
Submitted to
manuscript

Assortment Optimization under the
Multi-Purchase Multinomial Logit Choice Model

Yicheng Bai
School of Operations Research and Information Engineering, Cornell Tech, New York, New York 10044. yb279@.cornell.edu

Jacob Feldman
Olin Business School, Washington University, 1 Brookings Dr., St. Louis, Missouri 63130, USA. jbfeldman@wustl.edu

Danny Segev
Department of Statistics and Operations Research, School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978,

Israel. segevdanny@tauex.tau.ac.il

Huseyin Topaloglu
School of Operations Research and Information Engineering, Cornell Tech, New York, New York 10044.

topaloglu@orie.cornell.edu

Laura Wagner
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In this paper, we introduce the Multi-Purchase Multinomial Logit choice model, which extends the random

utility maximization framework of the classical Multinomial Logit model to a multiple-purchase setting. In

this model, customers sample random utilities for each offered product as in the Multinomial Logit model.

However, rather than focusing on a single product, they concurrently sample a “budget” parameter M ,

which indicates the maximum number of products that the customer is willing to purchase. Subsequently,

the M highest utility products are purchased, out of those whose utilities exceed that of the no-purchase

option. When fewer than M products satisfy the latter condition, only these products will be purchased.

Our primary contribution resides in proposing the first multi-purchase choice model that can be fully

operationalized. Specifically, we provide a recursive procedure to compute the choice probabilities in this

model, which in turn provides a framework to study its resulting assortment problem, where the goal is to

select a subset of products to make available for purchase so as to maximize expected revenue. Our main algo-

rithmic results consist of two distinct polynomial time approximation schemes (PTAS); the first, and simpler

of the two, caters to a setting where each customer may buy only a constant number of products, whereas

the second more nuanced algorithm applies to our multi-purchase model in its general form. Additionally,

we study the revenue-potential of making assortment decisions that account for multi-purchase behavior in

comparison to those that overlook this phenomenon. In particular, we relate both the structure and revenue

performance of the optimal assortment under a traditional single-purchase model to that of the optimal

assortment in the multi-purchase setting. Finally, we complement our theoretical work with an extensive set

of computational experiments, where the efficacy of our proposed PTAS is tested against natural heuristics.

Ultimately, we find that our approximation scheme outperforms these approaches by 1-5% on average.
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1. Introduction

The standard assumption underlying the vast majority of classical choice models is that each arriv-

ing customer purchases at most a single product. For example, the ever-popular Multinomial Logit

(MNL) model (Luce 1959, McFadden 1974, Plackett 1975) and the Nested Logit model (Williams

1977, McFadden 1978) both make this fundamental assumption, as do more recent choice models

such as the Markov chain (Blanchet et al. 2016, Feldman and Topaloglu 2017) and the non-

parametric ranking-based (Mahajan and Van Ryzin 2001, Farias et al. 2013, Honhon et al. 2012)

models. Consequently, the massive body of analytical papers that study operational questions under

these models crucially rely on the assumption that customer behavior is exclusively restricted to

single-product purchases. In reality, however, there is an abundance of concrete applications where

customers often make multiple simultaneous purchases from a single category of substitutable

products.

To demonstrate this phenomenon, we observe this trend among the customers of a leading flash-

sales e-retailer, who graciously agreed to share with us a small portion of their sales data. This

company, whose identity cannot be revealed for confidentiality reasons, runs what they refer to

as “campaigns”, during which well-known brands are offered from a particular product category

at a steep discount for a short period of time. We were given access to sales data from numerous

campaigns across multiple product categories. In Table 1, we summarize the frequency with which

customers are observed to be making multiple simultaneous purchases from a single product cat-

egory. For example, 82% of customers who made a purchase from the eyewear category limited

themselves to a single product. On the other hand, this percentage drops to about 40% for the

underwear category. Another interesting insight from Table 1 is that customers rarely purchased

multiple versions or copies of the same product. In fact, out of those who purchased two products

in the same campaign, the vast majority – over 89% – purchased two different products.

The above example elucidates the real-life necessity of choice models that can meaningfully

capture customers making multiple purchases from a single product category. To the best of our

knowledge, the only existing models that fall into this framework are those proposed by Kim et al.

(2002), Ferreira and Goh (2021), Fox et al. (2018), and Tulabandhula et al. (2020), which are thor-

oughly discussed in Section 1.2. In short, these four papers propose distinct random-utility-based

choice models that capture customers making multiple purchases. Unfortunately, the structural

assumptions underlying each of these models lead to complex expressions for their inherent choice

probabilities, and in turn, it is currently unknown whether one can develop tractable algorithms

with provable performance guarantees for assortment or pricing problems under these models. In

fact, among these four papers, only Tulabandhula et al. (2020) make an explicit effort to tackle

the corresponding assortment problem; however, their proposed algorithms are heuristic in nature
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Table 1 Distribution of Multi-Purchase Events

Sector k= 1 k= 2 k= 3 k≥ 4 Mean
Total
purchase

Number
of cam-
paigns

Underwear 511 2
Orders of size k 40% 40% 14% 6%
Orders containing k different products 100% 99% 99% 92%

Dresses 228 2
Orders of size k 56% 23% 15% 6%
Orders containing k different products 100% 100% 100% 97%

Denim & Casualwear 280 9
Orders of size k 66% 21% 8% 5%
Orders containing k different products 100% 90% 65% 62%

Shoes 674 32
Orders of size k 66% 24% 6% 4%
Orders containing k different products 100% 95% 76% 73%

Bags 122 11
Orders of size k 76% 17% 5% 2%
Orders containing k different products 100% 93% 80% 72%

Jewellery & Watches 258 27
Orders of size k 81% 14% 3% 2%
Orders containing k different products 100% 89% 75% 39%

Eyewear 414 43
Orders of size k 82% 15% 2% 1%
Orders containing k different products 100% 93% 85% 79%

Note: The percentage of orders containing k different products (opposed to orders containing the same kind) are calculated
from the number of orders of size k. To address the concern that these products could be complements, campaigns with more
than one product description were removed.

and do not come with any theoretical guarantees. Motivated by this apparent void in the revenue

management literature, we set-out to address the following research questions:

1. Can we develop a choice model, based on the well-established framework of random utility

maximization (RUM), that captures customers making multiple simultaneous purchases? Moreover,

can we derive this model within the utility-based guidelines of the MNL model, thus extending the

practical scope of this perennial choice model?

2. Given such a multi-purchase model, can we develop tractable algorithms with provable near-

optimal guarantees for its corresponding assortment optimization problem, thus overcoming the

previously mentioned operational roadblocks that have limited the practical appeal of existing

multi-purchase models?

3. Does the structure of optimal assortments change in a meaningful way as we move from single-

to multi-purchase settings? Do such differences lead to high-level managerial insights that could

guide product offering decisions?

1.1. Modeling approach and technical contributions

In this paper, we introduce the first fully operational extension of the classical MNL model to a

setting where customers can simultaneously purchase multiple substitutable products. We aptly

refer to the resulting model as the Multi-Purchase Multinomial Logit (MP-MNL) choice model.

After formalizing the probabilistic structure of this model, we study its corresponding assortment

optimization problem, where the goal is to select the revenue-maximizing subset of products to

offer to each arriving customer. We first prove various structural properties related to the make-up
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of an optimal assortment. Beyond leading to useful managerial insights, these structural properties

directly yield elegant algorithms for identifying assortments with provable performance guaran-

tees. While these preliminary algorithms possess the desirable qualities of being simple and easily

implementable, their recommended assortments could be rather far from optimal in the worst case.

For this reason, as our cornerstone algorithmic results, we provide two distinct polynomial time

approximation schemes (PTAS) that compete against the optimal revenue to within any level of

precision. The first, and simpler of the two, considers an intermediate setting in which each cus-

tomer is assumed to purchase a constant number of products, while the second more nuanced

PTAS applies to the MP-MNL model in its most general form. We proceed by summarizing these

contributions in greater detail.

A choice model for multiple purchases. In what follows, we present a high-level overview of the

MP-MNL model to set the stage for its formal derivation in Section 2. In a nutshell, the MP-MNL

model is perhaps the most natural extension of the traditional MNL model to a multi-purchase

setting. Under this model, there are two sources of randomness that guide the purchasing process

of each customer. First, each arriving customer samples a random “budget” M , which represents

the maximum number of products the customer would ever be willing to buy from the category in

question. One natural interpretation of M is as a spending budget: A customer arriving to GAP,

for example, has a budget of $30 to spend on t-shirts, and since each t-shirt costs approximately

$10, this equates to sampling M = 3. Next, mirroring the RUM framework of the standard MNL

model, the customer associates Gumbel-distributed random utilities with each offered product.

Finally, the customer purchases the M highest utility products, out of those whose utilities exceed

that of the no-purchase option. When fewer than M products have utilities that satisfy the latter

condition, only these products will be purchased.

Interestingly, the marketing literature offers a great deal of evidence in support of the MP-MNL

model dynamics, and in particular, its core feature where customers are “variety-seeking”, i.e.,

prefer adding a new item to their basket rather than doubling-up on an existing item. Indeed,

Kahn (1995) presents an exhaustive review of the “explosion of research in the marketing liter-

ature” on the topic of variety-seeking customers. Of particular relevance is the line of work that

aims to characterize and explain variety-seeking purchasing behavior when customers anticipate

the temporal separation between purchase and consumption. In this case, there is overwhelming

experimental (Simonson 1990), empirical (Harlam and Lodish 1995) and theoretical (Walsh 1995)

evidence suggesting that customers prefer, and are generally better off from utility perspectives,

purchasing baskets of distinct items rather than multiple units of the same item, in an effort to

gain flexibility and hedge against uncertain future preferences.
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First and foremost, we show in Section 2.2 that the MP-MNL model admits an intuitive recursive

expression for its choice probabilities. That said, for the most general form of the MP-MNL model,

a direct implementation of this recursion is not computationally efficient, which leads us to develop

a sampling-based alternative, exploited as a black-box within the approximation scheme developed

in Section 5. Furthermore, as a sanity check, in the specialized setting of M = 1 purchases, we

observe that the choice probabilities under the MP-MNL model exactly match those of the standard

MNL model. On the other hand, when M exceeds the number of offered products, the choice

probabilities become assortment-independent. In other words, product cannibalization/substitution

patterns vanish since each offered product will be purchased when its utility exceeds that of the

no-purchase option. Hence, the assortment problem is easily solvable in either of these two corner

cases. However, as we explain in the sequel, there are many algorithmic hurdles that need to be

overcome when the maximum number of purchases M is arbitrarily distributed.

The assortment optimization problem. In Section 2.3, we formalize the assortment optimization

problem under the MP-MNL model, where the goal is to select a subset of products to offer so as

to maximize expected revenue. Unfortunately, from an intractability perspective, despite our best

efforts, we have not been successful at establishing hardness results for the unconstrained assort-

ment problem, whose computational complexity remains an intriguing open question. That said,

we show that assortment optimization under the MP-MNL model is Ω(n1−ϵ)-hard to approximate

under Totally Unimodular (TU) constraint structures, where n stands for the number of available

products. Additionally, we prove that this problem remains NP-hard even for extremely simple

versions, where M takes only two values. These hardness results establish a strong separation

between the MP-MNL model and the traditional MNL model, where TU-constrained assortment

optimization admits a linear programming-based polynomial time algorithm (Sumida et al. 2021).

Revenue-ordered assortments. In Section 3, we consider the efficacy of offering revenue-ordered

assortments, consisting of the highest revenue products up to a given threshold. We begin by con-

sidering an optimal assortment under the false assumption that customers are willing to purchase

at most one product, which reduces the MP-MNL model to a standard MNL model. The optimal

assortment in the latter setting is known to be revenue-ordered (Talluri and Van Ryzin 2004).

We first show that this assortment is necessarily contained in the true optimal assortment of the

multi-purchase setting, indicating that, as we move from a single- to a multi-purchase setting,

larger and more diverse assortments are needed to extract optimal revenues. Additionally, this

structural property leads to the natural question: Can optimal or near-optimal revenues be attained

by revenue-ordered assortments? On the negative side, we construct an exemplary instance of our

MP-MNL assortment problem in which revenue-ordered assortments garner at most half of the

optimal expected revenue. On the positive side, we derive two distinct performance guarantees.
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First, we show that the optimal (single-purchase) MNL-based assortment garners at least a 1
E[M ]

-

fraction of the optimal expected revenue. Next, we show that the most profitable revenue-ordered

assortment under the MP-MNL model earns an Ω( 1
logn

)-fraction of the optimal expected revenue.

Approximation schemes. Our primary algorithmic results come in Sections 4 and 5, where we

present two distinct approximation schemes for the assortment optimization problem, varying

in sophistication and applicability. More formally, for any accuracy level ϵ > 0, we provide two

algorithmic approaches for computing an assortment whose expected revenue is within a (1 −

ϵ)-factor of the optimal expected revenue. In Section 4, our approximation scheme pertains to

a simplified setting, where each arriving customer is willing to purchase at most mmax = O(1)

products. Under this assumption, we observe that our recursive approach for computing the choice

probabilities runs in polynomial time, and hence our algorithmic focus can turn to directly tackling

the assortment problem. Along this line, our key algorithmic insight in this limited purchase setting

is that, with knowledge of the O(m
2
max
ϵ

) products with the highest MNL-based preference weight

offered in the optimal assortment, the problem can be approximately reduced to a knapsack-like

problem. Next, in Section 5, we present a more nuanced PTAS for the assortment problem in

its utmost generality, where the number of products that each customer is willing to purchase

is arbitrarily distributed. The high-level idea of this PTAS is to decompose the original problem

into a collection of sub-problems based on partitioning the products by their respective weights.

We then develop a PTAS for each of the resulting sub-problems, whose solutions are “stitched”

together via a carefully crafted dynamic program that accounts for the subtle interactions between

these sub-problems. Overall, our PTAS for the general setting can be viewed as an intriguing

theoretical finding. While this approach may not be directly implementable for large-scale instances,

the algorithmic insights we uncover in its development certainly have the potential to lay the

groundwork for future research, aimed at tackling this general setting in a more efficient way.

Computational experiments. In Appendices G and H, we present two distinct sets of computa-

tional experiments. The first is aimed at establishing that traditional single-purchase models are

generally inadequate in settings where multi-purchase behavior is prevalent. For this purpose, we

generate an extensive collection of sales data, assuming that arriving customers make purchasing

decisions according to an MP-MNL model. We then fit the ever-popular mixed-MNL model to the

resulting data set via maximum likelihood estimation, and assess its accuracy through the ability to

recapture estimates of the underlying choice probabilities as dictated by the ground truth MP-MNL

model. More specifically, for each mixed-MNL fit, we compute its relative absolute percent error

in predicted choice probability averaged over all assortments, and find that this metric exceeds

23% for all test cases considered. We further show that these prediction errors have downstream
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consequences, leading to highly sub-optimal assortment recommendations that leave up to 20% of

revenue on the table.

Our second set of experiments is devoted to measuring the efficacy of our approximation scheme

under limited purchases against two heuristic approaches on a wide variety of randomly generated

instances, with up to 60 products and with a cardinality constraint, which encodes the notion

that exactly C products must be offered. As such, we discuss how the PTAS presented in Sec-

tion 4 can easily be adapted to this cardinality constrained setting. One of the tested heuristics

assumes that customers are willing to purchase at most one product, meaning that this heuristic

solves an assortment problem where customer choice is governed by a traditional MNL model. This

comparison allows us to gauge the potential revenue-loss that ensues by ignoring multi-purchase

behavior. Overall, we find that our PTAS consistently outperforms the other two approaches by

approximately 1-5% across all test cases. We find that this revenue improvement can be poten-

tially attributed to fundamental differences in the make-up of the assortments recommended by

our PTAS. Specifically, the latter generally computes assortments that contain a few high weight

products that are missing from the MNL-based assortment recommendations, ultimately leading

to the superior performance of the former assortments for customers who are willing to purchase

a relatively large number of products.

1.2. Related literature

In what follows, we begin by briefly reviewing past work that considers assortment optimization

problems under logit-based choice models. We follow up with a survey of existing results concerning

choice models in which customers may simultaneously purchase multiple products.

Logit-based models. The seminal work of Talluri and Van Ryzin (2004) was the first to consider

the assortment optimization problem under MNL preferences. They show that an optimal assort-

ment in this setting is revenue-ordered, meaning that it consists of some subset of the highest rev-

enue products. Subsequently, Rusmevichientong et al. (2010) considered the cardinality-constrained

variant of this problem, in which there is an upper bound on the total number of products that

the retailer can feasibly offer. They provide a purely combinatorial polynomial time algorithm for

this constrained variant. Finally, Sumida et al. (2021) study an MNL-based assortment problem

in which the offered assortment is restricted by any set of constraints that can be encoded via a

Totally Unimodular (TU) matrix. Numerous variants of the basic assortment optimization prob-

lem fall under this framework. In this TU-constrained setting, Sumida et al. (2021) show that the

assortment problem can be efficiently solved via a carefully crafted linear program.

When customer choice is governed by the Nested Logit model, Davis et al. (2014) show that the

unconstrained assortment problem can be solved in polynomial time when the no-purchase option
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is not available within nests. If, on the other hand, customers can choose the no-purchase option

after having selected a nest, the authors show that the problem becomes NP-Hard, and provide a

2-approximation for this case. Gallego and Topaloglu (2014) and Feldman and Topaloglu (2015)

provide various constant-factor approximations for cardinality and space constrained variants of

the assortment problem under the Nested Logit model, while the very recent work of Segev (2020)

proposed approximation schemes in this context. Moreover, Li et al. (2015) devise an exact poly-

nomial time algorithm for the unconstrained assortment problem under the d-Level Nested Logit

model, where the nesting structure of products is encoded as a d-level binary tree, instead of the

traditional 2-level tree, as in the standard Nested Logit model.

The final logit-based model for which we summarize past work is the Mixed-Logit model, first

studied in the assortment optimization context by Bront et al. (2009). In this setting, Rusmevichien-

tong et al. (2014) prove that the unconstrained assortment problem is NP-Hard even when there

are only two customer classes. They also establish several conditions on the parameter space under

which revenue-ordered assortments are optimal. Concurrently, Désir et al. (2022) show that the

unconstrained assortment problem under a Mixed-Logit model is in fact NP-Hard to approximate

within a factor of O(n1−ϵ), for any fixed ϵ > 0. In addition, they provide an approximation scheme

for both the unconstrained and constrained problem, whose running time scales exponentially in

the number of customer classes. Bront et al. (2009) provide an exact integer-programming approach

to tackle the assortment problem under a Mixed-Logit model, showing that this approach scales

to reasonably sized instances with hundreds of products and customer segments.

Multi-purchase models. Next, we focus on summarizing earlier work on choice models that cap-

ture customers making multiple purchases. Kim et al. (2002) and Ferreira and Goh (2021) both

propose RUM-based models for multi-purchase settings based on the assumption that customers

receive diminishing gains in marginal utility when they purchase multiple products. More specifi-

cally, Kim et al. (2002) propose a model in which customers sample log-normal utilities, and then

fill their basket with items so as to maximize their total utility while staying within a given budget.

The authors show how to estimate the resulting model parameters from sales data; however, pric-

ing or assortment problems are not considered in this paper. In the model developed by Ferreira

and Goh (2021), after sampling the idiosyncratic portion of their utility, customers are assumed to

purchase all items that yield a net positive utility. Under this model, the authors weigh the benefits

of two assortment strategies: either displaying all products as a single assortment, or sequentially

revealing products one after the other. Consequently, their main focus is on uncovering high-level

insights regarding the impact and profitability of frequent assortment rotations, rather than on

developing tractable assortment policies with provable performance guarantees.
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Fox et al. (2018) propose a choice model that captures the dynamics of customers forming

so-called “n-packs”, which are collections of n substitutable products to be purchased and then

consumed at a later point in time. A 4-pack of yogurt, for example, could consist of two strawberry

and two blueberry flavored yogurts. For a given n-pack, the authors derive the sequential con-

sumption process that will yield the highest utility payoff. Given this analysis, they show how to

determine an optimal n-pack, i.e., the collection of n products that, when consumed in the optimal

order, will yield the highest expected utility. That said, the focus of this paper is on characterizing

a consumer’s optimal buying process, rather than on characterizing optimal operational decisions

from a retailer’s perspective. Finally, Tulabandhula et al. (2020) propose an extension of the MNL

model in which customers purchase bundles of products. For the resulting assortment problem,

they prove NP-Hardness, even when customers purchase at most two products, and propose various

heuristics that do not come with theoretical performance guarantees.

On top of this literature, it is worth highlighting the rank-ordered Logit model developed by Punj

and Staelin (1978) and Beggs et al. (1981), whose underlying structure resembles the MP-MNL

model in several aspects. Specifically, the rank-ordered Logit model assumes the same random

utility specification as that of the MP-MNL. However, it makes no attempts to explicitly character-

ize purchasing behavior, and instead, specifies the probability of observing any particular ranking

of the available alternatives’ utilities. This model has been utilized in many applications, includ-

ing voter preferences (Koop and Poirier 1994), automobile demand (Dagsvik and Liu 2006), and

graduate school rankings (Mark et al. 2004), to mention a few. The MP-MNL model extends this

framework to a retailing context by assuming that the different alternatives are products made

available for purchase, and that customers will purchase the M highest utility products whose

utilities exceed that of the no-purchase option.

2. The Multi-Purchase MNL Choice Model

In this section, we formally describe the MP-MNL choice model. To this end, we first provide

a detailed description of its choice dynamics, which are then translated into a recursive expres-

sion for computing the underlying choice probabilities. In addition, we formulate the assortment

optimization problem under the MP-MNL model and shed light on its computational complexity.

2.1. Model specification

For the remainder of this paper, we consider a retailer who has access to n products, which will be

referred to as 1, . . . , n, alongside the ever-present no-purchase option, which will be designated as a

0-indexed product, for convenience of notation. Under the Multi-Purchase MNL choice model, each

customer arrives with the intention of purchasing multiple products. We use the random variable
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M to denote the maximum number of products that the arriving customer is willing to purchase,

and note that its underlying distribution over [n]0 = {0,1, . . . , n} is assumed to be a known input.

After sampling their maximum number of purchases, M , customers then sample random utilities

for all products. Building upon the RUM framework of the MNL model, we assume that the random

utility associated with product i ∈ [n]0 is given by Ui = vi + ei, where vi represents the observable

deterministic component of the utility and ei is a standard Gumbel random variable with location-

scale parameters (0,1). Here, the random variables e0, e1, . . . , en are independently sampled, and

since for all choice-related purposes, random utilities of different products will only be compared,

we assume without loss of generality that v0 = 0. Given these settings, an arriving customer with

M =m, will purchase the m highest utility products whose utilities exceed that of the no-purchase

option. When fewer than m products have utilities that satisfy the latter condition, only these

products will be purchased.

To formally define the choice probabilities that result from the dynamics described above, we

introduce some additional notation. For any product i in an assortment S ⊆ [n], let rank(i,S) be

the random rank of product i’s utility in relation to the utilities of all products in S, namely,

rank(i,S) = |{j ∈ S :Uj ≥Ui}|. For example, in the event that Ui =maxj∈S Uj, then rank(i,S) = 1.

In addition, for any m ∈ [n], let πm(i,S) be the probability that product i ∈ S is purchased given

that M =m, i.e., when the arriving customer is willing to purchase up to m products. According

to the purchasing dynamics described above, we clearly have

πm (i,S) = Pr [[rank(i,S)≤m]∧ [Ui >U0]] , (1)

since product i ∈ S is purchased when its rank among S is at most m, and concurrently, it is

preferable to the no-purchase option. With this notation in-hand, the choice probability of any

product i∈ S can be expressed as π(i,S) =
∑

m∈[n]Pr[M =m] ·πm(i,S).

2.2. Computing the choice probabilities

In what follows, we present a recursive approach to compute the conditional choice probabilities

πm(i,S), formally defined in (1). The resulting expression will critically rely on the following well-

known properties of Gumbel distributed utilities (Luce 1959, Beggs et al. 1981).

Property 2.1 (Top Rank Probability). For any assortment S ⊆ [n] and product i∈ S,

Pr

[
Ui =max

j∈S
Uj

]
=

evi∑
j∈S e

vj
.

Property 2.2 (Conditional Independence of Top Ranked Products). Let S1 and S2 =

{j1, . . . , jp} be a partition of an assortment S. Then,

Pr

[
Uj1 > · · ·>Ujp

∣∣∣∣min
i∈S1

Ui >max
j∈S2

Uj

]
=Pr

[
Uj1 > · · ·>Ujp

]
.
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Property 2.1 is simply a reminder of the choice probabilities structure under a standard MNL

model. Property 2.2 states that, conditional on mini∈S1
Ui >maxj∈S2

Uj, the relative order between

utilities of products in S2 is independent of the utilities of products in S1. One important implication

of the latter property is that, for any product i∈ S2 and integer m,

Pr

[
rank(i,S)≤m

∣∣∣∣min
i∈S1

Ui >max
j∈S2

Uj

]
=Pr [rank(i,S \S1)≤m− |S1|] .

Moving forward, we will use wi = evi as the “preference weight” associated with each product

i ∈ [n]0, where by convention w(S) =
∑

j∈S wj will stand for the total weight of the assortment S.

For ease of notation, we will utilize the shorthands S−i = S \ {i} and S+i = S ∪{i}.

The recursive relation. Next, we show how to exploit these two properties to derive a recursive

expression for the choice probabilities under the MP-MNL model. The following lemma provides

a recursive relationship through which πm(i,S) can be computed.

Lemma 1. For any assortment S ⊆ [n], product i∈ S, and m∈ [n], we have

πm (i,S) =
wi

1+w(S)
+
∑

j∈S−i

wj

1+w(S)
·πm−1 (i,S−j) .

Proof. For the purpose of computing the choice probability πm(i,S), we combine representa-

tion (1) along with conditioning on the top ranked product, to obtain

πm (i,S) = Pr [[rank(i,S)≤m]∧ [Ui >U0]]

=
∑
j∈S

Pr [rank(j,S ∪{0}) = 1] ·Pr
[
[rank(i,S)≤m]∧ [Ui >U0]

∣∣ rank(j,S ∪{0}) = 1
]

=
∑
j∈S

wj

1+w(S)
·Pr

[
[rank(i,S)≤m]∧ [Ui >U0]

∣∣ rank(j,S ∪{0}) = 1
]

=
wi

1+w(S)
+
∑

j∈S−i

wj

1+w(S)
·Pr [[rank(i,S−j)≤m− 1]∧ [Ui >U0]]

=
wi

1+w(S)
+
∑

j∈S−i

wj

1+w(S)
·πm−1 (i,S−j) .

Here, the third equality holds since Pr[rank(j,S ∪{0}) = 1] =
wj

1+w(S)
, by Property 2.1. The fourth

equality directly follows from Property 2.2, along with the observation that, when rank(i,S∪{0}) =

1, product i will be purchased with certainty as long as m> 0. □

It is not difficult to verify that computing choice probabilities of the form π(i,S) =∑
m∈[n]Pr[M = m] · πm(i,S) via the recursive expression of Lemma 1 requires evaluating πm(Ŝ)

for all assortments Ŝ ⊆ S with i ∈ Ŝ and for all m≤ |Ŝ|. As such, when the maximum number of

purchases M is arbitrarily distributed, the overall running time to compute π(i,S) via this recur-

sion is O(2n · n2). Additionally, we observe that π1(i,S) =
wi

1+w(S)
, that is, when the customer is
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willing to purchase a single product, customers choose according to a standard MNL model. On

the other extreme, where m≥ |S|, the customer is willing to purchase at least as many products

as are offered, and therefore the choice probability in (1) reduces to πm(i,S) = Pr[Ui >U0] =
wi

1+wi
,

reflecting the notion that each offered product will be purchased if its utility exceeds that of the

no-purchase option. In this case, customer choice is governed by an independent demand model,

where the choice probabilities are assortment-independent. These two corner cases serve as sanity

checks for our modeling assumptions.

2.3. The assortment optimization problem

In what follows, we formulate the assortment optimization problem under the MP-MNL model

and shed light on its computational complexity. To this end, for each product i ∈ [n], let ri > 0

denote its exogenously determined revenue. Then, the expected revenue earned from offering the

assortment S ⊆ [n] can be expressed as R(S) =
∑

i∈S ri · π(i,S). In the assortment optimization

problem, we wish to compute an assortment whose expected revenue is maximized, meaning that

this computational question can be formally stated as

max
S⊆[n]

∑
i∈S

ri ·π(i,S) . (2)

Finally, it is worth noting that we may assume without loss of generality that Pr[M > 0] = 1, i.e.,

each customer arrives with the intention of purchasing at least one product. To verify this claim,

let Rm(S) = E[R(S)|M =m] be the expected revenue earned, given that customers are willing to

purchase up to m products. Clearly, we have R(S) =
∑

m∈[n]Pr[M =m] ·Rm(S), meaning that the

assortment problem (2) remains unchanged when the random number of purchases M is replaced

by [M |M ≥ 1].

Hardness: open question and results. It is worth pointing out that the concise nature of the

assortment problem described above belies its true complexities, which stem from the intricacy

of the purchasing dynamics involved and their resulting choice probabilities. However, despite our

best efforts, we were unable to prove that unconstrained assortment optimization in this context is

NP-Hard. Consequently, whether computing an optimal assortment without any side constraints

is intractable or not remains an intriguing open question for future work. Still, in Appendix A,

we present two hardness results related to TU-constrained assortment optimization. Surprisingly,

when choice is governed by a standard MNL model, Sumida et al. (2021) show that this constrained

variant can be solved in polynomial time via linear programming methods. In sharp contrast, for

the MP-MNL model in its general form, we show that it is NP-hard to approximate TU-constrained

assortment optimization within factor O(n1−ϵ), for any fixed ϵ > 0. This finding strongly separates

the inherent computational complexity of our multi-purchase assortment setting from that of the

standard MNL model. In addition, we prove that TU-constrained assortment optimization remains

NP-Hard, even when the support of M consists of only two values.
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3. The Efficacy of Revenue-ordered Assortments

One of the most well-known results in the assortment optimization literature is that of Talluri and

Van Ryzin (2004), who showed that the optimal assortment under the standard MNL model is

revenue-ordered, meaning that it is made-up of the highest revenue products up to some threshold.

Given that the MP-MNL model is a direct relative of the tradition MNL model, it is natural to ask

whether revenue-ordered assortments can perform well in our multi-purchase setting. The entirety

of this section is devoted to addressing this question.

3.1. Suboptimality of revenue-ordered assortments

As can only be expected, it is not difficult to construct elementary examples where, under the MP-

MNL model, no revenue-ordered assortment is optimal. In fact, the following example shows that

revenue-ordered assortments cannot generally guarantee more than half of the optimal expected

revenue.

Example 1. Let us consider the following assortment optimization instance, which is parame-

terized by ϵ ∈ (0, 1
2
), with the additional assumption that 1

ϵ
is an integer. For ease of notation, we

also define α= 1
ϵ
+1 and r= 1

ϵ
.

• The underlying collection of products is 1, . . . , αr+1.

• Product 1 has a revenue of r1 = r and a preference weight of w1 = 1. For product 2, we set

r2 = 1 + ϵ and w2 =∞. For any other product 3 ≤ i ≤ αr + 1, we set ri = 1 and wi =
ϵ

αr−1
. The

no-purchase option has w0 = 0.

• The maximum number of purchases M takes the values 1 and αr+1, such that Pr[M = 1] =

α
1+α

and Pr[M = αr+1] = 1
1+α

.

Clearly, since r1 > r2 > r3 = · · ·= rαr+1, any revenue-ordered assortment falls into one of the next

two cases:

• S1 = {1}, which earns an expected revenue of R(S1) = r= 1
ϵ
.

• St = {1, . . . , t} for some 2≤ t≤ αr+1, with an expected revenue of

R(St) = Pr [M = 1] · (1+ ϵ)+Pr [M = αr+1] · (r+ t− 1+ ϵ)

≤ α

1+α
· (1+ ϵ)+

1

1+α
· ((1+α) · r+ ϵ)

≤ r+1+ ϵ

≤ 1

ϵ
+2 .

However, focusing on the non-revenue-ordered assortment S = {1,3,4, . . . , αr + 1}, we obtain an

expected revenue of

R(S) = Pr [M = 1] · r+ ϵ

1+ ϵ
+Pr [M = αr+1] · (r+αr− 1)
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=
α

1+α
· r+ ϵ

1+ ϵ
+

1

1+α
· ((1+α) · r− 1)

=

(
1+

α

1+α
· 1

1+ ϵ︸ ︷︷ ︸
= 1

1+2ϵ

)
· r+ α

1+α
· ϵ

1+ ϵ
− 1

1+α︸ ︷︷ ︸
=0

=

(
1− ϵ

1+2ϵ

)
· 2
ϵ
.

Consequently, we have just shown that the ratio between the best expected revenues achievable by

revenue-ordered assortments and arbitrarily-structured ones can be upper-bounded by

maxt∈[αr+1]R(St)

R(S)
≤

1
ϵ
+2

(1− ϵ
1+2ϵ

) · 2
ϵ

,

which tends to 1
2
as ϵ tends to 0.

3.2. MNL-optimal assortments

While Example 1 cautions against blindly using revenue-ordered assortments in our multi-purchase

setting, we are nonetheless able to derive several practical insights and results in this context.

To start, we examine the effects of making assortment decisions that do not account for arriving

customers who may purchase multiple products. More specifically, we study the efficacy of offering

an assortment that forms an optimal solution to

max
S⊆[n]

{
1

1+w(S)
·
∑
i∈S

riwi

}
, (3)

corresponding to the simplistic setting where we ignore purchases beyond each customer’s most

preferred product. Equivalently, such an assortment is optimal with respect to the standard MNL

model, with preference weights w1, . . . ,wn. The first result we establish reveals that there exists an

optimal assortment under the MP-MNL model that includes each and every product offered under

the standard MNL model. We then show that the expected revenue earned by an MNL-optimal

assortment in our multi-purchase setting is within factor 1
E[M ]

of the optimal expected revenue; this

guarantee will be demonstrated to be tight.

The following property, which we exploit numerous times in our future analysis, formalizes the

result of Talluri and Van Ryzin (2004), as it relates to the optimality of revenue-ordered assortments

when choice is governed by a standard MNL model.

Property 3.1. Let z∗ = maxS⊆[n]{ 1
1+w(S)

·
∑

i∈S riwi} be the optimal objective value of prob-

lem (3). Then, S̃ = {i∈ [n] : ri ≥ z∗} is an optimal assortment for this problem.
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Nesting structure. Lemma 2 below establishes an interesting structural property that relates the

make-up of S̃ to that of an optimal assortment in our multi-purchase setting. Specifically, we show

that there exists an optimal assortment to the latter problem that includes all products offered by

S̃. This property, whose proof is provided in Appendix B.1, shows that in the presence of multi-

purchase behavior, a larger and more diverse assortment is needed to capture optimal expected

revenues.

Lemma 2. Let S∗ be a maximum-cardinality optimal assortment to problem (2). Then, S̃ ⊆ S∗.

Given this structural result, a very natural question is whether generalized “nestedness” proper-

ties can be established beyond the one related to single-purchase settings. More specifically, suppose

that for m̄ ∈ [n], we ignore purchases beyond each customer’s m̄-th most preferred product. In

this case, the random demand M is replaced by min{M,m̄}, meaning that an optimal assortment

would be

S∗
m̄ = argmax

S⊆[n]

∑
m∈[m̄]

Pr [min{M,m̄}=m] ·
∑
i∈S

ri ·πm(i,S) .

With this notation, Lemma 2 shows that S∗
1 ⊆ S∗, and it is natural to wonder whether S∗

1 ⊆ S∗
2 ⊆

· · · ⊆ S∗
n ⊆ S∗. However, the following example shows that this nesting structure fails to hold in

general.

Example 2. Consider an assortment optimization instance consisting of five products, whose

revenues and weights are given by the next table:

product price weight
1 115 12
2 153 2
3 155 2
4 157 0.5
5 374 4

In addition, customers are willing to purchase up to three products (i.e., Pr[M = 3] = 1). By

enumerating over all 25 possible assortments, it is easy to verify that S∗
1 = {5} and S∗

2 = {1,5},
whereas S∗ = {2,3,4,5}. In this case, we observe that S∗

2 ⊈ S∗, and hence the nesting property

breaks for m̄= 2.

Revenue guarantee. Interestingly, a close inspection of the proof we provide for Lemma 2 reveals

that augmenting any assortment S with a product from S̃ \ S can only increase its expected

revenue in our multi-purchase setting, hinting that offering S̃ by itself might be profitable in certain

settings. Our next result formalizes this notion, showing that the assortment S̃ is guaranteed to

garner at least a 1
E[M ]

-fraction of the optimal expected revenue. Consequently, in scenarios where

the “average” customer is only willing to purchase very few products, revenue-ordered assortments

have a small optimality gap under the MP-MNL model. In Lemma 3, whose proof appears in

Appendix B.1, we use S∗ to denote an arbitrary optimal assortment to problem (2).
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Lemma 3. R(S̃)≥ 1
E[M ]

·R(S∗).

To establish the tightness this bound, the next example describes an instance of our multi-

purchase assortment problem for which R(S̃) =O( 1
E[M ]

) ·R(S∗).

Example 3. Suppose we have at our possession n products, all associated with a preference

weight of 1, whereas the no-purchase option has weight w0 = 0. In addition, the revenue of each

product is 1 − 1
n
, except for that of product 1, which is set to 1. When customers are always

willing to purchase up to n products (i.e., Pr[M = n] = 1), the assortment S∗ = [n] that includes

all products is clearly optimal, garnering an expected revenue of R(S∗) = n. In contrast, it is easy

to verify that S̃ = {1} is the unique MNL-based optimal assortment, with R(S̃) = 1, and we thus

have R(S̃) = 1
n
·R(S∗) = 1

E[M ]
·R(S∗).

3.3. The Best Revenue-Ordered Assortment

Finally, we step outside of the traditional MNL framework, and analyze the performance of the

most profitable revenue-ordered assortment, showing that its expected revenue is within factor

O(logn) of the optimal expected revenue. Specifically, assuming that products are indexed in non-

increasing revenue order, i.e, r1 ≥ · · · ≥ rn, let S
∗
ro =maxi∈[n]R([i]) be the most profitable revenue-

ordered assortment, whereas S∗ will denote an arbitrary optimal assortment to problem (2). The

following lemma, whose proof is presented in Appendix B.2, formalizes the performance guarantee

attained by S∗
ro.

Lemma 4. R(S∗
ro) =Ω( 1

logn
) ·R(S∗).

It is worth pointing out that, since we clearly have R(S∗
ro)≥R(S̃), the performance guarantee

reported in Lemma 3 also holds for the assortment S∗
ro. That said, Lemma 4 provides a stronger

guarantee than that of Lemma 3 when the average customer wishes to purchase a large number of

products.

Open Question. Whether or not revenue-ordered assortments can be shown to garner a constant

fraction of the optimal expected revenue remains open.

4. An Approximation Scheme under Limited Purchases

In this section, we present an approximation scheme for the assortment optimization problem, which

constitutes a PTAS when the maximum number of purchases M is supported over {0,1, . . . ,mmax},

with mmax =O(1). The precise performance guarantees of this algorithm can be formally stated as

follows.

Theorem 1. For any ϵ > 0, there is a deterministic O(nO(m2
max/ϵ))-time algorithm for computing

an assortment whose expected revenue is within factor 1− ϵ of optimal.
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Technical overview. At a high-level, our approximation scheme unfolds in two sequential steps.

First, in Section 4.1, we recover the O(m
2
max
ϵ

) highest weight products offered in the optimal assort-

ment S∗. We refer to these products as “heavy” ones, while the remaining products are referred

to as “light”. For the latter, we guess the total weight of light products offered by S∗ within a

sufficiently small factor. Subsequently, in Section 4.2, we propose an approximate way of reducing

our assortment problem of interest to a knapsack-like problem. To this end, we prove that one can

utilize efficiently-computable coefficients to approximate the choice probabilities of any assortment

that: (1) Includes all heavy products, and (2) Satisfies our total weight bounds for light products.

These coefficients will be obtained through a carefully crafted adaptation of the recursive procedure

prescribed by Lemma 1, originally employed to compute the choice probabilities in an exact way.

4.1. Step 1: Guessing

In what follows, we employ efficient enumeration ideas to recover the set of so-called heavy products.

In parallel, we explain how to approximately estimate the combined weight of all light products

offered in the optimal assortment S∗. To avoid cumbersome notation, we assume without loss of

generality that 1
ϵ
takes an integer value.

Guessing heavy products. First, we guess the N = 6m2
max
ϵ

largest-weight products offered in S∗,

and refer to this collection as the set of heavy products, H∗. Clearly, H∗ can be exactly recovered

by enumerating over all possible O(nN ) = O(nO(m2
max/ϵ)) subsets of cardinality N . When |S∗| ≤

N , this initial guessing step will recover the optimal assortment. To handle the non-trivial case

where |S∗|>N , we use L= {i∈ [n] \H∗ :wi ≤minj∈H∗ wj} to designate the remaining set of light

products, whose weights do not exceed that of any heavy product, and discard all products outside

of H∗ ∪ L. Finally, we let L∗ = S∗ ∩ L denote the set of light products included in the optimal

assortment.

Guessing the total weight of light products. To begin, we guess w̄ =max{wi : i ∈ L∗}, which is

the heaviest weight of a light product offered in the optimal assortment S∗, for which there are

only O(n) options. Next, let k∗ be the smallest non-negative integer satisfying w̄ · (1+ δ)k ≥w(L∗),

where δ = ϵ
6mmax

. Given that w(L∗) ∈ [w̄, nw̄], it is easy to verify that k∗ = O(mmax
ϵ

· logn), and

we can therefore efficiently enumerate over all possible values for this parameter. We conclude our

guessing step by defining W = w̄ · (1+ δ)k
∗
; clearly, W

1+δ
≤w(L∗)≤W , by the choice of k∗.

4.2. Step 2: Reduction to a knapsack-like problem

Here, we first show how to efficiently compute assortment-independent coefficients {π̃i}i∈[n] that

will be plugged-in as estimates for the choice probabilities. Next, we replace the choice probabil-

ities within the expected revenue function (2) with these coefficients, thereby transforming our

assortment problem of interest into a knapsack-like problem. Our final piece of analysis concludes
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that an approximate solution to the latter problem directly yields an assortment whose expected

revenue is within factor 1− ϵ of optimal.

Computing the choice probability estimators. Consider the following dynamic program, where

each state (i,m,H) corresponds to a product i ∈ [n], a number of purchases m ∈ [mmax]0, and a

subset of heavy products H ⊆H∗. Our value function is defined through the recursive expression

V (i,m,H) =
1

1+ (1+ δ) ·W +w (H)︸ ︷︷ ︸
part (i)

(4)

·

(
wi +

[
W

(1+ δ)2
− δ ·w (H−i)

]+
·V (i,m− 1,H)︸ ︷︷ ︸

part (ii)

+
∑

j∈H−i

wj ·V (i,m− 1,H−j)︸ ︷︷ ︸
part (iii)

)
,

with base cases of V (·,0, ·) = 0. It is not difficult to verify that, given H∗, the total running time

required to compute V (i,m,H) over all possible states is only O(n2mmax · 2N ) =O(n2 · 2O(m2
max/ϵ)).

Lemma 5 below, whose proof is deferred to Section 4.4, relates this value function to choice

probabilities with respect to assortments that “resemble” the optimal one, S∗. Specifically, let

F =

{
S ⊆ (L∪H∗) :w(S ∩L)∈

[
W

(1+ δ)2
, (1+ δ) ·W

]
, S ⊇H∗

}
be the family of assortments that contain all heavy products, in which the total weight of all

light products nearly matches w(L∗), as defined above. Then, the next result reveals that our

value function can be used to ϵ-estimate the choice probability of any product offered by such an

assortment.

Lemma 5. For any assortment S ∈F and product i∈ S, we have

(1− 2ϵ) ·π(i,S)≤E[V (i,M,H∗)]≤ π(i,S) ,

where the expectation above is taken over the randomness in M .

Constructing the knapsack problem. We proceed by presenting a knapsack-based approximation

of our original assortment optimization problem, where one wishes to compute an assortment S ⊆
[n] whose expected revenue R(S) =

∑
i∈S ri ·π(i,S) is maximized. For this purpose, we replace each

choice probability π(i,S) with light-product-independent proxies π̃i =E[V (i,M,H∗)]. By plugging

these coefficients into the expected revenue function, we introduce an extension of the classic

knapsack problem, where our objective is to maximize
∑

i∈S riπ̃i, subject to picking all heavy

products and offering light products whose total weight is within [ W
1+δ

,W ]. This problem can be

compactly written as

OPTknapsack =
∑
i∈H∗

riπ̃i +

max
S⊆L

∑
i∈S

riπ̃i

s.t. w(S)∈ [ W
1+δ

,W ]

 (5)
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The inner problem above can be viewed as a variant of the classic binary knapsack problem, where

a lower bound on the total weight is enforced in conjunction with the traditional upper bound.

By rounding down product weights to the nearest multiple of δW
n
, standard dynamic programming

ideas (see, e.g., (Vazirani 2013, Chap. 8)) can be employed to compute, in O(n
2

δ
) time, a subset of

products S̃ ∈F with ∑
i∈S̃

riπ̃i ≥OPTknapsack ≥
∑
i∈S∗

riπ̃i , (6)

where the second inequality follows since the optimal assortment S∗ =H∗∪L∗ constitutes a feasible

solution to problem (5), as W
1+δ

≤ w(L∗) ≤ W . In essence, rounding down weights to multiples

of δW
n

allows us to compute a super-optimal knapsack solution, at the expense of violating the

bounds [ W
1+δ

,W ] by a factor of 1± δ, thereby constructing an assortment in F . We conclude our

approximation scheme by returning the set of products S̃ as its final assortment.

4.3. Performance guarantee and running time

Approximation ratio. We proceed by arguing that the assortment S̃ is indeed near-optimal. To

this end, one should observe that the expected revenue attained by S̃ is

R(S̃) =
∑
i∈S̃

ri ·π(i, S̃)

≥
∑
i∈S̃

riπ̃i

≥
∑
i∈S∗

riπ̃i

≥ (1− 2ϵ) ·
∑
i∈S∗

ri ·π(i,S∗)

= (1− 2ϵ) ·R(S∗).

Here, the first and last inequalities hold since π(i, S̃)≥ π̃i and π̃i ≥ (1− 2ϵ) · π(i,S∗), respectively,

by Lemma 5. The middle inequality is precisely the relation between S̃ and S∗, given by (6).

Running time. The specific points that should be taken into account when deriving the overall

running time of our approach can be briefly summarized as follows:

• In Step 1, there are O(nO(m2
max/ϵ)) guesses for the set of heavy products H∗. In addition,

to obtain the approximate total weight W of light products, only O(n · mmax
ϵ

· logn) guesses are

required.

• For each such set of guesses, we proceed in Step 2 to compute the choice probability estimators

V (·, ·, ·) in O(nO(1) · 2O(mmax
ϵ )) time. Then, their related knapsack problem is approximated in

O(n
2mmax

ϵ
) time.

All together, we arrive at an overall running time of O(nO(m2
max/ϵ)), as stated in Theorem 1.
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4.4. Proof of Lemma 5

Auxiliary claims. We begin by stating two basic results, whose proofs are provided in Appen-

dices C.1 and C.2, respectively. The first claim shows that the choice probability of any particular

product within a given assortment increases more by the removal of a more attractive product

than by the removal of a less attractive product. The second claim places a lower bound on the

total weight of particular collections of light products.

Claim 1. Let S ⊆ [n] be an assortment, and let j, ℓ ∈ S be two distinct products with wj ≥ wℓ.

Then, for every product i∈ S \ {j, ℓ}, we have πm(i,S−j)≥ πm(i,S−ℓ) for all m∈ [n].

Claim 2. Let S ∈F be an assortment and let Q⊆ S be a subset of products with |S \Q| ≤mmax.

Then, w(Q∩L)≥ W
(1+δ)2

− δ ·w(Q∩H∗).

The generalized claim. In what follows, we prove Lemma 5 by establishing a somewhat more

general claim. For this purpose, consider some assortment S ∈ F and a product i ∈ S within

this assortment. The next claim provides tight bounds, in terms of the value function V , on the

probability that product i is purchased out of certain sub-assortments of S.

Claim 3. Let Q⊆ S be a subset of products with i∈Q, and suppose that |S \Q| ≤mmax−m for

some m∈ [mmax]. Then,

(1− δ)6m ·πm(i,Q)≤ V (i,m,H∗ ∩Q)≤ πm(i,Q) .

To understand how the above claim leads to Lemma 5, note that by choosing Q= S, we have

V (i,m,H∗)≤ πm(i,S) for all m ∈ [mmax], and therefore, E[V (i,M,H∗)]≤ π(i,S). In the opposite

direction, since we simultaneously get V (i,m,H∗)≥ (1−δ)6m ·πm(i,S) for all m∈ [mmax], it follows

that

E [V (i,M,H∗)] ≥
∑

m∈[mmax]

Pr [M =m] · (1− δ)6m ·πm(i,S)

≥
(
1− ϵ

6mmax

)6mmax

·π(i,S)

≥ e−2ϵ ·π(i,S)

≥ (1− 2ϵ) ·π(i,S) .

We prove both inequalities of Claim 3 via induction over m. For this purpose, consider the

following representation of the choice probability πm(i,Q), which is derived from Lemma 1:

πm (i,Q) =
wi

1+w(Q)
+
∑

ℓ∈Q−i

wℓ

1+w(Q)
·πm−1 (i,Q−ℓ)

=
1

1+w(Q)︸ ︷︷ ︸
part (i)

·

(
wi +

∑
ℓ∈L∩Q−i

wℓ ·πm−1 (i,Q−ℓ)︸ ︷︷ ︸
part (ii)

+
∑

j∈H∗∩Q−i

wj ·πm−1 (i,Q−j)︸ ︷︷ ︸
part (iii)

)
. (7)
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Our induction argument will compare parts (i)-(iii) above to their counterparts in the recursive

equation (4) by which the value function V is instantiated with H =H∗ ∩Q.

The upper bound proof: πm(i,Q)≥ V (i,m,H). Since the base case of m= 0 trivially holds, we

move on to proving the required bound for general m ≥ 1. To this end, we show that each part

in (7) exceeds its counterpart in (4):

• Part (i): To verify this comparison, note that

w(Q) = w(L∩Q)+w(H∗ ∩Q)

≤ w(L∩S)+w(H)

≤ (1+ δ) ·W +w(H) ,

where the first inequality holds since Q ⊆ S, and the second inequality follows by recalling that

w(S ∩L)≤ (1+ δ) ·W , as S ∈F .

• Part (ii): To make this comparison, we observe that∑
ℓ∈L∩Q−i

wℓ ·πm−1 (i,Q−ℓ) ≥ πm−1 (i,Q) ·w(L∩Q−i)

≥ πm−1 (i,Q) ·
[

W

(1+ δ)2
− δ ·w(H−i)

]+
≥ V (i,m− 1,H) ·

[
W

(1+ δ)2
− δ ·w(H−i)

]+
.

Here, the first inequality holds since adding any product ℓ ∈ L ∩Q−i to Q can only reduce the

choice probability of product i. The second inequality is obtained by applying Claim 2, noting that

H∗ ∩Q−i = H−i, by definition of H, regardless of whether product i is light or heavy. The last

inequality follows from the induction hypothesis, which can be applied since |S \Q| ≤mmax−m<

mmax − (m− 1).

• Part (iii): In this case,∑
j∈H∗∩Q−i

wj ·πm−1 (i,Q−j) =
∑

j∈H−i

wj ·πm−1 (i,Q−j) .

≥
∑

j∈H−i

wj ·V (i,m− 1,H−j)

The equality above holds since H∗ ∩ Q−i = H−i, as explained in the previous item. The next

inequality follows by invoking the induction hypothesis, which is indeed applicable since |S \Q−j|=

|S \Q|+1≤mmax − (m− 1), noting that H∗ ∩Q−j =H−j, as j ∈H∗.

The lower bound proof: V (i,m,H)≥ (1− δ)6m ·πm(i,Q). While the current claim follows from

arguments similar to those of our upper bound proof, its specifics are somewhat more involved,

and we therefore present these details in Appendix C.3.



Bai, Feldman, Segev, Topaloglu, Wagner: The Multi-Purchase Multinomial Logit Model
22 Article submitted to ; manuscript no.

5. A PTAS for the General Problem

This section is devoted to presenting a high-level overview of our approximation scheme for the

assortment optimization problem in its most general form, without any structural assumptions

whatsoever. The specifics of this result are formally stated in the next theorem, noting that its

success probability can be amplified to 1− δ, for any δ ∈ (0,1), with O(log 1
δ
) independent repeti-

tions.

Theorem 2. For any ϵ > 0, there is a randomized algorithm for computing, with probability at

least 1/2, an assortment S ⊆ [n] whose expected revenue is within factor 1 − ϵ of optimal. The

running time of this algorithm is O(nO(1/ϵ3)).

The upcoming overview provides a detailed account of our algorithm and its analysis, while

concurrently highlighting the technical hurdles that arise along the way. It turns out that avoiding

an O(1)-bound on the number of maximum purchases requires a new set of tools and ideas, which

are substantially more intricate than those presented in Section 4. As such, for readability purposes,

we focus on the bigger picture and defer most technical details to subsequent appendices. It is

important to emphasize that we do not attempt to present the most efficient implementation by

any means, and leave for future work the task of distilling our approach into a more practical

variant.

5.1. The bounded-ratio setting

For ease of exposition, in the remainder of this section, we derive a weaker version of Theorem 2,

where the running time of our approach includes a dependency on the extremal product weights.

As formally stated below, we devise a randomized approximation scheme whose running time is

polynomial in the input size as well as in the ratio between extremal weights, wmax
wmin

, where wmax =

maxi∈[n]wi and wmin =mini∈[n]wi. Here, one can assume without loss of generality that wmin > 0,

as all products with zero preference weights can be discarded in advance.

Theorem 3. For any ϵ > 0, there is a randomized algorithm for computing, with probability at

least 1/2, an assortment S ⊆ [n] whose expected revenue is within factor 1 − ϵ of optimal. The

running time of this algorithm is O((n · wmax
wmin

)O(1/ϵ2)).

Addressing the general setting. It is important to point out that, for arbitrarily-structured

instances, the ratio wmax
wmin

could be exponential in the input size, implying that Theorem 3 should

not be viewed as a PTAS by itself. That said, this result will be employed as a subroutine in

Appendix E, upon addressing the assortment optimization problem in its utmost generality. At a

high level, our general approximation scheme will be obtained by decomposing any given instance

into a sequence of sub-instances, each with a polynomially-bounded wmax
wmin

ratio; in this case, the
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approximation scheme of Theorem 3 actually constitutes a true PTAS. Here, the technical crux

resides in bounding the interaction between these sub-instances through appropriately-defined car-

dinality constraints. To this end, we mention that our bounded-ratio PTAS works in its current

form even subject to a cardinality constraint on the offered assortment, and briefly discuss the

intuition needed to confirm the validity of this extension at the end of Section 5.5.

5.2. The stability of choice probabilities under rounding

To simplify the analysis of our algorithmic ideas, we first examine the following question: What

is the extent to which choice probabilities are affected by small perturbations to the preference

weights of the underlying products?

The effects of single product rounding. To derive sufficiently strong bounds, let us denote by

π⟨w⟩(i,S) the choice probability of product i within the assortment S, assuming that the underlying

preference weights are given by w = (w0,w1, . . . ,wn). Now suppose we define a new vector w↓i,

whose coordinates are identical to those of w, except for the preference weight of product i, which

is rounded down to w↓i
i ∈ [(1− ϵ) ·wi,wi]. The choice probabilities with respect to this vector will

be denoted by π⟨w↓i⟩(·, ·). The next claim, whose proof appears in Appendix D.1, argues that with

respect to any assortment, the choice probability of product i will remain within factor 1− ϵ of its

original value, whereas the choice probability of any other product can only increase.

Lemma 6. For any assortment S ⊆ [n], we have:

• π⟨w↓i⟩(i,S)≥ (1− ϵ) ·π⟨w⟩(i,S).

• π⟨w↓i⟩(j,S)≥ π⟨w⟩(j,S), for every product j ̸= i.

Fully rounded instances. Now, in order to inject additional structure into a given instance I of

the assortment optimization problem, we define its rounded-down counterpart I↓. In the latter

instance, the preference weight of each product is rounded down to the nearest power of 1 + ϵ,

thereby obtaining the weight vector w↓. In contrast, the no-purchase option retains its weight,

i.e., w↓
0 = w0 = 1. In the next lemma, we exploit the single-product rounding bound of Lemma 6

to show that the expected revenue R⟨w↓⟩(S) of any assortment S with respect to w↓ differs by a

multiplicative factor of 1± 2ϵ from its original value R⟨w⟩(S) with respect to w. The specifics of

this proof are provided in Appendix D.2.

Lemma 7. R⟨w↓⟩(S)∈ (1± 2ϵ) ·R⟨w⟩(S), for any assortment S ⊆ [n].

5.3. The within-class revenue-orderedness of optimal assortments

In light of the preceding discussion, it remains to propose an approximation scheme for the rounded

instance I↓, as Lemma 7 argues that we incur only O(ϵ)-losses in optimality when moving between

I and I↓ in either direction. For this purpose, letting Q= ⌈log1+ϵ(
wmax
wmin

)⌉, we focus our attention
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on assortment optimization instances where each preference weight is of the form wmin · (1+ ϵ)q, for

some integer q ∈ [Q]0. We refer to the collection of products i ∈ [n] with wi =wmin · (1+ ϵ)q as the

weight class Wq, and for an integer k ∈ [|Wq|]0, we use Wq[k] to denote the set of k most expensive

products in Wq, breaking ties arbitrarily. The next claim, whose proof appears in Appendix D.3,

shows that within each weight class, had we known the number of products picked by some fixed

optimal assortment, it is optimal to pick the most expensive ones.

Lemma 8. There exists an optimal assortment S∗ where, for every q ∈ [Q]0,

S∗ ∩Wq =Wq [|S∗ ∩Wq|] .

5.4. The enumeration-based approximation scheme

Letting S∗ be an optimal assortment satisfying the structural condition of Lemma 8, it suffices to

guess the number of products k∗
q = |S∗∩Wq| offered out of each class Wq. A naive implementation

would require enumerating over O(nO(Q)) = O(n
O( 1ϵ log wmax

wmin
)
) joint configurations for the values

{k∗
q}q∈[Q]0 . However, to eventually obtain a polynomial-time approximation scheme along the lines

of Theorem 2, it is crucial that the running time dependency of our current enumeration procedure

will be polynomial in wmax
wmin

. For this purpose, our refined procedure operates as follows:

• Step 1: Guessing choice probabilities.

—For each weight class Wq, due to having identical preference weights, all products offered

by S∗ from this class have precisely the same choice probability, which will be referred to as π∗
q .

One can easily verify that π∗
0 ≤ · · · ≤ π∗

Q.

—We first guess the identity of qmin, which is the smallest index q ∈ [Q]0 for which π∗
q ≥

ϵ
n
·Pr[M > 0] · wmin

1+wmin
, with the convention that qmin =∞ when no such index exists. We also note

that π∗
q ≤ Pr[M > 0] · wmin·(1+ϵ)Q

1+wmin·(1+ϵ)Q for every q ∈ [Q]0; the latter inequality holds since, for any

product i∈ S∗ ∩Wq, we have

π∗
q = π (i,S∗)

≤ π(i,{i})

= Pr [M > 0] · wmin · (1+ ϵ)q

1+wmin · (1+ ϵ)q

≤ Pr [M > 0] · wmin · (1+ ϵ)Q

1+wmin · (1+ ϵ)Q
.

It follows that the subsequence π∗
qmin

, . . . , π∗
Q is bounded within the interval[

ϵ

n
·Pr[M > 0] · wmin

1+wmin

,Pr[M > 0] · wmin · (1+ ϵ)Q

1+wmin · (1+ ϵ)Q

]
,

whose endpoints differ by a factor of at most (1+ ϵ)Q · n
ϵ
.



Bai, Feldman, Segev, Topaloglu, Wagner: The Multi-Purchase Multinomial Logit Model
Article submitted to ; manuscript no. 25

—Therefore, by enumerating over all non-decreasing sequences of powers-of-(1 + ϵ) in this

interval, we can obtain over-estimates π̃qmin
≤ · · · ≤ π̃Q such that π̃q ∈ [π∗

q , (1 + ϵ) · π∗
q ] for every

qmin ≤ q ≤Q. Since any such sequence can be written as (1 + ϵ)xqmin , . . . , (1 + ϵ)xQ for a sequence

of integers xqmin
≤ · · · ≤ xQ with xQ − xqmin

≤ log1+ϵ((1 + ϵ)Q · n
ϵ
), elementary identical-balls-into-

distinct-bins counting shows that the number of options to be examined is(
Q+ ⌈log1+ϵ((1+ ϵ)Q · n

ϵ
)⌉

Q

)
= O

(
2O(Q+log1+ϵ((1+ϵ)Q·nϵ ))

)
= O

(
2
O( 1ϵ log wmax

wmin
+ 1

ϵ log n
ϵ

)
= O

((
n · wmax

wmin

)Õ(1/ϵ)
)

.

• Step 2: Guessing revenue contributions.

—We first obtain an under-estimate ÕPT of the optimal expected revenue R(S∗) that satisfies

ÕPT ∈ [(1− ϵ) · R(S∗),R(S∗)]. To identify an ample interval over which we will enumerate, let

i∗ be the product maximizing R({i}) over all i ∈ [n]. Since it is easy to verify that R(S∗) ∈

[R({i∗}), n ·R({i∗})], our estimate ÕPT can be efficiently guessed by enumerating over all powers

of 1+ ϵ within this interval. Clearly, the number of candidate estimates is only O( 1
ϵ
logn), as the

interval endpoints differ by a factor of n.

—For each weight class Wq, we define its contribution toward the overall expected revenue

as Rq (S
∗) =

∑
i∈S∗∩Wq

ri · π(i,S∗) = π∗
q ·
∑

i∈S∗∩Wq
ri. Now, for every q ≥ qmin, we guess an over-

estimate R̃q for the revenue contribution Rq(S
∗) up to an additive factor of ϵ

Q+1
· ÕPT. In other

words, Rq(S
∗)− ϵ

Q+1
· ÕPT≤ R̃q ≤Rq(S

∗). To enumerate over all possible joint configurations of

{R̃q}q≥qmin
, identical-balls-into-distinct-bins counting implies once again that the number of guesses

to consider is only O(2O(Q/ϵ)) =O((wmax
wmin

)O(1/ϵ2)).

• Step 3: Inferring a near-optimal assortment. Finally, out of each weight class Wq with

q ≥ qmin, we offer the k̃q most expensive products, where k̃q is the minimal integer k for which∑
i∈Wq [k]

ri ≥ R̃q

π̃q
. Aggregating these decisions over all weight classes in question, we use S̃ to

designate the resulting assortment, i.e., S̃ =
⋃

q≥qmin
Wq[k̃q].

5.5. Analysis

Approximation guarantee. In the next claim, whose proof is provided in Appendix D.4, we argue

that the resulting assortment S̃ is indeed near-optimal, by exploiting the specific structure of our

estimates for per-class choice probabilities and revenue contributions.

Lemma 9. R(S̃)≥ (1− 3ϵ) ·R(S∗).
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Running time and revenue estimation. A close inspection of our enumeration method reveals that

the overall number of possible guesses for the choice probability estimates π̃qmin
≤ · · · ≤ π̃Q, the class

index qmin, the optimal revenue estimate ÕPT, and the revenue contribution estimates {R̃q}q≥qmin

is only O((n · wmax
wmin

)O(1/ϵ2)). Each such guess uniquely translates to a candidate assortment, and

therefore, it remains to compute the expected revenue of these assortments and to pick the most

profitable one. That said, as outlined in Section 2.2, evaluating our recursive expression for the

choice probabilities within a given assortment is generally exponential in the number of underlying

products.

To bypass this obstacle, we describe an approximate way to efficiently estimate the expected

revenue of a given assortment S. Specifically, for an error parameter ϵ > 0 and a confidence level

δ > 0, our objective is to compute an estimator R̃(S) for the expected revenue R(S) that satisfies

Pr
[∣∣∣R̃(S)−R(S)

∣∣∣≤ ϵ ·R(S∗)
]
≥ 1− δ .

It is important to point out that this guarantee is not multiplicative in its current form, since the

error term ϵ ·R(S∗) depends on the optimal assortment S∗ rather than on S; we will explain how

to go around this issue in the next paragraph. Specifically, our estimator will be derived as follows:

1. Letting N = ⌈ n2

2ϵ2
· ln( 2n2

δ
)⌉, we first draw N independent samples ρ1, . . . , ρN from the distri-

bution [rank(i,S)|Ui >U0].

2. For every product i ∈ S, we define an auxiliary estimator π̃(i,S) for the choice probability

π(i,S), by setting π̃(i,S) =
∑

m∈[n]Pr [M =m] · π̃m(i,S), where π̃m(i,S) =
wi

1+wi
· 1
N
·
∑

ν∈[N ] 1[ρν ≤

m].

3. Our final estimator is given by R̃(S) =
∑

i∈S ri · π̃(i,S).

The next claim, whose proof is given in Appendix D.5, shows that R̃(S) indeed forms an additive

±ϵ ·R(S∗) estimate for the expected revenue R(S).

Lemma 10. Pr[|R̃(S)−R(S)| ≤ ϵ ·R(S∗)]≥ 1− δ.

Picking a near-optimal assortment. In conclusion, recalling that our enumeration method is

required to compare O((n · wmax
wmin

)O(1/ϵ2)) assortments, we employ the estimation procedure described

above with a confidence level of δ = Θ(1/(n · wmax
wmin

)O(1/ϵ2)). By choosing an appropriate constant

within the latter term, a simple application of the union bound guarantees that, with probability

say 1/2, we simultaneously get the next two guarantees:

1. In conjunction with Lemma 9, the estimated revenue R̃(S̃) of the assortment S̃ evaluates to

at least (1− 4ϵ) ·R(S∗).

2. The estimated revenue R̃(S) of any assortment S with R(S)≤ (1− 6ϵ) · R(S∗) evaluates to

at most (1− 5ϵ) ·R(S∗).
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Therefore, with probability at least 1/2, by picking the most profitable assortment with respect

to the estimated revenue R̃(·), we indeed identify one whose true expected revenue is at least

(1− 6ϵ) ·R(S∗).

Incorporating a cardinality constraint. As mentioned at the beginning of this section, our algo-

rithmic approach for the bounded-ratio setting works even subject to a cardinality constraint on

the offered assortment. This extension turns out to be very useful once we focus on general prob-

lem instances in Appendix E. To better understand how one can seamlessly handle a cardinality

constraint, the key ideas to take note of are:

• Lemma 8 proves that the optimal assortment S∗ for the rounded instance satisfies S∗ ∩Wq =

Wq[|S∗ ∩Wq|] for each weight class Wq, i.e., S
∗ is revenue-ordered within each weight class.

• With this structure in-mind, we guess in Step 2 an under-estimate R̃q for the revenue contribu-

tion Rq (S
∗) of each weight class Wq. From each class, products are added in Step 3 by decreasing

order of price until their respective contribution exceeds R̃q.

• However, since R̃q ≤ Rq (S
∗), the number of products we are adding from each class Wq is

upper-bounded by the number of products picked by S∗, and therefore, the resulting assortment

must be cardinality-feasible.

6. Concluding Remarks

We conclude this paper with a number of challenging directions for future work, related to the

MP-MNL choice model by itself as well as to multi-purchase settings in general.

Theory question 1: Hardness results. As mentioned in Section 2.3, establishing hardness results

for unconstrained assortment optimization under the MP-MNL model remains an intriguing open

question. We believe that our inapproximability bounds under totally unimodular constraints (The-

orems 4 and 5) could play an important role in attaining results of this nature, even though the

unconstrained setting has fewer structural restrictions to exploit.

Theory question 2: Choice probabilities. Yet another seemingly-difficult question for future

research is that of proposing a polynomial-time algorithm to compute (or ϵ-estimate) choice prob-

abilities under the MP-MNL model. We remind the reader that the exact approach we outlined in

Section 2.2 is generally exponential in the number of products. Quite surprisingly, this obstacle has

not prevented us from proposing a PTAS for arbitrarily-structured instances (Theorem 2), showing

that additive estimation errors are sufficiently strong for this purpose.

Theory question 3: Revenue-ordered assortments. As mentioned in Section 3.3, we still do not

know whether the highest earning revenue-ordered assortment garners some constant factor of the

optimal expected revenue, although we were able to show that this assortment is within an Ω( 1
logn

)-

fraction of optimal. As such, closing this gap is an important step towards fully characterizing the

proximity of the traditional MNL and MP-MNL models.
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Estimating the MP-MNL model. From an empirical perspective, an intriguing direction for future

work is that of finding an effective estimation procedure through which the MP-MNL model could

be fit to sales data. The numerical experiments presented in Appendix G.1 depict the downsides of

utilizing traditional single-purchase models in settings where multi-purchase behavior is present, yet

further experimentation is needed to cement these insights. In particular, an estimation case study

in which the MP-MNL model is fit to real sales data, and then benchmarked against traditional

choice models, would be a natural step to consider.

Complementary multi-purchase events. Generally speaking, incorporating correlations between

product purchases within the MP-MNL framework, or within any other multi-purchase model in

this spirit, represents a potential direction for future work. These correlations would enable retailers

to capture customers purchasing multiple complementary products. For example, in a grocery

setting, it would be interesting to examine whether one can meaningfully augment the MP-MNL

model to reflect the notion that shoppers who purchase pasta, for example, are then more likely

to purchase some sort of accompanying sauce.

Extensions to additional choice models. Finally, a natural line for future investigation would be

to tackle the question of whether alternative well-known choice models, such as the Nested Logit

or Markov Chain models, can be adapted to multi-purchase settings. Clearly, any random utility

maximization choice model can be extended to a multi-purchase setting, along the ranking-based

instructions we consider as part of our model specification (Section 2.1). However, for any such

adaptation, the obvious question is whether its resulting assortment optimization problem remains

tractable, or alternatively, can be well-approximated.
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Appendix A: Hardness under totally unimodular constraints.

An alternative way to encode the offered assortment S ⊆ [n] is through its characteristic vector x ∈ {0,1}n,

where xi = 1 if i∈ S and xi = 0 otherwise. For an arbitrary TU-matrix A and for an integer-valued vector b,

let F = {x∈ {0,1}n :Ax≤ b} denote the set of feasible assortment decisions. In what follows, we examine the

complexity of the TU-constrained assortment optimization problem, maxx∈F R(x), whose broad applications

were previously discussed in Section 1.2.

Theorem 4. TU-constrained assortment optimization under the MP-MNL model is NP-Hard to approx-

imate within factor O(n1−ϵ), for any fixed ϵ > 0.

We establish Theorem 4 by providing an approximation preserving reduction from the maximum inde-

pendent set problem. The specifics of this proof can be found in Appendix A.1. Additionally, we show that

TU-constrained assortment optimization remains NP-Hard even for extremely restricted settings, as argued

in the following theorem.

Theorem 5. TU-constrained assortment optimization under the MP-MNL model is NP-Hard, even when

the support of M consists of only two values.

The proof of Theorem 5 involves a reduction from the 2-partition problem, which is well known to be NP-

Hard (Karp 1972). The details of this proof are provided in Appendix A.2. The key observation is that, when

customers either exclusively choose according to an MNL model (M = 1) or an independent demand model

(M = n), the TU-constrained assortment optimization problem can be solved in polynomial time (Hoffman

and Kruskal 1956, Sumida et al. 2021). Surprisingly, the proof of Theorem 5 reveals that when we consider

the “right” mixture of these two extreme cases within the MP-MNL model, its TU-constrained assortment

problem is rendered NP-Hard.
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A.1. Proof of Theorem 4

An instance of the independent set problem consists of an undirected graph G= (V,E). A vertex set U ⊆ V is

called independent when, for any pair of vertices in U , there is no edge connecting the two. Our objective is to

identify an independent set of maximum cardinality. The hardness result we exploit is due to H̊astad (1999),

who proved that, for any fixed ϵ > 0, the independent set problem cannot be approximated in polynomial

time on n-vertex graphs within factor O(n1−ϵ), unless P=NP.

Construction. Letting V = {v1, . . . , vn} be the underlying set of vertices, we create an instance of the

TU-constrained assortment optimization problem as follows:

• Products: For every i ∈ [n], we create a block Bi = {ai, bi, ci, di} of four distinct products, whose prices

and preferences weights are listed in the next table:

product price weight
ai 0 n2n·(4(n−i)+4)

bi ni n2n·(4(n−i)+3)

ci 0 n2n·(4(n−i)+2)

di 0 n2n·(4(n−i)+1)

The instance we construct does not include the no-purchase option. For convenience, we denote the entire

collection of products by P.

• Demand: The maximum number of products M that the customer is willing to purchase is distributed

over the support 0,1,3,5, . . . ,2n−1. Specifically, the probabilities of odd values are given by Pr[M = 2i−1] =

1
ni for i∈ [n], whereas the residual probability mass is allocated to 0, namely, Pr [M = 0] = 1−

∑
i∈[n]

1
ni .

• Totally unimodular constraints: For every i∈ [n], we enforce three types of constraints:

1. When product bi is offered, we also have to offer every product aj with (vi, vj)∈E.

2. Exactly one of the products ai and ci should be offered.

3. Exactly one of the products bi and di should be offered.

One can easily verify that the columns of the resulting constraint matrix can be partitioned into two sets,

one corresponding to a- and b-products and the other to c- and d-products, such that: (1) Each row contains

only two non-zero elements, being either 1 or −1; (2) In each row, non-zero elements of similar signs appear

in different sets, whereas non-zero elements of opposite signs appear in the same set. Such matrices are

well-known to be totally unimodular, by the Hoffman-Kruskal sufficient condition (1956).

Analysis. Let us first define the “nice” event N , where product ranks satisfy

rank(a1,P) < rank(b1,P)< rank(c1,P)< rank(d1,P)

< · · ·< rank(an,P)< rank(bn,P)< rank(cn,P)< rank(dn,P) .

In other words, within each block Bi, the preference order realizes as ai, bi, ci, di, and moreover, products

in lower-indexed blocks realize to be more preferable than those in higher-indexed blocks. The next claim

argues that this event occurs with high probability.

Lemma 11. Pr [N ]≥ 1− 1
nn+1 .
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Proof. The important observation is that, for any successive pair of products in the sequence

a1, b1, c1, d1, . . . , an, bn, cn, dn, their preference weights differ by a multiplicative factor of precisely n2n. There-

fore, focusing for instance on a1 and b1, we have

Pr [rank(a1,P)> rank(b1,P)] = Pr [Ub1 >Ua1
] =

wb1

wb1 +wa1

=
1

1+n2n
,

and this property applies to any of these 4n− 1 successive pairs. Now, by a simple application of the union

bound, Pr[N̄ ]≤ 4n−1
1+n2n ≤ 1

nn+1 , where the last inequality can easily be verified for n≥ 4. □

The next two claims explain how large independent sets in the graph G can be efficiently mapped to

high-revenue sets of products in the resulting assortment optimization problem and vice versa.

Lemma 12. Let U ⊆ V be an independent set in G. Then, there exists a feasible assortment S with R(S)≥

(1− 1
nn+1 ) · |U |.

Proof. With respect to the set of vertices U , we construct an assortment S that picks both bi and ci for

every vertex vi ∈U , and concurrently, picks both ai and di for vi /∈U , meaning that

S = {bi : vi ∈U}∪ {ci : vi ∈U}∪ {ai : vi /∈U}∪ {di : vi /∈U} .

This choice clearly satisfies constraints 2 and 3, for any vertex set U . To verify that constraint 1 is met as

well, consider some product bi ∈ S, which occurs only when vi ∈U . Since U is an independent set, for every

edge (vi, vj)∈E we must have vj /∈U and therefore aj ∈ S, as required.

Having shown that the assortment S is feasible, we proceed to account for its expected revenue. To this

end, note that the conjunction of constraints 2 and 3 guarantees that S picks exactly two products out of

each block Bi. Consequently, conditional on the nice event N , for any offered product bi ∈ S, since ai /∈ S

we know that rank(bi, S) = 2i− 1 with probability 1. Given this observation, it follows that the expected

revenue of S can be bounded as follows:

R(S) =
∑

i:bi∈S

rbi ·π(bi, S)

=
∑

i:bi∈S

rbi ·Pr [rank(bi, S)≤M ]

≥ Pr [N ] ·
∑

i:bi∈S

rbi ·Pr [M ≥ rank(bi, S)|N ]

= Pr [N ] ·
∑

i:bi∈S

rbi ·Pr [M ≥ 2i− 1]

≥ Pr [N ] · |{i : bi ∈ S}|

≥
(
1− 1

nn+1

)
· |U | .

Here, the next-to-last inequality holds since rbi = ni and since Pr[M ≥ 2i− 1] ≥ Pr[M = 2i− 1] = 1
ni . The

last inequality follows from Lemma 11 and from the definition of S. □

Lemma 13. Let S be a feasible assortment. Then, G has an independent set U of cardinality |U | ≥ (1−
3
n
) · (R(S)− 3).
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Proof. We begin by establishing upper bounds on the choice probability of each product bi ∈ S, depending

on two scenarios:

• Case I: ai /∈ S. Following the arguments discussed within the proof of Lemma 12, we know that

[rank(bi, S) | N ] = 2i− 1 and therefore

Pr [M ≥ rank(bi, S)|N ] = Pr [M ≥ 2i− 1] =

n∑
k=i

1

nk
≤ 1

ni
·
(
1+

2

n

)
.

Consequently, by utilizing Lemma 11,

π(bi, S) = Pr [N ] ·Pr [M ≥ rank(bi, S)|N ] +Pr
[
N̄
]
·Pr

[
M ≥ rank(bi, S)|N̄

]
≤ 1

ni
·
(
1+

2

n

)
+

1

nn+1

≤ 1

ni
·
(
1+

3

n

)
.

• Case II: ai ∈ S. In this setting, since the assortment S picks exactly two products out of each block,

conditional on the nice event N , we know that rank(bi, S) = 2i with probability 1, since ai ∈ S by the case

hypothesis. As a result,

Pr [M ≥ rank(bi, S)|N ] = Pr [M ≥ 2i] =

n∑
k=i+1

1

nk
≤ 2

ni+1
.

Therefore, again by Lemma 11,

π(bi, S) = Pr [N ] ·Pr [M ≥ rank(bi, S)|N ] +Pr
[
N̄
]
·Pr

[
M ≥ rank(bi, S)|N̄

]
≤ 2

ni+1
+

1

nn+1

≤ 3

ni+1
.

Now, since a-, c-, and d-products are not contributing any revenue, the expected revenue of S can be upper

bounded by

R(S) =
∑

i:bi∈S

rbi ·π(bi, S)

≤ |{i : [bi ∈ S]∧ [ai /∈ S]}| ·
(
1+

3

n

)
+ |{i : [bi ∈ S]∧ [ai ∈ S]}| · 3

n

≤ |{i : [bi ∈ S]∧ [ai /∈ S]}| ·
(
1+

3

n

)
+3 , (8)

where the first inequality follows from cases I and II. The crucial observation is that U = {vi ∈ V : [bi ∈

S] ∧ [ai /∈ S]} is necessarily an independent set in G. To verify this claim, note that had there been an

edge (vi, vj) ∈ E for some pair of vertices vi ̸= vj ∈ U , constraint 1 will stipulate in particular that aj ∈ S

(due to having bi ∈ S), contradicting the fact that vj ∈ U . To conclude the proof, note that by rearranging

inequality (8), we have |U | ≥ (1− 3
n
) · (R(S)− 3). □
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Summary. Given these relationships, we argue that an αn-approximation for the TU-constrained assort-

ment optimization problem readily translates to an (αn − O(1))-approximation for the independent set

problem on n-vertex graphs. For this purpose, let U∗ be a maximum-cardinality independent set in G. By

Lemma 12, there exists a feasible assortment SU∗ with R(SU∗) ≥ (1 − 1
nn+1 ) · |U∗|, meaning that an αn-

approximation would identify an assortment S with R(S)≥ αn · R(SU∗)≥ αn · (1− 1
nn+1 ) · |U∗|. Translating

the latter back to an independent set U via Lemma 13, we obtain an independent set U of cardinality

|U | ≥
(
1− 3

n

)
· (R(S)− 3)

≥
(
1− 3

n

)
·
(
αn ·

(
1− 1

nn+1

)
· |U∗| − 3

)
= (αn −O(1)) · |U∗| .

A.2. Proof of Theorem 5

Our proof relies on a reduction from the 2-partition problem, whose input consists of a collection of n integers

a1, . . . , an; our goal is to decide whether these numbers can be partitioned into two sets of equal sum. Namely,

letting
∑

i∈[n] ai = L, the decision problem in question is whether there exists a subset I ⊆ [n] such that∑
i∈I

ai =L/2. Prior to moving forward, we assume without loss of generality that L≥ 4, and introduce two

additional pieces of notation. We let amax =maxi∈[n] ai and âi = ai/L. It is easy to verify that
∑

i∈I
ai =L/2

is equivalent to
∑

i∈I
âi = 1/2.

Given such an instance, we create a corresponding instance of TU-constrained assortment optimization

under the MP-MNL model. To this end, we will not be making use of a no-purchase option, and the set of

4n+1 underlying products will be comprised of five types:

• Product type 1: For each i ∈ [n], we introduce a single product, with weight w1
i =

3âi

L−âi
and price r1i =

L− âi.

• Product type 2: For each i ∈ [n], we introduce a single product, with weight w2
i = âi − 3âi

L−âi
and price

r2i = 0. Here, it is important to note that w2
i is indeed non-negative, since L≥ 4 and âi ≤ 1.

• Product type 3: For each i∈ [n], we introduce a single product, with weight w3
i =

âi

L
and price r3i =L.

• Product type 4: For each i∈ [n], we introduce a single product, with weight w4
i = âi+

âi

L
and price r4i = 0.

• Product type 5: In this case, we introduce only one product, with weight w5 = 2− 1
L
and price r5 = 0.

From a demand standpoint, the number of products a customer is willing to purchase will be limited to

taking only the values 1 and 4n+1, with probabilities Pr[M = 1] = 9/11 and Pr[M = 4n+1] = 2/11. These

two extremes correspond to customers who either choose according to a traditional MNL model or purchase

all offered products with certainty.

To express our TU constraints, we use superscripts to index across product types. As such, any assortment

decision can be captured through the binary vector x= (xt
i), where t stands for the product type and i is its

index for that particular type. With this notation, we enforce the following set of TU constraints:

• x1
i = x2

i = x4
i and x3

i = 1−x1
i , for every i∈ [n].

• x5 = 1.
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One can easily verify that the columns of the resulting constraint matrix can be partitioned into two sets,

one corresponding to product types 1, 2, and 4 and the other to product types 3 and 5, such that: (1) Each

row contains at most two non-zero elements, being either 1 or −1; (2) In each row, non-zero elements of

similar signs appear in different sets, whereas non-zero elements of opposite signs appear in the same set.

Such matrices are well-known to be totally unimodular, by the Hoffman-Kruskal sufficient condition (1956).

Given the TU-constraint structure defined above, we can fully specify any feasible assortment by simply

specifying the products selected among product type 1. As such, we drop superscripts and simply denote

feasible assortment via the characteristic vector of type 1 products, x ∈ {0,1}n. In this case, the expected

revenue of any feasible assortment is

R(x) =
9

11
·
1+2

∑
i∈[n] âixi

2+2
∑

i∈[n] âixi

+
2

11
·

nL−
∑
i∈[n]

âixi

 . (9)

We argue that there exists a subset I ⊆ [n] for which
∑

i∈I
âi = 1/2 if and only if there is a vector x∈ {0,1}n

for which R(x)≥ 2
11

·nL+ 5
11
. For this purpose, note that:

• Suppose I ⊆ [n] is a subset with
∑

i∈I âi = 1/2. Then, for the characteristic vector xI , we have R(xI) =

2
11

·nL+ 5
11
.

• Conversely, suppose that
∑

i∈I
âi ̸= 1/2 for every subset I ⊆ [n]. In the case, let us define the auxiliary

function f : [0,1]→R, given by f(z) = 9
11

· 1+2z
2+2z

− 2
11
z. Based on the revenue representation (9), one way of

writing the expected revenue of any vector x ∈ {0,1}n is by observing that R(x) = 2
11

·nL+ f(
∑

i∈[n] âixi).

However, basic calculus reveals that z∗ = 1/2 is the unique maximizer of f(z) over [0,1], where f(z∗) = 5
11
.

Since
∑

i∈[n] âixi ̸= 1/2, it follows that R(x)< 2
11

·nL+ 5
11
.

Appendix B: Proofs from Section 3

B.1. Proofs of Lemmas 2 and 3

Intermediate claims. Prior to diving into the detailed proofs of Lemmas 2 and 3, we establish two

intermediate claims. Recall that, for m ∈ [n]0, we have defined Rm(S) to be the expected revenue earned,

given that customers are willing to purchase up to m products; in other words, Rm(S) is the conditional

expected revenue [R(S)|M = m]. The following claim, whose proof appears in Appendix B.3, provides a

recursive representation for Rm(S).

Claim 4. For any assortment S ⊆ [n] and m∈ [n], we have

Rm(S) =
∑
i∈S

wi

1+w(S)
· (ri +Rm−1(S−i)) .

The second claim we establish provides an upper bound on the marginal gain in expected revenue that can

result when the number of products a customer is willing to purchase is augmented by one. More specifically,

this upper bound is z∗, the optimal MNL-based expected revenue as defined in Property 3.1. The proof of

Claim 5 is presented in Appendix B.4.

Claim 5. For any assortment S ⊆ [n] and m∈ [n], we have Rm(S)−Rm−1(S)≤ z∗.
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Proof of Lemma 2. We establish the claim by showing that for any assortment S ⊆ [n], product ℓ∈ S̃ \S,
and m ∈ [n]0, we have Rm(S+ℓ) ≥Rm(S). Consequently, the expected revenue R(S) of any assortment S

can only improve by adding any product from S̃ \ S, meaning in particular that any maximum-cardinality

optimal assortment necessarily contains S̃.

We prove this result via induction over m, noting that the base case of m= 0 trivially holds. In the general

case of m≥ 1, by applying Claim 4 to express Rm(S+ℓ), we get

Rm(S+ℓ) =
∑
i∈S

wi

1+w(S+ℓ)
· (ri +Rm−1(S+ℓ−i))+

wℓ

1+w(S+ℓ)
· (rℓ +Rm−1(S))

≥
∑
i∈S

wi

1+w(S+ℓ)
· (ri +Rm−1(S−i))+

wℓ

1+w(S+ℓ)
· (rℓ +Rm−1(S))

=

(
1− wℓ

1+w(S+ℓ)

)
·
∑
i∈S

(
wi

1+w(S)
· (ri +Rm−1(S−i))

)
+

wℓ

1+w(S+ℓ)
· (rℓ +Rm−1(S))

=

(
1− wℓ

1+w(S+ℓ)

)
·Rm(S)+

wℓ

1+w(S+ℓ)
· (rℓ +Rm−1(S))

= Rm(S)+
wℓ

1+w(S+ℓ)
· (rℓ +Rm−1(S)−Rm(S))

≥ Rm(S) .

Here, the first inequality holds sinceRm−1(S+ℓ−i)≥Rm−1(S−i) by the induction hypothesis, while the second

equality follows by noting that wi

1+w(S+ℓ)
= wi

1+w(S)
· (1− wℓ

1+w(S+ℓ)
). The third equality is again implied by

Claim 4. The last inequality follows by observing that Rm(S)−Rm−1(S)≤ z∗, due to Claim 5, and by noting

that rℓ ≥ z∗, since ℓ∈ S̃ = {i∈ [n] : ri ≥ z∗}.
Proof of Lemma 3. We prove the claim by showing that Rm(S)≤mz∗ for any assortment S ⊆ [n] and

m∈ [n]0, via induction over m. Given this bound, we immediately get

R (S∗) =
∑

m∈[n]

Pr [M =m] ·Rm (S∗)

≤ z∗ ·
∑

m∈[n]

Pr [M =m] ·m

≤ E [M ] ·R(S̃) ,

where the last inequality holds since Rm(S) is decreasing in m, and therefore

R(S̃) =
∑

m∈[n]

Pr [M =m] ·Rm(S̃)≥R1(S̃) = z∗ .

To argue that Rm(S) ≤mz∗ for any assortment S ⊆ [n], first note that the base case of m = 0 trivially

holds. For the general case of m≥ 1, by Claim 4 we have

Rm(S) =
∑
i∈S

wi

1+w(S)
· (ri +Rm−1(S−i))

≤ R1(S)+ (m− 1) · z∗ ·
∑
i∈S

wi

1+w(S)

≤ z∗ +(m− 1) · z∗ ·
∑
i∈S

wi

1+w(S)

≤ mz∗ ,
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where the first inequality holds since Rm−1(S−i)≤ (m− 1) · z∗ by the induction hypothesis, and the second

inequality follows by noting that R1(S)≤R1(S̃) = z∗.

B.2. Proof of Lemma 4

At a high level, our proof begins by describing a way to partition the products offered by the optimal

assortment S∗ into O(logn) groups, based on their contribution to the overall expected number of products

purchased under S∗. For each such group, we will argue that there exists a revenue-ordered assortment that

garners at least half of the group’s revenue, thus directly yielding the desired performance guarantee.

Notation. We assume throughout this section that the underlying products are indexed in non-increasing

order of revenue, i.e, r1 ≥ · · · ≥ rn. For each product i ∈ S∗, let S∗
≥i = {ℓ ∈ S∗ : ℓ≥ i} be the set of products

included in the optimal assortment whose index is lower-bounded by i, noting that their revenue is upper-

bounded by ri. Moreover, for any assortment S ⊆ [n], let D(S) =
∑

i∈S
π(i, S) denote its expected total

demand, or put differently, the expected number of products purchased when offering the assortment S.

Partitioning of S∗. Our method for partitioning S∗ into O(logn) groups is carried out via the following

iterative procedure. Let i1 =max{i ∈ S∗ :D(S∗
≥i)≥ 1

2
· D(S∗)}, and define the first group to be G1 = S∗

≥i1
.

From here, for q ≥ 2, we let iq = max{i ∈ S∗ : D(S∗
≥iq

\ S∗
≥iq−1

) ≥ 1
2
· D(S∗ \ S∗

≥iq−1
)}, and define the q-th

group as Gq = S∗
≥iq

\ S∗
≥iq−1

; these definitions are applied as long as D(S∗ \ S∗
≥iq−1

)≥ 1
2n
. Upon reaching a

stage q where D(S∗ \ S∗
≥iq−1

) < 1
2n
, we conclude our partition by setting Gq = S∗ \ S∗

≥iq−1
. Assuming that

the resulting groups are G1, . . . ,GQ, it is easy to see that they form a partition of the optimal assortment

S∗. Furthermore, we have Q=O(logn), since initially D(S∗)≤ n, and in each stage we halve the remaining

expected demand up until the remaining products in S∗ yield fewer than 1
2n

expected purchases.

Completing the proof. Since our expected revenue function R(·) is subadditive, we have

R(S∗)≤
∑
q∈[Q]

R(Gq)≤Q ·max
q∈[Q]

R(Gq) =O(logn) ·max
q∈[Q]

R(Gq) .

Consequently, to show that revenue-ordered assortments can garner an Ω( 1
logn

)-factor of the optimal expected

revenue R(S∗), it suffices to prove the following claim, showing that for any group Gq, the most profitable

revenue-ordered assortment S∗
ro attains an expected revenue of Ω(1) ·R(Gq).

Claim 6. R(S∗
ro)≥ 1

2
·R(Gq), for any q ∈ [Q].

Proof. For any given q ∈ [Q], we construct a revenue-ordered assortment Sq, whose expected revenue

satisfiesR(Sq)≥ 1
2
·R(Gq). SinceR(S∗

ro)≥maxq∈[Q]R(Sq) by definition, this completes the proof. We proceed

by considering two cases, depending on the value of q.

• Case 1: q ∈ [Q− 1]. In this case, we set Sq = [iq], which is clearly a revenue-ordered assortment, due to

our initial assumption that r1 ≥ · · · ≥ rn. The expected revenue of this assortment can be related to that of

Gq by observing that

R(Sq) ≥ riq · D(Sq)

≥ 1

2
· riq · D(S∗ \S∗

≥iq−1
)

≥ 1

2
· riq · D(Gq)

≥ 1

2
·R(Gq).
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Here, the first and last inequalities follow by noting that product iq has the smallest revenue within Sq and

the largest revenue within Gq. The second inequality holds since D(Sq)≥ 1
2
· D(S∗ \S∗

≥iq−1
), by definition of

iq, whereas the third inequality is obtained by noting that Gq ⊆ S∗ \S∗
≥iq−1

.

• Case 2: q=Q. In this case, we set SQ = S̃, which is precisely the optimal (single-purchase) MNL-based

assortment, as defined in Property 3.1. In order to relate between the expected revenues of SQ and GQ, we

begin by establishing the following upper bound on R(GQ):

R(GQ) =
∑

m∈[n]

Pr [M =m] ·Rm(GQ)

≤ Rn(GQ)

≤
∑
i∈GQ

Rn({i})

=
∑
i∈GQ

riwi

1+wi

≤
∑
i∈GQ

riwi, (10)

where the first inequality holds since Rn(S)≥Rm(S) for any assortment S and m≤ n. On the other hand,

we observe that

R(S̃) ≥ R1(S̃)

≥ R1(GQ)

=
∑
i∈GQ

riwi

1+w(GQ)

≥ 1

2
·
∑
i∈GQ

riwi

≥ 1

2
·R(GQ).

Here, the second inequality follows by definition of S̃, while the last inequality is exactly (10). To obtain the

third inequality, note that we must have w(GQ)≤ 1
n
, since otherwise,

D(GQ)≥
∑
i∈GQ

π1(i,GQ) =
w(GQ)

1+w(GQ)
>

1/n

1+1/n
≥ 1

2n
,

which contradicts the definition of the final group GQ.

B.3. Proof of Claim 4

To establish this claim, we observe that

Rm(S) =
∑
i∈S

ri ·πm (i, S)

=
∑
i∈S

ri ·

 wi

1+w(S)
+
∑

j∈S−i

wj

1+w(S)
·πm−1 (i, S−j)


=
∑
i∈S

ri ·
wi

1+w(S)
+
∑
j∈S

wj

1+w(S)
·

∑
i∈S−j

ri ·πm−1 (i, S−j)
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=
∑
i∈S

ri ·
wi

1+w(S)
+
∑
j∈S

wj

1+w(S)
·Rm−1(S−j)

=
∑
i∈S

wi

1+w(S)
· (ri +Rm−1 (S−i)) ,

where the second equality follows from Lemma 1.

B.4. Proof of Claim 5

We prove the required bound by induction over m. For m= 1 and for an arbitrary assortment S ⊆ [n], we

have R1(S)−R0(S) =R1(S)≤ z∗, where the last inequality follows since z∗, as defined in Property 3.1, can

be equivalently represented as maxS⊆[n]R1(S). Next, for m≥ 2 and for an arbitrary assortment S ⊆ [n],

Rm(S)−Rm−1(S) =
∑
i∈S

wi

1+w(S)
· (Rm−1(S−i)−Rm−2(S−i))

≤
∑
i∈S

wi

1+w(S)
· z∗

≤ z∗,

where the equality above is obtained by applying Claim 4, and the first inequality follows from the induction

hypothesis.

Appendix C: Proofs from Section 4

C.1. Proof of Claim 1

To obtain a lower bound on πm(i, S−j), note that, by conditioning on the random utility of product ℓ, we

have

πm(i, S−j) =

∫
R
Pr [[rank(i, S−j)≤m]∧ [Ui >U0] |Uℓ = x]dFUℓ

(x)

=

∫
R
Pr [[rank(i, S−ℓ)≤m]∧ [Ui >U0] |Uj = x]dFUℓ

(x)

≥
∫
R
Pr [[rank(i, S−ℓ)≤m]∧ [Ui >U0] |Uj = x]dFUj

(x)

= πm(i, S−ℓ),

where the inequality hold since Uj ⪰st Uℓ, along with the fact that Pr[[rank(i, S−ℓ)≤m]∧ [Ui >U0] |Uj = x]

is decreasing in x.

C.2. Proof of Claim 2

To prove the desired lower bound, we observe that

w(Q∩L) = w(S ∩L)−w((S \Q)∩L)

≥ W

(1+ δ)2
− |(S \Q)∩L| ·max

i∈L
wi

≥ W

(1+ δ)2
− (|S \Q| − |H∗ \Q|) · w(H

∗ ∩Q)

|H∗ ∩Q|

≥ W

(1+ δ)2
− (mmax − |H∗ \Q|) · w(H

∗ ∩Q)

|H∗ ∩Q|

=
W

(1+ δ)2
− mmax − |H∗ \Q|

|H∗| − |H∗ \Q|
·w(H∗ ∩Q)
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≥ W

(1+ δ)2
− mmax

|H∗|
·w(H∗ ∩Q)

=
W

(1+ δ)2
− δ ·w(H∗ ∩Q) .

Here, the first inequality holds since w(S∩L)≥ W
(1+δ)2

, as S ∈F . The second inequality is obtained by noting

that the weight of any light product is upper bounded by the weight of any product in H∗ \Q, and therefore,

also by the average weight of these products. The third inequality follows by recalling that |S \Q| ≤mmax.

Finally, the last equality holds since |H∗|=N =
6m2

max

ϵ
and δ= ϵ

6mmax
.

C.3. Proof of Claim 3: Lower bound

Again, the base case of m= 0 trivially holds, and we proceed to consider the general case of m≥ 1 by relating

the three parts of (7) and (4).

Part (i). First, note that

w (Q) = w(L∩Q)+w(H∗ ∩Q)

≥ W

(1+ δ)2
+(1− δ) ·w(H)

≥ 1

(1+ δ)3
· ((1+ δ) ·W +w(H)) ,

where the first inequality follows from Claim 2. Therefore, we have

1

1+ (1+ δ) ·W +w(H)︸ ︷︷ ︸
part (i) of (4)

≥ (1− δ)
3 · 1

1+w(Q)
. (11)

Part (ii). In this case, a direct application of the induction hypothesis yields V (i,m − 1,H) ≥ (1 −

δ)6(m−1) ·πm−1(i,Q−ℓ) for any product ℓ∈L∩Q−i. As such, we have

wi +

[
W

(1+ δ)2
− δ ·w (H−i)

]+
·V (i,m− 1,H)︸ ︷︷ ︸

part (ii) of (4)

≥wi +(1− δ)
6(m−1) ·

[
W

(1+ δ)2
− δ ·w (H−i)

]+
· max
ℓ∈L∩Q−i

πm−1 (i,Q−ℓ)

≥wi +(1− δ)
6(m−1) ·

(
W

(1+ δ)2
· max
ℓ∈L∩Q−i

πm−1 (i,Q−ℓ)− δ ·w (H−i) · max
ℓ∈L∩Q−i

πm−1 (i,Q−ℓ)

)

≥wi +(1− δ)
6(m−1) ·

 1

(1+ δ)3
·
∑

ℓ∈L∩Q−i

wℓ ·πm−1(i,Q−ℓ)− δ ·w (H−i) · max
ℓ∈L∩Q−i

πm−1 (i,Q−ℓ)


≥ (1− δ)

6(m−1) ·

wi +
1

(1+ δ)3
·
∑

ℓ∈L∩Q−i

wℓ ·πm−1(i,Q−ℓ)− δ ·
∑

j∈H∗∩Q−i

wj ·πm−1(i,Q−j)

 . (12)

Here, the third inequality holds since∑
ℓ∈L∩Q−i

wℓ ·πm−1(i,Q−ℓ) ≤ w(L∩Q−i) · max
ℓ∈L∩Q−i

πm−1(i,Q−ℓ)

≤ w(L∩S) · max
ℓ∈L∩Q−i

πm−1(i,Q−ℓ)

≤ (1+ δ) ·W · max
ℓ∈L∩Q−i

πm−1(i,Q−ℓ) .



Bai, Feldman, Segev, Topaloglu, Wagner: The Multi-Purchase Multinomial Logit Model
42 Article submitted to ; manuscript no.

On the other hand, the fourth inequality is obtained by noting that

w (H−i) · max
ℓ∈L∩Q−i

πm−1 (i,Q−ℓ) =

 ∑
j∈H∗∩Q−i

wj

 · max
ℓ∈L∩Q−i

πm−1 (i,Q−ℓ)

≤
∑

j∈H∗∩Q−i

wj ·πm−1(i,Q−j) ,

where the latter inequality holds since wj ≥ wℓ for any pair of products j ∈ H and ℓ ∈ L, implying that

πm−1(i,Q−j)≥maxℓ∈L∩Q−i
πm−1(i,Q−ℓ) by Claim 1.

Part (iii). Again, a direct application of the induction hypothesis yields V (i,m−1,H−j)≥ (1−δ)6(m−1) ·
πm−1(i,Q−j) for any product j ∈H−i. Consequently,∑

j∈H−i

wj ·V (i,m− 1,H−j)︸ ︷︷ ︸
part (iii) of (4)

≥ (1− δ)
6(m−1) ·

∑
j∈H∗∩Q−i

wj ·πm−1 (i,Q−j) . (13)

Putting things together. We are now ready to conclude our analysis by combining parts (i), (ii), and (iii).

Specifically, taking the lower bounds provided in (11), (12), and (13) yields

V (i,m,H) ≥ (1− δ)
6m−3 · 1

1+w(Q)

·

wi +
1

(1+ δ)3
·
∑

ℓ∈L∩Q−i

wℓ ·πm−1(i,Q−ℓ)+ (1− δ) ·
∑

j∈H∗∩Q−i

wj ·πm−1(i,Q−j)


≥ (1− δ)

6m ·π(i,Q) .

Appendix D: Proofs from Section 5

D.1. Proof of Lemma 6

In order to prove that π⟨w↓i⟩(i, S)≥ (1− ϵ) ·π⟨w⟩(i, S), we show that π⟨w↓i⟩
m (i, S)≥ (1− ϵ) ·π⟨w⟩

m (i, S) for all m

by induction. The base case of m= 0 trivially holds with equality. Now, for m≥ 1, by Claim 1 we have

π⟨w↓i⟩
m (i, S) =

w↓i
i

1+w↓i
i +w(S−i)

+
∑

j∈S−i

wj

1+w↓i
i +w(S−i)

·π⟨w↓i⟩
m−1 (i, S−j)

≥ (1− ϵ) · wi

1+wi +w(S−i)
+
∑

j∈S−i

wj

1+wi +w(S−i)
·π⟨w↓i⟩

m−1 (i, S−j)

≥ (1− ϵ) · wi

1+wi +w(S−i)
+ (1− ϵ) ·

∑
j∈S−i

wj

1+wi +w(S−i)
·π⟨w⟩

m−1(i, S−j)

= (1− ϵ) ·π⟨w⟩
m (i, S) ,

where the first inequality holds since w↓i
i ∈ [(1−ϵ) ·wi,wi] and the second inequality follows from the induction

assumption.

To prove that π⟨w↓i⟩(j,S) ≥ π⟨w⟩(j,S), for every product j ̸= i, it suffices to show that π⟨w↓i⟩
m (j,S) ≥

π⟨w⟩
m (j,S) for all m. To this end, let us consider the assortment S+ = S ∪ {i+}, where i+ is an auxiliary

product with preference weight w↓i
i . Given this definition, for every product j ̸= i we have

π⟨w⟩
m (j,S) = π⟨w⟩

m

(
j,S+

−i+

)
≤ π⟨w⟩

m

(
j,S+

−i

)
= π⟨w↓i⟩

m (j,S) ,
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where the inequality above follows from instantiating Claim 1 with respect to the assortment S+ and the

pair of products i ̸= i+, noting that we indeed have wi ≥w↓i
i .

D.2. Proof of Lemma 7

First, we show that R⟨w↓⟩(S)≥ (1− ϵ) · R⟨w⟩(S). To this end, the important observation is that the initial

weight vector w can be transformed into w↓ in n sequential steps, where in each step i, the preference

weight of wi is rounded down to w↓
i , the nearest power of 1 + ϵ. With this view, repeated applications of

Lemma 6 imply that π⟨w↓⟩(i, S)≥ (1− ϵ) ·π⟨w⟩(i, S) for every product i∈ S. This lower bound on the choice

probabilities yields the desired inequality, R⟨w↓⟩(S)≥ (1− ϵ) ·R⟨w⟩(S).

Next, we show that R⟨w↓⟩(S)≤ (1+2ϵ) ·R⟨w⟩(S). For this purpose, let w↓↓ be the weight vector obtained

from w↓ by rounding down the no-purchase weight, now taking a value of 1
1+ϵ

instead of 1. This alteration

can only increase the choice probability of any product i∈ S, since for all m∈ [n],

πm(i, S) = Pr [[rank(i, S)≤m]∧ [Ui >U0]]

= Pr [rank(i, S)≤m] ·Pr [U0 <Ui|rank(i, S)≤m] ,

where Pr[rank(i, S)≤m] is unrelated to the no-purchase weight, and Pr[U0 <Ui|rank(i, S)≤m] is decreasing

in w0. As a result, we have R⟨w↓↓⟩(S)≥R⟨w↓⟩(S). Now let w↑ = (1+ ϵ) ·w↓↓ be the weight vector that results

from scaling up each coordinate of w↓↓ by a factor of 1+ϵ. It is easy to see that, similarly to the standard MNL

model, the choice probabilities under the MP-MNL model are scale-invariant, meaning that π⟨w↑⟩(i, S) =

π⟨w↓↓⟩(i, S) for any product i ∈ S. In turn, we have R⟨w↑⟩(S) =R⟨w↓↓⟩(S)≥R⟨w↓⟩(S), and to conclude the

proof, it suffices to show that R⟨w⟩(S)≥ 1
1+2ϵ

·R⟨w↑⟩(S). However, noting that wi ∈ [(1− ϵ) ·w↑
i ,w

↑
i ] for every

i ∈ S, our previous argument for the revenue effect of rounding down weights can be reapplied, to obtain

R⟨w⟩(S)≥ (1− ϵ) ·R⟨w↑⟩(S)≥ 1
1+2ϵ

·R⟨w↑⟩(S) for ϵ∈ (0,1/2).

D.3. Proof of Lemma 8

Let S∗ be an optimal assortment. Suppose that there is some weight class q̂ ∈ [Q]0 that violates the price-

ordered structure given in the lemma’s statement, meaning that S∗ ∩Wq̂ ̸=Wq̂[|S∗ ∩Wq̂|]. Let us define a

new assortment, Ŝ = (S∗ \Wq̂)∪Wq̂[|S∗ ∩Wq̂|], which is identical to S∗ over all classes except for q̂; in the

latter, S∗∩Wq̂ is swapped for Wq̂[|S∗∩Wq̂|]. We proceed by showing that Ŝ must be an optimal assortment

as well. For this purpose, note that by symmetry, π(i1, S
∗) = π(i2, Ŝ) for any pair of products i1 ∈ S∗ ∩Wq

and i2 ∈ Ŝ ∩Wq, for every q ∈ [Q]0. Therefore, letting π∗
q̂ stand for the latter choice probability with respect

to Wq̂, we have

R(Ŝ) =
∑

q∈[Q]0:q ̸=q̂

∑
i∈Ŝ∩Wq

ri ·π(i, Ŝ)+
∑

i∈Ŝ∩Wq̂

ri ·π(i, Ŝ)

=
∑

q∈[Q]0:q ̸=q̂

∑
i∈S∗∩Wq

ri ·π(i, S∗)+π∗
q̂ ·

∑
i∈Ŝ∩Wq̂

ri

≥
∑

q∈[Q]0:q ̸=q̂

∑
i∈S∗∩Wq

ri ·π(i, S∗)+π∗
q̂ ·

∑
i∈S∗∩Wq̂

ri

=
∑

q∈[Q]0:q ̸=q̂

∑
i∈S∗∩Wq

ri ·π(i, S∗)+
∑

i∈S∗∩Wq̂

ri ·π(i, S∗)

= R(S∗) .
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The inequality above holds since
∑

i∈S∗∩Wq
ri ≤

∑
i∈Wq̂[|S∗∩Wq̂|]

ri, as Wq̂[|S∗∩Wq̂|] is precisely the collection

of |S∗∩Wq̂| highest priced items in weight class Wq̂. Repeating this swapping argument for all weight classes

that violate the price-ordered property eventually produces an optimal assortment that satisfies the lemma’s

statement.

D.4. Proof of Lemma 9

We first argue that the assortment S̃ =
⋃

q≥qmin
Wq[k̃q] is necessarily a subset of the optimal assortment

S∗. For this purpose, since S∗ satisfies Lemma 8, we know in particular that S∗ ∩Wq =Wq[k
∗
q ] for every

q≥ qmin, and it remains to explain why k̃q ≤ k∗
q . To this end, by the way k̃q is chosen, it suffices to show that∑

i∈Wq[k∗
q ]
ri ≥ R̃q

π̃q
, which is indeed the case since

π̃q ·
∑

i∈Wq[k∗
q ]

ri ≥ π∗
q ·

∑
i∈Wq[k∗

q ]

ri

=
∑

i∈S∗∩Wq

ri ·π(i, S∗)

= Rq(S
∗)

≥ R̃q ,

where the first and second inequalities hold since π̃q ≥ π∗
q and R̃q ≤Rq(S

∗), respectively.

Given this relation, to establish the desired revenue guarantee, note that

R(S̃) =
∑

q≥qmin

∑
i∈Wq[k̃q]

ri ·π(i, S̃)

≥
∑

q≥qmin

∑
i∈Wq[k̃q]

ri ·π(i, S∗)

=
∑

q≥qmin

π∗
q ·

∑
i∈Wq[k̃q]

ri


≥

∑
q≥qmin

π∗
q ·

R̃q

π̃q

≥ (1− ϵ) ·
∑

q≥qmin

R̃q .

Here, the first inequality holds since S̃ ⊆ S∗, as explained above. The second inequality follows by recalling

that k̃q was chosen to satisfy
∑

i∈Wq[k̃q]
ri ≥ R̃q

π̃q
. The third inequality is obtained by noting that π̃q ≤ (1+ϵ) ·π∗

q .

Consequently, we can now relate between the expected revenues of S̃ and S∗ by observing that

R(S̃) ≥ (1− ϵ) ·
∑

q≥qmin

(
Rq(S

∗)− ϵ

Q+1
· ÕPT

)
≥ (1− ϵ) ·

∑
q∈[Q]0

Rq(S
∗)−

∑
q<qmin

Rq(S
∗)− ϵ · ÕPT

≥ (1− 2ϵ) ·R(S∗)−
∑

q<qmin

π∗
q ·

∑
i∈S∗∩Wq

ri


≥ (1− 2ϵ) ·R(S∗)− ϵ

n
·
∑

q<qmin

∑
i∈S∗∩Wq

(
Pr[M > 0] · wmin

1+wmin

· ri
)
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≥ (1− 2ϵ) ·R(S∗)− ϵ · |S
∗|
n

·R(S∗)

≥ (1− 3ϵ) ·R(S∗) .

Here, the first inequality holds since R̃q ≥Rq(S
∗)− ϵ

Q+1
· ÕPT. The third inequality follows by noting that

ÕPT≤R(S∗). To obtain the fourth inequality, we recall that π∗
q <

ϵ
n
·Pr[M > 0] · wmin

1+wmin
for every q < qmin,

by definition of qmin. Finally, the fifth inequality holds since, due to the optimality of S∗,

R(S∗)≥R({i}) = Pr[M > 0] · wi

1+wi

· ri ≥Pr[M > 0] · wmin

1+wmin

· ri .

D.5. Proof of Lemma 10

Focusing on a single product i∈ S, we first observe that for any given m∈ [n],

πm(i, S) = Pr [[Ui >U0]∧ [rank(i, S)≤m]]

= Pr [Ui >U0] ·Pr [rank(i, S)≤m|Ui >U0]

=
wi

1+wi

·Pr [rank(i, S)≤m|Ui >U0] .

Therefore, by definition of π̃m(i, S), we have

Pr

[
|π̃m(i, S)−πm(i, S)| ≥ ϵ

n
· wi

1+wi

]

=Pr

∣∣∣∣∣∣ 1N ·
∑
ν∈[N]

1[ρν ≤m]−Pr [rank(i, S)≤m|Ui >U0]

∣∣∣∣∣∣≥ ϵ

n


≤ 2exp

(
−2Nϵ2

n2

)
≤ δ

n2
.

Here, the first inequality follows from Hoeffding’s inequality (1963), noting that the indicators {1[ρν ≤

m]}ν∈[N] are independent, each with an expected value of Pr[rank(i, S)≤m|Ui >U0]. The second inequality

is obtained by plugging in N = ⌈ n2

2ϵ2
· ln( 2n2

δ
)⌉.

Now, a simple application of the union bound implies that, with probability at least 1 − δ, we have

|π̃m(i, S)−πm(i, S)| ≤ ϵ
n
· wi

1+wi
simultaneously for all i∈ S and m∈ [n]. When this event occurs,

∣∣∣R̃(S)−R(S)
∣∣∣ =

∣∣∣∣∣∣
∑
i∈S

ri ·
∑

m∈[n]

Pr [M =m] · (π̃m(i, S)−πm(i, S))

∣∣∣∣∣∣
≤
∑
i∈S

ri ·
∑

m∈[n]

Pr [M =m] · |π̃m(i, S)−πm(i, S)|


≤ ϵ

n
·
∑
i∈S

Pr [M ≥ 1] · riwi

1+wi

≤ ϵ ·R(S∗) ,

where the third inequality holds since R(S∗)≥Pr[M ≥ 1] · riwi

1+wi
for every product i∈ [n].
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Appendix E: PTAS for General Instances

This section is dedicated to devising a polynomial-time approximation scheme for arbitrarily-structured

instances, whose specific guarantees were stated in Theorem 2. At least intuitively, our approach begins

by decomposing any given instance into a sequence of so-called clusters, each with a polynomially-bounded

wmax

wmin
ratio, such that there are large gaps between the product weights of successive clusters. These gaps

allow us to establish a position-reservation lemma, capturing the notion that products offered in “heavier”

clusters almost always outrank those in “lighter” clusters. With the latter result in place, we argue that

the assortment optimization problems associated with various clusters become independent, once they are

suitably linked through cardinality constraints on the number of offered products.

E.1. Clustering

For simplicity of analysis, we assume without loss of generality that n ≥ 1/ϵ, as in the opposite case, the

approximation scheme of Section 4 clearly forms a PTAS. Now, by rather standard shifting arguments, at

the cost of losing an O(ϵ)-fraction of the optimal revenue, we can assume that the underlying set of products

is partitioned into a sequence of weight clusters C1,C2, . . . that satisfy the next two properties:

1. Intra-cluster ratios: Within each cluster, the weights of any two products differ by a multiplicative

factor of at most n5/ϵ.

2. Inter-cluster gaps: For every t1 < t2, the weight of any product in cluster Ct1 is greater than the weight

of any product in Ct2 by a multiplicative factor of at least n5.

The specifics of this construction are described in Appendix F.1.

Now, letting T be the maximal index of a cluster in which each product has a preference weight of at

least n4, we define the cluster C∞ as the union of CT+1,CT+2, . . .. By property 1, the weight of any product

in C∞ resides within (0, n4+5/ϵ], although the weight ratio between any two products in this cluster may be

arbitrarily large. For convenience, rather than representing an assortment as a single subset of products, we

use a separate notation for the products picked out of each cluster. In other words, an assortment will now

be written as S = (S1, . . . , ST , S∞), where St stands for the collection of products picked from cluster Ct, for

every t∈ [T ]∞.

E.2. The position-reservation lemma

At least intuitively, our motivation for introducing C1, . . . ,CT ,C∞ is that, due to having large inter-clusters

weight gaps, it is highly improbable that any product offered out of a given cluster has a utility larger

than those of products offered out of lower-indexed clusters. Therefore, products of the latter type can be

perceived as blocking the former from attaining a certain range of ranks, leading to a by-cluster problem

decomposition. To formalize this notion, we begin by proving a surprising structural property: With respect

to any assortment S, let σt−1(S) =
∑

τ∈[t−1] |Sτ | be the total number of products offered by S out of clusters

C1, . . . ,Ct−1. We show that the choice probability of any product i ∈ St with respect to S matches, up to

negligible terms, its choice probability when we offer St by itself and eliminate in advance σt−1(S) purchases

from the overall demand. The proof appears in Appendix F.2.
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Lemma 14. Let S = (S1, . . . , ST , S∞). Then, for any t ∈ [T ]∞, any product i ∈ St, and any m ∈ [n], we

have

π[m−σt−1(S)]+(i, St)∈ πm(i, S)± 2

n3
· wi

1+wi

.

As an immediate consequence, letting S∗ be an optimal assortment, we obtain an upper bound on the

optimal expected revenue by decomposing this quantity into proxies for the contributions of different clusters.

This claim is formalized below, with the convention that the random number of maximum purchases in

question will appear as a subscript of the expected revenue function, meaning in particular that RM identifies

with R.

Lemma 15. RM(S∗)≤ (1+4ϵ) ·
∑

t∈[T ]∞
R[M−σt−1(S∗)]+(S

∗
t ).

Proof. By specializing Lemma 14 to S∗, it follows in particular that for every cluster index t ∈ [T ]∞,

product i∈ St, and m∈ [n], we have

πm(i, S∗) ≤ π[m−σt−1(S∗)]+ (i, S∗
t )+

2

n3
· wi

1+wi

≤ π[m−σt−1(S∗)]+ (i, S∗
t )+

2ϵ

n
· wi

1+wi

,

where the second inequality holds since n≥ 1/ϵ. Therefore,

RM (S∗) =
∑

m∈[n]

Pr [M =m] ·
∑

t∈[T ]∞

∑
i∈S∗

t

ri ·πm (i, S∗)

≤
∑

m∈[n]

Pr [M =m] ·
∑

t∈[T ]∞

∑
i∈S∗

t

ri ·
(
π[m−σt−1(S∗)]+ (i, S∗

t )+
2ϵ

n
· wi

1+wi

)
=

∑
t∈[T ]∞

∑
m∈[n]

Pr [M =m] ·R[m−σt−1(S∗)]+ (i, S∗
t )+

2ϵ

n
·
∑

t∈[T ]∞

∑
i∈S∗

t

Pr [M > 0] · riwi

1+wi︸ ︷︷ ︸
≤RM (S∗)

≤
∑

t∈[T ]∞

R[M−σt−1(S∗)]+ (S∗
t )+ 2ϵ ·RM (S∗) ,

and we attain the desired inequality by rearranging the one above. □

E.3. The dynamic program

By inspecting how Lemma 15 decomposes the optimal expected revenue RM(S∗), the crucial property we

exploit is that the individual contribution R[M−σt−1(S∗)]+(S
∗
t ) of each cluster Ct depends on our choices

for all other clusters only through σt−1(S
∗) =

∑
τ∈[t−1] |S∗

τ |. Noting that this dependency involves the total

number of products picked out of lower-indexed clusters and nothing more, we are now ready to tackle the

assortment optimization problem by means of dynamic programming. Specifically, each state (t,Nt) of our

dynamic program consists of the following parameters:

• The current cluster index, t∈ [T ]0,∞.

• An upper bound Nt ∈ [n]0 on the total number of products offered out of clusters C1, . . . ,Ct.

With respect to these states, the value function F (t,Nt) is defined through the recursive equations:

F (t,Nt) = max
Nt−1≤Nt

{
F (t− 1,Nt−1)+OPT

[
t, [M −Nt−1]

+,Nt −Nt−1

]}
. (14)
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Here, OPT[t, [M−Nt−1]
+,Nt−Nt−1] represents the optimal expected revenue for an assortment optimization

instance where the underlying products are those in cluster Ct, with respect to a random demand of [M −

Nt−1]
+, subject to the additional constraint that at most Nt−Nt−1 products can be offered. Terminal states

correspond to t= 0, in which case F (0, ·) = 0. The next claim, whose proof is given in Appendix F.3, identifies

state (∞, n) as the one for which we expect to obtain a near-optimal assortment.

Lemma 16. F (∞, n)≥ (1− 4ϵ) ·RM(S∗).

E.4. The Approximate program

In spite of this characterization, the value function F is defined through the recursive equations (14), which

unfortunately involve the single-cluster term OPT[t, [M −Nt−1]
+,Nt −Nt−1]. Since we are not aware of an

efficient way to compute its exact value, we proceed by explaining how to obtain a (1 − ϵ)-approximate

counterpart APX[t, [M −Nt−1]
+,Nt −Nt−1]. For every t∈ [T ]∞, the latter will satisfy

APX
[
t, [M −Nt−1]

+,Nt −Nt−1

]
≥ (1− ϵ) ·OPT

[
t, [M −Nt−1]

+,Nt −Nt−1

]
, (15)

with probability at least 1/2. To this end, we distinguish between two cases, depending on the cluster in

question:

• Case 1: t≤ T . In this case, property 1 of our clusters (see Appendix E.1) ensures that the weights of

any two products in cluster Ct differ by a multiplicative factor of at most n5/ϵ. Therefore, the randomized

approximation scheme we propose in Section 5.1 constitutes an O(nO(1/ϵ3))-time PTAS for the single-cluster

instance under consideration (see Theorem 3). We remind the reader that this approach works even subject to

a cardinality constraint on the offered assortment, ensuring that we indeed pick at most Nt−Nt−1 products.

• Case 2: t=∞. As mentioned earlier, while the weight of any product in C∞ resides within (0, n4+5/ϵ],

the weight ratio between any two products in this cluster may be arbitrarily large. However, when evaluating

the value function at its final state (∞, n), we are clearly operating without a cardinality constraint. In

Appendix F.4, we explain how to derive a randomized O(nO(1/ϵ3))-time PTAS for these particular circum-

stances, by extending the basic approach of Section 5.1.

Now, by plugging this single-cluster approximation into the recursive equations (14), we have just formu-

lated an approximate dynamic program FAPX over precisely the same set of states, given by

FAPX(t,Nt) = max
Nt−1≤Nt

{
FAPX(t− 1,Nt−1)+APX

[
t, [M −Nt−1]

+,Nt −Nt−1

]}
.

As a side note, since our single-cluster procedure APX is successful with probability at least 1/2, its failure

probability can be shrunk to 1
2n3 via O(logn) independent repetitions. With this observation, a simple

application of the union bound (over at most n3 calls to APX) implies that, with probability at least 1/2,

the approximation guarantee in (15) holds throughout the recursive evaluation of FAPX(∞, n).

E.5. Analysis

Approximation guarantee. Letting SDP = (SDP
1 , . . . , SDP

T , SDP
∞ ) be the resulting assortment, we conclude

our analysis by arguing that its expected revenue RM(SDP) nearly matches the optimal revenue RM(S∗).

Lemma 17. RM(SDP)≥ (1− 7ϵ) ·RM(S∗).
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Proof. By specializing Lemma 14 to SDP, it follows in particular that for every cluster index t ∈ [T ]∞,

product i∈ SDP
t , and m∈ [n], we have

πm

(
i, SDP

)
≥ π[m−σt−1(SDP)]+

(
i, SDP

t

)
− 2

n3
· wi

1+wi

≥ π[m−σt−1(SDP)]+
(
i, SDP

t

)
− 2ϵ

n
· wi

1+wi

,

where the second inequality holds since n ≥ 1/ϵ. Therefore, the expected revenue RM(SDP) can be lower

bounded in terms of RM(S∗) by noting that

RM

(
SDP

)
=
∑

m∈[n]

Pr [M =m] ·
∑

t∈[T ]∞

∑
i∈SDP

t

ri ·πm

(
i, SDP

)
≥
∑

m∈[n]

Pr [M =m] ·
∑

t∈[T ]∞

∑
i∈SDP

t

ri ·
(
π[m−σt−1(SDP)]+

(
i, SDP

t

)
− 2ϵ

n
· wi

1+wi

)
=

∑
t∈[T ]∞

∑
m∈[n]

Pr [M =m] ·R[m−σt−1(SDP)]+
(
SDP

t

)
− 2ϵ

n
·
∑

t∈[T ]∞

∑
i∈SDP

t

Pr [M > 0] · riwi

1+wi︸ ︷︷ ︸
≤RM (S∗)

≥
∑

t∈[T ]∞

R[M−σt−1(SDP)]+
(
SDP

t

)
− 2ϵ ·RM (S∗)

= FAPX(∞, n)− 2ϵ ·RM (S∗)

≥ (1− ϵ) ·F (∞, n)− 2ϵ ·RM (S∗)

≥ (1− 7ϵ) ·RM(S∗) ,

where the last inequality follows from Lemma 16. □

Running time. We first observe that, as explained in Appendices E.1 and F.1, the sequence of clusters

C1,C2, . . . can easily be constructed in polynomial time. Given these clusters, our approximate dynamic

program FAPX has only O(n2) states to consider, where each such state is evaluated via its recursive equations

in O(nO(1/ϵ3)) time. Consequently, the overall running time of our approximation scheme is O(nO(1/ϵ3)),

precisely as stated in Theorem 2.

Appendix F: Proofs from Appendix E

F.1. Constructing the clusters C1,C2, . . .

Construction. Our clustering method begins by partitioning the entire collection products into “intervals”

I1, I2, . . ., based on geometrically-increasing preference weights, by powers of n5

ϵ
. Specifically, recalling that

wmax =maxi∈[n]wi and wmin =mini∈[n]wi, we define:

I1 =
{
i∈ [n] :wi ∈

( ϵ

n5
·wmax,wmax

]}
, I2 =

{
i∈ [n] :wi ∈

(( ϵ

n5

)2
·wmax,

ϵ

n5
·wmax

]}
,

so on and so forth, where in general

Iℓ =

{
i∈ [n] :wi ∈

(( ϵ

n5

)ℓ

·wmax,
( ϵ

n5

)ℓ−1

·wmax

]}
.

Now, assuming without loss of generality that 1/ϵ is an integer, let χ ∼ U{0,1, . . . , 1
ϵ
− 1} be a discrete

uniform random variable. With respect to χ, we say that an interval Iℓ is “dropped” when (ℓ mod 1
ϵ
) = χ;

otherwise, this interval is “undropped”. We denote by Cχ
1 the set of products belonging to (undropped)

intervals that are indexed lower than the first dropped interval (i.e., I1, . . . , Iχ−1). Then, Cχ
2 is the set of

products belonging to (undropped) intervals that are indexed between the first and second dropped intervals

(i.e., Iχ+1, . . . , Iχ+ 1
ϵ
−1), so on and so forth.
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Analysis. It is easy to verify that, for any possible realization of χ, its corresponding sequence of clusters

Cχ
1 ,C

χ
2 , . . . satisfies the two structural properties mentioned in Appendix E.1, namely, intra-cluster ratios

and inter-cluster gaps, both with room to spare. Moreover, we argue that a negligible amount of revenue is

lost in expectation, when unclustered products are ignored. To formalize this argument, recalling that S∗

stands for a fixed optimal assortment, let us define S∗χ as its subset of clustered products, meaning that

S∗χ = S∗ ∩ (
⋃

t≥1 C
χ
t ). The next lemma shows that, by offering the latter assortment, only an O(ϵ)-fraction

of the optimal revenue is lost in expectation, where the latter is taken over the randomness in choosing χ.

Lemma 18. Eχ[R(S∗χ)]≥ (1− ϵ) ·R(S∗).

Proof. For every product i∈ S∗, let I(i) be the unique interval to which i belongs. Then, by definition of

S∗χ, we have

Eχ [R(S∗χ)] =
∑
i∈S∗

ri ·Eχ [π(i, S
∗χ)]

=
∑
i∈S∗

ri ·Prχ
[
I(i) is undropped

]
·Eχ

[
π(i, S∗χ)| I(i) is undropped

]
≥ (1− ϵ) ·

∑
i∈S∗

ri ·π(i, S∗)

= (1− ϵ) ·R(S∗) .

The inequality above holds since any interval is undropped with probability 1− ϵ. In addition, for every

product i∈ S∗, when its corresponding interval I(i) is undropped, we have π(i, S
∗χ)≥ π(i, S∗), since S∗χ ⊆ S∗

with probability 1. □

F.2. Proof of Lemma 14

We divide our analysis into two cases, depending on the relation between m and σt−1(S).

Case 1: m≤ σt−1(S). In this case, we clearly have π[m−σt−1(S)]+(i, St) = 0. However,

πm (i, S) = πm (i, (S1, . . . , S∞))

≤ πm (i, (S1, . . . , St−1,{i},∅, . . . ,∅))

≤ Pr

 ⊎
τ∈[t−1]

⊎
j∈Sτ

[Ui >Uj ]

 (16)

≤
∑

τ∈[t−1]

∑
j∈Sτ

wi

wi +wj

≤ 2

n3
· wi

1+wi

. (17)

Here, inequality (16) holds since at least one of the sets S1, . . . , St−1 is non-empty, as
∑

τ∈[t−1] |Sτ |= σt−1(S)≥
m≥ 1. To derive inequality (17), we consider two cases:

• When wi ≥ 1: Recalling that, by property 2, the weight gap between successive clusters is at least n5, it

follows that wj ≥ n5 ·wi for every product j ∈
⊎

τ∈[t−1] Sτ . Therefore,
wi

wi+wj
≤ 1

n5 ≤ 2
n5 · wi

1+wi
, where the last

inequality holds since wi ≥ 1.

• When wi < 1: By definition of T , since wi < 1, product i necessarily belongs to cluster C∞ (i.e., t=∞).

As a result, wj ≥ n4 for every product j ∈
⊎

τ∈[t−1] Sτ , again by definition of T . Thus, wi

wi+wj
≤ wi

n4 ≤ 2
n4 · wi

1+wi
,

where the last inequality holds since wi < 1.
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Case 2: m>σt−1(S). Here, we derive one direction by noting that

πm (i, S) ≤ πm (i, (S1, . . . , St,∅, . . . ,∅))

= Pr

[Ui >U0]∧

[
rank

(
i,
⊎
τ∈[t]

Sτ

)
≤m

]
= Pr

[Ui >U0]∧

[
rank

(
i,
⊎
τ∈[t]

Sτ

)
≤m

]
∧

⊎
τ∈[t−1]

⊎
j∈Sτ

[Ui >Uj ]


+Pr

[Ui >U0]∧

[
rank

(
i,
⊎
τ∈[t]

Sτ

)
≤m

]
∧

⊎
τ∈[t−1]

⊎
j∈Sτ

[Ui >Uj ]


≤ Pr [[Ui >U0]∧ [rank (i, St)≤m−σt−1(S)]]︸ ︷︷ ︸

πm−σt−1(S)(i,St)

+Pr

 ⊎
τ∈[t−1]

⊎
j∈Sτ

[Ui >Uj ]


︸ ︷︷ ︸

≤ 2
n3 · wi

1+wi
by (17)

≤ πm−σt−1(S) (i, St)+
2

n3
· wi

1+wi

.

Now, in order to derive the second direction, we observe that

πm (i, S) ≥ Pr

[
[Ui >U0]∧ [rank(i, S)≤m]∧

⊎
τ≥t+1

⊎
j∈Sτ

[Uj >Ui]

]

= Pr

[Ui >U0]∧

[
rank

(
i,
⊎
τ∈[t]

Sτ

)
≤m

]
∧
⊎

τ≥t+1

⊎
j∈Sτ

[Uj >Ui]


≥ Pr

[Ui >U0]∧

[
rank

(
i,
⊎
τ∈[t]

Sτ

)
≤m

]−Pr

[ ⊎
τ≥t+1

⊎
j∈Sτ

[Uj >Ui]

]
︸ ︷︷ ︸

≤ 2
n4 · wi

1+wi
(see below)

(18)

≥ Pr [[Ui >U0]∧ [rank(i, St)≤m−σt−1(S)]]−
2

n4
· wi

1+wi

= πm−σt−1(S)(i, St)−
2

n4
· wi

1+wi

.

Here, we obtain an upper bound on the second term in (18) by noting that, when t=∞, this probability is

clearly 0. When t≤ T , due to having a weight gap of at least n5 between successive clusters, it follows that

wi ≥ n5 ·wj for every product j ∈
⊎

τ≥t+1 Sτ . Therefore,

Pr

[ ⊎
τ≥t+1

⊎
j∈Sτ

[Uj >Ui]

]
≤ n · 1

1+n5
≤ 1

n4
≤ 2

n4
· wi

1+wi

,

where the last inequality holds since i ∈ St ⊆ Ct and t≤ T , implying in particular that wi ≥ n4 ≥ 1. As for

the first term in (18), note that in any realization,

rank

(
i,
⊎
τ∈[t]

Sτ

)
≤ rank(i, St)+

∑
τ∈[t−1]

|Sτ |= rank(i, St)+σt−1(S) .
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F.3. Proof of Lemma 16

The important observation is that, given the optimal assortment S∗, the sequence of states and actions

(0,0)
|S∗

1 |−−→ (1, σ1(S
∗))

|S∗
2 |−−→ (2, σ2(S

∗))
|S∗

3 |−−→ · · ·

forms a feasible path to be traversed by our dynamic program. With respect to this sequence, we clearly have

OPT[t, [M − σt−1(S
∗)]+, σt(S

∗)− σt−1(S
∗)] ≥ R[M−σt−1(S∗)]+(S

∗
t ) for every t ∈ [T ]∞, since S∗

t is a feasible

solution to this single-cluster instance. As a result,

F (∞, n) ≥
∑

t∈[T ]∞

OPT
[
t, [M −σt−1(S

∗)]+, σt(S
∗)−σt−1(S

∗)
]

≥
∑

t∈[T ]∞

R[M−σt−1(S∗)]+(S
∗
t )

≥ (1− 4ϵ) ·RM(S∗) ,

where the last inequality follows from Lemma 15.

F.4. PTAS for cluster C∞

In this section, we explain how our previously-developed methods can be extended to obtain a randomized

PTAS for single-cluster instances defined over C∞.

Creating a random hole. Recalling that the weight of any product in C∞ is known to reside within

(0, n4+5/ϵ], our first step consists of creating a random “hole” within this interval. To this end, let us define

a collection of 1/ϵ intervals, produced by starting at ϵ
n5 and jumping down by powers of n5:[ ϵ

n5+5/ϵ
,

ϵ

n5/ϵ

)
, · · · ,

[ ϵ

n15
,

ϵ

n10

)
,
[ ϵ

n10
,
ϵ

n5

]
.

We pick one of these intervals uniformly at random, and eliminate all products whose weight falls within

the chosen interval. It is easy to verify that we are losing in expectation only on O(ϵ)-fraction of the optimal

revenue, since each product in an optimal assortment is eliminated with probability at most ϵ. As a result,

the cluster C∞ breaks into C−
∞ and C+

∞, corresponding to the products whose weights are smaller than or

greater than those in the deleted interval, respectively. From this point on, let S∗ be an optimal assortment

for the post-deletion instance.

Constructing a near-optimal assortment. Even though the weight ratio between any two products

in C+
∞ ⊎ C−

∞ may be arbitrarily large, let us temporarily overlook running time considerations, and assume

that the randomized approximation scheme of Section 5.1 is applied with respect to C+
∞ ⊎ C−

∞. Then, its

resulting assortment S would have an expected revenue of RM(S) ≥ (1 − ϵ) · RM(S∗). In addition, since

our enumeration procedure is operating with respect to S∗, one can augment it with an extra cardinality

constraint, stating that at most |S∗+| products may be offered out of C+
∞. Note that, due to being dependent

on the optimal assortment S∗, the quantity |S∗+| is generally unknown, and we therefore guess its value

a-priori.

Now, to attain a polynomial-time approach, the crucial observation is that the weight of each product in

C+
∞ is necessarily bounded within [ ϵ

n5/ϵ , n
4+5/ϵ], regardless of which interval was actually deleted, meaning

that the weight ratio in C+
∞ is O(nO(1/ϵ)). Therefore, our enumeration procedure has only O(nO(1/ϵ3)) possible
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choices of product offerings from C+
∞. One of these choices, say S+, consists of at most |S∗+| products and

can be completed with an additional set of products S− ⊆C+
∞ into an assortment with an expected revenue

of RM(S+∪S−)≥ (1− ϵ) ·RM(S∗). Rather than enumerating over all possible choices for S−, of which there

could be exponentially-many, we make a trivial choice for the latter and include each and every product in

C+
∞. The following lemma shows that the assortment S+ ∪ C+

∞ indeed nearly matches the optimal expected

revenue.

Lemma 19. RM(S+ ∪C−
∞)≥ (1− 3ϵ) ·RM(S∗).

Proof. Our analysis is based on establishing the next two claims, whose proofs are deferred to Appen-

dices F.5 and F.6, respectively.

Claim 7.
∑

i∈S+ ri ·πM(i, S+ ∪C−
∞)≥RM(S+)− ϵ ·RM(S∗).

Claim 8. For every product i∈ S−, we have

πM

(
i, S+ ∪C−

∞

)
≥ (1− ϵ) ·πM

(
i, S+ ∪S−)− ϵ

n
·Pr [M > 0] · wi

1+wi

.

As a result, the expected revenue of S+ ∪C−
∞ can be lower-bounded by noting that

RM

(
S+ ∪C−

∞

)
=
∑
i∈S+

ri ·πM(i, S+ ∪C−
∞)+

∑
i∈C−

∞

ri ·πM(i, S+ ∪C−
∞)

≥
∑
i∈S+

ri ·πM(i, S+)− ϵ ·RM (S∗)

+
∑
i∈S−

ri ·
(
(1− ϵ) ·πM

(
i, S+ ∪S−)− ϵ

n
·Pr [M > 0] · wi

1+wi

)
≥
∑
i∈S+

ri ·πM(i, S+ ∪S−)+ (1− ϵ) ·
∑
i∈S−

ri ·πM

(
i, S+ ∪S−)

− ϵ ·RM (S∗)− ϵ

n
·
∑
i∈S−

Pr [M > 0] · riwi

1+wi︸ ︷︷ ︸
≤RM (S∗)

≥ (1− ϵ) ·RM

(
S+ ∪S−)− 2ϵ ·RM (S∗)

≥ (1− 3ϵ) ·RM (S∗) .

Here, the first inequality follows from the conjunction of Claims 7 and 8. The second inequality holds since

πM(i, S+)≥ πM(i, S+∪S−) for every i∈ S+. The last inequality is obtained by recalling that RM(S+∪S−)≥
(1− ϵ) ·RM(S∗). □

F.5. Proof of Claim 7

We first note that for every product i∈ S+ and m∈ [n],

πm

(
i, S+ ∪C−

∞

)
≥ Pr

[Ui >U0]∧
[
rank(i, S+)≤m

]
∧
⊎

j∈C−
∞

[Uj >Ui]


≥ Pr

[
[Ui >U0]∧

[
rank(i, S+)≤m

]]
−Pr

[Ui >U0]∧
⊎

j∈C−
∞

[Uj >Ui]


= πm

(
i, S+

)
−Pr

 ⊎
j∈C−

∞

[Uj >Ui >U0]


≥ πm

(
i, S+

)
− ϵ

n9
· wi

1+wi

.
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Here, the last inequality holds since, for every product j ∈ C−
∞,

Pr [Uj >Ui >U0] =
wj

wj +wi +1
· wi

1+wi

≤wj ·
wi

1+wi

≤ ϵ

n10
· wi

1+wi

,

where the last inequality follows by observing that the weight of any product in C−
∞ is at most ϵ

n10 , by

definition of C−
∞. Consequently,∑
i∈S+

ri ·πM

(
i, S+ ∪C−

∞

)
=
∑
i∈S+

ri ·
∑

m∈[n]

Pr [M =m] ·πm

(
i, S+ ∪C−

∞

)
≥
∑
i∈S+

ri ·
∑

m∈[n]

Pr [M =m] ·
(
πm

(
i, S+

)
− ϵ

n9
· wi

1+wi

)
≥ RM

(
S+
)
− ϵ

n
·
∑
i∈S+

Pr [M > 0] · riwi

1+wi︸ ︷︷ ︸
≤RM (S∗)

≥ RM

(
S+
)
− ϵ ·RM (S∗) .

F.6. Proof of Claim 8

Focusing on a single product i∈ S−, we show that for every m∈ [n], one has

πm

(
i, S+ ∪C−

∞

)
≥ (1− ϵ) ·πm

(
i, S+ ∪S−)− ϵ

n
· wi

1+wi

.

The desired claim would then follow when both sides are multiplied by Pr[M =m] and summed over all

m∈ [n]. We divide our analysis to two cases, depending on how m and |S+| are related.

Case 1: m≤ |S+|. In this case,

πm

(
i, S+ ∪C−

∞

)
≥ Pr

[Ui >U0]∧
[
rank

(
i, S+ ∪C−

∞

)
≤m

]
∧
⊎

j1∈S+

⊎
j2∈C−

∞\{i}

[Uj2 >Uj1 ]


= Pr

[Ui >U0]∧
[
rank

(
i, S+ ∪{i}

)
≤m

]
∧
⊎

j1∈S+

⊎
j2∈C−

∞\{i}

[Uj2 >Uj1 ]


≥ Pr

[
[Ui >U0]∧

[
rank

(
i, S+ ∪{i}

)
≤m

]]
−Pr

[Ui >U0]∧
⊎

j1∈S+

⊎
j2∈C−

∞\{i}

[Uj2 >Uj1 ]


= πm

(
i, S+ ∪{i}

)
−Pr [Ui >U0] ·Pr

 ⊎
j1∈S+

⊎
j2∈C−

∞\{i}

[Uj2 >Uj1 ]


≥ πm

(
i, S+ ∪{i}

)
− 1

n3
· wi

1+wi

≥ πm

(
i, S+ ∪S−)− ϵ

n
· wi

1+wi

.

Here, the first equality is obtained by noting that m ≤ |S+|. The second equality holds since the events

[Ui >U0] and
⊎

j1∈S+

⊎
j2∈C−

∞\{i}[Uj2 >Uj1 ] are independent. The next-to-last inequality holds since, due to

having a multiplicative gap of at least n5 between weights in C+
∞ and C−

∞, for every j1 ∈ S+ ⊆C+
∞ and j2 ∈ C−

∞

we have Pr[Uj2 >Uj1 ] =
wj2

wj1
+wj2

≤ 1
n5 .
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Case 2: m> |S+|. On the one hand,

πm

(
i, S+ ∪S−)≤ πm

(
i, S+ ∪{i}

)
=Pr [Ui >U0] =

wi

1+wi

,

where the first equality holds since m> |S+|. On the other hand,

πm

(
i, S+ ∪C−

∞

)
≥ Pr [rank (i,C−

∞ ∪{0}) = 1]

=
wi

1+wi +w(C−
∞ \ {i})

≥ wi

1+wi + ϵ/n9

≥ (1− ϵ) · wi

1+wi

,

where the second inequality is obtained by noting that w(C−
∞ \ {i}) ≤ ϵ

n9 , since the weight of any product

in C−
∞ is at most ϵ

n10 , by definition of C−
∞. Now, combining both bounds, it follows that πm(i, S+ ∪ C−

∞) ≥

(1− ϵ) ·πm(i, S+ ∪S−).

Appendix G: Traditional Choice Models in a Multi-Purchase Setting

In this section, we present numerical experiments that reveal the pitfalls of employing traditional single-

purchase choice models in settings where multi-purchase behavior is present. Specifically, we show that mixed-

MNL models, which are arguably the most general single-purchase RUM-based choice model (McFadden and

Train 2000), poorly perform in their attempt to recapture MP-MNL models from sales data. Our intent is to

highlight the importance of explicitly modeling multi-purchase dynamics when such patterns are prevalent.

To accomplish the above-mentioned goal, we start by randomly generating a diverse collection of MP-

MNL models, which capture varying degrees of multi-purchase tendencies. For each distinct model, we

generate synthetic sales data under the assumption that customers make purchasing decisions according to

the given MP-MNL model. We then fit mixed-MNL models with up to five customer segments to this sales

data via maximum likelihood estimation; here, in order to adapt this traditional estimation procedure to a

multi-purchase setting, we make the natural simplifying assumption that all purchase events are mutually

independent. Next, we measure the mixed-MNL model’s ability to adapt to this multi-purchase setting via

the following two accuracy metrics. First, we compute the absolute relative error of their predicted choice

probabilities for every product within each potential offer set. Second, we assess the extent to which the

mixed-MNL fits lead to profitable assortment recommendations.

G.1. Experimental Set-up

Generating sales data. To start, we generate an extensive collection of MP-MNL models, each with

n = 20 products, which will serve as the ground-truth models throughout this section. For each distinct

model, we sample its preference weights from a log-normal distribution with location parameter 0 and scale

parameter 1, and then set the revenue of each product to be ri =wmax −wi, so that larger weight products

are associated with smaller revenues. We note that the product revenues will not play a role in generating

the sales data, but will come into play later on, in assessing the mixed-MNL model fits. For each MP-MNL

model, we assume that Pr[M = m] = 1 for some m ∈ {2,3,4}. More precisely, for each m ∈ {2,3,4}, we

generate ten MP-MNL models, giving us a total of 30 distinct instantiations of our multi-purchase model
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of interest. Next, for each of these 30 models, we simulate the arrival of T = 1000 customers. (We have also

conducted experiments with T ∈ {2500,5000}, whose results remained unchanged, and hence for brevity, we

decided to present only the results for T = 1000.) We assume that the retailer offers assortment St of size

exactly C to customer t, which is uniformly sampled from the
(
20
C

)
possible options; we vary C ∈ {6,8}.

Customers choose according to the given MP-MNL, where we use Zt ⊆ St∪{0} to denote the set of products

purchased by customer t. The end result consists of 60 distinct streams of choice data (one for each model

and C-value), each of which can be concisely written as CD= {(St,Zt) : t∈ [T ]}, to which we fit mixed-MNL

models using the procedure described next.

Fitting mixed-MNL models. Under the mixed-MNL model, the customer population is partitioned into

G segments, each making purchasing decisions according to a distinct MNL model. As such, the probability

that customer t purchases product i∈ St can be expressed as

πMMNL(i, St) =
∑
g∈[G]

θg ·
wig

1+
∑

j∈St
wjg

,

where θg and wig are the respective arrival probability and product-i weight associated with segment g.

Moving forward, we use θ= {θg : g ∈ [G]} to denote the set of all arrival probabilities, and wg = {wig : i∈ [n]}

to denote the set of weights associated with segment g.

We employ maximum likelihood estimation (MLE) to fit the mixed-MNL models. However, this procedure

requires a careful handling of each multi-purchase event, corresponding to customers t∈ [T ] for which |Zt|> 1,

since the mixed-MNL model cannot explicitly account for such purchasing dynamics. To side-step this issue,

we make the natural assumption that each purchase is the result of an MNL-based choice from among all

offered products, implying that the likelihood of observing (St,Zt) can be written as

L(w1, . . . ,wG, θ | (St, zt)) =
∏
i∈Zt

πMMNL(i, St).

Given this assumption, for choice data CD, we can write the log-likelihood of the mixed-MNL model as

LL(w1, . . . ,wG, θ |CD)=
∑
t∈[T ]

∑
i∈Zt

log (πMMNL(i, St)) .

Therefore, the MLE problem of interest is

max
θ∈[0,1]G,w

LL(w1, . . . ,wG, θ |CD)

s.t.
∑
i∈G

θi = 1 (MLE-MMNL)

For each stream of choice data, we solve (MLE-MMNL) for every G ∈ {1, . . . ,5} by directly maximizing

the log-likelihood function using MATLAB’s constrained nonlinear solver fmincon (MATLAB Optimization

Toolbox). Although this function is known to be concave only for G= 1, we found that fmincon generally

converged to a local optima. Moreover, as can be gleaned from Table 2, which displays the average training

log-likelihoods for each value of G, we do indeed see the in-sample fitting accuracy improve as we increase

the number of customer segments within the fitted mixed-MNL models. This trend supports the notion that

the local optima we uncover are reasonably good.



Bai, Feldman, Segev, Topaloglu, Wagner: The Multi-Purchase Multinomial Logit Model
Article submitted to ; manuscript no. 57

Avg. Log-Like
G C = 6 C = 8
1 -1785 -1998
2 -1774 -1987
3 -1764 -1979
4 -1756 -1972
5 -1752 -1969

Table 2 Average training log-likelihoods of the mixed-MNL fits.

Accuracy metrics. In what follows, we formally define two accuracy metrics, which are utilized to assess

the mixed-MNL model fits. For this purpose, we let π(i, S) denote the choice probabilities attributed to

the ground-truth MP-MNL model, and use R(S) =
∑

i∈S
ri · π(i, S) to denote the expected revenue earned

from offering the assortment S. Our first accuracy metric is the average percent absolute error in the choice

probabilities, computed as

100(
20
C

) · ∑
S:|S|=C

∑
i∈S

|πMMNL(i, S)−π(i, S)|
π(i, S)

.

Next, we examine whether the mixed-MNL fits lead to profitable assortment recommendations. For this

purpose, we first compute S∗
MMNL = argmaxS:|S|=C

∑
i∈S ri · πMMNL(i, S), which corresponds to the optimal

assortment if customers were to choose according to the fitted mixed-MNL model. Additionally, we also

compute S∗ = argmaxS:|S|=C R(S), which is the true optimal assortment. We note that both S∗
MMNL and S∗

can be efficiently computed via brute force enumeration, since we consider instances with only 20 products.

We then measure the revenue performance of S∗
MMNL through its percent optimality gap, given by 100 ·

R(S∗)−R(S∗
MMNL)

R(S∗)
.

G.2. Results

The results of our experiments are presented in Tables 3a and 3b, where we show the average optimality gap

and average absolute error for the five fitted mixed-MNL models. Somewhat surprisingly, we observe that the

standard MNL fits (G= 1) performed best across both accuracy metrics. This trend is likely a consequence

of how the mixed-MNL fits approximate each multiple-purchase event within the sales data as a sequence of

independent single-purchase events. This extra layer of approximation in turn provides intuition for why a

better fit to the modified sales data does not necessarily imply better fits to the ground truth model. That

said, it is very clear that these MNL fits are far from being accurate, with a worst case average optimality gap

of 10.35% (C = 6 and m= 4) and a worst case absolute error of 50.56% (C = 8 and m= 4). Altogether, the

observation that MNL fits perform best, while having the worst in-sample accuracy (see Table 2), indicates

that completely ignoring the dynamics of multi-purchase behavior, upon fitting the mixed-MNL model, can

be quite detrimental. Additionally, we generally observe that the average performance of each mixed-MNL

model deteriorates as m is increased. In other words, the performance of these traditional single-purchase

models suffers as multi-purchase events become more prevalent in the sales data, which further emphasizes

the importance of explicitly modeling multi-purchase behavior.
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Avg. % Opt. Gap Avg. % Abs. Error
G m= 2 m= 3 m= 4 m= 2 m= 3 m= 4

1 2.02 6.19 10.35 23.02 37.04 42.63
2 5.13 10.83 15.88 35.25 48.38 52.28
3 11.24 10.16 23.10 39.18 53.02 54.35
4 12.97 15.82 22.48 39.97 55.06 57.51
5 8.96 13.14 19.23 41.02 54.58 57.64

(a) Results for C = 6.

Avg. % Opt. Gap Avg. % Abs. Error
G m= 2 m= 3 m= 4 m= 2 m= 3 m= 4

1 1.06 2.62 6.73 29.31 44.99 50.56
2 3.92 5.94 9.30 44.10 55.56 61.04
3 7.45 15.56 12.50 48.51 62.52 64.76
4 16.87 6.88 18.39 54.91 60.78 67.82
5 16.48 7.86 12.85 54.60 63.86 65.70

(b) Results for C = 8.
Table 3 Accuracy metrics for the fitted mixed-MNL models

Appendix H: Computational Experiments

In this section, we conduct extensive computational experiments aimed at both measuring the efficacy of

the approximation scheme we propose in Section 4, as well as at assessing the revenue-potential of making

assortment decisions that account for multi-purchase behavior in comparison to those that overlook this

phenomenon. To accomplish this goal, we employ our PTAS, along with two heuristic approaches, on a wide

variety of randomly generated problem instances with up to 60 products. In addition, we take a deep-dive

into the make-up of the assortments recommended under each approach, so as to better understand higher

level trends that account for differences in revenue performance.

H.1. Instance generator

We randomly generate cardinality-constrained instances of the assortment optimization problem under the

MP-MNL model with n ∈ {15,30,60} products. Specifically, motivated by typical e-commerce product rec-

ommendation pages, we enforce an additional side constraint, stating that the offered assortment should

include exactly C ∈ {8,12} products. Since we focus on the limited purchases setting of Section 4, we truncate

the maximum number of purchases at mmax ∈ {2,3}. The preference weight and price of each product and

the distribution of M are generated as follows.

• Weights: For each product i∈ [n], we generate its preference weight wi from the log-normal distribution

with location-scale (0,1), so as to ensure that we obtain a heterogeneous collection of weights that are unlikely

to drastically vary within each instance. Let wmax be the largest weight generated for a particular instance.

• Prices: The price of each product i ∈ [n] is set to be ri = wmax −wi, so that higher priced items have

smaller associated weights. At least intuitively, the assortment problem becomes more difficult to handle

when the prices and weights are inversely related, since in this case, choosing an assortment that balances

market share and per-purchase revenues is a trickier task.

• Distribution of M : We consider two distinct types of distributions for the random number of potential

purchases, M . The first is generated by independently sampling a uniform random variable λm ∼ U [0,1]

for each m ∈ [mmax]. These values are then normalized so that we are left with a valid distribution, where

Pr[M =m] = λm∑
µ∈[mmax] λµ

; we denote the resulting distribution as Mrand. The second distribution, denoted as

Mdec, is generated by sorting the above-mentioned random samples in decreasing order, such that λ(1) ≥ · · · ≥

λ(mmax). As before, these values are normalized to obtain Pr[M =m] =
λ(m)∑

µ∈[mmax] λµ
. The latter scenario is

reflective of the purchasing patterns observed in Table 1, which exhibits a decreasing trend of multi-purchase

events for customers participating in the campaigns of our e-retailer collaborator.
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Given this generative model, for each of the 16 possible combinations of n∈ {15,30}, C ∈ {8,12}, mmax ∈

{2,3}, and M ∈ {Mrand,Mdec}, we create a distinct test case. For each test case, we randomly generate

50 problem instances, as explained above, each characterized by a unique set of weights, prices, and λ-

values. Additionally, to keep the overall CPU time of our simulations within a manageable scale, we carry

out a smaller set of experiments with n = 60 products. Here, we fix C = 12 and only vary mmax ∈ {2,3}

and M ∈ {Mrand,Mdec}, thus yielding four test cases. For each of these test cases, we generate 10 problem

instances. The intent of this smaller collection of experiments is to demonstrate that our PTAS scales to

instances with a relatively large number of products.

H.2. Tested algorithms

For each problem instance generated through the above-mentioned parameter configurations, we employ the

following algorithmic approaches:

1. Cardinality-constrained PTAS. This approach is the approximation scheme outlined in Section 4, with

a slight adaptation to account for an exact cardinality constraint. In this setting, it is easy to verify that

Lemma 5 remains fully intact, and hence, the dynamic-programming-based FPTAS for problem (5) should

be extended to account for the added restriction that exactly C−|H∗| light products should be chosen. This

extension is straightforward, simply by adding an extra state parameter that tracks the total number of light

products added thus far. Moreover, to ensure an efficient implementation, we execute our guessing procedure

only for the mmax

ϵ
highest weight products (rather than

6m2
max

ϵ
). While this feature degrades our worst-case

theoretical guarantee to (1− ϵ)6mmax , our experimental results show that the practical performance of our

approximation scheme is near-optimal.

2. Cardinality-constrained MNL. As explained in Section 3, this approach assumes that our represen-

tative customer is willing to purchase exactly one product. Thus, the resulting “proxy” problem reduces

to cardinality-constrained assortment optimization under the standard MNL model, which is known to be

polynomial-time solvable (Rusmevichientong et al. 2010, Sumida et al. 2021). Due to efficiency considera-

tions, we have implemented the LP-based algorithm proposed by Sumida et al. (2021). It is worth noting

that Lemma 3 is no longer valid in the cardinality-constrained setting, where revenue-ordered assortments

can be Ω(n)-factor away from attaining optimal revenues in the worst case. This fact, however, does not

diminish the importance of assessing the potential revenue loss that may result from ignoring multi-purchase

behavior in practice (rather than with respect to worst-case constructions).

3. Greedy heuristic. In this approach, starting with an empty set of products, we employ a sequence of

augmentations. In each step, the product added to the current assortment is one whose inclusion maximizes

the expected revenue of the resulting assortment. This iterative procedure continues up until the selection

of C products.

Technically speaking, our approximation scheme was implemented in Java 8, whereas the cardinality-

constrained MNL approach and the greedy heuristic were both implemented in Python 3, with Gurobi 9.0.1

employed as an LP-solver. All experiments were executed on a standard desktop computer, equipped with

an Intel Core i7 CPU and 64GB of RAM.
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Performance metrics. For the remainder of this section, we make use of the shorthands PTAS, MNL,

and GR for the cardinality-constrained PTAS, cardinality-constrained MNL approach, and greedy heuristic,

respectively. Furthermore, for any algorithm A∈ {PTAS,MNL,GR}, let SA be its returned assortment for

a given instance. In order to assess the revenue guarantee of each approach, for test cases with n = 15

products, we employ exhaustive enumeration over all feasible assortments to recover the optimal assortment

S∗. In this case, for each algorithm A, we define its optimality gap with respect to a given instance as

R(S∗)−R(SA)

R(S∗)
. The performance of each approach on these small-scale instances is reported as basic statistics

of the optimality gap, which ultimately allows us to show that our PTAS performs near-optimally even when

seeded with a large accuracy level. For test cases with n∈ {30,60} products, recovering the optimal expected

revenue by means of exhaustive enumeration becomes computationally infeasible, and hence, we benchmark

all approaches against PTAS. Specifically, for A ∈ {MNL,GR}, we examine the percentage improvement

attained by our approximation scheme, which is computed as R(SPTAS)−R(SA)

R(SA)
.

H.3. Results

The results of our experiments for the test cases with n= 15, n= 30, and n= 60 products are respectively

presented in Tables 4, 5, and 6. In each of these tables, we have a distinct row for each test case, with the first

three columns listing the defining combination of the parameters (C,mmax,M). In Table 4, the next nine

columns report the average, 95th percentile, and maximum optimality gaps for each of three implemented

approaches across all 50 problem instances. In Table 5, the latter columns report these same metrics, albeit

in relation to the percentage improvement of PTAS over GR and MNL, as explained earlier. Table 6 reports

only the average and maximum percentage improvements of PTAS, since only 10 problem instances are

generated for each test case in this larger-scale setting, which makes the 95th percentile identify with the

maximal gap. Finally, we note that our approximation scheme was implemented with ϵ = 0.5 for n = 15,

ϵ = 0.6 for n = 30, and ϵ = 0.75 for n = 60. For these three sets of test cases, the respective per-instance

computation times were approximately 15-30 seconds, 5-7 minutes, and 45-60 minutes.

Avg. % Opt. Gap 95th Perc. % Opt. Gap Max % Opt. Gap
C mmax M PTAS GR MNL PTAS GR MNL PTAS GR MNL

8 2 Mdec 0.012 0.98 0.11 0.0 3.18 0.56 0.72 5.20 1.25
8 2 Mrand 0.0 0.92 0.14 0.0 2.81 0.90 0.0 5.15 1.39
12 2 Mdec 0.012 0.31 0.01 0.0 1.79 0.02 0.74 4.04 0.17
12 2 Mrand 0.0 0.19 0.0 0.0 1.71 0.01 0.0 3.10 0.02
8 3 Mdec 0.0 0.43 0.52 0.0 2.07 1.91 0.0 4.44 2.98
8 3 Mrand 0.0 0.43 0.99 0.0 1.80 2.77 0.0 3.06 5.18
12 3 Mdec 0.0 0.077 0.06 0.0 0.29 0.12 0.0 2.31 1.52
12 3 Mrand 0.0 0.16 0.05 0.0 1.30 0.44 0.0 3.19 1.34

Table 4 Average optimality gaps of PTAS, GR, and MNL for test cases with n= 15

products.

The results reported in all three tables provide strong evidence of the superiority of our approximation

scheme in terms of revenue guarantees. First, Table 4 shows that this PTAS is near-optimal across all test

cases, even when seeded with accuracy level of ϵ= 0.5. In fact, its worst optimality gap across all test cases
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Avg. % Improve. 95th Perc. % Improve. Max % Improve.
C mmax M GR MNL GR MNL GR MNL

8 2 Mdec 2.26 0.13 3.10 0.47 3.40 0.65
8 2 Mrand 2.22 0.38 3.21 0.92 3.66 2.04
12 2 Mdec 2.28 0.14 3.35 0.42 3.52 0.77
12 2 Mrand 2.30 0.26 3.07 0.81 3.77 1.23
8 3 Mdec 1.71 0.61 2.74 1.65 3.91 2.16
8 3 Mrand 1.46 1.10 2.44 2.06 2.63 3.09
12 3 Mdec 1.75 0.50 2.98 1.36 3.26 2.00
12 3 Mrand 1.68 0.88 2.76 2.18 3.12 2.78

Table 5 Percent improvement of PTAS over GR and MNL for test cases with

n= 30 products.

with n= 15 is only 0.74%, while the maximum optimality gap for both GR and MNL exceeds 5% for these

cases. Table 5 reveals that when we move to larger problem instances, consisting of 30 products, PTAS

continues to outperform both GR and MNL by 0.5-2% on average, and by 3-4% in some cases. Finally,

Table 6 illustrates that our PTAS can still be implemented even on instances with n= 60 products, where

it continues to be superior even when we set ϵ= 0.75.

Avg. % Improve. Max % Improve.
C mmax M GR MNL GR MNL

12 2 Mdec 3.14 0.12 3.70 0.21
12 2 Mrand 3.13 0.24 3.55 0.45
12 3 Mdec 2.92 0.40 3.47 0.93
12 3 Mrand 2.93 0.85 3.60 1.60

Table 6 Percent improvement of PTAS over GR and

MNL for test cases with n= 60 products.

While our results suggest that PTAS is consistently the best performing approach, we also observe that

MNL performs surprisingly well given that it completely ignores multi-purchase behavior. Across all test

cases with n= 30 products, PTAS outperforms MNL by approximately 0.1-1% on average. However, as one

can only expect, we observe that MNL’s worst performance comes for test cases in which mmax = 3, where

the multi-purchase effects are more prominent. All-in-all, taking into account the results of our experiments

as well as the theoretical guarantees developed in Lemmas 2 and 3, there is indeed some practical appeal in

reducing the problem in question to a single-purchase setting in specific scenarios when the expected number

of possible purchases is known to be very small, especially when an extremely efficient implementation is

needed.

H.4. Analyzing the structure of the recommended assortments

In this section, we examine whether the revenue gains of PTAS over MNL can be attributed to fundamen-

tal differences in the make-up of the recommended assortments under each approach. For succinctness of

presentation, we restrict our analysis to test cases with n= 30 products, noting that similar trends can be

observed for the additional test cases.
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To address our question of interest, we consider the subset of recommended products that is unique to

each approach, and tease out salient differences in their composition. Specifically, for each problem instance,

we first compute SPTAS \ SMNL and SMNL \ SPTAS, whose cardinality is each 2.13 on average. Next, we

examine the distributions of the preference weights of products contained in these two sets. As shown in

Figure 1, it is very clear that SPTAS differentiates itself from SMNL through the inclusion of a few high-weight

low-revenue products (recall that ri =wmax−wi). Somewhat surprisingly, these high-weight products lead to

only small gains in the overall number of expected purchases. Specifically, Figure 2 shows the distributions of

the expected number of items purchased under the assortments SPTAS and SMNL, which only slightly differ.

Additionally, to give a sense of the relative frequency with which customers select the no-purchase option, we

also include the distribution of E[M ] in these plots. Alternatively, it appears that these high-weight products

allow our approximation scheme to capture significantly more revenue than MNL on purchases made beyond

each customer’s first choice product. In particular, Figure 3 shows exactly how the revenues of SPTAS and

SMNL compare as customers expand their baskets; defining R̄m(S) =
∑

k∈[m]Pr[M = k] · Rm(S) to be the

cumulative revenue earned from purchases up to the m-th most preferred product, we plot R̄m(SPTAS)−

R̄m(SMNL) for m∈ [mmax] across all problem instances. This figure clearly indicates that our PTAS exploits

customers with M > 1 far more effectively than MNL, which again, is likely attributable to the inclusion of

a few high-weight low-revenue products, as mentioned above.

Figure 1 Preference weight distributions for recommended products unique to SPTAS and SMNL.
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Figure 2 Distributions of the expected number of items purchased under SPTAS and SMNL.

Figure 3 Distributions of cumulative revenues under SPTAS and SMNL.


