
A Dynamic Programming Decomposition Method for Making
Overbooking Decisions over an Airline Network

Alexander Erdelyi
School of Operations Research and Information Engineering,

Cornell University, Ithaca, New York 14853, USA
alex@orie.cornell.edu

Huseyin Topaloglu
School of Operations Research and Information Engineering,

Cornell University, Ithaca, New York 14853, USA
topaloglu@orie.cornell.edu

June 1, 2009

Abstract

In this paper, we develop a revenue management model to jointly make the capacity allocation and
overbooking decisions over an airline network. Our approach begins with the dynamic programming
formulation of the capacity allocation and overbooking problem and uses an approximation strategy
to decompose the dynamic programming formulation by the flight legs. This decomposition idea
opens up the possibility of obtaining approximate solutions by concentrating on one flight leg at
a time, but the capacity allocation and overbooking problem that takes place over a single flight
leg still turns out to be intractable. We use a state aggregation approach to obtain high quality
solutions to the single leg problem. Overall, our model constructs separable approximations to the
value functions, which can be used to make the capacity allocation and overbooking decisions for the
whole airline network. Computational experiments indicate that our model performs significantly
better than a variety of benchmark strategies from the literature.

Capacity allocation and overbooking are two main ingredients of network revenue management. In
particular, capacity allocation deals with the question of which itineraries to keep open for purchase
and which itineraries to close as the remaining capacities on the flight legs are depleted over time with
the customer purchases. Overbooking deals with the question of to what extent the sales should exceed
the physically available capacity on the flight legs, given that not everyone with a reservation ends up
showing up at the departure time. The capacity allocation and overbooking decisions are inherently
connected. What fare classes to make available for purchase depends on how many seats in excess of
the physically available capacity the airline is willing to sell. On the other hand, how much to overbook
depends on what itineraries the airline keeps open and the probability that a customer who purchases
a reservation for one of the open itineraries shows up at the departure time.

In this paper, we propose a revenue management model that makes the joint capacity allocation
and overbooking decisions over an airline network. Our approach formulates the problem as a dynamic
program and uses an approximation strategy to decompose the dynamic programming formulation by
the flight legs. This decomposition idea opens up the possibility of obtaining approximate solutions by
concentrating on one flight leg at a time, though the capacity allocation and overbooking problem that
takes place over a single flight leg still happens to be intractable. In particular, the state variable in
the dynamic programming formulation of the single leg problem involves a large number of dimensions
in practical applications. We overcome this difficulty by using state aggregation to obtain high quality
solutions to the single leg capacity allocation and overbooking problem. Ultimately, our model provides
separable approximations to the value functions, which can be used to construct a capacity allocation
and overbooking policy for the whole airline network.

Our work in this paper draws on two streams of literature. The first stream of literature is the
work on dynamic programming decomposition methods in network revenue management. Dynamic
programming decomposition methods date back to Belobaba (1987) and they are approximate methods
aimed at decomposing the network revenue management problem by the flight legs. The basic idea is
to associate a displacement adjusted fare with each itinerary over each flight leg, which is different from
the actual fare that the airline charges. The displacement adjusted fares immediately allow us to solve
a sequence of single leg revenue management problems. In the single leg revenue management problem
that takes place over a particular flight leg, we only concentrate on the remaining capacity on this flight
leg and assume that the fares associated with the itineraries are equal to the displacement adjusted
fares over this flight leg. Once we have solved the single leg problem over each flight leg, we add up
the value functions obtained for different flight legs to obtain separable approximations to the value
functions. In this paper, we use a similar idea to decompose the capacity allocation and overbooking
problem. The important distinction of our paper is that we explicitly deal with overbooking, whereas the
earlier decomposition methods work exclusively under the assumption that overbooking is not possible
and all reservations show up at the departure time. Our extension to overbooking is nontrivial and has
important practical implications as overbooking plays a major role in airline operations.

The second stream of literature that we draw on is the work on solving the capacity allocation
and overbooking problem over a single flight leg. This stream of literature becomes especially useful

2

when we try to solve the single leg capacity allocation and overbooking problems after decomposing
the original problem. As mentioned above, the single leg capacity allocation and overbooking problem
is intractable, as its dynamic programming formulation involves a high dimensional state variable. To
be able to solve this problem, we build on the approach proposed by Subramanian et al. (1999). In
particular, we assume that the proportions of the reservations that we have for different itineraries are
fixed and known. This allows us to keep track of only the total number of reservations, rather than the
number of reservations for each itinerary, in our dynamic programming formulation. In this case, the
state variable in the dynamic programming formulation of the single leg problem collapses to a scalar
and the dynamic programming formulation becomes tractable.

In this paper, we make the following research contributions. 1) We develop a model to make the
capacity allocation and overbooking decisions over an airline network. The idea behind our model is to
decompose the problem by the flight legs and to solve a sequence of single leg problems. 2) We show
that our approach provides an upper bound on the optimal total expected profit as long as we can solve
the single leg problems accurately. 3) However, noting that the capacity allocation and overbooking
problem over a single flight leg is still intractable, we show how to obtain approximate solutions to
the single leg problems in a tractable manner. 4) Computational experiments indicate that our model
performs significantly better than many of the existing models in the literature.

The rest of the paper is organized as follows. In Section 1, we review the other literature that
is related to our work. In Section 2, we give a dynamic programming formulation for the capacity
allocation and overbooking problem over an airline network. In Section 3, we give a simple deterministic
linear program that can be used to develop control policies. In Section 4, we describe our model by
using the deterministic linear program as a starting point. In Section 5, we present our computational
experiments. In Section 6, we provide concluding remarks.

1 Review of Related Literature

Despite the fact that there is substantial literature on capacity allocation over an airline network, the
interaction between capacity allocation and overbooking is not thoroughly studied. Early models focus
on the single leg version of the problem. Beckmann (1958), Thompson (1961) and Coughlan (1999)
develop single leg capacity allocation and overbooking models under the assumption that the demands
from different fare classes are static random variables. These models ignore the temporal dynamics of
the demand process and their goal is to decide how many seats to allocate to different fare classes. Later
models by Chatwin (1992), Chatwin (1999) and Subramanian et al. (1999) also consider the single leg
problem, but they try to capture the dynamics of the demand process more accurately. Subramanian
et al. (1999) note the intractability of the dynamic programming formulation of the single leg problem
and propose the approximation strategy that we build on in this paper. It is important to contrast
their observation with the single leg capacity allocation problem without overbooking. If overbooking
is not allowed, then the dynamic programming formulation of the capacity allocation problem involves
a scalar state variable and can easily be solved. Therefore, the possibility of overbooking, by itself,
brings nontrivial challenges even for the single leg case. Karaesmen and van Ryzin (2004b) describe an

3

overbooking model for multiple flight legs that operate between the same origin destination pair and
can serve as substitutes of each other.

There are a few papers that consider the overbooking decisions over an airline network. A popular
method to make the capacity allocation decisions in network revenue management problems is to solve
a deterministic linear program. This linear program is built under the assumption that the itinerary
requests are known in advance and they take on their expected values. There is a constraint associated
with each flight leg in the linear program and the right sides of these constraints are the leg capacities.
Therefore, the optimal values of the dual variables associated with these constraints are used to estimate
the opportunity cost of a seat on different flights legs. In this case, one can construct a capacity control
policy, where the fare from an itinerary request is compared with the total opportunity cost of the
capacities that would be consumed by this itinerary request. If the fare exceeds the total opportunity
cost, then the itinerary request is accepted. There are many variants of the linear programming idea
and Section 3.3 in Talluri and van Ryzin (2004) describes these variants. We do not go into the details
of these variants, as most of them deal only with capacity allocation decisions. However, Bertsimas and
Popescu (2003) show how to build a deterministic linear program to deal with overbooking and no shows.
We use a variant of their deterministic linear program as a benchmark strategy in our computational
experiments. Karaesmen and van Ryzin (2004a) develop a capacity allocation and overbooking model,
where they compute booking limits by using the optimal objective value of the deterministic linear
program as an estimate of the total expected revenue from the itinerary requests. Gallego and van
Ryzin (1997) provide theoretical support for the deterministic linear program by showing that the
control policy obtained from a variant of the deterministic linear program is asymptotically optimal
as the leg capacities and the expected number of itinerary requests increase linearly at the same rate.
Kleywegt (2001) constructs a pricing and overbooking model in continuous time. The demand process
that he uses is deterministic and he utilizes Lagrangian duality to solve the model.

The literature on decomposition of network revenue management problems is also related to our
paper. Williamson (1992) is one of the first to decompose the network revenue management problem
by the flight legs. Her goal is to apply the expected marginal seat revenue heuristic of Belobaba (1987)
on each flight leg individually to construct value function approximations. Section 3.4.4 in Talluri and
van Ryzin (2004) describes a more refined variant of her approach in the sense that this variant does
not assume that the demand from different fare classes arrive over nonoverlapping time intervals. Liu
and van Ryzin (2008) and Bront et al. (2008) show how to extend decomposition methods to address
the customer choice behavior among the different itineraries that are available for purchase. Topaloglu
(2006) shows that decomposition methods can be visualized as an application of Lagrangian relaxation
to the dynamic programming formulation of the network revenue management problem. Kunnumkal
and Topaloglu (2007) show that it is possible to extend the observations of Topaloglu (2006) to address
the customer choice behavior. There is some recent work on decomposing the capacity allocation and
overbooking problem over an airline network. Erdelyi and Topaloglu (2009) use separable functions to
approximate the value functions in the dynamic programming formulation of the capacity allocation
and overbooking problem. In this respect, their paper is connected to our work. However, their
approximations are separable by the itineraries and the number of scalar functions they keep is equal

4

to the number of possible itineraries. In contrast, our approximations are separable by the flight
legs and the number of scalar functions we keep is equal to the number of flight legs. The number
of flight legs is generally smaller than the number of itineraries. Furthermore, they use simulation
to construct their scalar functions, whereas we solve small dynamic programs to construct our value
function approximations. We use their model as a benchmark strategy.

There are recent approaches for the capacity allocation problem over an airline network. Adelman
(2007) uses linear value function approximations for the capacity allocation problem and he chooses the
slopes and intercepts of the value function approximations by solving a linear program that represents
the dynamic programming formulation of the problem. Zhang and Adelman (2006) extend this approach
to deal with the customer choice behavior. They also show that decomposition methods can provide
upper bounds on the optimal total expected revenue. Meissner and Strauss (2008) refine the approach
proposed by Adelman (2007) by using piecewise linear value function approximations. An important
advantage of the recent approaches is that they provide upper bounds on the optimal total expected
revenue. However, the recent approaches do not address the interaction between capacity allocation
and overbooking and the goal of our paper is to fill this gap.

2 Problem Formulation

We consider a set of flight legs over an airline network that can be used to serve the itinerary requests
arriving randomly over time. At each time period, an itinerary request arrives and we need to decide
whether to accept or reject this itinerary request. An accepted itinerary request becomes a reservation,
whereas a rejected itinerary request simply leaves the system. At the departure time of the flight legs,
a certain portion of reservations shows up and we need to decide which of these reservations should be
allowed boarding. The objective is to maximize total expected profit defined as the difference between
the expected revenue obtained by accepting itinerary requests and the expected penalty cost incurred
by denying boarding to reservations.

The set of flight legs is L and the set of itineraries is J . We note that a flight leg is referred to as a
resource and an itinerary is referred to as a product in some settings. The problem takes place over the
finite planning horizon {τ, . . . , 0}. The itinerary requests arrive over time periods T = {τ, . . . , 1} and
the flights depart at time period 0. The probability that there is a request for itinerary j at time period
t is pjt. Accepting a request for itinerary j generates a revenue of fj and this reservation shows up at
the departure time with probability qj . If a reservation for itinerary j shows up at the departure time
and it is denied boarding, then we incur deny penalty cost of θj . If we allow boarding to a reservation
for itinerary j, then we consume aij units of capacity on flight leg i. The capacity on flight leg i is ci.
We assume that the arrivals of the itinerary requests at different time periods and the show up decisions
of different reservations at the departure time are independent. We also assume that the reservations
are not canceled over time periods {τ, . . . , 1} and we do not give refunds to the no shows, but these
assumptions are for brevity and one can make extensions to address cancellations and refunds.

We let xjt denote the total number of reservations for itinerary j at the beginning of time period
t so that xt = {xjt : j ∈ J } captures the state of the reservations. Assuming that the number

5

of reservations for itinerary j at the beginning of time period 0 is xj0, we use Sj(xj0) to denote the
number of reservations for itinerary j that show up at the departure time. Given the assumption that
the show up decisions of different reservations are independent, Sj(xj0) has a binomial distribution with
parameters (xj0, qj). If we use S(x0) = {Sj(xj0) : j ∈ J } to denote the state of the reservations
that show up at the departure time, then we can compute the penalty cost associated with the denied
reservations by solving the problem

Γ(S(x0)) = min
∑

j∈J
θj wj (1)

subject to
∑

j∈J
aij [Sj(xj0)− wj] ≤ ci i ∈ L (2)

wj ≤ Sj(xj0) j ∈ J (3)

wj ∈ Z+ j ∈ J , (4)

where wj is the number of reservations for itinerary j that we deny boarding. The objective function of
the problem above corresponds to the penalty costs associated with the denied reservations. Constraints
(2) ensure that the reservations that we allow boarding do not exceed the leg capacities, whereas
constraints (3) ensure that the numbers of denied reservations do not exceed the numbers of reservations
that show up at the departure time. It is important to observe that problem (1)-(4) assumes that we
can jointly decide which reservations should be denied boarding throughout the network and this can
be an optimistic assumption. Letting ej be the |J | dimensional unit vector with a one in the element
corresponding to j, we can find the optimal policy by computing the value functions through the
optimality equation

Vt(xt) =
∑

j∈J
pjt max{fj + Vt−1(xt + ej), Vt−1(xt)}+

[
1−

∑

j∈J
pjt

]
Vt−1(xt) (5)

with the boundary condition that V0(x0) = −E{Γ(S(x0))}. In this case, if the state of the reservations
at the beginning of time period t is given by xt, then it is optimal to accept a request for itinerary j at
time period t whenever

fj ≥ Vt−1(xt)− Vt−1(xt + ej). (6)

Unfortunately, even for modest sized applications, the state vector xt involves hundreds of dimensions
rendering exact solution to the optimality equation in (5) computationally intractable. In next section,
we begin by describing an approximate solution method that involves solving a deterministic linear
program. Following this, we build on the deterministic linear program to develop a more sophisticated
approximate solution method.

3 Deterministic Linear Program

A standard solution method for the network revenue management problem described in the previous
section involves solving a deterministic linear program. This linear program is formulated under the
assumption that the arrivals of the itinerary requests and the show up decisions of the reservations take
on their expected values. In particular, if we let zj be the number of requests for itinerary j that we

6

plan to accept over the planning horizon and wj be the number of reservations that we plan to deny
boarding, then this linear program can be formulated as

max
∑

j∈J
fj zj −

∑

j∈J
θj wj (7)

subject to
∑

j∈J
aij [qj zj − wj] ≤ ci i ∈ L (8)

zj ≤
∑

t∈T
pjt j ∈ J (9)

wj − qj zj ≤ 0 j ∈ J (10)

zj , wj ≥ 0 j ∈ J . (11)

In the problem above, we assume that if we accept zj requests for itinerary j, then qj zj reservations
for itinerary j show up at the departure time. Constraints (8) ensure that the numbers of reservations
that we allow boarding do not exceed the leg capacities. Constraints (9) ensure that the numbers of
itinerary requests that we accept do not exceed the expected numbers of itinerary requests. Constraints
(10) ensure that the numbers of denied reservations do not exceed the expected numbers of reservations
that show up at the departure time. The deterministic linear programming formulation for the network
revenue management problem is widely known under the assumption that overbooking is not possible
and all reservations show up at the departure time; see Talluri and van Ryzin (1998). Problem (7)-(11)
extends this formulation to handle overbooking and no shows. Although this extension is quite intuitive,
to our knowledge, Bertsimas and Popescu (2003) is the only reference to this extension.

One use of problem (7)-(11) is that its dual solution can be used to construct a policy to accept or
reject the itinerary requests. Letting {λ∗i : i ∈ L} be optimal values of the dual variables associated
with constraints (8) in problem (7)-(11), the idea is to use λ∗i to estimate the opportunity cost of a
unit of capacity on flight leg i. In this case, if the revenue from an itinerary request exceeds the total
expected opportunity cost of the capacities consumed by this itinerary request or if the revenue from
an itinerary request exceeds the expected penalty cost, then we accept the itinerary request. In other
words, if we have

fj ≥ min
{

qj

∑

i∈L
aij λ∗i , qj θj

}
, (12)

then we accept a request for itinerary j. The two arguments of the min{·, ·} operator above capture two
effects. If the total expected opportunity cost of the capacities consumed by a request for itinerary j is
small enough that we have fj ≥ qj

∑
i∈L aij λ∗i , then we accept a request for itinerary j. Furthermore,

if we have fj ≥ qj θj , then we can generate revenue, in expectation, simply by accepting a request for
itinerary j and denying boarding to this reservation at the departure time. We refer to the decision rule
in (12) as the DLP policy, standing for deterministic linear program. This decision rule is also used by
Bertsimas and Popescu (2003).

One other use of problem (7)-(11) is that its optimal objective value provides an upper bound on
the optimal total expected profit. In other words, letting zLP be the optimal objective value of problem
(7)-(11) and 0̄ be the |J | dimensional vector of zeros, it is possible to show that Vτ (0̄) ≤ zLP . For

7

future reference, we state this result as a proposition below. The proof of this proposition can be found
in Erdelyi and Topaloglu (2009).

Proposition 1 We have Vτ (0̄) ≤ zLP .

The upper bound in Proposition 1 can be useful when assessing the optimality gap of a suboptimal
decision rule such as the DLP policy in (12).

4 Dynamic Programming Decomposition

There are several shortcomings of the deterministic linear program. It only uses the total expected
numbers of the itinerary requests, ignoring the probability distributions and the temporal dynamics
of the arrivals of the itinerary requests. Furthermore, it assumes that the numbers of reservations
that show up at the departure time take on their expected values. In this section, we build on the
deterministic linear program to develop a solution method that captures the temporal dynamics of the
itinerary requests somewhat more accurately.

4.1 Decomposing into Single Leg Revenue Management Problems

The starting point for our approach is a duality argument on the deterministic linear program to
decompose the network revenue management problem into a sequence of single leg revenue management
problems. We begin letting {λ∗i : i ∈ L} be the optimal values of the dual variables associated with
constraints (8) in problem (7)-(11). We choose an arbitrary flight leg i and relax constraints (8) in
problem (7)-(11) for all other flight legs by associating the dual multipliers {λ∗l : l ∈ L \ {i}}. In this
case, linear programming duality implies that problem (7)-(11) has the same optimal objective value as
the problem

max
∑

j∈J

[
fj − qj

∑

l∈L\{i}
alj λ∗l

]
zj −

∑

j∈J

[
θj −

∑

l∈L\{i}
alj λ∗l

]
wj +

∑

l∈L\{i}
λ∗l cl

subject to
∑

j∈J
aij [qj zj − wj] ≤ ci

(9), (10), (11).

We note that the problem above includes the capacity constraint only for flight leg i. For notational
brevity, we let

Λi
j =

∑

l∈L\{i}
alj λ∗l F i

j = fj − qj Λi
j Θi

j = θj − Λi
j . (13)

Omitting the constant term
∑

l∈L\{i} λ∗l cl, we write the problem above as

max
∑

j∈J
F i

j zj −
∑

j∈J
Θi

j wj (14)

subject to
∑

j∈J
aij [qj zj − wj] ≤ ci (15)

(9), (10), (11), (16)

8

in which case, the optimal objective value of problem (14)-(16) differs from zLP by
∑

l∈L\{i} λ∗l cl.

The decision variables zj and wj do not appear in constraint (15) whenever itinerary j does not
use the capacity on flight leg i. This observation allows us to decompose problem (14)-(16) into two
problems, one of which involves the itineraries that use the capacity on flight leg i and the other one
involves the remaining itineraries. To this end, we let J i = {j ∈ J : aij > 0} so that J i is the set of
itineraries that use the capacity on flight leg i. In this case, it is easy to see that the optimal objective
value of problem (14)-(16) is equal to the sum of the optimal objective values of the problem

max
∑

j∈J i

F i
j zj −

∑

j∈J i

Θi
j wj (17)

subject to
∑

j∈J i

aij [qj zj − wj] ≤ ci (18)

zj ≤
∑

t∈T
pjt j ∈ J i (19)

wj − qj zj ≤ 0 j ∈ J i (20)

zj , wj ≥ 0 j ∈ J i, (21)

which involves only the decision variables {zj : j ∈ J i} and {wj : j ∈ J i}, and the problem

max
∑

j∈J\J i

F i
j zj −

∑

j∈J\J i

Θi
j wj (22)

subject to zj ≤
∑

t∈T
pjt j ∈ J \ J i (23)

wj − qj zj ≤ 0 j ∈ J \ J i (24)

zj , wj ≥ 0 j ∈ J \ J i, (25)

which involves only the decision variables {zj : j ∈ J \ J i} and {wj : j ∈ J \ J i}. It turns out
that the optimal objective value of problem (22)-(25) can easily be obtained by mere inspection. In
particular, we show in Appendix A that the optimal objective value of problem (22)-(25) is equal to∑

t∈T
∑

j∈J\J i pjt max{F i
j , F

i
j − qj Θi

j , 0}. Therefore, summing up the discussion so far in this section,
if we let zi

LP be the optimal objective value of problem (17)-(21), then we have

zLP = zi
LP +

∑

t∈T

∑

j∈J\J i

pjt max{F i
j , F

i
j − qj Θi

j , 0}+
∑

l∈L\{i}
λ∗l cl. (26)

Comparing problem (17)-(21) with problem (7)-(11), we can observe that problem (17)-(21) is the
deterministic linear program corresponding to a single leg revenue management problem that takes place
over flight leg i. In this single leg revenue management problem, only the requests for the itineraries in
the set J i are considered. If we accept a request for itinerary j, then we generate a revenue of F i

j . If
we deny boarding to a reservation for itinerary j, then we incur a penalty cost of Θi

j . Noting that the
optimal objective value of problem (17)-(21) is denoted by zi

LP , Proposition 1 implies that zi
LP provides

an upper bound on the optimal total expected profit for the single leg revenue management problem
that takes place over flight leg i.

9

On the other hand, we can compute the optimal total expected profit for the above described single
leg revenue management problem taking place over flight leg i by solving the corresponding dynamic
program. To this end, we introduce some new notation. We let Ri(·) be the operator that restricts the
components of a |J | dimensional vector to those that correspond to the elements of J i. For example,
we have Ri(xt) = {xjt : j ∈ J i} and Ri(S(x0)) = {Sj(xj0) : j ∈ J i}. In this case, the optimality
equation for the single leg revenue management problem that takes place over flight leg i reads

V i
t (Ri(xt)) =

∑

j∈J i

pjt max{F i
j + V i

t−1(Ri(xt + ej)), V i
t−1(Ri(xt))}+

[
1−

∑

j∈J i

pjt

]
V i

t−1(Ri(xt)) (27)

with the boundary condition that V i
0 (Ri(x0)) = −E{Γi(Ri(S(x0)))}. Here, Γi(·) accounts for the

penalty cost of denied boarding at the departure time in the single leg revenue management problem
that takes place over flight leg i and it is given by

Γi(Ri(S(x0))) = min
∑

j∈J i

Θi
j wj (28)

subject to
∑

j∈J i

aij [Sj(xj0)− wj] ≤ ci (29)

wj ≤ Sj(xj0) j ∈ J i (30)

wj ∈ Z+ j ∈ J i. (31)

We recall that zi
LP provides an upper bound on the optimal total expected profit for the single leg

revenue management problem that takes place over flight leg i. This optimal total expected profit is
given by V i

τ (Ri(0̄)) so that we obtain V i
τ (Ri(0̄)) ≤ zi

LP . The next proposition shows the relationship
between the solutions to the optimality equations in (5) and (27). Its proof is in Appendix B.

Proposition 2 For all t ∈ T , we have

Vt(xt) ≤ V i
t (Ri(xt))−

∑

j∈J i

qj Λi
j xjt −

∑

j∈J\J i

min
{

qj

∑

l∈L
alj λ∗l , qj θj

}
xjt

+
∑

j∈J\J i

t∑

s=1

pjs max{F i
j , F

i
j − qj Θi

j , 0}+
∑

l∈L\{i}
λ∗l cl. (32)

Using Proposition 2 with t = τ and xt = 0̄, the discussion just before this proposition implies that

Vτ (0̄) ≤ V i
τ (Ri(0̄)) +

∑

j∈J\J i

τ∑

s=1

pjs max{F i
j , F

i
j − qj Θi

j , 0}+
∑

l∈L\{i}
λ∗l cl

≤ zi
LP +

∑

j∈J\J i

τ∑

s=1

pjs max{F i
j , F

i
j − qj Θi

j , 0}+
∑

l∈L\{i}
λ∗l cl = zLP ,

where the last equality follows from (26). Therefore, we can obtain an upper bound on the optimal
total expected profit by solving the optimality equation in (27) and this upper bound is tighter than
the one provided by the optimal objective value of problem (7)-(11). Nevertheless, the state variable in

10

the optimality equation in (27) has still |J i| dimensions, which can be quite large for many practical
applications. Before we describe one method to approximate the solution to this optimality equation,
we take a quick detour in the next section and describe how we can use the upper bound in Proposition
2 to construct a policy to accept or reject the itinerary requests.

4.2 Approximating the Optimal Decision Rule

Proposition 2 suggests approximating Vt(xt) with the upper bound given by the expression on the right
side of (32). In particular, using Ṽ i

t (xt) to denote the expression on the right side of (32), we can replace
Vt−1(xt)−Vt−1(xt + ej) in the decision rule in (6) with Ṽ i

t−1(xt)− Ṽ i
t−1(xt + ej) and follow this decision

rule to accept or reject the itinerary requests. One ambiguous aspect of this approach is that the choice
of flight leg i is arbitrary and the performance of the proposed decision rule can depend on the choice
of this flight leg. We work around this ambiguity by computing {Ṽ i

t (·) : t ∈ T } for all i ∈ L so that we
can use the average

∑
i∈L Ṽ i

t (xt)/|L| as an approximation to Vt(xt). Noting that Ṽ i
t (xt) ≥ Vt(xt) for all

i ∈ L, we still have the upper bound that
∑

i∈L Ṽ i
t (xt)/|L| ≥ Vt(xt). Thus, we propose approximating

Vt−1(xt) − Vt−1(xt + ej) on the right side of (6) by
∑

i∈L Ṽ i
t−1(xt)/|L| −

∑
i∈L Ṽ i

t−1(xt + ej)/|L|. The
definition of Ṽ i

t (xt) in (32) implies that

Ṽ i
t−1(xt)− Ṽ i

t−1(xt + ej) =

V i
t−1(Ri(xt))− V i

t−1(Ri(xt + ej)) + qj Λi
j if j ∈ J i

min
{

qj

∑

l∈L
alj λ∗l , qj θj

}
if j ∈ J \ J i.

Therefore, letting 1(·) be the indicator function, if the state of the reservations at time period t is given
by xt, then we accept a request for itinerary j whenever we have

fj ≥ 1
|L|

∑

i∈L
1(j ∈ J i)

{
V i

t−1(Ri(xt))− V i
t−1(Ri(xt + ej)) + qj Λi

j

}

+
1
|L|

∑

i∈L
1(j ∈ J \ J i) min

{
qj

∑

l∈L
alj λ∗l , qj θj

}
. (33)

One possible way to look at the decision rule in (33) is that each flight leg contributes one term to
the expression on the right side. If flight leg i is used by itinerary j, then this flight leg contributes the
term V i

t−1(Ri(xt))−V i
t−1(Ri(xt + ej))+ qj Λi

j . If, on the other hand, flight leg i is not used by itinerary
j, then this flight leg contributes the term min{qj

∑
l∈L alj λ∗l , qj θj}. The important observation is that

the term min{qj
∑

l∈L alj λ∗l , qj θj} is identical to the right side of the DLP policy in (12). Therefore,
the flight legs that are not used by itinerary j do not provide any additional information over what is
already provided by the deterministic linear program. Furthermore, the number of flight legs that are
not used by itinerary j is likely to be substantially larger than the number of flight legs that are used
by itinerary j, which implies that the right side of the expression above is likely to be dominated by
the term min{qj

∑
l∈L alj λ∗l , qj θj}. Thus, one conjectures that the decision rule in (33) performs very

much like the DLP policy. A small set of computational experiments confirmed this conjecture.

To overcome this shortcoming, instead of averaging over all flight legs and using
∑

i∈L Ṽ i
t (xt)/|L| as

an approximation to Vt(xt), we average only over the flight legs that are used by a particular itinerary.

11

In particular, we let Lj = {i ∈ L : aij > 0} so that Lj is the set of flight legs that are used by itinerary
j. In this case, whenever we need to make a decision for itinerary j, we use

∑
i∈Lj Ṽ i

t (xt)/|Lj | as an
approximation to Vt(xt). We note that we still have the upper bound that

∑
i∈Lj Ṽ i

t (xt)/|Lj | ≥ Vt(xt).
Thus, if the state of the reservations at time period t is given by xt, then we accept a request for
itinerary j whenever we have

fj ≥ 1
|Lj |

∑

i∈Lj

{
V i

t−1(Ri(xt))− V i
t−1(Ri(xt + ej)) + qj Λi

j

}
. (34)

The state variable in the optimality equation in (27) has |J i| dimensions. Theoretically, this is an
improvement in comparison to the optimality equation in (5), which involves a state variable with |J |
dimensions. Practically, however, this improvement is irrelevant as |J i| is on the order of hundreds
or thousands even for modest applications. Therefore, it is still quite difficult to compute the value
functions {V i

t (·) : t ∈ T } and to use the decision rule in (34). In the next section, we give one method
to approximate the value functions {V i

t (·) : t ∈ T }, which seems to work particularly well for our
application context.

4.3 Reducing the State Space

In this section, we consider the single leg revenue management problem that takes place over flight
leg i whose dynamic programming formulation is given in (27). Our goal is to approximate the value
functions {V i

t (·) : t ∈ T } by using simple scalar functions. We observe that the optimality equation
in (27) has to keep track of the “identities” of the reservations so that the penalty cost given by the
optimal objective value of problem (28)-(31) can be computed properly. On the other hand, if we
assume that knowing the total number of reservations is adequate to compute the penalty cost, then
the state variable in the optimality equation in (27) collapses to a scalar. Our approximation builds on
this observation and it is based on approximating the expected penalty cost at the departure time by
using only the total number of reservations.

We begin by introducing some new notation. We use Ai(·) to denote the operator that adds up
the components of a |J | dimensional vector corresponding to the elements of the set J i. For example,
we have Ai(xt) =

∑
j∈J i xjt and Ai(xt) is the total number of reservations at the beginning of time

period t for the itineraries that use flight leg i. Our approximation is based on the assumption that
if we have a total of Ai(x0) reservations at the beginning of time period 0 for the itineraries that use
flight leg i, then a fixed portion, say αi

j , of these reservations are for itinerary j. In this case, recalling
that the random variable Sj(·) captures the number of reservations for itinerary j that show up at the
departure time and defining the vectors αi = {αi

j : j ∈ J i}, αiAi(xt) = {αi
j Ai(xt) : j ∈ J i} and

Si(αiAi(x0)) = {Sj(αi
j Ai(x0)) : j ∈ J i}, we can approximate the penalty cost at the departure time

by Γi(Si(αiAi(x0))). In this expression, the vector αiAi(x0) approximates the numbers of reservations
that we have at the beginning of time period 0, whereas the vector Si(αiAi(x0)) gives the numbers of
reservations that show up at the departure time. The function Γi(·) is given by the optimal objective
value of problem (28)-(31) and it computes the penalty cost for the single leg revenue management
problem that takes place over flight leg i. This approximation to the penalty cost at the departure

12

time, in turn, allows us to approximate the solution to the optimality equation in (27) by using the
solution to the optimality equation

vi
t(Ai(xt)) =

∑

j∈J i

pjt max{F i
j + vi

t−1(Ai(xt + ej)), vi
t−1(Ai(xt))}+

[
1−

∑

j∈J i

pjt

]
vi
t−1(Ai(xt)) (35)

with the boundary condition that vi
0(Ai(x0)) = −E{Γi(Si(αiAi(x0)))}. We note that the optimality

equation above involves a scalar state variable and it can be solved quite efficiently.

There are three issues that need to be resolved to be able to find a numerical solution to the
optimality equation in (35). The first issue is related to the choice of αi

j . We use the DLP policy in
(12) for this purpose. In particular, we simulate the trajectory of the DLP policy under M itinerary
request realizations. Letting {xm

jt : j ∈ J , t ∈ T } be the state trajectory in the mth itinerary request
realization, we let

αi
j =

∑M
m=1 xm

j0∑M
m=1

∑
̃∈J i xm

̃0

.

In practice, it is common to use the DLP policy to come up with an average probability that a reservation
shows up at the departure time. Our choice of αi

j closely follows this approach.

The second issue arises due to the fact that the argument of Sj(·) in the vector Si(αiAi(x0)) =
{Sj(αi

j Ai(x0)) : j ∈ J i} is not necessarily integer. We recall that Sj(xj0) is a binomially distributed
random variable with parameters (xj0, qj), but a binomially distributed random variable with a fractional
trial parameter is ill-defined. We overcome this issue by always visualizing Sj(xj0) as a mixture of two
binomially distributed random variables. In particular, letting b·c be the round down function, with
probability bxj0c+1−xj0, Sj(xj0) is equal to a binomially distributed random variable with parameters
(bxj0c, qj), and with probability xj0−bxj0c, Sj(xj0) is equal to a binomially distributed random variable
with parameters (bxj0c + 1, qj). With this convention, if xj0 is integer, then Sj(xj0) continues to be
binomially distributed with parameters (xj0, qj). If, however, xj0 is fractional, then Sj(xj0) is not
necessarily binomially distributed, but its expected value continues to be (bxj0c + 1 − xj0) qj bxj0c +
(xj0 − bxj0c) qj (bxj0c+ 1) = qj xj0.

Finally, the third issue becomes apparent when we note that the boundary condition of the optimality
equation in (35) requires computing the expectation E{Γi(Si(αiAi(x0)))} over the multi dimensional
random variable Si(αiAi(x0)). There is no closed form expression for this expectation and we simply
approximate it through Monte Carlo samples.

Once we agree on the resolution of the three issues described above, we can obtain {vi
t(·) : i ∈

L, t ∈ T } through the optimality equation in (35) and use {vi
t(·) : i ∈ L, t ∈ T } as approximations to

{V i
t (·) : i ∈ L, t ∈ T } in the decision rule in (34). In particular, if the state of the reservations at the

beginning of time period t is given by xt, then we accept a request for itinerary j whenever we have

fj ≥ 1
|Lj |

∑

i∈Lj

{
vi
t−1(Ai(xt))− vi

t−1(Ai(xt + ej)) + qj Λi
j

}
. (36)

We refer to this decision rule as DPD policy, standing for dynamic programming decomposition.

13

5 Computational Experiments

In this section, we compare the performances of the decision rules in (12) and (36), along with other
benchmark strategies. We begin by describing the experimental setup and the benchmark strategies.
Following this, we present our computational results.

5.1 Experimental Setup

We consider an airline network that consists of a hub and N spokes. This is a key network structure
that frequently arises in practice. There are two flight legs associated with each spoke. One of these is
from the hub to the spoke, whereas the other one is from the spoke to the hub. The airline offers a high
fare and a low fare itinerary associated with each origin destination pair. Therefore, the number of flight
legs is 2N and the number of itineraries is 2N (N + 1). The fare associated with a high fare itinerary
is κ times the fare associated with the corresponding low fare itinerary. The penalty cost of denying
boarding to a reservation for itinerary j is given by θj = δ fj + σ max{f̃ : ̃ ∈ J }, where δ and σ are
two parameters that we change. The probability that a reservation shows up at the departure time is
q and it does not depend on the itinerary. Noting that the total expected demand for the capacity on
flight leg i is given by q

∑
t∈T

∑
j∈J aij pjt, we measure the tightness of the leg capacities by

ρ =
q
∑

i∈L
∑

t∈T
∑

j∈J aij pjt∑
i∈L ci

.

We label our test problems by (N, κ, δ, σ, q, ρ) and use N ∈ {4, 8}, κ ∈ {4, 8}, (δ, σ) ∈ {(4, 0), (8, 0), (1, 1)},
q ∈ {0.90, 0.95} and ρ ∈ {1.2, 1.6}. This provides 48 test problems for our experimental setup. In all
of our test problems, we have τ = 240. The online supplement provides the data files for all of our test
problems. We describe the format of the data files in Appendix C.

It is worthwhile to note that the interaction between κ and (δ, σ) creates interesting situations. For
example, when we have κ = 8 and (δ, σ) = (4, 0), if the revenue associated with a low fare itinerary
is f , then the penalty cost associated with this itinerary is 4f and the revenue associated with the
corresponding high fare itinerary is 8f . In this case, if we have a request for the high fare itinerary and
a flight leg in this itinerary is already overbooked with a reservation for the low fare itinerary, then we
can still accept the high fare itinerary request and deny boarding to the low fare reservation to make
a net profit of 8f − 4f . This corresponds to the case where a high fare itinerary trivially preempts
the corresponding low fare itinerary. On the other hand, when we have κ = 4 and (δ, σ) = (1, 1), such
preemptions do not occur. We also note that the test problems with (δ, σ) = (1, 1) tend to have higher
penalty costs than the test problems with (δ, σ) = (8, 0), which, in turn, tend to have higher penalty
costs than the test problems with (δ, σ) = (4, 0).

5.2 Benchmark Strategies

We compare the performances of the following seven benchmark strategies.

Dynamic programming decomposition (DPD) This benchmark strategy corresponds to the DPD
policy given by (36). We use M = 100 when computing {αi

j : i ∈ L, j ∈ J }. We estimate all

14

expectations through 1,000 Monte Carlo samples. With these settings, the 95% confidence interval for
the expectation of αi

j has precision ∓4.1% on the average, whereas the 95% confidence interval for the
expected penalty cost incurred at the departure time has precision ∓1.8% on the average.

Deterministic linear program (DLP) This benchmark strategy corresponds to the DLP policy in
(12). The basic variant of this strategy simply solves problem (7)-(11) to obtain the optimal values of
the dual variables associated with constraints (8) and uses these dual variable to implement the DLP
policy. We use a reoptimized variant of this strategy, where we divide the planning horizon into K

equal segments and resolve an updated version of problem (7)-(11) for each segment. In particular,
given that the state of the reservations at the beginning of the kth segment is xτ(K−k+1)/K , we replace
the right hand side of constraints (8) with {ci −

∑
j∈J aij qj xj,τ(K−k+1)/K : i ∈ L}, the right hand side

of constraints (9) with {∑τ(K−k+1)/K
t=1 pjt : j ∈ J } and the right hand side of constraints (10) with

{qj xj,τ(K−k+1)/K : j ∈ J }, and solve this modified version of problem (7)-(11). Letting {λ∗i : i ∈ L}
be the optimal values of the dual variables associated with constraints (8), we use these updated values
in the decision rule in (12) until we resolve problem (7)-(11) at the beginning of the next segment. We
use K = 20 in our computational experiments.

Finite differences in the deterministic linear program (FDD) Given that the state of the
reservations at the beginning of time period t is xt, FDD approximates the optimal total expected
profit over the time periods {t, . . . , 0} by using the optimal objective value of the problem

max
∑

j∈J
fj zj −

∑

j∈J
θj wj

subject to
∑

j∈J
aij [qj zj − wj] ≤ ci −

∑

j∈J
aij qj xjt i ∈ L

zj ≤
t∑

t̃=1

pjt̃ j ∈ J

wj − qj zj ≤ qj xjt j ∈ J
zj , wj ≥ 0 j ∈ J .

Thus, letting Lt(xt) be the optimal objective value of the problem above, FDD uses Lt(xt) as an
approximation to Vt(xt). In this case, we can make the decisions by replacing {Vt(·) : t ∈ T } in the
decision rule in (6) with {Lt(·) : t ∈ T }. This approach is proposed in Bertsimas and Popescu (2003).

Similar to DLP, we use a reoptimized version of FDD, where we divide the planning horizon into K

equal segments and retune the decision rule at the beginning of each segment. Given that the state of the
reservations at the beginning of the kth segment is xτ(K−k+1)/K , we compute Lτ(K−k+1)/K(xτ(K−k+1)/K)
− Lτ(K−k+1)/K(xτ(K−k+1)/K + ej) for all j ∈ J . Following the decision rule in (6), if we have

fj ≥ Lτ(K−k+1)/K(xτ(K−k+1)/K)− Lτ(K−k+1)/K(xτ(K−k+1)/K + ej)

then we always accept a request for itinerary j until we reach the beginning of the next segment and
retune the decision rule. We use K = 20.

15

Virtual capacities based on a naive computation (VCN) In this benchmark strategy, the airline
sets virtual capacities on the flight legs by assuming that the no shows take on their expected values.
Following this, the airline makes the capacity allocation decisions under the assumption that all of the
reservations show up, but the capacities on the flight legs are equal to the virtual capacities. In other
words, noting that a reservation shows up at the departure time with probability q, the airline sets the
virtual capacity on flight leg i as ui = bci/qc and solves a version of the deterministic linear program in
(7)-(11), which can be stated as

max
∑

j∈J
fj zj (37)

subject to
∑

j∈J
aij zj ≤ ui i ∈ L (38)

zj ≤
∑

t∈T
pjt j ∈ J (39)

zj ≥ 0 j ∈ J . (40)

Letting {λ∗i : i ∈ L} be the optimal values of the dual variables associated with the first set of constraints
above, VCN uses the DLP policy in (12). Similar to DLP and FDD, we use a reoptimized version of
VCN with 20 reoptimizations.

Virtual capacities based on an economic model (VCE) One criticism for VCN is that it chooses
the virtual capacities under the assumption that the no shows take on their expected values. However,
depending on the tradeoffs between the fares, penalty costs and show up probabilities, we may want to
be more or less aggressive than what the expected values of the no shows suggest. The goal of VCE
is to make up for this shortcoming. VCE is proposed in Karaesmen and van Ryzin (2004a) and it is
based on the following three assumptions. First, the revenue that we make from one unit of capacity
on a flight leg is known. We let ri be the revenue that we make from one unit of capacity on flight
leg i. Second, if a reservation uses the capacities on multiple flight legs, then we can allow boarding
to this reservation on one flight leg, while denying boarding to the same reservation on another flight
leg. Furthermore, the penalty cost of denying boarding to a reservation on a flight leg is known. We let
gi be the penalty cost of denying boarding to a reservation on flight leg i. Third, if the airline sets the
virtual capacity on flight leg i as ui, then it sells exactly ui reservations on flight leg i.

By the third assumption, if we set the virtual capacity on flight leg i as ui, then we sell ui reservations
on flight leg i, in which case, the first assumption implies that we generate a revenue of ri ui. On the
other hand, if we let Bi(ui) be a binomially distributed random variable with parameters (ui, q), then the
number of reservations that show up at the departure time is given by Bi(ui) and the second assumption
implies that the expected penalty cost that we incur on flight leg i is gi E{max{Bi(ui)−ci, 0}}. Therefore,
VCE solves the problem maxui ri ui − gi E{max{Bi(ui)− ci, 0}} to set the virtual capacity on flight leg
i. Once the virtual capacities have been set, VCE proceeds in the same way as VCN.

Karaesmen and van Ryzin (2004a) suggest several choices for ri and gi. Following their work, we
let Rj = fj/

∑
l∈L alj and Gj = θj/

∑
l∈L alj for all j ∈ J to evenly distribute the revenue and penalty

cost associated with an itinerary over the flight legs that it uses. In this case, we try choosing ri as

16

ri =
∑

j∈J i Rj/|J i| or ri = max{Rj : j ∈ J i} or ri = min{Rj : j ∈ J i}, and gi as gi =
∑

j∈J i Gj/|J i|
or gi = max{Gj : j ∈ J i} or gi = min{Gj : j ∈ J i}. Using all combinations of these choices, we have
nine different choices for ri and gi. We test the performances of all of these nine choices for all of our
test problems, but for brevity, only report the results corresponding to the best choice. For different
test problems, the best choice for ri and gi can be different. Similar to VCN, we use a reoptimized
version of VCE with 20 reoptimizations.

Virtual capacities joint with capacity allocation decisions (VCJ) Both VCN and VCE use
the assumption that we can set the virtual capacities first, and then, come up with a policy to accept
or reject the itinerary requests. In contrast, VCJ uses the penalty cost gi E{max{Bi(ui) − ci, 0}} in
problem (37)-(40) to jointly set the virtual capacities and come up with a policy to accept or reject the
itinerary requests. In particular, VCJ solves the problem

max
∑

j∈J
fj zj −

∑

i∈L
gi E{max{Bi(ui)− ci, 0}}

subject to
∑

j∈J
aij zj − ui ≤ 0 i ∈ L

zj ≤
∑

t∈T
pjt j ∈ J

zj , ui ≥ 0 i ∈ L, j ∈ J ,

where we use interpolations of the function E{max{Bi(ui) − ci, 0}} to be able to compute it at a
fractional ui. Letting {λ∗i : i ∈ L} be the optimal values of the dual variables associated with the first
set of constraints above, VCJ uses the DLP policy in (12). This approach is proposed in Karaesmen
and van Ryzin (2004a). Similar to VCE, we try three different choices for gi and report the results
corresponding to the best choice. We use a reoptimized version of VCJ with 20 reoptimizations.

Separable penalty costs (SPC) This benchmark strategy is developed by Erdelyi and Topaloglu
(2009). The fundamental observation behind SPC is that if the penalty cost of denying boarding to
the reservations were given by a separable function of the form Γ(S(x0)) =

∑
j∈J γj(Sj(xj0)), then

the optimality equation in (5) would decompose by the itineraries. To exploit this observation, SPC
approximates Γ(S(x0)) in problem (1)-(4) with a separable function of the form

∑
j∈J γj(Sj(xj0))

and solves the optimality equation in (5) with the approximate boundary condition that V0(x0) =
−E{∑j∈J γj(Sj(xj0))}. The value functions {Vt(·) : t ∈ T } obtained in this fashion are used to
construct a policy to accept or reject the itinerary requests. SPC uses a simulation based method to
construct the separable approximation

∑
j∈J γj(Sj(xj0)) to the penalty cost. Roughly speaking, we

simulate the DLP policy in (12) to have a general idea about the numbers of reservations that show up
at the departure time. Following this, we compute the slopes of Γ(·) at these numbers of reservations
along different directions and use these slopes to construct the scalar functions {γj(·) : j ∈ J }. An
exact description of this benchmark strategy is beyond the scope of our paper and we refer the reader
to Erdelyi and Topaloglu (2009) for the details. Similar to the other benchmark strategies, we retune
the separable approximation five times over the planning horizon. It turns out that retuning SPC more
than five times does not provide any additional benefit.

17

5.3 Computational Results

Our main computational results are summarized in Tables 1 and 2. In particular, these two tables
respectively show the results for the test problems with four and eight spokes. The first column in
Tables 1 and 2 gives the characteristics of the test problem. The second column gives the upper bound
on the optimal total expected profit provided by the optimal objective value of problem (7)-(11). The
next seven columns give the total expected profits obtained by DPD, DLP, FDD, VCN, VCE, VCJ and
SPC. These total expected profits are estimated by simulating the performances of the different policies
under 50 itinerary request trajectories. We use common itinerary request trajectories when simulating
the performances of the different policies. The tenth column gives the percent gap between the total
expected profits obtained by DPD and DLP. This column also includes a “X” whenever DPD performs
significantly better than DLP and a “ ¯” whenever there is no statistically significant performance gap
between the two methods at 95% level. The last five columns do the same thing as the tenth column,
but they compare the performance of DPD with FDD, VCN, VCE, VCJ and SPC.

The results indicate that DPD performs substantially better than all of the benchmark strategies
that use a linear programming formulation. Among the linear programming based benchmark strategies,
FDD performs the best and it is followed by VCJ, DLP, VCE and VCN. The superiority of FDD over
DLP is also observed by Bertsimas and Popescu (2003). The performance gaps between DPD and
DLP, FDD, VCN, VCE and VCJ are statistically significant for all of the test problems. The average
performance gaps between DPD and DLP, FDD, VCN, VCE and VCJ are respectively 4.09, 2.85 6.82,
4.76 and 2.82 for the test problems with four spokes. The same gaps increase to 5.39, 2.87, 8.18, 6.08
and 3.53 for the test problems with eight spokes. Among the three benchmark strategies that use virtual
capacities, VCJ performs better than VCN and VCE. It is interesting to note that VCJ performs better
than DLP as well. There are test problems where VCN performs better than DLP, despite the fact
that VCN is essentially an ad hoc modification of DLP that does not carefully address the possibility
of no shows. However, the performance of VCN is not robust as indicated by the test problems with
(δ, σ) = (4, 0). There is not a clear distinction between DLP and VCE, but there are test problems
where VCE can perform substantially worse than DLP.

The performance gap between DPD and SPC is on the order of half a percent to a percent. We
emphasize that a percent revenue difference is still considered significant in the revenue management
setting. On a majority of the test problems, DPD performs better than SPC and in the remaining
test problems, there does not exist a statistically significant gap between the two benchmark strategies.
Similar to DPD, SPC performs noticeably better than all of the benchmark strategies that use a linear
programming formulation. Therefore, DPD and SPC, by working with the dynamic programming
formulation of the capacity allocation and overbooking problem, provide significant improvements over
using a deterministic linear programming formulation, which ignores the temporal dynamics of the
arrivals of the itinerary requests.

It is possible to observe a few trends in the performance gaps. In particular, the performance gaps
between DPD and the linear programming based benchmark strategies tend to increase as the fare
difference between the high fare and low fare itineraries, penalty costs and overall tightness of the

18

leg capacities increase. For test problems with large fare differences, large penalty costs and tight leg
capacities, the “regret” associated with making an “incorrect” decision is relatively large. For example,
when the fare difference between the high fare and low fare itineraries is large, accepting a request for
a low fare itinerary “incorrectly” may preclude accepting a request for a high fare itinerary later in the
planning horizon and the revenue forgone in this case can be quite large. Similarly, when the penalty
costs are large, it is costly to deny boarding to a reservation that was accepted “by mistake.” When the
leg capacities are tight, it is important to make the itinerary acceptance decisions more “carefully,” as it
is not possible to accommodate all itinerary requests. Thus, it is encouraging that a careful stochastic
model pays off and DPD performs significantly better than the linear programming based benchmark
strategies as the fare differences, penalty costs and tightness of the leg capacities increase. To display
some of these trends, Table 3 shows the performance gaps between DPD and the other benchmark
strategies averaged over a number of test problems with a particular characteristic. For example, the
second column shows the performance gaps averaged over the test problems with four spokes. The
trends that we mention can be observed from this table.

Table 4 shows the CPU seconds required to compute one set of value function approximations for
DPD and SPC. All of the computational experiments are run on a Pentium IV desktop PC with 2.4
GHz CPU and 1 GB RAM. Since the number of spokes appears to be the primary factor affecting
the computation times, we give the average CPU seconds over different test problems. The two rows
in Table 4 show the CPU seconds for DPD and SPC. The second and third columns respectively
correspond to the test problems with four and eight spokes. The CPU seconds for DPD includes the
operations required to estimate {αi

j : i ∈ L, j ∈ J } and to compute {vi
t(·) : i ∈ L, t ∈ T }. The results

indicate that DPD takes significantly less time than SPC and scales more favorably. Considering its
performance, DPD appears to be preferable to SPC. DLP, FDD, VCN, VCE and VCJ take at most a few
seconds to reoptimize their decision rules. Despite this extra computational burden, the computational
requirement for DPD is still reasonable. Given the substantial improvements that it provides over the
other benchmark strategies, DPD appears to be a viable choice.

6 Conclusions

In this paper, we developed a network revenue management model to jointly make the capacity allocation
and overbooking decisions over an airline network. Our approach is based on decomposing the network
revenue management problem into a sequence of single leg revenue management problems and exploiting
the observation that if the proportions of the reservations at the departure time were known, then the
dynamic programming formulation of the single leg revenue management problems would involve only
a scalar state variable. Using these observations, we constructed tractable approximations to the value
functions. Computational experiments demonstrated that the resulting policies perform significantly
better than the benchmark strategies.

19

Acknowledgements

The authors thank two anonymous referees for their useful comments that especially strengthened the
exposition and computational results. This work was supported in part by National Science Foundation
grants DMI-0422133 and CMMI-0758441.

References

Adelman, D. (2007), ‘Dynamic bid-prices in revenue management’, Operations Research 55(4), 647–661.

Beckmann, M. J. (1958), ‘Decision and team problems in airline reservations’, Econometrica 26(1), 134–
145.

Belobaba, P. P. (1987), Air Travel Demand and Airline Seat Inventory Control, PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA.

Bertsimas, D. and Popescu, I. (2003), ‘Revenue management in a dynamic network environment’, Trans-
portation Science 37, 257–277.

Bront, J. J. M., Mendez-Diaz, I. and Vulcano, G. (2008), ‘A column generation algorithm for choice-
based network revenue management’, Operations Research (to appear).

Chatwin, R. E. (1992), ‘Multiperiod airline overbooking with a single fare class’, Operations Research
46(6), 805–819.

Chatwin, R. E. (1999), ‘Continuous-time airline overbooking with time-dependent fares and refunds’,
Transportation Science 33(2), 182–191.

Coughlan, J. (1999), ‘Airline overbooking in the multi-class case’, The Journal of the Operational
Research Society 50(11), 1098–1103.

Erdelyi, A. and Topaloglu, H. (2009), ‘Separable approximations for joint capacity control and over-
booking decisions in network revenue management’, Journal of Revenue and Pricing Management
8(1), 3–20.

Gallego, G. and van Ryzin, G. (1997), ‘A multiproduct dynamic pricing problem and its applications
to yield management’, Operations Research 45(1), 24–41.

Karaesmen, I. and van Ryzin, G. (2004a), Coordinating overbooking and capacity control decisions on
a network, Technical report, Columbia Business School.

Karaesmen, I. and van Ryzin, G. (2004b), ‘Overbooking with substitutable inventory classes’, Operations
Research 52(1), 83–104.

Kleywegt, A. J. (2001), An optimal control problem of dynamic pricing, Technical report, School of
Industrial and Systems Engineering, Georgia Institute of Technology.

Kunnumkal, S. and Topaloglu, H. (2007), A new dynamic programming decomposition method for
the network revenue management problem with customer choice behavior, Technical report, Cornell
University, School of Operations Research and Information Engineering.
Available at http://legacy.orie.cornell.edu/∼huseyin/publications/publications.html.

Liu, Q. and van Ryzin, G. (2008), ‘On the choice-based linear programming model for network revenue
management’, Manufacturing & Service Operations Management 10(2), 288–310.

Meissner, J. and Strauss, A. K. (2008), Network revenue management with inventory-sensitive bid
prices and customer choice, Technical report, Lancaster University Management School, Department
of Management Science,.

Subramanian, J., Stidham, S. and Lautenbacher, C. J. (1999), ‘Airline yield management with over-
booking, cancellations and no-shows’, Transportation Science 33(2), 147–167.

20

Talluri, K. T. and van Ryzin, G. J. (2004), The Theory and Practice of Revenue Management, Kluwer
Academic Publishers.

Talluri, K. and van Ryzin, G. (1998), ‘An analysis of bid-price controls for network revenue management’,
Management Science 44(11), 1577–1593.

Thompson, H. R. (1961), ‘Statistical problems in airline reservation control’, Journal of the Operational
Research Society 12(3), 167–185.

Topaloglu, H. (2006), ‘Using Lagrangian relaxation to compute capacity-dependent bid-prices in network
revenue management’, Operations Research (to appear).

Williamson, E. L. (1992), Airline Network Seat Control, PhD thesis, Massachusetts Institute of Tech-
nology, Cambridge, MA.

Zhang, D. and Adelman, D. (2006), An approximate dynamic programming approach to network revenue
management with customer choice, Technical report, University of Chicago, Graduate School of
Business.

21

P
ro

b
le

m
P

ro
fi
t

T
o
ta

l
ex

p
ec

te
d

p
ro

fi
t

o
b
ta

in
ed

b
y

D
P

D
v
s.

(N
,κ

,δ
,σ

,q
,ρ

)
b
o
u
n
d

D
P

D
D

L
P

F
D

D
V

C
N

V
C

E
V

C
J

S
P

C
D

L
P

F
D

D
V

C
N

V
C

E
V

C
J

S
P

C

(4
,4

,4
,0

,0
.9

0
,1

.2
)

1
5
,2

2
3

1
4
,5

7
5

1
4
,2

8
3

1
4
,3

8
6

1
3
,6

7
1

1
4
,1

5
8

1
4
,3

5
9

1
4
,4

4
2

2
.0

0
X

1
.3

0
X

6
.2

1
X

2
.8

7
X

1
.4

8
X

0
.9

1
X

(4
,4

,4
,0

,0
.9

0
,1

.6
)

2
0
,9

9
7

1
9
,6

1
8

1
9
,0

8
5

1
9
,3

9
5

1
8
,1

6
4

1
8
,7

1
6

1
9
,2

3
7

1
9
,5

0
6

2
.7

2
X

1
.1

4
X

7
.4

1
X

4
.6

0
X

1
.9

4
X

0
.5

7
X

(4
,4

,4
,0

,0
.9

5
,1

.2
)

2
3
,4

5
0

2
2
,1

0
8

2
1
,9

6
2

2
1
,9

9
8

2
1
,5

1
0

2
1
,7

3
4

2
1
,9

0
4

2
2
,0

6
2

0
.6

6
X

0
.5

0
X

2
.7

1
X

1
.6

9
X

0
.9

2
X

0
.2

1
¯

(4
,4

,4
,0

,0
.9

5
,1

.6
)

2
1
,7

5
3

2
0
,6

4
7

2
0
,2

0
8

2
0
,3

7
3

1
9
,6

4
5

1
9
,8

7
3

2
0
,0

8
8

2
0
,5

3
2

2
.1

3
X

1
.3

3
X

4
.8

5
X

3
.7

5
X

2
.7

1
X

0
.5

6
X

(4
,4

,8
,0

,0
.9

0
,1

.2
)

2
3
,1

3
6

2
1
,6

7
2

2
1
,0

1
4

2
1
,1

4
4

2
0
,6

9
5

2
1
,1

0
3

2
1
,3

5
9

2
1
,4

8
7

3
.0

3
X

2
.4

3
X

4
.5

0
X

2
.6

2
X

1
.4

4
X

0
.8

5
X

(4
,4

,8
,0

,0
.9

0
,1

.6
)

1
2
,1

7
7

1
1
,1

5
7

1
0
,3

2
6

1
0
,6

2
0

1
0
,3

5
0

1
0
,6

4
9

1
0
,7

4
1

1
1
,0

4
7

7
.4

5
X

4
.8

1
X

7
.2

4
X

4
.5

5
X

3
.7

3
X

0
.9

9
X

(4
,4

,8
,0

,0
.9

5
,1

.2
)

1
9
,2

0
6

1
7
,8

8
3

1
7
,2

8
5

1
7
,4

9
1

1
7
,2

9
1

1
7
,4

3
1

1
7
,5

8
2

1
7
,8

3
8

3
.3

5
X

2
.1

9
X

3
.3

1
X

2
.5

3
X

1
.6

8
X

0
.2

5
¯

(4
,4

,8
,0

,0
.9

5
,1

.6
)

1
5
,9

9
5

1
4
,8

0
8

1
4
,0

5
9

1
4
,3

1
6

1
3
,9

9
9

1
4
,1

1
9

1
4
,1

9
8

1
4
,5

2
6

5
.0

6
X

3
.3

2
X

5
.4

6
X

4
.6

6
X

4
.1

2
X

1
.9

0
X

(4
,4

,1
,1

,0
.9

0
,1

.2
)

1
8
,4

1
8

1
6
,9

7
0

1
6
,3

6
2

1
6
,5

2
9

1
6
,2

4
1

1
6
,5

4
3

1
6
,6

6
7

1
6
,8

9
4

3
.5

8
X

2
.6

0
X

4
.3

0
X

2
.5

2
X

1
.7

9
X

0
.4

5
¯

(4
,4

,1
,1

,0
.9

0
,1

.6
)

1
0
,6

2
6

9
,8

1
3

9
,1

5
9

9
,3

7
2

9
,2

0
9

9
,4

3
2

9
,5

0
6

9
,7

2
7

6
.6

6
X

4
.5

0
X

6
.1

6
X

3
.8

9
X

3
.1

3
X

0
.8

8
X

(4
,4

,1
,1

,0
.9

5
,1

.2
)

1
9
,7

8
2

1
8
,5

3
8

1
7
,7

9
7

1
7
,9

6
8

1
7
,7

3
1

1
7
,8

9
7

1
8
,0

8
7

1
8
,3

3
2

4
.0

0
X

3
.0

8
X

4
.3

5
X

3
.4

6
X

2
.4

3
X

1
.1

1
X

(4
,4

,1
,1

,0
.9

5
,1

.6
)

1
7
,3

4
5

1
6
,0

7
2

1
5
,2

6
4

1
5
,5

2
2

1
5
,2

1
0

1
5
,4

0
8

1
5
,6

2
7

1
6
,0

1
9

5
.0

3
X

3
.4

2
X

5
.3

6
X

4
.1

3
X

2
.7

7
X

0
.3

3
¯

(4
,8

,4
,0

,0
.9

0
,1

.2
)

3
0
,7

5
4

2
9
,5

1
4

2
9
,2

8
6

2
9
,3

2
9

2
6
,9

1
1

2
8
,0

6
5

2
9
,2

1
7

2
9
,4

4
5

0
.7

7
X

0
.6

3
X

8
.8

2
X

4
.9

1
X

1
.0

1
X

0
.2

3
X

(4
,8

,4
,0

,0
.9

0
,1

.6
)

3
1
,7

4
4

3
0
,8

4
1

3
0
,3

2
4

3
0
,4

8
3

2
7
,2

0
4

2
8
,5

4
8

3
0
,1

8
7

3
0
,6

7
9

1
.6

8
X

1
.1

6
X

1
1
.7

9
X

7
.4

3
X

2
.1

2
X

0
.5

2
X

(4
,8

,4
,0

,0
.9

5
,1

.2
)

2
8
,9

8
3

2
7
,6

7
6

2
7
,3

8
6

2
7
,4

4
5

2
5
,8

5
4

2
6
,2

0
1

2
7
,1

6
0

2
7
,5

3
3

1
.0

5
X

0
.8

3
X

6
.5

8
X

5
.3

3
X

1
.8

6
X

0
.5

1
X

(4
,8

,4
,0

,0
.9

5
,1

.6
)

2
3
,9

9
5

2
2
,9

8
3

2
2
,7

2
0

2
2
,8

2
5

2
1
,2

0
0

2
1
,6

1
6

2
2
,3

2
2

2
2
,9

0
1

1
.1

4
X

0
.6

9
X

7
.7

6
X

5
.9

5
X

2
.8

8
X

0
.3

6
X

(4
,8

,8
,0

,0
.9

0
,1

.2
)

2
6
,9

3
2

2
5
,8

8
8

2
5
,1

1
5

2
5
,1

8
2

2
3
,5

0
3

2
4
,3

7
6

2
5
,1

9
8

2
5
,8

2
5

2
.9

8
X

2
.7

2
X

9
.2

1
X

5
.8

4
X

2
.6

6
X

0
.2

4
¯

(4
,8

,8
,0

,0
.9

0
,1

.6
)

3
0
,6

7
0

2
8
,6

1
7

2
7
,3

1
4

2
7
,7

3
1

2
5
,8

5
9

2
6
,7

1
8

2
7
,9

1
0

2
8
,5

2
7

4
.5

5
X

3
.1

0
X

9
.6

4
X

6
.6

4
X

2
.4

7
X

0
.3

1
¯

(4
,8

,8
,0

,0
.9

5
,1

.2
)

3
3
,1

3
6

3
1
,7

8
7

3
1
,1

3
4

3
1
,2

6
7

3
0
,0

5
4

3
0
,5

5
1

3
0
,9

8
9

3
1
,8

1
6

2
.0

5
X

1
.6

4
X

5
.4

5
X

3
.8

9
X

2
.5

1
X

-0
.0

9
¯

(4
,8

,8
,0

,0
.9

5
,1

.6
)

2
7
,9

2
6

2
6
,7

4
7

2
5
,4

5
6

2
5
,7

8
1

2
4
,4

8
2

2
4
,7

1
2

2
4
,9

3
1

2
6
,5

3
3

4
.8

3
X

3
.6

1
X

8
.4

7
X

7
.6

1
X

6
.7

9
X

0
.8

0
X

(4
,8

,1
,1

,0
.9

0
,1

.2
)

2
6
,6

7
3

2
5
,1

8
7

2
3
,0

5
0

2
3
,4

4
6

2
3
,2

3
8

2
4
,0

4
6

2
4
,4

4
6

2
5
,1

1
4

8
.4

8
X

6
.9

2
X

7
.7

4
X

4
.5

3
X

2
.9

4
X

0
.2

9
¯

(4
,8

,1
,1

,0
.9

0
,1

.6
)

3
1
,4

7
0

2
9
,7

3
0

2
7
,2

1
5

2
8
,1

7
8

2
6
,7

4
8

2
7
,7

7
6

2
8
,6

2
3

2
9
,4

9
8

8
.4

6
X

5
.2

2
X

1
0
.0

3
X

6
.5

7
X

3
.7

2
X

0
.7

8
X

(4
,8

,1
,1

,0
.9

5
,1

.2
)

2
1
,9

5
9

2
0
,8

5
8

1
9
,4

1
1

1
9
,8

3
2

1
9
,5

0
6

1
9
,7

9
9

2
0
,0

6
2

2
0
,6

6
8

6
.9

4
X

4
.9

2
X

6
.4

8
X

5
.0

8
X

3
.8

2
X

0
.9

1
X

(4
,8

,1
,1

,0
.9

5
,1

.6
)

2
6
,1

3
8

2
4
,3

4
1

2
2
,0

1
0

2
2
,8

2
5

2
1
,9

5
9

2
2
,1

0
5

2
2
,4

2
3

2
4
,0

4
0

9
.5

8
X

6
.2

3
X

9
.7

9
X

9
.1

9
X

7
.8

8
X

1
.2

4
X

A
v
er

a
g
e

4
.0

9
2
.8

5
6
.8

2
4
.7

6
2
.8

7
0
.6

3

T
ab

le
1:

C
om

pu
ta

ti
on

al
re

su
lt

s
fo

r
th

e
te

st
pr

ob
le

m
s

w
it

h
fo

ur
sp

ok
es

.

22

P
ro

b
le

m
P

ro
fi
t

T
o
ta

l
ex

p
ec

te
d

p
ro

fi
t

o
b
ta

in
ed

b
y

D
P

D
v
s.

(N
,κ

,δ
,σ

,q
,ρ

)
b
o
u
n
d

D
P

D
D

L
P

F
D

D
V

C
N

V
C

E
V

C
J

S
P

C
D

L
P

F
D

D
V

C
N

V
C

E
V

C
J

S
P

C

(8
,4

,4
,0

,0
.9

0
,1

.2
)

2
2
,7

0
6

2
0
,6

7
1

2
0
,3

3
8

2
0
,4

6
3

1
9
,1

1
4

1
9
,7

7
3

2
0
,4

2
8

2
0
,4

2
6

1
.6

1
X

1
.0

0
X

7
.5

3
X

4
.3

4
X

1
.1

7
X

1
.1

8
X

(8
,4

,4
,0

,0
.9

0
,1

.6
)

1
7
,7

1
5

1
5
,9

5
1

1
5
,5

5
5

1
5
,7

8
3

1
4
,4

9
1

1
5
,1

2
4

1
5
,6

4
7

1
5
,8

2
3

2
.4

8
X

1
.0

5
X

9
.1

5
X

5
.1

9
X

1
.9

0
X

0
.8

0
X

(8
,4

,4
,0

,0
.9

5
,1

.2
)

2
1
,8

0
9

1
9
,9

6
0

1
9
,6

4
0

1
9
,7

9
5

1
8
,9

0
3

1
9
,0

9
4

1
9
,5

9
6

1
9
,8

2
9

1
.6

0
X

0
.8

3
X

5
.2

9
X

4
.3

4
X

1
.8

2
X

0
.6

5
X

(8
,4

,4
,0

,0
.9

5
,1

.6
)

1
5
,6

2
5

1
4
,1

1
2

1
3
,7

7
1

1
4
,0

2
5

1
3
,0

5
8

1
3
,0

8
0

1
3
,6

0
6

1
3
,9

8
2

2
.4

1
X

0
.6

1
X

7
.4

7
X

7
.3

1
X

3
.5

9
X

0
.9

2
X

(8
,4

,8
,0

,0
.9

0
,1

.2
)

1
9
,9

6
3

1
7
,7

4
7

1
6
,7

8
3

1
7
,2

2
3

1
6
,5

2
9

1
7
,0

0
6

1
7
,5

1
0

1
7
,6

0
3

5
.4

3
X

2
.9

5
X

6
.8

7
X

4
.1

8
X

1
.3

4
X

0
.8

2
X

(8
,4

,8
,0

,0
.9

0
,1

.6
)

1
3
,8

6
8

1
2
,1

8
9

1
1
,4

0
8

1
1
,7

4
0

1
1
,2

1
1

1
1
,6

4
4

1
1
,8

5
4

1
1
,9

6
1

6
.4

0
X

3
.6

8
X

8
.0

2
X

4
.4

7
X

2
.7

5
X

1
.8

7
X

(8
,4

,8
,0

,0
.9

5
,1

.2
)

2
1
,1

3
4

1
8
,9

5
7

1
8
,2

0
3

1
8
,5

8
9

1
8
,1

1
9

1
8
,2

3
9

1
8
,3

8
2

1
8
,7

4
0

3
.9

8
X

1
.9

5
X

4
.4

2
X

3
.7

9
X

3
.0

4
X

1
.1

5
X

(8
,4

,8
,0

,0
.9

5
,1

.6
)

1
7
,0

5
6

1
4
,6

5
8

1
3
,7

6
8

1
4
,2

5
1

1
3
,9

0
4

1
3
,9

2
0

1
4
,0

4
7

1
4
,4

8
4

6
.0

8
X

2
.7

8
X

5
.1

4
X

5
.0

4
X

4
.1

7
X

1
.1

9
X

(8
,4

,1
,1

,0
.9

0
,1

.2
)

2
0
,0

1
9

1
7
,9

3
2

1
6
,7

8
5

1
7
,2

7
4

1
6
,8

7
8

1
7
,3

2
5

1
7
,5

4
6

1
7
,8

6
7

6
.3

9
X

3
.6

7
X

5
.8

8
X

3
.3

8
X

2
.1

5
X

0
.3

6
¯

(8
,4

,1
,1

,0
.9

0
,1

.6
)

1
5
,7

1
2

1
3
,6

3
8

1
2
,4

8
8

1
3
,0

5
7

1
2
,4

4
0

1
2
,9

0
2

1
3
,1

1
3

1
3
,4

9
8

8
.4

3
X

4
.2

6
X

8
.7

8
X

5
.3

9
X

3
.8

5
X

1
.0

3
X

(8
,4

,1
,1

,0
.9

5
,1

.2
)

1
6
,1

7
9

1
4
,1

4
5

1
3
,4

2
7

1
3
,8

1
6

1
3
,6

3
7

1
3
,8

0
7

1
3
,8

9
1

1
4
,0

9
6

5
.0

8
X

2
.3

2
X

3
.5

9
X

2
.3

9
X

1
.7

9
X

0
.3

5
¯

(8
,4

,1
,1

,0
.9

5
,1

.6
)

1
9
,8

0
3

1
7
,2

5
5

1
6
,1

1
9

1
6
,7

9
2

1
6
,4

3
1

1
6
,4

9
2

1
6
,6

5
5

1
7
,1

7
1

6
.5

8
X

2
.6

8
X

4
.7

8
X

4
.4

2
X

3
.4

8
X

0
.4

9
¯

(8
,8

,4
,0

,0
.9

0
,1

.2
)

3
5
,0

7
5

3
3
,0

2
4

3
2
,7

4
2

3
2
,9

0
5

2
9
,3

7
1

3
0
,8

0
6

3
2
,7

3
9

3
2
,8

7
9

0
.8

5
X

0
.3

6
X

1
1
.0

6
X

6
.7

1
X

0
.8

6
X

0
.4

4
X

(8
,8

,4
,0

,0
.9

0
,1

.6
)

2
4
,1

0
5

2
2
,5

2
8

2
2
,1

2
0

2
2
,2

8
5

1
9
,6

0
9

2
0
,4

4
8

2
2
,0

5
4

2
2
,3

3
6

1
.8

1
X

1
.0

8
X

1
2
.9

6
X

9
.2

3
X

2
.1

0
X

0
.8

5
X

(8
,8

,4
,0

,0
.9

5
,1

.2
)

3
3
,8

7
2

3
2
,0

5
2

3
1
,8

3
2

3
1
,9

5
4

2
9
,4

8
6

2
9
,9

5
8

3
1
,4

0
1

3
1
,8

0
8

0
.6

9
X

0
.3

0
X

8
.0

0
X

6
.5

3
X

2
.0

3
X

0
.7

6
X

(8
,8

,4
,0

,0
.9

5
,1

.6
)

2
5
,9

2
0

2
4
,2

5
4

2
3
,8

4
4

2
4
,0

5
6

2
2
,1

4
2

2
2
,2

5
6

2
3
,4

0
3

2
4
,0

6
9

1
.6

9
X

0
.8

2
X

8
.7

1
X

8
.2

4
X

3
.5

1
X

0
.7

6
X

(8
,8

,8
,0

,0
.9

0
,1

.2
)

3
1
,8

3
1

2
9
,3

7
7

2
8
,2

2
8

2
8
,6

8
0

2
6
,4

3
2

2
7
,5

6
4

2
8
,6

6
7

2
9
,0

4
6

3
.9

1
X

2
.3

7
X

1
0
.0

3
X

6
.1

7
X

2
.4

2
X

1
.1

3
X

(8
,8

,8
,0

,0
.9

0
,1

.6
)

3
7
,7

6
9

3
4
,1

1
6

3
2
,2

2
5

3
3
,1

4
9

2
9
,7

3
2

3
1
,1

7
6

3
2
,7

8
2

3
3
,9

5
5

5
.5

4
X

2
.8

4
X

1
2
.8

5
X

8
.6

2
X

3
.9

1
X

0
.4

7
¯

(8
,8

,8
,0

,0
.9

5
,1

.2
)

2
8
,6

9
5

2
6
,5

4
0

2
5
,5

4
9

2
5
,9

8
4

2
4
,6

6
1

2
4
,8

6
0

2
5
,3

2
7

2
6
,2

4
5

3
.7

4
X

2
.0

9
X

7
.0

8
X

6
.3

3
X

4
.5

7
X

1
.1

1
X

(8
,8

,8
,0

,0
.9

5
,1

.6
)

3
2
,8

4
0

3
0
,0

9
2

2
8
,5

8
5

2
9
,2

9
2

2
7
,7

0
6

2
7
,7

0
3

2
8
,1

1
9

2
9
,8

0
4

5
.0

1
X

2
.6

6
X

7
.9

3
X

7
.9

4
X

6
.5

6
X

0
.9

6
X

(8
,8

,1
,1

,0
.9

0
,1

.2
)

2
9
,3

9
4

2
6
,8

3
2

2
3
,6

0
1

2
4
,8

4
0

2
4
,4

4
2

2
5
,2

6
6

2
5
,6

8
1

2
6
,6

6
0

1
2
.0

4
X

7
.4

2
X

8
.9

0
X

5
.8

4
X

4
.2

9
X

0
.6

4
X

(8
,8

,1
,1

,0
.9

0
,1

.6
)

2
8
,4

3
3

2
5
,8

6
3

2
2
,1

0
4

2
3
,6

8
8

2
2
,4

6
4

2
3
,7

4
1

2
4
,1

2
9

2
5
,5

3
4

1
4
.5

3
X

8
.4

1
X

1
3
.1

4
X

8
.2

0
X

6
.7

1
X

1
.2

7
X

(8
,8

,1
,1

,0
.9

5
,1

.2
)

2
6
,8

8
4

2
4
,6

4
7

2
2
,1

6
2

2
3
,1

9
0

2
2
,7

4
3

2
2
,8

8
6

2
3
,0

9
6

2
4
,3

9
6

1
0
.0

9
X

5
.9

1
X

7
.7

3
X

7
.1

5
X

6
.2

9
X

1
.0

2
X

(8
,8

,1
,1

,0
.9

5
,1

.6
)

2
8
,2

2
8

2
5
,9

1
9

2
2
,5

5
9

2
4
,1

2
3

2
3
,0

5
1

2
3
,1

1
7

2
3
,2

4
4

2
5
,7

0
1

1
2
.9

6
X

6
.9

3
X

1
1
.0

6
X

1
0
.8

1
X

1
0
.3

2
X

0
.8

4
X

A
v
er

a
g
e

5
.3

9
2
.8

7
8
.1

8
6
.0

8
3
.5

3
0
.8

8

T
ab

le
2:

C
om

pu
ta

ti
on

al
re

su
lt

s
fo

r
th

e
te

st
pr

ob
le

m
s

w
it

h
ei

gh
t

sp
ok

es
.

23

Benchmark N κ (δ, σ) ρ
strategies 4 8 4 8 (4,0) (8,0) (1,1) 1.2 1.6

DPD vs. DLP 4.09 5.39 4.26 5.22 1.58 4.59 8.05 3.93 5.55
DPD vs. FDD 2.85 2.87 2.43 3.29 0.85 2.82 4.91 2.54 3.18
DPD vs. VCN 6.82 8.18 5.78 9.22 7.89 7.23 7.38 6.50 8.50
DPD vs. VCE 4.76 6.08 3.98 6.86 5.53 5.30 5.43 4.43 6.41
DPD vs. VCJ 2.87 3.53 2.47 3.93 1.99 3.38 4.21 2.53 4.05
DPD vs. SPC 0.63 0.88 0.83 0.68 0.64 0.87 0.75 0.65 0.86

Table 3: Comparison of the performances of DPD and the other benchmark strategies for different sets
of test problems.

Benchmark N
strategy 4 8

DPD 48 76
SPC 118 220

Table 4: CPU seconds for DPD and SPC.

24

A Appendix: Optimal Objective Value of Problem (22)-(25)

Letting 1(·) be the indicator function and noting constraints (24), the optimal values of the decision
variables {wj : j ∈ J \ J i} are {1(Θi

j ≤ 0) qj zj : j ∈ J \ J i}. Therefore, letting [·]+ = max{·, 0},
problem (22)-(25) can be written as

max
∑

j∈J\J i

[
F i

j + [−Θi
j]

+ qj

]
zj

subject to zj ≤
∑

t∈T
pjt j ∈ J \ J i

zj ≥ 0 j ∈ J \ J i.

In the problem above, the optimal values of the decision variables {zj : j ∈ J \ J i} are {1([F i
j +

[−Θi
j]

+ qj] ≥ 0)
∑

t∈T pjt : j ∈ J \ J i}. Therefore, the optimal objective value of the problem above is
∑

t∈T

∑

j∈J\J i

[
F i

j + [−Θi
j]

+ qj

]+
pjt =

∑

t∈T

∑

j∈J\J i

max{F i
j , F

i
j − qj Θi

j , 0} pjt.

B Appendix: Proof of Proposition 2

To simplify the proof, we introduce auxiliary value functions {ψi
t(·) : i ∈ L, t ∈ T } by letting

ψi
t(xt) =

∑

j∈J
pjt max{F i

j + ψi
t−1(xt + ej), ψi

t−1(xt)}+
[
1−

∑

j∈J
pjt

]
ψi

t−1(xt) (41)

with the boundary condition that ψi
0(x0) = −E{φi(S(x0))}, where

φi(S(x0)) = min
∑

j∈J
Θi

j wj (42)

subject to
∑

j∈J
aij [Sj(xj0)− wj] ≤ ci (43)

wj ≤ Sj(xj0) j ∈ J (44)

wj ∈ Z+ j ∈ J . (45)

The following two results provide the intermediate steps to prove Proposition 2.

Lemma 3 For all t ∈ T , we have

ψi
t(xt) = V i

t (Ri(xt)) +
∑

j∈J\J i

qj [−Θi
j]

+ xjt +
t∑

s=1

∑

j∈J\J i

pjs max{F i
j , F

i
j − qj Θi

j , 0}.

Proof of Lemma 3 We show the result by induction over the time periods. Noting the upper bounds
on the decision variables {wj : j ∈ J \ J i} in problem (42)-(45), the optimal values of these decision
variables are {1(Θi

j ≤ 0)Sj(xj0) : j ∈ J \ J i}. Thus, since we have aij = 0 for all j ∈ J \ J i, we have

φi(S(x0)) = Γi(Ri(S(x0)))−
∑

j∈J\J i

[−Θi
j]

+ Sj(xj0),

25

where Γi(Ri(S(x0))) is the optimal objective value of problem (28)-(31). Taking expectations in
the expression above and noting that Sj(xj0) has a binomial distribution with parameters (xj0, qj),
we obtain ψi

0(x0) = −E{φi(S(x0))} = −E{Γi(Ri(S(x0)))} +
∑

j∈J\J i qj [−Θi
j]

+xj0 = V i
0 (Ri(x0)) +∑

j∈J\J i qj [−Θi
j]

+xj0 and the result holds for the last time period. Assuming that the result holds for
time period t− 1, we have

ψi
t−1(xt + ej)− ψi

t−1(xt) =

{
V i

t−1(Ri(xt + ej))− V i
t−1(Ri(xt)) if j ∈ J i

qj [−Θi
j]

+ if j ∈ J \ J i.
(46)

Therefore, we have

ψi
t(xt) =

∑

j∈J
pjt max{F i

j + ψi
t−1(xt + ej)− ψi

t−1(xt), 0}+ ψi
t−1(xt)

=
∑

j∈J i

pjt max{F i
j + V i

t−1(Ri(xt + ej))− V i
t−1(Ri(xt)), 0}

+
∑

j∈J\J i

pjt max{F i
j + qj [−Θi

j]
+, 0}+ V i

t−1(Ri(xt))

+
∑

j∈J\J i

qj [−Θi
j]

+ xjt +
t−1∑

s=1

∑

j∈J\J i

pjs max{F i
j , F

i
j − qj Θi

j , 0},

where the first equality follows from (41) and the second equality follows from (46) and the induction
assumption. Since max{F i

j + qj [−Θi
j]

+, 0} = max{F i
j , F

i
j − qj Θi

j , 0}, the result follows by collecting the
terms on the right side of the expression above and noting the definition of V i

t (Ri(xt)) in (27). 2

Lemma 4 For all t ∈ T , we have

Vt(xt) ≤ ψi
t(xt)−

∑

j∈J
qj Λi

j xjt +
∑

l∈L\{i}
λ∗l cl.

Proof of Lemma 4 We show the result by induction over the time periods. We let {w∗j : j ∈ J } be
the optimal solution to problem (1)-(4). We have

Γ(S(x0)) =
∑

j∈J
θj w∗j ≥

∑

j∈J
θj w∗j +

∑

l∈L\{i}
λ∗l

{ ∑

j∈J
alj [Sj(xj0)− w∗j]− cl

}

=
∑

j∈J
Θi

j w∗j +
∑

j∈J
Λi

j Sj(xj0)−
∑

l∈L\{i}
λ∗l cl

≥ φi(S(x0)) +
∑

j∈J
Λi

j Sj(xj0)−
∑

l∈L\{i}
λ∗l cl, (47)

where the first inequality follows from the fact that the solution {w∗j : j ∈ J } satisfies constraints (2)
and λ∗l ≥ 0 for all l ∈ L \ {i}, the second equality follows from (13) and the second inequality follows
from the fact that {w∗j : j ∈ J } is a feasible but not necessarily an optimal solution to problem (42)-(45).
Taking expectations in the expression above, we obtain V0(x0) = −E{Γ(S(x0))} ≤ −E{φi(S(x0))} −∑

j∈J qj Λi
j xj0 +

∑
l∈L\{i} λ∗l cl = ψi

0(x0) −
∑

j∈J qj Λi
j xj0 +

∑
l∈L\{i} λ∗l cl and the result holds for

26

the last time period. Assuming that the result holds for time period t − 1, the induction assumption
immediately implies that

max{fj + Vt−1(xt + ej), Vt−1(xt)} ≤ max{fj + ψi
t−1(xt + ej)− qj Λi

j , ψ
i
t−1(xt)}

−
∑

j∈J
qj Λi

j xjt +
∑

l∈L\{i}
λ∗l cl.

Recalling that F i
j = fj − qj Λi

j , one can combine the inequality above with (5) and (41) to obtain the
result for time period t. 2

We are now ready to finalize the proof of Proposition 2. Lemmas 3 and Lemma 4 imply that

Vt(xt) ≤ V i
t (Ri(xt)) +

∑

j∈J\J i

qj [−Θi
j]

+ xjt −
∑

j∈J
qj Λi

j xjt

+
∑

j∈J\J i

t∑

s=1

pjs max{F i
j , F

i
j − qj Θi

j , 0}+
∑

l∈L\{i}
λ∗l cl.

The result follows by noting that the sum of the second and third terms on the right side of the expression
above can be written as

∑

j∈J\J i

qj [−Θi
j]

+ xjt −
∑

j∈J
qj Λi

j xjt =
∑

j∈J\J i

qj max{−θj + Λi
j , 0}xjt −

∑

j∈J\J i

qj Λi
j xjt −

∑

j∈J i

qj Λi
j xjt

= −
∑

j∈J\J i

qj min{θj ,Λi
j}xjt −

∑

j∈J i

qj Λi
j xjt

= −
∑

j∈J\J i

min
{

qj θj , qj

∑

l∈L
alj λ∗l

}
xjt −

∑

j∈J i

qj Λi
j xjt,

where the last equality follows from the fact that Λi
j =

∑
l∈L\{i} alj λ∗l and aij = 0 whenever j ∈ J \J i.

C Appendix: Description of the Data Files

The data files that we use in our computational experiments are provided as an online supplement.
The goal of this section is to describe the format of the data files. All of our data files are labeled as
rm A B C.C D.D E.E F.F.txt, where A corresponds to the number of spokes in the airline network, B
corresponds to the fare difference between a high fare and its corresponding low fare itinerary, C.C and
D.D correspond to the parameters that we use to compute the penalty cost, E.E corresponds to the
probability that a reservation shows up at the departure time and F.F corresponds to the ratio of the
total expected demand to the total expected capacity. In other words, following the notation in Section
5.1, A, B, (C.C, D.D), EE and F.F respectively correspond to N , κ, (δ, σ), q and ρ.

In all of our data sets, we assume that we serve N spokes out of a single hub. Location 0 corresponds
to the hub and locations {1, . . . , N} correspond to the spokes. The itineraries that connect the hub to
a spoke or a spoke to the hub include one flight leg. The itineraries that connect two spokes include
two flight legs, one from the origin spoke to the hub and one from the hub to the destination spoke.

27

Table 5 shows the organization of the data file for a test problem with τ = 3 and N = 2. The
character “#” indicates a comment line and such lines are skipped. The entries in the five portions
of the data file have the following interpretations. The first portion of the data file shows the number
of time periods in the planning horizon. The second portion of the data file shows the flight legs in
the airline network. The first line in this portion shows the number of flight legs. After this first line,
each line corresponds to one flight leg and shows the origin location, destination location and capacity
of the flight leg. The third portion of the data file shows the itineraries. The first line in this portion
shows the number of itineraries. After this first line, each line corresponds to one itinerary and shows
the origin location, destination location, fare level, revenue and penalty cost for the itinerary. Fare
level 0 indicates a low fare itinerary and fare level 1 indicates a high fare itinerary. We emphasize that
the itineraries that connect two spokes include two flight legs, one from the origin spoke to the hub
and one from the hub to the destination spoke. The fourth portion of the data file shows the arrival
probabilities for the requests for different itineraries. Each line in this portion corresponds to a time
period in the planning horizon. Each line first shows an itinerary indicated by the triplet [origin location,
destination location, fare level], followed by the probability that we observe a request for this itinerary.
For example, the probability that we observe a request for the low fare itinerary from location 2 to 1 at
the first time period is 0.2. Since we may not observe any itinerary arrivals at a particular time period,
the probabilities in a particular line do not necessarily add up to one. The fifth portion of the data file
shows the show up probabilities. Each line in this portion corresponds to one itinerary. Each line first
shows an itinerary indicated by the triplet [origin location, destination location, fare level], followed by
the probability that a reservation for this itinerary shows up at the departure time.

28

beginning of data file

portion 1

number of time periods in decision horizon

3

portion 2

list of flights [in format origin location, destination location, capacity]

first line is number of flights

4

1 0 16

2 0 21

0 1 12

0 2 20

portion 3

list of itineraries [in format origin location, destination location, fare level, revenue, penalty cost]

first line is number of itineraries

7

0 1 0 24.0 48.0

0 1 1 192.0 384.0

0 2 0 34.0 68.0

1 0 0 192.0 384.0

1 2 0 53.0 106.0

2 1 0 53.0 106.0

2 1 1 212.0 442.0

portion 4

list of request arrival probabilities [in format itinerary, probability]

first entry in each line indicates time period

0 [0 1 0] 0.1 [0 1 1] 0.1 [0 2 0] 0.1 [1 0 0] 0.1 [1 2 0] 0.1 [2 1 0] 0.2 [2 1 1] 0.1

1 [0 1 0] 0.1 [0 1 1] 0.1 [0 2 0] 0.1 [1 0 0] 0.1 [1 2 0] 0.1 [2 1 0] 0.1 [2 1 1] 0.1

2 [0 1 0] 0.1 [0 1 1] 0.1 [0 2 0] 0.1 [1 0 0] 0.1 [1 2 0] 0.1 [2 1 0] 0.1 [2 1 1] 0.1

portion 5

list of show up probabilities [in format itinerary, probability]

[0 1 0] 0.9

[0 1 1] 0.9

[0 2 0] 0.9

[1 0 0] 0.9

[1 2 0] 0.9

[2 1 0] 0.9

[2 1 1] 0.9

end of data file

Table 5: Organization of the data file for a test problem with τ = 3 and N = 2.

29

