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A Online Supplement: Proposition 7

Proposition 7 is used in Section 7 and it shows that the optimal objective value of problem (13) is

an upper bound on the optimal expected revenue when we have space constraints.

Proposition 7 If we use ẑ to denote the optimal objective value of the linear program in (13),

then we have ẑ ≥ Z∗.

Proof. We let (ẑ, ŷ) be an optimal solution to problem (13) and (S∗
1 , . . . , S

∗
m) be an optimal solution

to problem (1). We claim that ŷi ≥ Vi(S
∗
i )

γi(Ri(S
∗
i )− ẑ) for all i ∈ M . To establish this claim, we

note that if u is large enough, then the optimal solution to the linear programming relaxation of

problem (10) is zero. Thus, letting Ig
i and xgi be as defined in Section 5, there exists an interval

Ig
i such that the solution xgi to the linear programming relaxation of problem (10) is zero when u

takes values in this interval. In this case, the second set of constraints in problem (13) implies that

ŷi ≥ 0 for all i ∈ M . Therefore, if S∗
i = 0̄ or Ri(S

∗
i ) ≤ ẑ, then we have Vi(S

∗
i )

γi(Ri(S
∗
i )− ẑ) ≤ 0 ≤ ŷi

and our claim trivially holds when S∗
i = 0̄ or Ri(S

∗
i ) ≤ ẑ. So, it is enough to establish our claim

with S∗
i ̸= 0̄ and Ri(S

∗
i ) > ẑ.

We let û = γi ẑ + (1− γi)Ri(S
∗
i ). Letting g be the index of the interval Ig

i that includes û, by

definition, xgi is the optimal solution to the linear programming relaxation of problem (10) when we

solve this problem with u = û. Therefore, we have
∑

j∈N vij (rij − û)xgij ≥
∑

j∈N vij (rij − û)S∗
ij ,

where we use the fact that xgi is the optimal solution to the linear programming relaxation of problem

(10) when we solve this problem with u = û but offering the products in S∗
i provides a feasible, but

not necessarily an optimal, solution to this problem. First, we assume that xgi ̸= 0̄. In this case,

slightly abusing the notation to let Vi(x
g
i ) =

∑
j∈N vij x

g
ij and Ri(x

g
i ) =

∑
j∈N vij rij x

g
ij/Vi(x

g
i ), the

last inequality can equivalently be written as Vi(x
g
i ) (Ri(x

g
i )− û) ≥ Vi(S

∗
i ) (Ri(S

∗
i )− û).

Noting that (ẑ, ŷ) is a feasible solution to problem (13), this solution satisfies the second set of

constraints in problem (13) for the index g defined at the beginning of the previous paragraph, in

which case, we can write this constraint in a compact fashion as ŷi ≥ Vi(x
g
i )

γi(Ri(x
g
i ) − ẑ). Also,

using the fact that uγi is a concave function of u, the subgradient inequality yields Vi(S
∗
i )

γi ≤
Vi(x

g
i )

γi + γi Vi(x
g
i )

γi−1 (Vi(S
∗
i ) − Vi(x

g
i )) = γi Vi(x

g
i )

γi−1 Vi(S
∗
i ) + (1 − γi)Vi(x

g
i )

γi . Using these

observations, we have the chain of inequalities

ŷi ≥ Vi(x
g
i )

γi(Ri(x
g
i )− ẑ) = Vi(x

g
i )

γi(Ri(x
g
i )− û) + (1− γi)Vi(x

g
i )

γi(Ri(S
∗
i )− ẑ)

≥ Vi(x
g
i )

γi−1 Vi(S
∗
i ) (Ri(S

∗
i )− û) + (1− γi)Vi(x

g
i )

γi(Ri(S
∗
i )− ẑ)

= γi Vi(x
g
i )

γi−1 Vi(S
∗
i ) (Ri(S

∗
i )− ẑ) + (1− γi)Vi(x

g
i )

γi(Ri(S
∗
i )− ẑ)

≥ Vi(S
∗
i )

γi (Ri(S
∗
i )− ẑ),

where the first inequality follows from the inequality we establish at the beginning of this paragraph,

the first equality follows by using the definition of û and arranging the terms, the second inequality
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follows from the fact that Vi(x
g
i ) (Ri(x

g
i ) − û) ≥ Vi(S

∗
i ) (Ri(S

∗
i ) − û), which is established in the

previous paragraph, the second equality follows by using the definition of û and the third inequality

follows by noting that Vi(S
∗
i )

γi ≤ γi Vi(x
g
i )

γi−1 Vi(S
∗
i )+ (1− γi)Vi(x

g
i )

γi , which is established above

by using the subgradient inequality. So, our claim holds when xgi ̸= 0̄.

Second, we assume that xgi = 0̄ so that the optimal solution to the linear programming relaxation

of problem (10) is zero when this problem is solved with u = û. Thus, the utility of each product

in this problem should be negative, yielding rij ≤ û = γi ẑ + (1 − γi)Ri(S
∗
i ) for all j ∈ N .

Noting Ri(S
∗
i ) > ẑ, the last inequality gives rij < Ri(S

∗
i ) for all j ∈ N . However, since Ri(S

∗
i ) =∑

j∈N vij rij S
∗
ij/

∑
j∈N vij S

∗
ij by definition, Ri(S

∗
i ) is a weighted average of the product revenues

{rij : j ∈ N} in the assortment S∗
i . So, we cannot have rij < Ri(S

∗
i ) for all j ∈ N , indicating that

the case xgi = 0̄ cannot occur. Thus, our claim is established and we have ŷi ≥ Vi(S
∗
i )

γi(Ri(S
∗
i )− ẑ)

for all i ∈ M . Adding these inequalities over all i ∈ M and noting that v0 ẑ ≥
∑

i∈M ŷi by the first

constraint in problem (13), we obtain v0 ẑ ≥
∑

i∈M Vi(S
∗
i )

γi(Ri(S
∗
i )− ẑ), in which case, solving for

ẑ in this inequality and noting the definition of Π(S1, . . . , Sm), we get ẑ ≥ Π(S∗
1 , . . . , S

∗
m). So, ẑ is

an upper bound on the expected revenue from the optimal assortment, as desired. �

B Online Supplement: Extensions to Other Constraints

In this section, we show how to extend our approach to additional types of constraints.

B.1 Parent Product Constraints

We consider the case where certain products in a nest are designated as parent products. Each

parent product has a set of child products associated with it and if a parent product is not offered,

then none of its child products can be offered. We refer to this type of constraints as parent product

constraints. Parent product constraints arise when company policy or law requires offering certain

products before offering others. For example, a company may be required to offer the generic

version of a drug before it can offer the brand name versions, in which case, the generic version

acts as the parent product, the brand name versions are the child products of the generic version

and if the generic version is not offered, then none of the brand name versions can be offered. To

capture parent product constraints, we use Pi to denote the set of parent products in nest i. A

parent product j in nest i has the set of child products Cij . If product j is neither a parent product

nor a child product, then we assume that product j is a parent product with an empty set of

child products. Also, we assume that Cij ∩ Cik = ∅ for all distinct j, k ∈ Pi so that two parent

products have different sets of child products. By the last two assumptions, the sets of products

Pi and {Cij : j ∈ Pi} collectively partition N . So, the feasible assortments in nest i under parent

constraints are given by Ci = {Si ∈ {0, 1}n : Sik ≤ Sij ∀ j ∈ Pi, k ∈ Cij}, ensuring that if we do

not offer a parent product, then none of its child products can be offered.

Under parent product constraints, we show that we can come up with a collection of assortments
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{At
i : t ∈ Ti} that includes an optimal solution to problem (7) for any u ∈ ℜ+. Furthermore, this

collection of assortments includes O(n) assortments. These results, together with Theorems 2 and

4, imply that we can solve a linear program with 1 +m decision variables and O(mn) constraints

to obtain the optimal assortment under parent product constraints. To characterize the optimal

solution to problem (7) for any u ∈ ℜ+, we use the decision variables xi = (xi1, . . . , xin) ∈ {0, 1}n

to write problem (7) under parent product constraints as

max

{∑
j∈N

vij (rij − u)xij : xik ≤ xij ∀ j ∈ Pi, k ∈ Cij , xij ∈ {0, 1} ∀ j ∈ N

}
. (14)

Assume that parent product j is offered in the optimal solution to problem (14). In this case,

we are free to offer any of the child products of parent product j. Since it is optimal to offer

one of these child products when their objective function coefficient is positive, if parent product

j is offered, then the total contribution of parent product j and all of its child products to the

objective function of the problem above is given by fij(u) = vij (rij − u) +
∑

k∈Cij
vik [rik − u]+,

where we use [·]+ = max{·, 0}. On the other hand, if parent product j is not offered, then none

of its child products can be offered, in which case, parent product j and all of its child products

make a contribution of zero to the objective function of the problem above. Therefore, it is optimal

to offer parent product j as long as fij(u) > 0. The function fij(·) is decreasing and piecewise

linear with points of nondifferentiability occurring at {rik : k ∈ Cij}. Thus, we can find a value of

ūij such that fij(u) > 0 for any u < ūij and fij(u) ≤ 0 for any u ≥ ūij , in which case, we offer

parent product j in the optimal solution to the problem above when u < ūij and we do not offer

parent product j when u ≥ ūij . If it is optimal not to offer parent product j, then none of its child

products are offered, whereas if it is optimal to offer parent product j, then its child product k is

offered when u < rik. Therefore, by comparing the value of u with ūij and {rik : k ∈ Cij}, we can

decide whether it is optimal to offer parent product j and any of its child products in the optimal

solution to problem (14). Furthermore, it is straightforward to obtain the point ūij . Repeating the

same reasoning for all of the parent products, we obtain the collections of points {ūij : j ∈ Pi} and

{rik : j ∈ Pi, k ∈ Cij}. Since Pi and {Cij : j ∈ Pi} partition N , there are a total of n points in

the collections {ūij : j ∈ Pi} and {rik : j ∈ Pi, k ∈ Cij}. These points completely characterize the

optimal solution to problem (14) since we can compare u with ūij to decide whether it is optimal

to offer parent product j. If this is the case, then we can decide whether it is optimal to offer its

child product k by comparing u with rik.

Since there are a total of n points in the collections {ūij : j ∈ Pi} and {rik : j ∈ Pi, k ∈ Cij},
these points partition the positive real line into O(n) intervals and we denote these intervals by

{It
i : t ∈ Ti} with |Ti| = O(n). We observe that as long as u takes values in one of the intervals

{It
i : t ∈ Ti}, the ordering between u and any of the points in the collections {ūij : j ∈ Pi} and

{rik : j ∈ Pi, k ∈ Cij} does not change. This observation, in view of the discussion in the paragraph

above, implies that the optimal solution to problem (14) does not change as long as u takes values

in one of the intervals {It
i : t ∈ Ti}. Therefore, by comparing the value of u with {ūij : j ∈ Pi} and

{rik : j ∈ Pi, k ∈ Cij} in each one of the intervals {It
i : t ∈ Ti}, we can come up with a collection
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of assortments {At
i : t ∈ Ti} with |Ti| = O(n) such that this collection always includes an optimal

solution to problem (7) for any u ∈ ℜ+, as desired. In this case, Theorem 4 with α = 1 implies

that the best assortment (Ŝ1, . . . , Ŝm) with Ŝi ∈ {At
i : t ∈ Ti} is the optimal solution to problem

(1). By Theorem 2, we can find this best assortment by solving a linear program with 1+m decision

variables and O(mn) constraints.

B.2 Cardinality and Space Constraints

In this section, we consider the case where we have both cardinality and space constraints on the

assortment offered in each nest. In particular, if we use bi to denote the limit on the cardinality

of the assortment offered in nest i, ci to denote the space availability in nest i and wij to denote

the space requirement of product j in nest i, then the feasible assortments in nest i are given by

Ci = {Si ∈ {0, 1}n :
∑

j∈N Sij ≤ bi,
∑

j∈N wij Sij ≤ ci}. For this case, we begin by showing that

we can come up with a collection of assortments {At
i : t ∈ Ti} with |Ti| = O(n2) such that this

collection includes a 3-approximate solution to problem (7) for any u ∈ ℜ+. Thus, we can solve

a linear program with 1 + m decision variables and O(mn2) constraints to obtain a solution to

the assortment optimization problem whose expected revenue deviates from the optimal expected

revenue by no more than a factor of three. Later in this section, we refine our analysis to show

that we can improve this performance guarantee from three to two.

The discussion in this section follows the development in Sections 4 and 5 closely. So, we

mostly focus on the main points. Using the decision variables xi = (xi1, . . . , xin) ∈ {0, 1}n, we
write problem (7) under cardinality and space constraints as

max

{∑
j∈N

vij (rij − u)xij :
∑
j∈N

xij ≤ bi,
∑
j∈N

wij xij ≤ ci, xij ∈ {0, 1} ∀ j ∈ N

}
, (15)

which is a cardinality constrained knapsack problem. A basic exercise in duality theory shows

that there are at most n2 possible optimal bases to the linear programming relaxation of problem

(15). Naturally, for any u ∈ ℜ+, the optimal solution to the linear programming relaxation of

problem (15) must correspond to one of these optimal bases. In other words, for any u ∈ ℜ+, the

optimal solution to the linear programming relaxation of problem (15) is one of n2 solutions. By

using the parametric simplex method over u ∈ ℜ+, we can generate all of these n2 solutions. We

use {xgi : g ∈ Gi} with |Gi| = O(n2) to denote all possible solutions to the linear programming

relaxation of problem (15). Thus, for any u ∈ ℜ+, there exists some xgi with g ∈ Gi such that xgi is

the optimal solution to the linear programming relaxation of problem (15).

Implicitly treating the upper bounds 0 ≤ xij ≤ 1 for all j ∈ N in the linear programming

relaxation of problem (15), we observe that there must be two basic decision variables in any

basic optimal solution and the other decision variables have integer values. Thus, the solution xgi
has at most two fractional components. Using the solution xgi , we define the assortment Sg

i =

(Sg
i1, . . . , S

g
in) ∈ {0, 1}n such that Sg

ij = ⌊xgij⌋ for all j ∈ N . In other words, the assortment Sg
i
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includes the products that take value one in the solution xgi . In this case, augmenting the collection

of assortments {Sg
i : g ∈ Gi} with the collection of singleton assortments {{j} : j ∈ N}, it is

possible to show that the collection of assortments {Sg
i : g ∈ Gi} ∪ {{j} : j ∈ N} always includes a

3-approximate solution to problem (15) for any u ∈ ℜ+.

To see this result, assume that we solve problem (15) for some u ∈ ℜ+ and let g be such that

xgi is the optimal solution to the linear programming relaxation of problem (15) when we solve this

problem with the value of u in consideration. By the discussion at the beginning of the paragraph

above, the solution xgi has at most two fractional components. We use jg1 to denote the first

fractional component of xgi when there is one. Similarly, we use jg2 to denote the second fractional

component of xgi when there is one. In this case, if we let z∗(u) be the optimal objective value of

problem (15), then noting that the optimal objective value of the linear programming relaxation

provides an upper bound on z∗(u), we obtain the chain of inequalities

z∗(u) ≤
∑
j∈N

vij (rij − u)xgij ≤
∑
j∈N

vij (rij − u)Sg
ij + vijg1 (rij

g
1
− u) + vijg2 (rij

g
2
− u)

≤ 3max

{∑
j∈N

vijg (rijg − u)Sg
ij , vijg1 (rij

g
1
− u), vijg2 (rij

g
2
− u)

}
, (16)

where the second inequality follows from the fact that the assortment Sg
i , together with jg1 and

jg2 , includes all components of the solution xgi that take strictly positive values. If the solution

xgi has fewer than two fractional components, then the inequalities above continue to hold if we

ignore the terms that involve jg1 or jg2 . From (16), we observe that either one of the assortments Sg
i ,

{jg1} and {jg2} is a 3-approximate solution to problem (15). Therefore, the collection of assortments

{Sg
i : g ∈ Gi} ∪ {{j} : j ∈ N} includes a 3-approximate solution to problem (15) for any u ∈ ℜ+

and there are O(n2) assortments in this collection, establishing the desired result.

We can tighten the approximation guarantee from three to two by using a somewhat more

involved definition of the assortment Sg
i . If the solution xgi has zero or one fractional component,

then we continue defining Sg
i = (Sg

i1, . . . , S
g
in) ∈ {0, 1}n such that Sg

ij = ⌊xgij⌋ for all j ∈ N . However,

if the solution xgi has two fractional components, then using jg1 and jg2 to denote these fractional

components with the convention that wijg1
≤ wijg2

, we define the assortment Sg
i = (Sg

i1, . . . , S
g
in) ∈

{0, 1}n as Sg
ij = 1 when xgij = 1 or j = jg1 , otherwise Sg

ij = 0. So, the assortment Sg
i includes

all products that take value one and the product with the smaller space requirement that takes

a fractional value in the solution xgi . In this case, we can show that the collection of assortments

{Sg
i : g ∈ Gi}∪{{j} : j ∈ N} includes a 2-approximate solution to problem (15) for any u ∈ ℜ+. To

see this result, we can follow another basic exercise in duality theory to show that if there are

two fractional components in a basic optimal solution to the linear programming relaxation of

problem (15), then both constraints must be satisfied as equality. Thus, if xgi has two fractional

components jg1 and jg2 , then xg
ijg1

+ xg
ijg2

= 1. The last expression, together with the fact that

wijg1
≤ wijg2

and xgi is a feasible solution to the linear programming relaxation of problem (15), yields

ci ≥
∑

j∈N wij x
g
ij =

∑
j∈N wij 1(x

g
ij = 1) + wijg1

xijg1 + wijg2
xijg2 ≥

∑
j∈N wij 1(x

g
ij = 1) + wijg1

. So,
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the assortment Sg
i , which includes the products {j ∈ N : xgij = 1} ∪ {jg1}, is feasible to problem

(15). In this case, we can use the same line of reasoning in (16) to get

z∗(u) ≤
∑
j∈N

vij (rij − u)xgij ≤
∑
j∈N

vij (rij − u)Sg
ij + vijg2 (rij

g
2
− u)

≤ 2max

{∑
j∈N

vij (rij − u)Sg
ij , vijg2 (rij

g
2
− u)

}
,

where the second inequality holds since the assortment Sg
i includes all strictly positive components

of xgi except for jg2 . The chain of inequalities above shows that either Sg
i or {jg2} is a 2-approximate

solution to problem (15), as desired.

C Online Supplement: Better Performance Guarantees under Space Constraints

In Section 5, we describe an approach to obtain a min{2, 1/(1−ϵ)}-approximate solution to problem

(1) under space constraints. The smallest possible value of ϵ that we can use in this performance

guarantee is ϵ̄ = max{wij/ci : i ∈ M, j ∈ N}, indicating that the best performance guarantee from

the approach described in Section 5 is given by min{2, 1/(1 − ϵ̄)}. In particular, even if we are

willing to increase the computational effort, the approach described in Section 5 does not provide

any guidance as to how we can improve this performance guarantee. In this section, our goal is to

show how we can obtain better performance guarantees under space constraints as long as we are

willing to increase the computational effort.

C.1 Improving the Performance Guarantee

The starting point for our discussion is problem (10), which is equivalent to problem (7) under space

constraints. We recall that if we can come up with a collection of assortments {At
i : t ∈ Ti} such that

this collection includes an α-approximate solution to problem (10) for any u ∈ ℜ+, then Theorem

4 implies that the best assortment (Ŝ1, . . . , Ŝm) with Ŝi ∈ {At
i : t ∈ Ti} is an α-approximate

solution to problem (1). Furthermore, by Theorem 2, we can find this best assortment by solving

a linear program with 1 + m decision variables and 1 +
∑

i∈M |Ti| constraints. In this section,

we show that if we are given any α > 1, then we can come up with a collection of assortments

{At
i : t ∈ Ti} with |Ti| = O(⌈α/(α − 1)⌉n⌈α/(α−1)⌉+2) such that this collection always includes an

α-approximate solution to problem (10) for any u ∈ ℜ+. In this case, by Theorem 4, the best

assortment (Ŝ1, . . . , Ŝm) with Ŝi ∈ {At
i : t ∈ Ti} is an α-approximate solution to problem (1). By

Theorem 2, we can find this best assortment by solving a linear program with 1 + m decision

variables and O(m⌈α/(α − 1)⌉n⌈α/(α−1)⌉+2) constraints. Thus, by choosing α closer to one, we

can obtain a performance guarantee that is closer to one as long as we are willing to increase the

number of constraints in the linear program.

To characterize approximate solutions to problem (10), we use a special linear programming

relaxation to this problem. Using the decision variables xi = (xi1, . . . , xin) ∈ [0, 1]n, for any given
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J ⊂ N , we consider the problem

max

{∑
j∈N

vij (rij − u)xij :
∑
j∈N

wij xij ≤ ci,

xij = 1 ∀ j ∈ J, 0 ≤ xik ≤ 1
(
vik (rik − u) ≤ min

j∈J
{vij (rij − u)}

)
∀ k ∈ N \ J

}
. (17)

We can interpret the problem above as the linear programming relaxation of a knapsack problem

after fixing the values of some of the decision variables at zero or one. In particular, we fix the values

of the decision variables corresponding to the products in J at one. For the remaining decision

variables, if the utility of a product corresponding to one of these decision variables exceeds the

minimum of the utilities of the products in J , then we fix the value of this decision variable at

zero. The role of the indicator function in the third set of constraints is to drop the products with

utilities exceeding the minimum of the utilities of the products in J from consideration. Similar

constraints appear in Frieze and Clarke (1984). The problem above may be infeasible for a certain

J , in which case, we set the values of all decision variables to zero by convention. Problem (17) is the

linear programming relaxation of a knapsack problem, where the utility of product j is vij (rij −u)

and the capacity consumption of product j is wij . So, we can solve this problem by using the

following procedure. We put all of the products in J into the knapsack and drop these products

from consideration. We order the other products with respect to their utilities. If there are any

products whose utilities exceed the smallest of the utilities of the products in J , then we drop these

products from consideration as well. Considering the remaining products, we fill the knapsack

starting from the product with the largest utility to space consumption ratio, as long as the utility

of the product exceeds zero. This procedure implies that the optimal solution to problem (17) does

not change as long as the ordering of the utilities, ordering of the utility to space consumption

ratios and signs of the utilities of the products do not change. Also, there is at most one fractional

decision variable in the optimal solution to problem (17) obtained by using this procedure.

To exploit the fact that the optimal solution to problem (17) does not change as long as

the ordering of the utilities, ordering of the utility to space consumption ratios and signs of the

utilities of the products do not change, we define the linear functions hij(u) = vij (rij − u) and

fij(u) = vij (rij − u)/wij for j ∈ N and hi0(u) = 0, fi0(u) = 0. In this case, hij(u) and fij(u)

respectively capture the utility and utility to space consumption ratio of product j in problem

(17). We use {w̄g
i : g ∈ Hi} to denote the set of intersection points of the n + 1 linear functions

{hij(·) : j ∈ N ∪ {0}} and {ūgi : g ∈ Hi} to denote the set of intersection points of the n+ 1 linear

functions {fij(·) : j ∈ N ∪ {0}}. Thus, there are |Hi| = O(n2) points in each one of these two

sets of intersection points. Collecting the points in the two sets {w̄g
i : g ∈ Hi} and {ūgi : g ∈ Hi}

together, we observe that the points {w̄g
i : g ∈ Hi} ∪ {ūgi : g ∈ Hi} partition the positive real line

into O(2 |Hi|) = O(n2) intervals. We use {Ig
i : g ∈ Gi} with Gi = O(n2) to denote these intervals,

in which case, the ordering of the utilities, ordering of the utility to space consumption ratios and

signs of the utilities of the products in problem (17) do not change as long as u takes values in
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one of these intervals. Since the optimal solution to problem (17) depends only on the ordering

of the utilities, ordering of the utility to space consumption ratios and signs of the utilities of the

products, the optimal solution to problem (17) does not change either when u takes values in one of

these intervals. We use xgi (J) to denote the optimal solution to problem (17) when u takes values

in the interval Ig
i . Our notation for xgi (J) reflects the fact that the optimal solution to problem

(17) depends on the choice of J .

Using the solution xgi (J), we define the assortment Sg
i (J) = (Sg

i1(J), . . . , S
g
in(J)) ∈ {0, 1}n as

Sg
ij(J) = ⌊xgij(J)⌋ for all j ∈ N . Therefore, the assortment Sg

i (J) includes the products taking value

one in the solution xgi (J). In this case, using ℘q to denote the set of subsets ofN with cardinality not

exceeding q, we propose using the collection of assortments {Sg
i (J) : J ∈ ℘q, g ∈ Gi} as a collection

of possibly good solutions to problem (10). Noting that |℘q| = O(qnq) and |Gi| = O(n2), there are

O(qnq+2) assortments in the collection {Sg
i (J) : J ∈ ℘q, g ∈ Gi}, which can be manageable when q

is not too large. The next lemma shows that this collection always includes a q/(q−1)-approximate

solution to problem (10) for any u ∈ ℜ+. To keep the focus on our main result, we defer the proof

of this lemma to Section C.2.

Lemma 8 Letting Sg
i (J) be as given above, the collection of assortments {Sg

i (J) : J ∈ ℘q, g ∈ Gi}
includes a q/(q − 1)-approximate solution to problem (10) for any u ∈ ℜ+.

For any desired performance guarantee α > 1, setting α = q/(q − 1) and solving for q, we

obtain q = α/(α− 1). Thus, if we choose q = ⌈α/(α− 1)⌉ in the lemma above, then the collection

of assortments {Sg
i (J) : J ∈ ℘⌈α/(α−1)⌉, g ∈ Gi} includes an α-approximate solution to problem

(10) for any u ∈ ℜ+. To come up with this collection of assortments, we compute the intervals

{Ig
i : g ∈ Gi} by finding the intersection points of the linear functions {hij(·) : j ∈ N ∪ {0}} and

{fij(·) : j ∈ N ∪ {0}}. In this case, the ordering of the utilities, ordering of the utility to space

consumption ratios and signs of the utilities of the products in problem (17) do not change when

u takes values in one of the intervals {Ig
i : g ∈ Gi}. Once these intervals are computed, we focus on

each one of them one by one. For each interval Ig
i and for each J ∈ ℘⌈α/(α−1)⌉, we solve problem (17)

to get the optimal solution xgi (J) and define the assortment Sg
i (J) as above. Since |℘⌈α/(α−1)⌉| =

O(⌈α/(α − 1)⌉n⌈α/(α−1)⌉) and |Gi| = O(n2), there are O(⌈α/(α − 1)⌉n⌈α/(α−1)⌉+2) assortments in

the collection {Sg
i (J) : J ∈ ℘⌈α/(α−1)⌉, g ∈ Gi}. The next theorem collects our observations.

Theorem 9 Under space constraints, for any α > 1, there exists a collection of assortments

{At
i : t ∈ Ti} with |Ti| = O(⌈α/(α − 1)⌉n⌈α/(α−1)⌉+2) such that this collection includes an α-

approximate solution to problem (7) for any u ∈ ℜ+.

Thus, Theorem 4 implies that the best assortment (Ŝ1, . . . , Ŝm) with Ŝi ∈ {At
i : t ∈ Ti} provides

a performance guarantee of α for problem (1) under space constraints. Noting Theorem 2, this

best assortment can be obtained by solving a linear program with 1 + m decision variables and
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O(m⌈α/(α−1)⌉n⌈α/(α−1)⌉+2) constraints. So, for any desired performance guarantee α > 1, finding

an assortment that provides this performance guarantee amounts to solving a linear program with

1 +m decision variables and O(m⌈α/(α − 1)⌉n⌈α/(α−1)⌉+2) constraints. This result demonstrates

how we can improve the performance guarantee by increasing the number of constraints in the

linear program. This approach naturally becomes computationally intractable when α gets too

close to one, but if, for example, we want a performance guarantee of α = 3/2, then the number of

constraints we need comes out to be O(mn5).

The development in this section builds on Frieze and Clarke (1984), where the authors develop

polynomial time approximation schemes for multi-dimensional knapsack problems. However, the

focus of Frieze and Clarke (1984) is on solving a single instance of a multi-dimensional knapsack

problem, but we are interested in finding good solutions to problem (10) for all u ∈ ℜ+.

C.2 Proof of Lemma 8

In this section, we give a proof for Lemma 8. Throughout this section, we denote an assortment

offered in nest i by using a subset Si ⊂ N . This is a slight deviation from our earlier notation

where we use a vector Si ∈ {0, 1}n to denote an assortment offered in nest i, but given a vector

Si ∈ {0, 1}n, we can define the corresponding subset as {j ∈ N : Sij = 1}. Using a subset Si ⊂ N

to denote an assortment offered in nest i considerably simplifies our notation in this section.

Fixing u at an arbitrary û ∈ ℜ+, we use x∗i to denote the optimal solution to problem (10)

when solved with u = û. We have the assortment S∗
i = {j ∈ N : x∗ij = 1} ⊂ N corresponding to

this optimal solution. Throughout the proof, we let ĝ be such that û takes a value in the interval

I ĝ
i , where the intervals {Ig

i : g ∈ Gi} are as defined in Section C.1 of Online Supplement C. We

begin by considering the case |S∗
i | ≤ q so that there are q or fewer products in the assortment S∗

i . If

|S∗
i | ≤ q, then we have S∗

i ∈ ℘q. In this case, noting that J ⊂ Sg
i (J) by the definitions of xgi (J) and

Sg
i (J), we have S

∗
i ⊂ S ĝ

i (S
∗
i ), which implies that

∑
j∈S∗

i
vij (rij − û) ≤

∑
j∈Sĝ

i (S
∗
i )
vij (rij − û). Thus,

the assortment S ĝ
i (S

∗
i ) provides a better objective value for problem (10) than the assortment S∗

i

when this problem is solved with u = û. So, the assortment S ĝ
i (S

∗
i ) is also optimal to problem (10)

when solved with u = û. Also, since S∗
i ∈ ℘q, we have S ĝ

i (S
∗
i ) ∈ {Sg

i (J) : J ∈ ℘q, g ∈ Gi}, showing
that the collection of assortments {Sg

i (J) : J ∈ ℘q, g ∈ Gi} includes an optimal solution to problem

(10) when this problem is solved with u = û. Since û is arbitrary, we are done.

In the rest of the proof, we assume that |S∗
i | > q. We let J∗

i be the subset of S∗
i that includes

the q elements of S∗
i with the largest utilities in problem (10) when this problem is solved with

u = û. Since |S∗
i | > q, J∗

i is well defined. Consider the optimal solution xĝi (J
∗
i ) to problem (17) when

this problem is solved with u = û and J = J∗
i . If this solution has a fractional component j′, then

the third set of constraints in problem (17) implies that product j′ satisfies vij′ (rij′−û) ≤ vij (rij−û)

for all j ∈ J∗
i . Thus, using z∗(u) to denote the optimal objective value of problem (10), we have

z∗(û) =
∑

j∈S∗
i
vij (rij − û) =

∑
j∈J∗

i
vij (rij − û) +

∑
j∈S∗

i \J∗
i
vij (rij − û) ≥ q vij′ (rij′ − û), where

10



the inequality follows by the fact that |J∗
i | = q and vij′ (rij′ − û) ≤ vij (rij − û) for all j ∈ J∗

i . Thus,

the last chain of inequalities yields vij′ (rij′ − û) ≤ z∗(û)/q.

To finish the proof, let z∗(u) and ζ∗(u, J) respectively be the optimal objective values of

problems (10) and (17). We claim that z∗(û) ≤ ζ∗(û, J∗
i ). To see this claim, we note that J∗

i

includes the q products with the largest utilities among the products taking value one in the

optimal solution to problem (10) when this problem is solved with u = û. The products in S∗
i \ J∗

i

also take value one in the optimal solution to problem (10), but by the definition of J∗
i , these

products satisfy vik (rik − û) ≤ minj∈J∗
i
{vij (rij − û)} for all k ∈ S∗

i \ J∗
i . This inequality, together

with the third set of constraints in problem (17), implies that if we solve problem (17) with u = û

and J = J∗
i , then we fix the values of the decision variables corresponding to the products in J∗

i

at one, but the values of the decision variables corresponding to the products in S∗
i \ J∗

i are free

between zero and one. Furthermore, problem (17) does not require the decision variables to take

binary values. Thus, the solution S∗
i is optimal to problem (10) and feasible to problem (17) when

we solve the first problem with u = û and the second problem with u = û and J = J∗
i . So, our

claim holds and we have z∗(û) ≤ ζ∗(û, J∗
i ). In this case, if we use, as above, xĝi (J

∗
i ) to denote the

optimal solution to problem (17) when this problem is solved with u = û and J = J∗
i , then letting

j′ be the fractional component of xĝi (J
∗
i ) when there is one, we obtain

z∗(û) ≤ ζ∗(û, J∗
i ) =

∑
j∈N

vij (rij − û)xĝij(J
∗
i )

≤
∑

j∈Sĝ
i (J

∗
i )

vij (rij − û) + vij′ (rij′ − û) ≤
∑

j∈Sĝ
i (J

∗
i )

vij (rij − û) + z∗(û)/q,

where the second inequality is by noting that S ĝ
i (J

∗
i ) includes all strictly positive and integer valued

components of xĝi (J
∗
i ) and the only possibly fractional component is j′ and the third inequality is by

the fact that vij′ (rij′ − û) ≤ z∗(û)/q, which is shown in the paragraph above. Focusing on the first

and last terms in the chain of inequalities above, we have z∗(û) ≤ (q/(q−1))
∑

j∈Sĝ
i (J

∗
i )
vij (rij− û),

showing that the assortment S ĝ
i (J

∗
i ) is a q/(q − 1)-approximate solution to problem (10) when

solved with u = û. Since |J∗
i | = q, we have S ĝ

i (J
∗
i ) ∈ {Sg

i (J) : J ∈ ℘q, g ∈ Gi}. Noting that the

choice of û is arbitrary, we conclude that the collection of assortments {Sg
i (J) : J ∈ ℘q, g ∈ Gi}

includes a q/(q − 1)-approximate solution to problem (10) for any u ∈ ℜ+, as desired.

D Online Supplement: Maximizing the Expected Revenue from a Single Nest

Problem (1) finds an assortment (S1, . . . , Sm) that maximizes the expected revenue over all nests. In

this section, we elaborate on the connections of this problem to the problem of maximizing the

expected revenue only from a single nest. To that end, as a function of u ∈ ℜ+, we let Ŝi(u) be an

optimal solution to the problem

max
Si∈Ci

{
Vi(Si) (Ri(Si)− u)

}
= max

Si∈Ci

{∑
j∈N

vij (rij − u)Sij

}
, (18)
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where the equality follows from (8). Applying Theorem 4 with α = 1 implies that if we obtain an

optimal solution to the problem above for all u ∈ ℜ+ and use {Ŝi(u) : u ∈ ℜ+} as a collection of

candidate assortments for nest i, then the best assortment (Ŝ1, . . . , Ŝm) with Ŝi ∈ {Ŝi(u) : u ∈ ℜ+}
is an optimal solution to problem (1). Therefore, if we use {Ŝi(u) : u ∈ ℜ+} for all i ∈ M as

collections of candidate assortments for the different nests, then we can stitch together the optimal

solution to problem (1) by using an assortment from each one of these collections. We proceed to

showing that the collection {Ŝi(u) : u ∈ ℜ+} does not only allow us to stitch together an assortment

that maximizes the expected revenue over all nests, but it also includes an assortment solving the

problem maxSi∈Ci Ri(Si). In other words, the collection of assortments {Ŝi(u) : u ∈ ℜ+} also

includes an assortment that maximizes the expected revenue only from nest i.

To see that the collection of assortments {Ŝi(u) : u ∈ ℜ+} includes an optimal solution to the

problem maxSi∈Ci Ri(Si), we let z∗ = maxSi∈Ci Ri(Si). So, we have Ri(Si) ≤ z∗ for all Si ∈ Ci
and the inequality holds as equality at the assortment that maximizes the expected revenue from

nest i. Noting that Ri(Si) =
∑

j∈N vij rij Sij/
∑

j∈N vij Sij , the inequality Ri(Si) ≤ z∗ can be

written as
∑

j∈N vij (rij − z∗)Sij ≤ 0. In this case, we have
∑

j∈N vij (rij − z∗)Sij ≤ 0 for all

Si ∈ Ci and the inequality holds as equality at the assortment that maximizes the expected revenue

from nest i. Therefore, an optimal solution to the problem maxSi∈Ci
∑

j∈N vij (rij − z∗)Sij is also

an optimal solution to the problem maxSi∈Ci Ri(Si). Since an optimal solution to the problem

maxSi∈Ci
∑

j∈N vij (rij − z∗)Sij is given by Ŝi(z
∗), it follows that Ŝi(z

∗) is an optimal solution to

the problem maxSi∈Ci Ri(Si). Noting that Ŝi(z
∗) ∈ {Ŝi(u) : u ∈ ℜ+}, the collection of assortments

{Ŝi(u) : u ∈ ℜ+} indeed includes an optimal solution to the problem maxSi∈Ci Ri(Si).

We can construct the collection of assortments {Ŝi(u) : u ∈ ℜ+} by obtaining an optimal

solution to problem (18) for all u ∈ ℜ+. In this case, if we use {Ŝi(u) : u ∈ ℜ+} for all i ∈ M as

collections of candidate assortments for the different nests, then the best assortment (Ŝ1, . . . , Ŝm)

with Ŝi ∈ {Ŝi(u) : u ∈ ℜ+} is an optimal solution to problem (1). Furthermore, the collection

of assortments {Ŝi(u) : u ∈ ℜ+} also includes an optimal solution to the problem maxSi∈Ci Ri(Si)

and if we want to maximize the expected revenue only from nest i, then it is enough to focus on

the assortments in the collection {Ŝi(u) : u ∈ ℜ+}. Rusmevichientong et al. (2010) consider the

problem of maximizing the expected revenue under cardinality constraints when customers choose

according to the multinomial logit model. Since the multinomial logit model can be viewed as

the nested logit model with a single nest, their problem is similar to the problem maxSi∈Ci Ri(Si)

with Ci corresponding to a cardinality constraint. As a result, they construct their collection of

candidate assortments by solving a problem similar to problem (18).

The discussion in this section shows that we can use the collection {Ŝi(u) : u ∈ ℜ+} as candidate

assortments for nest i both to maximize the expected revenue over all nests and to maximize the

expected revenue only from nest i. However, the particular one of the assortments in this collection

that we end up using to maximize the expected revenue over all nests can be entirely different

from the particular one that we end up using to maximize the expected revenue only from nest
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i. Indeed, it is possible to generate examples such that if we solve the problem maxSi∈Ci Ri(Si) to find

an assortment S̃i that maximizes the expected revenue only from nest i and use the assortment

(S̃1, . . . , S̃m) as a possible solution to problem (1), then the assortment (S̃1, . . . , S̃m) performs

arbitrarily poorly for problem (1).
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