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Abstract

In this paper, we develop two methods for making pricing decisions in network revenue management
problems. We consider a setting where the probability of observing a request for an itinerary depends
on the prices and the objective is to dynamically adjust the prices so as to maximize the total
expected revenue. The idea behind both of our methods is to decompose the dynamic programming
formulation of the pricing problem by the flight legs and to obtain value function approximations
by focusing on one flight leg at a time. We show that our methods provide upper bounds on the
optimal total expected revenue and these upper bounds are tighter than the one provided by a
deterministic linear program commonly used in practice. Our computational experiments yield two
important results. First, our methods provide substantial improvements over the deterministic linear
program. The average gap between the total expected revenues obtained by our methods and the
deterministic linear program is 7.11%. On average, our methods tighten the upper bounds obtained
by the deterministic linear program by 3.66%. Second, the two methods that we develop have different
strengths. In particular, while one method is able to obtain tighter upper bounds, the other one is
able to obtain pricing policies that yield higher total expected revenues.
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Capacity allocation has traditionally been regarded as the prevalent control policy for the network
revenue management systems operated by the airlines. In particular, a capacity allocation policy fixes
the prices for the itineraries at prespecified levels and decides which itineraries to close and which
itineraries to keep open for sale so as to maximize the total expected revenue. It has been argued that
the airlines are suitable for capacity allocation since their promotion and administrative needs require
them to fix the prices for the itineraries in advance of the sales and a capacity allocation policy indeed
allows them to work with fixed prices. However, this argument has started to lose its validity with the
advent of online sales channels allowing the airlines to dynamically adjust the prices for the itineraries
as the sales take place. As a result, pricing has started to emerge as a feasible control policy for the
network revenue management systems operated by the airlines.

One of the traditional approaches for making pricing decisions in network revenue management
problems is based on a deterministic linear program. This deterministic linear program assumes that
the arrivals of the itinerary requests are given by deterministic functions of the prices. The decision
variables correspond to the numbers of time periods in the planning horizon for which we charge the
different price levels for the itineraries. The deterministic linear program dates back to the work of
Gallego and van Ryzin (1997) and it has received a lot of attention from academics and practitioners
over the years, but due to its deterministic nature, it is not able to capture the temporal dynamics of
the itinerary requests accurately.

In this paper, we propose two new methods suitable for making pricing decisions in network revenue
management problems. In the setting we consider, the probability of observing a request for an itinerary
depends on the prices that we charge for the itineraries and the objective is to dynamically adjust the
prices so as to maximize the total expected revenue. Both of the methods that we propose use the
deterministic linear program mentioned above as a starting point. In particular, by using the dual
solution to the deterministic linear program, we first allocate the immediate revenue associated with
a certain price level among the different flight legs. Once we have allocated the immediate revenue
associated with a certain price level among the different flight legs, we can solve a sequence of revenue
management problems, each taking place over a single flight leg. In the single leg revenue management
problem that takes place over a particular flight leg, if we charge a certain price level for a certain
itinerary, then the revenue that we obtain is given by the portion of the price level that is allocated to
the flight leg. By solving the dynamic programming formulation of the single leg revenue management
problem for each flight leg, we obtain a value function from each one of the flight legs, in which case,
we sum up these value functions to obtain a value function approximation for the original network
revenue management problem. Ultimately, both of the methods that we propose construct separable
approximations to the value functions.

The methods that we propose in this paper provide advantages when compared with the deterministic
linear program. To begin with, since our methods use dynamic programming formulations for the single
leg revenue management problems, they are likely to capture the temporal dynamics of the itinerary
requests more accurately than the deterministic linear program. In addition, it is possible to show that
the deterministic linear program provides an upper bound on the total expected revenue obtained by
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the optimal control policy. Such upper bounds become useful when we assess the optimality gap of a
suboptimal control policy. We show that our methods also obtain upper bounds on the optimal total
expected revenue and the upper bounds obtained by our methods are provably tighter than those from
the deterministic linear program. Finally, our computational experiments demonstrate that the two
methods that we propose can provide substantial improvements over the deterministic linear program.
Averaging over all of the test problems in our experimental setup, the gap between the total expected
revenues obtained by our methods and the deterministic linear program is 7.11%, whereas the gap
between the upper bounds obtained by our methods and the deterministic linear program is 3.66%.

The basic idea behind the two methods that we propose is to decompose the pricing problem over
an airline network by the flight legs and to obtain value function approximations by solving a sequence
of single leg revenue management problems. Therefore, our methods can be visualized as dynamic
programming decomposition approaches. There are some other dynamic programming decomposition
approaches in the literature that try to construct good control policies by focusing on one flight leg
at a time. However, these approaches exclusively use capacity control policies, whereas our focus is
on pricing. To our knowledge, there are few practical algorithms for pricing and the transition from
capacity control to pricing is nontrivial and practically important. Zhang and Adelman (2009) were the
first to show that a dynamic programming decomposition approach can provide upper bounds on the
optimal total expected revenue in the capacity allocation setting. Liu and van Ryzin (2008) use dynamic
programming decomposition approaches to model the customer choice behavior, where each customer
observes the set of itineraries that are available for sale and makes a choice among them. Topaloglu
(2009) demonstrates that it is possible to develop dynamic programming decomposition approaches by
using a suitable Lagrangian relaxation argument on the dynamic programming formulation of a capacity
allocation problem. Erdelyi and Topaloglu (2009) follow a dynamic programming decomposition idea
to develop a joint capacity allocation and overbooking model.

Although pricing is a fundamental control mechanism in network revenue management, most of
the pricing papers in the literature focus on pricing a single product in isolation, whereas the network
revenue management setting requires pricing multiple itineraries that interact with each other. Gallego
and van Ryzin (1994) analyze the problem of dynamically adjusting the price of a single product and
characterize the form of the optimal policy. They also show that a single price policy is asymptotically
optimal as the initial inventory of the product and the length of the selling horizon increase linearly with
the same rate. Feng and Gallego (2000), Feng and Xiao (2000) and Zhao and Zheng (2000) extend the
analysis in Gallego and van Ryzin (1994) to incorporate more complicated demand dynamics and pricing
constraints. Feng and Gallego (1995) consider the case where the price of a product can be adjusted
only once, either from high to low or from low to high. They characterize the optimal timing of the
price change. Maglaras and Meissner (2006) establish that certain pricing problems can be converted
into equivalent capacity allocation problems and this result immediately allows them to extend the
structural properties for capacity allocation problems to pricing problems.

The literature is thinner when we focus on pricing over an airline network. Gallego and van Ryzin
(1997) propose a deterministic optimization problem for pricing multiple itineraries that interact with
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each other. They show that the pricing decisions made by this deterministic optimization problem are
asymptotically optimal in the same sense as in Gallego and van Ryzin (1994). We use a variant of
their approach as a benchmark strategy in our computational experiments. Kleywegt (2001) develops
a joint pricing and overbooking model, where the itinerary requests are deterministic functions of the
prices and he solves the model by using Lagrangian duality arguments. Zhang and Cooper (2009)
consider the problem of pricing substitutable flights that operate between the same origin destination
pair. They build upper and lower bounds on the value functions and use these bounds to construct
pricing policies, but their approach does not appear to extend to a general airline network. Kunnumkal
and Topaloglu (2009) propose a stochastic approximation algorithm for making pricing decisions over an
airline network. The review papers by McGill and van Ryzin (1999), Bitran and Caldentey (2003) and
Elmaghraby and Keskinocak (2003) and the book by Talluri and van Ryzin (2005) provide extensive
coverage of pricing models in network revenue management.

In this paper, we make the following research contributions. 1) We develop two methods for making
pricing decisions in network revenue management problems. Our methods are based on decomposing the
pricing problem over an airline network by the flight legs and obtaining value function approximations
by focusing on one flight leg at a time. Since our methods use dynamic programming formulations,
they capture the temporal dynamics of the itinerary requests more accurately than the deterministic
linear program mentioned above. 2) We show that both of our methods provide upper bounds on
the total expected revenue obtained by the optimal control policy. It is possible to show that the
deterministic linear program also provides such an upper bound, but the upper bounds provided by
our methods are provably tighter than those provided by the deterministic linear program. 3) Our
computational experiments demonstrate that the methods that we propose can provide substantial
improvements over the deterministic linear program. On average, the total expected revenues obtained
by our methods improve those obtained by the deterministic linear program by 7.11% and there are
test problems where the performance gap can be as high as 17.02%. Similarly, the average gap between
the upper bounds obtained by our methods and the deterministic linear program is 3.66% and there
are test problems where the gap between the upper bounds is as high as 7.98%. Furthermore, our
computational experiments indicate that the two methods that we propose complement each other as
they provide improvements over the deterministic linear program. In particular, one of the methods is
successful in obtaining tight upper bounds on the optimal total expected revenue, whereas the other
method is successful in identifying pricing policies that yield high total expected revenues.

The rest of the paper is organized as follows. In Section 1, we formulate the pricing problem over an
airline network as a dynamic program. In Section 2, we describe the deterministic linear program, show
that it provides an upper bound on the optimal total expected revenue and demonstrate how it can be
used to construct a pricing policy. In Sections 3 and 4, we propose two new methods for making pricing
decisions. In each one of these sections, we focus on one of the two methods and show that the method
in question provides an upper bound on the optimal total expected revenue and this upper bound
is tighter than the one provided by the deterministic linear program. Furthermore, we demonstrate
how our methods can be used to construct pricing policies. In Section 5, we provide computational
experiments. In Section 6, we conclude.
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1 Problem Formulation

We have a set of flight legs that can be used to serve the requests for itineraries that arrive randomly
over time. At each time period, we adjust the prices for the itineraries, which, in turn, determine the
probability of observing a request for an itinerary. Pricing serves as the only control mechanism and
we do not have the option of rejecting an itinerary request. Whenever there is an itinerary request, we
accept the itinerary request, generate a revenue that reflects the price for the itinerary and consume
the capacities on the relevant flight legs. The objective is to adjust the prices for the itineraries over
time so as to maximize the total expected revenue.

The problem takes place over the planning horizon T = {1, . . . , τ} and time period τ + 1 is the
departure time of the flight legs. A time period corresponds to a small enough interval of time that
there is at most one itinerary request at each time period. The set of flight legs in the airline network is
L and the set of itineraries is J . The total available capacity on flight leg i is ci. If we serve a request
for itinerary j, then we consume aij units of capacity on flight leg i. The set of possible prices for
itinerary j is given by the finite set {pk

j : k ∈ K} and the price that we charge for itinerary j has to take
a value in this set. Having a finite set of possible prices is not very restrictive from practical perspective
as the cardinality of the set K can be quite large. If we charge the price pk

j for itinerary j, then we
observe a request for itinerary j at a time period with probability λk

j . For notational brevity, we let
rk
j = λk

j pk
j so that rk

j is the expected revenue that we generate at a time period from itinerary j when we
charge the price pk

j for this itinerary. We employ a few assumptions for the price and probability pairs
{(pk

j , λ
k
j ) : k ∈ K}. First, we assume that

∑
j∈J maxk∈K{λk

j } ≤ 1, so that irrespective of the prices that
we charge, there is at most one itinerary request at each time period. Second, we assume that there
exists some φ ∈ K such that λφ

j = 0. In this case, if we do not have enough capacity to serve a request
for itinerary j, then we can charge the price pφ

j to ensure that we do not observe a request for itinerary
j. Third, as evident from our notation, we assume that the probability of observing a request for
itinerary j depends only on the price for itinerary j, but not on the prices for the other itineraries. This
assumption is reasonable when the itineraries do not serve as substitutes of each other. Furthermore,
we point out possible relaxations of this assumption throughout the paper.

We use xit to denote the remaining capacity on flight leg i at the beginning of time period t so that
xt = {xit : i ∈ L} gives the state of the remaining leg capacities. We use ut = {uk

jt : j ∈ J , k ∈ K} to
capture the decisions at time period t, where uk

jt = 1 if we charge the price pk
j for itinerary j at time

period t and uk
jt = 0 otherwise. In this case, the set of feasible decisions at time period t is given by

U(xt) =
{

ut ∈ {0, 1}|J ||K| :
∑

k∈K
aij λk

j uk
jt ≤ xit ∀ i ∈ L, j ∈ J (1)

∑

k∈K
uk

jt = 1 ∀j ∈ J
}

. (2)

Noting that λφ
j = 0, constraints (1) ensure that if we do not have enough capacity to serve a request

for itinerary j, then we charge the price pφ
j for this itinerary. Constraints (2) ensure that each itinerary

is offered at a single price at each time period. We use Vt(xt) to denote the maximum total expected
revenue that can be obtained over the time periods {t, . . . , τ} given that the state of the remaining leg
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capacities at the beginning of time period t is xt. Letting ei be the |L| dimensional unit vector with a
one in the element corresponding to flight leg i, we can evaluate the value functions {Vt(·) : t ∈ T } by
solving the optimality equation

Vt(xt) = max
ut∈U(xt)

{ ∑

j∈J

∑

k∈K
uk

jt

{
rk
j + λk

j Vt+1(xt −
∑

i∈L ei aij)
}

+
[
1−

∑

j∈J

∑

k∈K
uk

jt λk
j

]
Vt+1(xt)

}
(3)

with the boundary condition that Vτ+1(·) = 0. If the state of the remaining leg capacities at the
beginning of time period t is given by xt, then we can find the optimal pricing decisions by solving the
problem on the right side of the optimality equation in (3).

Unfortunately, the optimality equation in (3) involves a high dimensional state variable and the
computation of {Vt(·) : t ∈ T } easily gets intractable for practical problems. In the next section, we
begin by formulating a linear programming approximation to the optimality equation in (3). This linear
program later serves as a starting point for our solution methods.

2 Deterministic Linear Program

Under the assumption that the itinerary requests take on their expected values, it is possible to formulate
a deterministic linear program to approximate the total expected revenue over the planning horizon. In
particular, letting wk

j be the number of time periods at which we charge the price pk
j for itinerary j, we

can solve the problem

max
∑

j∈J

∑

k∈K
rk
j wk

j (4)

subject to
∑

j∈J

∑

k∈K
aij λk

j wk
j ≤ ci ∀ i ∈ L (5)

∑

k∈K
wk

j = τ ∀ j ∈ J (6)

wk
j ≥ 0 ∀ j ∈ J , k ∈ K (7)

to approximate the total expected revenue. In the problem above, the objective function accounts for
the total expected revenue over the planning horizon. Constraints (5) ensure that our decisions do not
violate the leg capacities. Constraints (6) ensure that the total number of time periods at which we
charge the different prices is equal to the number of time periods in the planning horizon.

There are two uses of problem (4)-(7). First, the optimal objective value of problem (4)-(7) provides
an upper bound on the total expected revenue obtained by the optimal control policy. Such an upper
bound becomes useful when assessing the optimality gap of a suboptimal control policy. In particular,
using c = {ci : i ∈ L} to denote the vector of available capacities on the flight legs, V1(c) is the optimal
total expected revenue over the planning horizon. In this case, letting ẑLP be the optimal objective
value of problem (4)-(7), the next proposition shows that ẑLP provides an upper bound on V1(c). The
proofs of all of our results can be found in the appendix.

Proposition 1 We have V1(c) ≤ ẑLP .
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Gallego and van Ryzin (1997) show an analogue of Proposition 1. The appealing aspect of their result
is that they assume that the prices can take values over a continuum and the itinerary requests arrive in
continuous time according a Poisson process. However, their result requires that the expected revenue
from an itinerary is a concave function of the arrival probability, whereas Proposition 1 does not make
an assumption for the relationship between rk

j and λk
j .

A second use of problem (4)-(7) occurs when we try to make the pricing decisions. In particular,
if we let {ŵk

j : j ∈ J , k ∈ K} be the optimal solution to problem (4)-(7), then one alternative for
making the pricing decisions is to charge the price pk

j for itinerary j with probability ŵk
j /τ at each time

period. If we do not have enough capacity to serve a request for itinerary j, then we naturally charge
the price pφ

j for itinerary j. We refer to this decision rule as DLP-P, where DLP stands for deterministic
linear program and P stands for primal. Another alternative for making the pricing decisions is to
use the optimal dual solution to problem (4)-(7). In particular, if we let {π̂i : i ∈ L} be the optimal
values of the dual variables associated with constraints (5) in problem (4)-(7), then we can use π̂i to
capture the opportunity cost of a seat on flight leg i. This allows us to approximate the value functions
{Vt(·) : t ∈ T } with linear functions {Ṽt(·) : t ∈ T } of the form Ṽt(xt) =

∑
i∈L π̂i xit. In this case, we

can replace the value functions {Vt(·) : t ∈ T } on the right side of problem (3) with the linear value
function approximations {Ṽt(·) : t ∈ T } and solve this problem to make the pricing decisions at time
period t. We refer to this decision rule as DLP-D, where D stands for dual.

Closing this section, we briefly elaborate on how to extend problem (4)-(7) to cover the case where
the probability of observing a request for itinerary j does not depend only on the price for itinerary j,
but also on the prices for the other itineraries. To cover this case, we let {pk : k ∈ K} be the set of
possible joint prices for the itineraries, where the vector pk = {pk

j : j ∈ J } includes the prices of all
itineraries. If we charge the prices pk for the itineraries, then we observe a request for itinerary j at a
time period with probability λk

j and λk
j can depend on the whole vector of prices pk. In this case, if we

let wk be the number of time periods at which we charge the prices pk for the itineraries, then all we
need to do is to replace the decision variables {wk

j : j ∈ J } in problem (4)-(7) with a single decision
variable wk. In this case, the objective function of problem (4)-(7) becomes

∑
k∈K

∑
j∈J rk

j wk, where
the term

∑
j∈J rk

j can be interpreted as the expected revenue that we generate at a time period from all
itineraries when we charge the prices pk. The first set of constraints become

∑
k∈K

∑
j∈J aij λk

j wk ≤ ci

for all i ∈ L, where the term
∑

j∈J aij λk
j can be interpreted as the expected capacity consumption

at a time period on flight leg i when we charge the prices pk. The second set of constraints become∑
k∈K wk = τ . We note that the number of possible joint prices {pk : k ∈ K} can be very large in a

practical application, which implies that the number of decision variables in problem (4)-(7) can also
be very large. However, the number of constraints in problem (4)-(7) is always manageable. Therefore,
we can solve problem (4)-(7) in a tractable fashion by using column generation.

3 Decomposition by Revenue Allocation

A shortcoming of the DLP-P and DLP-D decision rules is that they are based on the assumption that
the itinerary requests take on their expected values. In this section, we build on problem (4)-(7) to
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develop a decision rule that addresses the stochastic nature of the itinerary requests more accurately.
We begin by augmenting the set of flight legs with a fictitious flight leg ψ so that the set of flight legs
becomes L∪{ψ}. We assume that none of the itineraries use the fictitious flight leg so that its capacity
is irrelevant. In this case, using the decision variables {wk

ij : i ∈ L ∪ {ψ}, j ∈ J , k ∈ K} instead of the
decision variables {wk

j : j ∈ J , k ∈ K}, problem (4)-(7) is equivalent to the problem

max
∑

j∈J

∑

k∈K
rk
j wk

ψj (8)

subject to
∑

j∈J

∑

k∈K
aij λk

j wk
ij ≤ ci ∀ i ∈ L (9)

∑

k∈K
wk

ij = τ ∀ i ∈ L, j ∈ J (10)

wk
ψj − wk

ij = 0 ∀ i ∈ L, j ∈ J , k ∈ K (11)

wk
ij ≥ 0 ∀ i ∈ L, j ∈ J , k ∈ K. (12)

To see the equivalence between problems (4)-(7) and (8)-(12), we note that we can use constraints (11)
to replace all of the decision variables {wk

ij : i ∈ L} in problem (8)-(12) with a single decision variable
wk

ψj . In this case, we can drop constraints (11) from problem (8)-(12) and problems (4)-(7) and (8)-(12)
become equivalent to each other. Therefore, recalling the notation in Section 2, the optimal objective
value of problem (8)-(12) is still ẑLP .

We let {µ̂k
ij : i ∈ L, j ∈ J , k ∈ K} be the optimal values of the dual variables associated with

constraints (11) in problem (8)-(12). If we dualize these constraints by associating the multipliers
{µ̂k

ij : i ∈ L, j ∈ J , k ∈ K} with them, then the objective function of problem (8)-(12) reads∑
j∈J

∑
k∈K[rk

j −
∑

i∈L µ̂k
ij ] w

k
ψj +

∑
i∈L

∑
j∈J

∑
k∈K µ̂k

ij wk
ij . By the constraints in the dual of problem

(8)-(12) associated with the decision variables {wk
ψj : j ∈ J , k ∈ K}, we have

∑
i∈L µ̂k

ij = rk
j for all

j ∈ J , k ∈ K. Therefore, the term [rk
j −

∑
i∈L µ̂k

ij ] in the last expression is equal to zero and the optimal
objective value of problem (8)-(12) is equal to the optimal objective value of the problem

max
∑

i∈L

∑

j∈J

∑

k∈K
µ̂k

ij wk
ij (13)

subject to (9), (10), (12). (14)

The crucial observation here is that the objective function and all of constraints (9), (10) and (12) in
problem (13)-(14) decompose by the flight legs. This implies that problem (13)-(14) decomposes into
|L| subproblems and the subproblem corresponding to flight leg i has the form

max
∑

j∈J

∑

k∈K
µ̂k

ij wk
ij (15)

subject to
∑

j∈J

∑

k∈K
aij λk

j wk
ij ≤ ci (16)

∑

k∈K
wk

ij = τ ∀ j ∈ J (17)

wk
ij ≥ 0 ∀ j ∈ J , k ∈ K. (18)
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Summing up the discussion in the last two paragraphs, if we let ẑi
LP be the optimal objective value of

problem (15)-(18), then we have ẑLP =
∑

i∈L ẑi
LP .

Comparing problem (15)-(18) with problem (4)-(7), we observe that problem (15)-(18) corresponds
to the deterministic linear program for a revenue management problem that takes over the single flight
leg i. In this single leg revenue management problem, if we charge the price pk

j for itinerary j, then
the expected revenue that we generate at a time period from itinerary j is given by µ̂k

ij . Therefore, we
can visualize µ̂k

ij as the portion of the expected revenue rk
j that is allocated to flight leg i. Since by

Proposition 1, the optimal objective value of the deterministic linear program provides an upper bound
on the optimal total expected revenue, ẑi

LP provides an upper bound on the optimal total expected
revenue in the single leg revenue management problem that takes place over flight leg i.

On the other hand, we can compute the optimal total expected revenue in the single leg revenue
management problem that takes place over flight leg i by solving the optimality equation

vi
t(xit) = max

ut∈Ui(xit)

{ ∑

j∈J

∑

k∈K
uk

jt

{
µ̂k

ij + λk
j vi

t+1(xit − aij)
}

+
[
1−

∑

j∈J

∑

k∈K
uk

jt λk
j

]
vi
t+1(xit)

}
(19)

with the boundary condition that vi
τ+1(·) = 0. The optimality equation above is similar to the one in

(3), but the state variable only keeps track of the remaining capacity on flight leg i. The superscript i in
the value functions emphasizes that the optimality equation above computes the optimal total expected
revenue for the single leg revenue management problem that takes place over flight leg i. The set of
feasible decisions U i(xit) is given by

U i(xit) =
{

ut ∈ {0, 1}|J ||K| :
∑

k∈K
aij λk

j uk
jt ≤ xit and

∑

k∈K
uk

jt = 1 ∀j ∈ J
}

.

We note that the definition of U i(xit) is similar to that of U(xt) in (1)-(2), but U i(xit) only imposes the
capacity availability on flight leg i.

The optimal total expected revenue in the single leg revenue management problem that takes place
over flight leg i is given by vi

1(ci). Furthermore, by the discussion above, ẑi
LP provides an upper bound

on the optimal total expected revenue in this single leg revenue management problem. This implies
that vi

1(ci) ≤ ẑi
LP . If we add over all i ∈ L and recall that we have

∑
i∈L ẑi

LP = ẑLP , then we obtain∑
i∈L vi

1(ci) ≤ ẑLP . On the other hand, the next proposition shows that V1(c) ≤
∑

i∈L vi
1(ci) and we

obtain V1(c) ≤
∑

i∈L vi
1(ci) ≤ ẑLP . Therefore, we can solve the optimality equation in (19) to obtain

an upper bound on the optimal total expected revenue and this upper bound is tighter than the one
provided by the optimal objective value of problem (4)-(7). Solving the optimality equation in (19) is
tractable since this optimality equation involves a single dimensional state variable.

Proposition 2 We have Vt(xt) ≤
∑

i∈L vi
t(xit) for all t ∈ T .

In addition to bounding the optimal total expected revenue, we can use the optimality equation in
(19) to make the pricing decisions. In particular, we can approximate the value functions {Vt(·) : t ∈ T }
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with separable upper bounds {Ṽt(·) : t ∈ T } of the form Ṽt(xt) =
∑

i∈L vi
t(xit). In this case, we can

replace the value functions {Vt(·) : t ∈ T } on the right side of problem (3) with the separable value
function approximations {Ṽt(·) : t ∈ T } and solve this problem to make the pricing decisions at time
period t. We refer to this decision rule as DRA, standing for decomposition by revenue allocation. Our
choice of terminology is motivated by the fact that {µ̂k

ij : i ∈ L} serve as the portions of the expected
revenue rk

j that are allocated to the different flight legs.

4 Decomposition by Leg Relaxation

In this section, we describe a second decision rule that also addresses the stochastic nature of the
itinerary requests. Similar to the DRA decision rule in the previous section, the starting point for this
decision rule is a duality argument on problem (4)-(7), but the specifics of the duality argument is
different. We let {π̂i : i ∈ L} be the optimal values of the dual variables associated with constraints (5)
in problem (4)-(7). We pick an arbitrary flight leg i and relax constraints (5) for all other flight legs by
associating the dual multipliers {π̂l : l ∈ L \ {i}}. In this case, by linear programming duality, problem
(4)-(7) has the same optimal objective value as the problem

max
∑

j∈J

∑

k∈K

[
rk
j −

∑

l∈L\{i}
alj λk

j π̂l

]
wk

j +
∑

l∈L\{i}
π̂l cl (20)

subject to
∑

j∈J

∑

k∈K
aij λk

j wk
j ≤ ci (21)

(6), (7). (22)

We recall that we use ẑLP to denote this common optimal objective value. Ignoring the constant
term

∑
l∈L\{i} π̂l cl in the objective function above and comparing problem (20)-(22) with problem (4)-

(7), we observe that problem (20)-(22) corresponds to the deterministic linear program for a revenue
management problem that takes place over the single flight leg i. In this single leg revenue management
problem, if we charge the price level k for itinerary j, then the expected revenue that we generate at
a time period from itinerary j is given by rk

j −
∑

l∈L\{i} alj λk
j π̂l. Since by Proposition 1, the optimal

objective value of the deterministic linear program provides an upper bound on the optimal total
expected revenue, ẑLP −

∑
l∈L\{i} π̂l cl provides an upper bound on the optimal total expected revenue

in the single leg revenue management problem that takes place over flight leg i.

We can use an optimality equation similar to the one in (19) to compute the optimal total expected
revenue in the single leg revenue management problem that takes place over flight leg i. In particular,
this optimality equation is given by

ϑi
t(xit) = max

ut∈U i(xit)

{ ∑

j∈J

∑

k∈K
uk

jt

{
rk
j −

∑

l∈L\{i}
alj λk

j π̂l + λk
j ϑi

t+1(xit − aij)
}

+
[
1−

∑

j∈J

∑

k∈K
uk

jt λk
j

]
ϑi

t+1(xit)

}
(23)

with the boundary condition that ϑi
τ+1(·) = 0. The optimal total expected revenue in the single leg

revenue management problem that takes place over flight leg i is ϑi
1(ci) and by the discussion in the
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previous paragraph, we have ϑi
1(ci) ≤ ẑLP −

∑
l∈L\{i} π̂l cl. On the other hand, the next proposition

shows that V1(c) ≤ ϑi
1(ci)+

∑
l∈L\{i} π̂l cl and we obtain V1(c) ≤ ϑi

1(ci)+
∑

l∈L\{i} π̂l cl ≤ ẑLP . Therefore,
we can solve the optimality equation in (23) to obtain an upper bound on the optimal total expected
revenue and this upper bound is tighter than the one provided by the optimal objective value of problem
(4)-(7). Furthermore, since the choice of flight leg i is completely arbitrary, the last chain of inequalities
hold for all i ∈ L, in which case, we can take the minimum over all i ∈ L and use

min
i∈L

{
ϑi

1(ci) +
∑

l∈L\{i}
π̂l cl

}

as the tightest possible upper bound on the optimal total expected revenue and this upper bound is
also tighter than the one provided by ẑLP .

Proposition 3 We have Vt(xt) ≤ ϑi
t(xit) +

∑
l∈L\{i} π̂l xlt for all i ∈ L, t ∈ T .

Each of {ϑi
t(xit) +

∑
l∈L\{i} π̂l xlt : i ∈ L} provides an upper bound on Vt(xt), but it is not clear

which one of these upper bounds to use as a value function approximation when making the pricing
decisions. A natural approach is to average over all i ∈ L and make the pricing decisions by using

Ṽt(xt) =
1
|L|

∑

i∈L

{
ϑi

t(xit) +
∑

l∈L\{i}
π̂l xlt

}
(24)

as an approximation to Vt(xt). Unfortunately, this idea does not perform too much better than the
DLP-D decision rule. To see the reason, we first observe that if we make the pricing decisions by
replacing the value functions {Vt(·) : t ∈ T } in problem (3) by any value function approximations
{Ṽt(·) : t ∈ T }, then we need to solve a problem of the form

max
ut∈U(xt)

{ ∑

j∈J

∑

k∈K
uk

jt

{
rk
j + λk

j Ṽt+1(xt −
∑

i∈L ei aij)
}

+
[
1−

∑

j∈J

∑

k∈K
uk

jt λk
j

]
Ṽt+1(xt)

}

= max
ut∈U(xt)

{ ∑

j∈J

∑

k∈K
uk

jt

{
rk
j + λk

j Ṽt+1(xt −
∑

i∈L ei aij)− λk
j Ṽt+1(xt)

}}
+ Ṽt+1(xt). (25)

Focusing on the second problem above, since the last term Ṽt+1(xt) is independent of the pricing
decisions at time period t, the term that really affects the quality of the pricing decisions is the difference
Ṽt+1(xt)− Ṽt+1(xt −

∑
i∈L ei aij).

We proceed to compare the form of the difference Ṽt+1(xt) − Ṽt+1(xt −
∑

i∈L ei aij) for the value
function approximations used by the DLP-D decision rule and for the value function approximations
given in (24). As described in Section 2, the value function approximations used by the DLP-D decision
rule is of the form Ṽt(xt) =

∑
i∈L π̂i xit for all t ∈ T . Therefore, for the value function approximations

used by the DLP-D decision rule, we have Ṽt+1(xt)− Ṽt+1(xt−
∑

i∈L ei aij) =
∑

i∈L aij π̂i. On the other
hand, for the value function approximations given in (24), we have

Ṽt+1(xt)− Ṽt+1(xt −
∑

i∈L aij ei) =
1
|L|

∑

i∈L

{
ϑi

t+1(xit)− ϑi
t+1(xit − aij) +

∑

l∈L\{i}
alj π̂l

}
. (26)
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We let Lj be the set of flight legs that are used by itinerary j. If i 6∈ Lj , then we have aij = 0 by definition
so that the sum in the curly brackets above can succinctly be written as

∑
l∈L\{i} alj π̂l =

∑
l∈L alj π̂l

whenever i 6∈ Lj . Furthermore, we have ϑi
t+1(xit) − ϑi

t+1(xit − aij) = 0 for all i 6∈ Lj . In this case, we
can write (26) as

Ṽt+1(xt)− Ṽt+1(xt −
∑

i∈L aij ei)

=
1
|L|

{ ∑

i∈Lj

{
ϑi

t+1(xit)− ϑi
t+1(xit − aij) +

∑

l∈L\{i}
alj π̂l

}
+

∑

i∈L\Lj

[∑

l∈L
alj π̂l

]}
. (27)

One way to visualize the expression on the right side above is that each flight leg contributes one term
to the average. A flight leg i ∈ Lj contributes the term ϑi

t+1(xit) − ϑi
t+1(xit − aij) +

∑
l∈L\{i} alj π̂l,

whereas a flight leg i 6∈ Lj contributes the term
∑

l∈L alj π̂l. In general, the number of flight legs in the
airline network that are not used by itinerary j is much larger than the number of flight legs that are
used by itinerary j. This implies that we would expect the average in (27) to be dominated by the terms∑

l∈L alj π̂l contributed by the flight legs that are not used by itinerary j, in which case, the average in
(27) would be very close to

∑
l∈L alj π̂l. Therefore, for the value function approximations used by the

DLP-D decision rule and for the value function approximations given in (24), the values of the difference
Ṽt+1(xt) − Ṽt+1(xt −

∑
i∈L ei aij) are very similar and using the value function approximations in (24)

does not provide too much improvement over using the DLP-D decision rule.

To deal with this difficulty, instead of taking an average over all flight legs as in (27), we only take an
average over the flight legs i ∈ Lj . In particular, we replace the difference Ṽt+1(xt)−Ṽt+1(xt−

∑
i∈L aij ei)

in problem (25) with

1
|Lj |

∑

i∈Lj

{
ϑi

t+1(xit)− ϑi
t+1(xit − aij) +

∑

l∈L\{i}
alj π̂l

}

and solve this problem to make the pricing decisions at time period t. We refer to this decision rule as
DLR, standing for decomposition by leg relaxation. Our choice of terminology is motivated by the fact
that the DLR decision rule is obtained by relaxing the capacity constraints in problem (4)-(7).

Both the DRA and DLR decision rules are obtained by building on problem (4)-(7). Therefore, it
is possible to follow the discussion at the end of Section 2 so as to extend the DRA and DLR decision
rules to handle the case where the probability of observing a request for itinerary j does not depend
only on the price for itinerary j, but also on the prices for the other itineraries.

5 Computational Experiments

In this section, we numerically compare the upper bounds and total expected revenues obtained by the
decision rules that we describe in Sections 2, 3 and 4.

5.1 Experimental Setup and Benchmark Strategies

In our computational experiments, we consider two types of functions that capture the relationship
between the price and the probability of observing an itinerary request. In the first type of function,
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we assume that the probability of observing an itinerary request is a linear function of the price. In
particular, we let Λj(p) = ρj [1−p/κj ] so that if we charge the price p for itinerary j, then the probability
of observing a request for itinerary j at a time period is given by Λj(p). The parameter ρj ∈ [0, 1] can
be interpreted as the probability of observing a request for itinerary j when we do not charge anything
for this itinerary and the parameter κj > 0 can be interpreted as the price sensitivity. The price for
itinerary j ranges over the interval [0, κj ] so that we have Λj(p) ∈ [0, ρj ] for all p ∈ [0, κj ]. To work with
a finite set of price and probability pairs {(pk

j , λ
k
j ) : k ∈ K}, we discretize the interval [0, ρj ] into 40 equal

pieces and focus on the probabilities λk
j = (k−1)ρj/40 and the prices pk

j = Λ−1
j (λk

j ) for all k = 1, . . . , 41,
where Λ−1

j (·) denotes the functional inverse of Λj(·). We note that if the price for an itinerary ranges
roughly over an interval of width $2,000, then 41 prices provide a price increment of $50. Such a price
increment should be precise enough from practical perspective. In the second type of function, we
assume that the probability of observing a request for an itinerary is an exponential function of the
price. In particular, we let Λj(p) = ρj e−p/κj , where the interpretations for ρj and κj are the same as
in the linear case. We assume that the price for itinerary j ranges over the interval [0, ln(10)κj ] so that
we have Λj(p) ∈ [ρj/10, ρj ] for all p ∈ [0, ln(10)κj ]. Similar to the linear case, we discretize the interval
[ρj/10, ρj ] into 40 equal pieces and focus on the probabilities λk

j = [ρj/10] + (k − 1) 9 ρj/400 and the
prices pk

j = Λ−1
j (λk

j ) for all k = 1, . . . , 41. In addition to these 41 price and probability pairs, to obtain
some φ ∈ K such that λφ

j = 0, we assume that ∞ is an admissible price and if we charge this price, then
the probability of observing an itinerary request is zero.

Our test problems are based on those in Kunnumkal and Topaloglu (2009). We consider an airline
network that serves N spokes from a single hub. There is one flight leg from each spoke to the hub
and another flight leg from the hub to each spoke. Figure 1 shows the structure of the airline network
with N = 8. There are two itineraries associated with every possible origin destination pair (o, d) with
o 6= d. One of these itineraries is highly price sensitive and the other one is moderately price sensitive.
Therefore, there are 2N flight legs and 2N(N + 1) itineraries, 4N of which include one flight leg and
2N(N −1) of which include two flight legs. The price sensitivity associated with a highly price sensitive
itinerary is κ times larger than the price sensitivity associated with the corresponding moderately price
sensitive itinerary. To measure the tightness of the leg capacities, we let k̂j = argmaxk∈K{rk

j } so that
the price and probability pair (pk̂j

j , λk̂j

j ) maximizes the one period expected revenue from itinerary j. If
we charge the prices {pk̂j

j : j ∈ J } for the itineraries, then the total expected demand for the capacity
on flight leg i is τ

∑
j∈J aij λk̂j

j and we measure the tightness of the leg capacities by

γ =
τ

∑
i∈L

∑
j∈J aij λk̂j

j∑
i∈L ci

.

We use (T,N, γ, κ) to label our test problems, where T ∈ {L,E} denotes whether {Λj(·) : j ∈ J } are
linear or exponential functions and the remaining three components are as described above. We vary
(T, N, γ, κ) over {L, E} × {4, 8} × {1.2, 1.6, 2.0} × {2, 4, 8} and this provides 36 test problems. We note
that careful network revenue management practices are particularly important when the leg capacities
are tight. The values that we use for γ are greater than one, characterizing tight leg capacities.

We use three benchmark strategies. Our first benchmark strategy corresponds to the DLP-P decision

13



rule that we describe at the end of Section 2. Our practical implementation of this decision rule divides
the planning horizon into S equal segments and resolves problem (4)-(7) at time periods {1+(s−1)τ/S :
s = 1, . . . , S}. In particular, at the beginning of segment s, we replace the right side of constraints (5)
with the current remaining leg capacities {xi,1+(s−1)τ/S : i ∈ L} and the right side of constraints (6)
with the current remaining number of time periods τ − (s−1)τ/S. We solve problem (4)-(7) and letting
{ŵk

j : j ∈ J , k ∈ K} be an optimal solution to this problem, we charge the price pk
j for itinerary j with

probability ŵk
j /[τ − (s − 1)τ/S] until we reach the beginning of the next segment. A few setup runs

indicated that increasing S beyond 12 does not improve the performance of the DLP-P decision rule
noticeably so that we use S = 12. The performances of the DLP-P and DLP-D decision rules turn out
to be virtually identical in all of our test problems and we do not provide detailed results for the DLP-D
decision rule. Our second benchmark strategy corresponds to the DRA decision rule that we describe at
the end of Section 3, whereas our third benchmark strategy corresponds to the DLR decision rule that
we describe at the end of Section 4. For the DRA and DLR decision rules, it is also possible to divide
the planning horizon into equal segments and resolve problems (8)-(12) and (4)-(7) at the beginning of
each segment to obtain new values for {µ̂k

ij : i ∈ L, j ∈ J , k ∈ K} and {π̂i : i ∈ L}, but it turns out
that this extension does not provide any noticeable improvement for these decision rules.

5.2 Computational Results

Our main computational results are summarized in Tables 1 and 2. In particular, Table 1 and 2
respectively show the results for the test problems where {Λj(·) : j ∈ J } are linear and exponential
functions. The first column in these tables shows the problem characteristics. The second, third and
fourth columns respectively show the upper bounds on the optimal total expected revenue obtained by
DLP-P, DRA and DLR. The fifth and sixth columns show the percent gaps between the upper bounds
obtained by DRA and the remaining two benchmark strategies. The upper bounds obtained by DRA are
consistently the tightest and we use DRA as a reference when comparing the upper bounds. The seventh,
eighth and ninth columns respectively show the total expected revenues obtained by DLP-P, DRA
and DLR. We estimate these total expected revenues by simulating the performances of the different
benchmark strategies under 100 sample paths. We use common random numbers when simulating the
performances of the different benchmark strategies. The tenth and eleventh columns show the percent
gaps between the total expected revenues obtained by DLR and the remaining two benchmark strategies.
The total expected revenues obtained DLR are consistently the highest and we use DLR as a reference
when comparing the total expected revenues. For all of our test problems, we carried out paired t-
tests to compare the total expected revenues obtained by DLR with those obtained by DLP-P and
DRA. These tests indicated that the performance gaps between DLR and the other two benchmark
strategies are statistically significant at 5% level for all of our test problems. We note that our paired
t-tests compare the total expected revenues obtained by DLR with those obtained DLP-P and DRA.
We do not compare the total expected revenues obtained by DLP-P and DRA with each other and the
performance gaps between DLP-P and DRA may or may not be statistically significant.

Comparing the upper bounds obtained by the three benchmark strategies, we observe that the upper
bounds obtained by DRA are significantly tighter than those obtained by DLP-P and DLR. For the
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test problems in Table 1, the average gap between the upper bounds obtained by DRA and DLP-P is
3.28%, whereas the average gap between the upper bounds obtained by DRA and DLR is 2.04%. When
we move to the test problems in Table 2, the upper bounds obtained by DRA improve those obtained
by DLP-P and DLR by respectively 3.94% and 2.57% on average. There are test problems where the
gap between the upper bounds obtained by DRA and DLP-P is as high as 7.98% and the gap between
the upper bounds obtained by DRA and DLR is as high as 6.11%. In all of our test problems, the upper
bounds obtained by DRA are uniformly tighter than those obtained by DLP-P and DLR.

Comparing the total expected revenues obtained by the three benchmark strategies, we observe
that DLR obtains significantly higher total expected revenues than DLP-P and DRA. For the test
problems in Table 1, the average gap between the total expected revenues obtained by DLR and DLP-P
is 5.05%, whereas the average gap between the total expected revenues obtained by DLP and DRA is
2.94%. When we move to the test problems in Table 2, the total expected revenues obtained by DLR
improve those obtained by DLP-P and DRA by respectively 9.17% and 3.41% on average. There are
test problems where the gap between the total expected revenues obtained by DLR and DLP-P is as
high as 17.02% and the gap between the total expected revenues obtained by DLR and DRA is as high
as 5.53%. In all of our test problems, the total expected revenues obtained by DLR are uniformly higher
than those obtained by DLP-P and DRA. Although the total expected revenues obtained by DRA are
not as high as those obtained by DLR, DRA can provide noticeable improvements over DLP-P.

DLP-P represents one of the traditional approaches for solving pricing problems and our results
indicate that DRA and DLR complement each other as they provide improvements over DLP-P. In
particular, DRA tightens the upper bounds and allows us to assess the optimality gaps more accurately,
whereas DLR obtains higher total expected revenues. To give a feel for the problem parameters that
affect the relative performances of the three benchmark strategies, Figure 2 plots the gaps between
the upper bounds obtained by DRA and the remaining two benchmark strategies and Figure 3 plots
the gaps between the total expected revenues obtained by DLR and the remaining two benchmark
strategies. The test problems in the horizontal axis in these figures are arranged in such a fashion that
the first and last nine test problems respectively involve four and eight spokes. The leg capacities get
tighter as we move from left to right within a block of nine test problems. The difference between the
price sensitivities of the highly and moderately price sensitive itineraries gets larger as we move from
left to right within a block of three test problems. For economy of space, Figures 2 and 3 consider only
the case where {Λj(·) : j ∈ J } are exponential functions. Figure 2 indicates that the gaps between
the upper bounds obtained by DRA and the remaining two benchmark strategies get larger as the leg
capacities get tighter, whereas Figure 3 indicates that the gaps between the total expected revenues
obtained by DLR and the remaining two benchmark strategies get larger as the difference in the price
sensitivities gets larger. If we had infinite capacity on the flight legs, then the different time periods in
the planning horizon would not interact. In this case, letting k̂j = argmaxk∈K{rk

j }, it would be trivially
optimal to charge the prices {pk̂j

j : j ∈ J } for the itineraries. Therefore, we intuitively expect the test
problems with tight leg capacities to be more difficult. On the other hand, if the difference in the price
sensitivities of the highly and moderately price sensitive itineraries gets larger, then we use a richer
set of prices to obtain good performance. Therefore, we also intuitively expect the test problems with
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larger differences in the price sensitivities to be more difficult. These observations indicate that DRA
obtains especially tighter upper bounds and DLR obtains especially higher total expected revenues for
the test problems that we intuitively expect to be more difficult.

Table 3 shows the CPU seconds for DRA and DLR with different numbers of time periods in the
planning horizon and with different numbers of spokes in the airline network. All of our computational
experiments are carried out on a Pentium IV PC running Windows XP with 2.4 Ghz CPU and 1 GB
RAM. The CPU seconds for DRA correspond to the time required to solve problem (8)-(12) and the
optimality equation in (19), whereas the CPU seconds for DLR correspond to the time required to
solve problem (4)-(7) and the optimality equation in (23). The results indicate that the CPU seconds
for DRA are noticeably longer than those for DLR. This discrepancy is due to the fact that DRA is
based on problem (8)-(12) and this problem is significantly larger than problem (4)-(7), which forms the
starting point for DLR. Even for the largest test problems, the CPU seconds for both DRA and DLR
are quite reasonable. The CPU seconds for DLP-P are on the order of a fraction of a second and we
do not provide detailed CPU seconds for DLP-P. Overall, considering their improvements over DLP-P
in terms of both upper bounds and total expected revenues, DRA and DLR are strong candidates for
solving practical pricing problems.

6 Conclusions

In this paper, we developed two methods for making pricing decisions in network revenue management
problems. Both methods decompose the dynamic programming formulation of the problem by the
flight legs and solve dynamic programs with single dimensional state variables. We established that
our methods obtain upper bounds on the optimal total expected revenue and these upper bounds are
tighter than the one obtained by the deterministic linear program. Our computational experiments
demonstrated significant improvements over the deterministic linear program and indicated that the
two methods complement each other. In particular, the first method is useful in obtaining tight bounds
on the optimal total expected revenue, whereas the pricing policy from the second method obtains
higher total expected revenues.
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Appendix: Omitted Proofs

Proof of Proposition 1 We let {Ûk
jt : j ∈ J , k ∈ K, t ∈ T } be the pricing decisions under the

optimal control policy, where Ûk
jt = 1 if we charge the price pk

j for itinerary j at time period t and
Ûk

jt = 0 otherwise. Similarly, we let Ŝjt = 1 if we serve a request for itinerary j at time period t

under the optimal control policy and Ŝjt = 0 otherwise. We note that {Ûk
jt : j ∈ J , k ∈ K, t ∈ T }

and {Ŝjt : j ∈ J , t ∈ T } are random variables and we have
∑

k∈K Ûk
jt = 1 for all j ∈ J , t ∈ T by

the feasibility of the pricing decisions. Furthermore, using Ûjt to denote the vector {Ûk
jt : k ∈ K},

we have E{Ŝjt} = E{E{Ŝjt | Ûjt}} =
∑

k∈K E{Ŝjt | Ûk
jt = 1}P{Ûk

jt = 1} =
∑

k∈K λk
j E{Ûk

jt}, where the
last equality follows from the fact that E{Ŝjt | Ûk

jt = 1} = λk
j and P{Ûk

jt = 1} = E{Ûk
jt} since Ûk

jt is a
Bernoulli random variable. Under the optimal control policy, the price that we charge for itinerary j at
time period t is

∑
k∈K pk

j Ûk
jt. Thus, letting Π̂ be the optimal total expected revenue, we have

Π̂ = E

{∑

t∈T

∑

j∈J
Ŝjt

[ ∑

k∈K
pk

j Ûk
jt

]}
=

∑

t∈T

∑

j∈J

∑

k∈K
pk

j E{Ŝjt Ûk
jt}

=
∑

t∈T

∑

j∈J

∑

k∈K
pk

j E{Ŝjt | Ûk
jt = 1}P{Ûk

jt = 1} =
∑

j∈J

∑

k∈K
pk

j λk
j

[ ∑

t∈T
E{Ûk

jt}
]
. (28)

On the other hand, since the itinerary requests that we serve satisfy the capacity constraints, we have∑
t∈T

∑
j∈J aij Ŝjt ≤ ci for all i ∈ L. Taking expectations in the last inequality and noting that

E{Ŝjt} =
∑

k∈K λk
j E{Ûk

jt}, we obtain
∑

t∈T

∑

j∈J
aij E{Ŝjt} =

∑

j∈J

∑

k∈K
aij λk

j

[ ∑

t∈T
E{Ûk

jt}
]
≤ ci. (29)

By the feasibility of the pricing decisions, we have
∑

k∈K Ûk
jt = 1 for all j ∈ J , t ∈ T . If we take

expectations and add over all time periods, then we obtain
∑

k∈K

[ ∑

t∈T
E{Ûk

jt}
]

= τ. (30)

By (29) and (30), {∑t∈T E{Ûk
jt} : j ∈ J , k ∈ K} is a feasible solution to problem (4)-(7). Furthermore,

the objective value provided by this feasible solution is
∑

j∈J
∑

k∈K rk
j [

∑
t∈T E{Ûk

jt}] = Π̂, where the
equality follows by (28). Thus, the optimal objective value of problem (4)-(7) is at least Π̂. 2

Proof of Proposition 2 We show the result by induction over the time periods. For time period
τ + 1, we have Vτ+1(·) = 0 and vi

τ+1(·) = 0 for all i ∈ L so that the result holds trivially for time period
τ + 1. Assuming that the result holds for time period t + 1 and letting ût be the optimal solution to
problem (3), we have

Vt(xt) =
∑

j∈J

∑

k∈K
ûk

jt

{
rk
j + λk

j Vt+1(xt −
∑

i∈L ei aij)
}

+
[
1−

∑

j∈J

∑

k∈K
ûk

jt λk
j

]
Vt+1(xt)

≤
∑

j∈J

∑

k∈K
ûk

jt

{
rk
j + λk

j

∑

i∈L
vi
t+1(xit − aij)

}
+

[
1−

∑

j∈J

∑

k∈K
ûk

jt λk
j

] ∑

i∈L
vi
t+1(xit)

=
∑

i∈L

{ ∑

j∈J

∑

k∈K
ûk

jt

{
µ̂k

ij + λk
j vi

t+1(xit − aij)
}

+
[
1−

∑

j∈J

∑

k∈K
ûk

jt λk
j

]
vi
t+1(xit)

}
≤

∑

i∈L
vi
t(xit),
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where the first inequality follows from the induction assumption, the second equality follows from the
fact that rk

j =
∑

i∈L µ̂k
ij for all j ∈ J , k ∈ K and the last inequality follows from the fact that ût is a

feasible but not necessarily an optimal solution to problem (19). 2

Proof of Proposition 3 We use an induction argument that is similar to the proof of Proposition
2. For time period τ + 1, we have Vτ+1(·) = 0, ϑi

τ+1(·) = 0 for all i ∈ L and π̂l ≥ 0 for all l ∈ L by
dual feasibility to problem (4)-(7). Therefore, the result holds for time period τ +1. Assuming that the
result holds for time period t + 1 and letting ût be the optimal solution to problem (3), we have

Vt(xt) =
∑

j∈J

∑

k∈K
ûk

jt

{
rk
j + λk

j Vt+1(xt −
∑

i∈L ei aij)
}

+
[
1−

∑

j∈J

∑

k∈K
ûk

jt λk
j

]
Vt+1(xt)

≤
∑

j∈J

∑

k∈K
ûk

jt

{
rk
j + λk

j ϑi
t+1(xit − aij) + λk

j

∑

l∈L\{i}
π̂l [xlt − alj ]

}

+
[
1−

∑

j∈J

∑

k∈K
ûk

jt λk
j

] [
ϑi

t+1(xit) +
∑

l∈L\{i}
π̂l xlt

]

=
∑

j∈J

∑

k∈K
ûk

jt

{
rk
j −

∑

l∈L\{i}
alj λk

j π̂l + λk
j ϑi

t+1(xit − aij)
}

+
[
1−

∑

j∈J

∑

k∈K
ûk

jt λk
j

]
ϑi

t+1(xit) +
∑

l∈L\{i}
π̂l xlt

≤
∑

i∈L
ϑi

t(xit) +
∑

l∈L\{i}
π̂l xlt,

where the first inequality follows from the induction assumption and the last inequality follows from
the fact that ût is a feasible but not necessarily an optimal solution to problem (23). 2
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Figure 1: Airline network with eight spokes.

0

2.5

5

7.5

10

(E
, 4

,  
1.

2,
 2

)

(E
, 4

,  
1.

2,
 4

)

(E
, 4

,  
1.

2,
 8

)

(E
, 4

,  
1.

6,
 2

)

(E
, 4

,  
1.

6,
 4

)

(E
, 4

,  
1.

6,
 8

)

(E
, 4

,  
2.

0,
 2

)

(E
, 4

,  
2.

0,
 4

)

(E
, 4

,  
2.

0,
 8

)

(E
, 8

, 1
.2

, 2
)

(E
, 8

, 1
.2

, 4
)

(E
, 8

, 1
.2

, 8
)

(E
, 8

, 1
.6

, 2
)

(E
, 8

, 1
.6

, 4
)

(E
, 8

, 1
.6

, 8
)

(E
, 8

, 2
.0

, 2
)

(E
, 8

, 2
.0

, 4
)

(E
, 8

, 2
.0

, 8
)

Test Problem

U
pp

er
 B

ou
nd

 G
ap

DRA and DLP-P

DRA and DLR

Figure 2: Percent gaps between the upper bounds obtained by DRA and the remaining two benchmark
strategies for the test problems where {Λj(·) : j ∈ J } are exponential functions.
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Figure 3: Percent gaps between the total expected revenues obtained by DLR and the remaining two
benchmark strategies for the test problems where {Λj(·) : j ∈ J } are exponential functions.

Upper Bound on Optimal % Gap Total Expected Revenue % Gap
Problem Total Expected Revenue with DRA Estimated by Simulation with DLR

(T, N, γ, κ) DLP-P DRA DLR DLP-P DLR DLP-P DRA DLR DLP-P DRA

(L, 4, 1.2, 2) 6,606 6,495 6,531 1.72 0.57 6,049 6,060 6,189 2.27 2.10
(L, 4, 1.2, 4) 9,538 9,388 9,435 1.59 0.50 8,654 8,729 9,017 4.03 3.20
(L, 4, 1.2, 8) 15,416 15,236 15,286 1.18 0.33 13,938 14,233 14,776 5.68 3.68

(L, 4, 1.6, 2) 5,922 5,760 5,835 2.80 1.30 5,304 5,324 5,396 1.70 1.35
(L, 4, 1.6, 4) 8,792 8,548 8,669 2.86 1.42 7,789 7,905 8,087 3.68 2.25
(L, 4, 1.6, 8) 14,640 14,306 14,474 2.33 1.18 12,963 13,354 13,766 5.83 2.99

(L, 4, 2.0, 2) 5,271 5,098 5,186 3.39 1.72 4,674 4,673 4,738 1.35 1.37
(L, 4, 2.0, 4) 8,084 7,803 7,956 3.61 1.97 7,067 7,171 7,337 3.69 2.27
(L, 4, 2.0, 8) 13,897 13,511 13,724 2.86 1.58 12,144 12,618 12,949 6.22 2.56

(L, 8, 1.2, 2) 6,273 6,108 6,209 2.70 1.65 5,454 5,501 5,655 3.57 2.72
(L, 8, 1.2, 4) 8,924 8,697 8,839 2.61 1.63 7,587 7,768 8,087 6.19 3.95
(L, 8, 1.2, 8) 14,239 13,961 14,132 1.99 1.23 11,951 12,429 13,118 8.90 5.25

(L, 8, 1.6, 2) 5,680 5,431 5,607 4.57 3.24 4,774 4,822 4,930 3.17 2.19
(L, 8, 1.6, 4) 8,281 7,894 8,179 4.90 3.60 6,800 6,975 7,226 5.90 3.47
(L, 8, 1.6, 8) 13,569 13,056 13,434 3.93 2.90 10,959 11,521 12,119 9.57 4.93

(L, 8, 2.0, 2) 5,152 4,897 5,079 5.22 3.73 4,261 4,309 4,396 3.08 1.98
(L, 8, 2.0, 4) 7,710 7,282 7,602 5.87 4.40 6,176 6,412 6,587 6.24 2.66
(L, 8, 2.0, 8) 12,972 12,368 12,825 4.88 3.70 10,241 10,917 11,367 9.91 3.96

Average 3.28 2.04 5.05 2.94

Table 1: Performances of DLP-P, DRA and DLR for the test problems where {Λj(·) : j ∈ J } are linear
functions.
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Upper Bound on Optimal % Gap Total Expected Revenue % Gap
Problem Total Expected Revenue with DRA Estimated by Simulation with DLR

(T, N, γ, κ) DLP-P DRA DLR DLP-P DLR DLP-P DRA DLR DLP-P DRA

(E, 4, 1.2, 2) 4,271 4,205 4,225 1.58 0.48 3,899 3,994 4,073 4.26 1.95
(E, 4, 1.2, 4) 6,149 6,057 6,086 1.52 0.48 5,506 5,715 5,886 6.45 2.91
(E, 4, 1.2, 8) 9,909 9,795 9,826 1.15 0.31 8,742 9,251 9,567 8.62 3.30

(E, 4, 1.6, 2) 4,018 3,892 3,958 3.23 1.69 3,551 3,643 3,697 3.97 1.46
(E, 4, 1.6, 4) 5,866 5,691 5,782 3.08 1.61 5,067 5,322 5,488 7.67 3.01
(E, 4, 1.6, 8) 9,608 9,375 9,491 2.48 1.24 8,138 8,760 9,101 10.58 3.75

(E, 4, 2.0, 2) 3,723 3,556 3,654 4.69 2.75 3,209 3,297 3,354 4.34 1.72
(E, 4, 2.0, 4) 5,531 5,280 5,425 4.75 2.74 4,614 4,845 4,981 7.37 2.72
(E, 4, 2.0, 8) 9,242 8,885 9,085 4.01 2.25 7,476 8,016 8,331 10.26 3.78

(E, 8, 1.2, 2) 4,050 3,949 4,013 2.56 1.62 3,456 3,571 3,707 6.76 3.67
(E, 8, 1.2, 4) 5,748 5,601 5,699 2.62 1.75 4,751 5,038 5,282 10.05 4.62
(E, 8, 1.2, 8) 9,147 8,941 9,084 2.30 1.60 7,305 8,058 8,523 14.29 5.46

(E, 8, 1.6, 2) 3,827 3,643 3,777 5.06 3.68 3,070 3,213 3,299 6.93 2.60
(E, 8, 1.6, 4) 5,501 5,224 5,431 5.30 3.96 4,192 4,542 4,740 11.56 4.17
(E, 8, 1.6, 8) 8,884 8,498 8,790 4.54 3.43 6,466 7,361 7,792 17.02 5.53

(E, 8, 2.0, 2) 3,558 3,320 3,498 7.17 5.34 2,719 2,860 2,912 6.64 1.78
(E, 8, 2.0, 4) 5,194 4,810 5,104 7.98 6.11 3,686 4,026 4,181 11.85 3.71
(E, 8, 2.0, 8) 8,547 8,002 8,417 6.81 5.19 5,747 6,522 6,878 16.45 5.17

Average 3.94 2.57 9.17 3.41

Table 2: Performances of DLP-P, DRA and DLR for the test problems where {Λj(·) : j ∈ J } are
exponential functions.

No. Time CPU Seconds
Pers. (τ) DRA DLR

180 3.43 0.44
360 4.17 1.34
720 7.67 5.02

1,440 22.16 19.52

No. CPU Seconds
Spokes (N) DRA DLR

4 0.68 0.58
6 1.81 1.06
8 4.17 1.34
10 9.05 1.74

Table 3: CPU seconds for DRA and DLR.
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