
Assortment Optimization under the Multinomial Logit Model with
Sequential Offerings

Nan Liu1, Yuhang Ma2, Huseyin Topaloglu2

1Carroll School of Management, Boston College, Chestnut Hill, MA 02467, USA
2School of Operations Research and Information Engineering, Cornell Tech, New York City, NY 10044, USA

nan.liu@bc.edu, ym367@cornell.edu, ht88@cornell.edu

May 8, 2019

Abstract

We consider assortment optimization problems, where the choice process of a customer takes
place in multiple stages. There is a finite number of stages. In each stage, we offer an assortment
of products that does not overlap with the assortments offered in the earlier stages. If the
customer makes a purchase within the offered assortment, then the customer leaves the system
with the purchase. Otherwise, the customer proceeds to the next stage, where we offer another
assortment. If the customer reaches the end of the last stage without a purchase, then the
customer leaves the system without a purchase. The choice of the customer in each stage is
governed by a multinomial logit model. The goal is to find an assortment to offer in each stage
to maximize the expected revenue obtained from a customer. For this assortment optimization
problem, it turns out that the union of the optimal assortments to offer in each stage is nested
by revenue, in the sense that this union includes a certain number of products with the largest
revenues. However, it is still difficult to figure out the stage in which a certain product should be
offered. In particular, the problem of finding an assortment to offer in each stage to maximize
the expected revenue obtained from a customer is NP-hard. We give a fully polynomial-time
approximation scheme for the problem when the number of stages is fixed.

1 Introduction

In traditional revenue management models, it is common to model the demand for each product

by using an exogenous random variable that does not depend on what other products are made

available to the customers. In many retail settings, however, customers choose and substitute among

the products that are offered to them, in which case, the demand for a product depends on what

other products are made available to the customer. There is a recent surge of revenue management

models that explicitly capture such a customer choice process. Nevertheless, much of the work in

this stream of literature assumes that the customers view the whole assortment of products offered

to them simultaneously, but it is not difficult to run into cases where the customers gradually

view the assortment in multiple stages. When selling products in online retail, for example, the

firm may display the search results to a customer sequentially through multiple webpages. In this

case, the goal is to decide which products to offer on each page of search results and in which

order to present the pages, to maximize the expected revenue obtained from a customer. When

scheduling healthcare appointments over the phone, a reasonable objective for the service provider

is to maximize the probability that a patient books an appointment. To gently guide the patient

through the choice process, the service provider may offer sets of appointment slots sequentially. In

this case, the goal is to decide which sets of appointment slots to offer to the patient and in

which order to offer the sets, to maximize the probability that the patient books an appointment

1

slot. Thus, if the customers gradually view the assortment in multiple stages, then we need to

decide not only what assortment of products to offer, but also the order in which we should offer

the products. In addition, it may be necessary to limit the number of products offered in each

stage, for example, to ensure that the limited space on the webpage can accommodate the products

offered in each stage. Similarly, to avoid overwhelming the patient with a large number of options,

it may be desirable to limit the total number of appointment slots offered over all stages.

In this paper, we consider assortment optimization problems, where the choice process of a

customer takes place in multiple stages. There is a finite number of stages in the choice process,

which is fixed a priori. In each stage of the choice process, we offer an assortment of products

that does not overlap with the assortments offered in the previous stages. If the customer makes

a purchase within the assortment offered in the current stage, then she leaves the system with a

purchase. Otherwise, the customer proceeds to the next stage. If the customer reaches the end

of the last stage without a purchase, then she leaves the system without a purchase. We use the

multinomial logit model to capture the choice process of the customer in each stage. The goal is

to find an assortment to offer in each stage to maximize the expected revenue obtained from a

customer. In our initial treatment of the assortment optimization problem, we focus on the case

where there is no limit on the number of products that we can offer in any stage, but we also discuss

the case where there is a limit on the number of products offered in each stage or there is a limit

on the total number of products offered over all stages.

Main Contributions. We show that the problem of finding an assortment to offer in each stage

to maximize the expected revenue obtained from a customer is NP-hard (Theorem 1). Motivated

by this result, we develop a fully polynomial-time approximation scheme (FPTAS) for the problem

as follows. First, we cast our assortment optimization problem as maximizing a nonlinear function

over a certain feasible set P, but checking whether a given point is in P requires finding a feasible

solution to an intractable multiple knapsack problem (Lemma 2). Second, we give an approximate

version of the feasible set P by aligning the cumulative capacity consumptions of the products in the

multiple knapsack to a geometric grid. Using P̃ to denote the approximate version of the feasible

set, we bound the loss in the expected revenue when we maximize the nonlinear function over the

approximate feasible set P̃ (Theorem 5). Third, we show that we can use a dynamic program to

check whether a given point is in P̃ and we enumerate over the elements of P̃ to maximize the

nonlinear function over the approximate feasible set P̃. Accounting for the number of operations

to solve the dynamic program, we get our FPTAS (Theorem 7).

Letting n be the number of products among which we choose a sequence of assortments and m be

the number of stages, for any ε ∈ (0, 1), our FPTAS runs inO(mn2m(log(nκ))m−1 (log(nν))m/ε2m−1)

operations to provide a (1− ε)-approximate solution. Here, κ is the largest value for the product of

the revenue and preference weight of a product and ν is the largest value for the preference weight

of a product, after normalizing the smallest revenue and preference weight to one. Thus, for a fixed

number of stages, the running time of our FPTAS is polynomial in input size and the reciprocal

2

of the precision. If we have a limit on the number of products offered in each stage, then the term

n2m in the running time is replaced by n3m, whereas if we have a limit on the total number of

products offered in all stages, then the term n2m in the running time is replaced by n2m+1.

We also provide some insight into the form of the optimal assortment. Gallego et al. (2004)

and Talluri and van Ryzin (2004) show that if there is a single stage in the choice process, then the

optimal assortment is nested by revenue, including a certain number of products with the largest

revenues. So, we can efficiently find the optimal assortment by checking the expected revenue from

each nested by revenue assortment. We show that if there are multiple stages, then the union of

the optimal assortments to offer in each stage is nested by revenue. However, this result does not

allow us to find the optimal assortment efficiently, since it does not characterize the stage in which

each product should be offered. Thus, we defer this result to the appendix.

Lastly, in our assortment optimization problem, we fix the assortments that we offer in all of the

stages a priori. A natural question is whether there is any value in adjusting the assortment offered

in a particular stage based on the choice trajectory of a customer in the previous stages. Note that

if a customer is in a particular stage in the choice process, then her choices in all of the previous

stages must have been no purchase. Therefore, given that a customer is in a particular stage in the

choice process, there is only one possible choice trajectory of the customer in the previous stages,

indicating that there is no value in adjusting the assortment offered in a particular stage based on

the choice trajectory of a customer in the previous stages.

Literature Review. There is some work on assortment optimization problems, where the

assortment is offered in multiple stages. Gallego et al. (2016) study a problem in online retail,

where the assortments of products are presented in multiple pages. Each customer picks the

number of pages to view according to a distribution that is exogenously fixed and she chooses

among all of the products offered on those pages. The authors give an approximation algorithm.

Focusing on healthcare appointment scheduling on the phone, Liu et al. (2017) consider the case

where the service provider offers assortments of appointment slots to a patient in multiple stages. If

a patient is offered an assortment that includes appointment slots she is interested in, then she

chooses among them uniformly. The authors characterize the optimal sequence of appointment

slots to offer. Flores et al. (2019) work with a two stage multinomial logit model, where there are

two disjoint sets of products that can potentially be offered in the two stages. Thus, if a product

is offered, then the stage in which it will be offered is fixed a priori. Focusing on the case with

two stages, the authors give an efficient optimal algorithm. In our model, if we decide to offer a

product, then we still need to choose the stage in which to offer the product. As a result, our

problem is NP-hard. Furthermore, we work with multiple stages.

As mentioned above, Gallego et al. (2004) and Talluri and van Ryzin (2004) show that the

assortment optimization problem under the multinomial logit model can be solved efficiently when

there is a single stage. Rusmevichientong et al. (2010) show how to solve the same assortment

3

optimization problem when there is a cardinality constraint limiting the total number of offered

products. Rusmevichientong and Topaloglu (2012) study robust assortment optimization problems

under the multinomial logit model when the parameters of the model are not known, but they take

values in an uncertainty set. Wang (2012) considers the problem of jointly finding an assortment of

products to offer and their corresponding prices, when the customers choose under the multinomial

logit model and there is a constraint on the total number of offered products. Davis et al. (2013) give

a linear programming formulation when the constraints have a totally unimodular structure. Wang

(2013) and Gallego et al. (2015) solve assortment optimization problems under a more general

version of the multinomial logit model, where the preference weight of the no purchase option

increases as a function of the products that are not offered.

In a mixture of multinomial logit models, we have multiple customer types and customers of

different types choose according to different multinomial logit models. Bront et al. (2009), Mendez-

Diaz et al. (2010) and Rusmevichientong et al. (2014) show that the assortment optimization

problem under a mixture of multinomial logit models is NP-hard, provide integer programming

formulations, study special cases admitting efficient solutions and give approximations. Meissner

et al. (2012) provide an upper bound on the optimal expected revenue by using a relaxation that

offers different assortments to customers of different types. The objective function of our assortment

optimization problem is a sum of fractions. Considering assortment optimization problems with

multiple customer types, Mittal and Schulz (2013), Desir and Goyal (2014) and Feldman and

Topaloglu (2018) design FPTAS for maximizing various sums of fractions. In our FTPAS, we draw

on Desir and Goyal (2014), where the authors use the connections of their problem to the knapsack

problem by aligning the cumulative capacity consumptions to a geometric grid. Due to the multiple

stages in our choice process, the numerators and denominators in our fractions are nonlinear and we

need to carefully account for the errors resulting from the geometric grid. The error is exponential

in the number of products, but by a judicious choice of the performance guarantee, we get an

FPTAS. For representative assortment optimization work under other choice models, we refer the

reader to Davis et al. (2014) for the nested logit model, Aouad et al. (2016) for the ranking-based

choice model and Blanchet et al. (2016) for the Markov chain choice model.

Organization. In Section 2, we formulate our assortment optimization problem with multiple

stages and show that it is NP-hard. In the rest of this paper, we focus on developing an FPTAS.

In Section 3, we give an alternative formulation of our assortment optimization problem that

maximizes a nonlinear function over a certain feasible set P. Checking whether a given point is

in P is difficult. In Section 4, we give an approximation to the feasible set P. We refer to this

approximation as P̃. In Section 5, we bound the loss in the expected revenue when we maximize the

nonlinear function over the approximate feasible set P̃. In Section 6, we give a dynamic program

to check whether a given point is in P̃. In Section 7, by accounting for the number of operations

to solve the dynamic program and to enumerate over the elements of P̃, we give our FPTAS. In

Section 8, we make extensions to the case where there is a limit on the number of products that

we can offer. In Section 9, we give numerical experiments. In Section 10, we conclude.

4

2 Problem Formulation and Complexity

We have n products indexed by N = {1, . . . , n}. In the choice process, we have m stages indexed by

M = {1, . . . ,m}. We use the set Sk ⊆ N to denote the set of products that we offer in stage k. Since

we can offer a product in at most one stage, the feasible sets of products that we can offer over

all stages are F = {(S1, . . . , Sm) : Sk ⊆ N ∀ k ∈M, Sk ∩ S` = ∅ ∀ k 6= `}. In the choice process, a

customer chooses within the offered set of products in each stage according to the multinomial logit

model and the choices of a customer in different stages are independent. In particular, we use vki > 0

to denote the preference weight of product i when this product is offered in stage k. Normalizing

the preference weight of the no purchase option in each stage to one, if we offer the sets of products

(S1, . . . , Sm) over all of the stages, then a customer in stage k chooses product i with probability

1(i ∈ Sk) vki /(1 +
∑

j∈Sk v
k
j), where 1(·) is the indicator function. A customer in stage k does not

make a purchase with probability 1/(1 +
∑

j∈Sk v
k
j), in which case, she moves on to stage k + 1. If

a customer does not make a purchase by the end of the last stage m, then she leaves the system

without a purchase. For a customer to purchase product i in stage k, she needs to not make a

purchase in stages 1, . . . , k − 1 and she needs to purchase product i in stage k. Therefore, if the

sets of products offered over all stages are (S1, . . . , Sm), then a customer purchases product i in

stage k with probability
∏k−1
`=1

1
1+

∑
j∈S` v

`
j

× 1(i∈Sk) vki
1+

∑
j∈Sk v

k
j

. The revenue associated with product i is

ri > 0. Our goal is to find sets of products to offer over all stages to maximize the expected revenue

obtained from a customer, which yields the problem

Ẑ = max
(S1,...,Sm)∈F

{∑
i∈N

∑
k∈M

ri

{
k−1∏
`=1

1

1 +
∑

j∈S` v
`
j

}
1(i ∈ Sk) vki

1 +
∑

j∈Sk v
k
j

}

= max
(S1,...,Sm)∈F

{∑
k∈M

{
k∏
`=1

1

1 +
∑

i∈S` v
`
i

}∑
i∈Sk

ri v
k
i

}
, (1)

where the second equality follows simply by arranging the terms. Note that we can interpret∏k
`=1

1
1+

∑
i∈S` v

`
i

×
∑

i∈Sk ri v
k
i as the expected revenue in stage k.

Computational Complexity. Next, we characterize the computational complexity of problem

(1). In particular, we focus on the feasibility version of problem (1), where the goal is to find a

solution (S1, . . . , Sm) ∈ F with an expected revenue that is no smaller than a given threshold. In

the next theorem, we show that the feasibility version of problem (1) is NP-complete.

Theorem 1 The feasibility version of problem (1) is NP-complete.

Proof. The problem is in NP. We use a reduction from the partition problem, which is a well-

known NP-complete problem; see Garey and Johnson (1979). In the partition problem, we have n

products indexed by N = {1, . . . , n}. The weight of product i is ci. The weight of each product is

an integer and we have
∑

i∈N ci = 2 t. The goal of the partition problem is to find a set of products

5

S such that
∑

i∈S ci =
∑

i∈N\S ci = t. Using the partition problem, we construct an instance of the

feasibility version of problem (1) as follows. We have n products indexed by N = {1, . . . , n} and

two stages indexed by M = {1, 2}. The revenue of product i is ri = 1 for all i ∈ N . The preference

weight of product i in stage k is vki = ci/t for all i ∈ N , k ∈ M . The expected revenue threshold

is 3/4. We proceed to showing that there exists (S1, S2) ∈ F such that the expected revenue from

the solution (S1, S2) is 3/4 or more if and only if there exists S ⊆ N such that
∑

i∈S ci = t. Noting

the expression for the expected revenue in problem (1), for the solution (S1, S2) ∈ F to provide an

expected revenue of 3/4 or more, this solution must satisfy the inequality∑
i∈S1

ci/t

1 +
∑

i∈S1
ci/t

+
1

1 +
∑

i∈S1
ci/t
×

∑
i∈S2

ci/t

1 +
∑

i∈S2
ci/t
≥ 3

4
,

which is, arranging the terms, equivalent to (t+
∑

i∈S1
ci) (t+

∑
i∈S2

ci) ≥ 4 t2. Also, if (S1, S2) ∈ F ,

then we have S1 ∩ S2 = ∅, which implies that
∑

i∈S1
ci +

∑
i∈S2

ci ≤
∑

i∈N ci = 2 t, so that∑
i∈S2

ci ≤ 2 t−
∑

i∈S1
ci. In this case, if (S1, S2) ∈ F , then we have (t+

∑
i∈S1

ci) (t+
∑

i∈S2
ci) ≤

(t+
∑

i∈S1
ci) (3 t−

∑
i∈S1

ci) = 4 t2 − (
∑

i∈S1
ci − t)2 ≤ 4 t2. Thus, for the solution (S1, S2) ∈ F to

provide an expected revenue of 3/4 or more, the last chain of inequalities must hold as equalities,

which happens only when
∑

i∈S1
ci = t and

∑
i∈S2

ci =
∑

i∈N\S1
ci = t. So, there exists (S1, S2) ∈ F

such that the expected revenue from the solution (S1, S2) is 3/4 or more if and only if there exists

S ⊆ N such that
∑

i∈S ci =
∑

i∈N\S ci = t. �

Thus, problem (1) is NP-hard even when there are only two stages in the choice process with

v1i = v2i for all i ∈ N and ri = 1 for all i ∈ N . Note that if the revenues of all products are one,

then the objective function of problem (1) is the probability that a customer makes a purchase.

Before us, to show that the assortment optimization problem under a mixture of multinomial logit

models is NP-hard, Rusmevichientong et al. (2014) use a reduction from the partition problem,

but the specifics of their reduction are different. Also, if the revenues of all products are one, then

their assortment optimization problem has a trivial optimal solution that offers all products. Our

assortment optimization problem is NP-hard even when the revenues of all products are one.

Random Utility Maximization. In random utility maximization, a customer associates

random utilities with the products and the no purchase option, choosing the alternative with the

largest utility. We can justify our choice model by using random utility maximization. The utility

of purchasing product i in stage k is Uki . For the vector of utilities (U1
i , . . . , U

m
i) associated with

product i in different stages, the marginal distribution of Uki is Gumbel with location and scale

parameters (µki , 1), but the different components of the vector can be dependent. Through the

dependence between the utilities associated with a product in different stages, we can capture the

situation where if a customer favors a certain product in a certain stage, then she is likely to

favor this product in other stages as well. The utility of not purchasing anything in stage k is

Uk0 . For the vector of utilities (U1
0 , . . . , U

m
0) associated with the no purchase option in different

stages, the marginal distribution of Uk0 is Gumbel with location and scale parameters (µk0, 1), but

the different components of the vector are independent. Not having any dependence between the

6

utilities associated with the no purchase option in different stages yields a tractable expression for

the choice probabilities and it is partially motivated by the fact that the no purchase options in

different stages are very different since the tendency of a particular customer not to purchase in

a particular stage may depend on how many other stages are to follow, if any. (In any case, one

can certainly and admittedly argue that if a customer favors the no purchase option in a certain

stage, then she is also likely to favor this option in other stages.) Also, the location parameter of

the utility associated with the no purchase option in different stages can be different, once again,

indicating that not purchasing in a later stage when the choice process is about to terminate can

have a different mean utility implication than not purchasing in an earlier stage. For two products

i 6= j, the vectors (U1
i , . . . , U

m
i) and (U1

j , . . . , U
m
j) are independent. Considering the independent

random variables {Xi : i ∈ G} for some generic index set G, if Xi has a Gumbel distribution with

location and scale parameters (βi, 1), then P{Xi = maxj∈GXj} = eβi/
∑

j∈G e
βj . If we offer the

sets of products (S1, . . . , Sm) over all stages, then for a customer to purchase product i ∈ Sk in

stage k, she needs to not make a purchase in stages 1, . . . , k− 1 and she needs to purchase product

i in stage k, in which case, a customer purchases product i ∈ Sk in stage k with probability

P
{
U `0 = max

j∈S`∪{0}
U `j ∀ ` = 1, . . . , k − 1 and Uki = max

j∈Sk∪{0}
Ukj

}
=

k−1∏
`=1

eµ
`
0∑

j∈S`∪{0} e
µ`j
× eµ

k
i∑

j∈Sk∪{0} e
µkj
,

where we use the fact that the sets of products offered in the different stages are disjoint so that the

events on the left side above are independent. Letting eµ
k
i−µk0 = vki and multiplying the numerator

and denominator of all of the fractions on the right side above by e−µ
`
0 for ` = 1, . . . , k, we obtain

the choice probability
∏k−1
`=1

1
1+

∑
j∈S` v

`
j

× vki
1+

∑
j∈Sk v

k
j

.

In the rest of the paper, noting Theorem 1, we focus on developing an FPTAS.

3 Multiple Knapsack Representation

Noting the objective function in (1), intuitively speaking, a good solution should keep the quantity∑
i∈Sk ri v

k
i large and the quantity

∑
i∈Sk v

k
i small for all k ∈ M . This observation motivates

the following approach. First, we guess lower bounds on the quantity
∑

i∈Sk ri v
k
i and upper

bounds on the quantity
∑

i∈Sk v
k
i for all k ∈ M . Second, we check whether there exists a solution

(S1, . . . , Sm) ∈ F that satisfies our guesses. Carrying out an exhaustive search over our guesses,

we pick the best solution. To pursue this approach, we use P to denote the set of vectors f =

(f1, . . . , fm) and h = (h1, . . . , hm) such that there exists a solution (S1, . . . , Sm) ∈ F satisfying∑
i∈Sk ri v

k
i ≥ fk and

∑
i∈Sk v

k
i ≤ hk for all k ∈M . Thus, P is given by

P =
{

(f ,h) ∈ <m+ ×<m+ : ∃ (S1, . . . , Sm) ∈ F that satisfies∑
i∈Sk

ri v
k
i ≥ fk ∀ k ∈M and

∑
i∈Sk

vki ≤ hk ∀ k ∈M
}
. (2)

Note that the two sets of constraints that need to be satisfied by (S1, . . . , Sm) above are similar

to multiple knapsack constraints. Noting the objective function of problem (1), if we have

7

∑
i∈Sk ri v

k
i ≥ fk and

∑
i∈Sk v

k
i ≤ hk for all k ∈ M , then the solution (S1, . . . , Sm) provides

an expected revenue of at least
∑

k∈M
∏k
`=1

1
1+h`

× fk. Therefore, we consider the problem

max
(f ,h)∈P

{∑
k∈M

{
k∏
`=1

1

1 + h`

}
fk

}
. (3)

In the next lemma, we show that the optimal objective value of problem (1) corresponds to the

optimal objective value of problem (3).

Lemma 2 The optimal objective value of problem (1) is equal to the optimal objective value of

problem (3).

Proof. Let (f̂ , ĥ) be an optimal solution to problem (3) providing the optimal objective

value ζ̂. We have (f̂ , ĥ) ∈ P, in which case, by the definition of P, there exists a solution

(Ŝ1, . . . , Ŝm) ∈ F such that
∑

i∈Ŝk ri v
k
i ≥ f̂k and

∑
i∈Ŝk v

k
i ≤ ĥk for all k ∈M . Let (S̃1, . . . , S̃m) be

an optimal solution to problem (1) providing the optimal objective value Ẑ. Define f̃k =
∑

i∈S̃k ri v
k
i

and h̃k =
∑

i∈S̃k v
k
i for all k ∈M . Note that (f̃ , h̃) ∈ P since

∑
i∈S̃k ri v

k
i ≥ f̃k and

∑
i∈S̃k v

k
i ≤ h̃k

for all k ∈ M . Therefore, (f̃ , h̃) is a feasible solution to problem (3). Since (f̂ , ĥ) is an optimal

solution to problem (3), we get
∑

k∈M
∏k
`=1

1

1+ĥ`
× f̂k = ζ̂ ≥

∑
k∈M

∏k
`=1

1

1+h̃`
× f̃k. In this case,

noting that we have
∑

i∈Ŝk ri v
k
i ≥ f̂k and

∑
i∈Ŝk v

k
i ≤ ĥk, the objective value provided by the

solution (Ŝ1, . . . , Ŝm) for problem (1) satisfies

∑
k∈M

{
k∏
`=1

1

1 +
∑

i∈Ŝ` v
`
i

}∑
i∈Ŝk ri v

k
i ≥

∑
k∈M

{
k∏
`=1

1

1 + ĥk

}
f̂k

≥
∑
k∈M

{
k∏
`=1

1

1 + h̃`

}
f̃k =

∑
k∈M

{
k∏
`=1

1

1 +
∑

i∈S̃` v
`
i

}∑
i∈S̃k ri v

k
i = Ẑ.

Since (Ŝ1, . . . , Ŝm) ∈ F , the left side above is at most the optimal objective value of problem (1),

which is Ẑ. Thus, all of the inequalities above hold as equalities and we get Ẑ = ζ̂. �

Using the lemma above, we can try to solve problem (1) in two steps. First, we find an optimal

solution (f̂ , ĥ) to problem (3). Second, we find (Ŝ1, . . . , Ŝm) ∈ F that satisfies
∑

i∈Ŝk ri v
k
i ≥ f̂k

and
∑

i∈Ŝk v
k
i ≤ ĥk for all k ∈M . By the discussion right before problem (3), the expected revenue

from the solution (Ŝ1, . . . , Ŝm) is at least
∑

k∈M
∏k
`=1

1

1+ĥ`
× f̂k, which is, by Lemma 2, equal to the

optimal objective value of problem (1). Both of these two steps are computationally difficult. In

particular, the objective function of problem (3) is not necessarily concave and finding (Ŝ1, . . . , Ŝm)

satisfying the last two inequalities is a combinatorial problem. In our FPTAS, we carry out these

two steps approximately. First, we use a geometric grid over <m+ × <m+ to check the objective

value of problem (3) at a limited number of guesses for (f ,h). Second, we give an approximate

version of the set P, in which case, we can use a dynamic program to find (Ŝ1, . . . , Ŝm) ∈ F that

approximately satisfies
∑

i∈Ŝk ri v
k
i ≥ f̂k and

∑
i∈Ŝk v

k
i ≤ ĥk for all k ∈M . In the next section, we

construct the geometric grid and the approximate version of the set P.

8

4 Approximate Feasible Set

To give an approximation to the set P, we begin by computing
∑

i∈Sk ri v
k
i and

∑
i∈Sk v

k
i recursively.

For fk ∈ <+, hk ∈ <+ and Sk ⊆ N , we define F ki (fk, Sk) and Hk
i (hk, Sk) recursively as

F ki+1(f
k, Sk) = F ki (fk, Sk)− ri vki 1(i ∈ Sk) (4)

Hk
i+1(h

k, Sk) = Hk
i (hk, Sk)− vki 1(i ∈ Sk)

with the initial condition that F k1 (fk, Sk) = fk and Hk
1 (hk, Sk) = hk. Adding the first

equality above over all i ∈ N and noting that F k1 (fk, Sk) = fk, we obtain F kn+1(f
k, Sk) =

fk−
∑

i∈N ri v
k
i 1(i ∈ Sk) = fk−

∑
i∈Sk ri v

k
i . Therefore, we have

∑
i∈Sk ri v

k
i ≥ fk if and only if we

have F kn+1(f
k, Sk) ≤ 0. Similarly, we have

∑
i∈Sk v

k
i ≤ hk if and only if we have Hk

n+1(h
k, Sk) ≥ 0.

In this case, we can replace the condition
∑

i∈Sk ri v
k
i ≥ fk and

∑
i∈Sk v

k
i ≤ hk for all k ∈ M in

(2) with the condition F kn+1(f
k, Sk) ≤ 0 and Hk

n+1(h
k, Sk) ≥ 0 for all k ∈ M to express the set P

equivalently. In other words, the set P is also given by

P =
{

(f ,h) ∈ <m+ ×<m+ : ∃ (S1, . . . , Sm) ∈ F that satisfies

F kn+1(f
k, Sk) ≤ 0 ∀ k ∈M and Hk

n+1(h
k, Sk) ≥ 0 ∀ k ∈M

}
. (5)

By restricting the values of F ki (fk, Sk) and Hk
i (hk, Sk) on a geometric grid, we proceed to giving

an approximate version of the set P.

For fixed ρ > 0, we define Dom = {(1 + ρ)` : ` = . . . ,−1, 0, 1, . . .} ∪ {−∞, 0}, which is a

geometric grid augmented by the points {−∞, 0}. We define the round up operator d·e that rounds

its argument up to the nearest element of Dom. In particular, dxe = min{y ∈ Dom : y ≥ x}.
Similarly, we define the round down operator b·c that rounds its argument down to the nearest

element of Dom. Therefore, we have bxc = max{y ∈ Dom : y ≤ x}. Note that if x < 0, then

dxe = 0 and bxc = −∞. We use Φk
i (f

k, Sk) and Γki (h
k, Sk) to denote approximate versions of

F ki (fk, Sk) and Hk
i (hk, Sk), which are also defined recursively as

Φk
i+1(f

k, Sk) =
⌈
Φk
i (f

k, Sk)− ri vki 1(i ∈ Sk)
⌉

(6)

Γki+1(h
k, Sk) =

⌊
Γki (h

k, Sk)− vki 1(i ∈ Sk)
⌋

with the initial condition that Φk
1(fk, Sk) = fk and Γk1(hk, Sk) = hk. Noting the round up operator

in the definition of Φk
i+1(f

k, Sk), we get Φk
i+1(f

k, Sk) ≥ Φk
i (f

k, Sk) − ri vki 1(i ∈ Sk). If we add

this inequality over all i ∈ N and note that Φk
1(fk, Sk) = fk, then we obtain Φk

n+1(f
k, Sk) ≥

fk −
∑

i∈N ri v
k
i 1(i ∈ Sk) = fk −

∑
i∈Sk ri v

k
i . Therefore, if Φk

n+1(f
k, Sk) ≤ 0, then we have fk −∑

i∈Sk ri v
k
i ≤ 0, which implies that F kn+1(f

k, Sk) ≤ 0 as well. Using a similar argument, we

also obtain Γkn+1(h
k, Sk) ≤ hk −

∑
i∈Sk v

k
i . In this case, if Γkn+1(h

k, Sk) ≥ 0, then we have hk −∑
i∈Sk v

k
i ≥ 0, which implies that Hk

n+1(h
k, Sk) ≥ 0 as well.

By the discussion in the previous paragraph, if the vector (f ,h) ∈ <m+ × <m+ satisfies

Φk
n+1(f

k, Sk) ≤ 0 and Γkn+1(h
k, Sk) ≥ 0 for all k ∈ M , then it also satisfies F kn+1(f

k, Sk) ≤ 0

9

and Hk
n+1(h

k, Sk) ≥ 0 for all k ∈ M . Thus, we can define a restricted version of the set P using

Φk
n+1(f

k, Sk) and Γkn+1(h
k, Sk). Denoting this restricted version by P̃, we have

P̃ =
{

(f ,h) ∈ Domm
+ × Domm

+ : ∃ (S1, . . . , Sm) ∈ F that satisfies

Φk
n+1(f

k, Sk) ≤ 0 ∀ k ∈M and Γkn+1(h
k, Sk) ≥ 0 ∀ k ∈M

}
, (7)

where we use Dom+ = Dom \ {−∞}. By the discussion above, P̃ ⊆ P. In the next proposition, we

show that we can perturb an element of P to obtain an element of P̃.

Proposition 3 For any fk ∈ Dom+, hk ∈ Dom+ and Sk ⊆ N , if F kn+1(f
k, Sk) ≤ 0, then we have

Φk
n+1(f

k/(1 + ρ)|S
k|, Sk) ≤ 0. Also, if Hk

n+1(h
k, Sk) ≥ 0, then we have Γkn+1((1 +ρ)|S

k| hk, Sk) ≥ 0.

Proof. Fix fk and Sk. For notational brevity, we let Φk
i = Φk

i (f
k/(1 + ρ)|S

k|, Sk) and Ski =

Sk∩{i, . . . , n}. We follow the convention that Skn+1 = ∅. By the definition of Φk
i (f

k/(1+ρ)|S
k|, Sk),

we have Φk
i+1 =

⌈
Φk
i − ri vki 1(i ∈ Sk)

⌉
with Φk

1 = fk/(1 + ρ)|S
k|. Noting the definition of Ski , we

have i ∈ Sk if and only if i ∈ Ski . Also, we have Sk1 = Sk. Therefore, we can write the recursion that

we use to compute Φk
i equivalently as Φk

i+1 =
⌈
Φk
i − ri vki 1(i ∈ Ski)

⌉
with Φk

1 = fk/(1 + ρ)|S
k
1 |. We

use induction over the products to show that Φk
i ≤

∑
j∈Ski

rj v
k
j /(1 + ρ)|S

k
i | or Φk

i = 0 for all

i ∈ N ∪{n+1}. Since F kn+1(f
k, Sk) ≤ 0, by the discussion at the beginning of this section, we have∑

j∈Sk rj v
k
j ≥ fk. In this case, noting that Φk

1 = fk/(1 + ρ)|S
k
1 |, we obtain Φk

1 = fk/(1 + ρ)|S
k
1 | ≤∑

j∈Sk1
rj v

k
j /(1 + ρ)|S

k
1 |, which implies that the result holds for product 1. Next, we assume that

the result holds for product i, so that Φk
i ≤

∑
j∈Ski

rj v
k
j /(1 + ρ)|S

k
i | or Φk

i = 0. If Φk
i = 0, then

Φk
i − ri vki 1(i ∈ Ski) ≤ 0, which implies that Φk

i+1 = dΦk
i − ri vki 1(i ∈ Ski)e = 0, in which case, the

result holds for product i + 1 as well. Thus, we assume that Φk
i ≤

∑
j∈Ski

rj v
k
j /(1 + ρ)|S

k
i | in the

rest of the induction argument. Note that if Φk
i ≤

∑
j∈Ski

rj v
k
j /(1 + ρ)|S

k
i |, then we have

Φk
i − 1(i ∈ Ski) ri v

k
i ≤

∑
j∈Ski

rj v
k
j

(1 + ρ)|S
k
i |
− 1(i ∈ Ski) ri v

k
i

=

∑
j∈Ski+1

rj v
k
j + 1(i ∈ Ski) ri v

k
i

(1 + ρ)|S
k
i+1|+1(i∈Ski)

− 1(i ∈ Ski) ri v
k
i ≤

∑
j∈Ski+1

rj v
k
j

(1 + ρ)|S
k
i+1|+1(i∈Ski)

, (8)

where the equality uses the fact that if i ∈ Ski , then Ski = Ski+1 ∪{i} and the second inequality uses

the fact that 1/(1 + ρ)|S
k
i+1|+1(i∈Ski) ≤ 1.

If Φk
i − 1(i ∈ Ski) ri v

k
i ≤ 0, then Φk

i+1 =
⌈
Φk
i − 1(i ∈ Ski) ri v

k
i

⌉
= 0 and the result holds

for product i + 1 as well. So, we consider the chain of inequalities in (8) under the assumption

that Φk
i − 1(i ∈ Ski) ri v

k
i > 0. First, we consider the case i 6∈ Ski . By (8), we obtain Φk

i ≤∑
j∈Ski+1

rj v
k
j /(1 + ρ)|S

k
i+1|. Furthermore, we have Φk

i+1 =
⌈
Φk
i − ri vki 1(i ∈ Ski)

⌉
=
⌈
Φk
i

⌉
. Lastly,

since fk ∈ Dom+, we get Φk
1 = fk/(1 + ρ)|S

k
1 | ∈ Dom+. Since Φk

j+1 =
⌈
Φk
j − rj vkj 1(j ∈ Skj)

⌉
for

all j ∈ N and Φk
1 ∈ Dom+, we obtain Φk

j ∈ Dom for all j ∈ N , so that
⌈
Φk
j

⌉
= Φk

j . Therefore, we

10

have Φk
i+1 =

⌈
Φk
i

⌉
= Φk

i ≤
∑

j∈Ski+1
rj v

k
j /(1 + ρ)|S

k
i+1|, in which case, the result holds for product

i + 1 as well. Second, we consider the case i ∈ Ski . By (8), we have Φk
i − 1(i ∈ Ski) ri v

k
i ≤∑

j∈Ski+1
rj v

k
j /(1 + ρ)|S

k
i+1|+1. For x ≥ 0, note that dxe ≤ (1 + ρ)x. In this case, since we assume

that Φk
i − 1(i ∈ Ski) ri v

k
i > 0, by the last inequality, we obtain Φk

i+1 =
⌈
Φk
i − 1(i ∈ Ski) ri v

k
i

⌉
≤

(1 + ρ)× (Φk
i −1(i ∈ Ski) ri v

k
i) ≤

∑
j∈Ski+1

rj v
k
j /(1 + ρ)|S

k
i+1|, which implies that the result holds for

product i+1 as well, completing the induction argument. Therefore, the discussion so far establishes

that Φk
i ≤

∑
j∈Ski

rj v
k
j /(1 +ρ)|S

k
i | or Φk

i = 0 for all i ∈ N ∪{n+ 1}. Using this result with i = n+ 1

and noting that Skn+1 = ∅, we get Φk
n+1 ≤ 0 or Φk

n+1 = 0. So, Φk
n+1 = Φk

n+1(f
k/(1+ρ)|S

k|, Sk) ≤ 0,

showing the first statement in the proposition. The second statement uses a similar reasoning. �

By the proposition above, if ρ > 0 is small, then we can perturb an element of P by a small

amount to obtain an element of P̃. Noting the discussion at the end of Section 3, we can solve

problem (1) by obtaining an optimal solution (f̂ , ĥ) to problem (3) and finding (Ŝ1, . . . , Ŝm) ∈ F
such that F kn+1(f̂

k, Ŝk) ≤ 0 and Hk
n+1(f̂

k, Ŝk) ≥ 0 for all k ∈M . Replacing P with P̃, F kn+1(f
k, Sk)

with Φk
n+1(f

k, Sk) and Hk
n+1(h

k, Sk) with Γkn+1(f
k, Sk), we can approximately solve problem (1)

by obtaining an optimal solution (f̃ , h̃) to the problem max
(f ,h)∈P̃

{∑
k∈M

∏k
`=1

1
1+h`

× fk
}

and

finding (S̃1, . . . , S̃m) ∈ F such that Φk
n+1(f̃

k, S̃k) ≤ 0 and Γkn+1(h̃
k, S̃k) ≥ 0 for all k ∈ M . In the

next section, we give a performance guarantee for this approach. Proposition 3 plays an important

role in coming up with this performance guarantee.

5 Performance Guarantee

To obtain a solution to problem (1) with a performance guarantee, we propose the following

algorithm, referred to as Approx.

Step 1. Solve the problem max
(f ,h)∈P̃

{∑
k∈M

∏k
`=1

1
1+h`

× fk
}

and denote an optimal solution

to this problem by (f̃ , h̃).

Step 2. Since (f̃ , h̃) ∈ P̃, there exists a solution (S̃1, . . . , S̃m) ∈ F such that Φk
n+1(f̃

k, S̃k) ≤ 0

and Γkn+1(f̃
k, S̃k) ≥ 0 for all k ∈M . Return one such solution (S̃1, . . . , S̃m).

In this section, we give a performance guarantee for the solution (S̃1, . . . , S̃m) provided by

the Approx algorithm. In the next section, we give an approach that allows us to execute the

Approx algorithm efficiently when the number of stages is fixed. Putting these two results together

yields an FPTAS for problem (1). We proceed to giving a performance guarantee for the solution

(S̃1, . . . , S̃m) provided by the Approx algorithm. We let (f̂ , ĥ) ∈ P be an optimal solution to

problem (3). By Lemma 2, the optimal objective value of problem (3) is equal to the optimal

objective value of problem (1). Since (f̂ , ĥ) ∈ P, by the alternative definition of P in (5), there

exists (Ŝ1, . . . , Ŝm) ∈ F such that F kn+1(f̂
k, Ŝk) ≤ 0 and Hk

n+1(ĥ
k, Ŝk) ≥ 0 for all k ∈M . We define

(f ,h) as f
k

= bf̂kc/(1 + ρ)|Ŝ
k| and h

k
= (1 + ρ)|Ŝ

k| dĥke for all k ∈M .

In the next lemma, we show that (f ,h) is feasible to the problem in Step 1 above.

11

Lemma 4 For any (f̂ , ĥ) ∈ <m+ × <m+ and (Ŝ1, . . . , Ŝm) ∈ F that satisfies F kn+1(f̂
k, Ŝk) ≤ 0

and Hk
n+1(ĥ

k, Ŝk) ≥ 0 for all k ∈ M , let (f ,h) be such that f
k

= bf̂kc/(1 + ρ)|Ŝ
k| and h

k
=

(1 + ρ)|Ŝ
k| dĥke for all k ∈M . Then, we have (f ,h) ∈ P̃.

Proof. Adding the equality in (4) over all i ∈ N and noting that F k1 (fk, Sk) = fk, we obtain

F kn+1(f
k, Sk) = fk −

∑
i∈Sk ri v

k
i , which implies that F kn+1(f

k, Sk) is increasing in fk. In this case,

noting that F kn+1(f̂
k, Ŝk) ≤ 0 and bfkc ≤ fk, we obtain F kn+1(bf̂kc, Ŝk) ≤ F kn+1(f̂

k, Ŝk) ≤ 0 as

well. Therefore, we have F kn+1(bf̂kc, Ŝk) ≤ 0, in which case, using the fact that bf̂kc ∈ Dom+,

by Proposition 3, we obtain Φk
n+1(f

k
, Ŝk) = Φk

n+1(bf̂kc/(1 + ρ)|Ŝ
k|, Ŝk) ≤ 0. Using a similar

reasoning, we also have Γkn+1(h
k
, Ŝk) = Γkn+1((1 + ρ)|Ŝ

k| dĥke, Ŝk) ≥ 0. In this case, there exists

(Ŝ1, . . . , Ŝm) ∈ F such that Φk
n+1(f

k
, Ŝk) ≤ 0 and Γkn+1(h

k
, Ŝk) ≥ 0 for all k ∈ M , so that noting

the definition of P̃ in (7), we have (f ,h) ∈ P̃. �

When ρ > 0 is close to zero, (1 + ρ)|S
k| is close to one. Thus, by Lemma 4, we can scale any

solution (f̂ , ĥ) ∈ P by a factor close to one to obtain a solution (f ,h) ∈ P̃, as long as ρ > 0

is small. In other words, given a solution (f̂ , ĥ) ∈ P, which is optimal to problem (3), we can

scale this solution by a factor close to one to obtain a solution (f ,h) ∈ P̃, which is feasible to

the problem in Step 1 of the Approx algorithm. In the next theorem, we use this observation to

give a performance guarantee for the solution provided by the Approx algorithm. In this theorem

and throughout the rest of the paper, we use Rev(S1, . . . , Sm) to denote the objective function of

problem (1), which is the expected revenue from the solution (S1, . . . , Sm).

Theorem 5 Letting (S̃1, . . . , S̃m) be the output of the Approx algorithm and Ẑ be the optimal

objective value of problem (1), we have Rev(S̃1, . . . , S̃m) ≥ Ẑ/(1 + ρ)3n+1.

Proof. We let (f̃ , h̃) be an optimal solution to the problem in Step 1 of the Approx algorithm. By

(6), we have Φk
i+1(f̃

k, S̃k) ≥ Φk
i (f̃

k, S̃k) − ri v
k
i 1(i ∈ S̃k) for all i ∈ N , k ∈ M , in which case,

adding this inequality over all i ∈ N and noting that Φk
1(f̃k, S̃k) = f̃k, we obtain Φk

n+1(f̃
k, S̃k) ≥

f̃k −
∑

i∈N ri v
k
i 1(i ∈ S̃k) = f̃k −

∑
i∈S̃k ri v

k
i for all k ∈ M . Furthermore, by the definition of

(S̃1, . . . , S̃m) in Step 2 of the Approx algorithm, we also have Φk
n+1(f̃

k, S̃k) ≤ 0 for all k ∈M .

In this case, we obtain f̃k −
∑

i∈S̃k ri v
k
i ≤ Φk

n+1(f̃
k, S̃k) ≤ 0 so that

∑
i∈S̃k ri v

k
i ≥ f̃k for all

k ∈M . Using a similar reasoning, we have
∑

i∈S̃k v
k
i ≤ h̃k for all k ∈ M as well. Therefore, the

expected revenue from the solution (S̃1, . . . , S̃m) satisfies

Rev(S̃1, . . . , S̃m) =
∑
k∈M

{
k∏
`=1

1

1 +
∑

i∈S̃` v
`
i

}∑
i∈S̃k

ri v
k
i ≥

∑
k∈M

{
k∏
`=1

1

1 + h̃`

}
f̃k, (9)

which shows that the optimal objective value of the problem in Step 1 of the Approx algorithm is

a lower bound on the expected revenue from the solution (S̃1, . . . , S̃m).

Next, we construct a lower bound on the optimal objective value of the problem in Step 1

of the Approx algorithm by giving a feasible solution to this problem. Using (Ŝ1, . . . , Ŝm) to

12

denote an optimal solution to problem (1), we let f̂k =
∑

i∈Ŝk ri v
k
i and ĥk =

∑
i∈Ŝk v

k
i for all

k ∈M . By the discussion that follows the definition of F ki (fk, Sk) in (4), we have F kn+1(f
k, Sk) =

fk−
∑

i∈Sk ri v
k
i . Thus, we have F kn+1(f̂

k, Ŝk) = f̂k−
∑

i∈Ŝk ri v
k
i = 0 for all k ∈M . Using a similar

reasoning, we also have Hk
n+1(ĥ

k, Ŝk) = 0 for all k ∈M . In this case, letting f
k

= bf̂kc/(1 + ρ)|Ŝ
k|

and h
k

= (1 + ρ)|Ŝ
k| dĥke for all k ∈ M , by Lemma 4, we obtain (f ,h) ∈ P̃, which implies that

(f ,h) is a feasible solution to the problem in Step 1 of the Approx algorithm. Noting that (f̃ , h̃)

is an optimal solution to this problem, we obtain

∑
k∈M

{
k∏
`=1

1

1 + h̃`

}
f̃k ≥

∑
k∈M

{
k∏
`=1

1

1 + h
`

}
f
k

=
∑
k∈M

{
k∏
`=1

1

1 + (1 + ρ)|Ŝ`| dĥ`e

}
bf̂kc

(1 + ρ)|Ŝk|

≥
∑
k∈M

{
k∏
`=1

1

1 + (1 + ρ)|Ŝ`|+1(ĥ`>0) ĥ`

}
f̂k

(1 + ρ)|Ŝk|+1
, (10)

where the last equality is by the fact that dxe ≤ (1+ρ)1(x>0) x and bxc ≥ x/(1+ρ) for any x ∈ <+.

Since ĥk =
∑

i∈Ŝk v
k
i , we have ĥk > 0 if and only if Ŝk 6= ∅. Therefore, we obtain

∑
k∈M

{
k∏
`=1

1

1 + (1 + ρ)|Ŝ`|+1(ĥ`>0) ĥ`

}
f̂k

(1 + ρ)|Ŝk|+1

=
∑
k∈M

{
k∏
`=1

1

1 + (1 + ρ)|Ŝ`|+1(Ŝ` 6=∅) ĥ`

}
f̂k

(1 + ρ)|Ŝk|+1

≥
∑
k∈M

{
k∏
`=1

1

(1 + ρ)|Ŝ`|+1(Ŝ` 6=∅) (1 + ĥ`)

}
f̂k

(1 + ρ)|Ŝk|+1
. (11)

Since (Ŝ1, . . . , Ŝm) ∈ F , the sets Ŝ1, . . . , Ŝm are disjoint. Therefore, we have
∑k

`=1 |Ŝ`| ≤ n and∑k
`=1 1(Ŝ` 6= ∅) ≤ n for all k ∈M . Also, |Ŝk| ≤ n. So, we have

∑
k∈M

{
k∏
`=1

1

(1 + ρ)|Ŝ`|+1(Ŝ` 6=∅) (1 + ĥ`)

}
f̂k

(1 + ρ)|Ŝk|+1

≥
∑
k∈M

1

(1 + ρ)2n

{
k∏
`=1

1

1 + ĥ`

}
f̂k

(1 + ρ)n+1

=
∑
k∈M

{
k∏
`=1

1

1 +
∑

i∈Ŝ` v
`
i

}∑
i∈Ŝk ri v

k
i

(1 + ρ)3n+1
=

Ẑ

(1 + ρ)3n+1
, (12)

where the first equality is by the definition of (f̂k, ĥk) and the second equality holds as (Ŝ1, . . . , Ŝm)

is an optimal solution to problem (1). The desired result follows by (9), (10), (11) and (12). �

Thus, the expected revenue from the solution provided by the Approx algorithm deviates

from the optimal expected revenue by no more than a factor of (1 + ρ)3n+1. For any ε ∈ (0, 1),

13

consider executing the Approx algorithm with ρ = ε/(8n). Since ε < 1, we have (1 + ρ)3n+1 ≤
(1 +ρ)4n = (1 + ε

8n)4n ≤ exp(ε/2) ≤ 1 + ε, so that Rev(S̃1, . . . , S̃m) ≥ Ẑ/(1 +ρ)3n+1 ≥ Ẑ/(1 + ε) ≥
(1 − ε) Ẑ. Thus, the expected revenue from the solution provided by the Approx algorithm is

at least 1 − ε fraction of the optimal expected revenue. Although the solution provided by the

Approx algorithm has a performance guarantee, it is not yet clear that we can execute the Approx

algorithm efficiently. In the next section, we give a dynamic program that allows us to execute the

Approx algorithm efficiently when the number of stages is fixed. By accounting for the number of

operations to solve the dynamic program, we ultimately obtain our FPTAS.

6 Dynamic Programming Formulation

To execute the Approx algorithm efficiently, we make use of two observations. First, we can

use a dynamic program to check whether a given value of (f ,h) ∈ Domm
+ × Domm

+ satisfies

(f ,h) ∈ P̃, allowing us to check the feasibility of a solution to the problem in Step 1 of the Approx

algorithm. Second, we can bound the components of an optimal solution to the problem in Step

1 of the Approx algorithm. Using the bound, the number of values of (f ,h) ∈ Domm
+ × Domm

+

that can possibly be an optimal solution becomes polynomial in input size, when the number

of stages is fixed. In this case, we can execute Step 1 of the Approx algorithm by checking

whether each value of (f ,h) ∈ Domm
+ × Domm

+ that can be possibly be an optimal solution to

the problem in this step satisfies (f ,h) ∈ P̃ and by picking one that provides the best expected

revenue. In Step 2 of the Approx algorithm, we need to find a solution (S̃1, . . . , S̃m) ∈ F such that

Φk
n+1(f̃

k, S̃k) ≤ 0 and Γkn+1(f̃
k, S̃k) ≥ 0 for all k ∈ M . Noting (7), checking whether a given value

of (f ,h) ∈ Domm
+ × Domm

+ satisfies (f ,h) ∈ P̃ requires finding a solution (S1, . . . , Sm) ∈ F such

that Φk
n+1(f

k, Sk) ≤ 0 and Γkn+1(f
k, Sk) ≥ 0 for all k ∈ M . Therefore, we can use the dynamic

program that we use in Step 1 of the Approx algorithm to execute Step 2 as well.

We proceed to giving a dynamic program that allows us to check whether a given value of

(f ,h) ∈ Domm
+ ×Domm

+ is feasible to the problem in Step 1 of the Approx algorithm. Consider a

fixed value of (f ,h) ∈ Domm
+ ×Domm

+ . Noting (6), the values of Φk
i (f

k, Sk) and Γki (h
k, Sk) depend

on the decisions that we make for the products {1, . . . , i − 1}, but not on the decisions that we

make for the products {i, . . . , n}. In our dynamic program, the decision epochs correspond to the

products. At the decision epoch corresponding to product i, we choose the stage at which we should

offer product i. Note that we may decide not to offer product i at all. In particular, to capture

the decisions that we make at this decision epoch, we use the vector xi = (x1
i , . . . ,x

m
i) ∈ {0, 1}m,

where xki = 1 if and only if we offer product i in stage k. Since we can offer a product in no more

than one stage, the decision should satisfy
∑

k∈M xki ≤ 1. At the decision epoch corresponding

to product i, we have already made the decisions for the products {1, . . . , i− 1}. Therefore, the

state variable at the decision epoch corresponding to product i are the values of Φk
i (f

k, Sk) and

Γki (h
k, Sk) for all k ∈M , which are determined by the decisions that we make for the products in

{1, . . . , i− 1}. Given that Φk
i (f

k, Sk) = fki and Γki (h
k, Sk) = hki for all k ∈M , by (6), after we make

14

the decision for product i, we can compute Φk
i+1(f

k, Sk) and Γki+1(h
k, Sk) as dfki − ri vki xki e and

bfki − vki xki c for all k ∈M . To capture the state at the decision epoch corresponding to product i,

we define the vectors fi = (f1i , . . . , f
m
i) and hi = (h1i , . . . , h

m
i). Thus, letting ek ∈ {0, 1}m be a unit

vector with a one in the k-th component, to check whether a fixed value of (f ,h) ∈ Domm
+ ×Domm

+

satisfies (f ,h) ∈ P̃, we can solve the dynamic program

Vi(fi,hi) = max
xi ∈ {0, 1}m :∑
k∈M xki ≤ 1

{
Vi+1

(⌈
fi −

∑
k∈M

ek ri v
k
i x

k
i

⌉
,
⌊
hi −

∑
k∈M

ek vki x
k
i

⌋)}
, (13)

with the boundary condition that Vn+1(fn+1,hn+1) = 0 if fkn+1 ≤ 0 and hkn+1 ≥ 0 for all

k ∈ M . Otherwise, we have Vn+1(fn+1,hn+1) = −∞. Once we compute the value functions

{Vi(·, ·) : i ∈ N} through the dynamic program above, for a given value of (f ,h) ∈ Domm
+ ×Domm

+ ,

we have V1(f ,h) = 0 if and only if (f ,h) ∈ P̃. Note that we apply the operators d·e and b·c on the

vectors in (13) componentwise.

The state variable (fi,hi) in the dynamic program in (13) takes values in the set Domm
+ ×

Domm
+ . Therefore, the number of possible values for the state variable is countable but not yet

finite. Next, we give a natural bound on the state variable in this dynamic program, in which case,

the number of possible values for the state variable becomes finite. Thus, we can solve the dynamic

program in (13) in finite number of operations. In the next lemma, along with the discussion that

follows this lemma, we show that we do not need to consider the values of the state variable whose

components exceed a certain upper bound. In this lemma and throughout the rest of the paper, for

notational brevity, we let Rmax = max{ri vki : i ∈ N, k ∈M}, Rmin = min{ri vki : i ∈ N, k ∈M},
Vmax = max{vki : i ∈ N, k ∈M} and Vmin = min{vki : i ∈ N, k ∈M}. Also, we define the function

∆(ρ, n) = ((1 + ρ)n − 1)/ρ. Note that ∆(ρ, n) ≥ (1 + ρn− 1)/ρ = n.

Lemma 6 For any {xi : i ∈ N} and (f̂ , ĥ) ∈ <m+ × <m+ , assume that {(fi,hi) : i ∈ N} are given

by fki+1 = dfki − ri vki xki e and hki+1 = bhki − vki xki c for all i ∈ N , k ∈M with fk1 = f̂k and hk1 = ĥk.

If f̂k > dnRmaxe, then we have fkn+1 > 0. Similarly, if ĥk ≥ d∆(ρ, n)Vmaxe, then we have hkn+1 ≥ 0.

The proof of the lemma above follows from an induction over the products and we defer it to

Appendix A. The value function Vn+1(·, ·) in (13) takes the value 0 or −∞, depending only on

the signs of the components of the state variable. Furthermore, given the state variable (fi,hi) in

the decision epoch corresponding to product i, each component of the state variable at the next

decision epoch is computed by using the recursion fki+1 = dfki − ri vki xki e and hki+1 = bhki − vki xki c
for all k ∈M . Therefore, if we start with the initial state (f̂ , ĥ), then each component of the state

variable is computed by using the recursion in Lemma 6. In this case, by Lemma 6, if f̂k > dnRmaxe
for some k ∈ M in the initial state variable (f̂ , ĥ), then the same component of the state variable

(fn+1,hn+1) at the final decision epoch always satisfies fkn+1 > 0, irrespective of the decisions

that we take in the intermediate decision epochs. Thus, noting the boundary condition in the

15

dynamic program in (13), we have Vn+1(fn+1,hn+1) = −∞ irrespective of our decisions, which

implies that V1(f̂ , ĥ) = −∞. In other words, we can immediately deduce that V1(f̂ , ĥ) = −∞,

whenever f̂k > dnRmaxe for some k ∈M . We do not need to compute V1(f̂ , ĥ) explicitly whenever

f̂k > dnRmaxe for some k ∈ M . On the other hand, by Lemma 6, if ĥk ≥ d∆(ρ, n)Vmaxe for some

k ∈M in the initial state variable (f̂ , ĥ), then the same component of the state variable (fn+1,hn+1)

at the final decision epoch always satisfies hkn+1 ≥ 0, again, irrespective of the decisions that we

take in the intermediate decision epochs. Thus, since the value function Vn+1(·, ·) only depends on

the signs of the components of the state variable, as long as ĥk ≥ d∆(ρ, n)Vmaxe in the initial state

variable, the value function V1(f̂ , ĥ) does not depend on the specific value of ĥk. In other words, if

we have ĥk > d∆(ρ, n)Vmaxe for some k ∈M in the initial state variable (f̂ , ĥ), then we can bump

the value of this component of the state variable down to d∆(ρ, n)Vmaxe without changing the

value function V1(f̂ , ĥ). Therefore, we do not need to compute V1(f̂ , ĥ) explicitly either whenever

ĥk > d∆(ρ, n)Vmaxe for some k ∈ M . In this case, we do not need to compute the value function

V1(f̂ , ĥ) when f̂k > dnRmaxe or hk > d∆(ρ, n)Vmaxe for some k ∈M .

Also, since ri v
k
i ≥ Rmin, if 0 < f̂k < bRminc for some k ∈M in the initial state variable (f̂ , ĥ),

then offering any of the products at any decision epoch sets the value of this component of the

state variable to zero at the subsequent decision epochs. However, if f̂k = bRminc for some k ∈M ,

then offering any of the products at any decision epoch also sets the value of this component of the

state variable to zero at the subsequent decision epochs. Noting that the value function Vn+1(·, ·)
only depends on the signs of the components of the state variable, if 0 < f̂k < bRminc for some

k ∈M , then we can bump the value of this component of the state variable up to bRminc without

changing the value function V1(f̂ , ĥ). In other words, we do not need to compute V1(f̂ , ĥ) explicitly

whenever 0 < f̂k < bRminc for some k ∈M . Using a similar argument, we do not need to compute

V1(f̂ , ĥ) explicitly whenever 0 < ĥk < bVminc for some k ∈M . So, we do not need to compute the

value function V1(f̂ , ĥ) when 0 < f̂k < bRminc or 0 < ĥk < bVminc for some k ∈M .

Putting the discussion in the previous two paragraphs together, we only need to compute the

value function V1(f̂ , ĥ) for the values of the initial state variable (f̂ , ĥ) ∈ Domm
+ × Domm

+ that

satisfies f̂k ∈ {0} ∪ [bRminc, dnRmaxe] and ĥk ∈ {0} ∪ [bVminc, d∆(ρ, n)Vmaxe] for all k ∈ M . Once

we compute the value function at these values of the state variable, we can immediately deduce

the value function at other values of the state variable. This discussion also indicates that there

exists an optimal solution (f̃ , h̃) to the problem in Step 1 of the Approx algorithm that satisfies

f̃k ∈ {0} ∪ [bRminc, dnRmaxe] and h̃k ∈ {0} ∪ [bVminc, d∆(ρ, n)Vmaxe] for all k ∈ M . In particular,

if f̃k > dnRmaxe for some k ∈ M , then V1(f̃ , h̃) = −∞ by our earlier discussion, so (f̃ , h̃) 6∈ P̃,

which indicates that (f̃ , h̃) is not feasible to the problem in Step 1. On the other hand, an optimal

solution (f̃ , h̃) to the problem in Step 1 satisfies (f̃ , h̃) ∈ P̃ so that V1(f̃ , h̃) = 0. If we have

h̃k ≥ d∆(ρ, n)Vmaxe for some k ∈ M , then we, by our earlier discussion, can bump the value

of h̃k down to d∆(ρ, n)Vmaxe without changing the value of V1(f̃ , h̃) from zero. Therefore, the

solution that we obtain in this way is still feasible to the problem in Step 1. Furthermore, since

the objective function of this problem is decreasing in hk, the solution that we obtain in this way

16

is also an optimal solution. Similarly if we have 0 < f̃k < bRminc for some k ∈ M , then we can

bump the value of f̃k up to bRminc without changing the value of V1(f̃ , h̃) from zero. Therefore,

the solution that we obtain in this way is still feasible to the problem in Step 1. Furthermore, the

objective function of this problem is increasing in fk, indicating that the solution that we obtain in

this way is also an optimal solution. Lastly, using a similar argument, if 0 < h̃k < bVminc for some

k ∈M , then we can bump the value of h̃k down to zero and still obtain an optimal solution to the

problem in Step 1. So, there exists a finite number of possible solutions to the problem in Step 1 of

the Approx algorithm and we can solve the dynamic program in (13) to check whether each one

of these solutions is feasible. In the next section, we use this observation to give our FPTAS.

7 Fully Polynomial-Time Approximation Scheme

At the end of Section 5, we discuss that if we execute the Approx algorithm with ρ = ε/(8n)

for some ε ∈ (0, 1), then we obtain a solution to problem (1) that provides an expected revenue

deviating from the optimal expected revenue by no more than a factor of 1 − ε. Next, we discuss

that if we execute the Approx algorithm with ρ = ε/(8n) for some ε ∈ (0, 1), then the running

time is polynomial in input size, when the number of stages is fixed. In this way, we obtain

our FPTAS. We know that there exists an optimal solution (f̃ , h̃) to the problem in Step 1 of the

Approx algorithm that satisfies f̃k ∈ {0}∪[bRminc, dnRmaxe] and h̃k ∈ {0}∪[bVminc, d∆(ρ, n)Vmaxe]
for all k ∈M . Noting the definition of Dom, the number of possible values of (f̃ , h̃) ∈ Domm

+×Domm
+

that lie in these intervals is given by

O

((
log(nRmax

Rmin
)

log(1 + ρ)

)m
×

(
log(∆(ρ, n) Vmax

Vmin
)

log(1 + ρ)

)m)
= O

((
log(nRmax

Rmin
)× log(∆(ρ, n)Vmax

Vmin
)

ρ2

)m)
. (14)

To check whether a value of (f ,h) ∈ Domm
+ × Domm

+ is feasible to the problem in Step 1 of the

Approx algorithm, we can use the value function V1(f ,h). We know that we only need to compute

the value function V1(f ,h) for the values of the initial state variable (f ,h) ∈ Domm
+ ×Domm

+ that

satisfies fk ∈ {0} ∪ [bRminc, dnRmaxe] and hk ∈ {0} ∪ [bVminc, d∆(ρ, n)Vmaxe] for all k ∈ M . Each

component of the state variable in the dynamic program in (13) decreases as we move from one

decision epoch to the next. Therefore, if a component of a state variable turns negative, then it

never turns positive in a subsequent decision epoch. Since Vn+1(·, ·) only depends on the signs of

the components of the state variable, the number of possible values for the state variable at each

decision epoch is also given by the expression in (14).

There are O(n) decision epochs in the dynamic program in (13). We can compute the

value functions {Vi(·, ·) : i ∈ N} starting from the last decision epoch and moving backwards

over the decision epochs. Computation of the value function at a particular state takes O(m)

operations, since there are m stages in which we can offer a product. Thus, noting the number of

possible values for the state variable in (14), we can execute Step 1 of the Approx algorithm

in O(mn(log(nRmax
Rmin

))m (log(∆(ρ, n)Vmax
Vmin

))m/ρ2m) operations. On the other hand, to execute

Step 2 of the Approx algorithm, once we obtain an optimal solution (f̃ , h̃) to the problem

17

in Step 1, we can follow the optimal state and action trajectory in the dynamic program in

(13). In particular, letting (f̃1, h̃1) = (f̃ , h̃), we can compute x̃i and (f̃i, h̃i) recursively as x̃i =

arg max{Vi+1(df̃i −
∑

k∈M ek ri v
k
i x

k
i e, bh̃i −

∑
k∈M ek vki x

k
i c) :

∑
k∈M xki ≤ 1, xi ∈ {0, 1}m} with

f̃i+1 = df̃i−
∑

k∈M ek ri v
k
i x

k
i e and h̃i+1 = bh̃i−

∑
k∈M ek vki x

k
i c for all i ∈ N . In this case, letting

S̃k = {i ∈ N : x̃ki = 1} for all k ∈ M , the solution (S̃1, . . . , S̃m) ∈ F satisfies Φk
n+1(f̃

k, S̃k) ≤ 0

and Γkn+1(f̃
k, S̃k) ≥ 0 for all k ∈ M . The number of operations required to execute Step 2 of the

Approx algorithm is dominated by that required to execute Step 1. In the next theorem, we build

on this discussion to give an FPTAS for problem (1).

Theorem 7 For any ε ∈ (0, 1), we can find a solution to problem (1) such that the expected

revenue from this solution deviates from the optimal objective value of problem (1) by at

most a factor of 1 − ε and the number of operations required to obtain this solution is

O(mn2m+1(log(nRmax
Rmin

))m (log(nVmax
Vmin

))m/ε2m).

Proof. Consider executing the Approx algorithm with ρ = ε/(8n). By the discussion at the

end Section 5, this algorithm returns a solution such that the expected revenue from this solution

deviates from the optimal objective value of problem (1) by at most a factor of 1 − ε. On the

other hand, by the discussion right before the theorem, we can execute the Approx algorithm

in O(mn(log(nRmax
Rmin

))m (log(∆(ρ, n)Vmax
Vmin

))m/ρ2m) operations. Noting that exp(x/2) ≤ 1 + x for

all x ∈ (0, 1) and 2ρn = ε/4 < 1, we have ∆(ρ, n) = ((1 + ρ)n − 1)/ρ ≤ (exp(ρn) − 1)/ρ =

(1 + 2ρn − 1)/ρ = 2n. In this case, replacing ρ with ε/(8n) and ∆(ρ, n) with 2n, we obtain the

number of operations to execute the Approx algorithm with ρ = ε/(8n). �

The number of operations in Theorem 7 is polynomial in the input size and 1/ε when the number

of stagesm is fixed, yielding an FPTAS for problem (1) for fixed number of stages. The state variable

in the dynamic program in (13) takes values in Domm
+ × Domm

+ . It turns out we can formulate an

equivalent dynamic program, where the state variable takes values in Domm−1
+ × Domm

+ . Using

the latter dynamic program improves the number of operations in our FPTAS. To formulate the

equivalent dynamic program, we choose one stage arbitrarily. We choose the first stage in the

discussion that follows. We partition the vector f = (f1, . . . , fm) into the scalar f1 and the

vector f−1 = (f2, . . . , fm). Therefore, we can write f = (f1,f−1). It is not difficult to use

induction over the products to show that Φk
n+1(f

k, Sk) is increasing in fk. In particular, since

Φk
1(fk, Sk) = fk, Φk

1(fk, Sk) is increasing fk. If we assume that Φk
i (f

k, Sk) is increasing in fk

and note that dxe in increasing in x, then (6) implies that Φk
i+1(f

k, Sk) is increasing in fk as well,

completing the induction argument. Therefore, if Φk
i+1(f̂

k, Sk) ≤ 0, then we have Φk
i+1(f

k, Sk) ≤ 0

for all fk ≤ f̂k. Similarly, if Φk
i+1(f̂

k, Sk) > 0, then we have Φk
i+1(f

k, Sk) > 0 for all fk > f̂k.

In this case, consider a fixed value of (f−1,h) ∈ Domm−1
+ × Domm

+ . Noting the definition of P̃
in (7), depending on the value of (f−1,h) ∈ Domm−1

+ × Domm
+ , there exists a threshold T (f−1,h)

such that we have ((f1,f−1),h) ∈ P̃ for all f1 ∈ Dom+ that satisfies f1 ≤ T (f−1,h), whereas

we have ((f1,f−1),h) 6∈ P̃ for all f1 ∈ Dom+ that satisfies f1 > T (f−1,h). In other words, we

18

have V1((f
1,f−1),h) = 0 if f1 ≤ T (f−1,h), whereas we have V1((f

1,f−1),h) = −∞ if f1 >

T (f−1,h). Thus, if we can compute the threshold T (f−1,h) for all (f−1,h) ∈ Domm−1
+ × Domm

+ ,

then we do not need to solve the dynamic program in (13). In the rest of this section, we give a

dynamic program to compute the threshold T (f−1,h). In particular, letting M−1 = M \ {1} for

notational brevity, we consider the dynamic program

Ji(f
−1
i ,hi) = max

xi ∈ {0, 1}m :∑
k∈M xki ≤ 1

{
ri v

1
i x

1
i +

⌊
Ji+1

(⌈
f−1i −

∑
k∈M−1

ek ri v
k
i x

k
i

⌉
,
⌊
hi −

∑
k∈M

ek vki x
k
i

⌋)⌋}
, (15)

with the boundary condition that Jn+1(f
−1
n+1,hn+1) = 0 if fkn+1 ≤ 0 for all k ∈M−1 and hkn+1 ≥ 0

for all k ∈ M . Otherwise, we have Jn+1(f
−1
n+1,hn+1) = −∞. In Appendix B, we show that

we have V1((f
1,f−1),h) = 0 if f1 ≤ bJ1(f−1,h)c, whereas we have V1((f

1,f−1),h) = −∞ if

f1 > bJ1(f−1,h)c. Therefore, we can use bJ1(f−1,h)c as the threshold T (f−1,h), preventing the

need to compute V1(f ,h) for all (f ,h) ∈ Domm
+ × Domm

+ .

Working with the dynamic program in (15), we can use precisely the same argument earlier

in this section to give an FPTAS for problem (1). This FPTAS provides a solution such that

the expected revenue from this solution deviates from the optimal objective value of problem (1)

by at most a factor of 1 − ε and the number of operations required to obtain this solution is

O(mn2m(log(nRmax
Rmin

))m−1 (log(nVmax
Vmin

))m/ε2m−1). Note that although working with the dynamic

program in (15) allows us to obtain a more efficient FPTAS, the dynamic program in (13) is

substantially more interpretable than the one in (15). Therefore, we chose to use the dynamic

program in (13) in our initial presentation of our FPTAS.

Prior to our work, Desir and Goyal (2014) consider assortment optimization problems under

a mixture of multinomial logit models. The authors develop an FPTAS by using the connections

of their problem to the knapsack problem and aligning the cumulative capacity consumptions to

a geometric grid. Due to the multiple stages in the choice process in our assortment optimization

problem, we need to be careful to characterize the error resulting from aligning the cumulative

capacity consumptions to a geometric grid, as in Proposition 3. By Theorem 5, for a fixed grid size

ρ, the error is exponential in the number of products. As in Theorem 7, choosing the grid size ρ

such that it differs from the precision ε by a factor of n, we get our FPTAS.

Lastly, although our assortment optimization problem is NP-hard, we can provide some

structure for the form of the optimal solution. In particular, we can show that the union of

the optimal sets to offer in the different stages is nested by revenue, including a certain number of

products with the largest revenues. In other words, there exists an optimal solution (Ŝ1, . . . , Ŝm) to

problem (1) such that ∪k∈M Ŝk = {i ∈ N : ri ≥ ζ̂} for some constant ζ̂. While this result intuitively

suggests that we should give more priority to offering the products with larger revenues, it does

not allow us to find the optimal solution efficiently, since this result does not characterize the stage

in which each product should be offered. We discuss this result in Appendix C.

19

8 Constraints on the Offered Sets of Products

In this section, we consider two types of constraints on the sets of products that we can offer to

the customers. First, in online retail, for example, we may display the search results to a customer

sequentially through multiple webpages. If there is limited space on the webpage, then it may be

desirable to limit the number of products offered in each stage. We refer to this type of constraints as

cardinality constraints within stages. Note that not all online retail applications require cardinality

constraints within stages. In particular, it may be at our discretion to decide how many products

to display on each page, in which case, it may not be necessary to limit the number of products

that we offer in each stage. Second, in scheduling healthcare appointments over the phone, for

example, to gently guide the patient through the choice process, we may offer sets of appointment

slots sequentially. To avoid overwhelming the patient with a large number of options, it may be

desirable to limit the total number of appointment slots offered over all stages. We refer to this

type of constraints as cardinality constraints across stages.

Cardinality Constraints within Stages. We let Ck be the maximum number of products

that we can offer in stage k. Therefore, the feasible sets of products that we can offer over all

stages are F = {(S1, . . . , Sm) : Sk ⊆ N ∀ k ∈M, |Sk| ≤ Ck ∀ k ∈M, Sk ∩ S` = ∅ ∀ k 6= `}. The

development in Sections 3, 4 and 5 does not change at all, as long as we use this definition of F
under cardinality constraints within stages. All we need to do is to interpret all occurrences of F as

the one under cardinality constraints within stages. We slightly modify the dynamic program in

(13) that we use to check whether a fixed value of (f ,h) ∈ Domm
+ × Domm

+ satisfies (f ,h) ∈ P̃. In

particular, we let cki be the number of products among {1, . . . , i−1} that we offer in stage k. Defining

the vector ci = (c1i , . . . , c
m
i), we use the dynamic program

Vi(fi,hi, ci) = max
xi ∈ {0, 1}m :∑
k∈M xki ≤ 1

{
Vi+1

(⌈
fi −

∑
k∈M

ek ri v
k
i x

k
i

⌉
,
⌊
hi −

∑
k∈M

ek vki x
k
i

⌋
, ci +

∑
k∈M

ek xki

)}
,

with the boundary condition that Vn+1(fn+1,hn+1, cn+1) = 0 if fkn+1 ≤ 0, hkn+1 ≥ 0 and

ckn+1 ≤ Ck for all k ∈ M . Otherwise, we have Vn+1(fn+1,hn+1, cn+1) = −∞. In this case,

we have V1(f ,h,0) = 0 if and only if (f ,h) ∈ P̃, where 0 ∈ Zm+ is a vector of all zeros. We

can slightly modify the discussion in Section 7 to construct our FPTAS. In particular, using the

dynamic program above, under cardinality constraints within stages, we can execute the Approx

algorithm in O(mnm+1(log(nRmax
Rmin

))m (log(∆(ρ, n)Vmax
Vmin

))m/ρ2m) operations. Choosing ρ = ε/(8n),

we obtain an FPTAS with a running time of O(mn3m+1(log(nRmax
Rmin

))m (log(nVmax
Vmin

))m/ε2m) to obtain

a (1− ε)-approximate solution. Lastly, using the same approach in the dynamic program in (15),

we can reduce this running time to O(mn3m(log(nRmax
Rmin

))m−1 (log(nVmax
Vmin

))m/ε2m−1).

Cardinality Constraints across Stages. We let C be the maximum total number of products

that we can offer over all stages. Therefore, the feasible sets of products that we can offer over

all stages are F = {(S1, . . . , Sm) : Sk ⊆ N ∀ k ∈M, | ∪k∈M Sk| ≤ C, Sk ∩ S` = ∅ ∀ k 6= `}. Once

again, as long as we use the definition of F under cardinality constraints across stages, the

20

development in Sections 3, 4 and 5 does not change at all. We slightly modify the dynamic

program in (13) that we use to check whether a fixed value of (f ,h) ∈ Domm
+ × Domm

+ satisfies

(f ,h) ∈ P̃. We use ci to denote the total number of products among {1, . . . , i− 1} that we offer in

any of the stages. In this case, we use the dynamic program

Vi(fi,hi, ci) = max
xi ∈ {0, 1}m :∑
k∈M xki ≤ 1

{
Vi+1

(⌈
fi −

∑
k∈M

ek ri v
k
i x

k
i

⌉
,
⌊
hi −

∑
k∈M

ek vki x
k
i

⌋
, ci +

∑
k∈M

xki

)}
,

with the boundary condition that Vn+1(fn+1,hn+1, cn+1) = 0 if fkn+1 ≤ 0 and hkn+1 ≥ 0 for

all k ∈ M and cn+1 ≤ C. Otherwise, we have Vn+1(fn+1,hn+1, cn+1) = −∞. Thus, we have

V1(f ,h, 0) = 0 if and only if (f ,h) ∈ P̃. We can construct our FPTAS by slightly modifying the

discussion in Section 7. We can use the dynamic program above to execute the Approx algorithm

in O(mn2(log(nRmax
Rmin

))m (log(∆(ρ, n)Vmax
Vmin

))m/ρ2m) operations under cardinality constraints across

stages. To obtain an FPTAS, we choose ρ = ε/(8n), in which case, to obtain a (1− ε)-approximate

solution, our FPTAS has a running time of O(mn2m+2(log(nRmax
Rmin

))m (log(nVmax
Vmin

))m/ε2m). We can

reduce this running time to O(mn2m+1(log(nRmax
Rmin

))m−1 (log(nVmax
Vmin

))m/ε2m−1) by using the same

approach in the dynamic program in (15). It is also not too difficult to combine the discussion in

this paragraph with the one in the previous paragraph to limit the number of products offered in

each stage, as well as the total number of products offered over all stages, in which case, we have

joint cardinality constraints within and across stages.

Space Constraints across Stages. Naturally, we can consider the case where each product

occupies a certain amount of space and we limit the total space consumption of the products offered

in each stage or over all stages. We refer to these types of constraints as space constraints within or

across stages. We can extend the discussion in this section to space constraints across stages, but

the extension to space constraints within stages appears to be difficult. In particular, under space

constraints across stages, we let wi be the space consumption of product i and T be the limit on

the total space consumption of the products offered over all stages. The development in Sections 3,

4 and 5 still does not change at all. Under space constraints across stages, in the dynamic program

in (13), the value function Vi(fi,hi) would correspond to the minimum total space consumption

for the products in {i, . . . , n} to ensure that Φk
n+1(f

k, Sk) ≤ 0 and Γn+1(h
k, Sk) ≥ 0 for all k ∈M ,

given that the decisions that we make for the products in {1, . . . , i−1} satisfy fki = Φk
i (f

k, Sk) and

hki = Γki (h
k, Sk) for all k ∈M ; see Desir and Goyal (2014). Therefore, we have

Vi(fi,hi) = min
xi ∈ {0, 1}m :∑
k∈M xki ≤ 1

{
wi
∑
k∈M

xki + Vi+1

(⌈
fi −

∑
k∈M

ek ri v
k
i x

k
i

⌉
,
⌊
hi −

∑
k∈M

ek vki x
k
i

⌋)}
,

with the boundary condition that Vn+1(fn+1,hn+1) = 0 if fkn+1 ≤ 0 and hkn+1 ≥ 0 for all

k ∈M . Otherwise, we have Vn+1(fn+1,hn+1) = +∞. In this case, we have V1(f ,h) ≤ T if and

only if (f ,h) ∈ P̃. The number of possible values for the state variable in the dynamic program

above is the same as that for the dynamic program in (13). Thus, the number of possible values for

21

the state variable in the dynamic program above is also given by the expression in (14), in which

case, we can solve the dynamic program above in O(mn(log(nRmax
Rmin

))m (log(∆(ρ, n)Vmax
Vmin

))m/ρ2m)

operations. Using the same discussion in Section 7 and earlier in this section, under space

constraints across stages, we can choose ρ = ε/(8n) to construct an FPTAS with a running time

of O(mn2m+1(log(nRmax
Rmin

))m (log(nVmax
Vmin

))m/ε2m). We cannot reduce this running time by using the

approach that we use in the dynamic program in (15), since we cannot characterize the value

function above by using a threshold on one component of the state variable, as is done right before

the dynamic program in (15). Note that the running time of our FPTAS under space constraints

across stages is slightly worse than that under cardinality constraints across stages.

Space Constraints within Stages. Extending our approach to space constraints within

stages appears to be difficult. Under space constraints within stages, similar to our approach under

cardinality constraints within stages, we need an additional m-dimensional state variable in our

dynamic program, which keeps track of the cumulative space consumption of the products offered

in each stage. To obtain an FPTAS with a running time that is polynomial in the input size, we

need to discretize the components of the additional state variable by using a geometric grid, but

if we use such a discretization, then we cannot guarantee that we satisfy the constraints on the

space consumptions of the products offered in each stage. It is simple to construct an FPTAS to

obtain a solution that satisfies the constraints on the space consumptions with a multiplicative

error of 1 + ε in running time that is polynomial in 1/ε, but a feasible solution, by its definition,

must satisfy the hard space constraints. In the previous paragraph, under space constraints across

stages, we do not have to use an additional state variable in our dynamic program. In particular,

under space constraints across stages, we need to keep track of the total space consumption of the

products offered over all stages, which is a scalar. In this case, we can “overload” the value function

so that the value of the value function, itself, corresponds to the cumulative space consumption of

the products offered over all stages. Under space constraints within stages, however, we need to

keep track of the space consumption of the products offered in each stage separately, which is an

m-dimensional quantity, preventing us from “overloading” the value function.

9 Numerical Experiments

We give two sets of numerical experiments to test the effectiveness of our FTPAS. In the first set

of numerical experiments, we work with randomly generated test problems. In the second set of

numerical experiments, we use the data coming from a survey on the appointment slot choices of

the patients in a clinic. We provide all of our test problems as online supplement. Throughout, our

goal is to understand how the practical performance of our FPTAS compares with its theoretical

guarantee. We begin by formulating a linear program that provides an upper bound on the optimal

expected revenue in problem (1). So, we can compare the upper bound on the optimal expected

revenue with the expected revenue from the solution obtained by our FPTAS to assess the ex post

optimality gap of the solution. Following the linear program, we give our numerical experiments.

22

9.1 Upper Bound on the Optimal Expected Revenue

We construct a linear program that we can use to obtain an upper bound on the optimal expected

revenue in problem (1). All test problems in our numerical experiments have two stages. So, for

notational brevity, we give our linear program for the case with two stages, but we discuss the

extension to more than two stages at the end of this section. To formulate our linear program,

we use the decision variable xki ∈ {0, 1}, where xki = 1 if and only if we offer product i in stage

k. Noting that we have m = 2 stages, we write problem (1) equivalently as

Ẑ = max
{xi : i∈N}∈ {0,1}n×m

{ ∑
i∈N ri v

1
i x

1
i

1 +
∑

i∈N v
1
i x

1
i

+
1

1 +
∑

i∈N v
1
i x

1
i

∑
i∈N ri v

2
i x

2
i

1 +
∑

i∈N v
2
i x

2
i

:

∑
k∈M

xki ≤ 1 ∀ i ∈ N

}
. (16)

Our linear program is based on guessing the values of
∑

i∈N v
1
i x

1
i and

∑
i∈N ri v

2
i x

2
i /(1+

∑
i∈N v

2
i x

2
i)

above in an optimal solution.

Using {x̂i : i ∈ N} to denote an optimal solution to problem (16), we let the intervals [ν, ν] and

[σ, σ] be such that
∑

i∈N v
1
i x̂

1
i ∈ [ν, ν] and

∑
i∈N ri v

2
i x̂

2
i

1+
∑
i∈N v2i x̂

2
i
∈ [σ, σ]. Consider the problem

Ẑ(ν, ν, σ, σ) = max
{xi : i∈N}∈ [0,1]n×m

{∑
i∈N ri v

1
i x

1
i

1 + ν
+

1

1 + ν
σ :

∑
k∈M

xki ≤ 1 ∀ i ∈ N,

∑
i∈N

v1i x
1
i ≤ ν,

∑
i∈N ri v

2
i x

2
i

1 +
∑

i∈N v
2
i x

2
i

≥ σ

}
. (17)

In the problem above, the values of ν, ν, σ and σ are fixed. Therefore, the objective along with the

first and second constraints are linear in the decision variables. We can write the third constraint as∑
i∈N (ri − σ) v2i x

2
i ≥ σ, so that the third constraint is linear in the decision variables as well. Since

the decision variable xki takes values in the interval [0, 1] for all i ∈ N , k ∈ M , problem (17) is

a linear program. We proceed to argue that the optimal objective value of the linear program in

(17) is an upper bound on the optimal objective value of problem (16). Letting {x̂i : i ∈ N} be

an optimal solution to problem (16), by the definition of the intervals [ν, ν] and [σ, σ], we have∑
i∈N v

1
i x̂

1
i ∈ [ν, ν] and

∑
i∈N ri v

2
i x̂

2
i

1+
∑
i∈N v2i x̂

2
i
∈ [σ, σ]. Since {x̂i : i ∈ N} is an optimal solution to problem

(16), we also have
∑

k∈M x̂ki ≤ 1 for all i ∈ N . Therefore, the solution {x̂i : i ∈ N} is feasible to

problem (17). Since {x̂i : i ∈ N} is an optimal solution to problem (16), noting that
∑

i∈N v
1
i x̂

1
i ≥ ν

and
∑
i∈N ri v

2
i x̂

2
i

1+
∑
i∈N v2i x̂

2
i
≤ σ, the optimal objective value of problem (16) satisfies

Ẑ =

∑
i∈N ri v

1
i x̂

1
i

1 +
∑

i∈N v
1
i x̂

1
i

+
1

1 +
∑

i∈N v
1
i x̂

1
i

∑
i∈N ri v

2
i x̂

2
i

1 +
∑

i∈N v
2
i x̂

2
i

≤
∑

i∈N ri v
1
i x̂

1
i

1 + ν
+

1

1 + ν
σ.

The expression on the right side above is the objective value of the linear program in (17) evaluated

at the solution {x̂i : i ∈ N}. Therefore, there exists a feasible solution to the linear program in (17)

23

with the corresponding objective value that is no less than the optimal objective value of problem

(16). Therefore, the optimal objective value Ẑ(ν, ν, σ, σ) of the linear program in (17) is no less

than the optimal objective value of problem (16), as desired. We cannot use the linear program in

(17) immediately to obtain an upper bound on the optimal objective value of problem (16) since we

cannot come up with the intervals [ν, ν] and [σ, σ] without knowing an optimal solution to problem

(16). To get around this difficulty, we solve the linear program in (17) for multiple guesses for the

intervals that can potentially include the values
∑

i∈N v
1
i x̂

1
i and

∑
i∈N ri v

2
i x̂

2
i

1+
∑
i∈N v2i x̂

2
i
.

Let Vmax = max{v1i : i ∈ N} and rmax = max{ri : i ∈ N}. So, the value of
∑

i∈N v
1
i x̂

1
i cannot

exceed nVmax. Viewing
∑
i∈N ri v

2
i x̂

2
i

1+
∑
i∈N v2i x̂

2
i

as the weighted average of the revenues of the products, its

value cannot exceed rmax. We partition the interval [0, nVmax] by using the K + 1 points 0 = ν0 ≤
ν1 ≤ . . . ≤ νK = nV max. Similarly, we partition the interval [0, rmax] by using the L+ 1 points 0 =

σ0 ≤ σ1 ≤ . . . ≤ σL = rmax. Even if we do not know an optimal solution {x̂i : i ∈ N} to problem

(16), the value
∑

i∈N v
1
i x̂

1
i lies in one of the intervals {[νk−1, νk] : k = 1, . . . ,K}, whereas the value∑

i∈N ri v
2
i x̂

2
i

1+
∑
i∈N v2i x̂

2
i

lies in one of the intervals {[σ`−1, σ`] : ` = 1, . . . , L}. Thus, if we solve the linear

program in (17) with [ν, ν] = [νk−1, νk] and [σ, σ] = [σ`−1, σ`] to compute Ẑ(νk−1, νk, σ`−1, σ`) for

all k = 1, . . . ,K, ` = 1, . . . , L, then max{Ẑ(νk−1, νk, σ`−1, σ`) : k = 1, . . . ,K, ` = 1, . . . , L} is an

upper bound on the optimal objective value of problem (16).

We obtain an upper bound on the optimal objective value of problem (16) for any choice of the

points 0 = ν0 ≤ ν1 ≤ . . . ≤ νK = nV max and 0 = σ0 ≤ σ1 ≤ . . . ≤ σL = rmax. In our numerical

experiments, we choose these points such that νk − νk−1 = σ` − σ`−1 = 0.01. Using our approach,

we obtain reasonably tight upper bounds for our test problems, but a theoretical characterization of

the tightness of the upper bounds requires characterizing the integrality gap of a multiple knapsack

problem, which is difficult. We can extend our approach to the case where there are more than

two stages in the choice process of the customers. This extension requires guessing the intervals

that can potentially include the values
∑

i∈N v
k
i x̂

k
i for all k = 1, . . . ,m − 1,

∑
i∈N ri v

k
i x̂

k
i for all

k = 2, . . . ,m − 1 and
∑
i∈N ri v

m
i x̂mi

1+
∑
i∈N vmi x̂mi

. Therefore, the number of operations to compute an upper

bound increases exponentially with the number of stages.

9.2 Randomly Generated Test Problems

In this section, we work with a large number of test problems that are randomly generated and

test the performance of our FPTAS on these test problems.

Experimental Setup. We have n = 18 products and m = 2 stages in all of our test problems.

The preference weight of a product is the same in both stages. Using vi to denote the preference

weight of product i, to generate the preference weights of the products, we sample θi from the

uniform distribution over [1, 10] for all i ∈ N and set the preference weight of product i as vi =

(1− P0) θi/(P0
∑

j∈N θj), where P0 is a parameter that we vary. So, if we offer all products in a

particular stage, then the probability of no purchase is 1/(1 +
∑

i∈N vi) = 1/(1 + (1 − P0)/P0) =

24

P0. Thus, the parameter P0 controls the likelihood that a customer does not make a purchase

in a stage. To generate the revenues of the products, for all i ∈ N , we set ri = 0.3 or ri = 1

with equal probabilities. We also tested our FPTAS with revenues of the products uniformly

generated over a bounded interval and its performance was even better. After generating the

revenues {ri : i ∈ N} and preference weights {vi : i ∈ N} as described, we use two approaches to

finalize their values. In the first approach, we simply leave the generated revenues and preference

weights as they are. So, there is no relationship between the revenue and preference weight of a

product. In the second approach, we reindex the revenues {ri : i ∈ N} and preference weights

{vi : i ∈ N} so that r1 ≥ r2 ≥ . . . ≥ rn and v1 ≤ v2 ≤ . . . ≤ vn. Thus, the more expensive

products have smaller preference weights. We use T ∈ {N,O} to denote the approach to finalize

the revenues and preference weights, where N corresponds to no relationship between the revenues

and preference weights and O corresponds to ordering the revenues and preference weights. Varying

P0 ∈ {0.05, 0.1, 0.2, 0.3} and T ∈ {N,O}, we obtain eight parameter settings. In each parameter

setting, we generate 50 individual test problems by using the approach just discussed.

Benchmark. As a benchmark, we use an iterative exchange heuristic. In this heuristic, we

represent a solution by using the vector z = (z1, . . . , zn) ∈ {0, 1, 2}n, where we have zi = 0 if we do

not offer product i, zi = 1 if we offer product i in stage 1 and zi = 2 if we offer product i in stage 2. In

the iterative exchange heuristic, at the first iteration, we have the solution z1 = (0, . . . , 0) ∈ Zn+,

which does not offer any of the products. At iteration `, given that we have the solution z`, we

check whether replacing each component z`i of the solution z` by an element of {0, 1, 2} \ {z`i}
improves the expected revenue from the solution z`. When we find one such component z`i and

one such element of {0, 1, 2} \ {z`i}, we replace this component by this element to obtain a solution

with a larger expected revenue, which yields the solution z`+1 that we have at iteration ` + 1. If

replacing any component z`i of the solution z` by any element of {0, 1, 2} \ {z`i} does not improve

the expected revenue from the solution z`, then we stop.

Numerical Results. In our numerical experiments, we use our FPTAS to obtain solutions

with performance guarantees of ε = 1/4 and ε = 1/2. Therefore, the expected revenues from

the solutions obtained by our FPTAS are guaranteed to be at least 75% and 50% of the optimal

expected revenue. By the discussion at the end of Section 5, to obtain such performance guarantees,

we need to execute the Approx algorithm with ρ = ε/(8n). We give our main numerical results in

Table 1. In this table, the first column shows the parameter setting by using the pair (P0, T), where

P0 and T are as discussed in our experimental setup. There are three blocks of four columns in the

rest of the table. The first block of columns focuses on the performance of our FPTAS with ε = 1/4,

corresponding to a 75% performance guarantee. Recall that we generate 50 test problems in each

parameter setting. For each test problem, we use our FPTAS to obtain an approximate solution. For

each test problem, we also use the linear program in (17) to obtain an upper bound on the optimal

expected revenue. In the first block of columns in Table 1, the first column shows the average

percent gap between the upper bound on the optimal expected revenue and the expected revenue

from the solution obtained by our FPTAS, where the average is computed over the 50 test problems

25

Par. FPTAS with ε = 1/4 Iterative Exchange Heuristic FPTAS with ε = 1/2
(P0, T) Avg. Max. 75th 95th Avg. Max. 75th 95th Avg. Max. 75th 95th

(N, 0.05) 0.47% 1.39% 0.63% 1.02% 0.73% 11.59% 0.67% 1.15% 0.47% 1.39% 0.63% 1.02%
(O, 0.05) 0.56% 1.77% 0.73% 1.17% 1.34% 12.75% 0.75% 6.69% 0.56% 1.77% 0.73% 1.17%

(N, 0.1) 0.71% 1.69% 0.82% 1.12% 2.22% 17.93% 1.01% 14.73% 0.71% 1.69% 0.82% 1.12%
(O, 0.1) 0.88% 2.34% 0.92% 2.00% 2.51% 16.24% 2.34% 10.43% 0.88% 2.34% 0.92% 2.00%

(N, 0.2) 1.08% 1.76% 1.21% 1.67% 2.61% 13.94% 2.54% 9.59% 1.08% 1.76% 1.21% 1.67%
(O, 0.2) 1.39% 2.73% 1.72% 1.95% 2.23% 10.58% 1.76% 6.87% 1.39% 2.73% 1.72% 1.95%

(N, 0.3) 1.75% 3.59% 1.95% 3.06% 2.35% 8.33% 2.89% 6.08% 1.75% 3.59% 1.95% 3.06%
(O, 0.3) 1.77% 3.54% 2.10% 3.06% 2.15% 7.43% 2.59% 4.98% 1.77% 3.54% 2.10% 3.06%

Avg. 1.08% 2.35% 1.26% 1.88% 2.02% 12.35% 1.82% 7.57% 1.08% 2.35% 1.26% 1.88%

Table 1: Performance of our FPTAS and the iterative exchange heuristic.

in a parameter setting. In particular, for test problem k, letting Revk be the expected revenue from

the solution obtained by our FPTAS and Uppk be the upper bound on the optimal expected revenue,

the first column shows the average of the data {100× (Uppk − Revk)/Uppk : k = 1, . . . , 50}. The

second, third and fourth columns show the maximum, 75th percentile and 95th percentile of the

same data. The second and third blocks of columns in Table 1 have the same interpretation as

the first block, but the second block focuses on the performance of the iterative exchange heuristic,

whereas the third block focuses on the performance of our FPTAS with ε = 1/2.

We make three observations in the results in Table 1. First, our FPTAS is able to obtain

high quality solutions and its practical performance can be substantially better than its theoretical

performance guarantee. When we execute our FPTAS with ε = 1/4 corresponding to a performance

guarantee of 75%, the average optimality gap of the solutions that we obtain is no larger than

1.08%. Second, the performance of the iterative exchange heuristic noticeably lags behind that of

our FPTAS. Also, the heuristic can be unreliable. In particular, there are test problems where we

have a gap of as much as 17.93% between the upper bound on the optimal expected revenue and

the expected revenue from the solution obtained by the heuristic. Third, the performance of our

FPTAS with ε = 1/4 and ε = 1/2 is indistinguishable up to the two decimal digits that we report,

but we occasionally get different solutions with ε = 1/4 and ε = 1/2. Intuitively, our theoretical

analysis accumulates the error in the dynamic program in (13) rather conservatively. Thus, even

when we use a large value of ε corresponding to a crude performance guarantee in our FPTAS, we

may still get solutions with high quality, but of course, we cannot give a priori guarantees beyond

75% and 50%, unless we tighten our theoretical analysis further, which appears to be difficult.

Another interesting question is the benefit in the expected revenue that we obtain by letting

the customers make choices in two stages. To answer this question, we compute the optimal

solution when we offer products in only one of the two stages, but not in the other stage. Since

the preference weights of the products in the two stages are the same, this approach is equivalent

to computing the optimal set of products to offer in the first stage when we do not offer any

products in the second stage. In this case, the expected revenue takes the same form as that

under the standard multinomial logit model and there exist efficient algorithms to find the optimal

26

Par. Performance Gap
(P0, T) Avg. Max. 75th 95th

(N, 0.05) 7.71% 32.53% 9.21% 11.99%
(O, 0.05) 10.29% 39.27% 10.16% 26.59%

(N, 0.1) 12.53% 36.14% 12.43% 25.96%
(O, 0.1) 15.72% 36.33% 18.88% 35.14%

(N, 0.2) 15.26% 31.95% 17.58% 27.45%
(O, 0.2) 20.00% 34.59% 28.68% 34.11%

(N, 0.3) 16.61% 29.22% 22.95% 26.01%
(O, 0.3) 18.11% 30.08% 24.74% 29.20%

Avg. 14.53% 33.76% 18.08% 27.06%

Table 2: Performance improvement when we make offers in two stages rather than in one stage.

solution; see Talluri and van Ryzin (2004). For all of the test problems in our experimental

setup, we computed the optimal solution when we offer products only in the first stage. We

give our numerical results in Table 2. The first column in this table shows the parameter setting

by using the pair (P0, T). For test problem k, we let Revk be the expected revenue from the

solution obtained by our FPTAS with ε = 1/4 and Onek be the expected revenue from the optimal

solution that we obtain when we offer products only in the first stage. In this case, the second,

third, fourth and fifth columns in Table 2 show the average, maximum, 75th percentile and 95th

percentile of the data {100× (Revk − Onek)/Revk : k = 1, . . . , 50}, providing summary statistics for

the percent improvement in the expected revenue when we offer products in two stages. Over all

of our test problems, offering products in two stages provides an average improvement of 14.53%

in the expected revenue. There are test problems where the improvement reaches 39.27%.

The CPU time for the iterative exchange heuristic is on the order of milliseconds. If we use

our FPTAS with ε = 1/2, then the average CPU time per test problem is 19.8 seconds, whereas

if we use our FPTAS with ε = 1/4, then the average CPU time per test problem increases by

about a factor of ten. In our theoretical running time analysis, decreasing ε by a factor of two

increases the running time by a factor of eight. The additional CPU time is spent on allocating

memory, which is not accounted for in our theoretical running time analysis. Ultimately, our

FPTAS has longer CPU times, but it can provide significantly better solutions than the iterative

exchange heuristic. Also, the CPU times for our FPTAS are reasonable if we compute solutions

in an offline fashion, which is the case in many applications. Lastly, our FPTAS can continue to

provide high solution quality with even larger values of ε. In particular, we repeated our numerical

experiments with ε = 3/4 and the performance of our FPTAS on all our test problems remained

almost unchanged, whereas its average CPU time per test problem was 6.0 seconds.

9.3 Test Problems Based on a Survey for Appointment Slot Choices

In this section, we build on the survey conducted by Feldman et al. (2014) regarding the

appointment slot choices of the patients visiting Farrell Community Health Center in New York

City. In their work, Feldman et al. (2014) use the data provided by the survey to fit a multinomial

27

logit model with a single stage. In our numerical experiments, we augment the data provided by

their survey to use it under the multinomial logit model with two stages.

Experimental Setup. We particularly focus on one question in the survey. The question

describes a number of symptoms that the patient is hypothetically going through, including heavy

cough and sharp chest pain. There are six possible days and three possible time blocks on each day,

resulting in 18 possible appointment slots. Among the 18 possible appointment slots, the question

offers the patient a randomly chosen set of six appointment slots, along with the option of seeking

care elsewhere. The patient picks one of the offered alternatives. In the survey, the patients are

offered one set of appointment slots, all in one stage. To use the data provided by the survey

under the multinomial logit model with two stages, we artificially augment the data as follows. We

randomly split the set of six appointment slots offered to each patient into two partitions, each

containing three appointment slots, so that the first partition is offered in the first stage, whereas

the second partition is offered in the second stage. So, for each patient, we have the two sets of

appointment slots offered in the two stages, along with the choice of the patient. Using maximum

likelihood estimation, we fit a multinomial logit model with two stages. Feldman et al. (2014)

focus on the appointment slot choices among the different days, but their survey also includes more

granular data on the appointment slot choices among the different time blocks on each day, which

is what we use. Also, since we augmented the data, we caution the reader against comparing the

results of our numerical experiments with the current operations of the clinic.

In the appointment scheduling setting, a possible objective is to maximize the probability that a

patient schedules an appointment, but for purposes of quality and continuity of care, it is preferable

to get the patients to schedule earlier appointments. We use two revenue structures in our numerical

experiments. In the first revenue structure, we set ri = 1 for all i ∈ N . In this case, we maximize

the probability that a patient schedules an appointment without making a distinction between

scheduling earlier or later appointments. In the second revenue structure, we use N1 to denote the

appointment slots in the first three days and N2 to denote the appointment slots in the last three

days. We set ri = 1 for all i ∈ N1 and ri = 0.3 for all i ∈ N2. In this case, we put a larger weight

on scheduling earlier appointments. We use R ∈ {U,E} to denote the revenue structure, where

U corresponds to having a uniform revenue of one from each appointment and E corresponds to

putting a larger weight on scheduling earlier appointments. Also, recall that we augment the data

provided by the survey by randomly splitting the set of appointment slots offered to each patient

into two partitions. Using six different random seeds to carry out the splitting process, we obtain

six different datasets. We fit a multinomial logit model with two stages to each one of the datasets,

yielding six multinomial logit models. The approach that we use to fit the multinomial logit model

is similar to the one in Vulcano et al. (2012). Letting ` denote the multinomial logit model that

we obtain, varying R ∈ {U,E} and ` ∈ {1, . . . , 6}, we obtain 12 test problems.

Numerical Results. We give our numerical results in Table 3. In this table, the first column

shows the parameter setting for each of the 12 test problems by using the pair (R, `) with R ∈ {U,E}

28

Par. FPTAS Single
(R, `) ε = 1/4 Stage

(U, 1) 0.64% 10.15%
(E, 1) 0.74% 10.90%

(U, 2) 0.66% 10.24%
(E, 2) 0.75% 10.98%

(U, 3) 0.65% 10.23%
(E, 3) 0.77% 11.00%

Avg. 0.70% 10.58%

Par. FPTAS Single
(R, `) ε = 1/4 Stage

(U, 4) 0.65% 10.28%
(E, 4) 0.75% 11.03%

(U, 5) 0.66% 10.36%
(E, 5) 0.79% 11.12%

(U, 6) 0.63% 10.12%
(E, 6) 0.75% 10.91%

Avg. 0.71% 10.64%

Table 3: Performance of our FPTAS and the approach that offers appointment slots only in the
first stage.

and ` ∈ {1, . . . , 6}. The second column focuses on the performance of our FPTAS with ε = 1/4,

corresponding to a 75% performance guarantee. In particular, the second column shows the percent

gap between the upper bound on the optimal expected revenue and the expected revenue from the

solution obtained by our FPTAS. The third column focuses on the expected revenues that we

obtain when we offer appointment slots only in the first stage, but not in the second stage. In

particular, the third column shows the percent gap between the upper bound on the optimal

expected revenue and the expected revenue from the optimal solution under the constraint that we

offer appointment slots only in the first stage. We executed our FPTAS with ε = 1/2 and ε = 3/4,

as well as the iterative exchange heuristic. Using ε = 1/2 or ε = 3/4 for our FPTAS did not change

the performance of our FPTAS. In 10 out of the 12 test problems, the performance of the iterative

exchange heuristic was identical to that of our FPTAS. In the remaining two test problems, the

expected revenue obtained by the iterative exchange heuristic lagged behind that obtained by our

FPTAS, but by less than 0.01%. The results in Table 3 indicate that our FPTAS can obtain

solutions with high quality and its performance in practice can be significantly better than what

is predicted by its theoretical performance guarantee. In the table, the solutions obtained by our

FPTAS have optimality gaps no larger than 0.79%. On the other hand, offering appointment slots

only in the first stage may incur losses in the expected revenues by more than 10%. Closing this

section, we note that the goal of the numerical experiments that we give in this section is to test

the quality of the solutions obtained by our FPTAS and the benefits provided by taking advantage

of the second stage in the choice process. In particular, since the data that we use is based on a

survey that offers the sets of appointment slots altogether in one stage and we artificially augment

the data to fit a multinomial logit model with two stages, our numerical experiments do not shed

light into the benefits of sequential offerings in a clinical setting. Testing the clinical benefits of

sequential offerings is outside our scope, which requires a survey where we collect data by actually

offering the sets of appointment slots in multiple stages.

10 Conclusions

In this paper, we studied assortment optimization problems under the multinomial logit model,

where the choice process of the customer takes place in multiple stages. There are several directions

29

for future work. The running time of our FPTAS depends on Rmax/Rmin and Vmax/Vmin. It would

be interesting to see whether one can develop a strongly polynomial time algorithm, whose running

time does not depend on these quantities, possibly by building on the fact that the union of the

optimal assortments offered in all stages is nested by revenue. Also, the running time of our FPTAS

is polynomial in the number of products but exponential in the number of stages. A useful line of

research is to develop algorithms with running times polynomial in the number of stages. Our effort

in this regard has been unfruitful so far and designing algorithms with running times polynomial

in the number of stages appears to need a new line of attack. Lastly, as discussed in Section 8, our

approach does not immediately extend to space constraints within stages. It is interesting to study

approximation schemes under space constraints within stages.

Acknowledgements. The authors thank the associate editor and two anonymous referees

whose comments improved the paper substantially.

References

Aouad, A., Farias, V. and Levi, R. (2016), Assortment optimization under consider-then-choose
choice models, Technical report, MIT, Massachusetts, MA.

Blanchet, J., Gallego, G. and Goyal, V. (2016), ‘A Markov chain approximation to choice modeling’,
Operations Research 64(4), 886–905.

Bront, J. J. M., Diaz, I. M. and Vulcano, G. (2009), ‘A column generation algorithm for choice-based
network revenue management’, Operations Research 57(3), 769–784.

Davis, J., Gallego, G. and Topaloglu, H. (2013), Assortment planning under the multinomial
logit model with totally unimodular constraint structures, Technical report, Cornell University,
School of Operations Research and Information Engineering.
Available at http://legacy.orie.cornell.edu/∼huseyin/publications/publications.html.

Davis, J., Gallego, G. and Topaloglu, H. (2014), ‘Assortment optimization under variants of the
nested logit model’, Operations Research 62(2), 250–273.

Desir, A. and Goyal, V. (2014), Near-optimal algorithms for capacity constrained assortment
optimization, Technical report, Columbia University, New York, NY.

Feldman, J., Liu, N., Topaloglu, H. and Ziya, S. (2014), ‘Appointment scheduling under patient
preference and no-show behavior’, Operations Research 62(4), 794–811.

Feldman, J. and Topaloglu, H. (2018), ‘Technical note: Capacitated assortment optimization under
the multinomial logit model with nested consideration sets’, Operations Research 66(2), 380–391.

Flores, A., Berbeglia, G. and van Hentenryck, P. (2019), ‘Assortment optimization under the
sequential multinomial logit model’, European Journal of Operational Research 273(3), 1052–
1064.

Gallego, G., Iyengar, G., Phillips, R. and Dubey, A. (2004), Managing flexible products on a
network, Computational Optimization Research Center Technical Report TR-2004-01, Columbia
University.

Gallego, G., Li, A., Truong, V. A. and Wang, X. (2016), Approximation algorithms for product
framing and pricing, Technical report, Columbia University, New York, NY.

Gallego, G., Ratliff, R. and Shebalov, S. (2015), ‘A general attraction model and sales-based linear
programming formulation for network revenue management under customer choice’, Operations
Research 63(1), 212–232.

Garey, M. and Johnson, D. (1979), Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman and Company, New York, NY.

30

Liu, N., van de Ven, P. M. and Zhang, B. (2017), Managing appointment booking under customer
choices, Technical report, Boston College, Boston, MA.

Meissner, J., Strauss, A. and Talluri, K. (2012), ‘An enhanced concave program relaxation for
choice network revenue management’, Production and Operations Management 22(1), 71–87.

Mendez-Diaz, I., Bront, J. J. M., Vulcano, G. and Zabala, P. (2010), ‘A branch-and-cut algorithm
for the latent-class logit assortment problem’, Discrete Applied Mathematics 36, 383–390.

Mittal, S. and Schulz, A. S. (2013), ‘A general framework for designing approximation schemes
for combinatorial optimization problems with many objectives combined into one’, Operations
Research 61(2), 389–397.

Rusmevichientong, P., Shen, Z.-J. M. and Shmoys, D. B. (2010), ‘Dynamic assortment optimization
with a multinomial logit choice model and capacity constraint’, Operations Research 58(6), 1666–
1680.

Rusmevichientong, P., Shmoys, D. B., Tong, C. and Topaloglu, H. (2014), ‘Assortment optimization
under the multinomial logit model with random choice parameters’, Production and Operations
Management 23(11), 2023–2039.

Rusmevichientong, P. and Topaloglu, H. (2012), ‘Robust assortment optimization in revenue
management under the multinomial logit choice model’, Operations Research 60(4), 865–882.

Talluri, K. and van Ryzin, G. (2004), ‘Revenue management under a general discrete choice model
of consumer behavior’, Management Science 50(1), 15–33.

Vulcano, G., van Ryzin, G. J. and Ratliff, R. (2012), ‘Estimating primary demand for substitutable
products from sales transaction data’, Operations Research 60(2), 313–334.

Wang, R. (2012), ‘Capacitated assortment and price optimization under the multinomial logit
model’, Operations Research Letters 40(6), 492–497.

Wang, R. (2013), ‘Assortment management under the generalized attraction model with a capacity
constraint’, Journal of Revenue and Pricing Management 12(3), 254–270.

31

A Appendix: Upper Bound on State Variable

In this section, we give a proof for Lemma 6. First, we show that if f̂k > dnRmaxe, then we have

fkn+1 > 0. Since fki+1 = dfki − ri v
k
i x

k
i e, we have fki+1 ≥ fki − ri v

k
i x

k
i . Adding this inequality

over all i ∈ N and noting that fk1 = f̂k, along with the definition of Rmax, we obtain fkn+1 ≥
f̂k −

∑
i∈N ri v

k
i x

k
i ≥ f̂k − nRmax ≥ f̂k − dnRmaxe. In this case, the last inequality implies that if

f̂k > dnRmaxe, then we have fkn+1 > 0. Second, we show that if ĥk ≥ d∆(ρ, n)Vmaxe, then we have

hkn+1 ≥ 0. We claim that if hki ≥ ∆(ρ, n + 1 − i)Vmax, then hki+1 ≥ ∆(ρ, n − i)Vmax. To see the

claim, if hki ≥ ∆(ρ, n+ 1− i)Vmax, then we have

hki+1 = bhki − vki xki c ≥
1

1 + ρ
(hki − vki xki) ≥

1

1 + ρ
(∆(ρ, n+ 1− i)− 1)Vmax

=

(1+ρ)n+1−i−1
ρ − 1

1 + ρ
Vmax =

(1 + ρ)n−i − 1

ρ
Vmax = ∆(ρ, n− i)Vmax,

where the first inequality holds since hi−vki xki ≥ ∆(ρ, n+ 1− i)Vmax−Vmax ≥ 0 and bxc ≥ x/(1+ρ)

for any x ∈ <+ and the second equality is by the definition of ∆(ρ, n). The chain of inequalities

above establishes the claim. Using the claim, if hk1 ≥ ∆(ρ, n)Vmax, then hk2 ≥ ∆(ρ, n− 1)Vmax, but

using the claim once more, if hk2 ≥ ∆(ρ, n − 1)Vmax, then hk3 ≥ ∆(ρ, n − 2)Vmax. Using the claim

successively, if hk1 ≥ ∆(ρ, n)Vmax, then hkn+1 ≥ ∆(ρ, 0)Vmax. Since hk1 = ĥk, if ĥk ≥ d∆(ρ, n)Vmaxe,
then hk1 = ĥk ≥ ∆(ρ, n)Vmax, but if hk1 ≥ ∆(ρ, n)Vmax, then hkn+1 ≥ ∆(ρ, 0)Vmax. By the definition

of ∆(ρ, n), we have ∆(ρ, 0) = 0, so it follows that if ĥk ≥ d∆(ρ, n)Vmaxe, then hkn+1 ≥ 0.

B Appendix: Computation of Thresholds

In the next lemma, we show the relationship between the value functions {Vi(·, ·) : i ∈ N} and

{Ji(·, ·) : i ∈ N} that are computed through the dynamic programs in (13) and (15).

Lemma 8 For any (fi,hi) ∈ Domm
+ × Domm

+ and i ∈ N , if f1i ≤ bJi(f
−1
i ,hi)c, then we have

Vi(fi,hi) = 0. Similarly, if f1i > bJi(f
−1
i ,hi)c, then we have Vi(fi,hi) = −∞.

Proof. We use induction over the products to show that if f1i ≤ bJi(f
−1
i ,hi)c, then we have

Vi(fi,hi) = 0 for any (fi,hi) ∈ Domm
+×Domm

+ and i ∈ N∪{n+1}. For any (fn+1,hn+1) ∈ Domm
+×

Domm
+ , since f1n+1 ≥ 0 and Jn+1(·, ·) takes only the value zero or −∞, if f1n+1 ≤ bJn+1(f

−1
n+1,hn+1)c,

then we must have Jn+1(f
−1
n+1,hn+1) = 0 and f1n+1 ≤ 0. By the boundary condition of the dynamic

program in (15), if Jn+1(f
−1
n+1,hn+1) = 0, then we must have fkn+1 ≤ 0 for all k ∈M−1 and hkn+1 ≥ 0

for all k ∈ M . Thus, if f1n+1 ≤ bJn+1(f
−1
n+1,hn+1)c, then we must have f1n+1 ≤ 0, fkn+1 ≤ 0 for all

k ∈ M−1 and hkn+1 ≥ 0 for all k ∈ M , in which case, by the boundary condition of the dynamic

program in (13), we have Vn+1(fn+1,hn+1) = 0. Therefore, the result holds for product n + 1.

Next, we assume that the result holds for product i + 1 and we show that the result holds for

product i. Consider (fi,hi) ∈ Domm
+ × Domm

+ such that f1i ≤ bJi(f
−1
i ,hi)c. We use x̂i to denote

32

an optimal solution to the problem on the right side of (15). Since f1i ≤ bJi(f
−1
i ,hi)c, noting the

dynamic program in (15), we have

f1i ≤

⌊
ri v

1
i x̂

1
i +

⌊
Ji+1

(⌈
f−1i −

∑
k∈M−1

ek ri v
k
i x̂

k
i

⌉
,
⌊
hi −

∑
k∈M

ek vki x̂
k
i

⌋)⌋⌋
.

By a simple lemma, given as Lemma 9 below, for any a, b ∈ Dom and α ∈ <, we have a ≤ bα+ bc
if and only if da− αe ≤ b. Thus, the inequality above implies that we have

df1i − ri v1i x̂1i e ≤

⌊
Ji+1

(⌈
f−1i −

∑
k∈M−1

ek ri v
k
i x̂

k
i

⌉
,
⌊
hi −

∑
k∈M

ek vki x̂
k
i

⌋)⌋
.

For notational brevity, we let fki+1 = dfki −ri vki x̂ki e and hki+1 = bhki −vki x̂ki c for all k ∈M , in which

case, the inequality above is equivalent to f1i+1 ≤ bJi+1(f
−1
i+1,hi+1)c, but by the induction argument,

if f1i+1 ≤ bJi+1(f
−1
i+1,hi+1)c, then Vi+1(fi+1,hi+1) = 0. Therefore, noting the definitions of fki+1

and hki+1, we have Vi+1(fi+1,hi+1) = Vi+1(dfk−
∑

k∈M ek ri v
k
i x̂

k
i e, bhk−

∑
k∈M ek vki x̂

k
i c) = 0. By

last equality, the solution x̂i provides an objective value of zero for the problem on the right side

of (13). Since Vi(·, ·) takes only the value zero or −∞ and there exists a solution to the problem

on the right side of (13) that provides an objective value of zero, we must have Vi(fi,hi) = 0,

completing the induction argument. The discussion so far shows that if f1i ≤ bJi(f
−1
i ,hi)c, then

we have Vi(fi,hi) = 0 for any (fi,hi) ∈ Domm
+ ×Domm

+ and i ∈ N ∪ {n+ 1}, establishing the first

statement in the lemma. The second statement uses a similar reasoning. �

In the next lemma, we show a result that we use in the proof of Lemma 8.

Lemma 9 For any a, b ∈ Dom and α ∈ <, we have a ≤ bα+ bc if and only if da− αe ≤ b.

Proof. First, we show that if a ≤ bα+ bc, then we have da−αe ≤ b. If a ≤ bα+ bc, then a ≤ α+ b,

so that a− α ≤ b. Since b ∈ Dom, having a− α ≤ b implies that da− αe ≤ b, as desired. Second,

we show that if da − αe ≤ b, then we have a ≤ bα + bc. If da − αe ≤ b, then a − α ≤ b, so that

a ≤ α+ b. Since a ∈ Dom, having a ≤ α+ b implies that a ≤ bα+ bc, as desired. �

C Appendix: Nested by Revenue Sets

We show that there exists an optimal solution (Ŝ1, . . . , Ŝm) to problem (1) that satisfies ∪k∈M Ŝk =

{i ∈ N : ri ≥ ζ̂} for some constant ζ̂. In other words, the union of the sets offered over all stages

is a nested by revenue set. Therefore, if we index the products such that r1 ≥ r2 ≥ . . . ≥ rn,

then an optimal solution (Ŝ1, . . . , Ŝm) to problem (1) is of the form ∪k∈M Ŝk = {1, . . . , i} for some

i ∈ N . Although this result gives some insight into the structure of the optimal solution, it does not

allow us to obtain an optimal solution to problem (1) efficiently, since this result does not specify

the stage in which each product should be offered. To show that there exists an optimal solution

(Ŝ1, . . . , Ŝm) to problem (1) that satisfies ∪k∈M Ŝk = {i ∈ N : ri ≥ ζ̂} for some constant ζ̂, we use

33

a recursive version of the objective function of problem (1). We use Rν(Sν , . . . , Sm) to denote the

expected revenue obtained from a customer starting her choice process in stage ν when we offer

the sets Sν , . . . , Sm in stages ν, . . . ,m. Thus, noting the expected revenue expression in (1) and

focusing only on the stages ν, . . . ,m, Rν(Sν , . . . , Sm) is given by

Rν(Sν , . . . , Sm) =
m∑
k=ν

{
k∏
`=ν

1

1 +
∑

i∈S` v
`
i

}∑
i∈Sk

ri v
k
i . (18)

Comparing the expression above with (1), note that R1(S1, . . . , Sm) corresponds to the objective

function of problem (1). In the next proposition, we show that there exists an optimal solution

(Ŝ1, . . . , Ŝm) to problem (1) that satisfies ∪k∈M Ŝk = {i ∈ N : ri ≥ ζ̂} for some constant ζ̂ and the

constant ζ̂ is given by min{Rk(Ŝk, . . . , Ŝm) : k ∈M}.

Proposition 10 There exists an optimal solution (Ŝ1, . . . , Ŝm) to problem (1) that satisfies

∪k∈M Ŝk = {i ∈ N : ri ≥ ζ̂}, where ζ̂ = min{Rk(Ŝk, . . . , Ŝm) : k ∈M}.

Proof. Let (Ŝ1, . . . , Ŝm) be an optimal solution to problem (1) with the largest cardinality, so that

if (S̃1, . . . , S̃m) is another optimal solution, then | ∪k∈M Ŝk| ≥ | ∪k∈M S̃k|. By (18), we have

Rν(Sν , . . . , Sm) =

∑
i∈Sν ri v

ν
i

1 +
∑

i∈Sν v
ν
i

+
1

1 +
∑

i∈Sν v
ν
i

m∑
k=ν+1

{
k∏

`=ν+1

1

1 +
∑

i∈S` v
`
i

}∑
i∈Sk

ri v
k
i

=

∑
i∈Sν ri v

ν
i +Rν+1(Sν+1, . . . , Sm)

1 +
∑

i∈Sν v
ν
i

. (19)

First, we show that ∪k∈M Ŝk ⊇ {i ∈ N : ri ≥ ζ̂}. To get a contradiction assume that there exists

a product j such that j ∈ {i ∈ N : ri ≥ ζ̂} and j 6∈ ∪k∈M Ŝk. For notational brevity, we let

R̂k = Rk(Ŝk, . . . , Ŝm). Since j ∈ {i ∈ N : ri ≥ ζ̂} and ζ̂ = min{R̂k : k ∈ M}, we have rj ≥ R̂` for

some ` ∈ M . Furthermore, since j 6∈ ∪k∈M Ŝk, we have j 6∈ Ŝ`. We define a solution (S̃1, . . . , S̃m)

to problem (1) as S̃k = Ŝk for all k ∈M \ {`} and S̃` = Ŝ` ∪ {j}. Since j 6∈ ∪k∈M Ŝk, the product

j is not offered in any stage in the solution (Ŝ1, . . . , Ŝm). Therefore, the product j is only offered

in stage ` in the solution (S̃1, . . . , S̃m), so (S̃1, . . . , S̃m) ∈ F . Letting R̃k = R(S̃k, . . . , S̃m) for

notational brevity, we observe that R̂k = R̃k for all k = `+ 1, . . . ,m, since Rk(Sk, . . . , Sm) depends

on Sk, . . . , Sm and Ŝk = S̃k for all k = `+ 1, . . . ,m. In this case, we have

R̃` − R̂` =

∑
i∈S̃` ri v

`
i + R̃`+1

1 +
∑

i∈S̃` v
`
i

− R̂` =

∑
i∈Ŝ` ri v

`
i + rj v

`
j + R̂`+1

1 +
∑

i∈Ŝ` v
`
i + v`j

− R̂`

=
R̂` (1 +

∑
i∈Ŝ` v

`
i) + rj v

`
j

1 +
∑

i∈Ŝ` v
`
i + v`j

− R̂` =
(rj − R̂`) v`j

1 +
∑

i∈Ŝ` v
`
i + v`j

≥ 0,

where the second equality uses the fact that S̃` = Ŝ` ∪ {j} and R̃`+1 = R̂`+1, the third equality

uses the fact R̂` (1 +
∑

i∈Ŝ` v
`
i) =

∑
i∈Ŝ` ri v

`
i + R̂`+1 by (19) and the inequality follows from the

34

fact that rj ≥ R̂`. Therefore, we obtain R̃` ≥ R̂`. By (19), for all k = 1, . . . , ` − 1, we have

R̃k = (
∑

i∈S̃k ri v
k
i + R̃k+1)/(1 +

∑
i∈S̃k v

k
i) = (

∑
i∈Ŝk ri v

k
i + R̃k+1)/(1 +

∑
i∈Ŝk v

k
i), where we

use the fact that S̃k = Ŝk. Similarly, we have R̂k = (
∑

i∈Ŝk ri v
k
i + R̃k+1)/(1 +

∑
i∈Ŝk v

k
i) for all

k = 1, . . . , `−1. Subtracting the two equalities, we obtain R̃k−R̂k = (R̃k+1−R̂k+1)/(1+
∑

i∈Ŝk v
k
j)

for all k = 1, . . . , `−1. In this case, having R̃` ≥ R̂` implies that R̃1 ≥ R̂1. Therefore, the objective

value provided by the solution (S̃1, . . . , S̃m) for problem (1) is at least as large as the one provided

by the solution (Ŝ1, . . . , Ŝm). Furthermore, ∪k∈M S̃k = ∪k∈M Ŝk ∪ {j}, which contradicts the fact

that (Ŝ1, . . . , Ŝm) is an optimal solution to problem (1) with the largest cardinality.

Second, we show that ∪k∈M Ŝk ⊆ {i ∈ N : ri ≥ ζ̂}. To get a contradiction, assume that there

exists a product j such that j ∈ ∪k∈M Ŝk and j 6∈ {i ∈ N : ri ≥ ζ̂}. Since j ∈ ∪k∈M Ŝk, we have

j ∈ Ŝ` for some ` ∈M . Also, noting that j 6∈ {i ∈ N : ri ≥ ζ̂}, we have rj < ζ̂ = min{R̂k : k ∈M},
which implies that rj < R̂`. We define a solution (S̃1, . . . , S̃m) to problem (1) as S̃k = Ŝk for

all k ∈ M \ {`} and S̃` = Ŝ` \ {j}. Since (Ŝ1, . . . , Ŝm) ∈ F and S̃k ⊆ Ŝk for all k ∈ M , each

product is offered in at most one stage in the solution (S̃1, . . . , S̃m), so (S̃1, . . . , S̃m) ∈ F . Using

the same argument in the previous paragraph and noting that rj < R̂`, we can show that R̃1 > R̂1,

contradicting the fact that (Ŝ1, . . . , Ŝm) is an optimal solution to problem (1). �

The proposition above indicates that there exists an optimal solution to problem (1) that has a

structure similar to that of an optimal solution when there is a single stage in the choice process. This

structure is adequate to obtain an optimal solution efficiently when there is a single stage, but it is

not adequate even when there are as few as two stages.

35

