
Exploiting the Structural Properties of the Underlying Markov

Decision Problem in the Q-Learning Algorithm

Sumit Kunnumkal, Huseyin Topaloglu
School of Operations Research and Information Engineering,

Cornell University, Ithaca, NY 14853, USA
{sumit,topaloglu}@orie.cornell.edu

May 25, 2007

Abstract

This paper shows how to exploit the structural properties of the underlying Markov decision
problem to improve the convergence behavior of the Q-learning algorithm. In particular, we con-
sider infinite-horizon discounted-cost Markov decision problems where there is a natural ordering
between the states of the system and the value function is known to be monotone in the state. We
propose a new variant of the Q-learning algorithm that ensures that the value function approxi-
mations obtained during the intermediate iterations are also monotone in the state. We establish
the convergence of the proposed algorithm and experimentally show that it significantly improves
the convergence behavior of the standard version of the Q-learning algorithm.
Keywords: Markov decision processes; Q-learning; stochastic approximation methods.

1 Introduction

The Q-learning algorithm was proposed by Watkins (1989) and Watkins and Dayan (1992) as a

method for solving Markov decision problems. This algorithm becomes especially useful when one

does not have access to the complete set of transition probabilities and costs that characterize how

the state of the system evolves in response to the decisions chosen by the decision-maker and what

costs are incurred along the way. The fundamental idea is to gather information about the transition

probabilities and the costs through sampled trajectories of the system. The algorithm starts with

an arbitrary approximation to the value function, and iteratively updates this approximation by

using samples of the current state of the system, the decision chosen by the decision-maker and

the subsequent state of the system following the decision, which can all be generated either by

simulation or by experimenting with the real system. The appealing aspect of the algorithm is that

it does not require the complete set of transition probabilities or costs to update the value function

approximation. For this reason, the Q-learning algorithm is generally referred to as a model-free

method to solve Markov decision problems. Barto, Bradtke and Singh (1995), Sutton and Barto

(1998) and Si, Barto, Powell and Wunsch II (2004) give a comprehensive overview of the research

revolving around the Q-learning algorithm.

Tsitsiklis (1994) and Bertsekas and Tsitsiklis (1996) show that the Q-learning algorithm fits

within the general framework of stochastic approximation methods. However, similar to many other

1

stochastic approximation methods, it can exhibit slow convergence behavior. This paper proposes

a new variant of the Q-learning algorithm that exploits the structural properties of the underlying

Markov decision problem to improve the convergence behavior. In particular, we consider infinite-

horizon discounted-cost Markov decision problems where there is a natural ordering between the

states of the system and the value function is known to be monotone in the state. We propose a new

variant of the Q-learning algorithm that updates the value function approximations in such a way that

the approximations obtained during the intermediate iterations are also monotone in the state. We

prove the convergence of the new variant. We experimentally show that we can significantly improve

the convergence behavior of the Q-learning algorithm by imposing the monotonicity property of the

value function on the approximations that are obtained during the intermediate iterations.

Our work is based on previous research. Tsitsiklis (1994) and Bertsekas and Tsitsiklis (1996) give

a new proof of convergence for the Q-learning algorithm by posing it as a stochastic approximation

method and extending the standard stochastic approximation theory. On the other hand, Powell,

Ruszczynski and Topaloglu (2004) propose an iterative method to construct approximations to the

recourse functions arising from two-stage stochastic optimization problems. Their method projects

the recourse function approximations onto the set of convex functions to ensure that the approxima-

tions obtained during the intermediate iterations are convex. The variant of the Q-learning algorithm

we propose also uses a projection operator to project the value function approximations onto the

set of monotone functions, and thereby, to ensure that the value function approximations obtained

during the intermediate iterations are monotone. To prove the convergence of our variant of the

Q-learning algorithm, we extend the convergence results in Tsitsiklis (1994) and Bertsekas and Tsit-

siklis (1996) to deal with the effects of the projection operator. Our extension requires the projection

operator to satisfy a certain order-preserving property, which roughly states that if the functions p(·)
and q(·) satisfy p(x) ≤ q(x) for all x in their common domain, and p̃(·) and q̃(·) are respectively the

projections of p(·) and q(·) onto the set of monotone functions, then we have p̃(x) ≤ q̃(x) for all x.

Ultimately, we establish the convergence of our variant of the Q-learning algorithm by showing that

the projection operator that we use indeed satisfies this property.

The model-free nature of the Q-learning algorithm can be quite useful in practical settings. In

particular, the Q-learning algorithm enables us to work directly with the sampled state and action

trajectories of the system. In contrast, a conventional stochastic optimization model usually requires

carrying out three steps. First, we collect data on the evolution of the system over time. Next,

we use the data to estimate the probability distributions that govern the evolution of the system.

Finally, we compute the optimal policy by using the estimated probability distributions. The novel

aspect of the Q-learning algorithm is that it bypasses the estimation step, and thus, enables us to

2

move directly from the data to optimization. Therefore, we can use the Q-learning algorithm for real-

time optimization and search for the optimal policy in an iterative and incremental fashion rather

than waiting for a large amount of data to be available to estimate the probability distributions.

Since the Q-learning algorithm bypasses the estimation step, it also avoids the fit errors that occur

when one employs parametric forms for the probability distributions and uses the data to estimate

the parameters. For example, often times, a conventional stochastic optimization model does not

provide satisfactory results simply because one fits a geometric distribution to the data when a

negative binomial distribution is a better candidate. Finally, the Q-learning algorithm provides a

remedy to the censored data problem that arises in many practical settings. The censored data

problem refers to the discrepancy between what is naturally recorded as the system evolves over

time and what is needed to estimate the probability distributions. For example, in inventory control

settings, it is natural to record the amount of inventory sold rather than the amount of demand, and

these two figures are different when the demand exceeds the available inventory. Similarly, in queue

admission settings, it is natural to record the number of entities that are admitted into the system

rather than the number of entities that arrive, and these two figures are different when the number of

entities in the system reaches the system capacity. When dealing with the censored data, we may not

have access to the samples of the random variables that we are interested in and this makes estimating

the probability distributions very difficult. In practice, the data are usually “uncensored” by using

heuristic methods. On the other hand, the Q-learning algorithm naturally avoids the censored data

problem since it directly works with the sampled state and action trajectories of the system without

estimating the probability distributions. For example, in inventory control settings, the Q-learning

algorithm works with the trajectories of the available inventory and the amount of inventory sold.

In queue admission settings, the Q-learning algorithm works with the trajectories of the admissions

into and departures from the system. Ding (2002) provides a nice overview of the censored data

problem from an operations management perspective.

There has been work on exploiting the structural properties of the underlying Markov decision

problem to improve the performance of different solution methods. Puterman (1994) gives a variant of

the value iteration algorithm that can be used when the value function is known to be monotone in the

state. There is substantial literature on approximating the value function by using linear architectures

of the form
∑

k∈K rk φk(x), where {rk : k ∈ K} are adjustable parameters, {φk(·) : k ∈ K} are fixed

basis functions and x is the state of the system (see, for example, Schweitzer and Seidmann (1985),

Bertsekas and Tsitsiklis (1996), Tsitsiklis and Van Roy (1997) and de Farias and Van Roy (2003)).

The consensus in this literature is that the basis functions {φk(·) : k ∈ K} should be chosen to capture

the known structural properties of the value function as accurately as possible. Topaloglu and Powell

(2006) formulate a dynamic programming-based fleet management model, and motivated by the fact

3

that the value function for the problem is concave, they use concave value function approximations.

Papadaki and Powell (2002) and Papadaki and Powell (2003) show that the value function arising

from a batch service problem is monotone in the number of products waiting to be served and exploit

this property to enhance the performance of their approximate dynamic programming algorithm.

Stochastic approximation methods commonly use projections to ensure the boundedness of the

iterates by projecting them onto bounded sets (see, for example, Ljung (1977), Kushner and Clark

(1978) and Andradottir (1995)). However, the use of projections in learning algorithms to impose

the structural properties of the value function on the value function approximations is novel.

This paper makes the following research contributions. 1) We consider infinite-horizon discounted-

cost Markov decision problems where the value function is known to be monotone in the state of the

system. We propose a new variant of the Q-learning algorithm that uses a projection operator to

ensure that the value function approximations obtained during the intermediate iterations are mono-

tone in the state. We establish the convergence of this algorithm. 2) To establish the convergence, we

extend the available stochastic approximation theory and prove the aforementioned order-preserving

property of the projection operator. 3) We present computational experiments on two batch service

problems that show that we can significantly improve the convergence behavior of the Q-learning

algorithm by exploiting the structural properties of the underlying Markov decision problem.

The rest of the paper is organized as follows. Section 2 describes the new variant of the Q-learning

algorithm that we propose. We prove the convergence of this algorithm under certain assumptions

in Section 3. In Section 4, we review the assumptions that we make in Section 3 and show that the

new variant of the Q-learning algorithm that we propose indeed satisfies these assumptions. Section

5 presents our computational experiments.

2 Description of the Algorithm

We are interested in infinite-horizon discounted-cost Markov decision problems with finite sets of

states and actions, which we respectively denote by S and U . If the system is in state i and we use

action u, then the system moves to state j with probability pij(u) and we incur a cost of g(i, u, j),

where |g(i, u, j)| < ∞. The costs in the future time periods are discounted by a factor λ ∈ [0, 1)

per time period. For notational brevity, we assume that S = {1, . . . , n} and each action in U is

admissible for every state.

A stationary Markovian deterministic policy d is a mapping from S to U that describes which

action to take for each possible state. Therefore, the states visited by the system under policy d evolve

4

as a Markov chain with the transition probability matrix {pij(d(i)) : i, j ∈ S}. Letting {Xd
0 , Xd

1 , . . .}
be the Markov chain that evolves according to the transition probability matrix {pij(d(i)) : i, j ∈ S},
the infinite-horizon discounted cost incurred by starting from state i and using policy d is

Jd(i) = lim
T→∞

E

{
T∑

t=0

λtg(Xd
t , d(Xd

t), Xd
t+1) | X0 = i

}
.

Letting D be the set of stationary Markovian deterministic policies, the optimal policy d∗ satisfies

Jd∗(i) = mind∈D Jd(i) for all i ∈ S. This policy can be obtained by solving the so-called optimality

equation

J(i) = min
u∈U

n∑

j=1

pij(u)
[
g(i, u, j) + λ J(j)

]
for all i ∈ S (1)

and letting

d∗(i) = argmin
u∈U

n∑

j=1

pij(u)
[
g(i, u, j) + λJ(j)

]
for all i ∈ S. (2)

The Q-learning algorithm is based on an alternative interpretation of the optimality equation.

In particular, we let

Qu(i) =
n∑

j=1

pij(u)
[
g(i, u, j) + λJ(j)

]
for all i ∈ S, u ∈ U , (3)

in which case (1) implies that J(i) = minu∈U Qu(i) for all i ∈ S. Using this in (3), we have

Qu(i) =
n∑

j=1

pij(u)
[
g(i, u, j) + λ min

v∈U
Qv(j)

]
for all i ∈ S, u ∈ U . (4)

Then, noting (2) and (3), the optimal policy can be obtained by solving (4) and letting d∗(i) =

argminu∈UQu(i) for all i ∈ S. We refer to Qu(i) as the Q-factor for the state-action pair (i, u).

The Q-learning algorithm solves (4) through stochastic approximation. It starts with arbitrary

Q-factor approximations {Qu
0(i) : i ∈ S, u ∈ U}. At the t-th iteration of the algorithm, a state-

action pair (i, u) and a successor state s are sampled such that P{s = j | history of the algorithm up

to iteration t} = pij(u). (We shortly make clear what we mean by the history of the algorithm up

to iteration t.) The Q-factor approximation for the state-action pair (i, u) is updated as

Qu
t+1(i) =

[
1− αu

t (i)
]
Qu

t (i) + αu
t (i)

[
g(i, u, s) + λmin

v∈U
Qv

t (s)
]
, (5)

where αu
t (i) is a step-size parameter. The Q-factor approximations for the other state-action pairs

remain unchanged. Under certain assumptions, it can be shown that limt→∞Qu
t (i) = Qu(i) with

probability 1 (w.p.1) for all i ∈ S, u ∈ U , where {Qu(i) : i ∈ S, u ∈ U} is the solution to (4).

The Q-learning algorithm, as described above, does not exploit the structural properties of the

underlying Markov decision problem and may require a large number of iterations to provide a good

5

1) Initialize the Q-factor approximations Q0 ∈ Rn×|U| such that Qu
0 ∈ P−C,C for all u ∈ U . Set

t = 0.

2) Sample a state-action pair (it, ut) and a successor state st. Set

Ru
t (i) = Qu

t (i) + δu
t (i) αu

t (i)
[
g(i, u, st) + λ min

v∈U
Qv

t (st)−Qu
t (i)

]
for all i ∈ S, u ∈ U , (7)

where αu
t (i) is a step-size parameter and

δu
t (i) =

{
1 if (i, u) = (it, ut)
0 otherwise.

(8)

3) Set Qu
t+1 = Π−C,CRu

t for all u ∈ U .

4) Increase t by 1 and go to Step 2.

Figure 1: The monotone Q-learning algorithm.

policy. In this paper, we propose a new variant of the Q-learning algorithm applicable to problems

where the Q-factors are known to satisfy

Qu(i) ≤ Qu(i + 1) for all i ∈ {1, . . . , n− 1}, u ∈ U . (6)

The idea behind our variant of the Q-learning algorithm is to use a projection operator to impose

the property Qu
t (i) ≤ Qu

t (i + 1) for all i ∈ {1, . . . , n− 1}, u ∈ U on the Q-factor approximations that

are obtained during the intermediate iterations. Our objective is to facilitate faster convergence by

imposing the known structural properties of the Q-factors on the Q-factor approximations.

Throughout the paper, we denote the i-th component of y ∈ Rn by y(i), the (i, u)-th component

of Q ∈ Rn×|U| by Qu(i) and the vector {Qu(i) : i ∈ S} by Qu. For scalars L and U with L ≤ U , we

define the convex set PL,U and the projection operator ΠL,U onto this set as

PL,U = {y ∈ Rn : L ≤ y(1) ≤ y(2) ≤ . . . ≤ y(n) ≤ U}

ΠL,Uy = argmin
z∈PL,U

‖z − y‖2,

where ‖ · ‖2 is the Euclidean norm on Rn. Since the Q-factors are known to satisfy (6), if we let C

be large enough so that |Qu(i)| ≤ C < ∞ for all i ∈ S, u ∈ U , then we have Qu ∈ P−C,C for all

u ∈ U . Letting {Qu
t (i) : i ∈ S, u ∈ U} be the Q-factor approximations obtained by the Q-learning

algorithm at iteration t, the idea behind our variant of the Q-learning algorithm is to project Qu
t

onto P−C,C when Qu
t 6∈ P−C,C for some action u.

The variant of the Q-learning algorithm we propose is described in Figure 1. We refer to this

algorithm as the monotone Q-learning algorithm. Letting Ft be the σ-subalgebra generated by the

random variables {Q0, i0, . . . , it−1, u0, . . . , ut−1, s0, . . . , st−1} in this algorithm, the successor state st

6

is sampled such that P{st = j | Ft, it, ut} = pitj(ut). The updating procedure in (7) is the same as

the one in (5). The random variable δu
t (i) ensures that Ru

t (i) = Qu
t (i) when (i, u) 6= (it, ut). In Step

3, we project the vector Ru
t onto P−C,C . This step ensures that we have Qu

t+1(i) ≤ Qu
t+1(i+1) for all

i ∈ {1, . . . , n − 1}, u ∈ U . In the next section, we show that the iterates of this algorithm converge

to the solution to (4) w.p.1 under certain assumptions.

Closing this section, we note that Q-factors satisfying (6) appear in numerous queue admission,

equipment replacement, batch service and pricing applications (see, for example, Ignall and Kolesar

(1974), Papadaki and Powell (2002) and Puterman (1994)). In particular, the following corollary

to Lemma 4.7.2 and Theorem 6.11.6 in Puterman (1994) gives sufficient conditions under which the

Q-factors satisfy (6).

Lemma 1 Let {Qu(i) : i ∈ S, u ∈ U} be the solution to (4). Assume that
∑n

j=1 pij(u) g(i, u, j) is

increasing in i for all u ∈ U and
∑n

j=k pij(u) is increasing in i for all k ∈ S, u ∈ U . Then, we have

Qu(i) ≤ Qu(i + 1) for all i ∈ {1, . . . , n− 1}, u ∈ U .

Proof We let {J(i) : i ∈ S} be the solution to (1). Under the conditions stated above, the proof

of Theorem 6.11.6 in Puterman (1994) shows that J(j) ≤ J(j + 1) for all j ∈ {1, . . . , n − 1}. We

fix i ∈ {1, . . . , n− 1} and u ∈ U . Since we have
∑n

j=k pij(u) ≤ ∑n
j=k pi+1,j(u) for all k ∈ S, Lemma

4.7.2 in Puterman (1994) implies that
∑n

j=1 pij(u)J(j) ≤ ∑n
j=1 pi+1,j(u)J(j). Since we also have

∑n
j=1 pij(u) g(i, u, j) ≤ ∑n

j=1 pi+1,j(u) g(i + 1, u, j), we obtain

Qu(i) =
n∑

j=1

pij(u)
[
g(i, u, j) + λJ(j)

] ≤
n∑

j=1

pi+1,j(u)
[
g(i + 1, u, j) + λJ(j)

]
= Qu(i + 1). ¤

It is important to note that we can often check the assumptions of Lemma 1 by using the

problem structure without having access to the actual values of {pij(u) : i, j ∈ S, u ∈ U} and

{g(i, u, j) : i, j ∈ S, u ∈ U}. For example, for a queue admission application where the state

is the number of entities in the system and the action is the service rate, the assumption that
∑n

j=1 pij(u) g(i, u, j) is increasing in i implies that the expected one-period cost is increasing in the

number of entities in the system. This is certainly the case when the cost components of interest

are the waiting cost of keeping the entities in the system and the service cost of running the server.

The assumption that
∑n

j=k pij(u) is increasing in i implies that the probability that the number

of entities in the system at the next time period exceeds k increases as the number of entities in

the system at the current time period increases. This assumption is satisfied by essentially any

sensible arrival process. For an equipment replacement application where the state is the age of

the equipment, the action is the replacement decision and the cost components of interest are the

maintenance and replacement costs, the assumption that
∑n

j=1 pij(u) g(i, u, j) is increasing in i is

7

1) Initialize y0 ∈ Rn such that y0 ∈ PL,U . Set t = 0.

2) Sample it ∈ S and θt ∈ Rn. Set

ŷt(i) = yt(i) + ρt(i) γt(i)
[
y∗(i) + θt(i)− yt(i)

]
for all i ∈ S, (9)

where γt(i) is a step-size parameter, y∗ ∈ Rn is a fixed vector, θt ∈ Rn is a random error term
and

ρt(i) =

{
1 if i = it

0 otherwise.
(10)

3) Set yt+1 = ΠL,U ŷt.

4) Increase t by 1 and go to Step 2.

Figure 2: A stochastic approximation method that uses the projection operator ΠL,U .

satisfied when the maintenance and replacement costs increase with age. Similarly, the assumption

that
∑n

j=k pij(u) is increasing in i is satisfied by essentially any sensible aging process. We refer the

reader to Papadaki and Powell (2002) and Puterman (1994) for similar observations for batch service

and pricing applications.

3 Convergence Analysis

In this section, we show that the iterates of the monotone Q-learning algorithm converge to the

solution to (4) w.p.1. For this purpose, we consider two stochastic approximation methods that

make use of the projection operator ΠL,U . The first one of these methods is useful to prove the

convergence of the second one. Ultimately, we prove the convergence of the monotone Q-learning

algorithm by showing that it is a special case of the second stochastic approximation method.

The first stochastic approximation method that we consider is described in Figure 2. We let Gt be

the σ-subalgebra generated by the random variables {y0, i0, . . . , it−1, θ0, . . . , θt−1} in this algorithm,

and assume that y∗ ∈ PL,U , γt(i) is positive and Gt-measurable for all i ∈ S, t = 0, 1, . . . w.p.1, and

liminf
t→∞ P{it = i | Gt} > 0 for all i ∈ S w.p.1 (11)
∞∑

t=0

min
i∈S

γt(i) = ∞ w.p.1 (12)

∞∑

t=0

E
{
ρt(i) [γt(i)]2

}
< ∞ for all i ∈ S (13)

E
{
θt(it) | Gt, it

}
= 0 for all t = 0, 1, . . . w.p.1 (14)

E
{
[θt(it)]2 | Gt, it

} ≤ A < ∞ for all t = 0, 1, . . . w.p.1 (15)

8

1) Initialize Q0 ∈ Rn×|U| such that Qu
0 ∈ P−C,C for all u ∈ U . Set t = 0.

2) Sample (it, ut) in S × U and ωt ∈ Rn×|U|. Set

Ru
t (i) = Qu

t (i) + δu
t (i) αu

t (i)
{

[ΓQt]u(i) + ωu
t (i)−Qu

t (i)
}

for all i ∈ S, u ∈ U , (16)

where αu
t (i) is a step-size parameter, δu

t (i) is as defined in (8), Γ is an operator on Rn×|U| and
ωt ∈ Rn×|U| is a random error term.

3) Set Qu
t+1 = Π−C,CRu

t for all u ∈ U .

4) Increase t by 1 and go to Step 2.

Figure 3: A stochastic approximation method that is useful to show the convergence of the monotone
Q-learning algorithm.

for some scalar A. We have the following convergence result for the algorithm in Figure 2.

Lemma 2 Assume that y∗ ∈ PL,U , γt(i) is positive and Gt-measurable for all i ∈ S, t = 0, 1, . . .

w.p.1, and (11)-(15) hold. Let the sequence {yt} be generated by the algorithm in Figure 2. Then,

we have limt→∞ ‖yt − y∗‖2 = 0 w.p.1.

Proof See the online supplement. ¤

Powell et al. (2004) analyze a similar algorithm under the assumption that the step-size parameter

γt(i) does not depend on i. However, this assumption is frequently violated in practical applications.

Our proof also makes use of the supermartingale convergence theorem directly and is more compact.

The second stochastic approximation method that we consider is described in Figure 3. We

establish the convergence of this algorithm by using Lemma 2. To this end, for y ∈ Rn and Q ∈
Rn×|U|, we define the norm ‖ ·‖ as ‖y‖ = maxi∈S |y(i)| and ‖Q‖ = maxi∈S,u∈U |Qu(i)|. We also define

the partial ordering ≤ on Rn, whereby we write y ≤ z when y(i) ≤ z(i) for all i ∈ S.

We let Ft be the σ-subalgebra generated by the random variables {Q0, i0, . . . , it−1, u0, . . . , ut−1,

ω0, . . . , ωt−1} in the algorithm in Figure 3 and assume that the following statements hold.

(A.1) We have liminft→∞P{(it, ut) = (i, u) | Ft} > 0 for all i ∈ S, u ∈ U w.p.1.

(A.2) The step-size parameters are positive, Ft-measurable and satisfy

∞∑

t=0

min
i∈S

αu
t (i) = ∞ for all u ∈ U w.p.1

∞∑

t=0

E
{
δu
t (i) [αu

t (i)]2
}

< ∞ for all i ∈ S, u ∈ U .

9

(A.3) For some scalar A, the random error terms satisfy

E
{
ωut

t (it) | Ft, it, ut

}
= 0 for all t = 0, 1, . . . w.p.1

E
{
[ωut

t (it)]2 | Ft, it, ut

} ≤ A < ∞ for all t = 0, 1, . . . w.p.1.

(A.4) There exist a scalar C, Q̃ ∈ Rn×|U| and λ ∈ [0, 1) that satisfy Q̃u ∈ P−C,C for all u ∈ U and

‖ΓQt − Q̃‖ ≤ λ‖Qt − Q̃‖ for all t = 0, 1, . . . w.p.1.

(A.5) For L1 ≤ L2 and U1 ≤ U2, let y ∈ PL1,U1 and z ∈ PL2,U2 be such that y ≤ z. Let the scalars

A and B satisfy A ≤ B. Fix i∗ ∈ S, and let ŷ and ẑ ∈ Rn be obtained by

ŷ(i) =

{
y(i) + α [A− y(i)] if i = i∗

y(i) otherwise

ẑ(i) =

{
z(i) + α [B − z(i)] if i = i∗

z(i) otherwise,

where α ∈ [0, 1]. We have ΠL1,U1 ŷ ≤ ΠL2,U2 ẑ.

(A.1) states that the probability that an element of S × U is sampled at iteration t stays away

from 0 as t gets large. (A.2) seems to be a nonstandard assumption on the step-size parameters,

but Section 4 shows that it is satisfied by commonly used step-size parameters. (A.3) is a standard

assumption on the random error terms. (A.4) holds when the operator Γ is a contraction mapping

with respect to the norm ‖ ·‖ and with contraction factor λ, and Q̃ is the fixed point of this operator.

Finally, (A.5) imposes an order-preserving property on the projection operator. Since y ≤ z, A ≤ B

and α ∈ [0, 1], we have ŷ ≤ ẑ. Therefore, (A.5) roughly states that the projection operator maintains

the ordering between ŷ and ẑ. We verify all of these assumptions in Section 4.

The following convergence result for the algorithm in Figure 3 is an extension of Proposition 4.4

in Bertsekas and Tsitsiklis (1996) designed to deal with the effects of the projection operator.

Proposition 3 Assume that (A.1)-(A.5) hold. Let the sequence {Qt} be generated by the algorithm

in Figure 3 and Q̃ be as in (A.4). Then, we have limt→∞ ‖Qt − Q̃‖ = 0 w.p.1.

Proof Appealing to the monotone convergence theorem, we have

∞∑

t=0

E
{
δu
t (i) [αu

t (i)]2
}

= E

{ ∞∑

t=0

E
{
δu
t (i) [αu

t (i)]2 | Ft

}
}

= E

{ ∞∑

t=0

P{(it, ut) = (i, u) | Ft} [αu
t (i)]2

}
,

which, noting (A.2), implies that
∑∞

t=0 P{(it, ut) = (i, u) | Ft} [αu
t (i)]2 < ∞ w.p.1. Then, by (A.1),

there exists a finite iteration number t̄ w.p.1 such that αu
t (i) ∈ [0, 1] for all t ≥ t̄. Therefore, without

loss of generality, we assume that αu
t (i) ∈ [0, 1] for all i ∈ S, u ∈ U , t = 0, 1, . . . w.p.1.

10

All statements in the rest of the proof should be understood in w.p.1 sense. Since Qu
t is the

projection of Ru
t−1 onto P−C,C , we have Qu

t ∈ P−C,C for all u ∈ U , t = 0, 1, Then, since

Q̃u ∈ P−C,C for all u ∈ U by (A.4), we have ‖Qt − Q̃‖ ≤ ‖Qt‖ + ‖Q̃‖ ≤ 2C for all t = 0, 1, We

choose ε > 0 with λ+ε < 1. Letting D0 = 2C, we define the sequence {Dk} through Dk+1 = (λ+ε)Dk.

We have ‖Qt − Q̃‖ ≤ D0 for all t = 0, 1, To show the result by induction, we assume that there

exists a finite iteration number tk such that ‖Qt − Q̃‖ ≤ Dk for all t ≥ tk. We show that this

assumption implies that there exists a finite iteration number tk+1 such that ‖Qt − Q̃‖ ≤ Dk+1 for

all t ≥ tk+1. Then, since limk→∞Dk = 0, we obtain limt→∞ ‖Qt − Q̃‖ = 0.

We fix u ∈ U and let e ∈ Rn be the vector whose components are all 1’s. For t ≥ tk, starting

with yu
tk

= Q̃u−Dke and zu
tk

= Q̃u + Dke, we define the sequences of vectors {yu
t } and {zu

t } through

ŷu
t (i) = yu

t (i) + δu
t (i)αu

t (i)
[
Q̃u(i)− λDk + ωu

t (i)− yu
t (i)

]
for all i ∈ S (17)

ẑu
t (i) = zu

t (i) + δu
t (i) αu

t (i)
[
Q̃u(i) + λDk + ωu

t (i)− zu
t (i)

]
for all i ∈ S, (18)

yu
t+1 = Π−3C,C ŷu

t and zu
t+1 = Π−C,3C ẑu

t . Therefore, the sequences {yu
t } and {zu

t } are generated by

the stochastic approximation method in Figure 2.

Since Q̃u ∈ P−C,C by (A.4) and Dk ≤ D0 = 2C, we have

−3C ≤ −C − λDk ≤ Q̃u(i)− λDk ≤ Q̃u(i) ≤ C

−C ≤ Q̃u(i) ≤ Q̃u(i) + λDk ≤ C + λDk ≤ 3C

for all i ∈ S, which imply that Q̃u − λDke ∈ P−3C,C and Q̃u + λDke ∈ P−C,3C . By (A.1)-(A.3),

the other assumptions in (11)-(15) that are needed for Lemma 2 to hold are satisfied. Therefore, we

have limt→∞ ‖yu
t − Q̃u + λDke‖2 = 0 and limt→∞ ‖zu

t − Q̃u − λDke‖2 = 0 by Lemma 2.

We now show by induction that yu
t ≤ Qu

t ≤ zu
t for all t ≥ tk. The result holds for t = tk since we

have yu
tk

= Q̃u −Dke, zu
tk

= Q̃u + Dke and ‖Qtk − Q̃‖ ≤ Dk. Assume that yu
t ≤ Qu

t ≤ zu
t holds for

some t ≥ tk. Then, we have

Ru
t (i) =

[
1− δu

t (i) αu
t (i)

]
Qu

t (i) + δu
t (i) αu

t (i)
{

[ΓQt]u(i) + ωu
t (i)

}

≤ [
1− δu

t (i) αu
t (i)

]
zu
t (i) + δu

t (i) αu
t (i)

{
Q̃u(i) + λ‖Qt − Q̃‖+ ωu

t (i)
}

≤ [
1− δu

t (i) αu
t (i)

]
zu
t (i) + δu

t (i) αu
t (i)

{
Q̃u(i) + λDk + ωu

t (i)
}

= ẑu
t (i)

for all i ∈ S, where the first inequality uses the induction hypothesis and (A.4), and the second

inequality uses the assumption that ‖Qt − Q̃‖ ≤ Dk for all t ≥ tk. Using a similar argument, we

can also show that ŷu
t (i) ≤ Ru

t (i) for all i ∈ S. Therefore, we have ŷu
t ≤ Ru

t ≤ ẑu
t . Since yu

t and zu
t

are respectively the projections of ŷu
t−1 and ẑu

t−1 onto P−3C,C and P−C,3C , we have yu
t ∈ P−3C,C and

11

zu
t ∈ P−C,3C . Then, (A.5) implies that yu

t+1 = Π−3C,C ŷu
t ≤ Π−C,CRu

t = Qu
t+1 ≤ Π−C,3C ẑu

t = zu
t+1.

Therefore, we have yu
t ≤ Qu

t ≤ zu
t for all t ≥ tk.

Since we have limt→∞ ‖yu
t − Q̃u + λDke‖2 = 0 and limt→∞ ‖zu

t − Q̃u − λDke‖2 = 0, there

exists a finite iteration number t̄uk+1 such that t̄uk+1 ≥ tk, and yu
t − Q̃u + λDke ≥ −εDke and

zu
t − Q̃u − λDke ≤ εDke for all t ≥ t̄uk+1. Then, using the fact that yu

t ≤ Qu
t ≤ zu

t for all t ≥ tk,

we have −Dk+1e = −(λ + ε)Dke ≤ yu
t − Q̃u ≤ Qu

t − Q̃u ≤ zu
t − Q̃u ≤ (λ + ε)Dke ≤ Dk+1e for all

t ≥ t̄uk+1. Letting tk+1 = maxu∈U t̄uk+1, we have ‖Qt − Q̃‖ ≤ Dk+1 for all t ≥ tk+1. ¤

Using a standard argument, the monotone Q-learning algorithm can be posed in the form of the

algorithm in Figure 3 by letting the operator Γ and the random error term ωu
t (i) be defined as

[ΓQt]u(i) =
n∑

j=1

pij(u)
[
g(i, u, j) + λmin

v∈U
Qv

t (j)
]

(19)

ωu
t (i) = g(i, u, st) + λmin

v∈U
Qv

t (st)−
n∑

j=1

pij(u)
[
g(i, u, j) + λmin

v∈U
Qv

t (j)
]
. (20)

With this definition of Γ and ωu
t (i), (7) in Step 2 of the monotone Q-learning algorithm takes the

form of (16) in Step 2 of the algorithm in Figure 3. Therefore, if we can show that (A.1)-(A.5) are

satisfied by the monotone Q-learning algorithm, then the convergence of the monotone Q-learning

algorithm follows from Proposition 3. We do this in the next section.

4 Verifying the Assumptions

In this section, we show that (A.1)-(A.5) are satisfied by the monotone Q-learning algorithm, as long

as we choose the state-action pair and the step-size parameters at each iteration in a sensible way.

To ensure that (A.1) is satisfied, with probability pt, we sample the state-action pair at iteration

t from the uniform distribution over S ×U . If we have liminft→∞pt > 0, then (A.1) is satisfied. This

approach is common in the learning literature and pt is referred to as the exploration probability.

For any deterministic sequence {at} that satisfies
∑∞

t=0 at = ∞ and
∑∞

t=0 a2
t < ∞, letting αu

t (i) =

at for all i ∈ S, u ∈ U is sufficient to ensure that (A.2) is satisfied. Another common step-size

parameter choice is to let

αu
t (i) =

A

B + Cu
t (i)

for all i ∈ S, u ∈ U , (21)

where A and B are positive scalars, and Cu
t (i) is the number of times that state-action pair (i, u)

has been sampled up to iteration t. The following lemma shows that (A.2) is also satisfied for this

step-size parameter choice.

12

Lemma 4 Let αu
t (i) be as in (21) for all i ∈ S, u ∈ U . Then, (A.2) holds.

Proof We fix u ∈ U . We show by induction that mini∈S αu
t (i) ≥ A/(B + t) for all t = 0, 1, . . . w.p.1.

Since Cu
0 (i) = 0 for all i ∈ S, the result holds for t = 0. Assume that mini∈S αu

t (i) ≥ A/(B + t),

which implies that Cu
t (i) ≤ t for all i ∈ S. Since Cu

t+1(i)−Cu
t (i) ≤ 1, we have Cu

t+1(i) ≤ t + 1 for all

i ∈ S, which implies that mini∈S αu
t+1(i) ≥ A/(B + t + 1). This completes the induction argument

and we obtain
∑∞

t=0 mini∈S αu
t (i) ≥ ∑∞

t=0 A/(B + t) = ∞ w.p.1. We now also fix i ∈ S and let T be

the set of iterations at which the state-action pair (i, u) is sampled. We have

∞∑

t=0

δu
t (i) [αu

t (i)]2 =
∑

t∈T

[
A

B + Cu
t (i)

]2

≤
∞∑

t=0

[
A

B + t

]2

≤ A2

B2
+

(Aπ)2

6
w.p.1,

which implies that
∑∞

t=0 E
{
δu
t (i) [αu

t (i)]2
}

< ∞. ¤

We now consider (A.3). Since the successor state st is sampled such that P{st = j | Ft, it, ut} =

pitj(ut), (20) implies that

E
{
ωut

t (it) | Ft, it, ut

}

=
n∑

j=1

P{st = j | Ft, it, ut}
[
g(it, ut, j) + λmin

v∈U
Qv

t (j)
]
−

n∑

j=1

pitj(ut)
[
g(it, ut, j) + λmin

v∈U
Qv

t (j)
]

= 0.

We let M be large enough so that |g(i, u, j)| ≤ M < ∞ for all i, j ∈ S, u ∈ U . Since Qu
t is the

projection of Ru
t−1 onto P−C,C , we have Qu

t ∈ P−C,C for all u ∈ U . Then, (20) also implies that

[ωut
t (it)]2 ≤ (2M + 2λC)2 w.p.1. Therefore, (A.3) is satisfied.

We now turn to (A.4). We let Q ∈ Rn×|U| be the solution to (4). If |g(i, u, j)| ≤ M < ∞ for all

i, j ∈ S, u ∈ U , then the infinite-horizon discounted cost of any policy is bounded by M/(1−λ) and

we have |J(i)| ≤ M/(1−λ) for all i ∈ S. In this case, (3) implies that |Qu(i)| ≤ M +λ[M/(1−λ)] =

M/(1− λ) for all i ∈ S, u ∈ U . We assume that we are dealing with a problem where the Q-factors

satisfy (6). Therefore, letting C = M/(1− λ), we have Qu ∈ P−C,C for all u ∈ U . For the particular

choice of the operator Γ in (19), (4) implies that Q = ΓQ. It is also well-known that this operator

is a contraction mapping with respect to the norm ‖ · ‖ and with contraction factor λ, which implies

that ‖ΓQt − Q‖ = ‖ΓQt − ΓQ‖ ≤ λ‖Qt − Q‖ for all Qt ∈ Rn×|U| (see, for example, Bertsekas and

Tsitsiklis (1996)). Therefore, (A.4) is satisfied when we let Q̃ = Q. We also emphasize that, with

this choice of Q̃, Proposition 3 shows that {Qt} converges to the solution to (4) w.p.1, as desired.

We now show that (A.5) is satisfied. The following lemma is useful when we prove the final result

in Lemma 6.

13

Lemma 5 Assume that y ∈ PL,U . Fix i∗ ∈ S and let ŷ ∈ Rn be obtained by

ŷ(i) =

{
y(i) + α [A− y(i)] if i = i∗

y(i) otherwise,
(22)

where A is a scalar and α ∈ [0, 1]. Let v = ΠL,U ŷ. Then, there exists ` ∈ S satisfying the following.

1) We have

v(i) =

ŷ(i∗) + . . . + ŷ(`)
`− i∗ + 1

∧ U if ` > i∗ and i ∈ {i∗, . . . , `}
ŷ(`) + . . . + ŷ(i∗)

i∗ − ` + 1
∨ L if ` < i∗ and i ∈ {`, . . . , i∗}

[ŷ(i∗) ∧ U] ∨ L if ` = i∗ = i

ŷ(i) otherwise,

(23)

where we use a ∧ b = min{a, b} and a ∨ b = max{a, b}.

2) If ` > i∗, then we have

ŷ(i∗ + 1) ≤ ŷ(i∗ + 2) ≤ . . . ≤ ŷ(`) ≤ ŷ(i∗) + . . . + ŷ(`)
`− i∗ + 1

≤ ŷ(i∗). (24)

If ` < i∗, then we have

ŷ(i∗) ≤ ŷ(`) + . . . + ŷ(i∗)
i∗ − ` + 1

≤ ŷ(`) ≤ ŷ(` + 1) ≤ . . . ≤ ŷ(i∗ − 1). (25)

Proof See the online supplement. ¤

Therefore, (23) implies that if ŷ is obtained by (22), then the result of the projection ΠL,U ŷ can

be characterized simply by specifying ` and i∗. The following lemma shows that (A.5) is satisfied.

Lemma 6 (A.5) holds.

Proof We let L1, L2, U1, U2, y, z, A, B, i∗, ŷ and ẑ be as defined in (A.5). We let v = ΠL1,U1 ŷ and

w = ΠL2,U2 ẑ. We want to show that v ≤ w. By Lemma 5, there exist ` and κ ∈ S such that

v(i) =

ŷ(i∗) + . . . + ŷ(`)
`− i∗ + 1

∧ U1 if ` > i∗ and i ∈ {i∗, . . . , `}
ŷ(`) + . . . + ŷ(i∗)

i∗ − ` + 1
∨ L1 if ` < i∗ and i ∈ {`, . . . , i∗}

[ŷ(i∗) ∧ U1] ∨ L1 if ` = i∗ = i

ŷ(i) otherwise

(26)

w(i) =

ẑ(i∗) + . . . + ẑ(κ)
κ− i∗ + 1

∧ U2 if κ > i∗ and i ∈ {i∗, . . . , κ}
ẑ(κ) + . . . + ẑ(i∗)

i∗ − κ + 1
∨ L2 if κ < i∗ and i ∈ {κ, . . . , i∗}

[ẑ(i∗) ∧ U2] ∨ L2 if κ = i∗ = i

ẑ(i) otherwise.

(27)

14

1 2 3 4 5 6 7 8 9
` = i∗ ` = i∗ ` = i∗ ` > i∗ ` > i∗ ` > i∗ ` < i∗ ` < i∗ ` < i∗

κ = i∗ κ > i∗ κ < i∗ κ = i∗ κ > i∗ κ < i∗ κ = i∗ κ > i∗ κ < i∗

Table 1: List of cases that need to be considered in the proof of Lemma 6.

Our proof requires investigating the nine cases listed in Table 1. For brevity, we investigate only

Case 5 here. The other cases can be handled using similar arguments.

Case 5 – Assume that ` > i∗ and κ > i∗. Letting v̄ = [ŷ(i∗) + . . . + ŷ(`)]/[` − i∗ + 1] and w̄ =

[ẑ(i∗) + . . . + ẑ(κ)]/[κ− i∗ + 1], (24) implies that

ŷ(i∗ + 1) ≤ ŷ(i∗ + 2) ≤ . . . ≤ ŷ(`) ≤ v̄ ≤ ŷ(i∗) (28)

ẑ(i∗ + 1) ≤ ẑ(i∗ + 2) ≤ . . . ≤ ẑ(κ) ≤ w̄ ≤ ẑ(i∗). (29)

Since y ≤ z, A ≤ B and α ∈ [0, 1], we have ŷ ≤ ẑ. Since v is the projection of ŷ onto PL1,U1 , we

have v ∈ PL1,U1 . Similarly, we have w ∈ PL2,U2 . We consider the following three subcases.

Case 5.a – Assume that ` < κ. Since ` > i∗, (26) implies that v(`) = v̄ ∧U1 and v(` + 1) = ŷ(` + 1).

Since v ∈ PL1,U1 , we have v(`) ≤ v(` + 1). Since i∗ < ` < κ, (29) implies that ẑ(` + 1) ≤ ẑ(` + 2) ≤
. . . ≤ ẑ(κ). Therefore, using the fact that ŷ ≤ ẑ, we have v̄ ∧ U1 = v(`) ≤ v(` + 1) = ŷ(` + 1) ≤
ẑ(` + 1) ≤ ẑ(` + 2) ≤ . . . ≤ ẑ(κ). Then, we obtain

w̄ =
`− i∗ + 1
κ− i∗ + 1

ẑ(i∗) + . . . + ẑ(`)
`− i∗ + 1

+
κ− `

κ− i∗ + 1
ẑ(` + 1) + . . . + ẑ(κ)

κ− `

≥ `− i∗ + 1
κ− i∗ + 1

ŷ(i∗) + . . . + ŷ(`)
`− i∗ + 1

+
κ− `

κ− i∗ + 1
ẑ(` + 1) + . . . + ẑ(κ)

κ− `

≥ `− i∗ + 1
κ− i∗ + 1

v̄ +
κ− `

κ− i∗ + 1
[v̄ ∧ U1] ≥ v̄ ∧ U1,

where the first inequality uses the fact that ẑ ≥ ŷ. Therefore, since U2 ≥ U1, we have w̄∧U2 ≥ v̄∧U1.

Since ` > i∗, z ∈ PL2,U2 and ẑ differs from z only in the i∗-th component, we have ẑ(` + 1) ≤
ẑ(` + 2) ≤ . . . ≤ ẑ(κ) ≤ U2. Since ` > i∗, (29) implies that ẑ(` + 1) ≤ ẑ(` + 2) . . . ≤ ẑ(κ) ≤ w̄.

Therefore, we have ẑ(` + 1) ≤ ẑ(` + 2) ≤ . . . ≤ ẑ(κ) ≤ w̄ ∧ U2. Then, (26) and (27) imply that

v(i) =

v̄ ∧ U1 ≤ w̄ ∧ U2 = w(i) if i ∈ {i∗, . . . , `}
ŷ(i) ≤ ẑ(i) ≤ w̄ ∧ U2 = w(i) if i ∈ {` + 1, . . . , κ}
ŷ(i) ≤ ẑ(i) = w(i) otherwise,

which shows that v ≤ w.

Case 5.b – Assume that ` = κ. Since ŷ ≤ ẑ and U1 ≤ U2, we have v̄ ∧ U1 ≤ w̄ ∧ U2 and the result

immediately follows from (26) and (27).

15

Case 5.c – Assume that κ < `. Since i∗ < κ < `, (28) implies that ŷ(κ+1) ≤ ŷ(κ+2) ≤ . . . ≤ ŷ(`) ≤ v̄.

Then, using the fact that ŷ ≤ ẑ, we obtain

v̄ − v̄ =
κ− i∗ + 1
`− i∗ + 1

ŷ(i∗) + . . . + ŷ(κ)
κ− i∗ + 1

+
`− κ

`− i∗ + 1
ŷ(κ + 1) + . . . + ŷ(`)

`− κ
− v̄

≤ κ− i∗ + 1
`− i∗ + 1

ẑ(i∗) + . . . + ẑ(κ)
κ− i∗ + 1

+
`− κ

`− i∗ + 1
v̄ − v̄ =

κ− i∗ + 1
`− i∗ + 1

w̄ − κ− i∗ + 1
`− i∗ + 1

v̄,

which implies that w̄ ≥ v̄. Since U2 ≥ U1, we have w̄ ∧ U2 ≥ v̄ ∧ U1.

Since κ > i∗, (27) implies that w(κ) = w̄ ∧ U2 and w(κ + 1) = ẑ(κ + 1). Since w ∈ PL2,U2 , we

have w(κ) ≤ w(κ+1). Since κ > i∗, z ∈ PL2,U2 and ẑ differs from z only in the i∗-th component, we

have ẑ(κ + 1) ≤ ẑ(κ + 2) ≤ . . . ≤ ẑ(`). Therefore, we have w̄ ∧ U2 = w(κ) ≤ w(κ + 1) = ẑ(κ + 1) ≤
ẑ(κ + 2) ≤ . . . ≤ ẑ(`). Then, (26) and (27) imply that

v(i) =

v̄ ∧ U1 ≤ w̄ ∧ U2 = w(i) if i ∈ {i∗, . . . , κ}
v̄ ∧ U1 ≤ w̄ ∧ U2 ≤ ẑ(i) = w(i) if i ∈ {κ + 1, . . . , `}
ŷ(i) ≤ ẑ(i) = w(i) otherwise,

which shows that v ≤ w. ¤

Therefore, Proposition 3 and the discussion in this section show that the iterates of the monotone

Q-learning algorithm converge to the solution to (4) w.p.1, as long as we choose the state-action pair

and the step-size parameters at each iteration in such a way that (A.1) and (A.2) are satisfied.

5 Computational Experiments

In this section, we test the performance of the monotone Q-learning algorithm on two batch service

problems. Our objective is to show how much the convergence behavior of the Q-learning algorithm

can be improved by exploiting the structural properties of the underlying Markov decision problem.

5.1 A single-product batch service problem

This problem arises in situations where a service station with finite capacity is used to serve the

products that arrive randomly over time. At each time period, we decide whether we run the service

station. If we run the service station, then the waiting products receive service and leave the system.

If we do not run the service station or the number of waiting products is greater than the capacity

of the service station, then the products that are not served are held until the next time period. The

capacity of the service station is K. The cost of running the service station is R. The holding cost

is h per time period per product. We assume that (Kh)/(1− λ) > R so that the cost of holding K

products for infinite number of time periods is greater than the cost of running the service station.

This ensures that it is optimal to run the service station when there are K or more waiting products.

16

We use the number of waiting products as the state. We assume that it is not possible to hold

more than 2K products in the system and we simply lose the products that arrive into a full system.

This ensures that we can bound the number of waiting products by 2K and use {0, . . . , 2K} as

the state space. The set of actions is {0, 1}, where actions 0 and 1 respectively correspond to not

running and running the service station. Letting A be the random variable representing the number

of product arrivals at each time period, the transition probabilities are given by

pij(u) =

P{A = j − i} if u = 0 and i ≤ j < 2K

P{A ≥ 2K − i} if u = 0 and i ≤ j = 2K

P{A = j − [i−K]+} if u = 1 and [i−K]+ ≤ j < 2K

P{A ≥ 2K − [i−K]+} if u = 1 and [i−K]+ ≤ j = 2K

0 otherwise,

(30)

where we let [a − b]+ = max{a − b, 0} and use the fact that the arriving products that find 2K

products in the system are lost. It is interesting that due to the finite capacity of the system, we

may not observe all of the arrivals during the time periods at which the number of arrivals exceeds

the available capacity. Therefore, if the system operates under a policy that tends to hold a large

number of products in the system before serving them, then it is difficult to obtain unbiased samples

of the arrival random variables. This is an example of the censored data problem described in the

introduction. It is certainly intriguing to investigate the quality of the solutions that are obtained

by ignoring the censored data problem, but we leave this issue aside since our focus is on showing

how much the convergence behavior of the Q-learning algorithm can be improved by exploiting the

structural properties of the underlying Markov decision problem. The costs are given by

g(i, u, j) =

{
h i if u = 0
R + h [i−K]+ if u = 1.

This problem has been studied extensively and it is known that its Q-factors satisfy (6) (see Ignall

and Kolesar (1972), Kosten (1973), Deb and Serfozo (1973), Ignall and Kolesar (1974) and Papadaki

and Powell (2002)).

We compare the performance of the monotone Q-learning algorithm (MQL) with that of the

standard version of the Q-learning algorithm (SQL). We note that we obtain SQL by letting Qu
t+1 =

Ru
t for all u ∈ U in Step 3 of the algorithm in Figure 1. We apply MQL and SQL for 10,000 iterations.

We sample the state-action pair at iteration t by following the greedy policy dt defined as

dt(i) =

{
argminu∈{0,1} Qu

t (i) if i ∈ {0, . . . , K − 1}
1 otherwise.

(31)

Since we know that it is optimal to run the service station when there are K or more waiting

products, we let dt(i) = 1 for all i ∈ {K, . . . , 2K}. Therefore, letting i0 be an arbitrary initial state,

the state-action pair sampled at iteration 0 is (i0, d0(i0)). The successor state s0 is sampled such

17

0

10

20

30

40

50

(5
0,

50
,0

.1
,0

.9
0)

(5
0,

50
,0

.1
,0

.9
5)

(5
0,

50
,0

.1
,0

.9
9)

(5
0,

50
,0

.2
,0

.9
0)

(5
0,

50
,0

.2
,0

.9
5)

(5
0,

50
,0

.2
,0

.9
9)

(5
0,

10
0,

0.
1,

0.
90

)
(5

0,
10

0,
0.

1,
0.

95
)

(5
0,

10
0,

0.
1,

0.
99

)
(5

0,
10

0,
0.

2,
0.

90
)

(5
0,

10
0,

0.
2,

0.
95

)
(5

0,
10

0,
0.

2,
0.

99
)

(5
0,

20
0,

0.
1,

0.
90

)
(5

0,
20

0,
0.

1,
0.

95
)

(5
0,

20
0,

0.
1,

0.
99

)
(5

0,
20

0,
0.

2,
0.

90
)

(5
0,

20
0,

0.
2,

0.
95

)
(5

0,
20

0,
0.

2,
0.

99
)

(2
00

,2
00

,0
.1

,0
.9

0)
(2

00
,2

00
,0

.1
,0

.9
5)

(2
00

,2
00

,0
.1

,0
.9

9)
(2

00
,2

00
,0

.2
,0

.9
0)

(2
00

,2
00

,0
.2

,0
.9

5)
(2

00
,2

00
,0

.2
,0

.9
9)

(2
00

,4
00

,0
.1

,0
.9

0)
(2

00
,4

00
,0

.1
,0

.9
5)

(2
00

,4
00

,0
.1

,0
.9

9)
(2

00
,4

00
,0

.2
,0

.9
0)

(2
00

,4
00

,0
.2

,0
.9

5)
(2

00
,4

00
,0

.2
,0

.9
9)

(2
00

,8
00

,0
.1

,0
.9

0)
(2

00
,8

00
,0

.1
,0

.9
5)

(2
00

,8
00

,0
.1

,0
.9

9)
(2

00
,8

00
,0

.2
,0

.9
0)

(2
00

,8
00

,0
.2

,0
.9

5)
(2

00
,8

00
,0

.2
,0

.9
9)

Test Problem

%
 D

ev
. f

ro
m

 O
pt

. P
ol

ic
y MQL

SQL

Figure 4: Performances of the greedy policies obtained by MQL and SQL after 10,000 iterations for
different test problems.

that P{s0 = j | F0, i0, d0(i0)} = pi0j(d0(i0)). Then, we let i1 = s0 and the state-action pair sampled

at iteration 1 is (i1, d1(i1)). The state-action pairs at the subsequent iterations are sampled in a

similar way. To ensure that (A.1) is satisfied, at any iteration, we stop following the greedy policy

with probability 0.1 and sample the state-action pair at that iteration from the uniform distribution

over {0, . . . , 2K} × {0, 1}.

We let {Qu(i) : i ∈ {0, . . . , 2K}, u ∈ {0, 1}} be the solution to (4) and d∗ be the optimal

policy. Since we have d∗(i) = argminu∈{0,1}Qu(i), (31) implies that if Qu
t (i) is “close to” Qu(i) for

all u ∈ {0, 1}, then we have dt(i) = d∗(i). Therefore, we compare the convergence behavior of MQL

and SQL by comparing the performances of the greedy policies obtained by the two algorithms. To

evaluate the performance of the greedy policy dt, we let Jdt(i) be the infinite-horizon discounted cost

incurred by starting from state i and using policy dt, and compute this quantity by solving

Jdt(i) =
2K∑

j=0

pij(dt(i))
[
g(i, dt(i), j) + λJdt(j)

]
for all i ∈ {0, . . . , 2K}.

We assume that the number of product arrivals at each time period has a geometric distribution

with parameter ρ. We let h = 1 throughout, and vary K, R, ρ and λ to obtain different test

problems. Figure 4 shows the performances of the greedy policies obtained by MQL and SQL after

10,000 iterations for different test problems. We label each test problem by (K, R, ρ, λ) on the

horizontal axis. Letting J(i) be the optimal infinite-horizon discounted cost incurred by starting

from state i, the performance measure plotted in Figure 4 is maxi∈{0,...,2K}
[
Jd10,000(i)− J(i)

]
/J(i),

where d10,000 is the greedy policy obtained after 10,000 iterations. We try to eliminate the effect

of noise by making 100 runs for MQL and SQL under common random numbers and present the

18

0

10

20

30

40

50

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Iteration Number
(50,50,0.1,0.90)

%
 D

ev
. f

ro
m

 O
pt

. P
ol

ic
y MQL

SQL

0

10

20

30

40

50

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Iteration Number
(50,50,0.1,0.95)

%
 D

ev
. f

ro
m

 O
pt

. P
ol

ic
y MQL

SQL

0

10

20

30

40

50

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Iteration Number
(50,50,0.1,0.99)

%
 D

ev
. f

ro
m

 O
pt

. P
ol

ic
y MQL

SQL

Figure 5: Performances of the greedy policies obtained by MQL and SQL as a function of the iteration
number for test problems (50, 50, 0.1, 0.90), (50, 50, 0.1, 0.95) and (50, 50, 0.1, 0.99).

averages of the results over 100 runs. For all of our test problems, it takes less than a second to

compute {J(i) : i ∈ {0, . . . , 2K}} by using the value iteration algorithm, but this is naturally under

the assumption that all problem parameters are known.

For a majority of the test problems, the greedy policy obtained by MQL performs significantly

better than the greedy policy obtained by SQL. The performance gap between MQL and SQL

becomes more noticeable when K is large. Exploiting the known structural properties of the problem

appears to be particularly helpful when we need to approximate a larger number of Q-factors.

Figure 5 shows maxi∈{0,...,2K}
[
Jdt(i)− J(i)

]
/J(i) as a function of the iteration number t. Each

chart in this figure corresponds to a different value for the discount factor. The performance gap

between MQL and SQL is significant especially in the early iterations. As the discount factor gets

large, the performance gap between MQL and SQL becomes more pronounced. It is well-known that

infinite-horizon discounted-cost Markov decision problems get more difficult as the discount factor

approaches 1, and it is encouraging that MQL significantly improves the performance of SQL when

the discount factor is large.

19

5.2 A two-product batch service problem

In this problem, two types of products have to be served by a single service station. We refer to the

two product types as type 1 and type 2. The holding costs for the products of type 1 and type 2

are respectively h1 and h2. We assume that h1 > h2 so that if the total number of waiting products

is greater than the capacity of the service station, then it is optimal to serve the products of type 1

first. We also assume that (Kh2)/(1− λ) > R so that it is optimal to run the service station when

there are K or more waiting products. This problem is the infinite-horizon version of the problem

studied by Papadaki and Powell (2003).

We assume that it is not possible to hold more than 2K products of each type in the system so

that we can use the pair (i, κ) ∈ {0, . . . , 2K} × {0, . . . , 2K} as the state. Similar to (30), letting A1

and A2 respectively be the random variables representing the numbers of product arrivals of type 1

and type 2 at each time period, the transition probabilities are given by

p(i,κ),(j,`)(u)

=

P{A1 = j − i, A2 = `− κ} if u = 0, i ≤ j < 2K and κ ≤ ` < 2K

P{A1 ≥ 2K − i, A2 = `− κ} if u = 0, i ≤ j = 2K and κ ≤ ` < 2K

P{A1 = j − i, A2 ≥ 2K − κ} if u = 0, i ≤ j < 2K and κ ≤ ` = 2K

P{A1 ≥ 2K − i, A2 ≥ 2K − κ} if u = 0, i ≤ j = 2K and κ ≤ ` = 2K

P{A1 = j − [i−K]+, A2 = `− [κ− [K − i]+]+} if u = 1, [i−K]+ ≤ j < 2K

and [κ− [K − i]+]+ ≤ ` < 2K

P{A1 ≥ 2K − [i−K]+, A2 = `− [κ− [K − i]+]+} if u = 1, [i−K]+ ≤ j = 2K

and [κ− [K − i]+]+ ≤ ` < 2K

P{A1 = j − [i−K]+, A2 ≥ 2K − [κ− [K − i]+]+} if u = 1, [i−K]+ ≤ j < 2K

and [κ− [K − i]+]+ ≤ ` = 2K

P{A1 ≥ 2K − [i−K]+, A2 ≥ 2K − [κ− [K − i]+]+} if u = 1, [i−K]+ ≤ j = 2K

and [κ− [K − i]+]+ ≤ ` = 2K

0 otherwise,

where we use the fact if the total number of waiting products is greater than the capacity of the

service station, then it is optimal to serve the products of type 1 first. The costs are given by

g((i, κ), u, (j, `)) =

{
h1 i + h2 κ if u = 0
R + h1 [i−K]+ + h2

[
κ− [K − i]+

]+ if u = 1.

Following the approach in Papadaki and Powell (2003), we can show that the Q-factors for this

problem satisfy

Qu((i, κ)) ≤ Qu((i + 1, κ)) for all i ∈ {0, . . . , 2K − 1}, κ ∈ {0, . . . , 2K}, u ∈ {0, 1} (32)

Qu((i, κ)) ≤ Qu((i, κ + 1)) for all i ∈ {0, . . . , 2K}, κ ∈ {0, . . . , 2K − 1}, u ∈ {0, 1}. (33)

20

0

10

20

30

40

50

(2
00

,2
00

,0
.1

,0
.1

,0
.9

0)
(2

00
,2

00
,0

.1
,0

.1
,0

.9
5)

(2
00

,2
00

,0
.1

,0
.1

,0
.9

9)
(2

00
,2

00
,0

.2
,0

.2
,0

.9
0)

(2
00

,2
00

,0
.2

,0
.2

,0
.9

5)
(2

00
,2

00
,0

.2
,0

.2
,0

.9
9)

(2
00

,4
00

,0
.1

,0
.1

,0
.9

0)
(2

00
,4

00
,0

.1
,0

.1
,0

.9
5)

(2
00

,4
00

,0
.1

,0
.1

,0
.9

9)
(2

00
,4

00
,0

.2
,0

.2
,0

.9
0)

(2
00

,4
00

,0
.2

,0
.2

,0
.9

5)
(2

00
,4

00
,0

.2
,0

.2
,0

.9
9)

(2
00

,8
00

,0
.1

,0
.1

,0
.9

0)
(2

00
,8

00
,0

.1
,0

.1
,0

.9
5)

(2
00

,8
00

,0
.1

,0
.1

,0
.9

9)
(2

00
,8

00
,0

.2
,0

.2
,0

.9
0)

(2
00

,8
00

,0
.2

,0
.2

,0
.9

5)
(2

00
,8

00
,0

.2
,0

.2
,0

.9
9)

(4
00

,4
00

,0
.1

,0
.1

,0
.9

0)
(4

00
,4

00
,0

.1
,0

.1
,0

.9
5)

(4
00

,4
00

,0
.1

,0
.1

,0
.9

9)
(4

00
,4

00
,0

.2
,0

.2
,0

.9
0)

(4
00

,4
00

,0
.2

,0
.2

,0
.9

5)
(4

00
,4

00
,0

.2
,0

.2
,0

.9
9)

(4
00

,8
00

,0
.1

,0
.1

,0
.9

0)
(4

00
,8

00
,0

.1
,0

.1
,0

.9
5)

(4
00

,8
00

,0
.1

,0
.1

,0
.9

9)
(4

00
,8

00
,0

.2
,0

.2
,0

.9
0)

(4
00

,8
00

,0
.2

,0
.2

,0
.9

5)
(4

00
,8

00
,0

.2
,0

.2
,0

.9
9)

(4
00

,1
60

0,
0.

1,
0.

1,
0.

90
)

(4
00

,1
60

0,
0.

1,
0.

1,
0.

95
)

(4
00

,1
60

0,
0.

1,
0.

1,
0.

99
)

(4
00

,1
60

0,
0.

2,
0.

2,
0.

90
)

(4
00

,1
60

0,
0.

2,
0.

2,
0.

95
)

(4
00

,1
60

0,
0.

2,
0.

2,
0.

99
)

Test Problem

%
 D

ev
. f

ro
m

 O
pt

. P
ol

ic
y MQL

SQL

Figure 6: Performances of the greedy policies obtained by MQL and SQL after 1,000,000 iterations
for different test problems.

Unfortunately, MQL cannot impose both of these properties on the Q-factor approximations obtained

during the intermediate iterations and we arbitrarily choose to impose the first property. That is,

letting {Qu
t ((i, κ)) : i, κ ∈ {0, . . . , 2K}, u ∈ {0, 1}} be the Q-factor approximations obtained at

iteration t, Qu
t (κ) be the vector {Qu

t ((i, κ)) : i ∈ {0, . . . , 2K}} and P−C,C be the set {y ∈ R2K+1 :

−C ≤ y(0) ≤ y(1) ≤ . . . ≤ y(2K) ≤ C} for some large scalar C, we project Qu
t (κ) onto P−C,C when

Qu
t (κ) 6∈ P−C,C for some κ ∈ {0, . . . , 2K} and u ∈ {0, 1}.

We assume that the numbers of product arrivals of type 1 and type 2 at each time period are

independent and have geometric distributions respectively with parameters ρ1 and ρ2. We let h1 = 1

and h2 = 0.5 throughout, and vary K, R, ρ1, ρ2 and λ to obtain different test problems. Figure 6

shows the performances of the greedy policies obtained by MQL and SQL after 1,000,000 iterations

for different test problems. We label each test problem by (K,R, ρ1, ρ2, λ) on the horizontal axis.

The performance measure that we use in this figure is the same as the one in Figure 4 with obvious

modifications to accommodate the two-dimensional state variable.

For all of the test problems, the greedy policy obtained by MQL performs better than the greedy

policy obtained by SQL and the performance gap becomes more pronounced as the discount factor

approaches 1. The performance gap between MQL and SQL can be as large as 40% for the test

problems where the discount factor is close to 1.

To give a feel for the computational effort required to solve the test problems through conventional

dynamic programming tools, Figure 7 shows the runtimes to compute the value functions by using

the value iteration algorithm. We run the value iteration algorithm until the maximum change in

21

0

5000

10000

15000

20000

(2
00

,2
00

,0
.1

,0
.1

,0
.9

0)
(2

00
,2

00
,0

.1
,0

.1
,0

.9
5)

(2
00

,2
00

,0
.1

,0
.1

,0
.9

9)
(2

00
,2

00
,0

.2
,0

.2
,0

.9
0)

(2
00

,2
00

,0
.2

,0
.2

,0
.9

5)
(2

00
,2

00
,0

.2
,0

.2
,0

.9
9)

(2
00

,4
00

,0
.1

,0
.1

,0
.9

0)
(2

00
,4

00
,0

.1
,0

.1
,0

.9
5)

(2
00

,4
00

,0
.1

,0
.1

,0
.9

9)
(2

00
,4

00
,0

.2
,0

.2
,0

.9
0)

(2
00

,4
00

,0
.2

,0
.2

,0
.9

5)
(2

00
,4

00
,0

.2
,0

.2
,0

.9
9)

(2
00

,8
00

,0
.1

,0
.1

,0
.9

0)
(2

00
,8

00
,0

.1
,0

.1
,0

.9
5)

(2
00

,8
00

,0
.1

,0
.1

,0
.9

9)
(2

00
,8

00
,0

.2
,0

.2
,0

.9
0)

(2
00

,8
00

,0
.2

,0
.2

,0
.9

5)
(2

00
,8

00
,0

.2
,0

.2
,0

.9
9)

(4
00

,4
00

,0
.1

,0
.1

,0
.9

0)
(4

00
,4

00
,0

.1
,0

.1
,0

.9
5)

(4
00

,4
00

,0
.1

,0
.1

,0
.9

9)
(4

00
,4

00
,0

.2
,0

.2
,0

.9
0)

(4
00

,4
00

,0
.2

,0
.2

,0
.9

5)
(4

00
,4

00
,0

.2
,0

.2
,0

.9
9)

(4
00

,8
00

,0
.1

,0
.1

,0
.9

0)
(4

00
,8

00
,0

.1
,0

.1
,0

.9
5)

(4
00

,8
00

,0
.1

,0
.1

,0
.9

9)
(4

00
,8

00
,0

.2
,0

.2
,0

.9
0)

(4
00

,8
00

,0
.2

,0
.2

,0
.9

5)
(4

00
,8

00
,0

.2
,0

.2
,0

.9
9)

(4
00

,1
60

0,
0.

1,
0.

1,
0.

90
)

(4
00

,1
60

0,
0.

1,
0.

1,
0.

95
)

(4
00

,1
60

0,
0.

1,
0.

1,
0.

99
)

(4
00

,1
60

0,
0.

2,
0.

2,
0.

90
)

(4
00

,1
60

0,
0.

2,
0.

2,
0.

95
)

(4
00

,1
60

0,
0.

2,
0.

2,
0.

99
)

Test Problem

R
un

tim
e

(s
ec

.)

Figure 7: Runtimes of the value iteration algorithm for different test problems.

the value functions in two successive iterations is less than 0.1% and use the Gauss-Seidel variant

(see Puterman (1994)). As expected, the runtimes increase with the size of the state space, but

more interestingly, the discount factor also plays a significant role in the runtimes. In particular, the

discount factor affects the number of iterations until termination. For comparison purpose, we note

that 1,000,000 iterations for both MQL and SQL can be carried out in a few seconds. Nevertheless, we

emphasize that the Q-learning algorithm should generally not be used when all problem parameters

are known and the size of the state space is small enough to allow using conventional dynamic

programming tools. The power of the Q-learning algorithm lies in its nonparametric and sampling-

based nature.

6 Conclusions

In this paper, we proposed a new variant of the Q-learning algorithm applicable to problems whose Q-

factors are known to be monotone in the state. We established the convergence of this algorithm and

experimentally showed that it can significantly improve the convergence behavior of the standard

version of the Q-learning algorithm. The idea of exploiting the known structural properties of

Markov decision problems to improve the performances of the learning algorithms forms a rich

area of research. Extending our work to problems whose Q-factors satisfy other properties, such as

convexity and K-convexity, is a line of research we are pursuing. For problems with multi-dimensional

state variables, projecting the Q-factor approximations onto a certain set can be computationally

prohibitive. Finding efficient remedies for this difficulty is another avenue of investigation. Finally,

imposing multiple properties on the Q-factor approximations can improve the convergence behavior

22

of the monotone Q-learning algorithm even further. For example, for the two-product batch service

problem, we know that the Q-factors satisfy the properties in (32) and (33), but we only imposed the

property in (32) on the Q-factor approximations. Clearly, we can project the Q-factor approximations

onto the set

{Q ∈ R2K×2K×|U| :

L ≤ Qu((0, κ)) ≤ Qu((1, κ)) ≤ . . . ≤ Qu((2K,κ)) ≤ U for all κ ∈ {0, . . . , 2K}, u ∈ {0, 1}

L ≤ Qu((i, 0)) ≤ Qu((i, 1)) ≤ . . . ≤ Qu((i, 2K)) ≤ U for all i ∈ {0, . . . , 2K}, u ∈ {0, 1}}.

However, it is not clear that a projection operator onto this set satisfies (A.5) and the proof of

Proposition 3 does not immediately apply. Finding ways of imposing multiple properties on the

Q-factor approximations remains a challenging research question.

References

Andradottir, S. (1995), ‘A stochastic approximation algorithm with varying bounds’, Operations
Research 43(6), 1037–1048.

Barto, A. G., Bradtke, S. J. and Singh, S. P. (1995), ‘Learning to act using real-time dynamic
programming’, Artificial Intelligence 72, 81–138.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996), Neuro-Dynamic Programming, Athena Scientific, Bel-
mont, MA.

de Farias, D. P. and Van Roy, B. (2003), ‘The linear programming approach to approximate dynamic
programming’, Operations Research 51(6), 850–865.

Deb, R. and Serfozo, R. (1973), ‘Optimal control of batch service queues’, Advances in Applied
Probability 5, 340–361.

Ding, X. (2002), Estimation and optimization in discrete inventory models, PhD thesis, The Univer-
sity of British Columbia, Vancouver, British Columbia.

Ignall, E. and Kolesar, P. (1972), ‘Operating characteristics of a simple shuttle under local dispatching
rules’, Operations Research 20, 1077–1088.

Ignall, E. and Kolesar, P. (1974), ‘Operating characteristics of an infinite capacity shuttle: Control
at a single terminal’, Operations Research 22, 1008–1024.

Kosten, L. (1973), Stochastic Theory of Service Systems, Pergamon Press, New York.

Kushner, H. J. and Clark, D. S. (1978), Stochastic Approximation Methods for Constrained and
Unconstrained Systems, Springer-Verlang, Berlin.

Ljung, L. (1977), ‘Analysis of recursive stochastic algorithms’, IEEE Transactions on Automatic
Control 22, 551–575.

Neveu, J. (1975), Discrete Parameter Martingales, North Holland, Amsterdam.

Papadaki, K. and Powell, W. B. (2002), ‘Exploiting structure in adaptive dynamic programming
algorithms for a stochastic batch service problem’, European Journal of Operational Research
142(1), 108–127.

Papadaki, K. and Powell, W. B. (2003), ‘An adaptive dynamic programming algorithm for a stochas-
tic multiproduct batch dispatch problem’, Naval Research Logistics 50(7), 742–769.

23

Powell, W. B., Ruszczynski, A. and Topaloglu, H. (2004), ‘Learning algorithms for separable approxi-
mations of stochastic optimization problems’, Mathematics of Operations Research 29(4), 814–836.

Puterman, M. L. (1994), Markov Decision Processes, John Wiley and Sons, Inc., New York.

Schweitzer, P. and Seidmann, A. (1985), ‘Generalized polynomial approximations in Markovian de-
cision processes’, Journal of Mathematical Analysis and Applications 110, 568–582.

Si, J., Barto, A. G., Powell, W. B. and Wunsch II, D., eds (2004), Handbook of Learning and
Approximate Dynamic Programming, Wiley-Interscience, Piscataway, NJ.

Sutton, R. S. and Barto, A. G. (1998), Reinforcement Learning, The MIT Press, Cambridge, MA.

Topaloglu, H. and Powell, W. B. (2006), ‘Dynamic programming approximations for stochastic, time-
staged integer multicommodity flow problems’, INFORMS Journal on Computing 18(1), 31–42.

Tsitsiklis, J. N. (1994), ‘Asynchronous stochastic approximation and Q-learning’, Machine Learning
16, 185–202.

Tsitsiklis, J. and Van Roy, B. (1997), ‘An analysis of temporal-difference learning with function
approximation’, IEEE Transactions on Automatic Control 42, 674–690.

Watkins, C. J. C. H. (1989), Learning from Delayed Rewards, PhD thesis, Cambridge University,
Cambridge, England.

Watkins, C. J. C. H. and Dayan, P. (1992), ‘Q-learning’, Machine Learning 8, 279–292.

24

7 Online Supplement

In this section, we prove Lemmas 2 and 5. Our proof of Lemma 2 uses the following generalization

of the supermartingale convergence theorem (see, for example, Neveu (1975)).

Proposition 7 Let {Xt}, {Yt} and {Zt} be sequences of positive random variables adopted to the

filtration {Gt}. Assume that E
{
Xt+1 | Gt

} ≤ Xt−Yt +Zt for all t = 0, 1, . . . and
∑∞

t=0 Zt < ∞ w.p.1.

Then, {Xt} converges to a positive random variable and we have
∑∞

t=0 Yt < ∞ w.p.1.

We now prove Lemma 2.

Proof of Lemma 2 Letting Rt and Gt ∈ Rn×n be the diagonal matrices whose diagonal components

are respectively {ρt(i) : i ∈ S} and {γt(i) : i ∈ S}, (9) can be written in vector notation as

ŷt = yt + Rt Gt

[
y∗ + θt − yt

]
. By the nonexpansiveness of the projection operator ΠL,U , we have

‖yt+1 − y∗‖2
2 ≤ ‖ŷt − y∗‖2

2 = ‖yt − y∗‖2
2 − 2

〈
yt − y∗, Rt Gt

[
yt − y∗

]〉
+ 2

〈
yt − y∗, Rt Gt θt

〉

+ ‖Rt Gt

[
y∗ + θt − yt

]‖2
2. (34)

Letting Pt be the diagonal matrix whose diagonal components are {P{it = i | Gt} : i ∈ S}, and

noting the fact that yt is Gt-measurable and E
{
ρt(i) γt(i) | Gt

}
= P{it = i | Gt} γt(i), we have

E
{〈

yt − y∗, Rt Gt

[
yt − y∗

]〉 | Gt

}
=

〈
yt − y∗,E

{
Rt Gt | Gt

}
[yt − y∗]

〉

=
〈
yt − y∗, Pt Gt

[
yt − y∗

]〉
. (35)

Noting (10) and (14), we have

E
{〈

yt − y∗, Rt Gt θt

〉 | Gt, it
}

= E
{[

yt(it)− y∗(it)
]
γt(it) θt(it) | Gt, it

}

=
[
yt(it)− y∗(it)

]
γt(it)E

{
θt(it) | Gt, it

}
= 0 w.p.1,

which implies that

E
{〈

yt − y∗, Rt Gt θt

〉 | Gt

}
= E

{
E

{〈
yt − y∗, Rt Gt θt

〉 | Gt, it
} | Gt

}
= 0 w.p.1. (36)

Since yt is the projection of ŷt−1 onto PL,U , we have yt ∈ PL,U . Then, (14), (15) and the fact

that y∗ ∈ PL,U imply that

E
{‖Rt Gt

[
y∗ + θt − yt

]‖2
2 | Gt, it

}
= E

{‖Rt Gt

[
y∗ − yt

]‖2
2 | Gt, it

}

+ 2E
{〈

Rt Gt

[
y∗ − yt

]
, Rt Gt θt

〉 | Gt, it
}

+ E
{‖Rt Gt θt‖2

2 | Gt, it
}

= [γt(it)]2
[
y∗(it)− yt(it)

]2 + 2 [γt(it)]2
[
y∗(it)− yt(it)

]
E

{
θt(it) | Gt, it

}
+ [γt(it)]2 E

{
[θt(it)]2 | Gt, it

}

≤ [γt(it)]2
{
4 [|L| ∨ |U |]2 + A

}
w.p.1,

25

where we use a ∨ b = max{a, b}. Taking the expectation of the expression above conditional on Gt,

we have

E
{‖Rt Gt

[
y∗ + θt − yt

]‖2
2 | Gt

} ≤ E{
[γt(it)]2 | Gt

}{
4 [|L| ∨ |U |]2 + A

}
w.p.1. (37)

Taking the expectation of (34) conditional on Gt and using (35)-(37), we obtain

E
{‖yt+1 − y∗‖2

2 | Gt

}

≤ ‖yt − y∗‖2
2 − 2

〈
yt − y∗, Pt Gt

[
yt − y∗

]〉
+ E

{
[γt(it)]2 | Gt

}{
4 [|L| ∨ |U |]2 + A

}
. (38)

On the other hand, using (13) and appealing to the monotone convergence theorem, we have

E

{ ∞∑

t=0

E
{
[γt(it)]2 | Gt

}
}

=
∞∑

t=0

E
{
[γt(it)]2

}

=
∞∑

t=0

E

{
n∑

i=1

ρt(i) [γt(i)]2
}

=
n∑

i=1

∞∑

t=0

E
{
ρt(i) [γt(i)]2

}
< ∞,

which implies that
∑∞

t=0 E
{
[γt(it)]2 | Gt

}
< ∞ w.p.1. Therefore, noting (38), we can use Proposition

7 to conclude that the sequence {‖yt − y∗‖2
2} converges w.p.1 and

∞∑

t=0

〈
yt − y∗, Pt Gt

[
yt − y∗

]〉
< ∞ w.p.1.

Then, we have
∑∞

t=0[mini∈S γt(i)]
〈
yt− y∗, Pt

[
yt− y∗

]〉 ≤ ∑∞
t=0

〈
yt− y∗, Pt Gt

[
yt− y∗

]〉
< ∞ w.p.1.

Therefore, (11) and (12) imply that there exists a subset of iterations T such that the sequence

{yt − y∗}t∈T converges to 0 w.p.1. Since {‖yt − y∗‖2
2} converges w.p.1, the whole sequence {yt − y∗}

converges to 0 w.p.1. ¤

We now turn to Lemma 5. Letting v(0) = L and v(n+1) = U , the result of the projection ΠL,U ŷ

is the optimal solution to the problem

min
1
2

n∑

i=1

[v(i)− ŷ(i)]2 (39)

subject to v(i) ≤ v(i + 1) for all i ∈ {0, . . . , n}.

Associating the nonnegative Lagrange multipliers {λ(i) : i ∈ {0, . . . , n}} with the constraints, the

Karush-Kuhn-Tucker conditions for this problem are

ŷ(i)− λ(i) + λ(i− 1) = v(i) for all i ∈ {1, . . . , n} (40)

λ(i) [v(i + 1)− v(i)] = 0 for all i ∈ {0, . . . , n}. (41)

The following result is useful when proving Lemma 5.

26

Lemma 8 Assume that y ∈ PL,U . Fix i∗ ∈ S and let ŷ ∈ Rn be obtained by

ŷ(i) =

{
y(i) + α [A− y(i)] if i = i∗

y(i) otherwise,

where A is a scalar and α ∈ [0, 1]. Let v = ΠL,U ŷ be computed by solving problem (39) and {λ(i) :

i ∈ {0, . . . , n}} be the corresponding optimal Lagrange multipliers. Then, one of the following cases

holds.

1) Either we have λ(i) = 0 for all i ∈ {0, . . . , n}.

2) Or there exist κ and µ ∈ {0, . . . , n} with κ ≤ µ such that λ(i) > 0 if and only if i ∈ {κ, . . . , µ}.

Proof of Lemma 8 To reach a contradiction, we assume that there exist κ1, µ1, κ2, µ2, . . . , κk and

µk ∈ {0, . . . , n} with k ≥ 2 such that κ1 < µ1 + 1 < κ2 < µ2 + 1 < . . . < κk < µk + 1 and λ(i) > 0 if

and only if i ∈ {κ1, . . . , µ1} ∪ {κ2, . . . , µ2} ∪ . . . ∪ {κk, . . . , µk}. We consider four cases.

Case 1 – Assume that κ1 > 0 and µ2 < n. Since λ(i) > 0 for all i ∈ {κ1, . . . , µ1}, (41) implies that

v(κ1) = v(κ1 + 1) = . . . = v(µ1 + 1). Since λ(κ1) > 0, λ(µ1) > 0 and λ(κ1 − 1) = λ(µ1 + 1) = 0,

(40) implies that v(κ1) = ŷ(κ1) − λ(κ1) < ŷ(κ1) and v(µ1 + 1) = ŷ(µ1 + 1) + λ(µ1) > ŷ(µ1 + 1).

Therefore, we obtain, ŷ(κ1) > v(κ1) = v(µ1 + 1) > ŷ(µ1 + 1). On the other hand, since y ∈ PL,U ,

we have y(κ1) ≤ y(µ1 + 1). Therefore, since ŷ differs from y only in the i∗-th component, we must

have i∗ = κ1 or i∗ = µ1 + 1. By using a similar argument, we can obtain ŷ(κ2) > ŷ(µ2 + 1), which

implies that we must also have i∗ = κ2 or i∗ = µ2 + 1. Since we cannot have both i∗ ∈ {κ1, µ1 + 1}
and i∗ ∈ {κ2, µ2 + 1}, we reach a contradiction.

Case 2 – Assume that κ1 = 0 and µ2 < n. Since λ(i) > 0 for all i ∈ {0, . . . , µ1} and v(0) = L, (41)

implies that L = v(1) = v(2) = . . . = v(µ1 + 1). Then, since λ(µ1) > 0 and λ(µ1 + 1) = 0, (40)

implies that L = v(µ1 + 1) = ŷ(µ1 + 1) + λ(µ1) > ŷ(µ1 + 1). On the other hand, since y ∈ PL,U ,

we have y(µ1 + 1) ≥ L. Therefore, since ŷ differs from y only in the i∗-th component, we must have

i∗ = µ1 +1. Following an argument similar to the one in the previous case, we must also have i∗ = κ2

or i∗ = µ2 +1. Since we cannot have both i∗ = µ1 +1 and i∗ ∈ {κ2, µ2 +1}, we reach a contradiction.

The cases where we have κ1 > 0 and µ2 = n, or κ1 = 0 and µ2 = n can be handled using similar

arguments. ¤

We now prove Lemma 5.

Proof of Lemma 5 Let v be computed by solving problem (39) and {λ(i) : i ∈ {0, . . . , n}} be the

corresponding optimal Lagrange multipliers. We show that there exists ` ∈ S that satisfies (23)-(25).

Before we begin, we note that v ∈ PL,U since v is a feasible solution to problem (39).

27

If λ(i) = 0 for all i ∈ {0, . . . , n}, then (40) implies that v(i) = ŷ(i) for all i ∈ {1, . . . , n}. In

this case, we set ` = i∗. Since v ∈ PL,U , we have L ≤ v(i∗) = ŷ(i∗) ≤ U , which implies that

v(i∗) = ŷ(i∗) = [ŷ(i∗) ∧ U] ∨ L. Therefore, (23) is satisfied. Since ` = i∗, (24) and (25) do not need

to be shown.

We now assume that there exists at least one strictly positive Lagrange multiplier. Let κ and µ

with κ ≤ µ be such that λ(i) > 0 if and only if i ∈ {κ, . . . , µ}. The existence of such κ and µ is

guaranteed by Lemma 8. We consider four cases.

Case 1 – Assume that κ > 0 and µ < n. In this case, following an argument similar to the one in

Case 1 in the proof of Lemma 8, we obtain v(κ) = v(κ+1) = . . . = v(µ+1) and we must have i∗ = κ

or i∗ = µ + 1. By adding (40) for all i ∈ {κ, . . . , µ + 1}, we obtain

v(κ) = v(κ + 1) = . . . = v(µ + 1) =
ŷ(κ) + . . . + ŷ(µ + 1)

µ− κ + 2
. (42)

Since λ(i) = 0 for all i 6∈ {κ, . . . , µ}, (40) implies that

v(i) = ŷ(i) for all i 6∈ {κ, . . . , µ + 1}. (43)

Finally, since λ(κ) > 0, λ(µ) > 0 and λ(κ−1) = λ(µ+1) = 0, (40) implies that v(κ) = ŷ(κ)−λ(κ) <

ŷ(κ) and v(µ + 1) = ŷ(µ + 1) + λ(µ) > ŷ(µ + 1). Then, using (42), we obtain

ŷ(µ + 1) < v(µ + 1) =
ŷ(κ) + . . . + ŷ(µ + 1)

µ− κ + 2
= v(κ) < ŷ(κ). (44)

Since we must have i∗ = κ or i∗ = µ + 1, we consider the following two subcases.

Case 1.a – Assume that i∗ = κ. In this case, we set ` = µ + 1 and we have ` > i∗. Since v ∈ PL,U ,

(42) implies that

v(i∗) = v(i∗ + 1) = . . . = v(`) =
ŷ(i∗) + . . . + ŷ(`)

`− i∗ + 1
≤ U,

from which we obtain

v(i) =
ŷ(i∗) + . . . + ŷ(`)

`− i∗ + 1
∧ U for all i ∈ {i∗, . . . , `}.

By (43), we also have v(i) = ŷ(i) for all i 6∈ {i∗, . . . , `}. Therefore, (23) is satisfied. Since y ∈ PL,U

and ŷ differs from y only in the i∗-th component, we have ŷ(i∗+1) ≤ ŷ(i∗+2) ≤ . . . ≤ ŷ(`) = ŷ(µ+1).

Then, noting (44) shows that (24) is satisfied. Since ` > i∗, (25) does not need to be shown.

Case 1.b – Assume that i∗ = µ + 1. In this case, we set ` = κ and we have ` < i∗. Since v ∈ PL,U ,

(42) implies that

v(`) = v(` + 1) = . . . = v(i∗) =
ŷ(`) + . . . + ŷ(i∗)

i∗ − ` + 1
≥ L,

28

from which we obtain

v(i) =
ŷ(`) + . . . + ŷ(i∗)

i∗ − ` + 1
∨ L for all i ∈ {`, . . . , i∗}.

By (43), we also have v(i) = ŷ(i) for all i 6∈ {`, . . . , i∗}. Therefore, (23) is satisfied. Since y ∈ PL,U

and ŷ differs from y only in the i∗-th component, we have ŷ(κ) = ŷ(`) ≤ ŷ(` + 1) ≤ . . . ≤ ŷ(i∗ − 1).

Then, noting (44) shows that (25) is satisfied. Since ` < i∗, (24) does not need to be shown.

Case 2 – Assume that κ = 0 and µ < n. In this case, following an argument similar to the one in

Case 2 in the proof of Lemma 8, we obtain L = v(1) = v(2) = . . . = v(µ + 1), ŷ(µ + 1) < L and we

must have i∗ = µ + 1. By adding (40) for all i ∈ {1, . . . , µ + 1}, we obtain

L = v(1) = v(2) = . . . = v(µ + 1) =
ŷ(1) + . . . + ŷ(µ + 1) + λ(0)

µ + 1
>

ŷ(1) + . . . + ŷ(µ + 1)
µ + 1

. (45)

Since λ(i) = 0 for all i 6∈ {0, . . . , µ}, (40) implies that

v(i) = ŷ(i) for all i 6∈ {1, . . . , µ + 1}. (46)

Since we must have i∗ = µ + 1, we consider the following two subcases.

Case 2.a – Assume that µ > 0. In this case, we have i∗ > 1, we set ` = 1 and we obtain ` < i∗. By

(45), we have

v(i) = L =
ŷ(`) + . . . + ŷ(i∗)

i∗ − ` + 1
∨ L for all i ∈ {`, . . . , i∗}.

By (46), we also have v(i) = ŷ(i) for all i 6∈ {`, . . . , i∗}. Therefore, (23) is satisfied. Since y ∈ PL,U

and ŷ differs from y only in the i∗-th component, we have L ≤ ŷ(`) ≤ ŷ(` + 1) ≤ . . . ≤ ŷ(i∗− 1). We

also have ŷ(i∗) = ŷ(µ + 1) < L. Therefore, we have ŷ(i∗) < ŷ(`) ≤ ŷ(` + 1) ≤ . . . ≤ ŷ(i∗ − 1), which

implies that ŷ(i∗) < [ŷ(`) + . . . + ŷ(i∗)]/[i∗ − ` + 1]. Noting (45), we obtain

ŷ(i∗) <
ŷ(`) + . . . + ŷ(i∗)

i∗ − ` + 1
< L ≤ ŷ(`) ≤ . . . ≤ ŷ(i∗ − 1),

which shows that (25) is satisfied. Since ` < i∗, (24) does not need to be shown.

Case 2.b – Assume that µ = 0. In this case, we have i∗ = 1, we set ` = 1 and we obtain ` = i∗. Since

ŷ(1) = ŷ(µ + 1) < L ≤ U , (45) implies that v(i∗) = v(1) = L = [ŷ(1) ∧ U] ∨ L = [ŷ(i∗) ∧ U] ∨ L. By

(46), we also have v(i) = ŷ(i) for all i 6∈ {i∗}. Therefore, (23) is satisfied. Since ` = i∗, (24) and (25)

do not need to be shown.

The cases where we have κ > 0 and µ = n, or κ = 0 and µ = n can be handled using similar

arguments. ¤

29

