variable with parameters (si, ηi) corresponds to the sum of si independent geometric random

variables, each with parameter ηi. Thus, a negative binomial random variable with parameters

(1, ηi) is equivalent to a geometric random variable with parameter ηi. As si increases, the

probability mass function of a negative binomial random variable with parameters (si, ηi) becomes

more symmetric. Even with si = 3, the probability mass function is rather symmetric. Therefore,

a negative binomial random variable is quite flexible for modeling usage durations. Noting that a

negative binomial random variable with parameters (si, ηi) corresponds to the sum of si geometric

random variables, we provide the following interpretation for our use of a negative binomial random

variable for modeling the usage durations. At each time period, a customer is satisfied with product

i with probability ηi. As soon as a customer is dissatisfied with the product for si times, she returns

the product back, ending her rental duration. Naturally, we do not advocate this interpretation

as a model of how customers make a decision for keeping the product, but this interpretation

provides us the vocabulary to explain our model more clearly as follows. If the usage durations

have negative binomial distributions, then our state variable does not need to keep track of the

numbers of units of each product i that have been in use for a certain duration of time. It is enough

to use a state variable that keeps track of the numbers of customers who are using each product i

and have been dissatisfied for a certain number of times. In this case, we can efficiently compute

the value functions of the static policy, as long as si is relatively small.

Next, we discuss how we can compute the value functions of the static policy by using a recursion

similar to the one in (8) when the usage durations are negative binomial random variables.

State and Transition Dynamics: To compute the value functions of the static policy through

a recursion similar to the one in (8), we define

wi,d = number of customers who are using product i and have been dissatisfied for d times.

A customer using product i returns the product once she has been dissatisfied for si times, in which

case, the product becomes available on-hand. Therefore, the si-dimensional vector (wi,0, . . . ,wi,si−1)

captures the state of the customers using product i. The on-hand inventory of product i is given

by Ci−
∑si−1

d=0 wi,d. Under negative binomial usage durations, we use wi = (wi,d : 0≤ d≤ si− 1) to

denote the state vector for product i in the current time period. With this state representation,
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if no purchase is made at the current time period, then the new random state Fi(wi) =

(Fi,d(wi) : 0≤ d≤ si− 1) at the next time period is given by

Fi,d(wi) =

{
Bin(wi,0, ηi) if d= 0,
Bin(wi,d, ηi) + (wi,d−1−Bin(wi,d−1, ηi)) if d= 1,2, . . . , si− 1,

where we use the fact that for each d, the number of customers who continue to remain dissatisfied

for d times at the next time period is equal to Bin(wi,d, ηi) since each customer is satisfied with

the product with probability ηi, independently of each other. Furthermore, wi,d−1−Bin(wi,d−1, ηi)

captures the number of customers who were dissatisfied for d− 1 times at the beginning of the

current time period and they were dissatisfied one more time in the current time period, in which

case, these customers are dissatisfied d times in the next time period. These customers add up to the

number of customers dissatisfied d times in the next time period.

With this state representation, we can compute the value functions of the static policy for each

product i through the following recursion. We use wi = (wi,0, . . . ,wi,si−1) to capture the state of

product i. Recall that the static policy offers the assortment Ât at each time period t. Given that

the state of product i at time period t is wi, let V t
i (wi) be the total expected revenue from product

i under the static policy over the time periods t, . . . , T . Using the vectors e0 = (1,0,0, . . . ,0) ∈Rsi

and e1 = (0,1,0, . . . ,0)∈Rsi , we can compute {V t
i : t∈ T } by using the recursion

V t
i (wi) = πi

si−1∑
d=0

wi,d +

(
1− 1l{∑si−1

d=0
wi,d < Ci

} φi(Ât)
)
E
{
V t+1
i (Fi(wi))

}
+ 1l{∑si−1

d=0
wi,d < Ci

}φi(Ât)
(
ri +πi + ηiE

{
V t+1
i (Fi(wi) +e0)

}
+ (1− ηi)E

{
V t+1
i (Fi(wi) +e1)

})
= πi

si−1∑
d=0

wi,d +E
{
V t+1
i (Fi(wi))

}
+ 1l{∑si−1

d=0
wi,d < Ci

}φi(Ât)
(
ri +πi− ηiE

{
V t+1
i (Fi(wi))−V t+1

i (Fi(wi) +e0)
}

− (1− ηi)E
{
V t+1
i (Fi(wi))−V t+1

i (Fi(wi) +e1)
})

,

with the boundary condition that V T+1
i = 0. In the first equality above, for a customer to rent a

unit of product i, we need to have product i available on-hand and the customer needs to choose

product i. The number of units of product i available on-hand is given by Ci −
∑si−1

d=0 wi,d, so

the expression 1− 1l{∑si−1
d=0

wi,d < Ci

} φi(Ât) captures the probability that a customer does not rent

product i when we offer the assortment Ât. If
∑si−1

d=0 wi,d < Ci, then we have product i available

on-hand. If the customer chooses product i, then she rents this product. With probability ηi, the

customer renting product i in the current time period is satisfied and she ends up being a customer

with no dissatisfactions at the beginning of the next time period. With probability 1 − ηi, the
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customer renting product i in the current time period is dissatisfied and she becomes a customer

who is dissatisfied for once at the beginning of next time period. The second equality follows by

arranging the terms. If si = 1, so that the usage durations for product i are geometric random

variables, then the recursion above continues to hold as long as we set e0 = 1 and e1 = 0

In the recursion above, the state variable is an si-dimensional vector (wi,0, . . . ,wi,si−1) such that∑si−1

d=0 wi,d ≤ Ci, so the number of states is O((si + Ci)
si). Thus, when si is relatively small, we

can compute the value functions of the static policy efficiently. For example, in our computational

experiments, using transaction data from the city of Seattle, we find that the negative binomial

distribution provides a reasonably good model for the amount of time that drivers park their

vehicles at a meter. In our experiments, the best fitted value for the parameter si was 2.

4.4 Infinite Usage Duration

In this section, we focus on the case in which the usage duration is infinity. This case corresponds to

the situation where the customers buy the products outright, never returning them. Infinite usage

durations have a number of interesting applications. In the retail setting, customers make purchases

among substitutable products, in which case, our model dynamically makes product assortment

offerings to each individual customer as a function of the remaining product inventories (Topaloglu

2013, Golrezaei et al. 2014). Also, an important class of revenue management problems occurs on

a flight network with parallel flights operating between the same origin-destination pair. In this

setting, the customers make a purchase among multiple parallel flights on a particular departure

date. Our model captures dynamically adjusts the assortment of flights offered to each individual

customer as a function of the remaining flight capacities (Zhang and Cooper 2005, Liu and van

Ryzin 2008, Dai et al. 2014). We proceed to discussing how we can compute the value functions

of the static policy by using a recursion similar to the one in (8). As the products are purchased

outright, we assume that πi = 0 so that there is no per-period fee. Since the products are not

returned, we only need to keep track of the on-hand inventory of product i. We use qi,0 to denote

the number of units of product i on-hand. Given that we have qi,0 units of product i on-hand, let

V t
i (qi,0) be the total expected revenue from product i under the static policy over the time periods

t, . . . , T . We can compute {V t
i : t∈ T } by using the recursion

V t
i (qi,0) =

(
1− 1l{qi,0≥1}φi(Â

t)

)
V t+1
i (qi,0) + 1l{qi,0≥1} φi(Â

t)

(
ri +V t+1

i (qi,0− 1)

)
= V t+1

i (qi,0) + 1l{qi,0≥1} φi(Â
t)

(
ri−

{
V t+1
i (qi,0)−V t+1

i (qi,0− 1)
})

,

with the boundary condition that V T+1
i = 0. In the first equality above, if we have on-hand units of

product i and a customer chooses product i, then she makes a purchase for product i, in which case,
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we have one less on-hand unit of product i in the next time period. The second equality follows

by arranging the terms. As the state variable in the recursion above is scalar, we can efficiently

compute the value functions of the static policy under infinite usage durations.

Thus, under both negative binomial and infinite usage durations, we can efficiently perform

rollout on the static policy to obtain a policy that takes the inventory levels of the products into

consideration, while still obtaining at least 50% of the optimal total expected revenue.

5. Extensions

We discuss extensions to the case in which we have multiple customer types, we make pricing

decisions instead of assortment offering decisions, and we can solve the assortment optimization

problems only approximately. We show that our earlier performance guarantees continue to hold

when we have multiple customer types and when we make pricing decisions. Furthermore, we show

that if we can solve the assortment optimization problems approximately, then our performance

guarantees hold with appropriate modifications to reflect the solution accuracy in the assortment

problems. Some of these extensions are used in our computational experiments.

5.1 Heterogeneous Customer Types

We have m customer types indexed by M = {1,2, . . . ,m}. At time period t ∈ T , a customer of

type j arrives with probability pt,j, where we have
∑

j∈M pt,j = 1, so that each time period has

exactly one customer arrival. We observe the type of each arriving customer. Each customer type

has its own choice model, reward structure, assortment constraints, and usage duration. Therefore,

a customer of type j chooses a product according to a discrete choice model {φji (S) : i∈N , S ⊆N},
where φji (S) is the probability that a customer of type j chooses product i when we offer the subset

S of products. Note that if we do not observe the type of each arriving customer, then we can

continue using the model in Section 2, where the discrete choice model {φi(S) : i ∈N , S ⊆N} is

obtained by mixing the choice models corresponding to different customer types. If a customer of

type j selects product i, then she pays an upfront fee of rji and a fee of πji for each time period

she rents the product. The usage duration of product i by a customer of type j is given by the

random variable Durationji . We let ρji,` be the hazard rate of the usage duration of product i for a

customer of type j, which is defined by ρji,` = Pr{Durationji = `+ 1 | Durationji ≥ `+ 1}. Lastly,

the assortments offered to customers of different types have different feasibility requirements. We

use F j to denote the set of feasible assortments that can be offered to customers of type j.

We can extend all of our results to the case with heterogeneous customer types. Here, we focus on

the essentials and we defer the details to Appendix D. To capture the state of the system, because
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each customer type has its own reward structure and usage duration, we need to keep track of the

number of units that are currently in use by each customer type. We use qi,0 to denote the number

of units of product i on-hand. For `≥ 1, we use qji,` to denote the number of units of product i that

have been used for exactly ` time periods by a customer of type j. Therefore, we can describe the

state of the system by using the vector q = (qi,0, q
j
i,` : i ∈ N , j ∈M, `≥ 1). Using q as the state

variable, we can give a dynamic programming formulation of the problem that resembles the one

in (2). In this case, we use value function approximations of the form

Ĵ t(q) = β̂t +
∑
i∈N

θ̂ti qi,0 +
∑
i∈N

∑
j∈M

∞∑
`=1

ν̂t,ji,` q
j
i,`,

where θ̂ti captures the marginal value of a unit of product i on-hand at time period t and ν̂t,ji,`

captures the marginal value of a unit of product i that has been in use for ` periods by a customer

of type j at time period t. Similar to our approach in Section 3.1, we propose computing β̂t, θ̂ti

and ν̂t,ji,` recursively as follows.

• Initialization: Set θ̂T+1
i = 0, ν̂T+1,j

i,` = 0 for all i∈N , j ∈M, `≥ 1 and set β̂T+1 = 0.

• Recursion: For t = T,T − 1, . . . ,1, we compute θ̂ti , ν̂
t,j
i,` and β̂t by using {θ̂t+1

i : i ∈ N} and

{ν̂t+1,j
i,` : i∈N , j ∈M, `≥ 1} as follows. For each j ∈M, let Ât,j ∈F j be such that

Ât,j = arg max
S∈Fj

∑
i∈N

φji (S)
[
rji +πji − (1− ρji,0)

(
θ̂t+1
i − ν̂t+1,j

i,1

)]
.

Once Ât,j is computed for all j ∈M, for each i∈N and j ∈M, let

θ̂ti = θ̂t+1
i +

1

Ci

∑
j∈M

pt,jφji (Â
t,j)
[
rji +πji − (1− ρji,0)

(
θ̂t+1
i − ν̂t+1,j

i,1

)]
(9)

ν̂t,ji,` = πji + ρji,` θ̂
t+1
i + (1− ρji,`) ν̂

t+1,j
i,`+1 ∀ `= 1,2, . . .

β̂t =
∑
i∈N

Ci θ̂
t
i .

The above discussion completes the specification of the approximate value function Ĵ t. The intuition

for the above specification of the parameters is similar to the one discussed in Section 3.1. Using

an argument similar to the one in the previous two sections, we can show that the greedy policy

with respect to value function approximations {Ĵ t : t∈ T } obtains at least 50% of the optimal total

expected revenue. We can also perform rollout on a static policy to obtain a policy that takes the

inventory levels of the products into consideration, while ensuring that we still obtain at least 50%

of the optimal total expected revenue. We give both of these results in Appendix D.
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5.2 Price Optimization with Discrete Prices

So far in the paper, we assume that the upfront and per period rental fees for the products are

fixed and we decide on the set of products to make available to the customers. It is not difficult

to adopt our results to the case in which we decide the upfront and per period rental fees for

the products and the customers choose based on the prices we charge. In particular, we create

multiple copies of each product i, where the different copies correspond to charging different prices

for product i. We call each copy of a product a virtual product. Let H denote the set of possible

copies of each product. We write (i, h) ∈ N ×H to denote copy h of product i. Thus, the pairs

{(i, h) : i∈N , h∈H} are the set of all virtual products that we can offer to the customers. Offering

virtual product (i, h) means that we offer product i at the price level corresponding to copy h of

this product. In this case, the question becomes that of choosing an assortment of virtual products

to offer at each time period to maximize the total expected revenue. As we can offer a product at

no more than one price level, among all virtual copies of a particular product, we can offer at most

one virtual copy. Thus, the set of possible assortments of virtual products that we can offer at each

time period is given by F = {S ⊆N ×H : |S ∩ ({i}×H)| ≤ 1 ∀ i ∈ N}. Using ri,h to denote the

upfront fee when we charge the price level corresponding to copy h for product i, and πi,h to denote

the per period fee when we charge the price level corresponding to copy h of product i, we can

follow the same outline in the previous two sections to come up with a policy that is guaranteed

to obtain at least 50% of the optimal total expected revenue. The only difference is that we treat

the virtual products N ×H as the products.

5.3 Solving the Assortment Optimization Problem Approximately

The maximization problem in (3) is a combinatorial optimization problem. Under many choice

models, we can solve this problem tractably, but it is not possible to solve this problem tractably

under every choice model. In this section, we discuss how we can adopt our approach in principle

to the case where we have a fully polynomial-time approximation scheme (FPTAS) for problem

(3). For any ε > 0, the FPTAS returns a 1/(1 + ε)-approximate solution to problem (3) and

the running time to do so is polynomial in n and 1/ε. It turns out that we can leverage the

FPTAS to obtain a 1/(2(1 + ε))-approximate policy and the running time to obtain and execute the

approximate policy is polynomial in n, 1/ε and T . In particular, assume that we have an FPTAS

such that for any ε > 0, the FPTAS finds an assortment Ât satisfying

(1+ε)
∑
i∈N

φi(Â
t)
[
ri+πi−(1−ρi,0)

(
ν̂t+1
i,0 − ν̂t+1

i,1

)]
≥max

S∈F

∑
i∈N

φi(S)
[
ri+πi−(1−ρi,0)

(
ν̂t+1
i,0 − ν̂t+1

i,1

)]
in running time that is polynomial in n and 1/ε. In the next theorem, we show how to leverage

this FPTAS to find a 1/(2(1 + ε))-approximate policy. The proof is in Appendix E.
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Theorem 5.1 (Approximate Solution) Assume that for any ε > 0, we can find a

1/(1 + ε)-approximate solution to problem (3) in running time that is polynomial in n and

1/ε. Then, we can construct value function approximations {Ĵ t : t∈ T } such that the greedy policy

with respect to these value function approximations is a 1/(2(1 + ε))-approximate policy and the

running time to obtain and execute the approximate policy is polynomial in n, 1/ε and T .

6. Computational Experiments

In Section 6.1, we describe an approach to obtain an upper bound on the optimal total expected

revenue, which is useful for assessing the optimality gaps of our policies. In Sections 6.2 and 6.3, we

give our computational results on parallel flights and pricing parking spaces in the city of Seattle.

6.1 Upper Bound on the Optimal Total Expected Revenue

To compute an upper bound on the optimal total expected revenue, we formulate a linear program,

in which the choices of the customers and the transition dynamics take on their expected values.

We use the decision variables (zt(A) : A ∈ F , t ∈ T ) and (qti,` : i∈N , `≥ 0, t∈ T ), where zt(A)

is the frequency with which we offer assortment A at time period t and qti,` is the expected

number of units of product i that have been in use for exactly ` time periods at time period t.

To construct the constraints in our linear program, noting the dynamic programming formulation

in (2), if the state of the system at time period t is qt = (qti,` : i∈N , `≥ 0) and the customer

arriving at this time period chooses product i, then the state of the system at the next time

period is given by the random variable Z(ρi,0)X(qt) + (1 − Z(ρi,0)) (X(qt) − ei,0 + ei,1), where

Z(ρ) is a Bernoulli random variable with parameter ρ. If the customer does not choose any

product, then the state of the system is X(qt). Furthermore, if we offer the assortment A at

time period t with frequency zt(A), then the probability that a customer chooses product i is∑
A∈F φi(A)zt(A). In this case, if the state of the system at time period t is qt and we offer

assortment A with frequency zt(A), then the expected state of the system at the next time period

is given by
∑

i∈N

{∑
A∈F φi(A)zt(A)

}
E{Z(ρi,0)X(qt) + (1−Z(ρi,0)) (X(qt)−ei,0 +ei,1)} +{

1−
∑

i∈N

{∑
A∈F φi(A)zt(A)

}}
E{X(qt)}. Using the fact that E{Z(ρi,0)}= 1−ρi,0 and arranging

the terms, the expected state at the next time period is E{X(q)}−
∑

i∈N

{∑
A∈F φi(A)zt(A)

}
×

(1 − ρi,0) (ei,0 − ei,1). By (1), E{Xi,0(q)} = qi,0 +
∑∞

s=1 ρi,s qi,s, E{Xi,1(q)} = 0 and E{Xi,`(q)} =

qi,`−1 − ρi,`−1 qi,`−1 for `≥ 2, which implies that the expected next state in the last expression is

linear in the decision variables qt and zt = (zt(A) : A∈F). To get an upper bound on the optimal

total expected revenue in our dynamic assortment problem, we use the linear program

max
∑
t∈T

∑
i∈N

ri
∑
A∈F

φi(A)zt(A) +
∑
t∈T

∑
i∈N

πi

∞∑
`=1

qti,` (10)
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s.t. qt+1 = E
{
X(q)

}
−
∑
i∈N

{∑
A∈F

φi(A)zt(A)

}
(1− ρi,0) (ei,0−ei,1) ∀ t∈ T \ {T}

q1 =
∑
i∈N

Ci ei,0∑
A∈F

zt(A) = 1 ∀ t∈ T

zt(A)≥ 0 ∀A∈F , t∈ T , qti,` ≥ 0 ∀ i∈N , `≥ 0, t∈ T .

From the discussion right before the above problem, the objective function and the constraints

are linear in (zt(A) :A∈F , t∈ T ) and (qti,` : i∈N , `≥ 0, t∈ T ). Therefore, the problem above is

indeed a linear program. Since
∑

A∈F φi(A)zt(A) is the expected number of customers that choose

product i at time period t, and
∑∞

`=1 q
t
i,` is the expected number of units of product i that are in

use at time period t, the objective function above computes the total expected revenue over the

selling horizon. The first constraint keeps track of the numbers of products with different durations

of use under the assumption that the customer choices and transition dynamics take on their

expected values. The second constraint initializes the state of the system. The third constraint

ensures that we offer an assortment at each time period, but this assortment can be empty. By

the same argument in Section 2, because the products are all available on-hand at the beginning

of the selling horizon, we have qti,` = 0 for all `≥ T + 1 in a feasible solution to the linear program

above. Therefore, we do not need to define the decision variable qti,` for ` ≥ T + 1, indicating

that the numbers of decision variables and constraints are finite. Thus, we can solve the linear

program above using standard linear programming software. In the next proposition, we show that

the optimal objective value of the linear program above is an upper bound on the optimal total

expected revenue in our dynamic assortment problem. The proof follows from an argument that

often appears in the revenue management literature. We defer the proof to Appendix F.

Proposition 6.1 Letting Z∗ be the optimal objective value of problem (10), we have

Z∗ ≥ J1(
∑

i∈N Ci ei,0).

In problem (10), we have one decision variable zt(A) for each assortment A ∈ F . Therefore,

the number of decision variables increases exponentially with the number of products. We can

solve problem (10) by using column generation. The column generation subproblem has the same

structure as the maximization problem in (3). As discussed at the end of Section 2, this problem is

tractable under a variety of choice models. Lastly, we formulate problem (10) under the assumption

that there is a single customer type and we make assortment decisions. However, it is not difficult

to give analogues of problem (10) when the customers are heterogeneous and we make pricing

decisions, reflecting the extensions in the previous section.



Rusmevichientong, Sumida, and Topaloglu: Dynamic Assortment Optimization for Reusable Products
29

6.2 Revenue Management over Parallel Flight Legs

In our first set of computational experiments, the products are not reusable. We focus on the

problem of making assortment decisions for parallel flights operating between an origin-destination

pair. We treat each flight as one product. Assuming no cancellations occur, a seat purchased by a

customer on a flight is never returned. This situation corresponds to having infinite usage durations.

The dynamics of the problem are as follows. When a customer arrives into the system, we offer

an assortment of flights. The customer either makes a purchase within the offered assortment or

leaves the system. If the customer makes a purchase, then we generate a revenue and consume a

unit of capacity on the flight chosen by the customer. Our goal is to find a policy to decide what

assortment of flights to offer to each customer so that the total expected revenue is maximized.

Experimental Setup: In our test problems, there are two customer types indexed by

M= {1,2}. In Section 5.1, we discuss how to extend our model to the case with multiple customer

types. We continue indexing the products by N = {1, . . . , n}, corresponding to flights. Customers

of type 1 are less price conscious than those of type 2. In particular, the upfront fee r1
i paid by

customers of type 1 for each product i is generated from the uniform distribution over [50,100],

whereas the upfront fee r2
i paid by customers of type 2 for each product i is generated from the

uniform distribution over [0,50]. Because the products are purchased rather than rented, we set

the per period rental fee πji = 0 for all i ∈N , j ∈M. The probability of having an arrival of each

customer type at each time period is given by pt,1 = 0.3 and pt,2 = 0.7 for all t∈ T .

Customers choose according to the multinomial logit model. A customer of type j associates

the preference weight vji with product i and the preference weight vj0 with the no purchase option.

If we offer the assortment S, then a customer of type j chooses product i ∈ S with probability

φji (S) = vji /(v
j
0 +
∑

`∈S v
j
`). We generate vji from the uniform distribution over [0,10] for all i∈N ,

j ∈M. We calibrate the preference weight of the no purchase option so that if we offer all of the

flights, then a customer leaves without a purchase with probability P0, where P0 is a parameter that

we vary. Therefore, we calibrate vj0 to satisfy P0 = vj0/(v
j
0 +

∑
`∈N v

j
`). To generate the capacities

on the flights, we let Sj be the revenue maximizing assortment for customers of type j; that is,

Sj = arg maxS⊆N
∑

i∈N r
j
i φ

j
i (S). If we offer the assortment Sj to customers of type j, then the total

expected demand for the capacity for product i is
∑

t∈T
∑

j∈M pt,j φji (S
j). We set the capacity Ci

of product i such that the total demand for product i exceeds the capacity by a factor of ρ, where

ρ is another parameter that we vary, so
∑

t∈T
∑

j∈M pt,j φji (S
j) = ρCi for all i∈N . We refer to the

parameter ρ as the load factor. We fix the length of the selling horizon at T = 35×n× ρ.

Varying the number of products n over {6,8}, the no purchase probability P0 over {0.1,0.4} and

the load factor ρ over {1.0,1.2,1.6}, we obtain 12 test problems.
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Benchmarks: We compare the performance of the following four benchmark strategies.

Greedy Policy (GR). In this benchmark, we use the greedy policy with respect to the value

function approximations {Ĵ t : t∈ T }, as discussed in Section 3.

Rollout Policy (RO). This benchmark is the policy obtained by applying rollout on the static

policy, as discussed in Section 4.

Bid-Prices (BP). This benchmark is the classical bid-price policy. We use a variant of the linear

program in (10) to estimate the value of a unit of capacity on each flight, called its bid-price. We

offer the revenue maximizing set of flights at each time period, after adjusting the revenues from

the flights by their bid-prices; see Section 5.2 in Zhang and Adelman (2009).

Decomposition (DC). This benchmark corresponds to the classical dynamic programming

decomposition method. The idea is to decompose the dynamic programming formulation of the

problem by the products and to obtain approximations to the value functions by solving a separate

dynamic program for each product; see Section 6.2 in Liu and van Ryzin (2008).

To further improve the performance of the benchmarks, we divide the selling horizon into three

equal segments and recompute the policy parameters at the beginning of each segment. For GR, if

the remaining capacities of the products at the beginning of a segment are (C ′i : i∈N ) and the set

of remaining time periods in the selling horizon is T ′ ⊆T , then we apply the recursive computation

at the beginning of Section 3.1 after replacing Ci with C ′i and T with T ′, which yields new value

function approximations. We use the new value function approximations until we reach the next

segment. We recompute the policy parameters for RO, BP and DC similarly.

Computational Results: We give our computational results in Table 1. The first column in

this table shows the parameters for each test problem by using the tuple (n,ρ,P0), where n, ρ

and P0 are as described above. The second column shows the upper bound on the optimal total

expected revenue provided by the optimal objective value of the linear program in (10). The third

through sixth columns show the total expected revenue obtained by each of the benchmarks RO,

DC, GR and BP. We estimate these total expected revenues by simulating the performance of each

benchmark over 1,000 sample paths. The seventh through ninth columns show the percent gaps

between the total expected revenues obtained by RO and every other benchmark. The standard

errors of these percent gaps are given in parentheses. For example, if a certain percent gap exceeds

the corresponding standard error by more than a factor of 1.65, which is the 95-th standard normal

percentile, then the percent gap is statistically significant at the 95% level.

Our computational results indicate that RO provides noticeable improvements over GR and

BP. The improvements tend to be larger when ρ is large so that the capacities are scarce or when
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Table 1 Computational results for revenue management over parallel flight legs.

Prob. Params. Upp. Total Expected Revenue % Gain of RO over Benchmarks
(n,ρ,P0) Bnd. RO DC GR BP DC GR BP

(6, 1.0, 0.1) 6,809 6,392 6,655 6,525 6,198 -3.95 (0.19) -2.04 (0.06) 3.12 (0.22)
(6, 1.0, 0.4) 4,500 4,213 4,282 4,168 3,947 -1.61 (0.32) 1.09 (0.08) 6.73 (0.37)
(6, 1.2, 0.1) 7,217 7,025 6,720 7,027 6,549 4.53 (0.20) -0.03 (0.05) 7.27 (0.21)
(6, 1.2, 0.4) 4,851 4,651 4,649 4,633 4,345 0.04 (0.27) 0.40 (0.08) 7.05 (0.30)
(6, 1.6, 0.1) 7,910 7,699 7,426 7,628 6,697 3.67 (0.21) 0.93 (0.05) 14.96 (0.25)
(6, 1.6, 0.4) 5,413 5,230 5,291 5,190 4,798 -1.17 (0.24) 0.75 (0.08) 8.99 (0.30)

(8, 1.0, 0.1) 8,308 7,794 7,993 7,894 7,761 -2.50 (0.18) -1.27 (0.06) 0.42 (0.18)
(8, 1.0, 0.4) 6,538 6,153 6,277 6,078 5,990 -1.96 (0.29) 1.24 (0.06) 2.73 (0.32)
(8, 1.2, 0.1) 8,700 8,475 8,125 8,371 7,813 4.30 (0.17) 1.24 (0.05) 8.47 (0.18)
(8, 1.2, 0.4) 7,103 6,813 6,817 6,765 6,392 -0.05 (0.27) 0.71 (0.06) 6.60 (0.30)
(8, 1.6, 0.1) 9,382 9,154 8,561 9,026 7,912 6.93 (0.18) 1.41 (0.06) 15.70 (0.22)
(8, 1.6, 0.4) 8,025 7,736 7,821 7,677 7,121 -1.09 (0.23) 0.77 (0.07) 8.64 (0.27)

Average 0.60 0.43 7.56

P0 is large so that the customers are more likely to leave without making a purchase. For the

test problems with ρ = 1.0 and P0 = 0.1, the performance gap between RO and GR is -3.22%,

whereas the same performance gap is 5.30% for the test problems with ρ= 1.6 and P0 = 0.4. The

benchmarks RO and DC are competitive with each other, but to our knowledge, DC does not have

any theoretical performance guarantees.

6.3 Street Parking Pricing in the City of Seattle

In our second set of computational experiments, the products are reusable. We focus on the problem

of dynamically pricing street parking spaces. We treat the parking spaces within close proximity

to each other as one product. After having been used by a driver for a certain duration of time,

a parking space can be used by another driver, so the parking spaces are reusable products. The

dynamics of the problem are as follows. When a driver arrives into the system with an intention

to park in a certain region, as a function of the remaining parking space inventory in the nearby

regions, we decide on the prices to charge for the parking spaces in different regions. The driver

is informed about the prices in real time, possibly through a smartphone application. The driver

either parks at a particular parking space or decides to leave the system. If the driver parks, then

the parking space generates revenue for a random usage duration, after which the space becomes

available. Our goal is to find a policy for deciding on the parking spaces to offer and the prices to

charge for these offered parking spaces so that the total expected revenue is maximized.

Transaction Data: For brevity of discussion, we describe the most essential elements of the

data that we use in our computational experiments, the approach that we use to augment and

modify the data for compliance with our modeling assumptions, and the methodology that we use

to estimate the model parameters. We defer the details to Appendix G. We build on the data



Rusmevichientong, Sumida, and Topaloglu: Dynamic Assortment Optimization for Reusable Products
32

provided by the Open Data Program in the city of Seattle; see Seattle Open Data (2017). Seattle

uses parking rates that are dependent on the time of the day and location. Through the Open

Data Program, we have access to transaction data on the use of the street parking spaces during

20 weekdays of June 2017. Each transaction record shows a parking event, documenting the start

time, duration, and location of the parking event, along with the rate paid. We focus on 40 blocks

in the downtown area between the hours of 11AM and 4PM. We partition this area into 11 block

clusters, each including approximately four blocks laid out in a two-by-two configuration. We refer

to each two-by-two block cluster as a locale.

The street parking spaces in each locale correspond to a different product in our model. Thus,

we have n= 11 products. To comply with our modeling assumptions, we augment and modify the

data provided by the Open Data Program as follows. We assume each driver arrives into the system

with the intention to park in a particular locale. The intended locale of a driver determines the

type of the driver. In Section 5.1, we discuss the extension of our model to the case in which we

have multiple customer types. Because the intended locale of a driver determines her type, there

are m = 11 customer types. In the data, we have access to the locale at which a driver actually

parked, but we do not have access to the intended locale of a driver. For each driver, we randomly

sample one of the five locales that are closest to the locale that the driver actually parked. We set

the intended locale of the driver as this sampled locale. Once we augment the data in this way,

each transaction record gives the start time, duration, intended locale, actual parked locale, and

per hour rate for each parking event. Because the data that we use are obtained by augmenting

the data from the Open Data Program, we caution the reader against comparing our results with

the real parking operations in the city of Seattle.

The set of feasible locales we can offer to a driver are the five locales that are closest to her

intended one. As a function of the remaining parking space inventories in these locales, we decide

on the prices to charge for each locale. In Section 5.2, we discuss the extension of our model to the

case in which we make pricing decisions. The driver either decides to park in one of these locales or

leaves the system. If the driver parks, then we generate a certain revenue depending on the parking

duration and the charged price. Although we discussed the extensions of our model to multiple

customer types and to pricing decisions separately, it is not difficult to combine these extensions

and to come up with a variant of our model that makes pricing decisions under multiple customer

types. It is also not difficult to extend the linear program in (10) to the case in which we make

pricing decisions under multiple customer types.

Experimental Setup: As discussed in Section 5.2, when making pricing decisions, we create

multiple copies of each product, whereby the different copies correspond to charging different prices
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for the product. Using H to denote the set of possible prices that we can charge for a parking space

and recalling that N is the set of possible parking locales, offering product copy (i, h) ∈ N ×H
represents charging price level h for locale i. We use πi,h to denote the per period fee when we

charge the price level h for locale i. We assume that the choices of the drivers are governed by

the multinomial logit model. In particular, if we offer the assortment S ⊆ N ×H of locale and

price combinations to a driver with intended locale j, then she chooses to park in locale i with

probability φji (S) = e
αj+β πi,h

1+
∑

(`,g)∈S e
αj+β π`,g

as long as (i, h) ∈ S. The parameter β captures the price

sensitivity of the drivers and it is assumed to be constant over all drivers.

Throughout the paper so far, we assumed that there is one customer arrival at each time

period. This assumption is not appropriate here, because the arrival rate of the drivers vary during

the day, but extending our model to the case in which there is at most one arrival at each time

period is straightforward. We scale the time so that each time period in our model corresponds to

a time interval of 30 seconds. A time interval of 30 seconds is short enough to ensure that there is

at most one driver arrival in the region of our focus. We use pt,j to denote the probability that a

driver with intended locale j arrives at time period t. We estimate the parameters β, (αj : j ∈M)

and (pt,j : t∈ T , j ∈M) by using maximum likelihood.

We model the parking duration in locale i as 1+NegBin(si, ηi), where NegBin(si, ηi) is a negative

binomial random variable with parameters si ∈Z++ and ηi ∈ (0,1). As discussed in Section 4.3, if si

is small, then we can perform rollout on the static policy in a tractable fashion. For each locale i,

a negative binomial distribution with the parameter si = 2 provided a sensible fit.

Ultimately, in our experimental setup, we vary the length of the selling horizon over three values,

11AM-2PM, 11AM-3PM and 11AM-4PM. To obtain problems with different load factors, we scale

the arrival rates with three different factors, 2.5, 3.0 and 3.5. Also, we vary the number of parking

spaces over two values, 55 and 79. This experimental setup yields 18 parameter combinations for

our test problems. From the rates used by the city of Seattle, the possible rates we can charge are

within the menu of $2, $4 and $6 per hour.

Benchmarks: We continue using the benchmarks greedy policy (GR) and rollout policy (RO),

as discussed for parallel flights in Section 6.2. We make the necessary modifications in these

benchmarks to ensure that we can handle multiple customer types and we choose the prices of

the offered products. The benchmark decomposition (DC) does not extend when the products are

reusable, so we do not use that benchmark. Instead of using the benchmark bid-prices (BP), we

use the linear program in (10) in a different way to come up with the following benchmark.

Linear Program (LP). Let (ẑt(A) : A ∈ F , t ∈ T ) and (q̂ti,` : i∈N , `≥ 0, t∈ T ) be an optimal

solution to problem (10). Using N t to denote the set of products for which we have on-hand
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Table 2 Computational results for street parking pricing in the city of Seattle.

Prob. Params. Load Upp. Total Expected Revenue % Gain of RO over Benchmarks
(T , σ,C) factor Bnd. RO GR LP FP GR LP FP

(11AM-2PM, 2.5, 79) 0.79 344 329 320 325 321 2.82 (0.11) 1.01 (0.11) 2.25 (0.10)
(11AM-2PM, 3.0, 79) 0.95 410 385 375 379 375 2.62 (0.08) 1.73 (0.10) 2.69 (0.08)
(11AM-2PM, 3.5, 79) 1.11 474 439 429 430 423 2.20 (0.08) 2.08 (0.09) 3.59 (0.07)
(11AM-2PM, 2.5, 55) 1.14 338 306 301 300 296 1.82 (0.12) 2.16 (0.12) 3.55 (0.11)
(11AM-2PM, 3.0, 55) 1.37 397 353 348 345 336 1.69 (0.09) 2.57 (0.11) 5.10 (0.09)
(11AM-2PM, 3.5, 55) 1.60 452 396 390 385 370 1.61 (0.08) 2.96 (0.10) 6.87 (0.09)

(11AM-3PM, 2.5, 79) 0.76 495 466 454 460 455 2.77 (0.07) 1.36 (0.08) 2.56 (0.06)
(11AM-3PM, 3.0, 79) 0.91 588 545 532 533 528 2.42 (0.05) 2.10 (0.07) 3.15 (0.05)
(11AM-3PM, 3.5, 79) 1.06 676 618 605 603 593 2.20 (0.06) 2.49 (0.07) 4.29 (0.05)
(11AM-3PM, 2.5, 55) 1.09 482 430 423 420 413 1.72 (0.08) 2.55 (0.09) 4.21 (0.07)
(11AM-3PM, 3.0, 55) 1.31 564 495 487 482 467 1.63 (0.06) 2.68 (0.08) 6.02 (0.06)
(11AM-3PM, 3.5, 55) 1.53 640 553 544 538 513 1.69 (0.06) 2.84 (0.07) 7.89 (0.06)

(11AM-4PM, 2.5, 79) 0.72 631 591 575 582 575 2.82 (0.06) 1.49 (0.07) 2.77 (0.05)
(11AM-4PM, 3.0, 79) 0.86 749 689 673 674 667 2.46 (0.05) 2.27 (0.06) 3.42 (0.04)
(11AM-4PM, 3.5, 79) 1.01 860 781 766 761 747 1.93 (0.05) 2.60 (0.06) 4.52 (0.05)
(11AM-4PM, 2.5, 55) 1.04 613 543 534 528 520 1.61 (0.06) 2.72 (0.08) 4.48 (0.06)
(11AM-4PM, 3.0, 55) 1.25 717 624 614 609 587 1.53 (0.05) 2.51 (0.07) 6.23 (0.05)
(11AM-4PM, 3.5, 55) 1.46 812 696 686 679 644 1.55 (0.05) 2.49 (0.06) 8.16 (0.06)

Average 2.06 2.26 4.54

inventory at time period t, we sample an assortment S with respect to the probabilities

(ẑt(A) :A∈F) and offer the assortment S ∩ N t at time period t. Because of the third set of

constraints in problem (10), the probabilities (ẑt(A) :A⊆N) indeed add up to one. Offering the

assortment S ∩N t ensures that we offer only products that are currently available. We also added

the following benchmark to our experimental setup.

Fixed Price (FP). In this benchmark, we charge one fixed price for all locales at all time

periods. We test the performance of the rates $2, $4 and $6 per hour, which is the price menu used

in other benchmarks. We select the best constant price. This benchmark is clearly not sophisticated

but it serves as a simple baseline. In all of our test problems, the rate $4 per hour provided the

best performance.

Computational Results: We present our computational results in Table 2. The first column

in this table shows the parameters for each test problem by using the tuple (T , σ,C), where T ∈

{11AM-2PM,11AM-3PM,11AM-4PM} is the selling horizon, σ ∈ {2.5,3.0,3.5} is the multiplier for

the arrival rates, and C ∈ {55,79} is the total number of parking spaces. The second column shows

the load factor for the test problems. Noting that E{Durationi} is the expected parking duration

in locale i, we estimate the number of times that we can turn over a parking space in locale i

as T/E{Durationi}. The total expected demand for parking is
∑

t∈T
∑

j∈M pt,j. With Ci parking

spaces available in locale i, the load factor is given by
∑
t∈T

∑
j∈M pt,j∑

i∈N Ci T/E{Durationi}
. The organization of the

rest of the table closely mirrors that of Table 1, but we use 10,000 sample paths, rather than 1,000,
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to estimate the total expected revenues in the fourth through seventh columns. As a result, the

standard errors in Table 2 are smaller than those in Table 1.

Across all of our test problems, the strongest benchmark is consistently RO. This benchmark

provides an average improvement of 2.06%, 2.26% and 4.54% over GR, LP and FP in terms of total

expected revenues. The performance of GR is comparable to that of LP. For problem instances with

smaller load factors, LP tends to perform better, whereas for problem instances with larger load

factors, GR tends to perform better. Nevertheless, it is important to note that LP requires solving

a relatively large linear program, whereas the computation of the value function approximations

used by GR requires a simple recursion over the selling horizon. The performance of RO is superior

to that of LP. Furthermore, the performance gap between RO and LP also tends to be larger for

the problem instances with larger load factors. The solution times for the linear program in (10)

range from 894 to 6,535 seconds depending on the size of the problem instance. The computation

times to compute the value functions {Ĵ t : t ∈ T } for GR range from 362 to 672 seconds, whereas

the computation times to compute the value functions {V t
i : i ∈ N , t ∈ T } for RO range from

1,550 to 17,201 seconds. A few preliminary runs indicated that the performance of none of the

benchmarks improve noticeably with recomputations of the policy parameters. Considering the

fact that the run times are relatively long, we do not recompute the policy parameters for any

of the benchmarks. The computation times for RO are significantly longer, but this benchmark,

by explicitly taking the inventory levels of the products into consideration, provides significant

improvements over others in terms of total expected revenues.

7. Conclusions

We studied a dynamic assortment problem with reusable products, and provided policies with

half-approximate performance guarantees. Our rollout of the static policy decomposes the problem

by the products, which is reminiscent of dynamic programming decomposition techniques in

revenue management. To our knowledge, existing decomposition methods do not provide any

performance guarantees. An exciting future research area is to construct decomposition methods

with performance guarantees for other revenue management problems. Moreover, reusable products

frequently appear in sharing economies, but such products often have modifiable attributes. For

example, a driver in a ride-sharing setting is a reusable product, but the location of the driver can

be modified by the decision maker. The extension of our work to this setting is highly non-trivial,

but it would significantly enhance the applicability of our approach.
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Online Appendix

Dynamic Assortment Optimization for Reusable
Products with Random Usage Duration

Appendix A: Expected Contribution of Ideal Assortment

For notational brevity, we let ∆t
i = ri + πi − (1− ρi,0)

(
ν̂t+1
i,0 − ν̂t+1

i,1

)
. In the next lemma, we show

that
∑

i∈N φi(Â
t)∆t

i ≥
∑

i∈N 1l{qi,0≥1} φi(S)∆t
i for all S ∈F .

Lemma A.1 For all S ∈F , we have
∑

i∈N φi(Â
t)∆t

i ≥
∑

i∈N 1l{qi,0≥1} φi(S)∆t
i.

Proof: Note that we have 1l{∆ti≥0}∆t
i ≥ 1l{∆ti≥0} 1l{qi,0≥1}∆t

i ≥ 1l{qi,0≥1}∆t
i, where the first

inequality is by the fact that 1l{∆ti≥0}∆t
i ≥ 0 and the second inequality is by the fact that

1l{∆ti≥0} 1l{qi,0≥1}∆t
i ≥ 0, but 1l{qi,0≥1}∆t

i can be positive or negative. We will shortly establish the

claim that
∑

i∈N φi(Â
t)∆t

i ≥
∑

i∈N φi(S) 1l{∆ti≥0}∆t
i for all S ∈ F . In this case, noting the chain

of inequalities at the beginning of the proof, we obtain
∑

i∈N φi(Â
t)∆t

i ≥
∑

i∈N φi(S) 1l{∆ti≥0}∆t
i ≥∑

i∈N φi(S) 1l{∆ti≥0} 1l{qi,0≥1}∆t
i ≥

∑
i∈N φi(S) 1l{qi,0≥1}∆t

i for all S ∈ F , which is the desired

result. We proceed to establishing the claim that
∑

i∈N φi(Â
t)∆t

i ≥
∑

i∈N φi(S) 1l{∆ti≥0}∆t
i for

all S ∈ F . Assume on the contrary that there exists Ŝ ∈ F such that
∑

i∈N φi(Â
t)∆t

i <∑
i∈N φi(Ŝ) 1l{∆ti≥0}∆t

i. We define the assortment S∗ as S∗ = {i ∈ Ŝ : ∆t
i ≥ 0}. Therefore, we have

S∗ ⊆ Ŝ ⊆ N , in which case, since Ŝ ∈ F , we have S∗ ∈ F by Assumption 2.1. For all i ∈ S∗,
we have ∆t

i ≥ 0 by the definition of S∗, so
∑

i∈S∗ φi(S
∗)∆t

i =
∑

i∈S∗ φi(S
∗) 1l{∆ti≥0}∆t

i. Also, for

all i∈ Ŝ \S∗, we have φi(S
∗) = 0 and ∆t

i < 0, in which case, we have
∑

i∈Ŝ\S∗ φi(S
∗)∆t

i = 0 =∑
i∈Ŝ\S∗ φi(Ŝ) 1l{∆ti≥0}∆t

i. Lastly, for all i∈N \ Ŝ, we have φi(S
∗) = 0 = φi(Ŝ). Therefore, we have∑

i∈N\Ŝ φi(S
∗)∆t

i = 0 =
∑

i∈N\Ŝ φi(Ŝ) 1l{∆ti≥0}∆t
i. Noting Assumption 2.1, since S∗ ⊆ Ŝ, we have

φi(S
∗)≥ φi(Ŝ) for all i∈ S∗. In this case, we obtain∑
i∈N

φi(S
∗)∆t

i =
∑
i∈S∗

φi(S
∗)∆t

i +
∑

i∈Ŝ\S∗

φi(S
∗)∆t

i +
∑
i∈N\Ŝ

φi(S
∗)∆t

i

=
∑
i∈S∗

φi(S
∗) 1l{∆ti≥0}∆t

i +
∑

i∈Ŝ\S∗

φi(Ŝ) 1l{∆ti≥0}∆t
i +

∑
i∈N\Ŝ

φi(Ŝ) 1l{∆ti≥0}∆t
i

≥
∑
i∈S∗

φi(Ŝ) 1l{∆ti≥0}∆t
i +

∑
i∈Ŝ\S∗

φi(Ŝ) 1l{∆ti≥0}∆t
i +

∑
i∈N\Ŝ

φi(Ŝ) 1l{∆ti≥0}∆t
i

=
∑
i∈N

φi(Ŝ) 1l{∆ti≥0}∆t
i.

Thus, noting the assumption
∑

i∈N φi(Ŝ) 1l{∆ti≥0}∆t
i >
∑

i∈N φi(Â
t)∆t

i, we get
∑

i∈N φi(S
∗)∆t

i >∑
i∈N φi(Â

t)∆t
i, which contradicts the fact that Ât is an optimal solution to problem (4).
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Appendix B: Performance of the Static Policy

In this section, we give a proof for Lemma 4.1, which shows that the total expected revenue of the

static policy is at least 50% of the optimal total expected revenue.

Proof: Under the static policy, we offer the assortment Ât at time period t regardless of the product

availabilities, where Ât is given by an optimal solution to problem (4). If a customer chooses a

product that does not have on-hand inventory, then the customer leaves without using the product.

Let V t(q) denote the total expected revenue under this static policy over the time periods t, . . . , T ,

given that we are in state q at time period t. Similar to the dynamic program in (3), we can

compute {V t : t∈ T } by using the recursion

V t(q) =
∑
i∈N

πi

∞∑
`=1

qi,` + E
{
V t+1(X(q))

}
+
∑
i∈N

1l{qi,0≥1} φi(Â
t)

(
ri +πi− (1− ρi,0)E

{
V t+1(X(q))−V t+1 (X(q)−ei,0 +ei,1)

})
,

with the boundary condition that V T+1 = 0. For all t ∈ T and q ∈ Q, let

Ht(q) =
∑

i∈N
∑∞

`=0 qi,` ν̂
t
i,`. We will use induction over the time periods to show that V t(q)≥Ht(q)

for all q ∈Q and t∈ T . We have ν̂T+1
i,` = 0 for all i∈N , `= 0,1, . . . by definition, so that HT+1 = 0.

Also, we have V T+1 = 0, which implies that the result holds at time period T + 1. Assuming that

V t+1(q) ≥Ht+1(q) for all q ∈ Q, we will show that V t(q) ≥Ht(q) for all q ∈ Q. In the proof of

Theorem 3.2, we show the equalities

E
{
Ht+1(X(q))

}
=
∑
i∈N

{
qi,0 ν̂

t+1
i,0 +

∞∑
`=1

qi,`
[
ρi,` ν̂

t+1
i,0 + (1− ρi,`) ν̂t+1

i,`+1

]}
.

E
{
Ht+1(X(q))−Ht+1 (X(q)−ei,0 +ei,1)

}
= ν̂t+1

i,0 − ν̂t+1
i,1 .

Also, recall that we have φi(Â
t) [ri+πi−(1−ρi,0)

(
ν̂t+1
i,0 − ν̂t+1

i,1

)
]≥ 0 for all i∈N by the discussion in

the proof of Lemma 3.1. In this case, by the inductive hypothesis and the above recursion defining

V t(q), we obtain the chain of inequalities

V t(q) ≥
∑
i∈N

πi

∞∑
`=1

qi,` + E
{
Ht+1(X(q))

}
+
∑
i∈N

1l{qi,0≥1} φi(Â
t)
(
ri +πi− (1− ρi,0)E

{
Ht+1 (X(q))−Ht+1 (X(q)−ei,0 +ei,1)

})
=

∑
i∈N

πi

∞∑
`=1

qi,` +
∑
i∈N

{
qi,0 ν̂

t+1
i,0 +

∞∑
`=1

qi,`
[
ρi,` ν̂

t+1
i,0 + (1− ρi,`) ν̂t+1

i,`+1

]}
+
∑
i∈N

1l{qi,0≥1} φi(Â
t)
[
ri +πi− (1− ρi,0)(ν̂t+1

i,0 − ν̂t+1
i,1 )

]
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≥
∑
i∈N

πi

∞∑
`=1

qi,` +
∑
i∈N

{
qi,0 ν̂

t+1
i,0 +

∞∑
`=1

qi,`
[
ρi,` ν̂

t+1
i,0 + (1− ρi,`) ν̂t+1

i,`+1

]}
+
∑
i∈N

qi,0
Ci

φi(Â
t)
[
ri +πi− (1− ρi,0)(ν̂t+1

i,0 − ν̂t+1
i,1 )

]
,

where the last inequality uses the fact that φi(Â
t)
[
ri +πi− (1− ρi,0)(ν̂t+1

i,0 − ν̂t+1
i,1 )

]
≥ 0 and

1l{qi,0≥1} ≥ qi,0/Ci for all q ∈ Q. By the definition of ν̂ti,0, we have ν̂ti,0 − ν̂t+1
i,0 = 1

Ci
φi(Â

t) ×
[ri +πi− (1− ρi,0)(ν̂t+1

i,0 − ν̂t+1
i,1 )]. In this case, the expression on the right side of the chain of

inequalities above can equivalently be written as∑
i∈N

πi

∞∑
`=1

qi,` +
∑
i∈N

{
qi,0 ν̂

t+1
i,0 +

∞∑
`=1

qi,`
[
ρi,` ν̂

t+1
i,0 + (1− ρi,`) ν̂t+1

i,`+1

]}
+
∑
i∈N

qi,0 (ν̂ti,0− ν̂t+1
i,0 )

=
∑
i∈N

{
qi,0 ν̂

t+1
i,0 +

∞∑
`=1

qi,`
[
πi + ρi,` ν̂

t+1
i,0 + (1− ρi,`) ν̂t+1

i,`+1

]}
+
∑
i∈N

qi,0 (ν̂ti,0− ν̂t+1
i,0 )

=
∑
i∈N

{
qi,0 ν̂

t+1
i,0 +

∞∑
`=1

qi,` ν̂
t
i,`

}
+
∑
i∈N

qi,0 (ν̂ti,0− ν̂t+1
i,0 ) =

∑
i∈N

∞∑
`=0

ν̂ti,` qi,` = H(q),

where the second equality uses the fact that ν̂ti,` = πi + ρi,` ν̂
t+1
i,0 +(1−ρi,`) ν̂t+1

i,`+1 by definition. The

two chains of equalities and inequalities above complete our induction argument, so that V t(q)≥
Ht(q) for all q ∈ Q and t ∈ T . By Lemma 3.3, we also have J1

(∑
i∈N Ci ei,0

)
≤ 2

∑
i∈N Ci ν̂

1
i,0,

where J1
(∑

i∈N Ci ei,0
)

is the optimal total expected revenue. Thus, we obtain

V 1

(∑
i∈N

Ciei,0

)
≥ H1

(∑
i∈N

Ciei,0

)
=
∑
i∈N

Ciν̂
1
i,0 ≥

1

2
J1

(∑
i∈N

Ciei,0

)
.

Appendix C: Decomposability of the Value Functions of the Static Policy

In this section, we give a proof of Lemma 4.2.

Proof of Lemma 4.2: We will prove the result by using induction over the time periods. The

result holds at time period T + 1 because V T+1 = 0 = V T+1
i by definition. Assuming that the result

holds at time period t+ 1, we proceed to showing that the result holds at time period t. Letting e`

be the standard unit vector with one in the `-th coordinate, by the inductive hypothesis, we have

E
{
V t+1(X(q))− V t+1 (X(q)−ei,0 +ei,1)

}
= E

{
V t+1
i (Xi(qi))− V t+1

i (Xi(qi)−e0 +e1)
}
. In this

case, by the recursion that we use to compute {V t : t∈ T }, we obtain

V t(q) =
∑
i∈N

πi

∞∑
`=1

qi,` +
∑
i∈N

E
{
V t+1
i (Xi(qi))

}
+
∑
i∈N

1l{qi,0≥1} φi(Â
t)

(
ri +πi− (1− ρi,0)E

{
V t+1
i (Xi(qi))−V t+1

i (Xi(qi)−e0 +e1)
})

.

By (8), the expression at the right side above is equal to
∑

i∈N V
t
i (qi). Therefore, the result holds

at time period t as well.
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Appendix D: Heterogeneous Customer Types

In this section, we discuss the extension of our approach to the case where there are multiple

customer types. In Section 5.1, we already discuss the notation that we use under heterogeneous

customer types. We do not repeat the discussion of the notation here. We proceed to giving

a dynamic programming formulation under heterogeneous customer types. We use the vector

q = ((qi,0, q
j
i,`) : i ∈ N , j ∈M, ` ≥ 1) as the state variable, where qi,0 is the number of units of

product i available on-hand and qji,` is the number of units of product i that have been used

for exactly ` time periods by a customer of type j. In this case, state space is given by Q =

{
(
(qi,0 ∈Z+, q

j
i,` ∈Z+) : i∈N , j ∈M, `≥ 1

)
: qi,0 +

∑
j∈M

∑∞
`=1 q

j
i,` = Ci ∀ i ∈ N}. We capture

the decision at each time period by (S1, . . . , Sm), where Sj ⊆ N is the assortment that we offer

customers of type j. The set of feasible assortments that we can offer to customers of type j

is given by F j. As in Assumption 2.1, we assume that if A ∈ F j, then S ∈ F j for all S ⊆ A.

Similarly, the choice model {φji (S) : S ⊆N} that drives the choices of customers of type j satisfies

φji (S ∪ {k})≤ φ
j
i (S) for all S ⊆N , k ∈N and i ∈ S. Given that the state is q ∈Q at the current

time period, if there is no purchase, then the state at the next time period is given by the random

vector X(q) =
(
Xi,0(q),Xj

i,`(q) : i∈N , j ∈M, `≥ 1
)
, where we have

Xi,0(q) = qi,0 +
∑
j∈M

∞∑
s=1

Bin
(
qji,s, ρ

j
i,s

)
,

Xj
i,`(q) =

{
0 if `= 1,
qji,`−1− Bin(qji,`−1, ρ

j
i,`−1) if `≥ 2.

The transition dynamics above are similar to the one in (1). The only difference is that we need

to keep track of the types of the customers using the units. Let J t(q) denote the maximum total

expected revenue over the time periods t, t+ 1, . . . , T , given that the system is in state q at time

period t. We can compute {J t : t∈ T } by solving the dynamic program

J t(q) =
∑
i∈N

∑
j∈M

πji

∞∑
`=1

qji,`

+ max
(S1,...,Sm)∈F1×...×Fm

{∑
j∈M

pt,j
∑
i∈N

1l{qi,0≥1} φ
j
i (S

j)×(
rji +πji +E

{
Z(ρji,0)J t+1(X(q)) + (1−Z(ρji,0))J t+1

(
X(q)−ei,0 +eji,1

)})
+
(

1−
∑
j∈M

pt,j
∑
i∈N

1l{qi,0≥1}φ
j
i (S

j)
)
E
{
J t+1(X(q))

}}
,

with the boundary condition that JT+1(·) = 0. Here, eji,1 is the unit vector with a one in the (i,1)-th

coordinate associated with a customer of type j and zero everywhere else. Note that the dynamic



ec6 e-companion to Dynamic Assortment Optimization for Reusable Products

program above is very similar to the dynamic program in (2). As in Section 2, we can write the

dynamic program above equivalently as

J t(q) =
∑
i∈N

∑
j∈M

πji

∞∑
`=1

qji,` + E
{
J t+1(X(q))

}
+
∑
j∈M

pt,j max
Sj∈Fj

{∑
i∈N

1l{qi,0≥1}φ
j
i (S

j)

(
rji +πji − (1− ρji,0)E

{
J t+1(X(q))−J t+1

(
X(q)−ei,0 +eji,1

)})}
.

(11)

Once we observe that the maximization problem in our initial dynamic programming formulation

decomposes by the customer types, the way we obtain the dynamic program above from the initial

one is similar to the way we obtain the dynamic program in (3) from (2). Next, we construct an

approximation to the optimal value function and bound the optimal total expected revenue.

Assuming that we have no products in use at the beginning of the selling horizon, the initial state

of the system is given by q1 = ((q1
i,0, q

j,1
i,` ) : i ∈ N , j ∈M, `≥ 1) = ((Ci,0) : i ∈ N , j ∈M, `≥ 1),

so that the optimal total expected revenue is J1(q1). We use a value function approximation of

the form Ĵ t(q) = β̂t +
∑

i∈N θ̂
t
i qi,0 +

∑
i∈N

∑
j∈M

∑∞
`=1 ν̂

t,j
i,` q

j
i,`,, where we compute β̂t, θ̂ti and ν̂t,ji,`

as discussed in Section 5.1. We consider the greedy policy with respect to the value function

approximations {Ĵ t : t∈ T }. If the system is in state q at time period t, then this policy offers the

assortment Ŝt,j(q) to a customer of type j, which is given by

Ŝt,j(q) = arg max
S∈Fj

{∑
i∈N

1l{qi,0≥1}φ
j
i (S)

(
rji +πji − (1− ρji,0)E

{
Ĵ t+1(X(q))− Ĵ t+1

(
X(q)−ei,0 +eji,1

)})}

= arg max
S∈Fj

{
n∑
i=1

1l{qi,0≥1}φ
j
i (S)

(
rji +πji − (1− ρji,0)

[
θ̂t+1
i − ν̂t+1,j

i,1

])}
,

where the second equality follows from the definition of Ĵ t. Our main result under heterogeneous

customer types is stated in the following theorem.

Theorem D.1 (Performance of the Greedy Policy) Under heterogeneous customer types,

the total expected revenue of the greedy policy with respect to the value function approximations{
Ĵ t : t∈ T

}
is at least 50% of the optimal total expected revenue.

To show Theorem D.1, we use the next lemma. Note that q1 = ((q1
i,0, q

j,1
i,` ) : i∈N , j ∈M, `≥ 1) =

((Ci,0) : i∈N , j ∈M, `≥ 1) is the initial state of the system.

Lemma D.2 J1 (q1)≤ 2
∑

i∈N θ̂
1
i Ci.
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Proof: We can obtain an upper bound on the optimal total expected revenue by using the objective

value provided by any feasible solution to the linear program

min J̃1
(
q1
)

s.t. J̃ t(q) ≥
∑
i∈N

∑
j∈M

πji

∞∑
`=1

qji,` + E
{
J̃ t+1(X(q))

}
+
∑
j∈M

pt,j
∑
i∈N

1l{qi,0≥1} φ
j
i (S

j)

(
rji +πji − (1− ρji,0)E

{
J̃ t+1(X(q))− J̃ t+1

(
X(q)−ei,0 +eji,1

)})
∀q ∈Q, (S1, . . . , Sm) ∈ F1× · · ·×Fm, t∈ T ,

where the decision variables in the linear program above are {J̃ t(q) : q ∈ Q, t ∈ T } and we

follow the convention that J̃T+1 = 0. For any q ∈ Q, t ∈ T , let Ĵ t(q) = β̂t +
∑

i∈N θ̂
t
i qi,0 +∑

i∈N
∑

j∈M
∑∞

`=1 ν̂
t,j
i,` q

j
i,`,, where we compute β̂t, θ̂ti and ν̂t,ji,` as discussed in Section 5.1. We claim

that {Ĵ t(q) : q ∈ Q, t ∈ T } is a feasible solution to the linear program above. To establish the

claim, noting that Ĵ t+1(q) is linear in q, by the definition of X(q), we get

E
{
Ĵ t+1(X(q))

}
= β̂t+1 +

∑
i∈N

{
θ̂t+1
i

[
qi,0 +

∑
j∈M

∞∑
`=1

ρji,`q
j
i,`

]
+
∑
j∈M

∞∑
`=1

ν̂t+1,j
i,`+1 [qji,`− ρ

j
i,sq

j
i,`]

}

= β̂t+1 +
∑
i∈N

{
qi,0 θ̂

t+1
i +

∑
j∈M

∞∑
`=1

qji,` [ρji,` θ̂
t+1
i + (1− ρji,`) ν̂

t+1,j
i,`+1 ]

}

= β̂t+1 +
∑
i∈N

{
qi,0 θ̂

t+1
i +

∑
j∈M

∞∑
`=1

qji,` [ν̂t,ji,` −π
j
i ]

}
,

where the last equality follows from the way we compute ν̂t+1,j
i,` in Section 5.1. Similarly, using the

fact that Ĵ t+1(q) is linear in q, we also have E
{
Ĵ t+1(X(q))− Ĵ t+1(X(q)−ei,0 +eji,1)

}
= θ̂t+1

i − ν̂
t+1,j
i,1

by the definitions of Ĵ t+1 and X(q). Thus, if we evaluate the right side of the constraint in the

linear program above at {Ĵ t(q) : q ∈Q, t∈ T }, then we get∑
i∈N

∑
j∈M

πji

∞∑
`=1

qji,` + E
{
J̃ t+1(X(q))

}
+
∑
j∈M

pt,j
∑
i∈N

1l{qi,0≥1} φ
j
i (S

j)

(
rji +πji − (1− ρji,0)E

{
J̃ t+1(X(q))− J̃ t+1

(
X(q)−ei,0 +eji,1

)})

=
∑
i∈N

∑
j∈M

πji

∞∑
`=1

qji,` + β̂t+1 +
∑
i∈N

{
qi,0 θ̂

t+1
i +

∑
j∈M

∞∑
`=1

qji,` [ν̂t,ji,` −π
j
i ]

}

+
∑
j∈M

pt,j
∑
i∈N

1l{qi,0≥1} φ
j
i (S

j)

(
rji +πji − (1− ρji,0) (θ̂t+1

i − ν̂t+1,j
i,1 )

)

=
∑
i∈N

θ̂t+1
i Ci +

∑
i∈N

{
qi,0 θ̂

t+1
i +

∑
j∈M

∞∑
`=1

qji,` ν̂
t,j
i,`

}

+
∑
j∈M

pt,j
∑
i∈N

1l{qi,0≥1} φ
j
i (S

j)

(
rji +πji − (1− ρji,0) (θ̂t+1

i − ν̂t+1,j
i,1 )

)
,
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where the second equality uses the definition of β̂t+1 in Section 5.1. Using the same

argument in proof of Lemma 3.1, we can show that θ̂ti ≥ θ̂t+1
i under heterogeneous

customer types. Furthermore, using the same argument in the proof of Lemma A.1,

we can show that
∑

i∈N 1l{qi,0≥1} φ
j
i (S

j)
[
rji +πji − (1− ρji,0) (θ̂t+1

i − ν̂t+1,j
i,1 )

]
≤
∑

i∈N φi(Â
t,j) ×[

rji +πji − (1− ρji,0) (θ̂t+1
i − ν̂t+1,j

i,1 )
]

for all Sj ∈F j. By the chain of equalities above, we can bound

the right side of the constraint in the linear program as∑
i∈N

θ̂t+1
i Ci +

∑
i∈N

{
qi,0 θ̂

t+1
i +

∑
j∈M

∞∑
`=1

qji,` ν̂
t,j
i,`

}

+
∑
j∈M

pt,j
∑
i∈N

1l{qi,0≥1} φ
j
i (S

j)

(
rji +πji − (1− ρji,0) (θ̂t+1

i − ν̂t+1,j
i,1 )

)

≤
∑
i∈N

θ̂t+1
i Ci +

∑
i∈N

{
qi,0 θ̂

t
i +
∑
j∈M

∞∑
`=1

qji,` ν̂
t,j
i,`

}

+
∑
j∈M

pt,j
∑
i∈N

φi(Â
t,j)

(
rji +πji − (1− ρji,0) (θ̂t+1

i − ν̂t+1,j
i,1 )

)

=
∑
i∈N

θ̂t+1
i Ci +

∑
i∈N

{
qi,0 θ̂

t
i +
∑
j∈M

∞∑
`=1

qji,` ν̂
t,j
i,`

}
+
∑
i∈N

Ci (θ̂
t
i − θ̂t+1

i )

=
∑
i∈N

θ̂ti Ci +
∑
i∈N

{
qi,0 θ̂

t
i +
∑
j∈M

∞∑
`=1

qji,` ν̂
t,j
i,`

}
= β̂t +

∑
i∈N

{
qi,0 θ̂

t
i +
∑
j∈M

∞∑
`=1

qji,` ν̂
t,j
i,`

}
= Ĵ t(q),

where the first equality follows from the way we compute θ̂ti in Section 5.1. By the chain of

inequalities above, for any q ∈ Q, (S1, . . . , Sm) ∈ F1 × . . . × Fm, t ∈ T , if we evaluate the right

side of the constraint in the linear program at {Ĵ(q) : q ∈ Q, t ∈ T }, then the right side of the

constraint is upper bounded by Ĵ t(q). Therefore, the solution {Ĵ(q) : q ∈Q, t ∈ T } is feasible to

the linear program, in which case, the objective value provided by this solution is an upper bound

on the optimal objective value of the linear program. Noting the definition of q1, the objective value

provided by the solution {Ĵ(q) : q ∈Q, t ∈ T } is Ĵ1(q1) = β̂1 +
∑

i∈N Ci θ̂
1
i = 2

∑
i∈N Ci θ̂

1
i . Thus,

2
∑

i∈N Ci θ̂
1
i is an upper bound on the optimal total expected revenue.

If we are in state q at time period t, then the greedy policy offers the assortment Ŝt,j(q) to a

customer of type j. Let U t(q) be the total expected revenue obtained by the greedy policy over the

time periods t, . . . , T , given that we are in state q at time period t. Using an argument similar to

the one right before the proof of Theorem 3.2 and noting our dynamic programming formulation

under heterogeneous customer types in (11), we can compute {U t : t∈ T } by using the recursion

U t(q) =
∑
i∈N

∑
j∈M

πji

∞∑
`=1

qji,` + E
{
U t+1(X(q))

}
+
∑
j∈M

pt,j
∑
i∈N

1l{qi,0≥1} φ
j
i (Ŝ

t,j(q))

(
rji +πji − (1− ρji,0)E

{
U t+1(X(q))−U t+1

(
X(q)−ei,0 +eji,1

)})
,
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with the boundary condition that UT+1 = 0. The coefficient of E{U t+1(X(q))} above is 1 −∑
j∈M pt,j

∑
i∈N 1l{qi,0≥1} φ

j
i (Ŝ

t,j(q))(1− ρji,0). Since
∑

j∈M pt,j = 1 and
∑

i∈N φ
j
i (Ŝ

t,j(q)) ≤ 1, this

coefficient is positive. The coefficient of E
{
U t+1

(
X(q)−ei,0 +eji,1

)}
is positive as well. Thus, if

we replace the U t+1 on the right side above with a function Ht+1 that satisfies U t+1(q)≥Ht+1(q),

then the right side of the expression above gets smaller.

Here is the proof of Theorem D.1.

Proof of Theorem D.1: Let Ht(q) =
∑

i∈N

{
θ̂ti qi,0 +

∑
j∈M

∑∞
`=1 ν̂

t,j
i,` q

j
i,`

}
for all t ∈ T and

q ∈QM. We will use induction over the time periods to show that U t(q) ≥ Ht(q) for all q ∈ Q
and t ∈ T . In this case, noting that the initial state of the system is given by q1, we obtain

U 1(q1)≥H1(q1) =
∑

i∈N θ̂
1
i Ci ≥ 1

2
J1(q1), where the equality follows from the definition of q1 and

the second inequality follows from Lemma D.2. Thus, the desired result follows. We proceed to

using induction over the time periods to show that U t(q)≥Ht(q). Since ν̂T+1
i = 0 and ν̂T+1,j

i,` = 0

for all i ∈ N , j ∈M, ` = 1,2, . . ., we have HT+1 = 0. We have UT+1 = 0 as well. Therefore, the

result holds at time period T + 1. Assuming that U t+1(q)≥Ht+1(q) for all q ∈Q, we proceed to

showing that U t(q)≥Ht(q) for all q ∈ Q as well. Since Ht+1 is linear, by the same argument in

the proof of Lemma D.2, we have

E
{
Ht+1(X(q))

}
=
∑
i∈N

{
θ̂t+1
i

[
qi,0 +

∑
j∈M

∞∑
`=1

ρji,`q
j
i,`

]
+
∑
j∈M

∞∑
`=1

ν̂t+1,j
i,`+1 [qji,`− ρ

j
i,sq

j
i,`]

}

=
∑
i∈N

{
qi,0 θ̂

t+1
i +

∑
j∈M

∞∑
`=1

qji,` [ρji,` θ̂
t+1
i + (1− ρji,`) ν̂

t+1,j
i,`+1 ]

}

=
∑
i∈N

{
qi,0 θ̂

t+1
i +

∑
j∈M

∞∑
`=1

qji,` [ν̂t,ji,` −π
j
i ]

}
.

By the discussion in the same proof, we have E
{
Ht+1(X(q))−Ht+1(X(q)− ei,0 + eji,1)

}
= θ̂t+1

i −
ν̂t+1,j
i,1 as well. So, by the inductive hypothesis and the recursion that defines U t(q), we get

U t(q) ≥
∑
i∈N

∑
j∈M

πji

∞∑
`=1

qji,` + E
{
Ht+1(X(q))

}
+
∑
j∈M

pt,j
∑
i∈N

1l{qi,0≥1} φ
j
i (Ŝ

t,j(q))

(
rji +πji − (1− ρji,0)E

{
Ht+1(X(q))−Ht+1

(
X(q)−ei,0 +eji,1

)})

=
∑
i∈N

∑
j∈M

πji

∞∑
`=1

qji,` +
∑
i∈N

{
qi,0 θ̂

t+1
i +

∑
j∈M

∞∑
`=1

qji,` [ν̂t,ji,` −π
j
i ]

}

+
∑
j∈M

pt,j
∑
i∈N

1l{qi,0≥1} φ
j
i (Ŝ

t,j(q))

(
rji +πji − (1− ρji,0) (θ̂t+1

i − ν̂t+1,j
i,1 )

)

=
∑
i∈N

{
qi,0 θ̂

t+1
i +

∑
j∈M

∞∑
`=1

qji,` ν̂
t,j
i,`

}
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+
∑
j∈M

pt,j max
Sj∈Fj

{∑
i∈N

1l{qi,0≥1} φ
j
i (S

j)

(
rji +πji − (1− ρji,0) (θ̂t+1

i − ν̂t+1,j
i,1 )

)}
,

where the last equality is by the definition of Ŝt,j(q). Noting that Ât,j is a feasible, but not

necessarily an optimal, solution to the last maximization problem, we have

∑
i∈N

{
qi,0 θ̂

t+1
i +

∑
j∈M

∞∑
`=1

qji,` ν̂
t,j
i,`

}

+
∑
j∈M

pt,j max
Sj∈Fj

{∑
i∈N

1l{qi,0≥1} φ
j
i (S

j)

(
rji +πji − (1− ρji,0) (θ̂t+1

i − ν̂t+1,j
i,1 )

)}

≥
∑
i∈N

{
qi,0 θ̂

t+1
i +

∑
j∈M

∞∑
`=1

qji,` ν̂
t,j
i,`

}
+
∑
j∈M

pt,j
∑
i∈N

1l{qi,0≥1} φ
j
i (Â

t,j)

(
rji +πji − (1− ρji,0) (θ̂t+1

i − ν̂t+1,j
i,1 )

)

≥
∑
i∈N

{
qi,0 θ̂

t+1
i +

∑
j∈M

∞∑
`=1

qji,` ν̂
t,j
i,`

}
+
∑
j∈M

pt,j
∑
i∈N

qi,0
Ci

φji (Â
t,j)

(
rji +πji − (1− ρji,0) (θ̂t+1

i − ν̂t+1,j
i,1 )

)

=
∑
i∈N

{
qi,0 θ̂

t+1
i +

∑
j∈M

∞∑
`=1

qji,` ν̂
t,j
i,`

}
+
∑
j∈M

pt,j
∑
i∈N

qi,0 (θ̂ti − θ̂t+1
i )

=
∑
i∈N

{
θ̂ti qi,0 +

∑
j∈M

∞∑
`=1

ν̂t,ji,` q
j
i,`

}
=Ht(q).

In the second inequality above, we can use an argument similar to the one in the proof of Lemma

3.1 to show that φji (Â
t,j)(rji + πji − (1− ρji,0) (θ̂t+1

i − ν̂t+1,j
i,1 )) ≥ 0 for all i ∈ N , in which case, the

second inequality follows by the fact that 1l{qi,0≥1} ≥ qi,0/Ci for any qi,0 ≤ Ci. The first equality

follows from the way we compute θ̂ti . The two chains of inequalities show that U t(q) ≥ Ht(q),

establishing the desired claim.

Appendix E: Solving the Assortment Problem Approximately

We consider the case where we solve problem (4) only approximately. Assume that we have an

FPTAS such that for any ε > 0, the FPTAS finds an assortment Ât that satisfies

(1 + ε)
∑
i∈N

φi(Â
t)
[
ri +πi− (1− ρi,0)

(
ν̂t+1
i,0 − ν̂t+1

i,1

)]
≥max

S∈F

∑
i∈N

φi(S)
[
ri +πi− (1− ρi,0)

(
ν̂t+1
i,0 − ν̂t+1

i,1

)]
in running time that is polynomial in n and 1/ε. We compute ν̂ti,` and β̂t for all i ∈ N , ` ≥ 0,

t∈ T as in (5), but the assortment Ât satisfies the inequality above, rather than being an optimal

solution to problem (4). In other words, the assortment Ât is a 1/(1 + ε)-approximate solution to

problem (4). In the next lemma, we generalize Lemma 3.3.

Lemma E.1 Assume that Ât is an 1/(1 + ε)-approximate solution to problem (4) for all t ∈ T .

Then, we have J1
(∑

i∈N Ci ei,0
)
≤ 2 (1 + ε)T

∑
i∈N Ci ν̂

1
i,0.
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Proof: Assume that ν̂ti,` and β̂t for all i ∈ N , ` ≥ 0, t ∈ T are computed as in (5), but Ât

is a 1/(1 + ε)-approximate solution to problem (4). Defining the value function approximation

Ĵ t(q) =
∑

i∈N
∑∞

`=0 ν̂
t
i,` qi,`, we claim that {(1 + ε)T−t+1Ĵ t(q) : q ∈Q, t ∈ T } is a feasible solution

to the linear program in the proof of Lemma 3.3. To show the claim, from the discussion in

the proof of Lemma 3.3, recall that E{Ĵ t+1 (X(q))− Ĵ t+1 (X(q)−ei,0 +ei,1)} = ν̂t+1
i,0 − ν̂t+1

i,1 and

E{Ĵ t+1(X(q))} = β̂t+1 +
∑

i∈N{qi,0 ν̂
t+1
i,0 +

∑∞
`=1 qi,` [ρi,` ν̂

t+1
i,0 + (1− ρi,`) ν̂t+1

i,`+1]}. In this case, if we

evaluate the right side of the constraint in the linear program in the proof of Lemma 3.3 at the

solution {(1 + ε)T−t+1Ĵ t(q) : q ∈Q, t∈ T }, then we obtain∑
i∈N

πi

∞∑
`=1

qi,` + (1 + ε)T−tE
{
Ĵ t+1(X(q))

}
+
∑
i∈N

1l{qi,0≥1} φi(S)
[
ri +πi− (1− ρi,0) (1 + ε)T−tE

{
Ĵ t+1 (X(q))− Ĵ t+1 (X(q)−ei,0 +ei,1)

}]
=
∑
i∈N

πi

∞∑
`=1

qi,` + (1 + ε)T−t β̂t+1 + (1 + ε)T−t
∑
i∈N

{
qi,0 ν̂

t+1
i,0 +

∞∑
`=1

qi,`
[
ρi,` ν̂

t+1
i,0 + (1− ρi,`) ν̂t+1

i,`+1

]}
+
∑
i∈N

1l{qi,0≥1} φi(S)
[
ri +πi− (1 + ε)T−t (1− ρi,0) (ν̂t+1

i,0 − ν̂t+1
i,1 )

]
≤ (1 + ε)T−t

∑
i∈N

ν̂t+1
i,0 Ci + (1 + ε)T−t

∑
i∈N

{
qi,0 ν̂

t+1
i,0 +

∞∑
`=1

qi,` ν̂
t
i,`

}
+
∑
i∈N

1l{qi,0≥1} φi(S)
[
ri +πi− (1− ρi,0) (1 + ε)T−t (ν̂t+1

i,0 − ν̂t+1
i,1 )

]
,

where the inequality above uses the fact that β̂t+1 =
∑

i∈N ν̂
t+1
i,0 Ci and ν̂ti,` = πi + ρi,` ν̂

t+1
i,0 +

(1 − ρi,`) ν̂t+1
i,`+1. By Lemma A.1, we have

∑
i∈N 1l{qi,0≥1} φi(S)

[
ri +πi− (1− ρi,0) (ν̂t+1

i,0 − ν̂t+1
i,1 )

]
≤

maxA∈F
∑

i∈N φi(A)
[
ri +πi− (1− ρi,0) (ν̂t+1

i,0 − ν̂t+1
i,1 )

]
for all S ∈F , since this lemma assumes that

Ât is chosen as the optimal solution to the last maximization problem. Therefore, we can continue

the chain of inequalities above as

(1 + ε)T−t
∑
i∈N

ν̂t+1
i,0 Ci + (1 + ε)T−t

∑
i∈N

{
qi,0 ν̂

t+1
i,0 +

∞∑
`=1

qi,`ν̂
t
i,`

}
+
∑
i∈N

1l{qi,0≥1} φi(S)
[
ri +πi− (1− ρi,0) (1 + ε)T−t (ν̂t+1

i,0 − ν̂t+1
i,1 )

]
≤ (1 + ε)T−t

∑
i∈N

ν̂t+1
i,0 Ci + (1 + ε)T−t

∑
i∈N

{
qi,0 ν̂

t+1
i,0 +

∞∑
`=1

qi,`ν̂
t
i,`

}
+ (1 + ε)T−t

∑
i∈N

1l{qi,0≥1} φi(S)
[
ri +πi− (1− ρi,0) (ν̂t+1

i,0 − ν̂t+1
i,1 )

]
≤ (1 + ε)T−t

∑
i∈N

ν̂t+1
i,0 Ci + (1 + ε)T−t

∑
i∈N

{
qi,0 ν̂

t+1
i,0 +

∞∑
`=1

qi,`ν̂
t
i,`

}

+ (1 + ε)T−t+1 1

1 + ε
max
A∈F

{∑
i∈N

φi(A)
[
ri +πi− (1− ρi,0) (ν̂t+1

i,0 − ν̂t+1
i,1 )

]}
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≤ (1 + ε)T−t
∑
i∈N

ν̂t+1
i,0 Ci + (1 + ε)T−t

∑
i∈N

{
qi,0 ν̂

t+1
i,0 +

∞∑
`=1

qi,`ν̂
t
i,`

}
+ (1 + ε)T−t+1

∑
i∈N

φi(Â
t)
[
ri +πi− (1− ρi,0) (ν̂t+1

i,0 − ν̂t+1
i,1 )

]
,

= (1 + ε)T−t
∑
i∈N

ν̂t+1
i,0 Ci + (1 + ε)T−t

∑
i∈N

{
qi,0 ν̂

t+1
i,0 +

∞∑
`=1

qi,`ν̂
t
i,`

}
+ (1 + ε)T−t+1

∑
i∈N

Ci (ν̂
t
i,0− ν̂t+1

i,0 ),

where the last inequality is by the fact that Ât is 1/(1+ε)-approximate solution to problem (4) and

the last equality follows the fact that ν̂ti,0 = ν̂t+1
i,0 + 1

Ci
φi(Â

t)[ri+πi− (1−ρi,0)
(
ν̂t+1
i,0 − ν̂t+1

i,1

)
]. Even

if we choose Ât as an approximate solution to problem (4), we can follow precisely the

same reasoning in the proof of Lemma 3.1 to show that we can drop each product i with

φi(Â
t)
(
ri +πi− (1− ρi,0)

(
ν̂t+1
i,0 − ν̂t+1

i,1

))
≤ 0 from Ât without deteriorating the objective value of

problem (4) provided by the solution Ât. In this case, by the reasoning in the proof of Lemma 3.1,

it follows that we can assume ν̂ti,0 ≥ ν̂t+1
i,0 . So, we continue the last chain of inequalities as

(1 + ε)T−t
∑
i∈N

ν̂t+1
i,0 Ci + (1 + ε)T−t

∑
i∈N

{
qi,0 ν̂

t+1
i,0 +

∞∑
`=1

qi,`ν̂
t
i,`

}
+ (1 + ε)T−t+1

∑
i∈N

Ci (ν̂
t
i,0− ν̂t+1

i,0 )

≤ (1 + ε)T−t+1
∑
i∈N

ν̂t+1
i,0 Ci + (1 + ε)T−t+1

∑
i∈N

{
qi,0 ν̂

t
i,0 +

∞∑
`=1

qi,`ν̂
t
i,`

}
+ (1 + ε)T−t+1

∑
i∈N

Ci (ν̂
t
i,0− ν̂t+1

i,0 )

= (1 + ε)T−t+1
∑
i∈N

{
ν̂ti,0Ci +

∞∑
`=0

qi,`ν̂
t
i,`

}
= (1 + ε)T−t+1

{
β̂t +

∑
i∈N

∞∑
`=0

qi,`ν̂
t
i,`

}
= (1 + ε)T−t+1 Ĵ t(q).

By the discussion so far, for any q ∈Q, S ∈F , t∈ T , if we evaluate the right side of the constraint

at {(1 + ε)T−t+1 Ĵ t(q) : q ∈Q, t∈ T }, then the right side of the constraint is upper bounded by

(1 + ε)T−t+1Ĵ t(q). Thus, the solution {(1 + ε)T−t+1Ĵ t(q) : q ∈ Q, t ∈ T } is feasible to the linear

program, which implies that the objective value of the linear program at this solution is an

upper bound on the optimal total expected revenue. The desired result follows by noting that

the objective value of the linear program at the solution {(1 + ε)T−t+1Ĵ t(q) : q ∈ Q, t ∈ T } is

(1 + ε)T Ĵ1
(∑

i∈N Ci ei,0
)

= (1 + ε)T β̂1 + (1 + ε)T
∑

i∈N ν̂
1
i,0Ci = 2(1 + ε)T

∑
i∈N ν̂

1
i,0Ci.

Consider a greedy policy with respect to the value function approximations {Ĵ t : t ∈ T }. To

compute the decision of this policy, we need to solve the combinatorial optimization problem in

(6), which has the same structure as the one in (4). Therefore, we assume that we can obtain only

an approximate solution to this problem (6). In particular, if the state of the system at time period

t is q, then the greedy policy offers the assortment Ŝt(q) such that

(1 + ε)
n∑
i=1

1l{qi,0≥1}φi(Ŝ
t(q))

[
ri +πi− (1− ρi,0)(ν̂t+1

i,0 − ν̂t+1
i,1 )

]
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≥ max
S∈F

n∑
i=1

1l{qi,0≥1}φi(S)
[
ri +πi− (1− ρi,0)(ν̂t+1

i,0 − ν̂t+1
i,1 )

]
.

We can compute the total expected revenue obtained by this greedy policy through the recursion in

(7). The only difference is that the assortment Ŝt(q) is a 1/(1+ ε)-approximate solution to problem

(6), rather than the optimal solution. We let U t(q) be the expected revenue obtained by the greedy

policy over the time periods t, . . . , T , given that the system is in state q at time period t. We have

the following lemma for the total expected revenue of the greedy policy.

Lemma E.2 For all q ∈Q and t∈ T , we have (1 + ε)T−t+1U t(q)≥
∑

i∈N
∑∞

`=0 ν̂
t
i,` qi,`.

The proof of this lemma is omitted and it follows by using induction over the time periods and

using the ideas in the proofs of Theorem 3.2 and Lemma E.1. Here is the proof of Theorem 5.1.

Proof of Theorem 5.1: For any δ > 0, we will show that we can obtain a 1/(2 (1+δ))-approximate

policy and the running time to obtain and execute the approximate policy is polynomial in n,

1/δ and T . Assume for the moment that δ ≤ 1. Given such δ, set ε = δ/(4T ), choose Ât as a

1/(1 + ε)-approximate solution to problem (4) and choose Ŝt(q) as a 1/(1+ε)-approximate solution

to problem (6). Since we can obtain these approximate solutions in running times polynomial in n

and 1/ε, the running times involved are polynomial in n and T/δ, which are, in turn, polynomial

in n, 1/δ and T , establishing the desired running time. Also, by Lemmas E.1 and E.2, the expected

revenue from the greedy policy satisfies

2 (1 + ε)2T U 1

(∑
i∈N

Ci ei,0

)
≥ 2 (1 + ε)T

∑
i∈N

ν̂1
i,0Ci ≥ J1

(∑
i∈N

Ci ei,0

)
.

Letting Z∗ be the optimal total expected revenue and G be the total expected revenue from the

greedy policy, noting that ε= δ/(4T ), the chain of inequalities above yields Z∗ ≤ 2 (1 + δ
4T

)2T G≤

2 exp(δ/2)G≤ 2 (1 + δ)G, where the last inequality follows from the fact that exp(δ/2)≤ 1 + δ for

all δ ∈ [0,1]. The last chain of inequalities shows that the greedy policy is a 1/(2 (1+δ))-approximate

policy. Lastly, if δ > 1, then we can simply choose ε= 1/(4T ).

Appendix F: Upper Bound on the Optimal Total Expected Revenue

In this section, we give a proof for Proposition 6.1.

Proof of Proposition 6.1: Under the optimal policy, we use Qt
i,` to denote the number of units of

product i that have been in use for ` time periods at time period t. Also, under the optimal policy,

we let Zt(A) = 1 if we offer assortment A at time period t; otherwise, we have Zt(A) = 0. Lastly,

under the optimal policy, we let Φt
i = 1 if the customer arriving at time period t chooses product
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i; otherwise, we have Φt
i = 0. Note that Qt

i,`, Z
t(A) and Φt

i are random variables. Furthermore,

Pr{Φt
i = 1 |Zt(A) = 1} = φi(A). Using the vector Qt = (Qt

i,` : i ∈ N , ` ≥ 0), by the transition

dynamics of our dynamic assortment problem, we have

Qt+1 =
∑
i∈N

Φt
i

[
Z(ρi,0)X(Qt) + (1−Z(ρi,0)) (X(Qt)−ei,0 +ei,1)

]
+

{
1−

∑
i∈N

Φt
i

}
X(Qt)

= X(Qt)−
∑
i∈N

Φt
i (1−Z(ρi,0)) (ei,0−ei,1),

where the first equality uses an argument similar to the one that we use to justify the

first constraint in problem (10). Since Pr{Φt
i = 1 |Zt(A) = 1} = φi(A), we have E{Φt

i} =∑
A∈F Pr{Zt(A) = 1} Pr{Φt

i = 1 |Zt(A) = 1} =
∑

A∈F φi(A) Pr{Zt(A) = 1}. In this case, letting

q̄ti,` = E{Qt
i,`} and z̄t(A) = E{Zt(A)}, taking expectations in the chain of equalities above and

noting that E{X(q)} is linear in q, it follows that the solution (z̄t(A) : A ∈ F , t ∈ T ) and

(q̄ti,` : i∈N , `≥ 0, t∈ T ) satisfies the first constraint in problem (10). Under the optimal policy,

we start with the initial state
∑

i∈N Ci ei,0 and offer one assortment at each time period, so Q1 =∑
i∈N Ci ei,0 and

∑
A∈F Z

t(A) = 1. Taking expectations in the last two equalities indicates that

the solution (z̄t(A) : A ∈ F , t ∈ T ) and (q̄ti,` : i ∈ N , `≤ 0, t ∈ T ) satisfies the second and third

constraints in problem (10) as well. Therefore, this solution is feasible to problem (10). Furthermore,

noting that E{Φt
i}=

∑
A∈F Pr{Zt(A) = 1} Pr{Φt

i = 1 |Zt(A) = 1}=
∑

A∈F φi(A) Pr{Zt(A) = 1}=∑
A∈F φi(A) z̄t(A), the total expected revenue under the optimal policy is

J1

(∑
i∈N

Ci ei,0

)
=E

{∑
t∈T

∑
i∈N

riΦ
t
i +
∑
t∈T

∑
i∈N

πi

∞∑
`=1

Qt
i,`

}

=
∑
t∈T

∑
i∈N

ri
∑
A∈F

φi(A) z̄t(A) +
∑
t∈T

∑
i∈N

πi

∞∑
`=1

q̄ti,`,

which is the objective value that the solution (z̄t(A) : A∈F , t∈ T ) and (q̄ti,` : i∈N , `≤ 0, t∈ T )

provides for problem (10). So, there exists a feasible solution to problem (10) that provides an

objective value of J1
(∑

i∈N Ci ei,0
)
. Therefore, the optimal objective value of problem (10) must

be at least J1
(∑

i∈N Ci ei,0
)
.

Appendix G: Data and Experimental Setup for Street Parking Pricing in the City of Seattle

As discussed in Section 6.3, we augmented the data provided by the Open Data Program in Seattle

to ensure that we have an intended parking locale for each driver. In this case, each transaction

record gives the start time, duration, intended locale, actual parked local, and per hour rate for

each parking event. Note that the intended and the actual parked locales may be the same. The

parking duration in the data reflects the duration of time for which each driver made a payment,
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but the driver may not occupy the parking space for this whole duration. Nevertheless, we assume

that a driver indeed occupies the parking space for the whole duration of time for which she made

a payment. Payments can be made by using a smart phone application that allows extending a

parking session remotely. Therefore, it is reasonable to treat the usage duration of a parking space

as a random quantity not known to the system operator at the time a driver parks.

When estimating the distribution of the parking space usage durations, we observed that the

city of Seattle imposes parking time limits that prevent drivers from creating transactions with

a duration greater than the maximum time limit. Such time limits result in an abnormally large

fraction of transactions with durations that are exactly equal to the time limit, which created

difficulties when estimating the parking duration distributions. Thus, we eliminated the transaction

records whose durations are exactly equal to the time limit. After eliminating these transactions,

a negative binomial distribution with parameters (si, ηi) with si = 2 gave reasonable fits. After

eliminating the transactions, the load in the system was small enough that taking the future

driver arrivals into consideration did not make an impact and simple policies performed remarkably

well. To alleviate this problem, we artificially multiplied the arrival rates estimated from the data

by a constant factor and decreased the number of parking spaces by another constant factor to

obtain a reasonably large load. The multipliers that we use are given in Section 6.3.

We assume that the drivers with intended locale of j arrive into the system according to a Poisson

process with the arrival rate function {Λτ,j : τ ≥ 0}, where the time τ is measured in seconds.

Recall that each time period in our model corresponds to a time interval of 30 seconds. In this

case, the probability that a driver with intended locale of j arrives at time period t approximately

with probability pt,j = 30×Λf(t),j, where f(t) is the time in the day corresponding to time period

t in the selling horizon of our model. For estimation purposes, we assume that the arrival rate

function {Λτ,j : τ ≥ 0} is constant over each 15 minute time interval. When a drive with intended

locale j arrives into the system, we offer a price menu for the five locales that are closest to her

intended locale. The driver makes a choice among these locales or decides to leave the system

without parking. The latter decision may correspond to using a parking space that is not street

parking. In our choice model, if we offer the assortment S, then a driver whose intended locale is

j chooses to park in locale i with probability

φji (S) =
eα

j+β πi,h

1 +
∑

(`,g)∈S e
αj+β π`,g

as long as (i, h) ∈ S. The parameter β is the price sensitivity of the drivers and it is constant

over across all drivers. This assumption helps us keep the number of parameters that we need to

estimate manageable. We estimate the parameters β, (αj : j ∈M) and (pt,j : t∈ T , j ∈M) through
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maximum likelihood. The likelihood function that we use for this purpose closely mirrors the one

used by Vulcano et al. (2012).

As discussed in Section 3.3 of Vulcano et al. (2012), when estimating the parameters of the

choice model and the arrival rates, there is a continuum of choices for the parameters that yield

the same value for the likelihood function. Therefore, we fix the no purchase probability of each

driver. In particular, we focus on the time period 11AM to 4PM in our numerical study. The

per hour parking rate for each locale in the data is fixed during this time period, but each locale

has a different rate. Fixing the no purchase probability at 0.1, the no purchase probability for a

driver with intended locale j needs to satisfy 1/(1 +
∑

(`,g)∈Sj e
αj+β π`,g) = 0.1, where Sj is the set

of locale and rate combinations offered to a driver with intended locale j. If we fix the parameter

β, then the value of the parameter αj is fixed by the last equality. Therefore, we estimate β and

(pt,j : t ∈ T , j ∈M) through maximum likelihood and determine the values of the parameters

(αj : j ∈M) by the last equality. We estimated the parameters of the choice model and the arrival

rates by using the data from 15 weekdays of June 2017. Using the data from the remaining five

days of June 2017, we checked the percent deviation in the expected number of parkings according

to our demand model and the number of parkings in the data over each hourly interval in each

locale. The average absolute percent deviation was 22.26%.

When we estimated the parameters of the choice model through the data, the price sensitivity

parameter estimate came out to be β = −0.191 with a standard error of 0.008. Following the

magnitudes of the fares in the data, we allow the price of a parking space to take values $2, $4

or $6 per hour. With these settings, the price sensitivity parameter turned out to be so small

that changing the price of a parking space did not make discernible difference in the choices

of the drivers. Therefore, we bumped the prices sensitivity parameter to β = −0.5 in all of our

computational experiments.


