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Abstract

We study assortment optimization problems where customer choices are governed by the nested
logit model and there are constraints on the set of products offered in each nest. Under the
nested logit model, the products are organized in nests. Each product in each nest has a fixed
revenue associated with it. The goal is to find a feasible set of products, i.e. a feasible assortment,
to maximize the expected revenue per customer. We consider cardinality and space constraints
on the offered assortment, which respectively limit the number of products and the total space
consumption of the products offered in each nest. We show that the optimal assortment under
cardinality constraints can be obtained efficiently by solving a linear program. The assortment
optimization problem under space constraints is NP-hard. We show how to obtain an assortment
with a performance guarantee of two under space constraints. This assortment also provides a
performance guarantee of 1/(1 − ϵ) when the space requirement of each product is at most a
fraction ϵ of the space availability in each nest. Building on our results for constrained assortment
optimization, we show that we can efficiently solve joint assortment optimization and pricing
problems under the nested logit model, where we choose the assortment of products to offer to
customers, as well as the prices of the offered products.



Discrete choice models have long been used to describe how customers choose among a set of

products that differ in attributes such as price and quality. Specifically, discrete choice models

represent the demand for a particular product through the attributes of all products that are in the

offered assortment, capturing substitution possibilities and complementary relationships between

the products. To pursue this thought, different discrete choice models have been proposed in the

literature. Some of these models are based on axioms as in Luce (1959), resulting in the basic

attraction model, whereas some others are based on random utility theory as in McFadden (1974),

resulting in the multinomial logit model. A popular extension to the multinomial logit model is

the nested logit model introduced by Williams (1977). Under the nested logit model, the products

are organized in nests. The choice process of a customer proceeds in such a way that the customer

first selects a nest, and then a product within the selected nest.

In this paper, we study constrained assortment optimization problems when customers choose

according to the nested logit model. There is a fixed revenue contribution associated with each

product. The goal is to find an assortment of products to offer so as to maximize the expected

revenue per customer subject to a constraint on the assortment offered in each nest. We consider two

types of constraints, which we refer to as cardinality and space constraints. Cardinality constraints

limit the number of products in the assortment offered in each nest. We show that the optimal

assortment under cardinality constraints can be obtained by solving a linear program. Under

space constraints, each product occupies a certain amount of space and we limit the total space

consumption of the products offered in each nest. The assortment optimization problem under

space constraints is NP-hard, but we show that we can solve a tractable linear program to obtain

an assortment with a certain performance guarantee. These results establish that we can obtain

provably good assortments under cardinality or space constraints.

In addition, we consider joint assortment optimization and pricing problems under the nested

logit model. In the joint assortment optimization and pricing problem, the goal is to decide which

assortment of products to offer and set the prices of the offered products. Customers choose

among the offered products according to the nested logit model and the price of a product affects

its attractiveness in the sense that if we set the price of a product higher, then it becomes less

attractive to customers. Building on our results for constrained assortment optimization problems,

we show that an optimal solution to the joint assortment optimization and pricing problem can

be obtained efficiently by solving a linear program. Therefore, our results are not only useful for

solving constrained assortment optimization problems, but they are also useful for pricing.

Main Contributions. In assortment optimization problems, we consider a setting with m nests,

each including n products that we can offer to customers. Under cardinality constraints, we show

that we can solve a linear program with 1+m decision variables and O(mn2) constraints to obtain

the optimal assortment. Under space constraints, we show that we can solve a linear program of

the same size to obtain an assortment whose expected revenue deviates from the optimal expected

revenue by at most a factor of two. Also, if each product consumes at most a fraction ϵ ∈ [0, 1)

2



of the space availability in a nest, then we show that the expected revenue from this assortment

deviates from the optimal by at most a factor of 1/(1 − ϵ). So, we can obtain particularly good

assortments when each product, by itself, occupies a small fraction of the space availability.

Our approach for dealing with space constraints is flexible enough that we can refine it to obtain

assortments with arbitrarily good performance guarantees as long as we are willing to increase the

computational effort. In particular, it is possible to show that if we want to obtain an assortment

with an arbitrary performance guarantee of α > 1 under space constraints, then we can solve a

linear program with 1 + m decision variables and O(m⌈α/(α − 1)⌉ n⌈α/(α−1)⌉+2) constraints, where

⌈·⌉ is the round up function. This result is similar to a polynomial time approximation scheme and

it shows that we can obtain arbitrarily good performance guarantees by choosing α close to one. The

approach that we use to obtain the performance guarantee of two mentioned in the paragraph above

serves as a crucial building block to obtain this more general approximation scheme. Furthermore,

the approach for obtaining the performance guarantee of two demonstrates that the assortment

optimization problem under space constraints is particularly simple to approximate when each

item occupies a small fraction of the capacity available in a nest, but such an intuition does not

emerge from the more general approximation scheme. Thus, while this more general approximation

scheme is certainly useful, we defer its full development to the online supplement.

Comparing our results with the earlier work, Rusmevichientong, Shen and Shmoys (2010) show

how to obtain the optimal assortment when customers choose according to the multinomial logit

model and there are cardinality constraints on the offered assortment. They exploit the fact that

the expected revenue under the multinomial logit model is a fraction of two linear functions. In

contrast, the expected revenue under the nested logit model is a fraction of two nonlinear functions

and we have to resort to a new argument to deal with the nonlinearity. Also, since the multinomial

logit model is a special case of the nested logit model with a single nest, our results are naturally

more general than their corresponding assortment optimization results. Rusmevichientong et al.

(2009) consider assortment problems under the nested logit model with space constraints. The

crucial difference between our space constraints and theirs is that the space constraints in

Rusmevichientong et al. (2009) limit the total amount of space consumed by the products offered

in all nests, whereas our space constraints separately limit the amount of space consumed by the

products offered in each nest. Rusmevichientong et al. (2009) give an algorithm for assortment

optimization under a space constraint covering all nests, but their algorithm does not scale well

with the number of nests. If we want to obtain an assortment with a performance guarantee of two

and there are m nests each including n products, then their algorithm has a running time of at least

O(m8m+1n8m logm(mn)). In contrast, if we have a space constraint in each nest separately, then

we can obtain an assortment with a performance guarantee of two by solving a linear program with

1+m decision variables and O(mn2) constraints. Also, since the multinomial logit model is a special

case of the nested logit model with a single nest, both our work and the work in Rusmevichientong

et al. (2009) can be used to solve the assortment optimization problem under the multinomial logit

model with a space constraint over all products. Rusmevichientong et al. (2009) need O(n8 log n)
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operations to get a performance guarantee of two, whereas we need to solve a linear program with

two decision variables and O(n2) constraints. Except for the case with a single nest, one should not

directly compare the approaches in our paper and in Rusmevichientong et al. (2009), since while

we impose a space constraint on the assortment offered in each nest separately, Rusmevichientong

et al. (2009) impose a space constraint over all nests. Both type of constraints can have important

applications and neither one of them can be seen as a special case of the other. It is also useful

to note that imposing constraints in each nest separately, as we do in this paper, requires that

the constraint structure imposed on the assortment is aligned with the nest structure of the choice

model. Nevertheless, there are indeed settings where it is necessary to impose a constraint on the

assortment offered in each nest separately. We describe several such settings in Section 1.

In addition to assortment optimization problems under cardinality and space constraints, we

focus on a joint assortment optimization and pricing problem. We consider the setting where there

are m nests, each including p products that we can offer to customers. Each product can be offered

at one of b different price levels. The price of a product affects its attractiveness and customers

choose according to the nested logit model. The goal is to find an assortment of products to offer and

their corresponding prices so as to maximize the expected revenue per customer. Building on our

results for constrained assortment optimization problems, we show that we can obtain an optimal

solution to the joint assortment optimization and pricing problem by solving a linear program

with 1 + m decision variables and O(mpb2) constraints. Compared with recent work on pricing,

our result provides useful advantages. Li and Huh (2011) and Gallego and Wang (2011) study

pricing problems under the nested logit model and show how to obtain optimal prices under the

assumption that there is a specific parametric relationship between the attractiveness of a product

and its price. Our result does not make use of a parametric relationship and works irrespective of

how the attractiveness of a product depends on its price. Furthermore, we can explicitly restrict

and bound the prices that can be chosen by the decision maker, since we work with a finite number

of possible prices. For example, we can bound the prices within a desired range or ensure that prices

are chosen in full increments of a dollar. As far as we are aware, incorporating such restrictions is

not possible within the framework of Li and Huh (2011) and Gallego and Wang (2011).

Related Literature. We focus our literature review on papers that model customer choices

through variants of the multinomial logit model and refer the reader to Kok et al. (2008), Farias

et al. (2013) and Farias et al. (2012) for assortment optimization under other choice models. The

multinomial logit model dates back to Luce (1959) and McFadden (1974). Since then, this model

has been studied extensively and it is known to be compatible with random utility maximization,

where each customer associates a random utility with each product and chooses the one providing

the largest utility. However, a shortcoming of the multinomial logit model is that if a product is

added to the offered assortment, then the multinomial logit model predicts that the market share

of each product in the offered assortment decreases by the same relative amount. This phenomenon

is referred to as the independence of irrelevant alternatives property and it naturally should not

occur when different products cannibalize on each other to different extents; see Ben-Akiva and
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Lerman (1994). One option to avoid the independence of irrelevant alternatives property is to use

a mixture of multinomial logit models, where there are multiple customer types and customers of

different types choose according to different multinomial logit models. Another option is to use

the nested logit model. McFadden (1980), Borsch-Supan (1990), McFadden and Train (2000) and

Train (2003) discuss that both of these options yield choice models that are consistent with random

utility maximization, while avoiding the independence of irrelevant alternatives property.

In this paper, we use the nested logit model to describe customer preferences. This model has

been used to characterize demand in numerous retail settings. Anderson and de Palma (1992)

study the price competition among multiple firms by using the nested logit model, where each nest

includes the products offered by a different firm. Richards (2007) builds on their model to analyze

the pricing and discount decisions of supermarket retailers, comparing model predictions with

empirical data. Bucklin and Gupta (1992) use the nested logit model to capture how customers make

timing and brand choice decisions when they make purchases. They apply their work to predict

laundry detergent purchase behavior. Ansari et al. (1995) and Guadagni and Little (1998) use the

nested logit model to describe the coffee choice process of a customer and calibrate their models

using sales data. Baltas et al. (1997) study the choice between manufacturer and retailer brands

through the nested logit model. Bell and Lattin (1998) use the nested logit model to understand

the choice between a store that offers low prices every day and a store that offers temporary deep

discounts. Siriwardena et al. (2012) analyze the choice between environment friendly and standard

cars through the nested logit model.

One stream of literature closely related to our work is on assortment optimization models that

maximize the expected revenue per customer when customers choose according to a particular

choice model. If customers choose according to the multinomial logit model and there are no

constraints on the offered assortment, then Talluri and van Ryzin (2004) show that the optimal

assortment includes a number of products with the largest revenues. In this case, the optimal

solution can be obtained by adding products greedily into the offered assortment in the order of

decreasing revenues. Bront et al. (2009) and Rusmevichientong, Shmoys and Topaloglu (2010)

study assortment problems when customers choose according to a mixture of multinomial logit

models. The former shows that the problem is NP-hard in the strong sense and investigates integer

programming formulations and heuristics, whereas the latter shows that the problem is NP-hard

in the weak sense and investigates approximation methods. Thus, assortment optimization under

a mixture of multinomial logit models is computationally intractable even without constraints on

the offered assortment. Mendez-Diaz et al. (2010) study valid cuts for the integer programming

formulation of the assortment problem under a mixture of multinomial logit models and their work

remains applicable when there are cardinality constraints. As described earlier, Rusmevichientong

et al. (2009) study assortment problems under the nested logit model with a space constraint,

whereas Rusmevichientong, Shen and Shmoys (2010) work on assortment problems under the

multinomial logit model with a cardinality constraint. Davis et al. (2011) study assortment problems

under the nested logit model without constraints on the offered assortment. They find that the
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problem is tractable when the dissimilarity parameters of the nests, which characterize the degree

of dissimilarity between the products in a nest, do not exceed one. Fortunately, this happens to be

the case that is compatible with random utility maximization; see McFadden (1980).

Another related stream of work is on pricing problems that incorporate choice models. In the

pricing setting, the decision maker sets the prices of the products and the prices of all products

jointly determine the probability that a customer purchases a particular product. The goal is to

maximize the expected revenue per customer. For the pricing problem, Hanson and Martin (1996)

observe that the expected revenue function is not concave in prices under the multinomial logit

model, but Song and Xue (2007) and Dong et al. (2009) solve the pricing problem by noting that

the expected revenue function remains concave in the market shares of the products. Li and Huh

(2011) extend the concavity result to the nested logit model under the assumption that the price

sensitivities of the products are constant within each nest and the nest dissimilarity parameters

are all less than one. Gallego and Wang (2011) relax both assumptions in Li and Huh (2011) and

characterize the structure of the optimal prices.

Finally, revenue management models with customer choice is related to our work. Talluri

and van Ryzin (2004) consider a revenue management model with a single flight leg. Customers

choose among the fare classes available for purchase. The goal is to dynamically adjust the set of

available fare classes so as to maximize the expected revenue. Gallego et al. (2004), Liu and van

Ryzin (2008), Kunnumkal and Topaloglu (2008), Zhang and Adelman (2009), Bront et al. (2009),

Talluri (2011) and Meissner et al. (2013) extend this model to a flight network. The idea in these

papers is to develop a variety of linear programming approximations, where the decision variables

correspond to the number of time periods during which a particular subset of itinerary fare class

combinations is offered. Since there is one decision variable for every possible subset of itinerary

fare class combinations, the number of decision variables is quite large. Thus, the linear programs

are solved by using column generation. Such column generation subproblems exactly correspond

to our assortment problem when customers choose according to the nested logit model.

Organization. In Section 1, we formulate the constrained assortment optimization problem

under the nested logit model. In Section 2, we show how to use a linear program to find the best

assortment to offer in each nest out of a given collection of candidate assortments. In Section 3, we

give a general result that shows how to find a collection of candidate assortments for each nest such

that if we restrict our attention only to these candidate assortments, then we obtain an assortment

with a certain performance guarantee. In Sections 4 and 5, we leverage our result in Section 3 for

cardinality and space constraints, respectively. In this way, we show how to obtain the optimal

assortment under cardinality constraints and how to obtain an assortment with a performance

guarantee under space constraints. In Section 6, we show how to obtain the optimal solution to the

joint assortment optimization and pricing problem under the nested logit model. In Section 7, we

give computational results. In Section 8, we provide concluding remarks, describe some possible

extensions of our work and point out future research directions.
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1 Problem Formulation

In this section, we describe the nested logit model and formulate the assortment optimization

problem. There are m nests indexed by M = {1, . . . , m}. Depending on the application, each nest

may correspond to a different category of products, a different sales channel or a different retail

store. In each nest, there are n products that we can choose to offer to customers and we index

the products by N = {1, . . . , n}. Under the nested logit model, an arriving costumer decides either

to make a purchase in one of the nests or to leave the system without purchasing anything. If the

customer decides to make a purchase in one of the nests, then the customer must choose one of

the products offered in this nest. We use the vector Si = (Si1, . . . , Sin) ∈ {0, 1}n to denote the

assortment of products that we offer in nest i, where Sij = 1 if we offer product j in nest i and

Sij = 0 otherwise. Throughout the paper, we refer to the vector Si ∈ {0, 1}n as the assortment

offered in nest i. We let vij be the preference weight of product j in nest i and use Vi(Si) to

denote the total preference weight of all offered products in nest i when we offer the assortment

Si of products in this nest. More precisely, we have Vi(Si) =
∑

j∈N vij Sij . Under the nested logit

model, given that a customer decides to make a purchase in nest i, if the assortment Si is offered

in this nest, then the probability that the customer chooses product j is vij Sij/Vi(Si). From this

expression, we observe that if product j in nest i is not included in the assortment Si so that

Sij = 0, then the probability that the customer chooses product j is zero, as expected. We let rij

be the revenue of product j in nest i. In this case, if we offer the assortment Si in nest i and a

customer decides to make a purchase in this nest, then the expected revenue that we obtain from

this customer is given by

Ri(Si) =
∑

j∈N

vij Sij

Vi(Si)
rij =

∑
j∈N vij rij Sij

Vi(Si)
.

Letting 0̄ = (0, . . . , 0) ∈ ℜn
+, if Si = 0̄, then Ri(Si) = 0 and we assume that 0/0 = 0 in the

expression above. Our notation thus far implies that the number of possible products is the same

in each nest, but this assumption is only for notational brevity and all of our results in the paper

continue to hold when each nest includes a different number of products.

The preference weight of not making a purchase is v0. Each nest i has a dissimilarity parameter

γi associated with it, characterizing the degree of dissimilarity of the products that can be offered

in this nest. In this case, if we offer the assortment (S1, . . . , Sm) over all nests with Si ∈ {0, 1}n for

all i ∈ M , then the probability that a customer decides to make a purchase in nest i is given by

Qi(S1, . . . , Sm) =
Vi(Si)

γi

v0 +
∑

l∈M Vl(Sl)γl
.

This expression determines the probability that a customer decides to make a purchase in a

particular nest as a function of the assortment offered over all nests. The form of the choice

probabilities above can be derived by using a random utility maximization principle; see McFadden

(1974) and Train (2003). In particular, consider the case where each customer associates a random
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utility Uij with product j in nest i and a random utility U0 with the option of not making

a purchase. The customer, being a utility maximizer, follows the option providing the largest

utility. In this case, it is possible to show that if the random utilities {Uij : i ∈ M, j ∈ N} ∪ {U0}
have a certain multi-dimensional generalized extreme value distribution, then the probability of

choosing a particular nest and the probability of choosing a particular product within a nest

have precisely the same forms specified by the nested logit model above. The preference weights

{vij : i ∈ M, j ∈ N} ∪ {v0} characterize the means of the random utilities and a larger value

of vij corresponds to a larger mean of Uij . The random utilities have unit variance and the

dissimilarity parameters {γi : i ∈ M} characterize the correlation structure between the random

utilities. To ensure that the dissimilarity parameters characterize a valid correlation structure, the

nested logit model assumes that γi ∈ (0, 1] for all i ∈ M , which is a sufficient condition to guarantee

compatibility with utility maximizing behavior; see McFadden (1978).

If we offer the assortment (S1, . . . , Sm) over all nests, then the expected revenue obtained from

each customer can be written as

Π(S1, . . . , Sm) =
∑

i∈M

Qi(S1, . . . , Sm) Ri(Si) =
1

v0 +
∑

l∈M Vl(Sl)γl

∑

i∈M

Vi(Si)
γi Ri(Si),

where the second equality uses the definition of Qi(S1, . . . , Sm). In this paper, we consider the

problem of finding an assortment (S1, . . . , Sm) to offer over all nests so as to maximize the expected

revenue Π(S1, . . . , Sm) per customer while making sure that the assortment offered in each nest

satisfies a certain feasibility constraint. We work with two types of feasibility constraints on the

offered assortment in each nest. The first type of constraints correspond to cardinality constraints,

limiting the number of products in the assortment offered in each nest. So, the feasible assortments

in nest i are given by Ci = {Si ∈ {0, 1}n :
∑

j∈N Sij ≤ ci}, where ci is the maximum number of

products that we can offer in nest i. The second type of constraints correspond to space constraints,

where there is a space requirement for each product and each nest provides a limited amount of

available space. The total amount of space consumed by the products offered in a nest cannot

exceed the space availability of the nest. In this case, using wij to denote the space requirement of

product j in nest i and ci to denote the amount of space available in nest i, the feasible assortments

in nest i are given by Ci = {Si ∈ {0, 1}n :
∑

j∈N wij Sij ≤ ci}. We assume that wij ≤ ci for

all i ∈ M , j ∈ N , implying that it is feasible to offer each product by itself. Our goal is to

find an assortment over all nests so that we maximize the expected revenue obtained from each

customer while making sure that the assortment offered in each nest satisfies the cardinality or

space constraint, yielding the problem

Z∗ = max
(S1,...,Sm)∈C1×...×Cm

Π(S1, . . . , Sm), (1)

where the feasible assortments (C1, . . . , Cm) may correspond to cardinality or space constraints. We

focus on finding a solution to problem (1) in a tractable fashion throughout the paper.

The cardinality or space constraints in problem (1) separately limit the cardinality or space

consumption of the assortment offered in each nest. There are a variety of situations where it
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may be necessary to impose such constraints. As an example of a case where space constraints

arise, consider the situation where each nest corresponds to a different retail store. Each retail

store provides a certain amount of display space to show the assortment of products offered to

customers. The display space is used to show one floor sample for each offered product. It is common

to display one floor sample for each offered product when selling electronic equipment and household

appliances, such as computers, stereos, refrigerators, dishwashers and air conditioners. The floor

sample of each product, if offered, occupies a fixed amount of space, irrespective of what other

products are offered. Due to limited display space, it may be necessary to limit the total amount of

space consumed by the floor samples of the products offered in each retail store. Similarly, if each

nest corresponds to a different product category, then it may be necessary to limit the cardinality or

total space consumption of the floor samples of the products offered in each product category. For

example, a product category may correspond to the television set models with a particular screen

size. A retail store may display one floor sample for each offered television set model. To ensure

that the product offering is not dominated by television set models with a particular screen size,

the retail store may limit the cardinality or total space consumption of the floor samples of the

offered television set models with each possible screen size.

As another example, consider the situation where a company offers its products in multiple

sales channels, such as an online sales channel and a conventional retail store. In this case, each

nest may correspond to a different sales channel and customers may be substituting between the

products in the same sales channel as well as between the products in different sales channels. Each

product, if offered, occupies a fixed amount of space in the online sales channel, which corresponds

to the website real estate used for the offered product. Noting that customers are likely to

pay attention to top results in online searches, there is essentially limited website real estate for

displaying the products offered to customers. Thus, the necessity to separately impose constraints

on the cardinality or space consumption of the assortment offered in each nest arises in numerous

settings. In our examples, the application area naturally calls for imposing constraints on the

assortment offered in each nest, rather than imposing one monolithic constraint spanning the

assortment offered over all nests.

We observe that our formulation of the nested logit model assumes that the preference weights

{vij : i ∈ M, j ∈ N}∪{v0} and the dissimilarity parameters {γi : i ∈ M} are constants, independent

of the offered assortment of products. This assumption originates from the first principles of the

nested logit model. The nested logit model is based on the assumption that a customer associates

a random utility with each product in each nest. The utility Uij associated with product j in nest

i is of the form Uij = ūij + εij , where ūij is the deterministic mean utility and εij is the random

idiosyncratic utility with mean zero. The idiosyncratic utilities {εij : i ∈ M, j ∈ N} have a multi-

dimensional generalized extreme value distribution. The idiosyncratic utilities for the products in

different nests are independent of each other, whereas the idiosyncratic utilities for the products in

the same nest i have a correlation coefficient of 1− γi. Once a customer associates random utilities

with all of the products based on this mean and correlation structure, the customer chooses the
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available product that provides the largest utility. The probability of choosing a particular product

under this utility maximization interpretation has precisely the same form specified by the nested

logit model, as long as we set the preference weight of product j in nest i as vij = eūij/γi ; see

Train (2003). Under this setup, we impose a fixed correlation structure on the utilities of all of the

products, which does not depend on what products are available. This approach has some similarity

to what is done in portfolio theory, where one estimates the correlation structure between the returns

of different assets and assumes that the correlation structure does not change based on what assets

are included in the portfolio. However, it is worthwhile to emphasize that the correlation structure

assumed by the nested logit model is quite parsimonious since the correlation structure between

the utilities of the products in the same nest i is captured by one parameter γi.

Thus, assortment independent preference weights and dissimilarity parameters originate from

the first principles of the nested logit model. One way to justify assortment independent preference

weights and dissimilarity parameters is to assume that the customer associates a random utility with

each product without paying attention to what products are or will eventually be available. Through

such an evaluation process, the customer associates utilities with all of the products that can

potentially be offered. Once utilities are attached to all of the products, the customer chooses

the available product that provides the largest utility. If the utilities of the products have the

multi-dimensional generalized extreme value distribution described above, then this choice process

precisely corresponds to the choice probabilities given by our nested logit model.

Finally, our formulation of the nested logit model assumes that if a customer decides to make

a purchase in one of the nests, then the customer must choose one of the products offered in this

nest. We can relax this assumption to model the possibility that a customer may leave without

purchasing anything even after choosing a particular nest. All of our results continue to hold under

this relaxation. In particular, we can assume that there is a no preference weight vi0 associated

with nest i. In this case, using 1(·) to denote the indicator function, if we offer the assortment

Si ∈ {0, 1}n in nest i, then the total preference weight of all offered options in nest i is given by

Vi(Si) = vi0 1(Si ̸= 0̄)+
∑

j∈N vij Sij . Given that a customer decides to make a purchase in nest i, if

the assortment Si is offered in this nest, then the probability that the customer chooses product j is

vij Sij/Vi(Si). Therefore, if Si ̸= 0̄, then the customer leaves nest i without making a purchase with

probability vi0/Vi(Si). Due to the indicator function in the definition of Vi(Si) in this paragraph,

we have Vi(0̄) = 0 so that customers are not attracted to nest i at all when the empty assortment is

offered in this nest. We can verify that all of our results continue to hold when we allow customers

to leave a nest without purchasing anything by defining Vi(Si) = vi0 1(Si ̸= 0̄) +
∑

j∈N vij Sij . We

come back this extension at appropriate places in the paper.

2 Combining Candidate Assortments

In this section, we answer a fundamental question that arises when constructing an algorithm to

solve problem (1). Assume that we are given a collection of candidate assortments {At
i : t ∈ Ti} to
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offer in nest i. All of the assortments in the collection are feasible in the sense that At
i ∈ Ci for all

t ∈ Ti and the set of feasible assortments Ci may correspond to cardinality or space constraints. For

each nest i, we want to find an assortment Ŝi ∈ {At
i : t ∈ Ti} such that the combined assortment

(Ŝ1, . . . , Ŝm) provides the largest expected revenue among all assortments of the form (S1, . . . , Sm)

with Si ∈ {At
i : t ∈ Ti}. In other words, we want to use the collections of candidate assortments

{At
i : t ∈ Ti} for all i ∈ M to stitch together the best assortment to offer over all nests. Finding an

answer to this question by brute force is computationally difficult since there are |T1| × . . . × |Tm|
possible combinations of assortments to choose over all nests.

We can solve a linear program to obtain an assortment that provides the largest expected

revenue among all assortments of the form (S1, . . . , Sm) with Si ∈ {At
i : t ∈ Ti}. The number of

decision variables and the number of constraints in this linear program increase linearly with the

number of nests and the number of assortments in the candidate collection, rendering the linear

program practical to use even when the number of nests and the number of candidate assortments

are large. To formulate this linear program, we begin with the following lemma that shows how we

can stitch together the best assortment to offer over all nests by using the collections of candidate

assortments {At
i : t ∈ Ti} for all i ∈ M .

Lemma 1 For all i ∈ M , assume that we have a collection of assortments {At
i : t ∈ Ti} with

At
i ∈ Ci for all t ∈ Ti. If we let ẑ be the value of z that satisfies

v0 z =
∑

i∈M

max
Si∈{At

i : t∈Ti}

{
Vi(Si)

γi(Ri(Si) − z)
}

, (2)

then ẑ corresponds to the largest expected revenue that can be obtained by using assortments of the

form (S1, . . . , Sm) with Si ∈ {At
i : t ∈ Ti}. Furthermore, if we let Ŝi, i ∈ M be an optimal solution

to the problem

max
Si∈{At

i : t∈Ti}

{
Vi(Si)

γi(Ri(Si) − ẑ)
}

, (3)

then the assortment (Ŝ1, . . . , Ŝm) provides the largest expected revenue among all assortments of

the form (S1, . . . , Sm) with Si ∈ {At
i : t ∈ Ti}.

Proof. Letting ẑ and Ŝi be as defined in the lemma, it is enough to show that ẑ is at least

as large as the expected revenue provided by any assortment of the form (S1, . . . , Sm) with

Si ∈ {At
i : t ∈ Ti} and the expected revenue provided by the assortment is (Ŝ1, . . . , Ŝm) is

ẑ. To show the second statement, since ẑ is the value of z satisfying (2) and Ŝi is an optimal

solution to problem (3), we get v0 ẑ =
∑

i∈M Vi(Ŝi)
γi(Ri(Ŝi) − ẑ). Solving for ẑ in the last

expression, we obtain ẑ =
∑

i∈M Vi(Ŝi)
γiRi(Ŝi)/(v0 +

∑
i∈M Vi(Ŝi)

γi) = Π(Ŝ1, . . . , Ŝm), where the

last equality follows from the definition of Π(S1, . . . , Sm). Thus, the expected revenue provided by

the assortment (Ŝ1, . . . , Ŝm) is ẑ, establishing the second statement. To show the first statement,

for any assortment (S̃1, . . . , S̃m) with S̃i ∈ {At
i : t ∈ Ti}, S̃i provides a feasible but not necessarily
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an optimal solution to the maximization problem on the right side of (2), in which case, we obtain

v0 ẑ ≥ ∑
i∈M Vi(S̃i)

γi(Ri(S̃i) − ẑ). Solving for ẑ in the last inequality and using the definition of

Π(S1, . . . , Sm) once more, we get ẑ ≥ Π(S̃1, . . . , S̃m). Thus, for any assortment (S̃1, . . . , S̃m) with

S̃i ∈ {At
i : t ∈ Ti}, ẑ is at least as large as the expected revenue provided by this assortment. Since

our choice of S̃i is arbitrary, ẑ is at least as large as the expected revenue from any assortment of

the form (S1, . . . , Sm) with Si ∈ {At
i : t ∈ Ti}, establishing the first statement. �

Thus, Lemma 1 shows that if we use ẑ to denote the value of z satisfying (2) and let Ŝi

be an optimal solution to problem (3), then the assortment (Ŝ1, . . . , Ŝm) is the best assortment

among all assortments of the form (S1, . . . , Sm) with Si ∈ {At
i : t ∈ Ti}. This result provides

an answer to the question that we pose at the beginning of this section. One remaining

question, however, is that how we can find a value of z satisfying (2). Noting that the left

side of (2) is strictly increasing in z and the right side is decreasing in z, there always exists

a unique value of z satisfying (2). To construct a simple approach for obtaining the value

of z that satisfies (2), we observe that this value of z corresponds to the optimal objective

value of the optimization problem min{z : v0 z ≥ ∑
i∈M maxSi∈{At

i : t∈Ti}{Vi(Si)
γi(Ri(Si) − z)}}. To

linearize the constraint in this problem, we define the decision variables y = (y1, . . . , ym) as

yi = maxSi∈{At
i : t∈Ti}{Vi(Si)

γi(Ri(Si) − z)} and write the last optimization problem as

min

{
z : v0 z ≥

∑

i∈M

yi, yi ≥ Vi(Si)
γi(Ri(Si) − z) ∀Si ∈ {At

i : t ∈ Ti}, i ∈ M

}
, (4)

where the decision variables are (z, y). The problem above is a linear program with 1 + m decision

variables and 1 +
∑

i∈M |Ti| constraints, which is tractable as long as the number of candidate

assortments is not too large. The next theorem follows from the discussion in this paragraph.

Theorem 2 Let ẑ be the optimal objective value of the linear program in (4) and Ŝi be an optimal

solution to problem (3). Then, the assortment (Ŝ1, . . . , Ŝm) provides the largest expected revenue

among all assortments of the form (S1, . . . , Sm) with Si ∈ {At
i : t ∈ Ti}.

If we are given collections of candidate assortments {At
i : t ∈ Ti} for all i ∈ M , then Theorem

2 provides a systematic approach for stitching together the best assortment over all nests. All we

need to do is to solve the linear program in (4) to obtain its optimal objective value. Using ẑ to

denote the optimal objective value of this linear program and Ŝi to denote the optimal solution

to problem (3), the assortment (Ŝ1, . . . , Ŝm) is the best assortment we can obtain by using the

collection of candidate assortments {At
i : t ∈ Ti} for nest i. In the next section, we consider the

question of how we can come up with a good collection of candidate assortments. Closing this

section, we observe that the proofs of Lemma 1 and Theorem 2 do not use a particular structure

for the form of Vi(Si). Therefore, these results continue to hold when we allow a customer to leave

a nest without purchasing anything by letting Vi(Si) = vi0 1(Si ̸= 0̄) +
∑

j∈N vij Sij .
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3 Obtaining Candidate Assortments

In this section, we show how to obtain a collection of candidate assortments for each nest so that the

best assortment that we can stitch together by focusing on these candidate assortments provides a

certain performance guarantee. In the next lemma, we give characterization of good assortments

for each nest.

Lemma 3 Let (S∗
1 , . . . , S∗

m) be an optimal solution to problem (1) with the objective value Z∗ and

set u∗
i = max{Z∗, γi Z

∗ + (1 − γi) Ri(S
∗
i )} for all i ∈ M . If the assortments Ŝi, i ∈ M satisfy

α Vi(Ŝi) (Ri(Ŝi) − u∗
i ) ≥ max

Si∈Ci

{
Vi(Si) (Ri(Si) − u∗

i )
}

(5)

for some α ≥ 1, then α Π(Ŝ1, . . . , Ŝm) ≥ Z∗.

Proof. For notational brevity, we let V̂i = Vi(Ŝi), V ∗
i = Vi(S

∗
i ), R̂i = Ri(Ŝi) and R∗

i = Ri(S
∗
i )

throughout the proof. We claim that α V̂ γi
i (R̂i −Z∗) ≥ (V ∗

i )γi (R∗
i −Z∗) for all i ∈ M . We proceed

to showing this claim by separately considering a nest i satisfying R∗
i > Z∗ and a nest i satisfying

R∗
i ≤ Z∗. First, consider a nest i satisfying R∗

i > Z∗. For this nest, we have u∗
i = γi Z

∗ +(1−γi) R∗
i

by the definition of u∗
i . If we evaluate the objective function of the maximization problem on the

right side of (5) with Si = S∗
i , then since S∗

i is a feasible but not necessarily an optimal solution to

this maximization problem, we get α V̂i (R̂i − γi Z
∗ − (1 − γi) R∗

i ) ≥ V ∗
i (R∗

i − γi Z
∗ − (1 − γi) R∗

i ).

Arranging the terms in this inequality, it follows that

α V̂i (R̂i − Z∗) ≥ (γi V
∗
i + α (1 − γi) V̂i) (R∗

i − Z∗). (6)

Since γi ∈ (0, 1], uγi is a concave function of u and it satisfies the subgradient inequality uγi ≤
ûγi + γi û

γi−1(u − û) = ûγi−1 (γi u + (1 − γi) û) ≤ ûγi−1 (γi u + α (1 − γi) û) for all u, û ∈ ℜ+, where

the last inequality uses the fact that α ≥ 1 and γi ≤ 1. Using this subgradient inequality with

u = V ∗
i and û = V̂i, we get (V ∗

i )γi ≤ V̂ γi−1
i (γi V

∗
i + α (1 − γi) V̂i). Since Ri(S

∗
i ) = R∗

i > Z∗ ≥ 0,

we have S∗
i ̸= 0̄, showing that V ∗

i > 0, in which case, (6) implies that V̂i > 0. In this case, if we

multiply both sides of (6) by V̂ γi−1
i , then we obtain

α V̂ γi
i (R̂i − Z∗) ≥ V̂ γi−1

i (γi V
∗
i + α (1 − γi) V̂i) (R∗

i − Z∗),

but noting that (V ∗
i )γi ≤ V̂ γi−1

i (γi V
∗
i + α (1 − γi) V̂i) and R∗

i > Z∗, the inequality above yields

α V̂ γi
i (R̂i−Z∗) ≥ (V ∗

i )γi (R∗
i −Z∗). Thus, our claim holds for all i ∈ M satisfying R∗

i > Z∗. Second,

consider a nest i satisfying R∗
i ≤ Z∗. For this nest, we have u∗

i = Z∗ by the definition of u∗
i . If we

evaluate the objective function of the maximization problem on the right side of (5) with Si = 0̄,

then since 0̄ is a feasible but not necessarily an optimal solution to this maximization problem and

Vi(0̄) = 0, we obtain α V̂i (R̂i−Z∗) ≥ Vi(0̄) (Ri(0̄)−Z∗) = 0, indicating that α V̂i (R̂i−Z∗) ≥ 0. The

last inequality implies that either V̂i = 0, or V̂i > 0 and R̂i −Z∗ ≥ 0. In either case, since R∗
i ≤ Z∗,
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we obtain α V̂ γi
i (R̂i − Z∗) ≥ 0 ≥ (V ∗

i )γi (R∗
i − Z∗), which establishes our claim for all i ∈ M

satisfying R∗
i ≤ Z∗. Thus, our claim holds for all of the nests

By the claim established above, we have α Vi(Ŝi)
γi (Ri(Ŝi) − Z∗) ≥ Vi(S

∗
i )γi (Ri(S

∗
i ) − Z∗) for

all i ∈ M . Adding this inequality over all i ∈ M , we obtain
∑

i∈M Vi(S
∗
i )γi (Ri(S

∗
i ) − Z∗) ≤∑

i∈M α Vi(Ŝi)
γi (Ri(Ŝi) − Z∗) ≤ ∑

i∈M Vi(Ŝi)
γi (α Ri(Ŝi) − Z∗), where the second inequality uses

the fact that α ≥ 1 and Z∗ ≥ 0. On the other hand, since (S∗
1 , . . . , S∗

m) is an optimal solution to

problem (1) with the objective value Z∗, we have

Z∗ = Π(S∗
1 , . . . , S∗

m) =

∑
i∈M Vi(S

∗
i )γiRi(S

∗
i )

v0 +
∑

i∈M Vi(S∗
i )γi

.

Focusing on the first and last terms in the chain of equalities above and arranging the terms, we

obtain v0 Z∗ =
∑

i∈M Vi(S
∗
i )γi(Ri(S

∗
i )−Z∗). If we use this equality in the last chain of inequalities

in this paragraph, then it follows that v0 Z∗ ≤ ∑
i∈M Vi(Ŝi)

γi (α Ri(Ŝi) − Z∗) and solving for Z∗

in this inequality yields Z∗ ≤ α
∑

i∈M Vi(Ŝi)
γiRi(Ŝi)/(v0 +

∑
i∈M Vi(Ŝi)

γi) = α Π(Ŝ1, . . . , Ŝm),

establishing the desired result. �

Lemma 3 implies that if we use Ŝα
i to denote an α-approximate solution to the maximization

problem on the right side of (5), then the assortment (Ŝα
1 , . . . , Ŝα

m) is an α-approximate solution to

problem (1). On the surface, this lemma is not immediately useful for obtaining good solutions to

problem (1) since obtaining an α-approximate solution to the maximization problem on the right

side of (5) requires knowing u∗
i , which, in turn, requires knowing Z∗ and S∗

i , both of which are

unknown to us without knowing the optimal solution to problem (1). To resolve this difficulty, the

important observation is that the quantity u∗
i in the maximization problem on the right side of (5) is

a constant. To exploit this observation, for any u ∈ ℜ+, we use Ŝα
i (u) to denote an α-approximate

solution to the problem

max
Si∈Ci

{
Vi(Si) (Ri(Si) − u)

}
. (7)

In this case, we note that the collection of assortments {Ŝα
i (u) : u ∈ ℜ+} includes an α-approximate

solution to the maximization problem on the right side of (5), since problem (7) with u = u∗
i is

precisely the same as the maximization problem on the right side of (5). Therefore, it follows

that the collection of assortments {Ŝα
i (u) : u ∈ ℜ+} includes an α-approximate solution to the

maximization problem on the right side of (5). This observation, in view of Lemma 3, implies

that if we use {Ŝα
i (u) : u ∈ ℜ+} as the collection of candidate assortments for each nest i, then

the best assortment that we can stitch together by focusing only on these collections of candidate

assortments provides an expected revenue that deviates from the optimal expected revenue by no

more than a factor of α.

To summarize the discussion in the paragraph above, assume that we can come up with a

collection of assortments {At
i : t ∈ Ti} such that this collection always includes an α-approximate

solution to problem (7) for any u ∈ ℜ+. In other words, {At
i : t ∈ Ti} ⊃ {Ŝα

i (u) : u ∈ ℜ+}. In this
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case, the best assortment of the form (Ŝ1, . . . , Ŝm) with Ŝi ∈ {At
i : t ∈ Ti} provides an expected

revenue that deviates from the optimal expected revenue for problem (1) by no more than a factor

of α. We record this observation in the next theorem.

Theorem 4 Assume that the collection of assortments {At
i : t ∈ Ti} includes an α-approximate

solution to problem (7) for any u ∈ ℜ+. Then, there exists an assortment (Ŝ1, . . . , Ŝm) with

Ŝi ∈ {At
i : t ∈ Ti} such that α Π(Ŝ1, . . . , Ŝm) ≥ Z∗.

Theorems 2 and 4 play a key role to construct algorithms for solving problem (1). In particular,

if we can come up with a reasonably small collection of assortments {At
i : t ∈ Ti} such that this

collection always includes an α-approximate solution to problem (7) for any u ∈ ℜ+, then Theorem

4 implies that the expected revenue from the best assortment (Ŝ1, . . . , Ŝm) with Ŝi ∈ {At
i : t ∈ Ti}

deviates from the optimal expected revenue by at most a factor of α. On the other hand, Theorem

2 implies that the best assortment (Ŝ1, . . . , Ŝm) with Ŝi ∈ {At
i : t ∈ Ti} can be obtained by solving

a linear program with 1 + m decision variables and 1 +
∑

i∈M |Ti | constraints. These observations

show that if, for some α ≥ 1, we can come up with a reasonably small collection of assortments

that includes an α-approximate solution to problem (7) for any u ∈ ℜ+, then we can solve a

linear program with small numbers of decision variables and constraints to obtain an assortment

whose expected revenue deviates from the optimal expected revenue by at most a factor of α. This

discussion essentially reduces the job of obtaining good solutions to problem (1) to the job of

obtaining good solutions to problem (7) for any u ∈ ℜ+.

In general, it may not be possible to come up with a reasonably small collection of assortments

{At
i : t ∈ Ti} that includes an α-approximate solution to problem (7) for any u ∈ ℜ+. However,

the useful feature of problem (7) is that its objective function is given by

Vi(Si) (Ri(Si) − u) = Vi(Si)

[∑
j∈N vij rij Sij

Vi(Si)
− u

]
=

∑

j∈N

vij (rij − u) Sij , (8)

where the last equality follows from the fact that Vi(Si) =
∑

j∈N vij Sij . Therefore, the objective

function of problem (7) is linear in Si. In the next two sections, we exploit this linearity to

show that if the feasible assortments are given by cardinality or space constraints, then we can

indeed come up with a reasonably small collection of assortments that includes an α-approximate

solution to problem (7) for any u ∈ ℜ+. Closing this section, we emphasize that as far as the

particular form of Vi(Si) is concerned, the proof of Lemma 3 only uses the fact that Vi(0̄) = 0,

which continues to hold when we define Vi(Si) as Vi(Si) = vi0 1(Si ̸= 0̄) +
∑

j∈N vij Sij . Thus, this

lemma holds even when we allow a customer to leave a nest without purchasing anything by letting

Vi(Si) = vi0 1(Si ̸= 0̄) +
∑

j∈N vij Sij . Once Lemma 3 continues to hold, Theorem 4 immediately

follows from this lemma. Our results in the rest of the paper build on Theorems 2 and 4. Since

these theorems continue to hold when customers are allowed to leave a nest without making a

purchase, our subsequent results continue to hold under this extension as well.
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4 Cardinality Constraints

In this section, we consider the case where the feasible assortments in nest i are captured by

Ci = {Si ∈ {0, 1}n :
∑

j∈N Sij ≤ ci}, which corresponds to constraining the cardinality of the

assortment offered in nest i to ci. For this case, we show that we can come up with a collection of

assortments {At
i : t ∈ Ti} such that this collection always includes an optimal, or 1-approximate,

solution to problem (7) for any u ∈ ℜ+. Furthermore, we show that the collection {At
i : t ∈ Ti}

includes O(n2) assortments and each one of the assortments in this collection can be identified in

a tractable fashion. These results, in view of the discussion that follows Theorem 4, imply that

we can find the optimal solution to problem (1) under cardinality constraints simply by solving a

linear program with 1 + m decision variables and O(mn2) constraints.

To characterize the optimal solution to problem (7) for any u ∈ ℜ+, we note that the objective

function of problem (7) can be written as in (8). In this case, we can use the decision variables

xi = (xi1, . . . , xin) ∈ {0, 1}n to write problem (7) under cardinality constraints as

max

{ ∑

j∈N

vij (rij − u) xij :
∑

j∈N

xij ≤ ci, xij ∈ {0, 1} ∀ j ∈ N

}
. (9)

Problem (9) is a knapsack problem where the utility of product j is vij (rij − u) and each product

consumes one unit of space. We can obtain an optimal solution to this knapsack problem by ordering

the products with respect to their utilities and filling the knapsack starting from the product with

the largest utility, as long as the utility of the product exceeds zero. Therefore, the optimal solution

to problem (9) depends only on the ordering and signs of the utilities of the products. To exploit

this observation, we define the linear functions fij(u) = vij (rij − u) for j ∈ N and fi0(u) = 0, in

which case, the function fij(u) corresponds to the utility of product j in the knapsack problem

above. The n + 1 linear functions {fij(·) : j ∈ N ∪ {0}} intersect at O(n2) points, which can

be obtained by solving the equation fij(u) = fik(u) for u for all distinct j, k ∈ N ∪ {0}. We use

{ūt
i : t ∈ Ti} with |Ti| = O(n2) to denote the set of intersection points obtained in this fashion. Since

we are interested in the optimal solution to problem (9) for u ∈ ℜ+, we add the value zero into

the set {ūt
i : t ∈ Ti}. In this case, the points in the set {ūt

i : t ∈ Ti} partition the positive real

line into O(|Ti|) intervals. We denote these intervals by {It
i : t ∈ Ti}. In Figure 1, we show the

linear functions {fij(·) : j ∈ N ∪ {0}}, the points {ūt
i : t ∈ Ti} and the intervals {It

i : t ∈ Ti}
for a possible case with N = {1, 2, 3}. The solid lines show the functions {fij(·) : j ∈ N ∪ {0}},

the circles on the horizontal axis show the points {ūt
i : t ∈ Ti} and the braces on the horizontal

axis show the intervals {It
i : t ∈ Ti}. We observe that the ordering of the values of the linear

functions {fij(u) : j ∈ N ∪ {0}} does not change as long as u takes values in one of the intervals

{It
i : t ∈ Ti}. For example, we have fi2(u) ≥ fi3(u) ≥ fi0(u) ≥ fi1(u) for all u ∈ Id

i and this

ordering of {fij(u) : j ∈ N ∪ {0}} does not change as long as u is in Id
i .

So, the key observation is that the ordering and signs of the utilities of the products in

the knapsack problem in (9) do not change as long as u takes values in one of the intervals
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Figure 1: The linear functions {fij(·) : j ∈ N ∪ {0}}, the points {ūt
i : t ∈ Ti} and the intervals

{It
i : t ∈ Ti} for a possible case with N = {1, 2, 3}.

{It
i : t ∈ Ti}. Since the optimal solution to the knapsack problem depends only on the ordering

and signs of the utilities of the products, the optimal solution does not change either as long as u

takes values in one of these intervals. Therefore, by checking the ordering and signs of the utilities

of the products in each one of the intervals {It
i : t ∈ Ti}, we can come up with the optimal solution

to the knapsack problem for any u ∈ ℜ+. Since there are O(n2) intervals in {It
i : t ∈ Ti}, we can

come up with a collection of assortments {At
i : t ∈ Ti} with |Ti| = O(n2) such that this collection

always includes an optimal solution to problem (7) for any u ∈ ℜ+. The next theorem collects our

observations in this section.

Theorem 5 Under cardinality constraints, there exists a collection of assortments {At
i : t ∈ Ti}

with |Ti| = O(n2) that includes an optimal solution to problem (7) for any u ∈ ℜ+.

In this case, by Theorem 4, the best assortment (Ŝ1, . . . , Ŝm) with Ŝi ∈ {At
i : t ∈ Ti} is an

optimal solution to problem (1). By Theorem 2, on the other hand, we can find the best assortment

(Ŝ1, . . . , Ŝm) with Ŝi ∈ {At
i : t ∈ Ti} by solving a linear program with 1 + m decision variables and

O(mn2) constraints.

It is useful to make some observations regarding the structure of the optimal assortment to

offer in each nest. The discussion in this section shows that if we solve problem (9) for all u ∈ ℜ+,

then one of these solutions for some u ∈ ℜ+ corresponds to the optimal assortment to offer in

nest i. Since problem (9) is a knapsack problem with each product consuming one unit of space,

we include the products with the largest objective function coefficients in the optimal solution

to problem (9). Therefore, when deciding which products to offer in nest i, the products should

be prioritized according to the coefficients {vij (rij − u) : j ∈ N} for some u ∈ ℜ+ and the

value of u is common to all products in this nest. Intuitively, we can visualize u as the imputed
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revenue adjustment for offering a product in nest i. In this case, we prioritize the products in the

nest according to the product of their preference weights and their revenues, after modifying the

revenues by the imputed adjustment. Products with larger preference weights and larger adjusted

revenues get higher priority when choosing the products to include in the optimal assortment.

Interestingly, we can generate counterexamples to show that the optimal expected revenue is not

necessarily a concave function of the capacities in the nests. Therefore, additional units of capacity

may not yield decreasing marginal returns. To understand why this situation occurs, consider a

problem instance with two nests, γ1 = γ2 = 0.37 and v0 = 0.85. The first nest has one product with

r11 = 9 and v11 = 0.06, whereas the second nest has three products with (r21, r22, r23) = (9, 7, 6.5)

and (v21, v22, v23) = (0.75, 2.3, 10). So, the first products in both nests have the largest revenues,

but the second and third products in the second nest have relatively small revenues. The capacity

available in the first nest is c1 = 1. We use Πc2 to denote the optimal expected revenue over

all nests as a function of the capacity c2 available in the second nest. For this problem instance,

we can check that Π1 = Π2 ≈ 5.36 and Π3 ≈ 5.43. So, we get Π2 − Π1 ≤ Π3 − Π2, indicating

that we do not have decreasing marginal returns from additional units of capacity in the second

nest. Furthermore, letting Sc2
2 = (Sc2

21, S
c2
22, S

c2
23) be the optimal assortment in the second nest as a

function of c2, we can verify that S1
2 = S2

2 = (1, 0, 0) and S3
2 = (1, 1, 1).

The crucial tradeoff is between diluting the expected revenue from the second nest and

decreasing the no purchase probability by adding products into the second nest. In particular,

we observe that it is always optimal to offer the product with the largest revenue in the second

nest, irrespective of the capacity available in this nest. If we have two units of capacity in the

second nest, then it is not optimal to add any of the products with small revenues to the offered

assortment. If we add any of these products, then a customer choosing the second nest may end

up purchasing the product with small revenue and this possibility degrades the overall expected

revenue. In other words, offering a product with small revenue dilutes the expected revenue from

the second nest too much. However, if we have three units of capacity in the second nest, then it is

optimal to add both of the products with small revenues to the offered assortment. By offering both

of the products with small revenues, we increase the total preference weight of the products in the

second nest, which, in turn, decreases the probability that a customer leaves without purchasing

anything. Offering the two products with small revenues still dilutes the expected revenue from

the assortment in the second nest, but we decrease the no purchase probability to such an extent

that it becomes worthwhile to dilute the expected revenue from the second nest.

Rusmevichientong, Shen and Shmoys (2010) solve assortment problems under the multinomial

logit model with a cardinality constraint by checking the ordering between n + 1 linear functions

and by constructing a number of candidate assortments. They show that if the number of products

in the offered assortment is limited to C and there are n available products, then they need O(nC)

candidate assortments. Following their argument, we can refine the discussion in this section to

show that we need O(nci) candidate assortments in nest i, rather than O(n2).
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5 Space Constraints

In this section, we consider the case where product j in nest i consumes wij units of space and

the space consumption of the assortment offered in nest i is limited to ci. Therefore, the feasible

assortments in nest i are Ci = {Si ∈ {0, 1}n :
∑

j∈N wij Sij ≤ ci}. Lemma 2.1 in Rusmevichientong

et al. (2009) implies that problem (1) is NP-hard under such space constraints even when there is a

single nest. Under space constraints, we show that we can come up with a collection of assortments

{At
i : t ∈ Ti} that includes a 2-approximate solution to problem (7) for any u ∈ ℜ+. Furthermore,

this collection includes O(n2) assortments. These results, together with the discussion that follows

Theorem 4, imply that we can solve a linear program with 1 + m decision variables and O(mn2)

constraints to obtain an assortment whose expected revenue deviates from the optimal expected

revenue for problem (1) by at most a factor of two, when there are space constraints.

5.1 Performance Guarantee of Two

In this section, our goal is to come up with a collection of assortments {At
i : t ∈ Ti} that includes

a 2-approximate solution to problem (7) for any u ∈ ℜ+. The line of reasoning we follow in this

section is similar to the one in Section 4, but we work with the linear programming relaxation of

a knapsack problem. Noting (8) and using the decision variables xi = (xi1, . . . , xin) ∈ {0, 1}n, we

write problem (7) under space constraints as

max

{ ∑

j∈N

vij (rij − u) xij :
∑

j∈N

wij xij ≤ ci, xij ∈ {0, 1} ∀ j ∈ N

}
. (10)

The problem above is a knapsack problem where the utility of product j is vij (rij − u) and the

space consumption of product j is wij . We can solve the linear programming relaxation of this

knapsack problem by ordering the products with respect to their utility to space consumption ratios

and filling the knapsack starting from the product with the largest utility to space consumption

ratio, as long as the utility of the product exceeds zero. Therefore, the optimal solution to the

linear programming relaxation of the knapsack problem above depends only the ordering and signs

of the utility to space consumption ratios of the products. Also, it is useful to observe that the

optimal solution to the linear programming relaxation obtained in this fashion includes at most

one fractional decision variable.

Following an argument similar to the one in Section 4, we define the linear functions fij(u) =

vij (rij − u)/wij for j ∈ N and fi0(u) = 0, in which case, fij(u) corresponds to the utility to

space consumption ratio of product j in the knapsack problem above. The n + 1 linear functions

{fij(·) : j ∈ N ∪ {0}} intersect at O(n2) points, which can be obtained by solving fij(u) = fik(u)

for u for all distinct j, k ∈ N . We use {ūg
i : g ∈ Gi} with |Gi| = O(n2) to denote the set of

intersection points of the n + 1 linear functions {fij(·) : j ∈ N ∪ {0}} obtained in this fashion. The

points {ūg
i : g ∈ Gi} partition the positive real line into O(|Gi|) intervals. Denoting these intervals

by {Ig
i : g ∈ Gi}, the crucial observation is that the ordering of the values of the linear functions
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{fij(u) : j ∈ N ∪ {0}} does not change as long as u takes values in one of these intervals. Thus, the

ordering and signs of the utility to space consumption ratios of the products in problem (10) do

not change as long as u takes values in one of the intervals {Ig
i : g ∈ Gi}. Noting that the optimal

solution to the linear programming relaxation of problem (10) depends only on the ordering and

signs of the utility to space consumption ratios of the products, the optimal solution to the linear

programming relaxation of the knapsack problem above does not change either when u takes values

in one of the intervals {Ig
i : g ∈ Gi}. We use xg

i = (xg
i1, . . . , x

g
in) ∈ [0, 1]n to denote the optimal

solution to the linear programming relaxation of the knapsack problem in (10) when u takes values

in the interval Ig
i .

Using the solutions {xg
i : g ∈ Gi}, we define the collection of assortments {Sg

i : g ∈ Gi}
such that each assortment Sg

i = (Sg
i1, . . . , S

g
in) ∈ {0, 1}n in this collection is obtained by setting

Sg
ij = ⌊xg

ij⌋ for all j ∈ N , where ⌊·⌋ is the round down function. That is, the assortment Sg
i includes

the products that take value one in the solution xg
i . Augmenting the collection {Sg

i : g ∈ Gi}
with the singleton assortments {{j} : j ∈ N}, we can show that the collection of assortments

{Sg
i : g ∈ Gi} ∪ {{j} : j ∈ N} always includes a 2-approximate solution to the knapsack problem

in (10) for any u ∈ ℜ+. To see this result, assume that we solve the knapsack problem for some

u ∈ ℜ+. By the discussion in the paragraph above, if the point u lies in the interval Ig
i , then the

optimal solution to the linear programming relaxation of the knapsack problem is given by xg
i . In

this case, using z∗(u) to denote the optimal objective value of the knapsack problem above and jg

to denote the fractional component of the solution xg
i when there is one, we obtain

z∗(u) ≤
∑

j∈N

vij (rij − u) xg
ij ≤

∑

j∈N

vij (rij − u) Sg
ij + vijg(rijg − u)

≤ 2max

{ ∑

j∈N

vij (rij − u) Sg
ij , vijg(rijg − u)

}
, (11)

where the first inequality follows from the fact that the linear programming relaxation provides an

upper bound on the optimal objective value of the knapsack problem and the second inequality

follows from the fact that the products in the assortment Sg
i and the product jg collectively include

all components of the solution xg
i that take strictly positive values. The chain of inequalities above

imply that either one of the assortments Sg
i and {jg} is a 2-approximate solution to the knapsack

problem in (10) and the desired result follows. Thus, the intervals {Ig
i : g ∈ Gi} can be constructed

by computing the intersection points of n + 1 linear functions. By checking the ordering and signs

of the utility to space consumption ratios of the products in each one of the intervals {Ig
i : g ∈ Gi},

we can come up with all possible solutions {xg
i : g ∈ Gi} to the linear programming relaxation of the

knapsack problem in (10) for any u ∈ ℜ+. Using these solutions, we can construct the assortments

{Sg
i : g ∈ Gi}. In this case, if we use {At

i : t ∈ Ti} to denote the collection of assortments

{Sg
i : g ∈ Gi} ∪ {{j} : j ∈ N}, then this collection of assortments satisfies |Ti| = O(|Gi|) = O(n2)

and the chain of inequalities in (11) shows that this collection always includes a 2-approximate

solution to problem (7) for any u ∈ ℜ+. We record this result in the next theorem.
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Theorem 6 Under space constraints, there exists a collection of assortments {At
i : t ∈ Ti} with

|Ti| = O(n2) that includes a 2-approximate solution to problem (7) for any u ∈ ℜ+.

Therefore, by Theorem 4, the expected revenue from the best assortment (Ŝ1, . . . , Ŝm) with

Ŝi ∈ {At
i : t ∈ Ti} deviates from the optimal expected revenue by at most a factor of two. By

Theorem 2, we can find the best assortment (Ŝ1, . . . , Ŝm) with Ŝi ∈ {At
i : t ∈ Ti} by solving a linear

program with 1 + m decision variables and O(mn2) constraints.

5.2 Refining the Performance Guarantee of Two

We can refine the performance guarantee of two by making use of the problem data. In particular,

we assume that each product consumes a small fraction of the space available in its nest in the

sense that wij ≤ ϵ ci for some ϵ ∈ [0, 1). In this case, it is possible to show that the collection

of assortments {At
i : t ∈ Ti} constructed by using the approach in Section 5.1 always includes

a 1/(1 − ϵ)-approximate solution to problem (7) for any u ∈ ℜ+. Noting that 1/(1 − ϵ) → 1 as

ϵ → 0, this result implies that the assortments obtained by our approach perform particularly well

when each product, by itself, does not consume too much of the space available in its nest. For

example, if each product consumes less than 10% of the space available in a nest, then we obtain

a performance guarantee of 10/9 instead of two.

To see that the collection of assortments {At
i : t ∈ Ti} constructed in Section 5.1 includes a

1/(1 − ϵ)-approximate solution to problem (7) for any u ∈ ℜ+, assume that we solve the knapsack

problem in (10) for some u ∈ ℜ+. If the point u lies in the interval Ig
i , then the optimal solution to

the linear programming relaxation of the knapsack problem is given by xg
i . If the solution xg

i does

not have any fractional components, then the assortment Sg
i ∈ {At

i : t ∈ Ti} is an optimal solution

to the knapsack problem and the desired result follows immediately. Otherwise, if the solution xg
i

has a fractional component, then it must be the case that the capacity of the knapsack in problem

(10) is totally consumed by the solution xg
i . Therefore, using jg to denote the fractional component

of the solution xg
i and noting the definition of Sg

i , we obtain
∑

j∈N wij Sg
ij +wijg ≥ ci. On the other

hand, noting that all of the products in the assortment Sg
i take value one in the optimal solution

to the linear programming relaxation of the knapsack problem, but product jg takes a fractional

value, the utility to space consumption ratios of the products in the assortment Sg
i must be at least

as large as the utility to space consumption ratio of product jg, which implies that

∑

j∈N

vij (rij − u) Sg
ij =

∑

j∈N

vij (rij − u)

wij
wij Sg

ij ≥ vijg (rijg − u)

wijg

∑

j∈N

wij Sg
ij ,

where the inequality follows from the fact that if product j is in assortment Sg
i satisfying Sg

ij = 1,

then its utility to space consumption ratio vij (rij −u)/wij should be at least as large as the utility

to space consumption ratio of product jg. In this case, if we use z∗(u) to denote the optimal

objective value of the knapsack problem in (10) and note that the optimal objective value of the
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linear programming relaxation of problem (10) yields an upper bound on z∗(u), then we obtain the

chain of inequalities

z∗(u) ≤
∑

j∈N

vij (rij − u) Sg
ij + vijg(rijg − u)

=

{
1 +

vijg(rijg − u)∑
j∈N vij (rij − u) Sg

ij

} ∑

j∈N

vij (rij − u) Sg
ij ≤

{
1 +

wijg∑
j∈N wij Sg

ij

} ∑

j∈N

vij (rij − u) Sg
ij

≤
{

1 +
wijg

ci − wijg

} ∑

j∈N

vij (rij − u) Sg
ij ≤ 1

1 − ϵ

∑

j∈N

vij (rij − u) Sg
ij ,

where the first inequality is identical to the second inequality in (11), the second inequality uses

the fact that
∑

j∈N vij (rij − u) Sg
ij ≥ [vijg (rijg − u)/wijg ]

∑
j∈N wij Sg

ij shown above, the third

inequality follows by noting that
∑

j∈N wij Sg
ij + wijg ≥ ci and the fourth inequality follows by

recalling the assumption that wij ≤ ϵ ci. The chain of inequalities above shows that Sg
i is a

1/(1 − ϵ)-approximate solution to problem (7). So, the collection of assortments {At
i : t ∈ Ti} as

defined in Section 5.1 includes a 1/(1 − ϵ)-approximate solution to problem (7) for any u ∈ ℜ+, as

desired. Therefore, the collection of assortments {At
i : t ∈ Ti} constructed by using the approach

in Section 5.1 not only includes a 2-approximate solution to problem (7) for any u ∈ ℜ+, but if

each product consumes no more than a fraction ϵ of the capacity available in a nest, then this

collection includes a 1/(1 − ϵ)-approximate solution to problem (7) for any u ∈ ℜ+. In this case,

by Theorem 4, the expected revenue from the best assortment (Ŝ1, . . . , Ŝm) with Ŝi ∈ {At
i : t ∈ Ti}

deviates from the optimal expected revenue by at most a factor of min{2, 1/(1 − ϵ)}.

To gain some insight into the structure of the assortments in the collection {At
i : t ∈ Ti} =

{Sg
i : g ∈ Gi} ∪ {{j} : j ∈ N}, we recall that each one of the assortments in {Sg

i : g ∈ Gi} is

obtained by rounding down the solution to the linear programming relaxation of the knapsack

problem in (10) for some u ∈ ℜ+. Since we can solve the linear programming relaxation of this

knapsack problem by ordering the products with respect to their utility to space consumption

ratios, our results in this section suggest that we can obtain good assortments by prioritizing the

products in nest i according to the coefficients {vij (rij − u)/wij : j ∈ N} for some u ∈ ℜ+ and

the value of u is common to all products in this nest. We can visualize u as the imputed revenue

adjustment for offering a product in nest i, in which case, (rij − u)/wij can be interpreted as the

adjusted revenue of product j in nest i per unit of space consumed. So, our results in this section

suggest that it is sensible to prioritize the products in a nest according to the product of their

preference weights and their adjusted revenues per unit of space consumed.

The approach in Section 4 yields an optimal assortment under cardinality constraints, whereas

the approach in this section yields only an approximate solution under space constraints. This

distinction is due to the fact that problem (9) is a knapsack problem where each item occupies one

unit of space and we are able to solve such a knapsack problem in a tractable fashion. In contrast,

problem (10) is a knapsack problem with general space consumptions, which is NP-hard. So, we

have to be content with an approximate solution under space constraints.
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6 Joint Assortment Optimization and Pricing

In this section, we consider a joint assortment optimization and pricing problem under the nested

logit model, where we choose the assortment of products to offer in each nest and set the prices

of the offered products. Customers choose among the offered products according to the nested

logit model and the price of a product affects its preference weight, with higher prices resulting

in lower preference weights. Our goal is to choose the assortment of products to offer in each

nest and set the prices of the offered products to maximize the expected revenue obtained from

each customer. The crucial idea that we use in this section is to transform the joint assortment

optimization and pricing problem into a constrained assortment optimization problem. To achieve

this transformation, we create multiple copies of each product, where each copy of a product

corresponds to offering the product at a different price level. In this case, the joint assortment

optimization and pricing problem reduces to the problem of finding which copy of a product, if any,

should be offered. Once we transform the joint assortment optimization and pricing problem into

a constrained assortment optimization problem, we are able to build on our earlier results to solve

the joint assortment optimization and pricing problem to optimality.

We have m nests indexed by M = {1, . . . , m}. In each nest, there are p products and we index

the products by P = {1, . . . , p}. Each product can be offered at b different price levels, which are

indexed by B = {1, . . . , b}. Our notation implies that the number of possible price levels for each

product is the same, but relaxing this assumption is straightforward. We use ρl
ik to denote the price

associated with price level l of product k in nest i and νl
ik to denote the preference weight of product

k in nest i when we offer this product at price level l. As mentioned above, we can formulate the joint

assortment offering and pricing problem as an assortment optimization problem with constraints

on the offered assortment. In particular, we create b copies of each product corresponding to

different price levels. Thus, we have a total of n = p b product copies in each nest. We refer to

each one of these product copies as a virtual product so that each virtual product corresponds to

offering a certain product at a certain price level. We index the virtual products in each nest by

N = {1, . . . , n}. We use Nk to denote the set of virtual products corresponding to product k ∈ P .

Thus, each one of the virtual products in Nk corresponds to offering product k ∈ P at a certain

price level and we have |Nk| = b and Nk ∩ Nk′ = ∅ for all distinct k, k′ ∈ P . In this case, the

joint assortment optimization and pricing problem becomes that of finding an assortment of virtual

products to offer in each nest subject to the constraint that we offer at most one virtual product

corresponding to each product in a nest. By offering at most one virtual product corresponding

to each product in a nest, we ensure that we choose at most one price level for each product. In

this way, we can formulate the joint assortment optimization and pricing problem as a constrained

assortment optimization problem involving the virtual products.

We use the vector Si = (Si1, . . . , Sin) ∈ {0, 1}n to denote the assortment of virtual products

that we offer in nest i, where Sij = 1 if we offer virtual product j in nest i and Sij = 0 otherwise. If

virtual product j corresponds to offering product k at price level l, then offering virtual product
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j means that we offer product k at price level l. The feasible assortments in nest i are given by

Ci = {Si ∈ {0, 1}n :
∑

j∈Nk
Sij ≤ 1 ∀ k ∈ P}, which ensures that we offer at most one virtual

product for each product k ∈ P . Therefore, if a product is offered, then it is offered at one price

level. We use rij to denote the revenue associated with virtual product j in nest i. Specifically, if

virtual product j corresponds to offering product k at price level l, then we have rij = ρl
ik. Similarly,

we use vij to denote the preference weight associated with virtual product j in nest i. If virtual

product j corresponds to offering product k at price level l, then we have vij = νl
ik.

Once we formulate the problem as a constrained assortment optimization problem involving

the virtual products, we can follow an approach similar to the one in Section 4 to come up with

a collection of assortments {At
i : t ∈ Ti} with |Ti| = O(p b2) such that this collection includes

an optimal solution to problem (7) for any u ∈ ℜ+. In this case, we can obtain the optimal

assortment by solving a linear program with 1+m decision variables and O(mpb2) constraints. To

characterize the optimal solution to problem (7) with the definition of Ci given above, we use the

decision variables xi = (xi1, . . . , xin) ∈ {0, 1}n to write problem (7) as

max

{ ∑

j∈N

vij (rij − u) xij :
∑

j∈Nk

xij ≤ 1 ∀ k ∈ P, xij ∈ {0, 1} ∀ j ∈ N

}
. (12)

The constraints above ensure that at most one virtual product is offered corresponding to any

product in P , implying that we choose at most one price level for each product. For any k ∈ P ,

we can find the optimal values of the decision variables {xij : j ∈ Nk} in the problem above as

follows. Noting the constraint
∑

j∈Nk
xij ≤ 1, among the decision variables {xij : j ∈ Nk}, we find

the one with the largest objective function coefficient. If this objective function coefficient is positive,

then we set the value of this decision variable to one and the values of the other decision variables

in {xij : j ∈ Nk} to zero. Otherwise, we set the values of all decision variables in {xij : j ∈ Nk}
to zero. Therefore, the optimal values of the decision variables {xij : j ∈ Nk} in the problem

above depend only on the ordering and signs of their objective function coefficients. To exploit this

observation, defining the linear functions fij(u) = vij (rij −u) for j ∈ N and fi0(u) = 0, we find the

intersection points of the b + 1 linear functions {fij(·) : j ∈ Nk ∪ {0}} by solving fij(u) = fij′(u)

for u for all distinct j, j′ ∈ Nk ∪ {0}. We let {ūg
ik : g ∈ Gik} with |Gik| = O(b2) be the set of

intersection points obtained in this fashion. Thus, the ordering between the values of the linear

functions {fij(u) : j ∈ Nk ∪ {0}} does not change as long as u takes values between two successive

points in the set {ūg
ik : g ∈ Gik}. Repeating the same argument for all k ∈ P , we obtain the points

{ūg
ik : k ∈ P, g ∈ Gik} and noting that |Gik| = O(b2), there are a total of O(p b2) points in the set

{ūg
ik : k ∈ P, g ∈ Gik}. In this case, the points {ūg

ik : k ∈ P, g ∈ Gik} partition the positive real

line into O(p b2) intervals. We denote these intervals by {It
i : t ∈ Ti} with |Ti| = O(p b2).

The key observation is that the ordering and signs of the objective function coefficients in

problem (12) do not change as long as u takes values in one of the intervals {It
i : t ∈ Ti}. So, the

optimal solution does not change either as long as u takes values in one of these intervals. Therefore,

by checking the ordering and signs of the objective function coefficients in each one of the intervals
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{It
i : t ∈ Ti}, we can come up with the optimal solution to problem (12) for any u ∈ ℜ+. Noting

that there are O(p b2) intervals in {It
i : t ∈ Ti}, we can come up with a collection of assortments

{At
i : t ∈ Ti} with |Ti| = O(p b2) such that this collection always includes an optimal solution to

problem (7) for any u ∈ ℜ+. These observations, in view of Theorems 2 and 4, imply that we can

solve a linear program with 1+m decision variables and O(mpb2) constraints to obtain an optimal

solution to the joint assortment optimization and pricing problem.

Li and Huh (2011) and Gallego and Wang (2011) consider pricing problems under the nested

logit model. Our approach for the joint assortment optimization and pricing problem provides

some unique features when compared with their work. Both Li and Huh (2011) and Gallego and

Wang (2011) assume that there exists a parametric relationship between the price of a product and

its preference weight. In particular, they assume that if we set the price of product k in nest i as

pik, then the preference weight of this product is given by eαik−βik pik , where αik and βik are fixed

parameters of their model. In contrast, we assume that if we use the price level l for product k

in nest i, then the price of this product is given by ρl
ik and the preference weight of this product

is given by νl
ik and the relationship between ρl

ik and νl
ik can be completely arbitrary. Thus, our

approach does not rely on a parametric relationship between the price and preference weight of a

product. Furthermore, since we work with a finite number of possible price levels, we can explicitly

restrict and bound the prices that can be chosen by our model, providing considerable control in

our pricing decisions. For example, if we do not want to use prices outside a certain range, then

we can simply define the set of possible prices {ρl
ik : l ∈ B} of a product within the desired range,

in which case, our model would never choose a price outside the desired range. Similarly, if we

are interested in prices that lie on a certain grid, then we can define the set of possible prices

{ρl
ik : l ∈ B} by focusing only on the prices that lie on this grid. In certain retail applications,

for example, it may be necessary to use prices that lie on the grid {$49.99, $59.99, $69.99,. . .} and

our approach allows us to easily set the prices of the products on this grid. To our knowledge, the

approach followed by Li and Huh (2011) and Gallego and Wang (2011) is not able to impose such

explicit restrictions on prices.

7 Computational Experiments

Section 5 shows that we can solve a linear program with 1 + m decision variables and O(mn2)

constraints to obtain a min{2, 1/(1 − ϵ)}-approximate solution to problem (1) under space

constraints. Throughout this section, we refer to this approach as CFP, standing for constant

factor performance guarantee. In this section, our goal is to give computational experiments that

test the performance of the assortments obtained by CFP under space constraints. Noting that

we can obtain the optimal assortment under cardinality constraints, we do not give computational

experiments under cardinality constraints. Similarly, since it is possible to obtain the optimal

solution to the joint assortment optimization and pricing problem in a tractable fashion, we do not

give computational experiments for this problem setting either.

25



7.1 Experimental Setup

The performance guarantee of min{2, 1/(1 − ϵ)} for CFP can be assuring since this performance

guarantee shows that CFP never performs arbitrarily poorly, always obtaining at least half of the

optimal expected revenue. However, a guarantee of obtaining half of the optimal expected revenue

may not be thoroughly satisfying from a practical perspective and a natural question is whether we

can come up with a way to assess the performance of CFP for an individual problem instance. It

turns out that we can solve a linear program to obtain an upper bound on the optimal expected

revenue Z∗ in problem (1). In particular, it is possible to show that the optimal objective value of

the linear program

min

{
z : v0 z ≥

∑

i∈M

yi, yi ≥
( ∑

j∈N

vij xg
ij

)γi

{∑
j∈N vij rij xg

ij∑
j∈N vij xg

ij

− z

}
∀ g ∈ Gi, i ∈ M

}
, (13)

provides an upper bound on the optimal expected revenue Z∗ in problem (1) when there are space

constraints on the offered assortment. We show this fact in Proposition 7 in Online Supplement

A. In the linear program above, the decision variables are (z, y). The quantity xg
i , as defined in

Section 5, corresponds to the optimal solution to the linear programming relaxation of the knapsack

problem in (10) when u takes values in the interval Ig
i . Thus, we can get a feel for the optimality gap

of the assortment obtained by CFP simply by comparing the expected revenue from this assortment

with the upper bound on the optimal expected revenue provided by the optimal objective value of

the linear program in (13).

In our computational experiments, we generate a large number of problem instances. For each

problem instance, we compute the assortment obtained by CFP and solve the linear program in

(13). In this case, by comparing the expected revenue from the assortment obtained by CFP with

the upper bound on the optimal expected revenue provided by the linear program in (13), we can

bound the optimality gap of the assortment obtained by CFP. In all of our problem instances, the

number of nests is m = 5. The number of products in each nest is either n = 15 or n = 30. To

generate the dissimilarity parameter γi of each nest i, we sample γi from the uniform distribution

over [0.25, 075]. To come up with the revenues and preference weights of the products, we generate

Uij from the uniform distribution over [0, 1] and generate Xij and Yij from the uniform distribution

over [0.75, 1.25]. We set the revenue of product j in nest i as rij = 10 × U2
ij × Xij and set the

preference weight of product j in nest i as vij = 10× (1−Uij)×Yij . In these expressions for rij and

vij , the role of the parameter Uij is to introduce negative correlation between the revenues and the

preference weights so that the more expensive products tend to have smaller preference weights. On

the other hand, the role of the parameters Xij and Yij is to introduce some idiosyncratic noise in

the revenues and the preference weights so that it is not always the case that expensive products

have small preference weights. The exponent of two in U2
ij skews the distribution of the revenues

so that we end up having a large number of products with small revenues, but a small number of

products with large revenues. To come up with the preference weight v0 of the no purchase option,

after generating the dissimilarity parameters of all of the nests and the preference weights of all of
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the products, we calibrate the preference weight v0 of the no purchase option so that a customer

leaves without making any purchase with probability P0 even when all of the products in all of the

nests are offered. We use either P0 = 0.2 or P0 = 0.4 in our computational experiments.

To come up with the space consumptions of the products, we generate wij from the uniform

distribution over [1, 10]. We set the space availability ci of nest i such that the space availability of

the nest is a fraction β of the total space consumption of the products in this nest. In particular,

we set the space availability of nest i as ci = β
∑

j∈N wij , but if ci comes out to be smaller than

any of the space consumptions {wij : j ∈ N} of the products in nest i, then we bump ci up to

max{wij : j ∈ N}. In this way, we ensure that each product fits into the space availability of its

nest, satisfying wij ≤ ci for all i ∈ M , j ∈ N . We use β = 0.1 or β = 0.2 or β = 0.3.

In our computational experiments, we use n ∈ {15, 30}, P0 ∈ {0.2, 0.4} and β ∈ {0.1, 0.2, 0.3},

yielding a total of 12 parameter combinations. For each parameter combination, we randomly

generate 10,000 individual problem instances as described in the previous two paragraphs. For each

problem instance, we compute the assortment obtained by CFP and we solve the linear program

in (13) to obtain an upper bound on the optimal expected revenue.

7.2 Computational Results

Table 1 gives our computational results. The first column in this table shows the parameter

combination of the test problems by using the triplet (n, P0, β). We recall that there are 10,000

problem instances generated in each parameter combination. For each problem instance, we

compute the upper bound on the optimal expected revenue provided by the optimal objective value

of problem (13). We let UBk be this upper bound for problem instance k. We use CFP to obtain an

assortment with min{2, 1/(1−ϵ)}-approximation guarantee for each problem instance. For problem

instance k, we let RCFPk be the expected revenue from the assortment obtained by CFP. The

second column in Table 1 shows the average percent gap between UBk and RCFPk over the problem

instances in a particular parameter combination. The third column shows the 95th percentile of the

percent gaps between UBk and RCFPk. In other words, the second and third columns respectively

give the average and 95th percentile of the data {100 (UBk −RCFPk)/UBk : k = 1, . . . , 10,000}. The

fourth column in Table 1 shows the number of problem instances where the percent gap between

UBk and RCFPk is less than 1%. The interpretations of the fifth to ninth columns are similar to

that of the fourth column, but these five columns respectively give the number of problem instances

where the percent gap between UBk and RCFPk is less than 2%, 3%, 4%, 5% and 10%. The tenth

column in Table 1 shows the average ratio between the space requirement of a product and the

space availability of its nest, averaged over all products in all nests and over all problem instances

in a parameter combination. If each item occupies a large fraction of the capacity availability in

its nest, then the value of ϵ in the performance guarantee min{2, 1/(1 − ϵ)} becomes large and we

expect the performance of CFP to deteriorate. Finally, the goal of the last column in Table 1 is

to give a feel for the binding nature of the space constraints. In particular, this column shows the

27



Param. UBk and RCFPk No. Probs. Given Avg. No. of.

Combin. % Gap UBk and RCFPk % Gap Cons. to. Const.
(n, P0, β) Avg. 95th 1% 2% 3% 4% 5% 10% Cap. Rat. Prob.

(15, 0.2, 0.3) 0.79 2.08 6,879 9,433 9,941 9,994 9,999 10,000 0.22 9,487
(15, 0.2, 0.2) 2.01 4.22 2,044 5,539 8,138 9,343 9,813 10,000 0.33 9,978
(15, 0.2, 0.1) 4.34 8.29 237 1,221 2,929 4,921 6,655 9,856 0.58 9,999

(15, 0.4, 0.3) 1.50 3.14 3,286 7,389 9,375 9,870 9,979 10,000 0.22 9,962
(15, 0.4, 0.2) 3.01 5.59 499 2,565 5,424 7,799 9,090 9,998 0.33 10,000
(15, 0.4, 0.1) 5.59 9.97 37 360 1,279 2,772 4,467 9,510 0.58 10,000

(30, 0.2, 0.3) 0.29 0.79 9,844 10,000 10,000 10,000 10,000 10,000 0.11 9,283
(30, 0.2, 0.2) 0.85 1.71 6,663 9,808 9,994 10,000 10,000 10,000 0.17 9,976
(30, 0.2, 0.1) 2.32 4.10 645 4,146 7,771 9,403 9,892 10,000 0.33 10,000

(30, 0.4, 0.3) 0.65 1.33 8,261 9,981 10,000 10,000 10,000 10,000 0.11 9,963
(30, 0.4, 0.2) 1.30 2.34 3,252 8,844 9,930 9,999 10,000 10,000 0.17 10,000
(30, 0.4, 0.1) 2.80 4.73 194 2,403 6,123 8,688 9,676 10,000 0.33 10,000

Average 2.12 4.02

Table 1: Performance of CFP.

number of problem instances for which the unconstrained optimal solution to problem (1) violates

the space constraint for at least one of the nests.

The results in Table 1 show that the assortments obtained by CFP perform quite well. The

average optimality gap of these assortments is no larger than 2.12%. For nine out of 12 parameter

combinations, the 95th percentile of the optimality gaps comes out to be smaller than 5%, which

shows that the expected revenue loss from using CFP can be bounded by 5% for an overwhelming

majority of our problem instances. The parameter combinations for which CFP provides the

smallest optimality gaps correspond to the cases with β = 0.3. When the value of β is large,

the space availability in each nest tends to be large and each product occupies a small fraction of

the space available in a nest. This trend can also be observed from the second to last column in

Table 1, which shows that the average ratio between the space consumption of the products and

the space availability of the nests is small when β = 0.3. For these cases, the value of ϵ in the

performance guarantee of min{2, 1/(1 − ϵ)} comes out to be small and this performance guarantee

becomes close to one. Therefore, it is not too surprising that CFP performs well when β is on

the large side. The most problematic parameter combination (15, 0.4, 0.1) corresponds to a small

value of β with β = 0.1, but the average optimality gap of the assortments provided by CFP is

still no larger than 5.59% and the optimality gaps are no larger than 9.97% in more than 95%

of the problem instances. For this parameter combination, the second to last column shows that

each item occupies more than half of the space availability in a nest on average, indicating that we

would not be able to offer more than two or three products in each nest. Even in such a drastic

case, CFP continues to perform within 10% of the upper bound on the optimal expected revenue

for more than 95% of the problem instances.

Over all problem instances, in 109,571 out of 120,000 cases, the optimality gaps turn out to be

less than 5%. We note that the attractive performance of CFP in Table 1 is not only due to the

28



fact that this approach finds good assortments, but also due to the fact that the linear program

in (13) provides good upper bounds. Even if we use an arbitrary heuristic to find a solution to

problem (1), we can still use the linear program in (13) to obtain an upper bound on the optimal

expected revenue and we can assess the optimality gap of the heuristic by comparing this upper

bound with the expected revenue from the assortment obtained by the heuristic. If the gap turns

out to be small, then there is no need to look for better assortments.

8 Conclusions and Extensions

In this paper, we study assortment problems under the nested logit model with constraints on the

assortment offered in each nest. We obtain the optimal assortment under cardinality constraints

and an assortment with a performance guarantee under space constraints. Building on our results

for assortment optimization, we can solve a joint assortment optimization and pricing problem to

optimality. Theorems 2 and 4 are pivotal in developing our approach. Given a collection of feasible

assortments for each nest, Theorem 2 shows that we can solve the linear program in (4) to stitch

together the best assortment over all nests. It is worthwhile to note that the form of this linear

program is linked to the nonlinear fractional form of the expected revenue function. In particular,

noting that Z∗ is the optimal objective value of problem (1), we have Z∗ ≥ Π(S1, . . . , Sm) for all

(S1, . . . , Sm) ∈ C1 × . . .×Cm and the inequality holds as an equality at the optimal assortment. By

the definition of Π(S1, . . . , Sm), we can write the last inequality as v0 Z∗ ≥ ∑
i∈M Vi(Si)

γi(Ri(Si)−
Z∗), which implies that the optimal assortment solves the problem

∑

i∈M

max
Si∈Ci

{
Vi(Si)

γi(Ri(Si) − Z∗)
}

.

Theorem 4, on the other hand, shows that if we can come up with a reasonably small collection

of assortments that includes an α-approximate solution to problem (7) for any u ∈ ℜ+, then we

can use these assortments as candidate assortments to obtain an α-approximate solution to the

assortment optimization problem.

We observe that the objective function of problem (7) reduces to
∑

j∈N vij (rij − u) Sij , which

is linear in Si. Exploiting this linearity, if the constraint Si ∈ Ci in problem (7) corresponds to

cardinality or space constraints, then we obtain good solutions to this problem simply by checking

all possible orderings of the objective function coefficients. The same approach is also useful to

solve the joint assortment optimization and pricing problem. There may be other constraints

under which we can obtain good solutions to problem (7) by checking all possible orderings of

the objective function coefficients {vij (rij − u) : j ∈ N} for all u ∈ ℜ+. To make this point

concrete, in Online Supplement B, we give two additional types of constraints under which we

can obtain assortments with performance guarantees. Under the first type of constraints, each

product is designated either as a parent product or as a child product with an associated parent.

A child product cannot be offered unless its parent product is offered. For this setting, we

show how to obtain the optimal assortment. Under the second type of constraints, we have
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both cardinality and space constraints on the offered assortment and we show how to obtain a

2-approximate solution. Furthermore, we can build on our approach to develop approximation

algorithms that provide better performance guarantees as we increase the computational effort. In

Online Supplement C, we give a concrete example of this possibility by showing that if we have

space constraints in problem (1), then given any α > 1, we can solve a linear program with

1+m decision variables and O(m⌈α/(α−1)⌉ n⌈α/(α−1)⌉+2) constraints to find an assortment whose

expected revenue deviates from the optimal by at most a factor of α. This result holds for any

α > 1. Thus, if we are willing to increase the number of constraints in the linear program, then

by choosing α closer to one, we can obtain a performance guarantee closer to one. Finally, using

Ŝi(u) to denote an optimal solution to problem (7) and applying Theorem 4 with α = 1 implies

that if we use {Ŝi(u) : u ∈ ℜ+} as a collection of candidate assortments for each nest i, then we

can stitch together the optimal assortment for problem (1) by using these collections. We can

show that the collection {Ŝi(u) : u ∈ ℜ+} also includes an assortment that maximizes the expected

revenue only from nest i. Thus, we can use the same collection of assortments to maximize the

expected revenue over all nests or to maximize the expected revenue only from nest i, but which

one of these assortments we end up picking to maximize the expected revenue over all nests can be

entirely different from which one we end up picking to maximize the expected revenue only from

nest i. We dwell on this connection in Online Supplement D.

Considering extensions of our work, Davis et al. (2011) use a version of the nested logit model

where vi0 is the preference weight of the no purchase option in nest i. The total preference weight

of the products offered in nest i is Vi(Si) = vi0 +
∑

j∈N vij Sij so that a customer can leave

without purchasing anything even after choosing a nest. In this case, the assortment problem

becomes NP-hard even without constraints on the offered assortment. To get an approximation

algorithm for the assortment problem without any constraints, the authors relate the problem to

a knapsack problem and use existing approximation algorithms for the knapsack problem. If we

incorporate cardinality or space constraints into their approach, then their knapsack problem turns

into a two-dimensional knapsack problem and we can use existing approximation algorithms for

two-dimensional knapsack problems. The same authors also study the case with the dissimilarity

parameters {γi : i ∈ M} exceeding one. The assortment problem even without any constraints

becomes NP-hard in case as well. Since Lemma 3 uses the fact that Vi(Si)
γi is concave in Vi(Si)

when γi ∈ (0, 1], we need a new approach when the dissimilarity parameters exceed one. Finally, we

assume that the preference weights and the dissimilarity parameters are independent of the offered

assortment, but we can try to allow these parameters to depend on the offered assortment. In

this paper, we are able to formulate problem (7) as a linear integer program, such as the ones in

(9) and (10), but we lose the linear structure when the preference weights depend on the offered

assortment. In addition, Lemma 3 uses the fact that Vi(Si)
γi is concave in Vi(Si) when γi ∈ (0, 1], but

it is not clear how to use the corresponding concavity property when the dissimilarity parameters

depend on the offered assortment. Thus, we need a new approach to deal with assortment dependent

preference weights and dissimilarity parameters.
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A Online Supplement: Proposition 7

Proposition 7 is used in Section 7 and it shows that the optimal objective value of problem (13) is

an upper bound on the optimal expected revenue when we have space constraints.

Proposition 7 If we use ẑ to denote the optimal objective value of the linear program in (13),

then we have ẑ ≥ Z∗.

Proof. We let (ẑ, ŷ) be an optimal solution to problem (13) and (S∗
1 , . . . , S∗

m) be an optimal solution

to problem (1). We claim that ŷi ≥ Vi(S
∗
i )γi(Ri(S

∗
i ) − ẑ) for all i ∈ M . To establish this claim, we

note that if u is large enough, then the optimal solution to the linear programming relaxation of

problem (10) is zero. Thus, letting Ig
i and xg

i be as defined in Section 5, there exists an interval

Ig
i such that the solution xg

i to the linear programming relaxation of problem (10) is zero when u

takes values in this interval. In this case, the second set of constraints in problem (13) implies that

ŷi ≥ 0 for all i ∈ M . Therefore, if S∗
i = 0̄ or Ri(S

∗
i ) ≤ ẑ, then we have Vi(S

∗
i )γi(Ri(S

∗
i )− ẑ) ≤ 0 ≤ ŷi

and our claim trivially holds when S∗
i = 0̄ or Ri(S

∗
i ) ≤ ẑ. So, it is enough to establish our claim

with S∗
i ̸= 0̄ and Ri(S

∗
i ) > ẑ.

We let û = γi ẑ + (1 − γi) Ri(S
∗
i ). Letting g be the index of the interval Ig

i that includes û, by

definition, xg
i is the optimal solution to the linear programming relaxation of problem (10) when we

solve this problem with u = û. Therefore, we have
∑

j∈N vij (rij − û) xg
ij ≥ ∑

j∈N vij (rij − û) S∗
ij ,

where we use the fact that xg
i is the optimal solution to the linear programming relaxation of problem

(10) when we solve this problem with u = û but offering the products in S∗
i provides a feasible, but

not necessarily an optimal, solution to this problem. First, we assume that xg
i ̸= 0̄. In this case,

slightly abusing the notation to let Vi(x
g
i ) =

∑
j∈N vij xg

ij and Ri(x
g
i ) =

∑
j∈N vij rij xg

ij/Vi(x
g
i ), the

last inequality can equivalently be written as Vi(x
g
i ) (Ri(x

g
i ) − û) ≥ Vi(S

∗
i ) (Ri(S

∗
i ) − û).

Noting that (ẑ, ŷ) is a feasible solution to problem (13), this solution satisfies the second set of

constraints in problem (13) for the index g defined at the beginning of the previous paragraph, in

which case, we can write this constraint in a compact fashion as ŷi ≥ Vi(x
g
i )

γi(Ri(x
g
i ) − ẑ). Also,

using the fact that uγi is a concave function of u, the subgradient inequality yields Vi(S
∗
i )γi ≤

Vi(x
g
i )

γi + γi Vi(x
g
i )

γi−1 (Vi(S
∗
i ) − Vi(x

g
i )) = γi Vi(x

g
i )

γi−1 Vi(S
∗
i ) + (1 − γi) Vi(x

g
i )

γi . Using these

observations, we have the chain of inequalities

ŷi ≥ Vi(x
g
i )

γi(Ri(x
g
i ) − ẑ) = Vi(x

g
i )

γi(Ri(x
g
i ) − û) + (1 − γi) Vi(x

g
i )

γi(Ri(S
∗
i ) − ẑ)

≥ Vi(x
g
i )

γi−1 Vi(S
∗
i ) (Ri(S

∗
i ) − û) + (1 − γi) Vi(x

g
i )

γi(Ri(S
∗
i ) − ẑ)

= γi Vi(x
g
i )

γi−1 Vi(S
∗
i ) (Ri(S

∗
i ) − ẑ) + (1 − γi) Vi(x

g
i )

γi(Ri(S
∗
i ) − ẑ)

≥ Vi(S
∗
i )γi (Ri(S

∗
i ) − ẑ),

where the first inequality follows from the inequality we establish at the beginning of this paragraph,

the first equality follows by using the definition of û and arranging the terms, the second inequality

2



follows from the fact that Vi(x
g
i ) (Ri(x

g
i ) − û) ≥ Vi(S

∗
i ) (Ri(S

∗
i ) − û), which is established in the

previous paragraph, the second equality follows by using the definition of û and the third inequality

follows by noting that Vi(S
∗
i )γi ≤ γi Vi(x

g
i )

γi−1 Vi(S
∗
i )+ (1− γi) Vi(x

g
i )

γi , which is established above

by using the subgradient inequality. So, our claim holds when xg
i ̸= 0̄.

Second, we assume that xg
i = 0̄ so that the optimal solution to the linear programming relaxation

of problem (10) is zero when this problem is solved with u = û. Thus, the utility of each product

in this problem should be negative, yielding rij ≤ û = γi ẑ + (1 − γi) Ri(S
∗
i ) for all j ∈ N .

Noting Ri(S
∗
i ) > ẑ, the last inequality gives rij < Ri(S

∗
i ) for all j ∈ N . However, since Ri(S

∗
i ) =∑

j∈N vij rij S∗
ij/

∑
j∈N vij S∗

ij by definition, Ri(S
∗
i ) is a weighted average of the product revenues

{rij : j ∈ N} in the assortment S∗
i . So, we cannot have rij < Ri(S

∗
i ) for all j ∈ N , indicating that

the case xg
i = 0̄ cannot occur. Thus, our claim is established and we have ŷi ≥ Vi(S

∗
i )γi(Ri(S

∗
i )− ẑ)

for all i ∈ M . Adding these inequalities over all i ∈ M and noting that v0 ẑ ≥ ∑
i∈M ŷi by the first

constraint in problem (13), we obtain v0 ẑ ≥ ∑
i∈M Vi(S

∗
i )γi(Ri(S

∗
i ) − ẑ), in which case, solving for

ẑ in this inequality and noting the definition of Π(S1, . . . , Sm), we get ẑ ≥ Π(S∗
1 , . . . , S∗

m). So, ẑ is

an upper bound on the expected revenue from the optimal assortment, as desired. �

B Online Supplement: Extensions to Other Constraints

In this section, we show how to extend our approach to additional types of constraints.

B.1 Parent Product Constraints

We consider the case where certain products in a nest are designated as parent products. Each

parent product has a set of child products associated with it and if a parent product is not offered,

then none of its child products can be offered. We refer to this type of constraints as parent product

constraints. Parent product constraints arise when company policy or law requires offering certain

products before offering others. For example, a company may be required to offer the generic

version of a drug before it can offer the brand name versions, in which case, the generic version

acts as the parent product, the brand name versions are the child products of the generic version

and if the generic version is not offered, then none of the brand name versions can be offered. To

capture parent product constraints, we use Pi to denote the set of parent products in nest i. A

parent product j in nest i has the set of child products Cij . If product j is neither a parent product

nor a child product, then we assume that product j is a parent product with an empty set of

child products. Also, we assume that Cij ∩ Cik = ∅ for all distinct j, k ∈ Pi so that two parent

products have different sets of child products. By the last two assumptions, the sets of products

Pi and {Cij : j ∈ Pi} collectively partition N . So, the feasible assortments in nest i under parent

constraints are given by Ci = {Si ∈ {0, 1}n : Sik ≤ Sij ∀ j ∈ Pi, k ∈ Cij}, ensuring that if we do

not offer a parent product, then none of its child products can be offered.

Under parent product constraints, we show that we can come up with a collection of assortments

3



{At
i : t ∈ Ti} that includes an optimal solution to problem (7) for any u ∈ ℜ+. Furthermore, this

collection of assortments includes O(n) assortments. These results, together with Theorems 2 and

4, imply that we can solve a linear program with 1 + m decision variables and O(mn) constraints

to obtain the optimal assortment under parent product constraints. To characterize the optimal

solution to problem (7) for any u ∈ ℜ+, we use the decision variables xi = (xi1, . . . , xin) ∈ {0, 1}n

to write problem (7) under parent product constraints as

max

{ ∑

j∈N

vij (rij − u) xij : xik ≤ xij ∀ j ∈ Pi, k ∈ Cij , xij ∈ {0, 1} ∀ j ∈ N

}
. (14)

Assume that parent product j is offered in the optimal solution to problem (14). In this case,

we are free to offer any of the child products of parent product j. Since it is optimal to offer

one of these child products when their objective function coefficient is positive, if parent product

j is offered, then the total contribution of parent product j and all of its child products to the

objective function of the problem above is given by fij(u) = vij (rij − u) +
∑

k∈Cij
vik [rik − u]+,

where we use [·]+ = max{·, 0}. On the other hand, if parent product j is not offered, then none

of its child products can be offered, in which case, parent product j and all of its child products

make a contribution of zero to the objective function of the problem above. Therefore, it is optimal

to offer parent product j as long as fij(u) > 0. The function fij(·) is decreasing and piecewise

linear with points of nondifferentiability occurring at {rik : k ∈ Cij}. Thus, we can find a value of

ūij such that fij(u) > 0 for any u < ūij and fij(u) ≤ 0 for any u ≥ ūij , in which case, we offer

parent product j in the optimal solution to the problem above when u < ūij and we do not offer

parent product j when u ≥ ūij . If it is optimal not to offer parent product j, then none of its child

products are offered, whereas if it is optimal to offer parent product j, then its child product k is

offered when u < rik. Therefore, by comparing the value of u with ūij and {rik : k ∈ Cij}, we can

decide whether it is optimal to offer parent product j and any of its child products in the optimal

solution to problem (14). Furthermore, it is straightforward to obtain the point ūij . Repeating the

same reasoning for all of the parent products, we obtain the collections of points {ūij : j ∈ Pi} and

{rik : j ∈ Pi, k ∈ Cij}. Since Pi and {Cij : j ∈ Pi} partition N , there are a total of n points in

the collections {ūij : j ∈ Pi} and {rik : j ∈ Pi, k ∈ Cij}. These points completely characterize the

optimal solution to problem (14) since we can compare u with ūij to decide whether it is optimal

to offer parent product j. If this is the case, then we can decide whether it is optimal to offer its

child product k by comparing u with rik.

Since there are a total of n points in the collections {ūij : j ∈ Pi} and {rik : j ∈ Pi, k ∈ Cij},

these points partition the positive real line into O(n) intervals and we denote these intervals by

{It
i : t ∈ Ti} with |Ti| = O(n). We observe that as long as u takes values in one of the intervals

{It
i : t ∈ Ti}, the ordering between u and any of the points in the collections {ūij : j ∈ Pi} and

{rik : j ∈ Pi, k ∈ Cij} does not change. This observation, in view of the discussion in the paragraph

above, implies that the optimal solution to problem (14) does not change as long as u takes values

in one of the intervals {It
i : t ∈ Ti}. Therefore, by comparing the value of u with {ūij : j ∈ Pi} and

{rik : j ∈ Pi, k ∈ Cij} in each one of the intervals {It
i : t ∈ Ti}, we can come up with a collection
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of assortments {At
i : t ∈ Ti} with |Ti| = O(n) such that this collection always includes an optimal

solution to problem (7) for any u ∈ ℜ+, as desired. In this case, Theorem 4 with α = 1 implies

that the best assortment (Ŝ1, . . . , Ŝm) with Ŝi ∈ {At
i : t ∈ Ti} is the optimal solution to problem

(1). By Theorem 2, we can find this best assortment by solving a linear program with 1+m decision

variables and O(mn) constraints.

B.2 Cardinality and Space Constraints

In this section, we consider the case where we have both cardinality and space constraints on the

assortment offered in each nest. In particular, if we use bi to denote the limit on the cardinality

of the assortment offered in nest i, ci to denote the space availability in nest i and wij to denote

the space requirement of product j in nest i, then the feasible assortments in nest i are given by

Ci = {Si ∈ {0, 1}n :
∑

j∈N Sij ≤ bi,
∑

j∈N wij Sij ≤ ci}. For this case, we begin by showing that

we can come up with a collection of assortments {At
i : t ∈ Ti} with |Ti| = O(n2) such that this

collection includes a 3-approximate solution to problem (7) for any u ∈ ℜ+. Thus, we can solve

a linear program with 1 + m decision variables and O(mn2) constraints to obtain a solution to

the assortment optimization problem whose expected revenue deviates from the optimal expected

revenue by no more than a factor of three. Later in this section, we refine our analysis to show

that we can improve this performance guarantee from three to two.

The discussion in this section follows the development in Sections 4 and 5 closely. So, we

mostly focus on the main points. Using the decision variables xi = (xi1, . . . , xin) ∈ {0, 1}n, we

write problem (7) under cardinality and space constraints as

max

{ ∑

j∈N

vij (rij − u) xij :
∑

j∈N

xij ≤ bi,
∑

j∈N

wij xij ≤ ci, xij ∈ {0, 1} ∀ j ∈ N

}
, (15)

which is a cardinality constrained knapsack problem. A basic exercise in duality theory shows

that there are at most n2 possible optimal bases to the linear programming relaxation of problem

(15). Naturally, for any u ∈ ℜ+, the optimal solution to the linear programming relaxation of

problem (15) must correspond to one of these optimal bases. In other words, for any u ∈ ℜ+, the

optimal solution to the linear programming relaxation of problem (15) is one of n2 solutions. By

using the parametric simplex method over u ∈ ℜ+, we can generate all of these n2 solutions. We

use {xg
i : g ∈ Gi} with |Gi| = O(n2) to denote all possible solutions to the linear programming

relaxation of problem (15). Thus, for any u ∈ ℜ+, there exists some xg
i with g ∈ Gi such that xg

i is

the optimal solution to the linear programming relaxation of problem (15).

Implicitly treating the upper bounds 0 ≤ xij ≤ 1 for all j ∈ N in the linear programming

relaxation of problem (15), we observe that there must be two basic decision variables in any

basic optimal solution and the other decision variables have integer values. Thus, the solution xg
i

has at most two fractional components. Using the solution xg
i , we define the assortment Sg

i =

(Sg
i1, . . . , S

g
in) ∈ {0, 1}n such that Sg

ij = ⌊xg
ij⌋ for all j ∈ N . In other words, the assortment Sg

i
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includes the products that take value one in the solution xg
i . In this case, augmenting the collection

of assortments {Sg
i : g ∈ Gi} with the collection of singleton assortments {{j} : j ∈ N}, it is

possible to show that the collection of assortments {Sg
i : g ∈ Gi} ∪ {{j} : j ∈ N} always includes a

3-approximate solution to problem (15) for any u ∈ ℜ+.

To see this result, assume that we solve problem (15) for some u ∈ ℜ+ and let g be such that

xg
i is the optimal solution to the linear programming relaxation of problem (15) when we solve this

problem with the value of u in consideration. By the discussion at the beginning of the paragraph

above, the solution xg
i has at most two fractional components. We use jg

1 to denote the first

fractional component of xg
i when there is one. Similarly, we use jg

2 to denote the second fractional

component of xg
i when there is one. In this case, if we let z∗(u) be the optimal objective value of

problem (15), then noting that the optimal objective value of the linear programming relaxation

provides an upper bound on z∗(u), we obtain the chain of inequalities

z∗(u) ≤
∑

j∈N

vij (rij − u) xg
ij ≤

∑

j∈N

vij (rij − u) Sg
ij + vijg

1
(rijg

1
− u) + vijg

2
(rijg

2
− u)

≤ 3max

{ ∑

j∈N

vijg (rijg − u) Sg
ij , vijg

1
(rijg

1
− u), vijg

2
(rijg

2
− u)

}
, (16)

where the second inequality follows from the fact that the assortment Sg
i , together with jg

1 and

jg
2 , includes all components of the solution xg

i that take strictly positive values. If the solution

xg
i has fewer than two fractional components, then the inequalities above continue to hold if we

ignore the terms that involve jg
1 or jg

2 . From (16), we observe that either one of the assortments Sg
i ,

{jg
1} and {jg

2} is a 3-approximate solution to problem (15). Therefore, the collection of assortments

{Sg
i : g ∈ Gi} ∪ {{j} : j ∈ N} includes a 3-approximate solution to problem (15) for any u ∈ ℜ+

and there are O(n2) assortments in this collection, establishing the desired result.

We can tighten the approximation guarantee from three to two by using a somewhat more

involved definition of the assortment Sg
i . If the solution xg

i has zero or one fractional component,

then we continue defining Sg
i = (Sg

i1, . . . , S
g
in) ∈ {0, 1}n such that Sg

ij = ⌊xg
ij⌋ for all j ∈ N . However,

if the solution xg
i has two fractional components, then using jg

1 and jg
2 to denote these fractional

components with the convention that wijg
1

≤ wijg
2
, we define the assortment Sg

i = (Sg
i1, . . . , S

g
in) ∈

{0, 1}n as Sg
ij = 1 when xg

ij = 1 or j = jg
1 , otherwise Sg

ij = 0. So, the assortment Sg
i includes

all products that take value one and the product with the smaller space requirement that takes

a fractional value in the solution xg
i . In this case, we can show that the collection of assortments

{Sg
i : g ∈ Gi}∪{{j} : j ∈ N} includes a 2-approximate solution to problem (15) for any u ∈ ℜ+. To

see this result, we can follow another basic exercise in duality theory to show that if there are

two fractional components in a basic optimal solution to the linear programming relaxation of

problem (15), then both constraints must be satisfied as equality. Thus, if xg
i has two fractional

components jg
1 and jg

2 , then xg
ijg

1
+ xg

ijg
2

= 1. The last expression, together with the fact that

wijg
1

≤ wijg
2

and xg
i is a feasible solution to the linear programming relaxation of problem (15), yields

ci ≥ ∑
j∈N wij xg

ij =
∑

j∈N wij 1(xg
ij = 1) + wijg

1
xijg

1
+ wijg

2
xijg

2
≥ ∑

j∈N wij 1(xg
ij = 1) + wijg

1
. So,
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the assortment Sg
i , which includes the products {j ∈ N : xg

ij = 1} ∪ {jg
1}, is feasible to problem

(15). In this case, we can use the same line of reasoning in (16) to get

z∗(u) ≤
∑

j∈N

vij (rij − u) xg
ij ≤

∑

j∈N

vij (rij − u) Sg
ij + vijg

2
(rijg

2
− u)

≤ 2 max

{ ∑

j∈N

vij (rij − u) Sg
ij , vijg

2
(rijg

2
− u)

}
,

where the second inequality holds since the assortment Sg
i includes all strictly positive components

of xg
i except for jg

2 . The chain of inequalities above shows that either Sg
i or {jg

2} is a 2-approximate

solution to problem (15), as desired.

C Online Supplement: Better Performance Guarantees under Space Constraints

In Section 5, we describe an approach to obtain a min{2, 1/(1−ϵ)}-approximate solution to problem

(1) under space constraints. The smallest possible value of ϵ that we can use in this performance

guarantee is ϵ̄ = max{wij/ci : i ∈ M, j ∈ N}, indicating that the best performance guarantee from

the approach described in Section 5 is given by min{2, 1/(1 − ϵ̄)}. In particular, even if we are

willing to increase the computational effort, the approach described in Section 5 does not provide

any guidance as to how we can improve this performance guarantee. In this section, our goal is to

show how we can obtain better performance guarantees under space constraints as long as we are

willing to increase the computational effort.

C.1 Improving the Performance Guarantee

The starting point for our discussion is problem (10), which is equivalent to problem (7) under space

constraints. We recall that if we can come up with a collection of assortments {At
i : t ∈ Ti} such that

this collection includes an α-approximate solution to problem (10) for any u ∈ ℜ+, then Theorem

4 implies that the best assortment (Ŝ1, . . . , Ŝm) with Ŝi ∈ {At
i : t ∈ Ti} is an α-approximate

solution to problem (1). Furthermore, by Theorem 2, we can find this best assortment by solving

a linear program with 1 + m decision variables and 1 +
∑

i∈M |Ti| constraints. In this section,

we show that if we are given any α > 1, then we can come up with a collection of assortments

{At
i : t ∈ Ti} with |Ti| = O(⌈α/(α − 1)⌉ n⌈α/(α−1)⌉+2) such that this collection always includes an

α-approximate solution to problem (10) for any u ∈ ℜ+. In this case, by Theorem 4, the best

assortment (Ŝ1, . . . , Ŝm) with Ŝi ∈ {At
i : t ∈ Ti} is an α-approximate solution to problem (1). By

Theorem 2, we can find this best assortment by solving a linear program with 1 + m decision

variables and O(m⌈α/(α − 1)⌉ n⌈α/(α−1)⌉+2) constraints. Thus, by choosing α closer to one, we

can obtain a performance guarantee that is closer to one as long as we are willing to increase the

number of constraints in the linear program.

To characterize approximate solutions to problem (10), we use a special linear programming

relaxation to this problem. Using the decision variables xi = (xi1, . . . , xin) ∈ [0, 1]n, for any given
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J ⊂ N , we consider the problem

max

{ ∑

j∈N

vij (rij − u) xij :
∑

j∈N

wij xij ≤ ci,

xij = 1 ∀ j ∈ J, 0 ≤ xik ≤ 1
(
vik (rik − u) ≤ min

j∈J
{vij (rij − u)}

)
∀ k ∈ N \ J

}
. (17)

We can interpret the problem above as the linear programming relaxation of a knapsack problem

after fixing the values of some of the decision variables at zero or one. In particular, we fix the values

of the decision variables corresponding to the products in J at one. For the remaining decision

variables, if the utility of a product corresponding to one of these decision variables exceeds the

minimum of the utilities of the products in J , then we fix the value of this decision variable at

zero. The role of the indicator function in the third set of constraints is to drop the products with

utilities exceeding the minimum of the utilities of the products in J from consideration. Similar

constraints appear in Frieze and Clarke (1984). The problem above may be infeasible for a certain

J , in which case, we set the values of all decision variables to zero by convention. Problem (17) is the

linear programming relaxation of a knapsack problem, where the utility of product j is vij (rij −u)

and the capacity consumption of product j is wij . So, we can solve this problem by using the

following procedure. We put all of the products in J into the knapsack and drop these products

from consideration. We order the other products with respect to their utilities. If there are any

products whose utilities exceed the smallest of the utilities of the products in J , then we drop these

products from consideration as well. Considering the remaining products, we fill the knapsack

starting from the product with the largest utility to space consumption ratio, as long as the utility

of the product exceeds zero. This procedure implies that the optimal solution to problem (17) does

not change as long as the ordering of the utilities, ordering of the utility to space consumption

ratios and signs of the utilities of the products do not change. Also, there is at most one fractional

decision variable in the optimal solution to problem (17) obtained by using this procedure.

To exploit the fact that the optimal solution to problem (17) does not change as long as

the ordering of the utilities, ordering of the utility to space consumption ratios and signs of the

utilities of the products do not change, we define the linear functions hij(u) = vij (rij − u) and

fij(u) = vij (rij − u)/wij for j ∈ N and hi0(u) = 0, fi0(u) = 0. In this case, hij(u) and fij(u)

respectively capture the utility and utility to space consumption ratio of product j in problem

(17). We use {w̄g
i : g ∈ Hi} to denote the set of intersection points of the n + 1 linear functions

{hij(·) : j ∈ N ∪ {0}} and {ūg
i : g ∈ Hi} to denote the set of intersection points of the n + 1 linear

functions {fij(·) : j ∈ N ∪ {0}}. Thus, there are |Hi| = O(n2) points in each one of these two

sets of intersection points. Collecting the points in the two sets {w̄g
i : g ∈ Hi} and {ūg

i : g ∈ Hi}
together, we observe that the points {w̄g

i : g ∈ Hi} ∪ {ūg
i : g ∈ Hi} partition the positive real line

into O(2 |Hi|) = O(n2) intervals. We use {Ig
i : g ∈ Gi} with Gi = O(n2) to denote these intervals,

in which case, the ordering of the utilities, ordering of the utility to space consumption ratios and

signs of the utilities of the products in problem (17) do not change as long as u takes values in
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one of these intervals. Since the optimal solution to problem (17) depends only on the ordering

of the utilities, ordering of the utility to space consumption ratios and signs of the utilities of the

products, the optimal solution to problem (17) does not change either when u takes values in one of

these intervals. We use xg
i (J) to denote the optimal solution to problem (17) when u takes values

in the interval Ig
i . Our notation for xg

i (J) reflects the fact that the optimal solution to problem

(17) depends on the choice of J .

Using the solution xg
i (J), we define the assortment Sg

i (J) = (Sg
i1(J), . . . , Sg

in(J)) ∈ {0, 1}n as

Sg
ij(J) = ⌊xg

ij(J)⌋ for all j ∈ N . Therefore, the assortment Sg
i (J) includes the products taking value

one in the solution xg
i (J). In this case, using ℘q to denote the set of subsets of N with cardinality not

exceeding q, we propose using the collection of assortments {Sg
i (J) : J ∈ ℘q, g ∈ Gi} as a collection

of possibly good solutions to problem (10). Noting that |℘q| = O(qnq) and |Gi| = O(n2), there are

O(qnq+2) assortments in the collection {Sg
i (J) : J ∈ ℘q, g ∈ Gi}, which can be manageable when q

is not too large. The next lemma shows that this collection always includes a q/(q−1)-approximate

solution to problem (10) for any u ∈ ℜ+. To keep the focus on our main result, we defer the proof

of this lemma to Section C.2.

Lemma 8 Letting Sg
i (J) be as given above, the collection of assortments {Sg

i (J) : J ∈ ℘q, g ∈ Gi}
includes a q/(q − 1)-approximate solution to problem (10) for any u ∈ ℜ+.

For any desired performance guarantee α > 1, setting α = q/(q − 1) and solving for q, we

obtain q = α/(α − 1). Thus, if we choose q = ⌈α/(α − 1)⌉ in the lemma above, then the collection

of assortments {Sg
i (J) : J ∈ ℘⌈α/(α−1)⌉, g ∈ Gi} includes an α-approximate solution to problem

(10) for any u ∈ ℜ+. To come up with this collection of assortments, we compute the intervals

{Ig
i : g ∈ Gi} by finding the intersection points of the linear functions {hij(·) : j ∈ N ∪ {0}} and

{fij(·) : j ∈ N ∪ {0}}. In this case, the ordering of the utilities, ordering of the utility to space

consumption ratios and signs of the utilities of the products in problem (17) do not change when

u takes values in one of the intervals {Ig
i : g ∈ Gi}. Once these intervals are computed, we focus on

each one of them one by one. For each interval Ig
i and for each J ∈ ℘⌈α/(α−1)⌉, we solve problem (17)

to get the optimal solution xg
i (J) and define the assortment Sg

i (J) as above. Since |℘⌈α/(α−1)⌉| =

O(⌈α/(α − 1)⌉ n⌈α/(α−1)⌉) and |Gi| = O(n2), there are O(⌈α/(α − 1)⌉n⌈α/(α−1)⌉+2) assortments in

the collection {Sg
i (J) : J ∈ ℘⌈α/(α−1)⌉, g ∈ Gi}. The next theorem collects our observations.

Theorem 9 Under space constraints, for any α > 1, there exists a collection of assortments

{At
i : t ∈ Ti} with |Ti| = O(⌈α/(α − 1)⌉ n⌈α/(α−1)⌉+2) such that this collection includes an α-

approximate solution to problem (7) for any u ∈ ℜ+.

Thus, Theorem 4 implies that the best assortment (Ŝ1, . . . , Ŝm) with Ŝi ∈ {At
i : t ∈ Ti} provides

a performance guarantee of α for problem (1) under space constraints. Noting Theorem 2, this

best assortment can be obtained by solving a linear program with 1 + m decision variables and
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O(m⌈α/(α−1)⌉ n⌈α/(α−1)⌉+2) constraints. So, for any desired performance guarantee α > 1, finding

an assortment that provides this performance guarantee amounts to solving a linear program with

1 + m decision variables and O(m⌈α/(α − 1)⌉n⌈α/(α−1)⌉+2) constraints. This result demonstrates

how we can improve the performance guarantee by increasing the number of constraints in the

linear program. This approach naturally becomes computationally intractable when α gets too

close to one, but if, for example, we want a performance guarantee of α = 3/2, then the number of

constraints we need comes out to be O(mn5).

The development in this section builds on Frieze and Clarke (1984), where the authors develop

polynomial time approximation schemes for multi-dimensional knapsack problems. However, the

focus of Frieze and Clarke (1984) is on solving a single instance of a multi-dimensional knapsack

problem, but we are interested in finding good solutions to problem (10) for all u ∈ ℜ+.

C.2 Proof of Lemma 8

In this section, we give a proof for Lemma 8. Throughout this section, we denote an assortment

offered in nest i by using a subset Si ⊂ N . This is a slight deviation from our earlier notation

where we use a vector Si ∈ {0, 1}n to denote an assortment offered in nest i, but given a vector

Si ∈ {0, 1}n, we can define the corresponding subset as {j ∈ N : Sij = 1}. Using a subset Si ⊂ N

to denote an assortment offered in nest i considerably simplifies our notation in this section.

Fixing u at an arbitrary û ∈ ℜ+, we use x∗
i to denote the optimal solution to problem (10)

when solved with u = û. We have the assortment S∗
i = {j ∈ N : x∗

ij = 1} ⊂ N corresponding to

this optimal solution. Throughout the proof, we let ĝ be such that û takes a value in the interval

I ĝ
i , where the intervals {Ig

i : g ∈ Gi} are as defined in Section C.1 of Online Supplement C. We

begin by considering the case |S∗
i | ≤ q so that there are q or fewer products in the assortment S∗

i . If

|S∗
i | ≤ q, then we have S∗

i ∈ ℘q. In this case, noting that J ⊂ Sg
i (J) by the definitions of xg

i (J) and

Sg
i (J), we have S∗

i ⊂ S ĝ
i (S∗

i ), which implies that
∑

j∈S∗
i
vij (rij − û) ≤ ∑

j∈Sĝ
i (S∗

i )
vij (rij − û). Thus,

the assortment S ĝ
i (S∗

i ) provides a better objective value for problem (10) than the assortment S∗
i

when this problem is solved with u = û. So, the assortment S ĝ
i (S∗

i ) is also optimal to problem (10)

when solved with u = û. Also, since S∗
i ∈ ℘q, we have S ĝ

i (S∗
i ) ∈ {Sg

i (J) : J ∈ ℘q, g ∈ Gi}, showing

that the collection of assortments {Sg
i (J) : J ∈ ℘q, g ∈ Gi} includes an optimal solution to problem

(10) when this problem is solved with u = û. Since û is arbitrary, we are done.

In the rest of the proof, we assume that |S∗
i | > q. We let J∗

i be the subset of S∗
i that includes

the q elements of S∗
i with the largest utilities in problem (10) when this problem is solved with

u = û. Since |S∗
i | > q, J∗

i is well defined. Consider the optimal solution xĝ
i (J

∗
i ) to problem (17) when

this problem is solved with u = û and J = J∗
i . If this solution has a fractional component j′, then

the third set of constraints in problem (17) implies that product j′ satisfies vij′ (rij′−û) ≤ vij (rij−û)

for all j ∈ J∗
i . Thus, using z∗(u) to denote the optimal objective value of problem (10), we have

z∗(û) =
∑

j∈S∗
i
vij (rij − û) =

∑
j∈J∗

i
vij (rij − û) +

∑
j∈S∗

i \J∗
i

vij (rij − û) ≥ q vij′ (rij′ − û), where

10



the inequality follows by the fact that |J∗
i | = q and vij′ (rij′ − û) ≤ vij (rij − û) for all j ∈ J∗

i . Thus,

the last chain of inequalities yields vij′ (rij′ − û) ≤ z∗(û)/q.

To finish the proof, let z∗(u) and ζ∗(u, J) respectively be the optimal objective values of

problems (10) and (17). We claim that z∗(û) ≤ ζ∗(û, J∗
i ). To see this claim, we note that J∗

i

includes the q products with the largest utilities among the products taking value one in the

optimal solution to problem (10) when this problem is solved with u = û. The products in S∗
i \ J∗

i

also take value one in the optimal solution to problem (10), but by the definition of J∗
i , these

products satisfy vik (rik − û) ≤ minj∈J∗
i
{vij (rij − û)} for all k ∈ S∗

i \ J∗
i . This inequality, together

with the third set of constraints in problem (17), implies that if we solve problem (17) with u = û

and J = J∗
i , then we fix the values of the decision variables corresponding to the products in J∗

i

at one, but the values of the decision variables corresponding to the products in S∗
i \ J∗

i are free

between zero and one. Furthermore, problem (17) does not require the decision variables to take

binary values. Thus, the solution S∗
i is optimal to problem (10) and feasible to problem (17) when

we solve the first problem with u = û and the second problem with u = û and J = J∗
i . So, our

claim holds and we have z∗(û) ≤ ζ∗(û, J∗
i ). In this case, if we use, as above, xĝ

i (J
∗
i ) to denote the

optimal solution to problem (17) when this problem is solved with u = û and J = J∗
i , then letting

j′ be the fractional component of xĝ
i (J

∗
i ) when there is one, we obtain

z∗(û) ≤ ζ∗(û, J∗
i ) =

∑

j∈N

vij (rij − û) xĝ
ij(J

∗
i )

≤
∑

j∈Sĝ
i (J∗

i )

vij (rij − û) + vij′ (rij′ − û) ≤
∑

j∈Sĝ
i (J∗

i )

vij (rij − û) + z∗(û)/q,

where the second inequality is by noting that S ĝ
i (J∗

i ) includes all strictly positive and integer valued

components of xĝ
i (J

∗
i ) and the only possibly fractional component is j′ and the third inequality is by

the fact that vij′ (rij′ − û) ≤ z∗(û)/q, which is shown in the paragraph above. Focusing on the first

and last terms in the chain of inequalities above, we have z∗(û) ≤ (q/(q−1))
∑

j∈Sĝ
i (J∗

i )
vij (rij − û),

showing that the assortment S ĝ
i (J∗

i ) is a q/(q − 1)-approximate solution to problem (10) when

solved with u = û. Since |J∗
i | = q, we have S ĝ

i (J∗
i ) ∈ {Sg

i (J) : J ∈ ℘q, g ∈ Gi}. Noting that the

choice of û is arbitrary, we conclude that the collection of assortments {Sg
i (J) : J ∈ ℘q, g ∈ Gi}

includes a q/(q − 1)-approximate solution to problem (10) for any u ∈ ℜ+, as desired.

D Online Supplement: Maximizing the Expected Revenue from a Single Nest

Problem (1) finds an assortment (S1, . . . , Sm) that maximizes the expected revenue over all nests. In

this section, we elaborate on the connections of this problem to the problem of maximizing the

expected revenue only from a single nest. To that end, as a function of u ∈ ℜ+, we let Ŝi(u) be an

optimal solution to the problem

max
Si∈Ci

{
Vi(Si) (Ri(Si) − u)

}
= max

Si∈Ci

{ ∑

j∈N

vij (rij − u) Sij

}
, (18)

11



where the equality follows from (8). Applying Theorem 4 with α = 1 implies that if we obtain an

optimal solution to the problem above for all u ∈ ℜ+ and use {Ŝi(u) : u ∈ ℜ+} as a collection of

candidate assortments for nest i, then the best assortment (Ŝ1, . . . , Ŝm) with Ŝi ∈ {Ŝi(u) : u ∈ ℜ+}
is an optimal solution to problem (1). Therefore, if we use {Ŝi(u) : u ∈ ℜ+} for all i ∈ M as

collections of candidate assortments for the different nests, then we can stitch together the optimal

solution to problem (1) by using an assortment from each one of these collections. We proceed to

showing that the collection {Ŝi(u) : u ∈ ℜ+} does not only allow us to stitch together an assortment

that maximizes the expected revenue over all nests, but it also includes an assortment solving the

problem maxSi∈Ci Ri(Si). In other words, the collection of assortments {Ŝi(u) : u ∈ ℜ+} also

includes an assortment that maximizes the expected revenue only from nest i.

To see that the collection of assortments {Ŝi(u) : u ∈ ℜ+} includes an optimal solution to the

problem maxSi∈Ci Ri(Si), we let z∗ = maxSi∈Ci Ri(Si). So, we have Ri(Si) ≤ z∗ for all Si ∈ Ci

and the inequality holds as equality at the assortment that maximizes the expected revenue from

nest i. Noting that Ri(Si) =
∑

j∈N vij rij Sij/
∑

j∈N vij Sij , the inequality Ri(Si) ≤ z∗ can be

written as
∑

j∈N vij (rij − z∗) Sij ≤ 0. In this case, we have
∑

j∈N vij (rij − z∗) Sij ≤ 0 for all

Si ∈ Ci and the inequality holds as equality at the assortment that maximizes the expected revenue

from nest i. Therefore, an optimal solution to the problem maxSi∈Ci

∑
j∈N vij (rij − z∗) Sij is also

an optimal solution to the problem maxSi∈Ci Ri(Si). Since an optimal solution to the problem

maxSi∈Ci

∑
j∈N vij (rij − z∗) Sij is given by Ŝi(z

∗), it follows that Ŝi(z
∗) is an optimal solution to

the problem maxSi∈Ci Ri(Si). Noting that Ŝi(z
∗) ∈ {Ŝi(u) : u ∈ ℜ+}, the collection of assortments

{Ŝi(u) : u ∈ ℜ+} indeed includes an optimal solution to the problem maxSi∈Ci Ri(Si).

We can construct the collection of assortments {Ŝi(u) : u ∈ ℜ+} by obtaining an optimal

solution to problem (18) for all u ∈ ℜ+. In this case, if we use {Ŝi(u) : u ∈ ℜ+} for all i ∈ M as

collections of candidate assortments for the different nests, then the best assortment (Ŝ1, . . . , Ŝm)

with Ŝi ∈ {Ŝi(u) : u ∈ ℜ+} is an optimal solution to problem (1). Furthermore, the collection

of assortments {Ŝi(u) : u ∈ ℜ+} also includes an optimal solution to the problem maxSi∈Ci Ri(Si)

and if we want to maximize the expected revenue only from nest i, then it is enough to focus on

the assortments in the collection {Ŝi(u) : u ∈ ℜ+}. Rusmevichientong et al. (2010) consider the

problem of maximizing the expected revenue under cardinality constraints when customers choose

according to the multinomial logit model. Since the multinomial logit model can be viewed as

the nested logit model with a single nest, their problem is similar to the problem maxSi∈Ci Ri(Si)

with Ci corresponding to a cardinality constraint. As a result, they construct their collection of

candidate assortments by solving a problem similar to problem (18).

The discussion in this section shows that we can use the collection {Ŝi(u) : u ∈ ℜ+} as candidate

assortments for nest i both to maximize the expected revenue over all nests and to maximize the

expected revenue only from nest i. However, the particular one of the assortments in this collection

that we end up using to maximize the expected revenue over all nests can be entirely different

from the particular one that we end up using to maximize the expected revenue only from nest

12



i. Indeed, it is possible to generate examples such that if we solve the problem maxSi∈Ci Ri(Si) to find

an assortment S̃i that maximizes the expected revenue only from nest i and use the assortment

(S̃1, . . . , S̃m) as a possible solution to problem (1), then the assortment (S̃1, . . . , S̃m) performs

arbitrarily poorly for problem (1).
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