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We consider assortment optimization problems when customers choose under a mixture of independent

demand and multinomial logit models. In the assortment optimization setting, each product has a fixed

revenue associated with it. The customers choose among the products according to our mixture choice model.

The goal is to find an assortment that maximizes the expected revenue from a customer. We show that we can

find the optimal assortment by solving a linear program. We establish that the optimal assortment becomes

larger as the relative size of the customer segment with the independent demand model increases. Moreover,

we show that the Pareto-efficient assortments that maximize a weighted average of the expected revenue and

the total purchase probability are nested in the sense that the Pareto-efficient assortments become larger as

the weight on the total purchase probability increases. Considering the assortment optimization problem with

a capacity constraint on the offered assortment, we show that the problem is NP-hard even when each product

consumes unit capacity so that we have a constraint on the number of offered products. We give a fully

polynomial-time approximation scheme. In the assortment-based network revenue management problem, we

have resources with limited capacities and each product consumes a combination of resources. The goal is to

find a policy for deciding which assortment of products to offer to each arriving customer to maximize the

total expected revenue over a finite selling horizon. A standard linear programming approximation for this

problem includes one decision variable for each subset of products. We show that this linear program can be

reduced to an equivalent one of substantially smaller size. We give an expectation-maximization algorithm

to estimate the parameters of our mixture model. Our computational experiments indicate that our mixture

model can provide improvements in predicting customer purchases and identifying profitable assortments.

Keywords: Assortment optimization, choice model, multinomial logit.

1. Introduction

Over the past decade, the use of discrete choice models to capture the choice process of customers

has received significant attention in the revenue management literature. By using discrete choice

models, we can capture the fact that if a product is unavailable, then some customers may

substitute for this product, whereas others may simply leave the system without making a purchase.

A growing body of literature indicates that using choice models to capture the substitution

possibilities between products can provide significant improvements in the expected revenues

(Talluri and van Ryzin 2004, Vulcano et al. 2010, Dai et al. 2014). However, an inherent tension
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is involved in picking a choice model to capture the choice process of the customers. A more

sophisticated choice model may capture the choice process of the customers more faithfully, whereas

a simpler choice model may result in tractable optimization problems when finding the optimal

assortment of products to offer or prices to charge.

We consider assortment optimization problems under a mixture of independent demand and

multinomial logit models. The multinomial logit model is arguably one of the most prevalent choice

models for capturing customer choice behavior. It is based on random utility maximization, so

each customer associates a random utility with each product and the no-purchase option, choosing

the available alternative with the largest utility. In the independent demand model, a customer

arrives into the system with a particular product in mind. If this product is unavailable, then

she leaves without a purchase. The independent demand model has been a reliable workhorse,

because it is relatively simple to estimate and often yields tractable models for making operational

decisions (van Ryzin 2005). In this paper, we mix these two very common demand models, which is,

perhaps, the most natural approach to simultaneously improve the modeling flexibility of both the

independent demand and multinomial logit models. Some customers make a purchase under the

independent demand model, whereas others do so under the multinomial logit model. The demand

emerges as a mixture of the choices of the customers in these two segments.

Technical Contributions: We give algorithms for assortment problems, characterize the

structure of optimal assortments, and check the prediction effectiveness of our choice model.

Assortment Optimization. In the assortment optimization problem, we have a fixed revenue

for each product. Customers choose among the offered products according to our mixture choice

model. The goal is to find an assortment of products that maximizes the expected revenue

obtained from a customer. We show that we can solve a linear program (LP) to find the optimal

assortment (Theorem 3.2). Thus, the assortment optimization problem under our mixture choice

model is efficiently solvable. Assortment optimization problems under mixtures of choice models

are notoriously difficult. For example, the assortment optimization problem under a mixture of

just two multinomial logit models is NP-hard (Rusmevichientong et al. 2014). To our knowledge,

our paper is the first to give an efficient method for assortment optimization under a mixture of

choice models. Our LP has three novel components. First, it uses decision variables whose values

depend on whether different pairs of products are offered. Second, its objective function is, on the

surface, quite different from the objective function of the assortment problem. Third, the objective

function of the LP at its extreme points gives expected revenues of different assortments.

Combinatorial Algorithm. We show that if it is optimal to offer a given product, then it is

optimal to offer all other products with smaller preference weights in the multinomial logit model or
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larger purchase probabilities in the independent demand model, all else being equal (Theorem 3.3).

Besides shedding light on the structure of the optimal assortment, this result allows us to give a

combinatorial algorithm for assortment optimization. Both the combinatorial algorithm and the

LP formulation become useful throughout the paper.

Comparative Statistics and Pareto-Efficiency. We show that the optimal assortment becomes

larger when the relative size of the independent demand segment increases or when the revenue of

each product increases by the same additive amount (Theorem 4.1). To see the implication of the

first comparative statistic, the customers in the independent demand segment are inflexible. If the

product they have in mind is unavailable, then they leave without a purchase. So, if the relative

size of the inflexible customer segment increases, then it is optimal to offer a larger assortment.

To see the implication of the second comparative statistic, the expected revenue is a firm-centric

objective. For the two choice models that we mix, maximizing the total probability of purchase is

equivalent to maximizing the expected utility of the customer (Sumida et al. 2019). Thus, the total

probability of purchase is a customer-centric objective. Using the second comparative statistic, we

show that the Pareto-efficient assortments that maximize a weighted sum of the expected revenue

and the total probability of purchase are nested in the sense that the Pareto-efficient assortments

get larger as the weight on the total probability of purchase increases.

Capacity Constraints. We study the assortment optimization problem with a capacity constraint,

where each product occupies a fixed amount of capacity and there is a constraint on the total

capacity consumption of the offered products. We show that the problem is NP-hard even when

each product occupies unit capacity so that we have a constraint on the number of offered products

(Theorem 5.1). Motivated by our complexity result, we give a fully polynomial-time approximation

scheme (FPTAS) under a capacity constraint (Theorem 5.2). Our FPTAS uses the connection of

our assortment optimization problem to a variant of the knapsack problem. We also build on the

approach that we use to develop our FPTAS to give a heuristic for the assortment optimization

problem under a capacity constraint. Thus, our FPTAS guides the design of a heuristic as well.

Lastly, we give an efficiently computable upper bound on the optimal expected revenue under a

capacity constraint. Our heuristic performs remarkably well. In a numerical study, we compare the

performance of our heuristic with the upper bound on the optimal expected revenue. The average

optimality gap of the heuristic comes out to be 0.15%.

Network Revenue Management. We consider assortment-based network revenue management

problems, where we have resources with limited capacities and the sale of each product consumes

a combination of resources. The goal is to find a policy for deciding which assortment of products

to offer to each arriving customer to maximize the total expected revenue over a finite selling
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horizon. We consider a previously proposed LP approximation in which the decision variables are

the probabilities with which we offer each subset of products to the customers. Thus, the number

of decision variables increases exponentially with the number of products. We show that if the

customers choose according to our mixture choice model, then we can immediately reduce the LP

approximation to an equivalent compact LP whose numbers of decision variables and constraints

increase only quadratically with the number of products (Theorem 6.1). We can recover an optimal

solution to one LP formulation by using an optimal solution to the other.

Fitting the Choice Model. We give an expectation-maximization algorithm to estimate the

parameters of our mixture model and show that we can parameterize our mixture model as a

function of product features, such as price, weight, brand and color. The number of product

features is often smaller than the number of products in consideration, so parameterizations as a

function of product features yield a more parsimonious representation. We fit our choice model

to a real-world dataset to predict the choices of diners among sushi varieties. Our mixture model

provides significant improvements over using the independent demand or multinomial logit model

alone. Thus, there is practical benefit in mixing the two choice models. We also compare our mixture

model with the exponomial and Markov chain choice models. Our mixture model consistently

performs better than the exponomial model. The number of parameters in the Markov chain choice

model is significantly more than that in our mixture model, so the Markov chain choice model can

be prone to overfitting when we have limited data. Under limited data, our mixture model indeed

provides improvements over the Markov chain choice model in predicting customer purchases.

Discussion of the Mixture Model: Our mixture model does not significantly complicate

the parameter estimation and assortment optimization problems under the independent demand

or multinomial logit model, while increasing the flexibility of these two choice models to capture

the customer choice behavior. As we also observe in our numerical experiments, our mixture

model can provide improvements over more sophisticated choice models, such as the Markov chain

choice model, especially when we have limited data, so that more sophisticated choice models

with larger numbers of parameters end up being prone to overfitting. We can efficiently estimate

the parameters of our mixture model by iteratively maximizing concave likelihood functions in

an expectation-maximization algorithm, we can parameterize our mixture model as a function

of product features, and we can give efficient algorithms to solve the corresponding assortment

optimization problems. Due to its parsimonious nature, our mixture model can avoid overfitting. All

these characteristics enhance the practical viability of our mixture model.

In our expectation-maximization algorithm, we estimate the parameters of our mixture model

by iteratively maximizing concave likelihood functions that one would maximize when estimating
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the parameters of the independent demand and multinomial logit models. Thus, estimating the

parameters of our mixture model brings minimal burden. We can parameterize our mixture model

as a function of product features. Such a parameterization reduces the number of parameters from

being proportional to the number of products in consideration to being proportional to the number

of product features. If a new product with no past purchase history is introduced, then using

product features allows us to estimate the choice probability of the new product, as long as we know

the features of the new product. While the independent demand and multinomial logit models

enjoy similar parameterizations, to our knowledge, there is no work on parameterizing the Markov

chain choice model as a function of product features. Also, the assortment optimization problem

under our mixture model is efficiently solvable. A natural approach to enhance the prediction

ability of the multinomial logit model is to mix multinomial logit models, but if we mix even just

two multinomial logit models, then the corresponding assortment problem is NP-hard. Thus, our

mixture model uniquely possesses the practical benefits from a variety of choice models.

Related Literature: Gallego et al. (2004) and Talluri and van Ryzin (2004) show that the

optimal assortment under the multinomial logit model is revenue-ordered, including a certain

number of products with the largest revenues. This structure does not hold under our mixture

choice model. Rusmevichientong et al. (2010), Wang (2012) and Jagabathula (2016) examine the

assortment optimization problem under the multinomial logit model with various constraints on

the offered assortment. Bront et al. (2009), Mendez-Diaz et al. (2014) and Rusmevichientong et al.

(2014) show that the assortment optimization problem under a mixture of multinomial logit models

is NP-hard even when there are only two multinomial logit models in the mixture. The authors

give approximation schemes and integer programming formulations. Desir et al. (2016) show that

it is NP-hard to approximate the problem within a factor of O(1/m1−ε) for any ε > 0, where m is

the number of multinomial logit models in the mixture.

Researchers have developed LP formulations for assortment optimization problems. Gallego

et al. (2015) work with the generalized attraction model, whereas Feldman and Topaloglu (2017)

work with the Markov chain choice model. Both papers give LP formulations for the assortment

optimization problem. One can build on these LP formulations to obtain compact LP formulations

for network revenue management problems. The multinomial logit model is a special case of both

the generalized attraction and Markov chain choice models, but our mixture of independent demand

and multinomial logit models is not a special case of these choice models. Thus, we resort to

entirely different techniques to obtain the LP formulations in our paper. Topaloglu (2013) gives a

compact formulation for a nonlinear program that appears when jointly making product stocking

and assortment decisions under the multinomial logit model. Sumida et al. (2019) give an LP
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for assortment optimization under the multinomial logit model when there are constraints on the

offered assortment that can be captured by a totally unimodular constraint matrix.

Kunnumkal and Martinez-de-Albeniz (2019) study assortment optimization problems under the

multinomial logit model when there is a cost for offering a product. The objective functions in their

problem and our problem can both be expressed as the sum of a linear function and a fraction

with linear numerator and denominator. The linear function takes negative values in their problem,

capturing the cost of offered products, whereas the linear function takes positive values in ours,

capturing the expected revenue from the independent demand segment. Interestingly, due to this

difference, their problem is NP-hard, whereas ours is solvable in polynomial time.

Motivated by online retail where customers examine search results page by page, Flores et al.

(2019), Feldman and Segev (2019) and Liu et al. (2019) develop extensions of the multinomial

logit model that allow the customers to incrementally view the products. Wang and Sahin (2018),

Feldman and Topaloglu (2018) and Aouad et al. (2019) incorporate consideration sets, where each

customer focuses only on the set of products in her consideration set and chooses within the

consideration set under the multinomial logit model. Aouad et al. (2018b) and Aouad and Segev

(2019) focus on dynamic assortment optimization problems under the multinomial logit model,

where the offered assortments are dictated by the inventory remaining on the shelf. We focus our

literature review on the multinomial logit model. For work under other choice models, we refer to

Farias et al. (2013), Aouad et al. (2016), Aouad et al. (2018a) and Feldman et al. (2019) for the

preference list-based choice model, Blanchet et al. (2016) for the Markov chain choice model, Davis

et al. (2014), Gallego and Topaloglu (2014), Feldman and Topaloglu (2015) and Li et al. (2015) for

the nested logit model, and Zhang et al. (2019) for the paired combinatorial logit model.

Incorporating customer choice into network revenue management problems is an active area of

research. Gallego et al. (2004) and Liu and van Ryzin (2008) give an LP approximation for these

problems. The number of decision variables in their LP approximation increases exponentially

with the number of products. Under our mixture choice model, we are able to reduce the size of

their LP dramatically. Other approaches to these problems are based on approximating the value

functions. For such approaches, we refer to Zhang and Cooper (2005), Zhang and Adelman (2009),

Kunnumkal and Topaloglu (2010), Tong and Topaloglu (2013), and Vossen and Zhang (2015).

Organization: In Section 2, we formulate our assortment optimization problem. In Section 3,

we give the LP formulation for the problem. In Section 4, we give comparative statistics for the

optimal assortment. In Section 5, we examine the problem with capacity constraints. In Section 6,

we give a compact LP for the network revenue management problem. In Section 7, we present

computational experiments to test the prediction ability of our mixture model, as well as an

expectation-maximization algorithm for parameter estimation. In Section 8, we give conclusions.
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2. Problem Formulation

The set of products is N = {1, . . . , n}. There are two customer segments. The customers in the first

segment make their purchases according to the independent demand model. In the independent

demand model, we use θi > 0 to denote the probability that a customer is interested in product i.

If we offer the subset S of products, then a customer in the first segment purchases product i∈ S

with probability θi. It is possible to have
∑

i∈N θi < 1, in which case, with probability 1−
∑

i∈N θi, a

customer in the first segment is not interested in any of the products, so we interpret this customer

simply as a browser. The customers in the second segment make their purchases according to the

multinomial logit model. In the multinomial logit model, we use vi > 0 to denote the preference

weight of product i. We normalize the preference weight of the no-purchase option to one. We let

V (S) =
∑

i∈S vi to capture the total preference weight of the products in the subset S. In this case,

if we offer the subset S of products, then a customer in the second segment purchases product

i ∈ S with probability vi/(1 + V (S)). The probability that an arriving customer is in the first

segment is λ ∈ (0,1). With the remaining probability 1− λ, an arriving customer is in the second

segment. Therefore, if we offer the subset S of products, then a customer purchases product

i∈ S with probability λθi + (1− λ) vi
1+V (S)

. If a customer purchases product i, then we obtain a

revenue of ri. Our goal is to find a subset, or an assortment, of products to offer that maximizes

the expected revenue from a customer, yielding the assortment optimization problem

max
S⊆N

{∑
i∈S

ri

(
λθi + (1−λ)

vi
1 +V (S)

)}
. (Mixture)

Thus, the choice probabilities in the problem above are driven by a mixture of the independent

demand and multinomial logit models, each with weights λ and 1−λ, respectively.

Working with such a mixture of independent demand and multinomial logit models introduces

nontrivial challenges. If we do not have the independent demand model in the mixture, then we

can express the expected revenue under the multinomial logit model as a fraction whose numerator

and denominator are both linear functions, allowing us to use fractional programming techniques

when solving the assortment optimization problem. We lose this fractional structure in the Mixture

problem, but we will show that we can still solve this problem efficiently. Also, under only the

multinomial logit model, there exists an optimal assortment that is revenue-ordered, where we offer

a certain number of products with the largest revenues. We lose the revenue-ordered structure of

the optimal solution in the Mixture problem. To demonstrate that revenue-ordered assortments are

not necessarily optimal for the Mixture problem, consider a problem instance with n= 3, λ= 1/2,

(r1, r2, r3) = (50,10,5), (θ1, θ2, θ3) = (0.05,0.25,0.7) and (v1, v2, v3) = (0.5,5,0.01). In Table 1, we
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Assort. Exp. Rev.
∅ 0
{1} 9.58
{2} 5.42
{3} 1.77

Assort. Exp. Rev.
{1,2} 8.27
{1,3} 11.29
{2,3} 7.16
{1,2,3} 10.01

Table 1 Expected revenue provided by all possible assortments.

show the expected revenue provided by each assortment. The optimal assortment is {1,3}, which

does not offer the product with second largest revenue, but offers the product with the smallest

revenue. In this problem instance, noting that θ3 = 0.7, a customer in the independent demand

segment is interested in product 3 with a relatively large probability, so we offer product 3 to

exploit this relatively large probability. Also, noting that v2 = 5, a customer in the multinomial

logit segment associates a relatively large preference weight with product 2, but the revenue of

product 2 is much smaller than that of product 1. Thus, product 2, if offered, attracts a significant

fraction of the customers in the multinomial logit segment while providing much smaller revenue

than product 1, so we do not offer product 2. In the next section, we show that, roughly speaking,

an optimal solution to the Mixture problem prioritizes product i when θi/vi is larger, so a larger

value for θi and a smaller value for vi make product i more attractive to offer, which is consistent

with the observation from Table 1. Next, we discuss the relationship of our mixture model to

random utility maximization and other choice models.

Connections to Random Utility Maximization and Other Choice Models. Under random utility

maximization, a customer associates random utilities with the products and the no-purchase

option, choosing the available alternative with the largest utility. Both the multinomial logit and

independent demand models are compatible with random utility maximization. In the multinomial

logit model, the utility of product i has the Gumbel distribution with location-scale parameters

(µi,1), whereas the utility of the no-purchase option has the Gumbel distribution with location-scale

parameters (0,1). All utilities are independent. In this case, if we offer the subset S of products, then

a customer purchases product i with probability eµi/(1 +
∑

j∈S e
µj ). In the independent demand

model, let X be a random variable with support N , taking value i with probability θi. Using 1(·)

to denote the indicator function, the utility of product i is 1(X = i). The utility of the no-purchase

option is 1/2. Thus, with probability θi, a customer associates a utility of 1 with product i, a utility

of 1/2 with the no-purchase option and a utility of zero with all other products, in which case, she

purchases product i if it is offered, but leaves without a purchase if not.

By the discussion above, our choice model is a mixture of choice models that are compatible

with random utility maximization, so it is compatible with random utility maximization as well.

Furthermore, we can express our choice model as a mixture of multinomial logit models. Consider
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a mixture of multinomial logit models with n+ 1 segments indexed by N ∪ {0}. For each i ∈N ,

a customer in segment i associates a preference weight of wi with product i and a preference

weight of zero with all other products. A customer in segment 0 associates the preference weights

{vj : j ∈N} with the products. An arriving customer is in segment i with probability λαi, where

we have
∑

i∈N αi = 1. An arriving customer is in segment 0 with probability 1− λ. In this case,

if we offer the assortment S of products, then a customer chooses product i with probability

λαi
wi

1+wi
+ (1−λ) vi

1+
∑
j∈S vj

. If we choose αi = θi∑
j∈N θj

and wi = 1
1−

∑
j∈N θj

−1 for all i∈N , then the

last choice probability becomes λθi+ (1−λ) vi
1+

∑
j∈S vj

, which is the choice probability of product i

under our choice model. Being able to express our choice model as a mixture of multinomial logit

models is not surprising, as any choice model that is compatible with random utility maximization

can be expressed as a mixture of multinomial logit models (McFadden and Train 2000). Here, we

use n+ 1 segments in the mixture of multinomial logit models and the assortment problem under

a mixture of multinomial logit models is particularly difficult to approximate when there are too

many segments (Desir et al. 2016). Thus, expressing our choice model as a mixture of multinomial

logit models does not yield efficient algorithms. In Appendix A, we show that it is impossible to

express our choice model as a mixture of multinomial logit models with two segments.

The multinomial logit model displays the independence of irrelevant alternatives property, which

refers to the fact that if we add some product k to an assortment, then the purchase probabilities

of products i and j already in the assortment decrease by the same relative amount. In other

words, using φMNL
i (S) to denote the choice probability of product i out of assortment S under

the multinomial logit model, we have
φMNL
i (S∪{k})
φMNL
i (S)

=
φMNL
j (S∪{k})
φMNL
j (S)

for k 6∈ S and i, j ∈ S. Thus, adding

product k into an assortment cannibalizes on the demands of products i and j by the same relative

amount, which should not hold when, for example, product k is similar to product i but not similar

to product j. Our choice model does not display this property. For ε ∈ (0,1), consider our choice

model with n= 3, λ= 1/2, (θ1, θ2, θ3) = (1− ε, ε2, ε− ε2) and (v1, v2, v3) = (ε, ε,1/ε). Using φMix
i (S)

to denote the choice probability of product i out of assortment S under our choice model, we

have
φMix
1 ({1,2,3})
φMix
1 ({1,2}) = 1−ε+[ε/(1+2ε+ε−1)]

1−ε+[ε/(1+2ε)]
, which approaches one as ε→ 0, whereas we have

φMix
2 ({1,2,3})
φMix
2 ({1,2}) =

ε2+[ε/(1+2ε+ε−1)]

ε2+[ε/(1+2ε)]
, which approaches zero as ε → 0. Therefore,

φMix
1 ({1,2,3})
φMix
1 ({1,2}) and

φMix
2 ({1,2,3})
φMix
2 ({1,2}) may be

dramatically different, indicating that adding product 3 to the assortment {1,2} may cannibalize

on the demands of products 1 and 2 to drastically different extents. One manifestation of the

independence of irrelevant alternatives property is the red bus-blue bus paradox (McFadden 1980).

In Appendix B, we discuss this paradox within the context of our choice model.

As discussed in the introduction, the multinomial logit model is a special case of the Markov

chain choice model. An example in Appendix C shows that our mixture of independent demand

and multinomial logit models is not a special case of the Markov chain choice model.
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3. Assortment Optimization

We show that we can get an optimal solution to the Mixture problem by solving an LP. Using the

decision variables x0, x= {xi : i∈N} and y= {yij : i, j ∈N}, we consider the LP

max
(x0,x,y)∈R×Rn+n

2

+

{∑
i∈N

ri

([
λθi + (1−λ)vi

]
xi +λθi

∑
j∈N

vj yij

)
: (Assortment LP)

x0 +
∑
i∈N

vi xi = 1

xi ≤ x0 ∀ i∈N,

yij ≤ xi ∀ i, j ∈N, yij ≤ xj ∀ i, j ∈N

}
.

Before showing that we can obtain an optimal solution to the Mixture problem by using the

Assortment LP, we provide some intuition regarding this LP.

Given a solution Ŝ ⊆ N to the Mixture problem, we construct a solution (x̂0, x̂, ŷ) to the

Assortment LP by setting x̂0 = 1

1+V (Ŝ)
, x̂i = 1(i ∈ Ŝ) x̂0 and ŷij = 1(i ∈ Ŝ, j ∈ Ŝ) x̂0. Since∑

i∈N vi x̂i = x̂0

∑
i∈N vi 1(i ∈ Ŝ) = x̂0 V (Ŝ), we have x̂0 +

∑
i∈N vi x̂i = x̂0 (1 + V (Ŝ)) = 1, so the

solution (x̂0, x̂, ŷ) satisfies the first constraint in the Assortment LP. Noting that 1(i∈ Ŝ)≤ 1,

1(i∈ Ŝ, j ∈ Ŝ)≤ 1(i∈ Ŝ) and 1(i ∈ Ŝ, j ∈ Ŝ) ≤ 1(j ∈ Ŝ), the solution (x̂0, x̂, ŷ) also satisfies the

remaining constraints in the Assortment LP. Since x̂i = 1(i ∈ Ŝ) x̂0 and ŷij = 1(i∈ Ŝ, j ∈ Ŝ) x̂0, for

the Assortment LP, the solution (x̂0, x̂, ŷ) provides an objective value of∑
i∈N

ri

([
λθi + (1−λ)vi

]
1(i∈ Ŝ) +λθi

∑
j∈N

vj 1(i∈ Ŝ, j ∈ Ŝ)

)
x̂0

=
∑
i∈N

ri

([
λθi + (1−λ)vi

]
+λθi

∑
j∈N

vj 1(j ∈ Ŝ)

)
1(i∈ Ŝ) x̂0

=
∑
i∈N

ri

(
λθi (1 +V (Ŝ)) + (1−λ)vi

)
1(i∈ Ŝ) x̂0 =

∑
i∈N

ri

(
λθi + (1−λ)

vi

1 +V (Ŝ)

)
1(i∈ Ŝ), (1)

which is the objective function of the Mixture problem evaluated at Ŝ. Thus, given a solution Ŝ to

the Mixture problem, we can construct a feasible solution (x̂0, x̂, ŷ) to the Assortment LP and the

objective values provided by the two solutions for their respective problems match. To show that

the Assortment LP is equivalent to the Mixture problem, we need to show the converse statement as

well, which is what we do next. In the chain of equalities above, observe that collecting the terms

λθi and λθi
∑

j∈N vj 1(j ∈ Ŝ) as λθi(1 + V (Ŝ)) and noting that x̂0 = 1

1+V (Ŝ)
, we get the purchase

probability of product i in the independent demand segment.

To establish the converse statement, we use the next lemma, which shows an important property

of the basic feasible solutions to the Assortment LP. The proof is in Appendix D.
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Lemma 3.1 (Extreme Point Solutions) Let (x̂0, x̂, ŷ) be a basic feasible solution to the

Assortment LP. Then, we have x̂i ∈ {0, x̂0} for all i∈N .

In the next theorem, we use Lemma 3.1 to show that we can obtain an optimal solution to the

Mixture problem by using an optimal solution to the Assortment LP.

Theorem 3.2 (LP Formulation) For a basic optimal solution (x∗0,x
∗,y∗) to the Assortment LP,

let S∗ = {i∈N : x∗i > 0}. Then, S∗ is an optimal solution to the Mixture problem.

Proof. Let Ŝ be an optimal solution to the Mixture problem providing the optimal objective value ẑ

and z∗LP be the optimal objective value of the Assortment LP. In (1), given the solution Ŝ to the

Mixture problem, we construct a feasible solution to the Assortment LP with the objective value of ẑ,

so z∗LP ≥ ẑ. On the other hand, by Lemma 3.1, we have x∗i = x∗0 for all i ∈ S∗ and x∗i = 0 for

all i∈N \S∗. Since (x∗0,x
∗,y∗) is a feasible solution to the Assortment LP, by the first constraint, we

get x∗0 +
∑

i∈S∗ vi x
∗
0 = 1, so x∗0 = 1

1+V (S∗) = x∗i for all i∈ S∗. In this case, by the last two constraints,

we also get y∗ij ≤ 1
1+V (S∗) for all i, j ∈ S∗. Lastly, if i 6∈ S∗ or j 6∈ S∗, then x∗i = 0 or x∗j = 0, so we

have y∗ij = 0. Let Q∗ = {i ∈ S∗ : ri < 0} and recall that z∗LP is the optimal objective value of the

Assortment LP, whereas ẑ is the optimal objective value of the Mixture problem. Noting that x∗i = 0

when i 6∈ S∗ and y∗ij = 0 when i 6∈ S∗ or j 6∈ S∗, evaluating the objective function of the Assortment

LP at its optimal solution (x∗0,x
∗,y∗), we get

z∗LP =
∑
i∈S∗

ri

([
λθi + (1−λ)vi

]
x∗i +λθi

∑
j∈S∗

vj y
∗
ij

)

=
∑

i∈S∗\Q∗
ri

([
λθi + (1−λ)vi

]
x∗i +λθi

∑
j∈S∗

vj y
∗
ij

)
+
∑
i∈Q∗

ri

([
λθi + (1−λ)vi

]
x∗i +λθi

∑
j∈S∗

vj y
∗
ij

)
(a)

≤
∑

i∈S∗\Q∗
ri

(
λθi + (1−λ)vi

1 +V (S∗)
+λθi

∑
j∈S∗

vj
1 +V (S∗)

)
+
∑
i∈Q∗

ri

([
λθi + (1−λ)vi

]
x∗i +λθi

∑
j∈S∗

vj y
∗
ij

)

=
∑

i∈S∗\Q∗
ri

(
λθi + (1−λ)

vi
1 +V (S∗)

)
+
∑
i∈Q∗

ri

([
λθi + (1−λ)vi

]
x∗i +λθi

∑
j∈S∗

vj y
∗
ij

)

≤
∑

i∈S∗\Q∗
ri

(
λθi + (1−λ)

vi
1 +V (S∗ \Q∗)

)
+
∑
i∈Q∗

ri

([
λθi + (1−λ)vi

]
x∗i +λθi

∑
j∈S∗

vj y
∗
ij

)
(b)

≤ ẑ+
∑
i∈Q∗

ri

([
λθi + (1−λ)vi

]
x∗i +λθi

∑
j∈S∗

vj y
∗
ij

)
Here, (a) holds since ri ≥ 0 and x∗i = 1

1+V (S∗) for all i∈ S∗ \Q∗ and y∗ij ≤ 1
1+V (S∗) , whereas (b) holds

since S∗ \Q∗ is a feasible but not necessarily an optimal solution to the Mixture problem.

For the moment, assume that Q∗ 6= ∅. Using the definition of S∗ and Q∗, we have x∗i > 0 and

r∗i < 0 for all i ∈Q∗. Thus, using the fact that λθi + (1− λ)vi > 0, along with Q∗ 6= ∅, we obtain
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i∈Q∗ ri ((λθi + (1−λ)vi)x

∗
i +λθi

∑
j∈S∗ vj y

∗
ij)< 0, in which case, the chain of inequalities above

yields z∗LP < ẑ, contradicting the fact that z∗LP ≥ ẑ, which we established at the beginning of the

proof. Therefore, we must have Q∗ = ∅. Since Q∗ = ∅, all of the sums over the index set Q∗ in

the chain of inequalities are zero, so noting that zLP ≥ ẑ, all of the inequalities in the chain of

inequalities above must hold as equalities. In particular, since (b) holds as an equality and Q∗ =∅,

the objective value provided by the solution S∗ \Q∗ = S∗ for the Mixture problem is ẑ, which implies

that S∗ is an optimal solution to the Mixture problem.

The proof above also shows that the Mixture problem and the Assortment LP have the same

optimal objective values. In Theorem 3.2, the revenues of the products can be negative. We will

use this theorem when studying network revenue management problems, where the revenues of

the products will be adjusted by the opportunity costs of the capacities used by the products, so

some products may have negative revenues. When we focus only on solving the Mixture problem,

we can a priori drop from consideration all products with non-positive revenues, since the expected

revenue from any assortment does not degrade when we drop such products.

Characterization of an Optimal Assortment:

We give a characterization of an optimal solution to the Mixture problem to intuitively suggest

that there exists an optimal solution that prioritizes product i when θi/vi is larger. This result also

allows us to give a combinatorial algorithm for the Mixture problem. In the rest of this section,

if there are multiple optimal solutions to the Mixture problem, then we choose any one that has

the largest cardinality. Furthermore, for notational brevity, we let R(S) =
∑
i∈S ri vi

1+V (S)
, which is the

expected revenue from the multinomial logit segment when we offer the assortment S. In the next

theorem, we give a characterization of an optimal solution.

Theorem 3.3 (Characterization of an Optimal Assortment) Letting S∗ be an optimal

solution to the Mixture problem with the largest cardinality, we have

S∗ =

{
i∈N : λri θi ≥ (1−λ)vi

R(S∗)− ri
1 +V (S∗)

}
.

Before we give a proof for the theorem above, we consider its implications. Rearranging the

terms, we have λri θi ≥ (1 − λ)vi
R(S∗)−ri
1+V (S∗) if and only if ri

[
1 + λθi

(1−λ)vi
(1 + V (S∗))

]
≥ R(S∗), in

which case, by the theorem above, we have S∗ =
{
i∈N : ri

[
1 + λθi

(1−λ)vi
(1 +V (S∗))

]
≥R(S∗)

}
. So,

for two products i and j such that ri = rj but θi/vi ≥ θj/vj, if we have j ∈ S∗, then i ∈ S∗ as

well. Thus, among products having the same revenue, an optimal solution prioritizes the product

that has the larger independent demand probability to preference weight ratio. Similarly, for two

products i and j such that θi/vi = θj/vj but ri ≥ rj, if we have j ∈ S∗, then we have i∈ S∗ as well.
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In other words, among products having the same independent demand probability to preference

weight ratio, an optimal solution prioritizes the product that has the larger revenue.

We can also use Theorem 3.3 to construct a combinatorial algorithm for the Mixture problem. By

the discussion in the previous paragraph, there exists an optimal solution S∗ to the Mixture

problem that satisfies S∗ =
{
i∈N : ri

[
1 + λθi

(1−λ)vi
(1 +V (S∗))

]
≥R(S∗)

}
. If we knew the value of

V (S∗), then letting t = V (S∗), we could index the products such that r1(1 + λθ1
(1−λ)v1

(1 + t)) ≥

r2(1 + λθ2
(1−λ)v2

(1 + t))≥ . . .≥ rn(1 + λθn
(1−λ)vn

(1 + t)), in which case, an optimal assortment would be

of the form {1, . . . , i} for some i ∈N . Thus, we would obtain an optimal assortment by checking

the expected revenue from O(n) candidate assortments, each of which is of the form {1, . . . , i} for

some i∈N . To deal with the fact that we do not know the value of V (S∗), we adopt an approach

from Rusmevichientong et al. (2010). Note that gi(t) = ri(1 + λθi
(1−λ)vi

(1 + t)) is a linear function

of t. The n lines {gi(·) : i∈N} intersect atO(n2) points. Let t1 ≤ t2 ≤ . . .≤ tK withK =O(n2) be the

intersection points of the n lines {gi(·) : i∈N}. That is, for each k= 1, . . . ,K, we have gi(t
k) = gj(t

k)

for some i, j ∈ N . Letting t0 = 0 and tK+1 =∞ for notational uniformity, for each k = 0, . . . ,K,

if t takes values in the interval [tk, tk+1), then the ordering between the values {gi(t) : i∈N}

does not change. To capture this ordering, let the permutation (σk1 , . . . , σ
k
n)∈Nn be such that

gσk1
(t)≥ gσk2 (t)≥ . . .≥ gσkn(t) for all t∈ [tk, tk+1). In this case, if we know that V (S∗)∈ [tk, tk+1), then

an optimal assortment is of the form {σk1 , . . . , σki } for some i∈N . Thus, we can obtain the optimal

assortment by checking the expected revenue from O(n3) candidate assortments, each of which

is of the form {σk1 , . . . , σki } for some i ∈N , k = 0, . . . ,K. Below is the proof of Theorem 3.3. The

auxiliary lemma that we give for the proof also becomes useful later in the paper.

Proof of Theorem 3.3. In the next lemma and throughout the rest of the paper, we let

A(S) =
∑
i∈S ri vi
V (S)

, which we view as a weighted average of the revenues of the products in S.

Lemma 3.4 (Comparison with Independent Demand Revenue) Letting S∗ be an optimal

solution to the Mixture problem, for any K,L⊆N with K ∩S∗ =∅ and L⊆ S∗, we have

λ
∑
i∈K

θi ri ≤ (1−λ)V (K)
R(S∗)−A(K)

1 +V (S∗ ∪K)
and λ

∑
i∈L

θi ri ≥ (1−λ)V (L)
R(S∗ \L)−A(L)

1 +V (S∗)
.

Proof. For any S,K ⊆N with K ∩ S = ∅, we can express R(S ∪K) as a convex combination of

R(S) and A(K). In particular, noting the definitions of R(S) and A(S), we have

R(S ∪K) =

∑
i∈S ri vi +

∑
i∈K ri vi

1 +V (S ∪K)
=

1 +V (S)

1 +V (S ∪K)
R(S) +

V (K)

1 +V (S ∪K)
A(K).

Since K ∩ S = ∅, we have 1+V (S)

1+V (S∪K)
+ V (K)

1+V (S∪K)
= 1, in which case, the chain of equalities above

implies that R(S∪K) is a convex combination of R(S) and A(K). We write the objective function



14 Yufeng Cao, Paat Rusmevichientong, Huseyin Topaloglu; Mixture of Independent Demand and Multinomial Logit Models

of the Mixture problem as λ
∑

i∈S ri θi + (1−λ)R(S). Since S∗ is an optimal, but S∗ ∪K is only a

feasible, solution to the Mixture problem, we obtain

0 ≥

{
λ
∑

i∈S∗∪K

ri θi + (1−λ)R(S∗ ∪K)

}
−

{
λ
∑
i∈S∗

ri θi + (1−λ)R(S∗)

}
(a)
= λ

∑
i∈K

ri θi + (1−λ)

{
1 +V (S∗)

1 +V (S∗ ∪K)
R(S∗) +

V (K)

1 +V (S∗ ∪K)
A(K)−R(S∗)

}
(b)
= λ

∑
i∈K

ri θi− (1−λ)V (K)
R(S∗)−A(K)

1 +V (S∗ ∪K)
,

where (a) follows by noting that
∑

i∈S∗∪K ri θi−
∑

i∈S∗ ri θi =
∑

i∈K ri θi and expressing R(S∗ ∪K)

as a convex combination of R(S∗) and A(K), whereas (b) follows by rearranging the terms.

The chain of inequalities above shows that the first inequality in the lemma holds. The second

inequality follows similarly by expressing R(S∗) as a convex combination of R(S∗ \L) and A(L).

Here is the proof of Theorem 3.3. Let H =
{
i ∈N : λri θi ≥ (1− λ)vi

R(S∗)−ri
1+V (S∗)

}
. First, we show

that if i∈ S∗, then i∈H. Consider some i∈ S∗. Since ri θi ≥ 0, by the definition of H, if ri ≥R(S∗),

then we have i ∈ H, as desired. Thus, we focus on the case with ri ≤ R(S∗). By the argument

at the beginning of the proof of Lemma 3.4, we can express R(S∗) as a convex combination of

ri and R(S∗\{i}), in which case, since ri ≤ R(S∗), we must have ri ≤ R(S∗) ≤ R(S∗\{i}). Also,

since i ∈ S∗, we have {i} ⊆ S∗. Thus, using the second inequality in Lemma 3.4 with L= {i}, we

get λθi ri ≥ (1−λ)vi
R(S∗\{i})−ri

1+V (S∗) ≥ (1−λ)vi
R(S∗)−ri
1+V (S∗) , where the last equality holds since we have

R(S∗)≤R(S∗ \ {i}). The last chain of inequalities implies that i∈H.

Second, we show that if i 6∈ S∗, then i 6∈H. Consider some i 6∈ S∗. Since S∗ is an optimal solution to

the Mixture problem with the largest cardinality and i 6∈ S∗, we have λ
∑

j∈S∗ rj θj +(1−λ)R(S∗)>

λ
∑

j∈S∗∪{i} rj θj + (1−λ)R(S∗∪{i}), which is equivalent to R(S∗)> λ
1−λ ri θi+R(S∗∪{i}). Thus,

we have R(S∗)>R(S∗∪{i}). By the argument at the beginning of the proof of Lemma 3.4, we can

express R(S∗ ∪{i}) as a convex combination of R(S∗) and ri, so noting that R(S∗ ∪{i})<R(S∗),

we must have ri ≤R(S∗ ∪{i})<R(S∗). Also, since i 6∈ S∗, using the first inequality in Lemma 3.4

with K = {i}, we get λθi ri ≤ (1− λ)vi
R(S∗)−ri

1+V (S∗∪{i}) < (1− λ)vi
R(S∗)−ri
1+V (S∗) , where the last inequality

holds since R(S∗)> ri. The last chain of inequalities implies that i 6∈H.

Our combinatorial algorithm allows us to solve the Mixture problem without using an LP, but

the Assortment LP is useful when we work with network revenue management problems.

4. Effect of Customer Segment Mix and Efficient Assortments

In this section, we give sensitivity results for the optimal solution for the Mixture problem. First,

we show that the optimal solution to the Mixture problem becomes a larger assortment in a nested
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fashion when the the likelihood of observing a customer in the independent demand segment

grows. In particular, for α > β, if we solve the Mixture problem with λ = α and λ = β, then the

optimal solution with λ= α includes all the products in the optimal solution with λ= β. Second,

we show that the optimal solution to the Mixture problem becomes a larger assortment in a nested

fashion when the revenue of each product increases by the same additive amount. The latter result

has important implications when we want to find assortments that trade off expected revenue

with the probability of purchase, as well as when we implement policies in dynamic assortment

optimization problems through protection levels. Throughout this section, we focus on the Mixture

problem after increasing the revenue of each product by δ, which is given by

max
S⊆N

{∑
i∈S

(ri + δ)

(
λθi + (1−λ)

vi
1 +V (S)

)}
. (Parametric Mixture)

As a function of (λ, δ), let S∗(λ, δ) be an optimal solution to the problem above. If there are multiple

optima, then we choose any one that has the largest cardinality.

In the next theorem, we examine how an optimal solution to the Parametric Mixture problem

changes as a function of λ and δ.

Theorem 4.1 (Sensitivity of the Optimal Assortment) There exists an optimal solution

S∗(λ, δ) to the Parametric Mixture problem that satisfies the following properties.

(a) If α> β, then S∗(α,0)⊇ S∗(β,0).

(b) δ > 0, then S∗(λ, δ)⊇ S∗(λ,0).

Before we give a proof for the theorem, we discuss its implications. To interpret the first part

of the theorem, note that the customers in the independent demand segment are not willing to

make substitutions. In particular, if such a customer is interested in product i and this product is

unavailable, then she leaves without a purchase. In that sense, the customers in the independent

demand segment are inflexible. By the first part of the theorem, as the relative size of the inflexible

customer segment increases, to ensure that the customers in this segment can find the product

they are interested in, the optimal assortment becomes larger.

To interpret the second part of the theorem, letting Rev(S) =
∑

i∈S ri
(
λθi + (1 − λ) vi

1+V (S)

)
and Pur(S) =

∑
i∈S

(
λθi + (1−λ) vi

1+V (S)

)
, the objective function of the Parametric Mixture problem

is Rev(S) + δPur(S). Thus, we maximize a linear combination of Rev(S) and Pur(S) in the

Parametric Mixture problem. Observe that Rev(S) is the expected revenue from assortment S,

whereas Pur(S) is the total purchase probability from assortment S. Maximizing Rev(S) ensures

that the expected revenue that the firm obtains is largest, whereas maximizing Pur(S) ensures that

the total probability that a customer purchases a product is largest. The parameter δ characterizes
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Figure 1 Efficient frontier with n = 8, (r1, . . . , r8) = (0.96,0.81,0.34,0.29,0.19,0.09,0.04,0.03), (θ1, . . . , θ8) =

(0.15,0.20,0.09,0,0.16,0.15,0.07,0.18), (v1, . . . , v8) = (0.40,0.35,0.54,0.10,0.11,0.21,0.12,0.04), λ= 3
25

.

the weight that we put on the total purchase probability relative to the expected revenue. Solving

the problem maxS⊆N
{
Rev(S) + δPur(S)

}
for all possible values of δ, we can construct an efficient

frontier of all attainable expected revenue-total purchase probability pairs. By the second part of

the theorem, the Pareto-efficient assortments on the efficient frontier are nested, one assortment

always being included in another one. Since there can be at most n such nested assortments, there

can be at most n assortments on the efficient frontier. Also, the Pareto-efficient assortments get

larger as the weight that we put on the total purchase probability increases. In Figure 1, we consider

a problem instance with 8 products and show the expected revenue-total purchase probability pairs

for the assortments on the efficient frontier. We label each assortment by the products that are

included in the assortment. The assortments on the efficient frontier are nested.

Having nested Pareto-efficient assortments has other implications. Talluri and van Ryzin (2004)

investigate dynamic assortment optimization problems with a single resource, where we offer

assortments of products to customers arriving over time and the sale of a product generates a

revenue depending on the purchased product and consumes one unit of capacity of the resource. If

the assortments on the efficient frontier are nested, then we can implement the optimal policy by

associating a protection level for each product. In this case, it is optimal to offer a product only

when the remaining capacity of the resource exceeds the protection level of the product. On the

other hand, Ma (2019) studies assortment auctions, where each buyer submits a list of options she

is willing to purchase and the seller allocates a limited amount of inventory to buyers under only

probabilistic information about the preferences of the buyers. Having nested assortments on the
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efficient frontier plays an important role in giving a Myersonian characterization of the optimal

mechanism in these auctions.

Independent demand segment corresponds to the inflexible customers, so a possible conjecture is

that the optimal expected revenue in the Parametric Mixture problem decreases as the relative size of

the independent demand segment, measured by λ, increases. We can come up with counterexamples

to demonstrate that the optimal expected revenue is neither increasing nor decreasing in λ. In

particular, consider a problem instance with n= 3, (r1, r2, r3) = (15,10,6), (θ1, θ2, θ2) = (0.3,0.3,0.4)

and (v1, v2, v3) = (1,2,10). Letting z∗λ be the optimal objective value of the Parametric Mixture

problem as a function of λ, we have z∗0.1 = 8.63, z∗0.4 = 8.25 and z∗0.7 = 8.97. As λ increases from

0.1 to 0.4, the optimal expected revenue decreases, but as λ increases from 0.4 to 0.7, the optimal

expected revenue increases. In the rest of this section, we give a proof for Theorem 4.1. Lemma 3.4

used in the proof of Theorem 3.3 also plays an important role in the proof of Theorem 4.1.

Proof of Theorem 4.1. To show the first part, let Sα = S∗(α,0) and Sβ = S∗(β,0). We

need to show that Sα ⊇ Sβ. Letting Θ(S) =
∑

i∈S ri θi for notational brevity, the objective

function of the Parametric Mixture problem with δ = 0 is λΘ(S) + (1−λ)R(S). We claim that

R(Sβ)≥R(Sα). Since Sα is an optimal solution for the Parametric Mixture problem with λ= α and

δ= 0, we have αΘ(Sα) + (1−α)R(Sα)≥ αΘ(Sβ) + (1−α)R(Sβ). By the same argument, we have

βΘ(Sβ) + (1−β)R(Sβ)≥ βΘ(Sα) + (1−β)R(Sα). We multiply the first inequality with β and the

second one with α, so adding them yields
[
α (1−β)−β (1−α)

]
R(Sβ)≥

[
α (1−β)−β (1−α)

]
R(Sα).

Since α> β, we have α (1−β)>β (1−α), so the last inequality yields R(Sβ)≥R(Sα) and the claim

holds. Let K = Sβ \Sα. If K =∅, then Sα ⊇ Sβ, which is the desired result. To get a contradiction,

assume that K 6=∅. Next, we claim that R(Sβ \K)−A(K)≥R(Sα)−A(K)> 0.

Since Sα is an optimal solution with the largest cardinality for the Parametric Mixture problem

with λ= α and δ = 0, we have αΘ(Sα) + (1−α)R(Sα)>αΘ(Sα ∪K) + (1−α)R(Sα ∪K), which

yields (1−α)(R(Sα)−R(Sα ∪K))>α
∑

i∈K ri θi > 0, so R(Sα)>R(Sα ∪K). By the argument at

the beginning of the proof of Lemma 3.4, R(Sα ∪K) is a convex combination of R(Sα) and A(K),

so noting that R(Sα ∪K)<R(Sα), we must have A(K)≤R(Sα ∪K)<R(Sα). In this case, since

R(Sβ) ≥ R(Sα) by the claim in the previous paragraph, the last chain of inequalities also yields

A(K) ≤ R(Sβ). Similarly, R(Sβ) is a convex combination of R(Sβ \K) and A(K), so noting the

fact that A(K) ≤ R(Sβ), we must have A(K) ≤ R(Sβ) ≤ R(Sβ \K). Collecting the discussion so

far in this paragraph together, we have A(K)≤R(Sα ∪K)<R(Sα)≤R(Sβ)≤R(Sβ \K), which

implies that R(Sβ\K)−A(K)≥R(Sα)−A(K)> 0 and the claim holds.

Since K = Sβ \Sα, we Sα ∪K ⊇ Sβ, which implies that 1 + V (Sα ∪K) ≥ 1 + V (Sβ) > 0. Thus,

noting that R(Sβ \K) − A(K) ≥ R(Sα) − A(K) > 0, we get R(Sα)−A(K)

1+V (Sα∪K)
≤ R(Sβ\K)−A(K)

1+V (Sβ)
. On the
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other hand, since K = Sβ\Sα, we get K ∩Sα =∅ and K ⊆ Sβ, so the first inequality in Lemma 3.4

with λ= α and S∗ = Sα and the second inequality in Lemma 3.4 with λ= β and S∗ = Sβ yield

αΘ(K)

(1−α)V (K)
≤ R(Sα)−A(K)

1 +V (Sα ∪K)
and

βΘ(K)

(1−β)V (K)
≥ R(Sβ \K)−A(K)

1 +V (Sβ)
.

Since α> β, we have α
1−α >

β
1−β , so by the two inequalities above, we get R(Sα)−A(K)

1+V (Sα∪K)
>

R(Sβ\K)−A(K)

1+V (Sβ)
,

contradicting the inequality R(Sα)−A(K)

1+V (Sα∪K)
≤ R(Sβ\K)−A(K)

1+V (Sβ)
at the beginning of this paragraph.

To show the second part, we follow a similar outline that also builds on Lemma 3.4. We defer

the details of the proof of the second part to Appendix E.

5. Assortment Optimization under a Capacity Constraint

We consider a capacitated version of the Mixture problem, where each product consumes a

fixed amount of capacity and there is a limit on the total capacity consumption of the offered

products. We show that the capacitated version of the Mixture problem is NP-hard even when

the capacity consumption of each product is one so that we limit the number of products in the

offered assortment. Following this complexity result, we give an FPTAS for the capacitated version

of the Mixture problem. We use ci to denote the capacity consumption of product i. If we offer the

assortment S, then the total capacity consumption of the offered products is
∑

i∈S ci. Letting C

be the limit on the total capacity consumption of offered products, we consider the problem

max
S ⊆N :∑
i∈S ci ≤C

{∑
i∈S

ri

(
λθi + (1−λ)

vi
1 +V (S)

)}
. (Capacitated Mixture)

If we have ci = 1 for all i ∈N and C is an integer, then the Capacitated Mixture problem finds an

assortment that maximizes the expected revenue while offering at most C products.

To study the complexity of the problem above, we use the following feasibility version of the

Capacitated Mixture problem, which we refer to as the Mixture Feasibility problem.

Mixture Feasibility: Given an instance of the Capacitated Mixture problem and a threshold K,

is there an assortment S ⊆N with
∑

i∈S ci ≤C that provides an expected revenue of K or more?

We use a reduction from the following Partition problem, which is a well-known NP-hard

problem (Section A3.2, Garey and Johnson 1979).

Partition: Given a set of items N = {1, . . . , n} and their rational-valued weights {wi : i ∈ N}

that satisfy
∑

i∈N wi = 2, is there a subset S ⊆N with |S|= n/2 such that
∑

i∈S wi = 1?

In the next theorem, we show that the Capacitated Mixture problem is NP-hard even when ci = 1

for all i∈N so that we limit the number products in the offered assortment.
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Theorem 5.1 (Complexity under a Cardinality Constraint) The Mixture Feasibility

problem is NP-complete even when we have ci = 1 for all i∈N .

Proof. Given an instance of Partition with the set of items N = {1, . . . , n} and weights {wi : i∈N},

we define an instance Mixture Feasibility as follows. The set of products is N . The revenue

and preference weight of product i are ri = 1 and vi =wi. Letting Vmax = maxi∈N vi, the purchase

probability of product i is θi = Vmax− vi. The relative size of the independent demand segment is

λ= 1
5
. The capacity consumption of product i is ci = 1. The limit on the capacity consumption is

C = n
2
, so we offer at most n/2 products. Lastly, the threshold is K = 1

5
+ 1

5
C Vmax. We show that

there exists an assortment S ⊆N with |S| ≤C that provides an expected revenue of K or more if

and only if there exists a subset of items S ⊆N with |S|= n/2 such that
∑

i∈S wi = 1.

Noting that ri = 1 for all i ∈ N and λ = 1
5
, the objective function of the Capacitated Mixture

problem is given by 1
5

∑
i∈S θi + 4

5

V (S)

1+V (S)
. Therefore, since x

1+x
is increasing in x, there exists an

assortment S ⊆N with |S| ≤C that provides an expected revenue of K or more if and only if there

exists an assortment S ⊆N with |S|= C that provides an expected revenue of K or more. Since

θi = Vmax−vi and we need to offer an assortment S ⊆N with |S|=C, the objective function of the

Capacitated Mixture problem becomes 1
5

∑
i∈S(Vmax− vi) + 4

5

V (S)

1+V (S)
= 1

5
C Vmax− 1

5
V (S) + 4

5

V (S)

1+V (S)
.

Thus, noting that K = 1
5

+ 1
5
C Vmax, an assortment S ⊆ N with |S| = C provides an expected

revenue of K or more if and only if a subset of items S ⊆N with |S|=C satisfies

1

5
C Vmax−

1

5
V (S) +

4

5

V (S)

1 +V (S)
≥ 1

5
+

1

5
C Vmax.

The inequality above holds if and only if V (S)

1+V (S)
≥ 1

4
(1 + V (S)). Arranging the terms, the last

inequality is equivalent to (1−V (S))2 ≤ 0, which holds if and only if V (S) = 1.

By the discussion in the previous paragraph, there exists an assortment S ⊆N with |S| ≤C that

provides an expected revenue of K or more if and only if there exists a subset of items S ⊆N with

|S|= C such that V (S) = 1. Noting that C = n/2 and V (S) =
∑

i∈S vi =
∑

i∈S wi, it follows that

there exists an assortment S ⊆N with |S| ≤C that provides an expected revenue of K or more if

and only if there exists a subset of items S ⊆N with |S|= n/2 such that
∑

i∈S wi = 1

Motivated by this complexity result, we give an FPTAS for the Capacitated Mixture problem.

Our FPTAS continues to work when we do not necessarily have ci = 1 for all i∈N .

Fully Polynomial-Time Approximation Scheme:

We borrow from ideas for developing an FPTAS for the knapsack problem (Desir et al. 2016). In

the rest of this section, we outline the steps of our FPTAS and defer the details to Appendix F. For
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fixed (p, q, s) ∈ R3
+, we consider finding an assortment S with the smallest capacity consumption

that satisfies
∑

i∈S ri θi ≥ q,
∑

i∈S ri vi ≥ q and
∑

i∈S vi ≤ s, yielding the problem

G(p, q, s) = min
S⊆N

{∑
i∈S

ci :
∑
i∈S

ri θi ≥ p,
∑
i∈S

ri vi ≥ q,
∑
i∈S

vi ≤ s

}
. (2)

If the assortment S is feasible to the problem above, then we have
∑

i∈S ri θi ≥ p and
∑
i∈S ri vi

1+
∑
i∈S vi

≥ q
1+s

,

so the assortment S yields an expected revenue of at least p from the independent demand segment

and an expected revenue of at least q
1+s

from the multinomial logit one. Letting Θmin = mini∈N θi,

Rmin = mini∈N ri, Rmax = maxi∈N ri, Vmin = mini∈N vi and Vmax = maxi∈N vi, for any non-

empty assortment S, we have
∑

i∈S ri θi ∈ [RminΘmin,Rmax],
∑

i∈S ri vi ∈ [RminVmin, nRmaxVmax]

and
∑

i∈S vi ∈ [Vmin, nVmax]. In this case, using a ∧ b = min{a, b} and a ∨ b = max{a, b},

letting ν = (Rmin ∧ 1) (Vmin ∧Θmin) and ν = (Rmax ∨ 1) (nVmax ∨ 1) for notational brevity, we have∑
i∈S ri θi ∈ [ν, ν],

∑
i∈S ri vi ∈ [ν, ν] and

∑
i∈S vi ∈ [ν, ν]. Therefore, it is enough to consider the

values of (p, q, s)∈ [ν, ν]3 in problem (2). We follow three steps.

In the first step, we relate problem (2) to the Capacitated Mixture problem. In particular, noting

that G(p, q, s) is the optimal objective value of problem (2), if G(p, q, s) ≤ C, then there exists

an assortment S that satisfies
∑

i∈S ci ≤ C and this assortment provides expected revenues of at

least p and q
1+s

from the two segments, yielding an objective value of at least λp+ (1−λ) q
1+s

for the Capacitated Mixture problem. In this case, letting (p∗, q∗, s∗) be an optimal solution to the

problem max(p,q,s)∈[ν,ν]3

{
λp+ (1−λ) q

1+s
: G(p, q, s)≤C

}
, we can show that λp∗+ (1− λ) q∗

1+s∗ is

the optimal objective value of the Capacitated Mixture problem. Also, if S∗ is an optimal solution

to problem (2) with (p, q, s) = (p∗, q∗, s∗), then S∗ is an optimal solution to the Capacitated Mixture

problem. However, computing (p∗, q∗, s∗) is difficult since G(p, q, s) is not convex in (p, q, s).

In the second step, we build a geometric grid over the interval [ν, ν] and consider the values of

(p, q, s) in the geometric grid. Using b·c and d·e to, respectively, denote the round down and up

functions, for a fixed accuracy parameter α> 0, we consider grid points that are integer powers of

1 +α, which are given by Grid= {(1 +α)k : k= b log ν

log(1+α)
c, . . . , d log ν

log(1+α)
e}. Letting (p̂, q̂, ŝ)∈Grid3 be

such that p̂≤ p∗ ≤ (1+α) p̂, q̂≤ q∗ ≤ (1+α) q̂ and 1
1+α

ŝ≤ s∗ ≤ ŝ, we can show that if Ŝ is an optimal

solution to problem (2) with (p, q, s) = (p̂, q̂, ŝ), then the expected revenue from the assortment Ŝ

deviates from the optimal objective value of the Capacitated Mixture problem by at most a factor

of 1− 3α and we have
∑

i∈Ŝ ci ≤C. However, solving problem (2) even at fixed (p, q, s) is difficult

since this problem is at least as difficult as the knapsack problem, which is NP-hard.

In the third step, we use a dynamic program to solve an approximate version of problem (2)

with (p, q, s) = (p̂, q̂, ŝ). Expressing the first constraint in problem (2) as
∑

i∈S
n
αp
ri θi ≥ n

α
, in the
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approximate version of problem (2), we replace the first constraint with
∑

i∈Sd
n
αp
ri θie ≥ bnαc.

Similarly, we replace the second constraint with
∑

i∈Sd
n
αq
ri vie ≥ bnαc Lastly, expressing the third

constraint in problem (2) as
∑

i∈S
n
αs
vi ≤ n

α
, in the approximate version of problem (2), we replace

the third constraint with
∑

i∈Sb
n
αs
vic ≤ dnαe. In this case, the constraint coefficients and right

side values of all constraints in the approximate version of problem (2) are integers, which allows

us to solve the approximate version by using a dynamic program. Letting (p̂, q̂, ŝ) ∈ Grid3 be as

in the previous paragraph satisfying p̂ ≤ p∗ ≤ (1 + α) p̂, q̂ ≤ q∗ ≤ (1 + α) q̂ and 1
1+α

ŝ≤ s∗ ≤ ŝ,

we can show that if Ŝ is an optimal solution to the approximate version of problem (2) with

(p, q, s) = (p̂, q̂, ŝ), then the expected revenue from the assortment Ŝ deviates from the optimal

objective value of the Capacitated Mixture problem by at most a factor of 1− 6α.

By the definitions of ν and ν, there are O
(

1
log(1+α)

log
(

(Rmax∨1) (nVmax∨1)

(Rmin∧1)(Vmin∧Θmin)

))
points in Grid. In

the next theorem, counting the number of operations in the steps above, we give our FPTAS.

Theorem 5.2 (FPTAS under a Capacity Constraint) Letting z∗ be the optimal objective

value of the Capacitated Mixture problem, there exists an algorithm, where for any ε ∈ (0,1), the

algorithm runs in O
(
n4

ε6
log3

(
(Rmax∨1) (nVmax∨1)

(Rmin∧1)(Vmin∧Θmin)

))
operations and returns an assortment that is

feasible to the Capacitated Mixture problem with an expected revenue of at least (1− ε)z∗.

The proof of Theorem 5.2 is in Appendix F. Another useful feature of our FPTAS is that we

can build on our FPTAS to develop effective heuristics and bounds, as discussed next.

Practical Heuristics and Bounds on the Optimal Expected Revenue:

Using the decision variables x = {xi : i ∈ N} ∈ {0,1}n, where xi = 1 if and only if we offer

product i, we consider a relaxation of problem (2) given by the LP

G̃(p, q, s) = min
x∈[0,1]n

{∑
i∈N

ci xi :
∑
i∈N

ri θi xi ≥ p,
∑
i∈N

ri vi xi ≥ q,
∑
i∈N

vi xi ≤ s

}
. (3)

If we impose the constraint x ∈ {0,1}n on the decision variables, then the problem above is

equivalent to problem (2). Since we impose the constraint x ∈ [0,1]n, we view the problem above

as an LP relaxation of (2). Other than the upper bound of one on the decision variables, there are

three constraints in problem (3). Thus, it is a simple LP exercise to show that there exist at most

three fractional decision variables in a basic optimal solution to problem (3). Thus, after solving

the LP in (3), we can construct eight possible binary solutions by rounding the fractional decision

variables. In particular, we choose a subset of the three fractional decision variables, round them

down to zero and round the rest up to one. Naturally, if there are fewer than three fractional

decision variables, then we can generate fewer than eight binary solutions. Motivated by this

observation, we use the following approach to construct a practical heuristic for the Capacitated
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Mixture problem. For each (p, q, s) ∈ Grid3, we solve the LP in (3). Letting x∗(p, q, s) be a basic

optimal solution corresponding to the grid point (p, q, s), using this solution, we construct at most

eight binary solutions as described earlier in this paragraph, which we denote by x̂k(p, q, s) for

k= 1, . . . ,8. In this case, considering all points in the geometric grid, the heuristic comes up with

the binary solutions {xk(p, q, s) : (p, q, s)∈Grid3, k= 1, . . . ,8}. Among these solutions, the heuristic

returns the one that provides the largest expected revenue while satisfying the constraint that the

total capacity consumption of the offered products does not exceed C.

To check the optimality gap of the heuristic in the previous paragraph, we also use problem (2)

to construct an upper bound on the optimal objective value of the Capacitated Mixture problem.

We consider any K + 1 points ν = p̃1 < . . . < p̃K+1 = ν, any L+ 1 points ν = q̃1 < . . . < q̃L+1 = ν

and any M + 1 points ν = s̃1 < . . . < s̃M+1 = ν. Noting that G̃(p, q, s) is the optimal objective value

of the LP in (3), we compute G̃(p̃k, q̃`, s̃m+1) for all k = 1, . . . ,K, ` = 1, . . . ,L, m = 1, . . . ,M . In

this case, we can show that maxk=1,...,K, `=1,...,L,m=1,...,M{λ p̃k+1 +(1−λ) q̃`+1

1+s̃m
: G̃(p̃k, q̃`, s̃m+1)≤C}

provides an upper bound on the optimal objective value of the Capacitated Mixture problem.

In Appendix G, we show that the approach described above indeed provides an upper bound

on the optimal expected revenue in the Capacitated Mixture problem. This upper bound holds for

any choice of the points {p̃1, . . . , p̃K+1}, {q̃1, . . . , q̃L+1} and {s̃1, . . . , s̃M+1}, but it gets tighter as

the separation between the points gets smaller. In the same appendix, we give a numerical study

to test the performance of the heuristic. The heuristic performs remarkably well. Comparing the

expected revenue of the solutions from the heuristic with the upper bound on the optimal expected

revenue, the average optimality gap of the heuristic comes out to be fraction of a percent.

6. Network Revenue Management

In the network revenue management setting, we have a set of resources indexed by M = {1, . . . ,m}

and a set of products indexed by N = {1, . . . , n}. The capacity of resource q is cq. There are T time

periods in the selling horizon. At each time period in the selling horizon, a customer arrives into

the system and we offer an assortment of products. If we offer the assortment S of products, then a

customer purchases product i∈ S with probability λθi + (1−λ) vi
1+V (S)

, in which case, we generate

a revenue of ri and consume aqi units of the capacity of resource q. The goal is to find a policy

to decide which assortment of products to offer to each customer so that we maximize the total

expected revenue over the selling horizon. We can formulate a dynamic program to find the optimal

policy but the state variable in this dynamic program has to keep track of the remaining capacity

of each resource, resulting in a high-dimensional state variable when the number of resources is

large. We focus on an LP approximation instead (Gallego et al. 2004, Liu and van Ryzin 2008).
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We use the decision variables w = {w(S) : S ⊆ N}, where w(S) is the probability that we offer

assortment S of products at a time period. Consider the LP

max
w∈R2n

+

{
T
∑
S⊆N

∑
i∈S

ri

(
λθi + (1−λ)

vi
1 +V (S)

)
w(S) : (Choice-Based LP)

T
∑
S⊆N

∑
i∈S

aqi

(
λθi + (1−λ)

vi
1 +V (S)

)
w(S)≤ cq ∀ q ∈M,

∑
S⊆N

w(S) = 1

}
.

Noting that
∑

i∈S ri(λθi+(1−λ) vi
v0+V (S)

) is the expected revenue at a time period during which we

offer the assortment S, the objective function is the total expected revenue over the selling horizon.

Similarly,
∑

i∈S aqi (λθi + (1−λ) vi
v0+V (S)

) is the expected capacity consumption of resource q at a

time period during which we offer the assortment S, so the first constraint ensures that the total

expected capacity consumption of a resource does not exceed its capacity. The second constraint

ensures that we offer an assortment at each time period. The number of decision variables above

increases exponentially with the number of products, so solving the Choice-Based LP almost always

requires using column generation. The column generation subproblem has the same structure as

the Mixture problem. As we discuss below, there are heuristics that use an optimal primal or dual

solution to the Choice-Based LP to decide which assortment to offer at each time period.

In a randomized offer policy, letting w∗ be an optimal solution to the Choice-Based LP, we

offer assortment S with probability w∗(S), after adjusting the offered assortment to accommodate

the availabilities of the resources (Jasin and Kumar 2012). In a bid-price policy, letting µ∗ =

{µ∗q : q ∈M} be the optimal values of the dual variables associated with the first constraint in the

Choice-Based LP, we use µ∗q to capture the opportunity cost of a unit of resource q. If a customer

purchases product i, then the opportunity cost of the resources used by product i is
∑

q∈M aqi µ
∗
q ,

so the net revenue from the purchase is ri −
∑

q∈M aqi µ
∗
q . Thus, the expected net revenue from

offering assortment S is
∑

i∈S(λθi + (1− λ) vi
1+V (S)

)(ri −
∑

q∈M aqi µ
∗
q), in which case, we offer an

assortment that maximizes this expected net revenue, once again, after adjusting the assortment

to accommodate the availabilities of the resources (Zhang and Adelman 2009).

Next, we give an equivalent formulation of the Choice-Based LP, where the numbers of decision

variables and constraints increase polynomially with the number of products and resources.

Equivalent Formulation:

Noting that we have n products and m resources, our equivalent formulation will have n2 +n+1

decision variables and 2n2 +n+m+ 1 constraints. Thus, while solving the Choice-Based LP almost
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always requires column generation, we can directly solve our equivalent formulation. Using the

decision variables (x0,x,y)∈R×Rn+n2

+ as in the Assortment LP, we consider the LP

max
(x0,x,y)∈R×Rn+n

2

+

{
T
∑
i∈N

ri

([
λθi + (1−λ)vi

]
xi +λθi

∑
j∈N

vj yij

)
: (Compact LP)

T
∑
i∈N

aqi

([
λθi + (1−λ)vi

]
xi +λθi

∑
j∈N

vj yij

)
≤ cq ∀ q ∈M,

x0 +
∑
i∈N

vi xi = 1,

xi ≤ x0 ∀ i∈N,

yij ≤ xi ∀ i, j ∈N, yij ≤ xj ∀ i, j ∈N

}
.

The objective function of the Compact LP is the total expected revenue over the selling horizon. It

turns out that we can use the expression [λθi + (1 − λ)vi]xi + λθi
∑

j∈N vj yij to capture the

expected number of purchases for product i at a time period, even though we allow offering

different assortments of products in the Choice-Based LP. The first constraint ensures that the total

expected capacity consumption of a resource does not exceed its capacity. The remaining constraints

ensure that the choices of the customers are governed by our mixture choice model. In the rest

of this section, we show that the Compact LP is equivalent to the Choice-Based LP in the sense

that we can use an optimal primal or dual solution to the Compact LP to obtain an optimal

primal or dual solution to the Choice-Based LP. In this case, we can solve the Compact LP to

implement the randomized offer, bid-price or any other policy that uses an optimal primal or

dual solution to the Choice-Based LP. Our computational results indicate that using Compact LP

instead of Choice-Based LP results in substantial improvements in running times. To give our

equivalence result, we start by considering the question of obtaining an optimal primal solution to

the Choice-Based LP by using an optimal primal solution to the Compact LP.

Let (x∗0,x
∗,y∗) be a basic optimal solution to the Compact LP. Indexing the products so that

x∗1 ≥ x∗2 ≥ . . .≥ x∗n and defining the set Si = {1, . . . , i} with S0 =∅, let

ŵ(Si) = (x∗i −x∗i+1) (1 +V (Si)) ∀ i= 0,1, . . . , n (Recovery)

ŵ(S) = 0 ∀S 6∈ {S0, S1, . . . , Sn},

where we follow the convention that x∗n+1 = 0. Noting that x∗0 ≥ x∗i for all i ∈ N by the third

constraint in the Compact LP, we have ŵ(S0) = x∗0−x∗1 ≥ 0.

The Recovery formula gives a closed-form expression to construct a solution ŵ= {ŵ(S) : S ⊆N}

to the Choice-Based LP by using a basic optimal solution (x∗0,x
∗,y∗) to the Compact LP. Other
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than being non-negative, it is not clear that the solution ŵ is feasible to the Choice-Based LP. In

the next theorem, we show that this solution is not only feasible but also optimal. Also, we show

that we can construct an optimal dual solution to the Choice-Based LP by using an optimal dual

solution to the Compact LP. Thus, we can use an optimal primal or dual solution to the Compact LP

to construct the same to the Choice-Based LP. In this result, we follow the convention that if the

Compact LP has multiple optimal solutions, then we pick any one that has the largest value for

the decision variable x0. To implement this convention in practice, for a small value of ε > 0, we

can add the additional term εx0 to the objective function of the Compact LP, in which case, the

additional term favors an optimal solution with the largest value of x0. In addition to following this

convention, we associate the dual variables µ= {µq : q ∈M}, π, α= {αi : i∈N}, η= {ηij : i, j ∈N}

and σ= {σij : i, j ∈N} with the constraints in the Compact LP.

Theorem 6.1 (Equivalent Formulation) Letting (x∗0,x
∗,y∗) and (µ∗, π∗,α∗,η∗,σ∗) be a basic

optimal primal and dual solution pair to the Compact LP, we have the following results.

(a) The solution ŵ provided by the Recovery formula is optimal to the Choice-Based LP.

(b) The solution (µ∗, π∗) is optimal to the dual of the Choice-Based LP.

The theorem above shows that we can efficiently recover an optimal primal or dual solution to the

Choice-Based LP by using the same type of solution from the Compact LP. We give a proof for the

theorem in Appendix H. The proof explicitly uses the fact that we focus on basic optimal solutions

to the Compact LP that have the largest value for the decision variable x0. In Appendix I, we

provide computational experiments to check the improvements in running times obtained by using

the Compact LP in conjunction with Theorem 6.1 to get an optimal solution to the Choice-Based LP,

rather than solving the Choice-Based LP directly by using column generation. Our results indicate

that we can improve running times by up to a factor of 29.

7. Computational Experiments

We give computational experiments to test the ability of our mixture model to predict the

choice process of the customers and to identify profitable assortments. We start by comparing

our mixture model with the standard multinomial logit and independent demand models. In

this way, we quantify the benefits obtained by mixing the independent demand and multinomial

logit models, rather than using each of these choice models by itself. In addition, we compare

our mixture model with the exponomial and Markov chain choice models. Next, we outline an

expectation-maximization algorithm to estimate the parameters of our mixture choice model. We

describe our experimental setup. Finally, we give our computational results.
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7.1 Expectation-Maximization Algorithm

The parameters of our mixture choice model are (λ,θ,v), where λ is the relative size of the two

segments, θ= (θ1, . . . , θn) is the vector of demand probabilities in the independent demand segment

and v= (v1, . . . , vn) is the vector of preference weights in the multinomial logit segment. We use

H= {(St, it) : t= 1, . . . , τ} to capture the purchase history that we use to estimate the parameters of

our mixture model, where τ is the number of customers in the purchase history, St is the assortment

of products offered to customer t and it is the product purchased by customer t. If customer t did

not purchase anything, then it = 0. Our expectation-maximization algorithm uses the following

observation. In addition to the purchase history H= {(St, it) : t= 1, . . . , τ}, if we knew the segment

of each customer, then we could partition the customers in the two segments and separately fit an

independent demand and multinomial logit models to the purchases from the two partitions.

To pursue this observation, for the moment, assume that we have access to the segment of each

customer in the purchase history. In particular, we use C = {(zt, St, it) : t= 1, . . . , τ} to capture the

so-called complete purchase history, where we have zt = 1 is customer t was in the independent

demand segment, whereas we have zt = 0 if customer t was in the multinomial logit segment.

If zt = 1, so that customer t is in the independent demand segment, then she chooses product

i ∈ St with probability θi, whereas she leaves without a purchase with probability 1−
∑

i∈St θi. If

zt = 0, so that customer t is in the multinomial logit segment, then she chooses product i∈ St with

probability vi
1+V (St)

, whereas she leaves without a purchase with probability 1
1+V (St)

. Thus, if we

had access to the complete purchase history C = {(zt, St, it) : t= 1, . . . , τ}, then we could estimate

the parameters of our mixture model by maximizing the likelihood function given by

L(λ,θ,v;C) =
τ∏
t=1


(
λ
∏
i∈St

θ
1(it=i)
i

(
1−

∑
i∈St

θi

)1(it=0)
)zt(

(1−λ)

∏
i∈St v

1(it=i)
i 11(it=0)

1 +V (St)

)1−zt
 . (4)

In our expectation-maximization algorithm, we use the purchase history {(St, it) : t= 1, . . . , τ},

rather than the complete purchase history C = {(zt, St, it) : t= 1, . . . , τ}, but we iteratively estimate

the portion {zt : t= 1, . . . , τ} of the complete purchase history. We need two random variables in the

estimation procedure. We use the random variable Z with support {0,1} to capture the segment of

a generic customer, where Z = 1 if and only if the customer is in the independent demand segment.

For any S ⊆N , we use the random variable P (S) with support S ∪{0} to capture the choice of a

generic customer within the assortment S, where P (S) = i if and only if the customer purchases

product i within the assortment S. If the choices of the customers are governed by our mixture

model with parameters (λ,θ,v), then Z is Bernoulli with parameter λ and P (S) takes value i∈ S

with probability λθi+(1−λ) vi
1+V (S)

. At any iteration ` of our expectation-maximization algorithm,
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we have the current parameter estimates (λ`,θ`,v`). Letting {z`t : t= 1, . . . , τ} be the estimates of

{zt : t= 1, . . . , τ} at iteration `, we compute z`t as the expectation of Z conditional on the fact that

customer t chooses according to our mixture model with parameters (λ`,θ`,v`) and her purchase

decision within the assortment St is it. In this way, we estimate the complete purchase history

C` = {(z`t, St, it) : t= 1, . . . , τ} at iteration `. For large B ∈ R+ such that vi ≤ B for all i ∈N , the

parameters of our model are in the set P = {(λ,θ,v) ∈ [0,1]1+n× [0,B]n :
∑

i∈N θi ≤ 1}. Using the

estimated complete purchase history, we maximize the likelihood L(λ,θ,v;C`) in (4) subject to the

constraint that (λ,θ,v)∈P to get the parameter estimates (λ`+1,θ`+1,v`+1) at the next iteration.

Below is an overview of our expectation-maximization algorithm.

Step 1. The purchase history to estimate the parameters is {(St, it) : t= 1, . . . , τ}. Choose the

initial parameter estimates (λ1,θ1,v1)∈P. Initialize the iteration counter by setting `= 1.

Step 2. (Expectation) Given that the customers choose according to the mixture model with

parameters (λ`,θ`,v`), for all t= 1, . . . , τ , set z`t =E{Z |P (St) = it}.

Step 3. (Maximization) Using the complete purchase history C` = {(z`t, St, it) : t= 1, . . . , τ}, set

(λ`+1,θ`+1,v`+1) = arg max(λ,θ,v)∈P L(λ,θ,v;C`). Increase ` by one and go to Step 2.

In the expectation step, we compute a conditional expectation. In the maximization step, we

solve an optimization problem. We can perform both of these tasks efficiently.

Computing the Conditional Expectation. In the expectation step, given that the customers choose

according to our mixture model with some parameters (λ,θ,v), we compute an expectation of

the form E{Z |P (S) = i}. We have a closed-form expression for this expectation. The support

of the random variable Z is {0,1}, so E{Z |P (S) = i} = P{Z = 1 |P (S) = i} = P{Z=1,P (S)=i}
P{P (S)=i} . The

expression in the numerator is the probability that a customer is in the independent demand

segment and she purchases product i, so this probability is λθi. The expression in the denominator

is the probability that a customer purchases product i, so this probability is λθi+(1−λ) vi
1+V (S)

. We

can use a similar argument to compute the expectation E{Z |P (S) = 0}.

Solving the Optimization Problem. In the maximization step, given some complete purchase

history C = {(zt, St, it) : t= 1, . . . , τ}, we solve a problem of the form max(λ,θ,v)∈P L(λ,θ,v;C). We

can formulate this problem as a convex program with linear constraints. Furthermore, the objective

function of this convex program is separable by the decision variables (λ,θ,v). Therefore, we can

solve the optimization problem in the maximization step efficiently. This result intuitively builds

on our earlier observation that if we have access to the complete purchase history, then we can

estimate the parameters of the independent demand and multinomial logit models separately by

independently focusing on the customers in the two segments. To make this discussion concrete,
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rather than maximizing the likelihood function, we maximize its logarithm. Taking the logarithm

in (4), we can express logL(λ,θ,v;C) as L1(λ;C) +L2(θ;C) +L3(v;C), where we have

L1(λ;C) =
τ∑
t=1

{
zt logλ+ (1− zt) log(1−λ)

}
L2(θ;C) =

τ∑
t=1

zt

{∑
i∈St

1(i= it) log θi +1(it = 0) log
(

1−
∑
i∈St

θi

)}

L3(v;C) =
τ∑
t=1

(1− zt)

{∑
i∈St

1(i= it) log vi− log(1 +V (St))

}
.

Thus, we can equivalently solve the problems maxλ∈[0,1]L1(λ;C), maxθ∈[0,1]n:
∑
i∈N θi≤1L2(θ;C)

and maxv∈[0,B]n L3(v;C) in the maximization step. Since logx is concave in x, L1(λ;C) and

L2(θ;C) are concave in, respectively, λ and θ. The log-sum-exp function log(1 +
∑n

i=1 e
xi)

is convex in (x1, . . . , xn) (Example 3.1.5, Boyd and Vandenberghe 2004). In this case, if

we make the change of variables vi = eµi in L3(v;C), then L3(µ;C) is concave in µ =

(µ1, . . . , µn) as well. Therefore, by the discussion in the last two paragraphs, we can compute

the conditional expectations in the expectation step and solve the optimization problems in

the maximization step in our expectation-maximization algorithm efficiently. In Appendix J, we

combine the discussion in the last two paragraphs with the outline of our expectation-maximization

algorithm to give a step-by-step specification of the algorithm. In the same appendix, we

also argue that the sequence of parameter estimates {(λ`,θ`,v`) : `= 1,2, . . .} generated by the

expectation-maximization algorithm monotonically increases the likelihood function built by using

the purchase history {(St, it) : t= 1, . . . , τ}. Thus, we can stop the algorithm when the increase in

the value of this likelihood function in the successive iterations falls below a threshold.

We can parameterize (λ,θ,v) in our mixture model as a function of the features of the products,

which becomes useful when one desires a parsimonious model or a new product with no purchase

data is introduced. The features of product i are given by fi = (fi1, . . . , fim), where fik is the value

of feature k for product i. We postulate the following Poisson arrival process. Customers in the

multinomial logit segment arrive with rate Λ. These customers are willing to consider any product,

so their arrival rate is independent of product features, but they can leave without a purchase. If we

offer the assortment S, then each chooses product i with probability eβ
>fi

1+
∑
j∈S e

β>fj
. For Θ :R→R+,

customers in the independent demand segment for product i arrive with rate Θ(α>fi). These

customers only consider product i. Thus, over an infinitesimal period δ, as a function of the

offered assortment S, the purchase probability of product i∈ S is δΘ(α>fi) + δΛ eβ
>fi

1+
∑
j∈S e

β>fj
. The

parameters (Λ,α,β)∈R+×R2m are to be estimated. Representing the parameters (λ,θ,v) in our

mixture model as λ = 1 − δΛ, θi = δ
1−Λ δ

Θ(α>fi) and vi = eβ
>fi , the last choice probability is

λθi + (1−λ) vi
1+

∑
j∈S vj

. Possible choices for Θ, for example, are Θ(x) = ex or Θ(x) =Kex/(1 + ex)

with K > 0, both choices are simply motived by the fact that Θ should take values in positive reals.
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7.2 Experimental Setup

In our computational experiments, we consider the purchase histories of customers making

purchases according to a complex ground choice model that does not comply with the independent

demand or multinomial logit models. We fit our mixture model, as well as the multinomial logit,

independent demand, exponomial and Markov choice models, to the purchase histories and compare

the prediction ability of these fitted choice models. The ground choice model is the nonparametric

choice model, where we populate the preference lists through a dataset from Kamishima (2018),

including the rankings of sushi varieties by diners. In the nonparametric choice model, we have p

customer types. Indexing the customer types by P = {1, . . . , p} and the products by N = {1, . . . , n},

customers of type ` are characterized by a preference list of products σ` = (σ`(1), σ`(2), . . . , σ`(k`))

with σ`(i)∈N for all i= 1, . . . , k`, where σ`(i) is the ith most preferred product by a customer of

type ` and k` is the number of products in the preference list. A customer of type ` arrives with

probability η`. An arriving customer chooses the most preferred product in her preference list that

is also available in the offered assortment. If no product in her preference list is available, then

she leaves without a purchase. Thus, the parameters of the nonparametric choice model are the

preference lists {σ` : `∈ P} and the arrival probabilities (η1, . . . , ηp).

In the dataset, we have the rankings of 10 sushi varieties declared by 5000 diners. We use

ρ` = (ρ`(1), . . . , ρ`(10)) to capture the ranking declared by diner `, where ρ`(i) is the ith most

preferred sushi variety for diner `. We use this dataset to populate the preference lists in our

ground choice model as follows. We associate one customer type with each diner and one product

with each sushi variety, so the set of customer types is P = {1, . . . ,5000} and the set of products

is N = {1, . . . ,10}. To come up with the preference list σ` = (σ`(1), σ`(2), . . . , σ`(k`)) for customer

type `, we sample k` from the geometric distribution with parameter e−ψ ∈ (0,1) truncated over

the interval {1, . . . ,10} and set (σ`(1), . . . , σ`(k`)) = (ρ`(1), . . . , ρ`(k`)). In other words, we sample

the length of the preference list k` for each customer type ` from the probability mass function

f(k) = e−ψk∑10
q=1 e

−ψq , in which case, the preference list of customer type ` is the ranking declared by

diner ` cut off after the first k` sushi varieties. We vary ψ in our computational experiments. The

expected length of the preference lists increases as the value of ψ decreases. Customers of each type

arrive into the system with equal probability, so we have η` = 1/5000 for all `∈ P . The discussion

so far describes our approach for using the dataset to populate the preference lists {σ` : `∈ P} and

the arrival probabilities (η1, . . . , ηp) in the ground choice model.

Once we come up with the ground choice model by using the dataset as described in the previous

paragraph, we generate the purchase histories of customers making purchases according to the

ground choice model. The purchase history consists of the pairs {(St, it) : t= 1, . . . , τ}, as discussed
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in Section 7.1. To generate the assortment St, we include each product in the assortment St with

probability 0.5. We sample the product it among the products in St and the no-purchase option

according to the ground choice model. In particular, noting that customers of each type arrive into

the system with equal probability, we sample the type of customer t from the uniform distribution

over {1, . . . ,5000}, in which case, if customer t is of type `, then this customer chooses the most

preferred product in the preference list σ` = (σ`(1), σ`(2), . . . , σ`(k`)) that is also available in the

assortment St. If none of the products in the preference list σ` = (σ`(1), σ`(2), . . . , σ`(k`)) is available

in the assortment St, then customer t leaves without a purchase.

We use maximum likelihood to fit our mixture model, as well as the multinomial logit,

independent demand, exponomial and Markov chain choice models, to the purchase histories

that we generate. We have an expectation-maximization algorithm to fit our mixture model. The

log-likelihood function under the multinomial logit and independent demand models are concave

in the parameters, so we use steepest ascent. To estimate the parameters of the exponomial and

Markov chain choice models, we use the Python code provided by Berbeglia et al. (2021). For each

product i, we estimate θi and vi separately without using product features. Thus, the parameters

(Λ,α,β) at the end of Section 7.1 do not play a role in our estimation procedure.

7.3 Computational Results

The parameter ψ controls the length of the preference lists in our ground choice model. We vary ψ

over {0.5,0.6, . . . ,1.0} in our computational experiments. The number of customers in the purchase

history is τ . We vary τ over {1250,2500,5000} to capture three levels of data availability in the

training data that we use to fit the choice models. Following the same approach that we use to

generate the training data, we also generate the purchase history for another 10000 customers

to use as the testing data. For each combination of ψ and τ , we replicated our computational

results 50 times to get a better understanding of how much they change from one replication to

another. We regenerate the ground choice model, training data and testing data in each of these

replications. We compare the fitted choice models in terms of the out-of-sample log-likelihoods and

the expected revenues from the assortments obtained by using the fitted choice models to predict

the customer purchases. Throughout the discussion of our computational experiments, we use MIX

to refer to our fitted mixture choice model, MNL to refer to the fitted pure multinomial logit model,

IDM to refer to the fitted pure independent demand model, EXP to refer to the fitted exponomial

model and MCC to refer to the fitted Markov chain choice model.

Comparing Out-of-Sample Log-Likelihoods. In Table 2, we compare MIX, MNL, IDM, EXP

and MCC in terms of their out-of-sample log-likelihoods. In each of the 50 replications, after
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τ = 1250
MIX vs. MNL MIX vs. IDM MIX vs. EXP MIX vs. MCC

Out-of-Sample Log-Likelihood Perc. MIX MNL Perc. MIX IDM Perc. MIX EXP Perc. MIX MCC
ψ MIX MNL IDM EXP MCC Gap Btr. Btr. Gap Btr. Btr. Gap Btr. Btr. Gap Btr. Btr.
0.5 -3,790 -3,800 -4,060 -3,829 -3,843 0.27 45 5 7.12 50 0 1.03 50 0 1.39 48 2
0.6 -3,743 -3,755 -3,941 -3,792 -3,796 0.32 46 4 5.30 50 0 1.31 50 0 1.43 49 1
0.7 -3,694 -3,710 -3,841 -3,752 -3,748 0.43 48 2 3.98 50 0 1.57 50 0 1.47 48 2
0.8 -3,655 -3,673 -3,764 -3,721 -3,706 0.48 46 4 2.97 50 0 1.79 50 0 1.40 48 2
0.9 -3,614 -3,634 -3,695 -3,687 -3,663 0.57 49 1 2.25 50 0 2.03 50 0 1.36 48 2
1.0 -3,579 -3,601 -3,639 -3,657 -3,635 0.61 49 1 1.66 49 1 2.18 50 0 1.54 47 3
Avg. -3,679 -3,696 -3,823 -3,740 -3,732 0.45 47.2 2.8 3.88 49.8 0.2 1.65 50.0 0.0 1.43 48.0 2.0

τ = 2500
MIX vs. MNL MIX vs. IDM MIX vs. EXP MIX vs. MCC

Out-of-Sample Log-Likelihood Perc. MIX MNL Perc. MIX IDM Perc. MIX EXP Perc. MIX MCC
ψ MIX MNL IDM EXP MCC Gap Btr. Btr. Gap Btr. Btr. Gap Btr. Btr. Gap Btr. Btr.
0.5 -3,781 -3,796 -4,056 -3,824 -3,793 0.38 50 0 7.26 50 0 1.12 50 0 0.30 37 13
0.6 -3,734 -3,750 -3,937 -3,787 -3,746 0.43 49 1 5.43 50 0 1.41 50 0 0.32 33 17
0.7 -3,685 -3,705 -3,837 -3,747 -3,698 0.55 50 0 4.12 50 0 1.67 50 0 0.34 36 14
0.8 -3,643 -3,668 -3,759 -3,716 -3,657 0.69 50 0 3.19 50 0 1.99 50 0 0.40 41 9
0.9 -3,602 -3,629 -3,691 -3,682 -3,620 0.77 50 0 2.47 50 0 2.24 50 0 0.52 41 9
1.0 -3,567 -3,596 -3,634 -3,652 -3,583 0.80 50 0 1.88 50 0 2.37 50 0 0.43 41 9
Avg. -3,669 -3,691 -3,819 -3,735 -3,683 0.60 49.8 0.2 4.06 50.0 0.0 1.80 50.0 0.0 0.39 38.2 11.8

τ = 5000
MIX vs. MNL MIX vs. IDM MIX vs. EXP MIX vs. MCC

Out-of-Sample Log-Likelihood Perc. MIX MNL Perc. MIX IDM Perc. MIX EXP Perc. MIX MCC
ψ MIX MNL IDM EXP MCC Gap Btr. Btr. Gap Btr. Btr. Gap Btr. Btr. Gap Btr. Btr.
0.5 -3,776 -3,793 -4,053 -3,821 -3,773 0.44 50 0 7.33 50 0 1.18 50 0 -0.08 15 35
0.6 -3,730 -3,748 -3,935 -3,784 -3,727 0.50 50 0 5.52 50 0 1.47 50 0 -0.08 14 36
0.7 -3,680 -3,703 -3,835 -3,745 -3,680 0.63 50 0 4.21 50 0 1.75 50 0 0.00 24 26
0.8 -3,638 -3,666 -3,757 -3,713 -3,638 0.77 50 0 3.28 50 0 2.06 50 0 -0.01 24 26
0.9 -3,597 -3,627 -3,689 -3,680 -3,598 0.83 50 0 2.54 50 0 2.30 50 0 0.02 24 26
1.0 -3,562 -3,594 -3,633 -3,649 -3,564 0.89 50 0 1.98 50 0 2.45 50 0 0.07 24 26
Avg. -3,664 -3,689 -3,817 -3,732 -3,663 0.68 50.0 0.0 4.14 50.0 0.0 1.87 50.0 0.0 -0.01 20.8 29.2

Table 2 Out-of-sample log-likelihoods of the fitted choice models.

generating the ground choice model, we sample training data and testing data using the ground

choice model. We fit MIX, MNL, IDM, EXP and MCC to the training data and compute the

log-likelihood of the testing data under the fitted choice models. There are three blocks in the

table. The top, middle and bottom blocks correspond to the values of τ ∈ {1250,2500,5000}. In

each block, the first column gives the value of the parameter ψ, controlling the length of the

preference lists. The second column gives the average out-of-sample log-likelihood of MIX, where

the average is computed over 50 replications. Similarly, the third, fourth, fifth and sixth columns

give the average log-likelihoods of the remaining four fitted choice models. The next three columns

compare the performance of MIX with that of MNL. In particular, the seventh column gives the

average percent gap between out-of-sample log-likelihoods of MIX and MNL. The eighth column

gives the number of replications out of 50 in which the out-of-sample log-likelihood of MIX is

better than that of MNL, whereas the ninth column gives the number of replications in which the

outcome is reversed. In the remaining portion of the table, we use the same approach to compare

the out-of-sample log-likelihood performance of MIX with that of IDM, EXP and MCC.

The out-of-sample log-likelihoods of MIX improve those of MNL and IDM consistently, indicating

that we obtain significant benefits from mixing the independent demand and multinomial logit
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models, as done in our mixture model, rather than using either of the two choice models by itself.

We shortly demonstrate that these improvements in the out-of-sample log-likelihoods translate into

more profitable assortments. The out-of-sample log-likelihoods of MIX are significantly better than

those of EXP. The performance of MIX is competitive to that of MCC. For the training data with

τ = 1250 and τ = 2500, corresponding to small to moderate levels of data availability, MIX has an

edge over MCC, whereas for the training data with τ = 5000, corresponding to large levels of data

availability, MCC has an edge over MIX.

The fact that MCC lags behind MIX when we have small to moderate amounts of data is

somewhat expected, as the number of parameters for MCC is significantly larger than that for

MIX. In particular, the parameters for MIX are λ, (θ1, . . . , θn) and (v1, . . . , vn). In contrast, MCC

has one parameter δij for each pair of products i and j, characterizing the probability that a

customer considers purchasing product j when she currently considers product i and this product

is not available, as well as one more parameter ζi for each product i, characterizing the probability

that an arriving customer considers purchasing product i. Thus, MIX has 2n + 1 parameters,

whereas MCC has n2 +n parameters. With its larger number of parameters, MCC may potentially

provide more flexibility for capturing the choice behavior of the customers, but its large number

of parameters may also cause MCC to overfit to the training data, resulting in poor out-of-sample

log-likelihoods. The concern for MCC to overfit to the training data is especially significant when

we have little training data (Section 1.1, Bishop 2006). The results in Table 2 are consistent with the

discussion in this paragraph. When τ = 1250 and τ = 2500, corresponding to smaller and moderate

levels of data availability, the out-of-sample log-likelihoods of MIX are indeed larger than those of

MCC. Only when τ = 5000, corresponding to larger levels of data availability, MCC catches up with

MIX. Thus, MIX is an appealing alternative to MCC, especially when we have small to moderate

amounts of training data to estimate the parameters of the choice model that we are fitting. In

addition, as discussed in Section 7.1, we can parameterize the independent demand probability θi

and preference weight vi of each product i in MIX as functions of the features of the product, but

as far as we are aware, there is no work on parameterizing MCC.

Comparing Expected Revenues. In Table 3, we compare MIX, MNL, IDM, EXP and MCC in

terms of their expected revenue performance. Recall that we carry out 50 replications for each

combination of (ψ, τ), where we regenerate the ground choice model, as well as the training

and testing data, in each replication. In replication q, let φqi,MIX(S) be the choice probability of

product i within the assortment S under the fitted MIX. We generate 100 samples of the product

revenues, sampling the revenue of each product from the uniform distribution over [1,10]. In

replication q, letting (rqk1 , . . . , r
qk
n ) be the product revenues in the kth sample, we use ŜqkMIX to



Yufeng Cao, Paat Rusmevichientong, Huseyin Topaloglu; Mixture of Independent Demand and Multinomial Logit Models 33

τ = 1250
MIX vs. MNL MIX vs. IDM MIX vs. EXP MIX vs. MCC

Expected Revenue Perc. MIX MNL Perc. MIX IDM Perc. MIX EXP Perc. MIX MCC
ψ MIX MNL IDM EXP MCC Gap Btr. Btr. Gap Btr. Btr. Gap Btr. Btr. Gap Btr. Btr.
0.5 5.760 5.689 5.504 5.499 5.785 1.23 46 4 4.44 50 0 4.53 50 0 -0.43 17 33
0.6 5.666 5.542 5.504 5.274 5.655 2.19 50 0 2.86 50 0 6.92 50 0 0.19 31 19
0.7 5.598 5.418 5.504 5.077 5.575 3.22 50 0 1.68 50 0 9.31 50 0 0.41 34 16
0.8 5.550 5.319 5.504 4.916 5.502 4.16 50 0 0.83 46 4 11.42 50 0 0.86 42 8
0.9 5.512 5.239 5.504 4.781 5.435 4.95 50 0 0.15 32 18 13.26 50 0 1.40 45 5
1.0 5.490 5.168 5.504 4.664 5.403 5.87 50 0 -0.26 19 31 15.05 50 0 1.58 50 0
Avg. 5.596 5.396 5.504 5.035 5.559 3.60 49.3 0.7 1.62 41.2 8.8 10.08 50.0 0.0 0.67 36.5 13.5

τ = 2500
MIX vs. MNL MIX vs. IDM MIX vs. EXP MIX vs. MCC

Expected Revenue Perc. MIX MNL Perc. MIX IDM Perc. MIX EXP Perc. MIX MCC
ψ MIX MNL IDM EXP MCC Gap Btr. Btr. Gap Btr. Btr. Gap Btr. Btr. Gap Btr. Btr.
0.5 5.784 5.688 5.504 5.497 5.839 1.66 50 0 4.84 50 0 4.96 50 0 -0.95 4 46
0.6 5.696 5.541 5.504 5.271 5.717 2.72 50 0 3.37 50 0 7.46 50 0 -0.37 14 36
0.7 5.625 5.416 5.504 5.076 5.628 3.72 50 0 2.15 50 0 9.76 50 0 -0.05 22 28
0.8 5.584 5.317 5.504 4.918 5.569 4.78 50 0 1.43 50 0 11.93 50 0 0.27 39 11
0.9 5.548 5.237 5.504 4.781 5.514 5.61 50 0 0.79 46 4 13.82 50 0 0.61 45 5
1.0 5.518 5.168 5.504 4.665 5.476 6.34 50 0 0.25 37 13 15.46 50 0 0.76 46 4
Avg. 5.626 5.395 5.504 5.035 5.624 4.14 50.0 0.0 2.14 47.2 2.8 10.57 50.0 0.0 0.04 28.3 21.7

τ = 5000
MIX vs. MNL MIX vs. IDM MIX vs. EXP MIX vs. MCC

Expected Revenue Perc. MIX MNL Perc. MIX IDM Perc. MIX EXP Perc. MIX MCC
ψ MIX MNL IDM EXP MCC Gap Btr. Btr. Gap Btr. Btr. Gap Btr. Btr. Gap Btr. Btr.
0.5 5.800 5.689 5.504 5.497 5.868 1.91 50 0 5.10 50 0 5.22 50 0 -1.17 0 50
0.6 5.713 5.541 5.504 5.268 5.748 3.01 50 0 3.66 50 0 7.79 50 0 -0.61 6 44
0.7 5.640 5.420 5.504 5.076 5.664 3.90 50 0 2.41 50 0 10.00 50 0 -0.43 9 41
0.8 5.597 5.318 5.504 4.913 5.606 4.98 50 0 1.66 50 0 12.22 50 0 -0.16 19 31
0.9 5.561 5.240 5.504 4.777 5.553 5.77 50 0 1.02 49 1 14.10 50 0 0.14 29 21
1.0 5.532 5.169 5.504 4.660 5.520 6.56 50 0 0.51 44 6 15.76 50 0 0.22 34 16
Avg. 5.641 5.396 5.504 5.032 5.660 4.36 50.0 0.0 2.39 48.8 1.2 10.85 50.0 0.0 -0.34 16.2 33.8

Table 3 Expected revenues obtained by the fitted choice models.

denote the optimal assortment to offer under the assumption that the customers choose according

to the fitted MIX, so we have ŜqkMIX = arg maxS⊆N
∑

i∈S r
qk
i φqi,MIX(S). Note that customers actually

choose according to the ground choice model. In replication q, letting φqi,GRN(S) be the choice

probability of product i within the assortment S under the ground choice model, we compute the

actual expected revenue from the assortment ŜqkMIX as Rqk
MIX =

∑
i∈Ŝqk r

qk
i φqi,GRN(ŜqkMIX). Averaging

over the 100 revenue samples, we capture the expected revenue performance of MIX in replication

q by RevqMIX = 1
100

∑100

k=1R
qk
MIX. We capture the expected revenue performance of MNL, IDM, EXP

and MCC in replication q by computing RevqMNL, RevqIDM, RevqEXP and RevqMCC similarly.

The layout of Table 3 is identical to that of Table 2, except that this table focuses on the

expected revenues rather than log-likelihoods. In this table, the first column gives the value of

ψ. The second column gives average expected revenue obtained by MIX, where the average is

computed over the 50 replications and 100 product revenue samples, so the second column gives

the average of {RevqMIX : q = 1, . . . ,50}. Similarly, the third, fourth, fifth and sixth columns give

the average expected revenues of the remaining four fitted choice models. The next three columns

compare the expected revenue performance of MIX with that of MNL. In particular, the seventh

column shows the average percent gap between the expected revenues of MIX and MNL. The
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eighth column gives the number of replications out of 50 in which {RevqMIX : q= 1, . . . ,50} is larger

than {RevqMNL : q= 1, . . . ,50}, whereas the ninth column gives the number of replications in which

the outcome is reversed. That is, the eighth and ninth column give
∑50

q=1 1(RevqMIX >RevqMNL) and∑50

q=1 1(RevqMIX < RevqMNL). In the remaining portion of the table, we use the same approach to

compare the expected revenue performance of MIX with that of IDM, EXP and MCC.

Our results indicate that MIX can noticeably improve the expected revenues of MNL and IDM,

the average gaps reaching 4.03% and 2.05%, respectively. The performance of IDM is competitive

to that of MIX only for larger values of ψ. As the value of ψ increases, the expected length of the

preference lists decreases, so intuitively speaking, the customers become less likely to substitute

and the ground choice model gets closer to the independent demand model. Still, over all 900

replications, in 823 of them, the expected revenue performance of MIX is better than that of

IDM. Also, we can always maximize the expected revenue under IDM by offering all products, so

the expected revenue performance of IDM does not change from one replication to another. Note

that EXP consistently lags behind MIX. The performance of MIX is competitive to that of MCC.

In 484 out of 900 replications, the expected revenue performance of MIX is better than that of

MCC, whereas the outcome is reversed in 416 replications. Similar to out-of-sample log-likelihoods,

the expected revenues of MIX tend to be larger than those of MCC especially when τ = 1250,

corresponding to smaller levels of data availability. Thus, MIX can be an appealing alternative to

MCC when we have a small amount of training data. In Appendix L, we extend our expectation-

maximization algorithm to censored demands and give computational experiments. Under censored

demands, if a sale does not happen for a certain duration of time, then we do not know whether a

customer did not arrive or the arriving customers did not make a purchase.

8. Conclusions

Our mixture choice model is a natural way to improve the flexibility of both the multinomial logit

and independent demand models in capturing the choice process of the customers, while ensuring

that the corresponding assortment optimization problems remain tractable. Our numerical results

indicate that the mixture choice model can be an appealing alternative to the exponomial and

Markov chain choice models as well. Our work opens several research paths.

Pricing Problems. One can study pricing problems under a mixture of independent demand and

multinomial logit models. In this paper, our focus is on assortment optimization and a detailed

treatment of the pricing problem is beyond our scope. However, to illustrate research challenges,

we discuss one possible approach to incorporate pricing decisions into our mixture model. We index

the set of products by N = {1, . . . , n}. We use the vector p= (p1, . . . , pn)∈Rn+ to denote the prices
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charged for the products. For the independent demand segment, a customer in the independent

demand segment is interested in purchasing product i with probability αi with
∑

i∈N αi ≤ 1. For

ϑi :R+→ [0,1], if we charge the price pi for product i, then a customer in the independent demand

segment interested in purchasing product i purchases this product with probability ϑi(pi). With

probability 1−ϑi(pi), the customer leaves without a purchase. For the multinomial logit segment,

if we charge the prices p for the products, then a customer in the multinomial logit segment

purchases product i with probability eγi−βi pi

1+
∑
j∈N e

γj−βj pj , where {(γi, βi) : i∈N} are fixed parameters.

We can view {βi : i∈N} as price sensitivity parameters. An arriving customer is in the independent

demand segment with probability λ. Using ci to denote the marginal cost of product i, to find the

prices that maximize the expected profit from a customer, we can solve the problem

max
p∈Rn+

{∑
i∈N

(
λαi ϑi(pi) + (1−λ)

eγi−ηi pi

1 +
∑

j∈N e
γj−ηj pj

)
(pi− ci)

}
. (5)

In the objective function above, the expected profit from product i in the independent demand

segment is αi ϑi(pi) (pi− ci), depending only on the price for product i, which is a natural requisite

for the independent demand for product i when we make pricing decisions. The expected profit

from product i in the multinomial logit segment is eµi−βi pi

1+
∑
j∈N e

µj−βj pj (pi− ci), depending on the prices

of all products. We expect ϑi :R+→ [0,1] to be decreasing. Possible choices for ϑi, for example, are

ϑi(pi) = e−ηipi or ϑi(pi) = eµi−ηi pi
1+eµi−ηi pi

with ηi > 0, both choices are simply motivated by the fact that

ϑi should be decreasing and take values in [0,1]. Here, we can view {ηi : i∈N} as price sensitivity

parameters. A detailed treatment of the pricing problem is beyond our scope, but in Appendix K,

for the second choice of ϑi with equal price sensitivity parameters for the products, we give a

dynamic program to obtain a solution to problem (5) with a pre-specified optimality loss.

Extra Flexibility. Customers in our independent demand segment do not make a purchase when

their most preferred product is not available, but one can introduce extra flexibility into the choice

process. Consider a choice model where the customer can substitute to her second most favorite

product, when her most favorite product is not available. Similar to the standard multinomial

logit model, the utility of product i has the Gumbel distribution with location-scale parameters

(µi,1), so the preference weight of product i is vi = eµi . The utility of the no-purchase option

has the Gumbel distribution with location-scale parameters (0,1). A customer associates utilities

with the products and the no-purchase option. The available alternatives are the products in the

offered assortment and the no-purchase option. If the alternative with the largest utility is available,

then the customer chooses this alternative. Otherwise, the customer substitutes to the alternative

with the second largest utility with probability β. With probability 1 − β, the customer does

not substitute and leaves. If the customer substitutes to the alternative with the second largest
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utility and this alternative is not available either, then she leaves. In Bai et al. (2021), letting

V (S) =
∑

i∈S vi, we show that the choice probability of product i within the assortment S is

φi(S) =
vi

1 +V (N)

1 +β
∑
j∈N\S

vj
1 +V (N \ {j})

 .

Furthermore, we show that the assortment optimization problem is NP-hard under this choice

model. Thus, one additional substitution opportunity substantially complicates the problem. In the

same paper, for K > 1, we consider K substitution opportunities as opposed to only one. Naturally,

the assortment optimization problem remains NP-hard in this case. We give a polynomial time

approximation scheme (PTAS), where for any ε∈ (0,1), the PTAS obtains a (1− ε)-approximate

solution in running time that is polynomial in n, but exponential in 1/ε and K. Unlike our mixture

model in this paper, the assortment optimization problem under the choice model described in this

paragraph does not admit a polynomial-time solution method and its structure is substantially

different from that of the problem that we consider in this paper. Clearly, there may be other

approaches for introducing extra substitution opportunities into the choice process and studying

the corresponding assortment optimization problems is an interesting area of research.

Other Mixtures. Our results for exactly solving the unconstrained assortment optimization

problem under our mixture model closely exploit the structure of the independent demand and

multinomial logit models in the mixture. Exact solutions under mixtures of other choice models

will likely require different approaches. Nevertheless, we built on the FPTAS for the knapsack

problem to develop an FPTAS for the capacitated assortment optimization problem under our

choice model. One may use a similar approach to give an FPTAS under other mixtures when the

objective function involves sums of fractions, which is the case, for example, for the nested logit

model. The key is to mix choice models to improve their ability to capture the choice behavior,

while keeping the resulting optimization problems tractable.

Fitting Choice Models. There are challenges in fitting choice models in practice. First, demand

may be censored, which refers to the fact that if we did not have sales over a period of time, then we

may not know whether no customer arrivals occurred or the arriving customers did not purchase

anything. In Appendix L, we extend our expectation-maximization algorithm to censored demands

and test its performance. Second, the offered assortments change from customer to customer in

our computational experiments, but the product prices may change too. In this case, we may

parameterize the preference weights and independent demand purchase probabilities as a function

of the prices as discussed at the end of Section 7.1. Alternatively, for each product i, we may

associate a different preference weight vi and purchase probability θi for different price levels with
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the constraint that the preference weight and purchase probability for larger prices are smaller.

These issues occur when working with not only our mixture model but all choice models.

Acknowledgements: We thank the area editor, associate editor and two anonymous referees
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Appendix A: Comparison with a Mixture of Multinomial Logit Models

We argue that it is impossible to express our choice model as a mixture of multinomial logit

models with two segments. In particular, we consider a mixture of multinomial logit models with

two segments. The set of products is N = {1, . . . , n}. Customers in the first segment associate the

preference vi with product i, whereas customers in the second segment associate the preference

weight wi with product i. An arriving customer is in the first segment with probability λ. As a

function of the preference weights v = (v1, . . . , vn) and w = (w1, . . . ,wn) and the relative size λ of

the two segments, we use ψi(S;λ,v,w) to denote the choice probability of product i∈ S within the

assortment S. Thus, letting V (S) =
∑

i∈S vi and W (S) =
∑

i∈S wi for notational brevity, we have

ψi(S;λ,v,w) = λ vi
1+V (S)

+(1−λ) wi
1+W (S)

for all i∈ S. We consider the independent demand model,

where product i, if offered, is purchased with probability 1/(1 + n). This independent demand

model is an instance of our mixture model. Consider calibrating the parameters of the mixture of

multinomial logit models so that the choice probability of each product i out of the full assortment

N matches its corresponding choice probability under the independent demand model. We show

that the choice probability of some product i out of the singleton assortment {i} must deviate from

its corresponding choice probability under the independent demand model by a fixed constant. In

particular, we show that if we calibrate the parameters of the mixture of multinomial logit models

so that ψi(N ;λ,v,w) = 1
1+n

for all i∈N , then we must have maxi∈N |ψi({i};λ,v,w)− 1
1+n
| ≥ 1

8
as

long as n≥ 20. Thus, we cannot calibrate the two choice models to match the choice probabilities

of all products out of all assortments. Consider the problem

Z∗n = min
(λ,v,w)∈[0,1]×R2n

+

{∑
i∈N

∣∣∣ψi({i};λ,v,w) − 1

n+ 1

∣∣∣ : ψi(N ;λ,v,w) =
1

n+ 1
∀ i∈N

}
. (6)

Noting that Z∗n is the optimal objective value of the problem above, in the next theorem, we

show that Z∗n increases linearly with the number of products.

Theorem A.1 For all n≥ 1, Z∗n ≥
n

4
− 5

2
.

By the theorem above, for any (λ,v,w) ∈ [0,1]×R2n
+ that satisfies ψi(N ;λ,v,w

)
= 1

n+1
for all

i∈N , we have 1
n

∑
i∈N

∣∣∣ψi({i};λ,v,w) − 1
n+1

∣∣∣≥ 1
4
− 5

2n
. Since maxi∈N ai ≥ 1

n

∑
i∈N ai, we have

max
i∈N

∣∣∣ψi({i};λ,v,w) − 1

n+ 1

∣∣∣ ≥ 1

n

∑
i∈N

∣∣∣ψi({i};λ,v,w) − 1

n+ 1

∣∣∣,
in which case, for any (λ,v,w) ∈ [0,1]×R2n

+ that satisfies ψi(N ;λ,v,w
)

= 1
n+1

for all i ∈ N , we

have maxi∈N |ψi({i};λ,v,w)− 1
1+n
| ≥ 1

4
− 5

2n
. We have 1

4
− 5

2n
≥ 1

8
for n≥ 20, so the desired result
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holds. In the rest of this section, we use a sequence of lemmas to show Theorem A.1. We use a

change of variables to give an alternative formulation for problem (6). Consider the problem

Y ∗n = min
(λ,x0,x)∈[0,1]×Rn+1

+

{∑
i∈N

(
λxi

x0 +xi
+

(1−λ)
(

1
n+1
−λxi

)
(

1
n+1
−λx0

)
+
(

1
n+1
−λxi

)) :

x0 +
∑
i∈N

xi = 1, xi ≤
1

λ (n+ 1)
∀ i∈N ∪{0}

}
, (7)

where we use the vector of decision variables x= (x1, . . . , xn). In the next lemma, we show that

the optimal objective values of problems (6) and (7) differ by n/(n+ 1).

Lemma A.2 Noting that the optimal objective values of problems (6) and (7) are, respectively, Z∗n

and Y ∗n , for all n≥ 1, we have Z∗n = Y ∗n −
n

n+ 1
.

Proof. In any feasible solution to problem (6), we have ψi(N ;λ,v,w) = 1
n+1

for all i ∈N . By the

definition of ψi(S;λ,v,w), we have ψi({i};λ,v,w)≥ψi(N ;λ,v,w), so we get ψi({i};λ,v,w)≥ 1
n+1

in any feasible solution to problem (6). Thus, we can drop the absolute value in the objective

function, so the objective function of problem (6) is
∑

i∈N

∣∣∣ψi({i};λ,v,w)− 1
n+1

∣∣∣ = − n
n+1

+∑
i∈N ψi({i};λ,v,w) =− n

n+1
+
∑

i∈N

(
λ vi

1+vi
+ (1− λ) wi

1+wi

)
. Also, the constraints in problem (6)

are given by λ vi
1+V (N)

+ (1−λ) wi
1+W (N)

= 1
n+1

for all i∈N . Thus, problem (6) is equivalent to

Z∗n = − n

n+ 1
+ min

(λ,v,w)∈[0,1]×R2n
+

{∑
i∈N

(
λ

vi
1 + vi

+ (1−λ)
wi

1 +wi

)
:

λ
vi

1 +V (N)
+ (1−λ)

wi
1 +W (N)

=
1

n+ 1
∀ i∈N

}
(a)
= − n

n+ 1
+ min

(λ,x0,x,y0,y)∈[0,1]2n+3

{∑
i∈N

(
λ

xi
x0 +xi

+ (1−λ)
yi

y0 + yi

)
:

λxi + (1−λ)yi =
1

n+ 1
∀ i∈N, x0 +

∑
i∈N

xi = 1, y0 +
∑
i∈N

yi = 1

}
, (8)

where (a) follows by making the change of variables xi = vi/(1 + V (N)) and yi = wi/(1 +W (N))

for all i∈N , as well as x0 = 1/(1 +V (N)) and y0 = 1/(1 +W (N)).

It is enough to show that the optimal objective value of the problem on the right side of (8) is

equal to Y ∗n . If we have λxi + (1−λ)yi = 1
n+1

for all i∈N ∪{0} and x0 +
∑

i∈N xi = 1, then adding

the first n+1 equalities over all i∈N ∪{0}, we obtain λ(x0 +
∑

i∈N xi)+(1−λ) (y0 +
∑

i∈N yi) = 1,

in which case, in view of the equality x0 +
∑

i∈N xi = 1, we get y0 +
∑

i∈N yi = 1. In other words,

having λxi+(1−λ)yi = 1
n+1

for all i∈N ∪{0} and x0 +
∑

i∈N xi = 1 implies that y0 +
∑

i∈N yi = 1.

In this case, for the problem on the right side of (8), if we replace the constraint λxi+(1−λ)yi = 1
n+1
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for all i ∈N with λxi + (1− λ)yi = 1
n+1

for all i ∈N ∪ {0}, then the constraint y0 +
∑

i∈N yi = 1

becomes redundant. Therefore, the problem on the right side of (8) is equivalent to

min
(λ,x0,x,y0,y)∈[0,1]2n+3

{∑
i∈N

(
λ

xi
x0 +xi

+ (1−λ)
yi

y0 + yi

)
:

λxi + (1−λ)yi =
1

n+ 1
∀ i∈N ∪{0}, x0 +

∑
i∈N

xi = 1

}

(b)
= min

(λ,x0,x)∈[0,1]n+2

{∑
i∈N

(
λxi

x0 +xi
+

(1−λ)
(

1
n+1
−λxi

)
(

1
n+1
−λx0

)
+
(

1
n+1
−λxi

)) :

xi ≤
1

λ (n+ 1)
∀ i∈N ∪{0}, x0 +

∑
i∈N

xi = 1

}
,

where (b) holds because the first constraint in the problem on the left side above implies that

yi = 1
1−λ( 1

n+1
−λxi). By (7), the optimal objective value of the last problem above is Y ∗n .

For fixed (λ,x0)∈ [0,1]×R+, we consider the values of x∈Rn+ that are feasible to problem (7),

which are given by the polytope

Q(λ,x0) =
{
x∈Rn+ :

∑
i∈N

xi = 1−x0, 0≤ xi ≤
1

λ (n+ 1)
∀ i∈N

}
.

Note that Q(λ,x0) is the knapsack polytope, so if x̂ ∈ Rn+ is an extreme point of Q(λ,x0), then

0< x̂i <
1

λ (n+1)
for at most one i∈N . For all other j ∈N \ {i}, we have x̂j = 0 or x̂j = 1

λ (n+1)
.

Using the polytope above, (λ,x0,x) is feasible to problem (7) if and only if (λ,x0) ∈ [0,1]2,

x0 ≤ 1
λ (n+1)

and x∈Q(λ,x0). Also, to capture the objective function of problem (7), let

F (λ,x0, xi) =
λxi

x0 +xi
+

(1−λ)
(

1
n+1
−λxi

)
(

1
n+1
−λx0

)
+
(

1
n+1
−λxi

) ,
so the objective function of problem (7) is

∑
i∈N F (λ,x0, xi). In the next lemma, we give a lower

bound on the optimal objective value of the problem minx∈Q(λ,x0)

∑
i∈N F (λ,x0, xi).

Lemma A.3 For any fixed (λ,x0) ∈ [0,1]2 such that 0 ≤ x0 ≤ 1
λ (n+1)

, we have the lower bound

given by

min
x∈Q(λ,x0)

{∑
i∈N

F (λ,x0, xi)

}
≥ − 3

2
+
n+ 1

2

[
λ2 (1−x0) + (1−λ) (1−λ (1−x0))

]
. (9)

Proof. For fixed (λ,x0) ∈ [0,1]2 such that 0 ≤ x0 ≤ 1
λ (n+1)

, let x∗ be an optimal solution to the

minimization problem in (9). Note that F (λ,x0, xi) is a concave function of xi, so there exists

an optimal solution to the minimization problem in (9) that is an extreme point of Q(λ,x0). We
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proceed under the assumption that x∗ is an extreme point ofQ(λ,x0). In this case, by the discussion

right after the definition of Q(λ,x0), there exists at most one coordinate i ∈ N of x∗ such that

0< x∗i <
1

λ (n+1)
. All other coordinates of x∗ take the value zero or 1

λ (n+1)
. Let H be the number

of coordinates of x∗ that take the value 1
λ (n+1)

. Thus, the number of coordinates that take the

value zero is at least n−H − 1. Since x∗ ∈Q(λ,x0), we have x0 +
∑

i∈N x
∗
i = 1, which implies that

x0 +H 1
λ (n+1)

≤ 1≤ x0 + (H + 1) 1
λ (n+1)

, where the first inequality holds since there are at least H

strictly positive coordinates of x∗ that take the value 1
λ (n+1)

, whereas the second inequality holds

since there are at most H + 1 strictly positive components of x∗ and each of these components

takes at most the value 1
λ (n+1)

. We write the last chain of inequalities as (1−x0)λ (n+1)−1≤H ≤

(1− x0)λ (n+ 1). Letting B = (1− x0)λ (n+ 1) for notational brevity, we get B− 1≤H ≤B. So,

the optimal objective value of the minimization problem in (9) satisfies

min
x∈Q(λ,x0)

{∑
i∈N

F (λ,x0, xi)

}
(a)

≥ min
H ∈ {0, . . . , n− 1} :
B− 1≤H ≤B

{
H×F

(
λ,x0,

1

λ (n+ 1)

)
+ (n−H − 1)×F (λ,x0,0)

}

(b)

≥ min
H ∈ [0, n− 1] :
B− 1≤H ≤B

{
H

λ

λx0 (n+ 1) + 1
+ (n−H − 1)

1−λ
2−λx0 (n+ 1)

}
, (10)

where (a) holds by dropping one component that is between zero and 1
λ (n+1)

, whereas (b) holds

since F (λ,x0,
1

λ (n+1)
) = λ

λx0 (n+1)+1
and F (λ,x0,0) = 1−λ

2−λx0 (n+1)
by the definition of F (λ,x0, xi).

Note that we have the identity minB−1≤x≤B ax= min{aB,a(B − 1)} = aB −max{a,0}. Also,

using the fact that 0≤ x0 ≤ 1
λ (n+1)

, we obtain

min
H ∈ [0, n− 1] :
B− 1≤H ≤B

{
H

λ

λx0 (n+ 1) + 1
+ (n−H − 1)

1−λ
2−λx0 (n+ 1)

}

(c)

≥ min
H ∈ [0, n− 1] :
B− 1≤H ≤B

{
H
λ

2
+ (n−H − 1)

1−λ
2

}
(d)

≥ min
B−1≤H≤B

{(
λ− 1

2

)
H

}
+ (n− 1)

1−λ
2

(e)
=
(
λ− 1

2

)
B−max

{
λ− 1

2
,0
}

+ (n− 1)
1−λ

2

(f)

≥
(
λ− 1

2

)
(1−x0)λ (n+ 1)− 1

2
+ (n− 1)

1−λ
2

(g)
=
n+ 1

2

[
λ2 (1−x0) + (1−λ) (1−λ (1−x0))

]
− 3

2
+λ, (11)

where (c) holds since λx0 (n+1)≤ 1, (d) holds by arranging the terms and dropping the constraint

H ∈ [0, n− 1], (e) holds by the identity at the beginning of this paragraph, (f) holds by using the

definition of B and noting that λ− 1
2
≤ 1

2
and (g) follows by arranging the terms. Combining (10)

and (11), noting that λ≥ 0, the result follows.

Proof of Theorem A.1. In the rest of this section, we use Lemmas A.2 and A.3 to give a proof

for Theorem A.1. By the discussion right after the definition of the polytope Q(λ,x0), (λ,x0,x) is
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feasible to problem (7) if and only if (λ,x0)∈ [0,1]2, x0 ≤ 1
λ (n+1)

and x∈Q(λ,x0). Thus, since the

objective function of this problem is
∑

i∈N F (λ,x0, xi), problem (7) is equivalent to

Y ∗n
(a)
= min

(λ,x0)∈ [0,1]2 :
x0 ≤ 1

λ (n+1)

{
min

x∈Q(λ,x0)

{∑
i∈N

F (λ,x0, xi)

}}

(b)

≥ −3

2
+
n+ 1

2
min

(λ,x0)∈[0,1]2

{
λ2 (1−x0) + (1−λ) (1−λ (1−x0)) : x0 ≤

1

λ (n+ 1)

}
, (12)

where (a) follows by sequentially optimizing over the decision variables (λ,x0) and x instead of

simultaneously optimizing over the decision variables (λ,x0,x) and (b) uses Lemma A.3.

In the last minimization problem above, the constraint implies that λx0 ≤ 1
n+1

. Checking all

possible values of (λ,x0) that satisfies λx0 ≤ 1
n+1

, this problem is equivalent to

W ∗
n = min

(λ,x0)∈[0,1]2

{
λ2 (1−x0) + (1−λ) (1−λ (1−x0)) : x0 ≤

1

λ (n+ 1)

}

= min
c∈[0, 1

n+1 ]

{
min

(λ,x0)∈[0,1]2

{
λ2 (1−x0) + (1−λ) (1−λ (1−x0)) : λx0 = c

}}
(c)
= min

c∈[0, 1
n+1 ]

{
min
λ∈[c,1]

{
λ (λ− c) + (1−λ) (1−λ+ c)

}}
, (13)

where c holds by using the constraint λx0 = c to replace x0 with c/λ, in which case, the constraints

λx0 = c and (λ,x0)∈ [0,1]2 imply that λ∈ [c,1].

The objective function of the inner minimization problem on the right side of (13) is convex

and quadratic in λ. Checking the first order condition of the objective function, the unconstrained

minimum occurs at λ = c+1
2

, which satisfies the constraint λ ∈ [c,1]. In this case, evaluating the

objective function at λ = c+1
2

, the optimal objective value of the inner minimization problem on

the right side of (13) is given by 1−c2
2

. Using this optimal objective value in (13), we obtain

W ∗
n = minc∈[0, 1

n+1 ]
1−c2

2
= 1

2
− 1

2 (n+1)2
, where the last equality holds since 1−c2

2
is decreasing in c over

the interval [0, 1
n+1

]. Therefore, the optimal objective value of the minimization problem on the

right side of (12) is 1
2
− 1

2 (n+1)2
, so Y ∗n ≥− 3

2
+ n+1

2

[
1
2
− 1

2 (n+1)2

]
. Thus, by Lemma A.2, we get

Z∗n = Y ∗n −
n

n+ 1
≥ − 3

2
+
n+ 1

2

[1

2
− 1

2 (n+ 1)2

]
− n

n+ 1

= − 3

2
+
n

4
+

1

4
− 1

4 (n+ 1)
− n

n+ 1
≥ n

4
− 5

2
,

where the last inequality uses the fact that 1
4
− 1

4 (n+1)
≥ 0 and n

n+1
≤ 1. The chain of inequalities

above establishes the desired result.
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Appendix B: Appendix: Red Bus-Blue Bus Paradox

A commuter has the option of using a red bus or a car to get to her destination on each day. She

chooses each of the two options with an equality probability of 1/2. Using 1 and 2 to capture the red

bus and car options, let φMNL
i (S) be the choice probability of option i under the multinomial logit

model given that the available options are S. Thus, we have
φMNL
1 ({1,2})
φMNL
2 ({1,2}) = 1. Consider introducing

a third option of a blue bus. McFadden (1980) argues that the two busses are identical to each

other and very different from the car for commuting purposes, so the commuter should choose

the two buses with equal probability and the introduction of the blue bus should not change the

choice probability of the car. Thus, the commuter should still choose the car with probability

1/2 and the remaining probability should be split equally for the two buses, yielding a choice

probability of 1/4 for each bus. However, due to its independence of irrelevant alternatives property,

if we use the multinomial logit model to capture the choice process of the commuter, then such

choice probabilities cannot be attained. In particular, using 3 to capture the blue bus option, after

introducing the blue bus, we want the choice probabilities of the two buses to be equal to each

other, so
φMNL
1 ({1,2,3})
φMNL
3 ({1,2,3}) = 1. Furthermore, by the independence of irrelevant alternatives property,

we have
φMNL
1 ({1,2,3})
φMNL
2 ({1,2,3}) =

φMNL
1 ({1,2})
φMNL
2 ({1,2}) , but noting that we have

φMNL
1 ({1,2})
φMNL
2 ({1,2}) = 1 before the introduction of

the blue bus, we must have
φMNL
1 ({1,2,3})
φMNL
2 ({1,2,3}) = 1. Thus, we must have φMNL

1 ({1,2,3}) = φMNL
2 ({1,2,3}) =

φMNL
3 ({1,2,3}), in which case, we get φMNL

1 ({1,2,3}) = φMNL
2 ({1,2,3}) = φMNL

3 ({1,2,3}) = 1/3. Thus,

after the introduction of the blue bus, all options end up being chosen with an equal probability of

1/3. In contrast, we can calibrate our mixture model to produce the anticipated choice probabilities

before and after the introduction of the blue bus.

We set the parameters of our mixture model as θ1 = 0, θ2 = 1, θ3 = 0, v1 =M , v2 = 0, v3 =M

and λ= 1/2. Let φMix
i (S) be the choice probability of option i under our mixture model given that

the available options are S. Considering the choice probabilities of the red bus and car before the

introduction of the blue bus, under the parameters at the beginning of this paragraph, we have

φMix
1 ({1,2}) = 1

2
M

1+M
and φMix

2 ({1,2}) = 1
2
, so the choice probabilities of the red bus and car get

arbitrarily close to 1/2 as M →∞. Thus, the choice probabilities from our mixture model match

those anticipated before the introduction of the blue bus. Considering the choice probabilities of

the two buses and car after the introduction of the blue bus, we have φMix
1 ({1,2,3}) = 1

2
M

1+2M
,

φMix
2 ({1,2,3}) = 1

2
and φMix

3 ({1,2,3}) = 1
2

M
1+2M

, so the choice probabilities of the red and blue buses

get arbitrarily close to 1/4 and the choice probability of the car gets arbitrarily close to 1/2 as

M →∞. Thus, the choice probabilities from our mixture model match those anticipated after the

introduction of the blue bus. Thus, our mixture choice model does not display the red bus-blue

bus paradox in its classical form, but this discussion should not mean that our choice model is

uniformly superior to the multinomial logit model or always resolves similar paradoxes.



e-companion to Mixture of Independent Demand and Multinomial Logit Models ec7

Appendix C: Comparison with the Markov Chain Choice Model

We give an example to show that our mixture of independent demand and multinomial logit models

is not a special case of the Markov chain choice model. Under the Markov chain choice model,

a customer arriving into the system is interested in purchasing product i with probability γi. If

this product is available for purchase, then the customer purchases it. Otherwise, the customer

transitions from product i to product j with probability ρij and checks whether product j is

available for purchase. With probability 1−
∑

j∈N ρij, the customer transitions to the no-purchase

option, in which case, she leaves without a purchase. In this way, the customer transitions among

the products according to a Markov chain until she visits a product that is available for purchase or

she visits the no-purchase option. The parameters of the Markov chain choice model are {γi : i∈N}

and {ρij : i, j ∈ N}. Given that we offer the assortment S ⊆ N of products, we let Pi(S) be the

expected number of times that a customer visits product i during the course of her choice process.

If i ∈ S, then a customer purchases product i as soon as she visits this product, so for i ∈ S,

Pi(S) is the purchase probability of product i when we offer the assortment S. We can compute

{Pi(S) : i∈N} by solving the system of equations

Pi(S) = γi +
∑
j 6∈S

ρjiPj(S) ∀ i∈N. (14)

We can intuitively justify (14) through a balance argument (Feldman and Topaloglu 2017). On

the left side, Pi(S) is the expected number of times that a customer visits product i during the

course of her choice process. For a customer to visit product i, she may arrive into the system

with an interest to purchase product i, which happens with probability γi. Alternatively, she may

visit some product j 6∈ S and the expected number of visits to this product is Pj(S). In this case,

if she transitions from product j to product i, then the customer ends up visiting product i. The

probability of transitioning from product j to product i is ρji. If
∑

j∈N ρij < 1 for all i ∈N , then

there exists a solution to the system of equations above for any S ⊆N .

We consider an instance of the mixture of independent demand and multinomial logit models

with N = {1,2,3}, (θ1, θ2, θ3) = (0,0,1), (v1, v2, v3) = (1,1,1) and λ = 1
4
. Under this choice

model, if we offer the assortment S, then a customer purchases product i ∈ S with probability

φi(S) = λθi + (1−λ) vi
1+V (S)

. In Table EC.1, we give the choice probabilities {φi(S) : i∈ S, S ⊆N}

for this instance of the mixture of independent demand and multinomial logit models. We argue

that there exists no Markov chain choice model such that the choice probabilities under the Markov

chain choice model for all products and for all assortments match those under the mixture of

independent demand and multinomial logit models. In other words, there exist no parameters

{γi : i∈N} and {ρij : i, j ∈ N} for the Markov chain choice model such that Pi(S) = φi(S) for
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S φ1(S) φ2(S) φ3(S)

∅ 0 0 0
{1} 3/8 0 0
{2} 0 3/8 0
{3} 0 0 5/8

S φ1(S) φ2(S) φ3(S)

{1,2} 1/4 1/4 0
{1,3} 1/4 0 1/2
{2,3} 0 1/4 1/2
{1,2,3} 3/16 3/16 7/16

Table EC.1 Expected revenue provided by all possible assortments.

all S ⊆ N , i ∈ N . To make this argument, by (14), note that Pi({1,2,3}) = γi for all i ∈ N .

Therefore, to ensure that Pi({1,2,3}) = φi({1,2,3}) for all i ∈N , we must choose {γi : i ∈N} so

that γ1 = φ1({1,2,3}) = 3
16

, γ2 = φ2({1,2,3}) = 3
16

and γ3 = φ3({1,2,3}) = 7
16

. By this reasoning, we

fix the values of the parameters {γi : i∈N}.

Consider an assortment of the form N \ {i}. Product i is the only one not in the assortment

N \{i}, so by (14), we get Pk(N \{i}) = γk+ρik Pi(N \{i}) for all k ∈N . Using the last equality with

k= i, we get (1−ρii) Pi(N \{i}) = γi, so the equality Pk(N \{i}) = γk+ρik Pi(N \{i}) is equivalent

to Pk(N \ {i}) = γk + ρik
γi

1−ρii
, which, in turn, is equivalent to ρik = 1−ρii

γi
(Pk(N \ {i})− γk). Thus,

to ensure that Pk(N \ {i}) = φk(N \ {i}) for all i, k ∈N , we must have

ρik =
1− ρii
γi

(φk(N \ {i})− γk).

Using the values of φk(N \ {i}) for i, k ∈ N in Table EC.1 and the fact that γ1 = 3
16

, γ2 = 3
16

and γ3 = 3
16

, the expression above yields ρ21 = 1
3
(1− ρ22), ρ31 = 1

7
(1− ρ33), ρ23 = 1

3
(1− ρ22) and

ρ32 = 1
7
(1−ρ33). Lastly, consider the assortment {1}. By (14), we have P2({1}) = γ2 +ρ22P2({1})+

ρ32P3({1}), which is equivalent to (1−ρ22)P2({1}) = γ2 +ρ32P3({1}). Similarly, (1−ρ33)P3({1}) =

γ3 + ρ23P2({1}). Since ρ23 = 1
3
(1− ρ22) and ρ32 = 1

7
(1− ρ33), the last two equalities become

(1− ρ22)P2({1}) = γ2 + 1
7

(1− ρ33)P3({1})

(1− ρ33)P3({1}) = γ3 + 1
3

(1− ρ22)P2({1}).

Since γ2 = 3
16

and γ3 = 7
16

, solving the equalities above, we get (1− ρ22)P2({1}) = 21
80

and

(1− ρ33)P3({1}) = 21
40

. Also, by (14), we have P1({1}) = γ1 + ρ21P2({1}) + ρ31P3({1}). Noting

that γ1 = 3
16

, ρ21 = 1
3
(1 − ρ22) and ρ31 = 1

7
(1 − ρ33), we get P1({1}) = 3

16
+ 1

3
(1 − ρ22)P2({1}) +

1
7
(1− ρ33)P3({1}), but since (1− ρ22)P2({1}) = 21

80
and (1− ρ33)P3({1}) = 21

40
, plugging them in the

last equality, we must have have P1({1}) = 7
20

, which is different from φ1({1}) = 3
8
.

Thus, we cannot choose the parameters of the Markov chain choice model to make sure that

its choice probabilities match those in Table EC.1. The example that we give in this section is

not hard to find. Virtually for all randomly generated instances of our choice model, we cannot

calibrate a Markov chain choice model to match the choice probabilities of our choice model.
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Appendix D: Proof of Lemma 3.1

Let H = {i ∈ N : x̂i = x̂0}, M = {i ∈ N : 0 < x̂i < x̂0} and L = {i ∈ N : x̂i = 0}. To get a

contradiction, assume that M 6= ∅. We construct two distinct feasible solutions (x̃0, x̃, ỹ) and

(x0,x,y) to the Assortment LP such that (x̂0, x̂, ŷ) = 1
2

(x̃0, x̃, ỹ)+ 1
2
(x0,x,y), contradicting the fact

that (x̂0, x̂, ŷ) is a basic feasible solution. For small ε > 0, we define the solution (x̃0, x̃, ỹ) as

x̃0 = x̂0−V (M) ε,

x̃i =


x̂i−V (M) ε if i∈H
x̂i + (1 +V (H)) ε if i∈M
x̂i if i∈L,

ỹij =

{
min{x̃i, x̃j} if ŷij = min{x̂i, x̂j}
ŷij if ŷij <min{x̂i, x̂j}.

We claim that (x̃0, x̃, ỹ) is feasible to the Assortment LP. To see the claim, note that x̃0 +∑
i∈N vi x̃i = x̂0 +

∑
i∈N vi x̂i−V (M) ε−

∑
i∈H vi V (M) ε+

∑
i∈M vi (1 +V (H)) ε= 1, where the last

equality follows by the fact that x̂0 +
∑

i∈N vi x̂i = 1,
∑

i∈H vi = V (H) and
∑

i∈M vi = V (M). Thus,

(x̃0, x̃, ỹ) satisfies the first constraint. Noting that M 6= ∅, we have x̂0 > 0. By the definitions of

x̃i and x̃0, for all i ∈ H, we have x̃i = x̂i − V (M) ε = x̂0 − V (M) ε = x̃0. For all i ∈M , we have

x̂i < x̂0, so for small ε > 0, it follows that x̃i = x̂i + (1 +V (H)) ε < x̂0−V (M) ε= x̃0. Lastly, for all

i ∈ L, noting that x̂i = 0< x̂0, for small ε > 0, we get x̃i = x̂i < x̂0− V (M) ε= x̃0. Thus, (x̃0, x̃, ỹ)

satisfies the second constraint as well. If ŷij = min{x̂i, x̂j}, then ỹij = min{x̃i, x̃j}, so ỹij ≤ x̃i and

ỹij ≤ x̃j. If, on the other hand, ŷij <min{x̂i, x̂j}, then ŷij <min{x̂i, x̂j}− V (M) ε for small ε > 0.

Noting that x̃i ≥ x̂i− V (M) ε for all i ∈N , we get ỹij = ŷij <min{x̂i, x̂j}− V (M) ε≤min{x̃i, x̃j},

so ỹij ≤ x̃i and ỹij ≤ x̃j. Thus, (x̃0, x̃, ỹ) satisfies the third and fourth constraints. Also, we have

(x̃, ỹ)∈Rn+n2

+ for small ε > 0, establishing the claim. Similarly, we define the solution (x0,x,y) as

x0 = x̂0 +V (M) ε,

xi =


x̂i +V (M) ε if i∈H
x̂i− (1 +V (H)) ε if i∈M
x̂i if i∈L,

yij =

{
min{xi, xj} if ŷij = min{x̂i, x̂j}
ŷij if ŷij <min{x̂i, x̂j}.

Using the same argument earlier in this paragraph, we can check that (x0,x,y) is feasible to

the Assortment LP. Noting that M 6= ∅, V (M)> 0, so x̃0 6= x0, which implies that (x̃0, x̃, ỹ) and

(x0,x,y) are distinct. By the definitions of (x̃0, x̃) and (x0,x), we have (x̂0, x̂) = 1
2

(x̃0, x̃)+ 1
2

(x0,x),

in which case, it only remains to check that ŷ= 1
2
ỹ+ 1

2
y.

If we have ŷij <min{x̂i, x̂j}, then ỹij = ŷij = yij, so ŷij = 1
2
ỹij + 1

2
yij, as desired. Thus, we assume

that ŷij = min{x̂i, x̂j}. Note that ỹij = min{x̃i, x̃j} in this case. We consider four cases.

Case 1: Assume that (i, j) ∈ H ×H. The definition of H implies that x̂i = x̂j = x̂0, so ŷij =

min{x̂i, x̂j}= x̂0. Furthermore, if (i, j)∈H ×H, then we have x̃i = x̂i−V (M) ε= x̂0−V (M) ε and
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x̃j = x̂j −V (M) ε= x̂0−V (M) ε, so ỹij = min{x̃i, x̃j}= x̂0−V (M) ε. By the symmetric reasoning,

we have yij = x̂0 +V (M) ε as well. In this case, we get ŷij = 1
2
ỹij + 1

2
yij.

Case 2: Assume that (i, j) ∈ (H,M). By the definition of H and M , x̂i = x̂0 > x̂j, so ŷij =

min{x̂i, x̂j}= x̂j. If (i, j)∈ (H,M), then we have x̃i = x̂i−V (M) ε and x̃j = x̂j + (1 +V (H)) ε, but

noting that x̂i > x̂j, we get x̃i > x̃j for small ε > 0, so ỹij = min{x̃i, x̃j}= x̃j = x̂j +(1+V (H)) ε. By

the symmetric reasoning, we have yij = x̂j − (1 +V (H)) ε as well. Thus, ŷij = 1
2
ỹij + 1

2
yij.

Case 3: Assume that (i, j)∈ (M,H) or (i, j)∈ (M,M). In this case, by using the same argument

in Case 2, we can show that ŷij = 1
2
ỹij + 1

2
yij.

Case 4: Assume that i∈L or j ∈L. Let `∈ {i, j} be such that `∈L. The definition of L implies

that x̂` = 0, so ŷij = min{x̂i, x̂j} ≤ x̂` = 0. Furthermore, for ` ∈ L, we have x̃` = x̂` = 0, in which

case, we get ỹij = min{x̃i, x̃j} ≤ x̃` = 0. By the symmetric reasoning, we have yij = 0 as well. In this

case, it follows that ŷij = 0 = 1
2
ỹij + 1

2
yij.

Appendix E: Proof of Theorem 4.1

We give a proof for the second part of Theorem 4.1. Let δ > 0 be such that S∗(λ,x) = S∗(λ,0) for

all x∈ [0, δ) and S∗(λ, δ) 6= S∗(λ,0). In other words, as we progressively increase the revenues of the

products by larger amounts, δ is the first increment when the optimal solution to the Parametric

Mixture problem changes. It is enough to show that S∗(λ, δ)⊇ S∗(λ,0). Once we show this result,

we can set the nominal revenues of the products as {ri + δ : i∈N} and progressively increase the

product revenues starting from these nominal values. The discussion so far in this paragraph fixes

the value of δ, so that we have S∗(λ, δ) 6= S∗(λ,0) and S∗(λ,x) = S∗(λ,0) for all x ∈ [0, δ). On the

other hand, using R(S) as defined right before Theorem 3.3, there are finitely many values in the set

{R(S) + δ V (S)

1+V (S)
: S ⊆N}. Thus, there exists ε > 0 such that if R(S) + δ V (S)

1+V (S)
6=R(Q) + δ V (Q)

1+V (Q)

for some S,Q ⊆ N , then we must have
∣∣R(S) + δ V (S)

1+V (S)
− R(Q) − δ V (Q)

1+V (Q)

∣∣ > ε. That is, if the

quantities R(S)+ δ V (S)

1+V (S)
and R(Q)+ δ V (Q)

1+V (Q)
are different from each other, then they must differ

by at least ε > 0. For Vmin = mini∈N vi, fix some γ ∈ [0, δ) such that

0<

(
1 +

λ

1−λ
1 +V (N)

Vmin

∑
i∈N

θi

)
(δ− γ)≤ ε. (15)

The discussion in the latter part of this paragraph fixes the value of γ. Since S∗(λ,x) = S∗(λ,0)

for all x∈ [0, δ), noting that γ ∈ [0, δ), we get S∗(λ,γ) = S∗(λ,0).

In the proof, for the values of δ and γ that we fix in the previous paragraph, we will show that

S∗(λ, δ)⊇ S∗(λ,γ). In this case, since S∗(λ,γ) = S∗(λ,0), we get S∗(λ, δ)⊇ S∗(λ,0), which is the
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desired result. Throughout the proof, we let Rx(S) =
∑
i∈S(ri+x)vi
1+V (S)

, Θx(S) =
∑

i∈S(ri + x)θi and

Ax(S) =
∑
i∈S(ri+x)vi
V (S)

. In this case, letting Sδ = S∗(λ, δ) and Sγ = S∗(λ,γ) for notational brevity, Sδ

is an optimal solution to the problem maxS⊆N λΘδ(S) + (1− λ)Rδ(S), whereas Sγ is an optimal

solution to the problem maxS⊆N λΘγ(S) + (1−λ)Rγ(S).

We consider two cases. The first case will lead to a contradiction, so it cannot happen. In the

second case, we will establish the desired result. The first case is more involved.

Case 1: Assume that Rδ(Sδ)− δ ≥ Rγ(Sγ)− γ. Let K = Sδ \ Sγ . Thus, we have K ⊆ Sδ and

Sγ ∩K = ∅. First, we proceed under the assumption that K 6= ∅. By definition of Sγ , we have

λΘγ(Sγ) + (1 − λ)Rγ(Sγ) ≥ λΘγ(Sγ ∪K) + (1 − λ)Rγ(Sγ ∪K), which we equivalently write as

(1−λ) (Rγ(Sγ)−Rγ(Sγ ∪K))≥ λ
∑

i∈K(ri+γ)θi ≥ 0, so we get Rγ(Sγ)≥Rγ(Sγ∪K). By the same

argument at the beginning of the proof of Lemma 3.4,Rγ(Sγ ∪K) is a convex combination ofRγ(Sγ)

and Aγ(K), so since Rγ(Sγ)≥Rγ(Sγ ∪K), we must have Aγ(K)≤Rγ(Sγ ∪K)≤Rγ(Sγ). Also, by

the definition of Ax(S), we have Ax(S) = A(S) + x for S 6= ∅. By the assumption in Case 1, we

have Rδ(Sδ)− δ≥Rγ(Sγ)− γ. Thus, using the chain of inequalities Aγ(K)≤Rγ(Sγ ∪K)≤Rγ(Sγ)

just established in this paragraph, it follows that Rδ(Sδ)− δ ≥ Rγ(Sγ)− γ ≥ Aγ(K)− γ = A(K),

which yields Rδ(Sδ)≥A(K) + δ=Aδ(K). In this case, using the fact that Rδ(Sδ) can be expressed

as a convex combination of Rδ(Sδ \K) and Aδ(K), having Rδ(Sδ)≥Aδ(K) implies that the chain

of inequalities Rδ(Sδ \K)≥Rδ(Sδ)≥Aδ(K) must hold.

Noting that Sδ is an optimal solution to the problem maxS⊆N λΘδ(S) + (1−λ)Rδ(S) and Sγ is

an optimal solution to the problem maxS⊆N λΘγ(S) + (1−λ)Rγ(S), by Lemma 3.4, we have

λΘγ(K)≤ (1−λ)V (K)
Rγ(Sγ)−Aγ(K)

1 +V (Sγ ∪K)
and λΘδ(K)≥ (1−λ)V (K)

Rδ(Sδ \K)−Aδ(K)

1 +V (Sδ)

To use Lemma 3.4 to get the two inequalities above, we need to have Sγ ∩K =∅ and K ⊆ Sδ, but

these two conditions hold by the fact that K = Sδ \Sγ .

By the definition of Θx(S), we have Θδ(K) − Θγ(K) = (δ − γ)
∑

i∈K θi. Adding the two

inequalities above, arranging the terms and using the fact that Ax(S) =A(S) +x, we get

Rγ(Sγ)−A(K)− γ ≥ 1 +V (Sγ ∪K)

1 +V (Sδ)

(
Rδ(Sδ \K)−A(K)− δ

)
− λ

1−λ
1 +V (Sγ ∪K)

V (K)
(δ− γ)

∑
i∈K

θi

(a)

≥ Rδ(Sδ)−A(K)− δ− λ

1−λ
1 +V (N)

Vmin

(δ− γ)
∑
i∈N

θi

(b)

≥ Rδ(Sδ)−A(K)− δ− (ε− (δ− γ)), (16)

where (a) holds since Sγ ∪ K ⊇ Sδ by the definition of K, so
1+V (Sγ∪K)

1+V (Sδ)
≥ 1, as well as

using the inequality Rδ(Sδ \ K) ≥ Rδ(Sδ) ≥ Aδ(K) established earlier in the proof, whereas
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(b) holds by (15). So, (16) yields Rγ(Sγ) ≥ Rδ(Sδ) − ε. By the definition of Rx(S), for x≥ y,

we have Rx(S) ≥ Ry(S). Thus, having Rγ(Sγ) ≥ Rδ(Sδ) − ε implies that Rδ(Sγ) ≥ Rδ(Sδ)− ε.

Also, noting the definition of Rx(S), we have Rx(S) = R(S) + x V (S)

1+V (S)
. In this case, we get

Rγ(Sγ) + δ− γ = R(Sγ) − γ 1
1+V (Sγ)

+ δ = Rδ(Sγ) + (δ − γ) 1
1+V (Sγ)

> Rδ(Sγ). Since Rδ(Sδ) ≥

Rγ(Sγ) + δ− γ by the assumption in Case 1, it follows that Rδ(Sδ) ≥ Rγ(Sγ) + δ − γ > Rδ(Sγ).

By the discussion so far in this paragraph, we have Rδ(Sγ) ≥ Rδ(Sδ) − ε and Rδ(Sδ)>Rδ(Sγ),

which imply that |Rδ(Sδ) − Rδ(Sγ)| ≤ ε and Rδ(Sδ) 6= Rδ(Sγ). So, the assortments Sγ , Sδ ⊆ N

satisfy
∣∣R(Sδ) + δ V (Sδ)

1+V (Sδ)
−R(Sγ)− δ V (Sγ)

1+V (Sγ)

∣∣≤ ε, while R(Sδ) + δ V (Sδ)

1+V (Sδ)
and R(Sγ) + δ

V (Sγ)

1+V (Sγ)

being distinct from each other, which contradicts the definition of ε at the beginning of the proof.

Therefore, it follows that we cannot have K 6=∅ in Case 1.

Second, we proceed under the assumption that K = ∅. Since K = Sδ \ Sγ , we get Sγ ⊇ Sδ. By

our choice of δ and γ at the beginning of the proof, Sδ 6= S∗(λ,0), but Sγ = S∗(λ,0), so we cannot

have Sδ = Sγ . Therefore, Sδ is a strict subset of Sγ . By the definitions of Sδ and Sγ , we have the

inequalities λΘδ(Sδ) + (1−λ)Rδ(Sδ)≥ λΘδ(Sγ) + (1−λ)Rδ(Sγ) and λΘγ(Sγ) + (1−λ)Rγ(Sγ)≥

λΘγ(Sδ) + (1−λ)Rγ(Sδ). Adding the two inequalities, we get

λ
[
Θδ(Sδ)−Θγ(Sδ)

]
+(1−λ)

[
Rδ(Sδ)−Rγ(Sδ)

]
≥ λ
[
Θδ(Sγ)−Θγ(Sγ)

]
+(1−λ)

[
Rδ(Sγ)−Rγ(Sγ)

]
.

Since Sδ is a strict subset of Sγ , we have
∑

i∈Sδ
θi ≤

∑
i∈Sγ θi and V (Sδ)

1+V (Sδ)
≤ V (Sγ)

1+V (Sγ)
, where at least

one of the inequalities is strict. We have Θx(S)−Θy(S) = (x− y)
∑

i∈S θi and Rx(S)−Ry(S) =

(x − y) V (S)

1+V (S)
, so we write the inequality above as (δ− γ)(λ

∑
i∈Sδ

θi + (1−λ) V (Sδ)

1+V (Sδ)
) ≥

(δ− γ)(λ
∑

i∈Sγ θi + (1−λ)
V (Sγ)

1+V (Sγ)
), contradicting

∑
i∈Sδ

θi ≤
∑

i∈Sγ θi and V (Sδ)

1+V (Sδ)
≤ V (Sγ)

1+V (Sγ)
with

one inequality being strict. So, we cannot have K =∅ in Case 1 either.

Case 2: Assume that Rδ(Sδ)− δ <Rγ(Sγ)− γ. Let K = Sγ \Sδ. If K =∅, then we get Sγ ⊆ Sδ,

which is the desired result. To get a contradiction, assume that K 6=∅. Since K = Sγ \ Sδ, we

have K ⊆ Sγ and K ∩Sδ =∅. We claim that Rδ(Sδ ∪K)<Rδ(Sδ). If the claim did not hold, then

we would get λΘδ(Sδ ∪K) + (1− λ)Rδ(Sδ ∪K) ≥ λΘδ(Sδ) + (1− λ)Rδ(Sδ), which cannot hold

since Sδ is an optimal solution to the problem maxS⊆N λΘδ(Sδ) + (1− λ)Rδ(S) with the largest

cardinality. Thus, the claim holds and we have Rδ(Sδ ∪K)<Rδ(Sδ). By the same argument at the

beginning of the proof of Lemma 3.4, Rδ(Sδ ∪K) is a convex combination of Rδ(Sδ) and Aδ(K),

so since Rδ(Sδ ∪K)<Rδ(Sδ), we get Aδ(K)≤Rδ(Sδ ∪K)<Rδ(Sδ). Noting that Ax(S) =A(S)+x

for S 6=∅, subtracting δ from the last chain of inequalities yields A(K) =Aδ(K)− δ <Rδ(Sδ)− δ,

but since Rδ(Sδ)− δ <Rγ(Sγ)− γ by the assumption in Case 2, we have A(K)<Rγ(Sγ)− γ.

The inequality at the end of the previous paragraph yields Aγ(K) =A(K) + γ < Rγ(Sγ). Also,

Rγ(Sγ) is a convex combination of Rγ(Sγ \K) and Aγ(K), in which case, having Aγ(K)<Rγ(Sγ)
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implies that Aγ(K)<Rγ(Sγ)≤Rγ(Sγ \K). Noting that K ∩Sδ = ∅ and K ⊆ Sγ by the definition

of K, Lemma 3.4 implies that

λΘδ(K)≤ (1−λ)V (K)
Rδ(Sδ)−Aδ(K)

1 +V (Sδ ∪K)
and λΘγ(K)≥ (1−λ)V (K)

Rγ(Sγ \K)−Aγ(K)

1 +V (Sγ)
.

Since δ > γ, we have Θδ(K)≥Θγ(K), in which case, the two inequalities imply that Rδ(Sδ)−Aδ(K)

1+V (Sδ∪K)
≥

Rγ(Sγ\K)−Aγ(K)

1+V (Sγ)
. Just before the two inequalities above, we established that Aγ(K) < Rγ(Sγ) ≤

Rγ(Sγ \K). Furthermore, since K = Sγ \Sδ, we have Sδ ∪K ⊇ Sγ , so 1+V (Sδ ∪K)≥ 1+V (Sγ), in

which case, we obtain Rδ(Sδ)−Aδ(K)≥ 1+V (Sδ∪K)

1+V (Sγ)
(Rγ(Sγ \K)−Aγ(K))≥Rγ(Sγ \K)−Aγ(K)≥

Rγ(Sγ)−Aγ(K). Using the fact that Ax(S) =A(S) + x, focusing on the first and last expressions

in this chain of inequalities, we obtain Rδ(Sδ)− δ≥Rγ(Sγ)− γ, which contradicts the assumption

that Rδ(Sδ)− δ <Rγ(Sγ)− γ in Case 2.

Appendix F: Proof of Theorem 5.2

In this section, we give our FPTAS. Throughout this section, for notational brevity, we let

Θ(S) =
∑

i∈S ri θi andW (S) =
∑

i∈S ri vi and V (S) =
∑

i∈S vi. For a fixed accuracy parameter α> 0,

we construct the grid points Grid= {(1 +α)k : k= b log ν

log(1+α)
c, . . . , d log ν

log(1+α)
e}. We write the three

constraints in problem (2) as
∑

i∈S
n
αp
ri θi ≥ n

α
,
∑

i∈S
n
αq
ri vi ≥ n

α
and

∑
i∈S

n
αs
vi ≤ n

α
. Replacing

these three constraints with
∑

i∈Sd
n
αp
ri θie ≥ bnαc,

∑
i∈Sd

n
αq
ri vie ≥ bnαc and

∑
i∈Sb

n
αs
vic ≤ dnαe,

we obtain an approximate version of problem (2). In particular, letting σi(p) = d n
αp
ri θie,

κi(q) = d n
αq
ri vie and γi(s) = b n

αs
vic, this approximate version is given by

Ĝ(p, q, s) = min
S⊆N

{∑
i∈S

ci :
∑
i∈S

σi(p)≥
⌊n
α

⌋
,
∑
i∈S

κi(q)≥
⌊n
α

⌋
,
∑
i∈S

γi(s)≤
⌈n
α

⌉}
. (17)

Letting S∗ be optimal to the Capacitated Mixture problem, by the construction of Grid, there exists

(p̂, q̂, ŝ)∈Grid3 such that p̂≤Θ(S∗)≤ (1 +α) p̂, q̂≤W (S∗)≤ (1 +α) q̂ and 1
1+α

ŝ≤ V (S∗)≤ ŝ.

In the next lemma, we show that S∗ is feasible to problem (17) when we solve this problem with

any (p, q, s) such that p≤Θ(S∗)≤ (1 +α)p, q≤W (S∗)≤ (1 +α) q and 1
1+α

s≤ V (S∗)≤ s.

Lemma F.1 Using S∗ to denote an optimal solution to the Capacitated Mixture problem, let (p̂, q̂, ŝ)

be such that p̂ ≤ Θ(S∗) ≤ (1 + α) p̂, q̂ ≤W (S∗) ≤ (1 + α) q̂ and 1
1+α

ŝ ≤ V (S∗) ≤ ŝ. Then, S∗ is a

feasible solution to problem (17) with (p, q, s) = (p̂, q̂, ŝ).

Proof. By our choice of p̂, we have
∑

i∈S∗ ri θi = Θ(S∗)≥ p̂. Multiplying this chain of inequalities

with n
αp̂

, we obtain
∑

i∈S∗
n
αp̂
ri θi ≥ n

α
, which implies that

∑
i∈S∗d

n
α p̂
ri θie ≥ bnαc, so noting the

definition of σi(p), we get
∑

i∈S∗ σi(p̂) ≥ b
n
α
c. Thus, S∗ satisfies the first constraint in problem
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(17) when we solve this problem with (p, q, s) = (p̂, q̂, ŝ). We can use precisely the same argument

to show that S∗ satisfies the second constraint in problem (17) when we solve this problem with

(p, q, s) = (p̂, q̂, ŝ). Lastly, by our choice of ŝ, we have
∑

i∈S∗ vi = V (S∗)≤ ŝ. Multiplying this chain

of inequalities with n
αŝ

, we get
∑

i∈S∗
n
αŝ
vi ≤ n

α
, which implies that

∑
i∈S∗b

n
αŝ
vic ≤ dnαe. In this

case, using the definition of γi(s), we get
∑

i∈S∗ γi(ŝ)≤ d
n
α
e, so S∗ satisfies the third constraint in

problem (17) when we solve this problem with (p, q, s) = (p̂, q̂, ŝ).

By the next lemma, if we choose (p, q, s) with p≤Θ(S∗)≤ (1 +α)p, q ≤W (S∗)≤ (1 +α) q and

1
1+α

s≤ V (S∗)≤ s, then (17) yields a performance guarantee for the Capacitated Mixture problem.

Lemma F.2 Using S∗ to denote an optimal solution to the Capacitated Mixture problem with the

expected revenue z∗, let (p̂, q̂, ŝ) be such that p̂ ≤ Θ(S∗) ≤ (1 + α) p̂, q̂ ≤W (S∗) ≤ (1 + α) q̂ and

1
1+α

ŝ ≤ V (S∗) ≤ ŝ. Then, letting Ŝ be an optimal solution to (17) with (p, q, s) = (p̂, q̂, ŝ), Ŝ is a

feasible solution to the Capacitated Mixture problem with an expected revenue of at least (1−2α)2

(1+α)2
z∗.

Proof. By Lemma F.1, S∗ is a feasible solution to problem (17) when we solve this problem with

(p, q, s) = (p̂, q̂, ŝ), but Ŝ is an optimal solution to problem (17) with (p, q, s) = (p̂, q̂, ŝ). Therefore,

we have
∑

i∈Ŝ ci ≤
∑

i∈S∗ ci ≤C, where the last inequality follows since S∗ is an optimal solution to

the Capacitated Mixture problem, so it satisfies the constraint in this problem. Thus, Ŝ is a feasible

solution to the Capacitated Mixture problem. To compute the expected revenue of the assortment

Ŝ, using the fact that x≥ dxe− 1 and bxc ≥ x− 1, we have the chain of inequalities

∑
i∈Ŝ

ri θi =
α p̂

n

∑
i∈Ŝ

n

α p̂
ri θi ≥

α p̂

n

∑
i∈Ŝ

(⌈ n
α p̂

ri θi

⌉
− 1

)
(a)

≥ α p̂

n

(∑
i∈Ŝ

⌈ n
α p̂

ri θi

⌉
−n

)
(b)
=

α p̂

n

(∑
i∈Ŝ

σi(p̂)−n

)
(c)

≥ α p̂

n

(⌊
n

α

⌋
−n

)
≥ α p̂

n

(
n

α
−1−n

)
= p̂

(
1− α

n
−α

)
≥ p̂ (1−2α),

where (a) holds since |Ŝ| ≤ n, (b) is follows from the definition of σi(p) and (c) holds since Ŝ is a

feasible solution to problem (17) with (p, q, s) = (p̂, q̂, ŝ).

We can use precisely the same argument in the chain of inequalities above to show that∑
i∈Ŝ ri vi ≥ q̂ (1− 2α). Furthermore, we have the chain of inequalities

∑
i∈Ŝ

vi =
α ŝ

n

∑
i∈Ŝ

n

α ŝ
vi ≤

α ŝ

n

∑
i∈Ŝ

(⌊ n
α ŝ

vi

⌋
+ 1

)
≤ α ŝ

n

(∑
i∈Ŝ

⌊ n
α ŝ

vi

⌋
+n

)
(d)
=

α ŝ

n

(∑
i∈Ŝ

γi(ŝ) +n

)
(e)

≤ α ŝ

n

(⌈
n

α

⌉
+n

)
≤ α ŝ

n

(
n

α
+ 1 +n

)
= ŝ

(
1 +

α

n
+α

)
≤ ŝ (1 + 2α),

where (d) uses the definition of γi(s) and (e) holds since Ŝ is a feasible solution to problem (17)

with (p, q, s) = (p̂, q̂, ŝ). By the discussion so far in the proof, we have
∑

i∈Ŝ ri θi ≥ (1 − 2α) p̂,
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i∈Ŝ ri vi ≥ (1−2α) q̂ and

∑
i∈Ŝ vi ≤ (1+2α) ŝ. In this case, we can compute the expected revenue

provided by the assortment Ŝ as

λ
∑
i∈Ŝ

ri θi + (1−λ)

∑
i∈Ŝ ri vi

1 +
∑

i∈Ŝ vi
≥ λ (1− 2α) p̂+ (1−λ)

(1− 2α) q̂

1 + (1 + 2α) ŝ

(f)

≥ λ
1− 2α

1 +α
Θ(S∗) + (1−λ)

1−2α
1+α

W (S∗)

1 + (1 + 2α) (1 +α)V (S∗)

≥ 1− 2α

(1 + 2α) (1 +α)2

(
λΘ(S∗) + (1−λ)

W (S∗)

1 +V (S∗)

)
=

1− 2α

(1 + 2α) (1 +α)2
z∗

(g)

≥ (1− 2α)2

(1 +α)2
z∗

where (f) holds since we have Θ(S∗)≤ (1 +α) p̂, W (S∗)≤ (1 +α) q̂ and V (S∗)≥ 1
1+α

ŝ, whereas (g)

holds since 1
1+2α

≥ 1− 2α. So, the expected revenue of the assortment Ŝ is at least (1−2α)2

(1+α)2
z∗.

Thus, the assortment Ŝ in Lemma F.2 is a (1−2α)2

(1+α)2
-approximate solution to the Capacitated

Mixture problem. Problem (17) is a variant of the knapsack problem with three capacity dimensions.

The disutility of item i is ci. The capacity consumptions of item i in the three dimensions are

σi(p), κi(q) and γi(s). By the definitions of σi(p), κi(q) and γi(s), the capacity consumptions are

integers. The goal is to find the items to put into the knapsack so that we minimize the total

disutility of the items in the knapsack, while making sure that the total capacity consumptions

in the first two dimensions do not fall below bn
α
c, whereas the capacity consumption in the third

dimension does not exceed dn
α
e. Using a state variable to keep the capacity consumptions in the

three dimensions, for fixed (p, q, s), we can solve problem (17) using the dynamic program

Ji(u,w, t;p, q, s) = min

{
ci +Ji+1(u+σi(t),w+κi(s), t+ γi(s);p, q, s) , Ji+1(u,w, t;p, q, s)

}
,

with the boundary condition that we have Jn+1(u,w, t;p, q, s) = 0 if u≥ bn
α
c, w≥ bn

α
c and t≤ dn

α
e,

whereas we have Jn+1(u,w, t;p, q, s) = +∞ otherwise.

The two terms in the min operator above correspond to including and not including product i

in a solution S to problem (17). The boundary condition above ensures that we find a solution

S to problem (17) that satisfies
∑

i∈S σi(p) ≥ b
n
α
c,
∑

i∈S κi(q) ≥ b
n
α
c and

∑
i∈S γi(s) ≤ d

n
ρ
e. Since

σi(p)≥ 0, κi(q)≥ 0 and γi(s)≥ 0 for all i ∈N , as we move from one decision epoch to the next,

all components of the state variable can only increase. If any of the first two components of the

state variable exceeds bn
α
c at any decision epoch, then we can stop keeping track of the exact value

of this component of the state variable, since the boundary condition of the dynamic program

depends on whether the each of the first two components of the state variable exceeds bn
α
c. Thus,

we have O(n
α

) possible values for each of the first components of the state variable.

Similarly, if the third component of the state variable exceeds dn
α
e at any decision epoch, then

the boundary condition immediately implies that the value function takes the value infinity. Thus,
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we have O(n
α

) possible values for the third component of the state variable as well. Thus, there

are O(n
3

α3 ) possible states. Noting that there are n decision epochs, we can solve the dynamic

program in O(n
4

α3 ) operations, giving an optimal solution to problem (17) for a fixed (p, q, s). Noting

that Grid= {(1 +α)k : k= b log ν

log(1+α)
c, . . . , d log ν

log(1+α)
e}, there are O( 1

log(1+α)
log(ν

ν
)) =O( log(ν/ν)

α
) points

in Grid. Thus, we can obtain an optimal solution to problem (17) for all (p, q, s)∈Grid3 in

O
(
n4

α6 log3(ν/ν)
)

operations. Using these observations, we give a proof for Theorem 5.2.

Proof of Theorem 5.2:

Given ε ∈ (0,1), choose the accuracy parameter in the grid as α= ε/6. By the discussion in the

previous paragraph, we can obtain an optimal solution to problem (17) for all (p, q, s) ∈ Grid3 in

O(n
4

α6 log3(ν/ν)) operations. Since α= ε/6< 1/6, we have (1−2α)2

(1+α)2
≥ ((1−2α) (1−α))2 ≥ (1−3α)2 ≥

1 − 6α = 1 − ε, so by Lemma F.2, the expected revenue from one of these solutions is at least

(1− ε)z∗. Thus, if we check the expected revenue provided by the optimal solution to problem (17)

for each (p, q, s)∈Grid3 and pick the best one, then the best solution provides an expected revenue

of at least (1− ε)z∗. The number of operations to check the expected revenue from each solution

is dominated by the number of operations to get an optimal solution to problem (17). Thus,

using the definitions of ν and ν, noting the discussion at the end of the previous paragraph,

in O
(
n4

α6 log3(ν/ν)
)

=O(n
4

ε6
log3

(
(Rmax∨1) (nVmax∨1)

(Rmin∧1)(Vmin∧Θmin)

))
operations, we can obtain a solution to the

Capacitated Mixture problem with an expected revenue of at least (1− ε)z∗.

Appendix G: Constructing an Upper Bound and Testing the Heuristic

We discuss computing an upper bound on the optimal objective value of the Capacitated Mixture

problem and numerically test the performance of the heuristic for this problem.

Upper Bound on the Optimal Expected Revenue:

Consider K + 1 points ν = p̃1 < . . . < p̃K+1 = ν, L+ 1 points ν = q̃1 < . . . < q̃L+1 = ν and M + 1

points ν = s̃1 < . . . < s̃M+1 = ν. Let z∗UB be the optimal objective value of the problem

max
k=1,...,K, `=1,...,L,m=1,...,M

{
λ p̃k+1 + (1−λ)

q̃`+1

1 + s̃m
: G̃(p̃k, q̃`, s̃m+1)≤C

}
, (18)

where G̃(p, q, s) is the optimal objective value of the LP in (3). We proceed to showing that z∗UB is

an upper bound on the optimal objective value of the Capacitated Mixture problem. Letting S∗ be

an optimal solution to the Capacitated Mixture problem, define κ ∈ {1, . . . ,K}, ρ∈ {1, . . . ,L} and

µ ∈ {1, . . . ,M} such that p̃κ ≤
∑

i∈S∗ ri θi ≤ p̃κ+1, q̃ρ ≤
∑

i∈S∗ ri vi ≤ q̃ρ+1 and s̃µ ≤
∑

i∈S∗ vi ≤ s̃µ+1.

Using the assortment S∗, we define the solution x∗ ∈ {0,1}n to problem (3) such that x∗ = 1 if and

only if i∈ S∗. Observe that x∗ is feasible to problem (3) with (p, q, s) = (p̃κ, q̃ρ, s̃µ+1). In particular,
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by our choice of κ,ρ and µ, we get
∑

i∈N ri θi x
∗
i =
∑

i∈S∗ ri θi ≥ p̃κ,
∑

i∈N ri vi x
∗
i =
∑

i∈S∗ ri vi ≥ q̃ρ

and
∑

i∈N vi x
∗
i =

∑
i∈S∗ vi ≤ s̃µ+1. In this case, it follows that G̃(p̃κ, q̃ρ, s̃µ+1) ≤

∑
i∈N ci x

∗
i =∑

i∈S∗ ci ≤C, where the first inequality holds because x∗ is only a feasible solution to problem (3)

when we solve this problem with (p, q, s) = (p̃κ, q̃ρ, s̃µ+1), but G̃(p̃κ, q̃ρ, s̃µ+1) is the optimal objective

value of this problem, whereas the last inequality holds because S∗ is an optimal solution to the

Capacitated Mixture problem, so it satisfies the capacity constraint
∑

i∈S∗ ci ≤ C. Thus, we have

G̃(p̃κ, q̃ρ, s̃µ+1) ≤ C, which implies that (κ,ρ,µ) is a feasible solution to problem (18). Since the

optimal objective value of problem (18) is z∗UB, we get

z∗UB ≥ λ p̃κ+1 + (1−λ)
q̃ρ+1

1 + s̃µ
≥ λ

∑
i∈S∗

ri θi + (1−λ)

∑
i∈S∗ ri vi

1 +
∑

i∈S∗ vi
,

where we use the fact that
∑

i∈S∗ ri θi ≤ p̃κ+1,
∑

i∈S∗ ri vi ≤ q̃ρ+1 and s̃µ ≤
∑

i∈S∗ vi by our choice of

(κ,ρ,µ). Thus, z∗UB upper bounds the optimal objective value of the Capacitated Mixture problem.

Testing the Performance of the Heuristic:

We give a brief numerical study to test the performance of the heuristic for the Capacitated

Mixture problem. We describe our experimental setup and give our results.

Experimental Setup. In our numerical experiments, we randomly generate a large number of test

problems. For each test problem, we use the heuristic to obtain a solution and use the approach

described in this section to compute an upper bound on the optimal expected revenue. We check

the gap between the upper bound on the optimal expected revenue and the expected revenue from

the solution obtained by the heuristic. We generate our test problems as follows. We sample the

revenue of each product from the uniform distribution over [1,10]. To come up with the purchase

probability of each product in the independent demand segment, we sample ζi from the uniform

distribution over [0,1] and set θi = ζi/
∑

j∈N ζj. To come up with the preference weight of each

product in the multinomial logit segment, we sample ξi from the uniform distribution over [1,10]

and set vi = 1−P0
P0

ξi∑
j∈N ξj

, where P0 is a parameter that we vary. Thus, if we offer all products, then

a customer in the multinomial logit segment leaves without making a purchase with probability

1
1+

∑
i∈N vi

= 1
1+(1−P0)/P0

= P0. We sample the relative market size λ of the independent demand

segment from the uniform distribution over [0,1]. The capacity consumption of all products is one,

so we have a constraint on the number of products that we offer. To come up with the capacity

availability, once we generate the product revenues and choice model parameters, we solve the

Capacitated Mixture problem without any constraints. Letting S∗ be an optimal solution, we set

the capacity availability as C = β |S∗|, where β is another parameter that we vary.

Recalling that n is the number of products, noting that P0 controls the likelihood that a customer

leaves without a purchase and β controls the tightness of the capacity, varying n ∈ {50,100},
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Param. Perc. Opt. Gap
(n,P0, β) Avg. 95th Max

(50, 0.05, 0.5) 0.29% 0.43% 0.63%
(50, 0.05, 0.7) 0.23% 0.41% 0.43%
(50, 0.05, 0.9) 0.19% 0.33% 0.37%
(50, 0.1, 0.5) 0.18% 0.28% 0.30%
(50, 0.1, 0.7) 0.14% 0.24% 0.34%
(50, 0.1, 0.9) 0.12% 0.21% 0.25%
(50, 0.3, 0.5) 0.06% 0.12% 0.40%
(50, 0.3, 0.7) 0.06% 0.13% 0.26%
(50, 0.3, 0.9) 0.05% 0.17% 0.23%

Average 0.15%

Params. Perc. Opt. Gap
(n,P0, β) Avg. 95th Max

(100, 0.05, 0.5) 0.29% 0.42% 0.44%
(100, 0.05, 0.7) 0.24% 0.37% 0.43%
(100, 0.05, 0.9) 0.21% 0.32% 0.38%
(100, 0.1, 0.5) 0.18% 0.29% 0.40%
(100, 0.1, 0.7) 0.14% 0.24% 0.32%
(100, 0.1, 0.9) 0.13% 0.22% 0.26%
(100, 0.3, 0.5) 0.08% 0.16% 0.22%
(100, 0.3, 0.7) 0.07% 0.18% 0.20%
(100, 0.3, 0.9) 0.06% 0.13% 0.14%

Average 0.16%

Table EC.2 Optimality gap of the heuristic for the Capacitated Mixture problem.

P0 ∈ {0.05,0.1,0.3} and β ∈ {0.5,0.7,0.9}, we obtain 18 parameter combinations. In each parameter

combination, we randomly generate 100 problem instances by using the approach described in the

previous paragraph. For the heuristic, we construct the grid points with α= 0.25. For the upper

bound, we split the interval [ν, ν] into 50 equally spaced subintervals.

Numerical Results. We give our numerical results in Table EC.2. In this table, the first

column shows the parameter configuration by using the triplet (n,P0, β). The second column

shows the average percent gap between the upper bound on the optimal expected revenue and

the expected revenue of the solution from the heuristic, where the average is computed over

the 100 problem instances in a parameter combination. In particular, for problem instance k,

letting Revk be the expected revenue of the solution from the heuristic and UBk be upper

bound on the optimal expected revenue, the first column gives the average of the data

{100× UBk−Revk
UBk

: k= 1, . . . ,100}. In the second and third columns, we give the 95th percentile and

maximum of the same data. Our results indicate that the heuristic performs remarkably well. Over

all problem instances, the average optimality gap is 0.15%. The maximum optimality gap does not

exceed 0.63%. The average running time for the heuristic over all problem instances is less than a

second. The optimality gaps tend to get slightly larger when β gets smaller so that the capacities

get tighter, but even for the test problems with β = 0.5, the average optimality gap is 0.18%.

Appendix H: Proof of Theorem 6.1

The first part of Theorem 6.1 focuses on recovering a primal optimal solution to the Choice-Based

LP by using the same to the Compact LP, whereas the second part of Theorem 6.1 focuses on

recovering a dual optimal solution to the Choice-Based LP by using the same to the Compact LP.

In this section, we show each of these two parts separately.

H.1 Recovering a Primal Optimal Solution

We give a proof for the first part of Theorem 6.1. Throughout this section, we follow the convention

that if the Compact LP has multiple optimal solutions, then we pick any one that has the largest
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value for the decision variable x0. In the next lemma, we establish a useful property of the basic

optimal solutions to the Compact LP. This lemma plays a critical role in the proof of the first

part of Theorem 6.1 and holds under the convention that if the Compact LP has multiple optimal

solutions, then we pick any one that has the largest value for the decision variable x0. We give the

proof of the lemma after the proof of the first part of Theorem 6.1.

Lemma H.1 (Extreme Point Optimal Solutions) Let (x∗0,x
∗,y∗) be a basic optimal solution

to the Compact LP. Then, we have y∗ij = min{x∗i , x∗j} for all i, j ∈N .

We can generate counterexamples to show that we may not have y∗ij = min{x∗i , x∗j} when we use

basic optimal solutions without the largest value for the decision variable x0. Also, note that the

last two constraints in the Compact LP do not immediately imply that y∗ij = min{x∗i , x∗j}, since

the first constraint in this LP may not allow setting y∗ij = min{x∗i , x∗j} in a feasible solution to the

Compact LP. Using the lemma above, we give a proof for the first part of Theorem 6.1.

Proof of the First Part of Theorem 6.1:

Using (x∗0,x
∗,y∗) to denote a basic optimal solution to the Compact LP, let the solution ŵ for

the Choice-Based LP be provided by the Recovery formula. We establish two claims.

First, we show that
∑

S⊆N ŵ(S) = 1. By the definition of Si, we have V (Si)− V (Si−1) = vi for

all i= 1, . . . , n. Thus, using the Recovery formula, we get∑
S⊆N

ŵ(S)
(a)
=

n∑
i=0

ŵ(Si) =
n∑
i=0

(x∗i −x∗i+1) (1 +V (Si)) =
n∑
i=0

x∗i (1 +V (Si))−
n∑
i=0

x∗i+1 (1 +V (Si))

=

(
x∗0 (1 +V (S0)) +

n∑
i=1

x∗i (1 +V (Si))

)
−

(
n∑
i=1

x∗i (1 +V (Si−1)) +x∗n+1 (1 +V (Sn))

)
(b)
= x∗0 +

n∑
i=1

x∗i (V (Si)−V (Si−1)) = x∗0 +
n∑
i=1

vi x
∗
i

(c)
= 1,

where (a) holds since ŵ(S) = 0 for all S 6∈ {S0, S1, . . . , Sn}, (b) holds since x∗n+1 = 0 and S0 = ∅,

and (c) holds since the solution (x∗0,x
∗,y∗) satisfies the second constraint in the Compact LP.

Second, letting Λ∗i = (λθi + (1− λ)vi)x
∗
i + λθi

∑
j∈N vj y

∗
ij for notational brevity, we show that∑

S⊆N 1(i∈ S)
(
λθi + (1−λ) vi

1+V (S)

)
ŵ(S) = Λ∗i . By the definition of ŵ, we have

ŵ(Sk) = (x∗k−x∗k+1) (1 +V (Sk)) = x∗k−x∗k+1 + (x∗k−x∗k+1)V (Sk)

= x∗k−x∗k+1 +
∑
`∈N

1(`≤ k) (x∗k−x∗k+1)v`,

where the last equality uses the fact that Si = {1, . . . , i} and V (S) =
∑

i∈S vi. By Lemma

H.1, we have y∗ij = min{x∗i , x∗j} for all i, j ∈ N . Thus, since we index the products such that
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x∗1 ≥ x∗2 ≥ . . .≥ x∗n, we have y∗ij = x∗i for i≥ j and y∗ij = x∗j for i < j. In other words, letting a∨ b=

max{a, b}, we have y∗ij = x∗i∨j. Using the chain of equalities above, for each i∈N , we get

∑
k∈N

1(k≥ i) ŵ(Sk) =
∑
k∈N

1(k≥ i) (x∗k−x∗k+1) +
∑
k∈N

∑
`∈N

1(k≥ i)1(`≤ k) (x∗k−x∗k+1)v`

(d)
=
∑
k∈N

1(k≥ i) (x∗k−x∗k+1) +
∑
`∈N

v`
∑
k∈N

1(k≥ i∨ `) (x∗k−x∗k+1)

(e)
= x∗i +

∑
`∈N

v` x
∗
i∨` = x∗i +

∑
`∈N

v` y
∗
i`, (19)

where (d) holds since 1(k≥ i)1(`≤ k) = 1 if and only if 1(k≥ i∨ `) and (e) holds by canceling the

telescoping terms in the first and third sums on the left side of the equality.

By the Recovery formula, we have
∑

k∈N 1(k ≥ i) 1
1+V (Sk)

ŵ(Sk) =
∑

k∈N 1(k ≥ i) (x∗k − x∗k+1) =

x∗i . In this case, noting that i∈ Sk if and only if k≥ i, we obtain

∑
S⊆N

1(i∈ S)

(
λθi + (1−λ)

vi
1 +V (S)

)
ŵ(S) =

∑
k∈N

1(i∈ Sk)

(
λθi + (1−λ)

vi
1 +V (Sk)

)
ŵ(Sk)

=
∑
k∈N

1(k≥ i)

(
λθi + (1−λ)

vi
1 +V (Sk)

)
ŵ(Sk)

= λθi
∑
k∈N

1(k≥ i) ŵ(Sk) + (1−λ)vi
∑
k∈N

1(k≥ i) 1

1 +V (Sk)
ŵ(Sk)

(f)
= λθi

(
x∗i +

∑
`∈N

v` y
∗
i`

)
+ (1−λ)vi x

∗
i

(g)
= Λ∗i ,

where (f) follows from (19) and (g) holds by the definition of Λ∗i . Thus, by the two claims, we have∑
S⊆N ŵ(S) = 1 and

∑
S⊆N 1(i∈ S)

(
λθi + (1−λ) vi

1+V (S)

)
ŵ(S) = Λ∗i .

Using the these two claims, we show that ŵ is feasible to the Choice-Based LP. Since∑
S⊆N ŵ(S) = 1, ŵ satisfies the second constraint in the Choice-Based LP. Also, we have

T
∑
S⊆N

∑
i∈S

aqi

(
λθi + (1−λ)

vi
1 +V (S)

)
ŵ(S) = T

∑
i∈N

aqi
∑
S⊆N

1(i∈ S)

(
λθi + (1−λ)

vi
1 +V (S)

)
ŵ(S)

(h)
= T

∑
i∈N

aqiΛ
∗
i

(i)
= T

∑
i∈N

aqi

([
λθi + (1−λ)vi

]
x∗i +λθi

∑
j∈N

vj y
∗
ij

)
(j)

≤ cq,

where (h) follows from the second claim established above, (i) uses the definition of Λi and (j)

holds because (x∗0,x
∗,y∗) is a feasible solution to the Compact LP.

By the discussion in the previous paragraph ŵ is a feasible solution to the Choice-Based LP. Let

z∗Choice be the optimal objective value of the Choice-Based LP and z∗Compact be the optimal objective
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value of the Compact LP. Using the fact that (x∗0,x
∗,y∗) is an optimal solution to the Compact LP,

we have the chain of inequalities

z∗Compact = T
∑
i∈N

ri

([
λθi + (1−λ)vi

]
x∗i +λθi

∑
j∈N

vj y
∗
ij

)
(k)
= T

∑
i∈N

riΛ
∗
i

(l)
= T

∑
i∈N

∑
S⊆N

ri 1(i∈ S)

(
λθi + (1−λ)

vi
1 +V (S)

)
ŵ(S)

(m)

≤ z∗Choice, (20)

where (k) uses the definition of Λi, (l) follows from the second claim shown earlier and (m) holds

because ŵ is a feasible solution to the Choice-Based LP.

By the chain of inequalities above, we have z∗Compact ≤ z∗Choice. On the other hand, let w∗ be an

optimal solution to the Choice-Based LP. We define the solution (x̂0, x̂, ŷ) to the Compact LP as

x̂0 =
∑
S⊆N

1

1 +V (S)
w∗(S), x̂i =

∑
S⊆N

1(i∈ S)

1 +V (S)
w(S∗),

ŷij =
∑
S⊆N

1(i∈ Ŝ, j ∈ Ŝ)

1 +V (S)
w∗(S).

In this case, we can use precisely the same argument in (1) to show that (x̂0, x̂, ŷ) is a feasible

solution to the Compact LP and it provides an objective value of z∗Choice for the Compact LP.

Since (x̂0, x̂, ŷ) is a feasible solution to the Compact LP, providing an objective value of z∗Choice

for the Compact LP, the optimal objective value of the Compact LP satisfies z∗Compact ≥ z∗Choice, which

implies that the inequality in (20) must hold as equality. In particular, noting that (m) in (20)

must hold as an equality, it follows that ŵ is a feasible solution to the Choice-Based LP and it

provides an objective value of z∗Choice for the Choice-Based LP. Therefore, ŵ must be an optimal

solution to the Choice-Based LP, which is the desired result.

We turn our attention to the proof of Lemma H.1, which played a critical role in our proof of

the first part of Theorem 6.1 that we gave above.

Proof of Lemma H.1:

The proof of Lemma H.1 uses three auxiliary results. By the discussion at the end of Section 6,

recall that if the Compact LP has multiple optimal solutions, then we choose the one that has the

largest value for the decision variable x0. To obtain a solution that has the largest value for the

decision variable for x0, for ε > 0, we can add the additional term εx0 to the objective function of

the Compact LP. If ε is small enough, then solving the Compact LP with the additional term in

the objective function provides an optimal solution to the original version of the Compact LP that
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has the largest value for the decision variable x0. Thus, we work with a version of the Compact LP

with the additional term εx0 in the objective function, which is given by

zεCompact = max
(x0,x,y)∈R×Rn+n

2

+

{
T
∑
i∈N

ri

(
(λθi + (1−λ)vi)xi +λθi

∑
j∈N

vj yij

)
+ εx0 : (21)

T
∑
i∈N

aqi

(
(λθi + (1−λ)vi)xi +λθi

∑
j∈N

vj yij

)
≤ cq ∀ q ∈M,

x0 +
∑
i∈N

vi xi = 1,

xi ≤ x0 ∀ i∈N,

yij ≤ xi ∀ i, j ∈N, yij ≤ xj ∀ i, j ∈N

}
.

If ε is small enough, then a basic optimal solution to the problem above is also a basic optimal

solution to the Compact LP. So, it is enough to show that if (x∗0,x
∗,y∗) is a basic optimal

solution to problem (21), then we have y∗ij = min{x∗i , x∗j} for all i, j ∈N . For notational brevity, we

let P = {(x0,x,y)∈R×Rn+n2

+ : x0 +
∑

i∈N vi xi = 1, xi ≤ x0 ∀ i∈N, yij ≤min{xi, xj} ∀ i, j ∈N},

denoting the polytope captured by the last four constraints in the LP above. The proof of

Lemma H.1 uses three auxiliary results, given in three lemmas.

In our first auxiliary lemma, we consider a slightly modified version the Assortment LP, where

we add the additional term εx0 to the objective function. In particular, consider the LP

max
(x0,x,y)∈R×Rn+n

2

+

{∑
i∈N

ri

(
(λθi + (1−λ)vi)xi +λθi

∑
j∈N

vj yij

)
+ εx0 : (x0,x,y)∈P

}
. (22)

In the next lemma, we relate an optimal solution to the LP above to an optimal solution of a

slightly modified version of the Mixture problem.

Lemma H.2 For a basic optimal solution (x∗0,x
∗,y∗) to problem (22), let S∗ = {i∈N : x∗i > 0}.

Then, S∗ is an optimal solution to the problem

max
S⊆N

{∑
i∈S

ri

(
λθi + (1−λ)

vi
1 +V (S)

)
+

ε

1 +V (S)

}
. (23)

Lemma H.2 is an analogue of Theorem 3.2. We skip its proof since it uses the same argument in

the proof of Theorem 3.2. Also, problems (22) and (23) have the same optimal objective values.

In our second auxiliary lemma, we study an alternative representation of the dual of problem

(21), obtained by viewing the dual as taking place in two stages. In particular, associating the dual
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variables µ= {µq : q ∈M}, π, α= {αi : i∈N}, η = {ηij : i, j ∈N} and σ = {σij : i, j ∈N} with the

five sets of constraints in problem (21), we can write the dual of this problem as

min
(µ,π,α,η,σ)∈ Rm+×R×R

n+2n2

+

{∑
q∈M

cq µq +π : π=
∑
i∈N

αi + ε, (24)

vi π+αi−
∑
j∈N

ηij −
∑
j∈N

σji ≥ T (λθi + (1−λ)vi)

(
ri−

∑
q∈M

aqi µq

)
∀ i∈N,

ηij +σij ≥ T λθi vj

(
ri−

∑
q∈M

aqi µq

)
∀ i, j ∈N

}
.

We can solve this problem two stages. In the inner problem, we find the optimal values (π,α,η,σ)

for fixed value of µ. In the outer problem, we find the optimal value of µ.

We use F ε(µ) to denote the optimal objective value of the inner problem as a function of the

fixed value of µ. In particular, we have

F ε(µ) = min
(π,α,η,σ)∈ R×Rn+2n2

+

{
π : π=

∑
i∈N

αi + ε, (25)

vi π+αi−
∑
j∈N

ηij −
∑
j∈N

σji ≥ T (λθi + (1−λ)vi)

(
ri−

∑
q∈M

aqi µq

)
∀ i∈N,

ηij +σij ≥ T λθi vj

(
ri−

∑
q∈M

aqi µq

)
∀ i, j ∈N

}
,

in which case, problem (24) is equivalent to minµ∈Rm+
∑

q∈M cq µq +F ε(µ). In the next lemma, we

give an alternative representation of F ε(µ).

Lemma H.3 Noting that F ε(µ) is the optimal objective value of problem (25) for fixed µ ∈ Rm+ ,

we can compute F ε(µ) alternatively as

max
S⊆N

{
T
∑
i∈S

(
ri−

∑
q∈M

aqi µq

)(
λθi + (1−λ)

vi
1 +V (S)

)
+

ε

1 +V (S)

}
.

Proof. Associating the dual variables x0, x= {xi : i∈N} and y= {yij : i, j ∈N} with the three sets

of constraints in problem (25), the dual of problem (25) is identical to problem (22) after replacing

each occurrence of ri with ri −
∑

q∈M aqi µq. Thus, we can obtain F ε(µ) by solving problem (22)

after replacing ri with T (ri −
∑

q∈M aqi µq). On the other hand, by Lemma H.2, we can obtain

the optimal objective value of problem (22) by solving problem (23). Thus, we can obtain F ε(µ)

by solving problem (23) after replacing each occurrence of ri with T (ri −
∑

q∈M aqi µq), which is

equivalent to solving the problem given in the lemma.

In our third auxiliary lemma, we use complementary slackness to give two useful properties that

are satisfied by an optimal primal-dual solution pair for problem (21).
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Lemma H.4 Using (x∗0,x
∗,y∗) and (µ∗, π∗,α∗,η∗,σ∗) to denote a basic optimal primal-dual

solution pair for problem (21), let S∗ = {i ∈ N : x∗i > 0}. Then, we have π∗ =
∑

i∈S∗ α
∗
i + ε and∑

i∈S∗
∑

j∈N(η∗ij +σ∗ji) =
∑

i∈S∗
∑

j∈S∗(η
∗
ij +σ∗ij).

Proof. To see the first equality, note that x∗0 > 0. Otherwise, we have x∗i = 0 for all i ∈N by the

third constraint in problem (21), in which case, it is impossible to satisfy the second constraint.

Since x∗0 > 0 and x∗i = 0 for all i 6∈ S∗, using complementary slackness on the third constraint in

problem (21), we have α∗i = 0 for all i 6∈ S∗, in which case, by the first constraint in problem (24),

we get π∗ =
∑

i∈S∗ α
∗
i + ε. To see the second equality, if i∈ S∗ and j 6∈ S∗, then x∗i > 0 and x∗j = 0, in

which case, by the last two constraints in problem (21), we have y∗ij = 0 and y∗ji = 0. Therefore, we

get y∗ij <x
∗
i and y∗ji <x

∗
i , so using complementary slackness on the last two constraints in problem

(21), we get η∗ij = 0 and σ∗ji = 0. Thus, if i ∈ S∗ and j 6∈ S∗, then η∗ij = 0 and σ∗ji = 0. In this case,

the second equality in the lemma follows by noting that∑
i∈S∗

∑
j∈N

(η∗ij +σ∗ji) =
∑
i∈S∗

∑
j∈S∗

(η∗ij +σ∗ji) +
∑
i∈S∗

∑
j 6∈S∗

(η∗ij +σ∗ji)

=
∑
i∈S∗

∑
j∈S∗

(η∗ij +σ∗ji) =
∑
i∈S∗

∑
j∈S∗

(η∗ij +σ∗ij).

Proof of Lemma H.1. We use our auxiliary results to give a proof for Lemma H.1. Let (x∗0,x
∗,y∗)

and (µ∗, π∗,α∗,η∗,σ∗) be a basic optimal primal-dual solution pair for problem (21). We will show

that y∗ij = min{x∗i , x∗j} for all i, j ∈N . Let S∗ = {i∈N : x∗i > 0}. Consider i, j ∈ S∗. We have x∗i > 0

and x∗j > 0, so using complementary slackness on the last two constraints in problem (21), if y∗ij = 0,

then η∗ij = 0 and σ∗ij = 0. On the other hand, if y∗ij > 0, then using complementary slackness on the

last constraint in problem (24), we have η∗ij + σ∗ij = T λθi vj (ri −
∑

q∈M aqi µ
∗
q). Therefore, for all

i, j ∈ S∗, we have η∗ij +σ∗ij ≤ T λθi vj
(
ri−

∑
q∈M aqi µ

∗
q

)+
, where we let (a)+ = max{a,0}.

For all i ∈ S∗, x∗i > 0, so using complementary slackness on the second constraint in problem

(24), this constraint holds as equality for all i∈ S∗. Adding over all i∈ S∗ yields∑
i∈S∗

vi π
∗+

∑
i∈S∗

α∗i = T
∑
i∈S∗

(λθi + (1−λ)vi)
(
ri−

∑
q∈M

aqi µ
∗
q

)
+
∑
i∈S∗

∑
j∈N

η∗ij +
∑
i∈S∗

∑
j∈N

σ∗ji

(a)
= T

∑
i∈S∗

(λθi + (1−λ)vi)
(
ri−

∑
q∈M

aqi µ
∗
q

)
+
∑
i∈S∗

∑
j∈S∗

(η∗ij +σ∗ij)

(b)

≤ T
∑
i∈S∗

(λθi + (1−λ)vi)
(
ri−

∑
q∈M

aqi µ
∗
q

)
+T

∑
i∈S∗

∑
j∈S∗

λθi vj

(
ri−

∑
q∈M

aqi µ
∗
q

)+

(c)

≤ T
∑
i∈S∗

(1−λ)vi

(
ri−

∑
q∈M

aqi µ
∗
q

)+

+T
∑
i∈S∗

λθi (1 +V (S∗))
(
ri−

∑
q∈M

aqi µ
∗
q

)+

,

where (a) follows from Lemma H.4, (b) holds since η∗ij +σ∗ij ≤ T λθi vj
(
ri−

∑
q∈M aqi µ

∗
q

)+
as in the

previous paragraph and (c) holds by arranging the terms and noting that
∑

j∈S∗ vj = V (S∗). The



e-companion to Mixture of Independent Demand and Multinomial Logit Models ec25

expression on the left side of the chain of inequalities above is given by
∑

i∈S∗ vi π
∗+
∑

i∈S∗ α
∗
i =

V (S∗)π∗+
∑

i∈S∗ α
∗
i = (1 +V (S∗))π∗− ε, where the last equality follows from Lemma H.4. In this

case, replacing the left side of the chain of inequalities above by (1 +V (S∗))π∗− ε and dividing

both sides of the inequality by 1 +V (S∗), we get

π∗− ε

1 +V (S∗)
≤ T

∑
i∈S∗

(
ri−

∑
q∈M

aqi µ
∗
q

)+(
λθi + (1−λ)

vi
1 +V (S∗)

)
. (26)

To show the result by contradiction, assume that there exist i, j ∈N such that y∗ij <min{x∗i , x∗j}.

Since y∗ij ≥ 0, it must be the case that x∗i > 0 and x∗j > 0, so we get i, j ∈ S∗.

Noting that i, j ∈ S∗ are such that y∗ij <min{x∗i , x∗j}, using complementary slackness on the

last two constraints in problem (21), it follows that η∗ij = 0 and σ∗ij = 0, in which case, by the

last constraint in problem (24), we have 0≥ ri−
∑

q∈M aqi µ
∗
q . Thus, there exists i ∈ S∗ such that

ri−
∑

q∈M aqi µ
∗
q ≤ 0. Let N∗ = {i∈ S∗ : ri−

∑
q∈M aqi µ

∗
q ≤ 0}, so N∗ is non-empty.

The optimal objective value of problem (21) is zεCompact and (µ∗, π∗,α∗,η∗,σ∗) is an optimal

solution to its dual given in problem (24). Therefore, we get

zεCompact =
∑
q∈M

cq µ
∗
q +π∗

(d)

≤
∑
q∈M

cq µ
∗
q +T

∑
i∈S∗

(
ri−

∑
q∈M

aqi µ
∗
q

)+(
λθi + (1−λ)

vi
1 +V (S∗)

)
+

ε

1 +V (S∗)

(e)
=

∑
q∈M

cq µ
∗
q +T

∑
i∈S∗\N∗

(
ri−

∑
q∈M

aqi µ
∗
q

)(
λθi + (1−λ)

vi
1 +V (S∗)

)
+

ε

1 +V (S∗)

(f)

<
∑
q∈M

cq µ
∗
q +T

∑
i∈S∗\N∗

(
ri−

∑
q∈M

aqi µ
∗
q

)(
λθi + (1−λ)

vi
1 +V (S∗ \N∗)

)
+

ε

1 +V (S∗ \N∗)

≤
∑
q∈M

cq µ
∗
q + max

S⊆N

{
T
∑
i∈S

(
ri−

∑
q∈M

aqi µ
∗
q

)(
λθi + (1−λ)

vi
1 +V (S)

)
+

ε

1 +V (S)

}
(g)
=

∑
q∈M

cq µ
∗
q +F ε(µ∗), (27)

where (d) uses (26), (e) holds since ri−
∑

q∈M aqi µ
∗
q ≤ 0 for all i∈N∗, (f) holds since N∗ 6= ∅, so

V (S∗ \N∗)<V (S∗) and (g) holds by Lemma H.3.

By the discussion right after problem (25), note that
∑

q∈M cq µ
∗
q + F ε(µ∗) corresponds to the

optimal objective value of the dual of problem (21). Therefore, the right side of the chain of

inequalities in (27) is also given by z∗Compact, in which case, observing the strictly inequality in (f)

in the chain of inequalities above, we get a contradiction. .
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H.2 Recovering a Dual Optimal Solution

We give a proof for the second part of Theorem 6.1. Associating the dual variables µ= {µq : q ∈M}

and π with the two sets of constraints in the Choice-Based LP, the dual of this problem is

min
(µ,π)∈ Rm+×R

{∑
q∈M

cq µq +π :

π≥ T
∑
i∈N

(
ri−

∑
q∈M

aqi µq

)(
λθi + (1−λ)

vi
1 +V (S)

)
∀S ⊆N

}
. (28)

The dual of the Compact LP is given by setting ε= 0 in (24). We will show that if (µ∗, π∗,α∗,η∗σ∗)

is an optimal solution to problem (24) with ε= 0, then (µ∗, π∗) is optimal to problem (28).

Letting z∗Compact be the optimal objective value of the Compact LP, noting that the dual of the

Compact LP is given by problem (24) with ε = 0 and using the fact that an optimal solution to

problem (24) with ε= 0 is (µ∗, π∗,α∗,η∗σ∗), we have z∗Compact =
∑

q∈M cq µ
∗
q + π∗. Furthermore, by

the discussion right after problem (25), problem (24) is equivalent to minµ∈Rm+
∑

q∈M cq µq +F ε(µ),

which implies that the dual of the Compact LP is equivalent to minµ∈Rm+
∑

q∈M cq µq +F 0(µ). Thus,

we also have z∗Compact =
∑

q∈M cq µ
∗
q +F 0(µ∗), yielding π∗ = F 0(µ∗).

On the other hand, letting z∗Choice be the optimal objective value of the Choice-Based LP, since

problem (28) is the dual of the Choice-Based LP, the optimal objective value of problem (28) is also

z∗Choice. By Lemma H.3, we can write the constraints in problem (28) equivalently as π≥ F 0(µ). So,

problem (28) is equivalent to min(µ,π)∈ Rm+×R {
∑

q∈M cq µq+π : π≥ F 0(µ)}. By the discussion in the

previous paragraph, we have π∗ = F 0(µ∗). Thus, (π∗µ∗) is feasible to problem (28). Since problem

(28) is a minimization problem, its optimal objective value satisfies z∗Choice ≤
∑

q∈M cq µ
∗
q +π∗.

So far, we have z∗Compact =
∑

q∈M cq µ
∗
q +π∗ ≥ z∗Choice. In our proof for the first part of Theorem 6.1,

by (20), we have z∗Compact ≤ z∗Choice. Thus, we get z∗Choice =
∑

q∈M cq µ
∗
q + π∗, so (µ∗, π∗) is feasible to

problem (28) and its objective value is equal to the optimal objective value of problem (28).

Appendix I: Computational Benefits of the Compact Formulation

In this section, we check the computational benefits from using the Compact LP in conjunction

with Theorem 6.1 to get an optimal solution to the Choice-Based LP, rather than solving the

Choice-Based LP directly by using column generation.

Experimental Setup:

We generate multiple instances of the network revenue management problem. For each instance,

we solve the Compact LP and use the Recovery formula to obtain an optimal solution to the
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Choice-Based LP. We also solve the Choice-Based LP directly by using column generation. We use

the following approach to generate our problem instances. The set of products is N = {1, . . . , n}

with n= 100 and the set of resources is M = {1, . . . ,m}, where m is a parameter that we vary. In

the multinomial logit model, for each product i, we generate ηi from the uniform distribution over

[0,1] and set the preference weight of product i as vi = ηi

(
1−P0
P0

)
/
∑

j∈N ηj, where P0 is another

parameter that we vary. Thus, if we offer all products, then a customer in the multinomial logit

segment leaves without a purchase with probability 1
1+

∑
i∈N vi

= 1
1+(1−P0)/P0

= P0. In the independent

demand model, we generate γi from the uniform distribution over [0,1] and set the probability of

demand for product i as θi = γi/
∑

j∈N γj. The purchase probability of product i within assortment

S is φi(S) = λθi + (1−λ) vi
1+

∑
j∈S vj

, where λ is one more parameter that we vary.

We have T = 100 time periods. We sample the revenue ri of each product i from the uniform

distribution over [100,500]. For each product i, we randomly choose a resource qi and set

aqi,i = 1. For the other resources, we set aqi = 1 with probability 1/5 and aqi = 0 with probability 4/5

for all q ∈M \{qi}. Thus, the expected number of resources used by a product is 1 + (m−1)/5. To

come up with the capacities of the resources, noting that φi(S) is the choice probability of product

i within assortment S in the previous paragraph, we let S∗ be an optimal solution to the problem

maxS⊆N
∑

i∈S ri φi(S), which is the assortment that maximizes the expected revenue under infinite

resource capacities. If we offer the assortment S∗ over the entire selling horizon, then the total

expected capacity consumption of resource q is T
∑

i∈S∗ aqi φi(S
∗). We set the capacity of resource

q as cq = κT
∑

i∈S∗ aqi φi(S
∗), where κ is a last parameter that we vary.

Computational Results:

Varying (m,P0, λ,κ) ∈ {25,50} × {0.1,0.2} × {0.25,0.75} × {0.6,0.8}, we obtain 16 parameter

combinations. For each parameter combination, we generate a problem instance by using the

approach in the previous two paragraphs. We obtain an optimal solution to the Choice-Based LP

for each problem instance by using two methods. First, we solve the Choice-Based LP directly by

using column generation. We refer to this method as COG, which stands for column generation.

Second, we solve the Compact LP and build on Theorem 6.1 to use an optimal solution of this

LP to recover an optimal solution of the Choice-Based LP. We refer to this method as CLP, which

stands for compact LP. We show our results in Table EC.3. The first column gives the parameter

combination. The second column gives the running time for COG to obtain an optimal solution to

the Choice-Based LP through column generation. The third column gives the running time for CLP

to solve the Compact LP and use an optimal solution to this LP to recover an optimal solution to

the Choice-Based LP. We use Gurobi 9.0 as our LP solver. The fourth column gives the ratio of the

running times in the second and third columns. Column generation may get near-optimal solutions
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1%Gp. 1%Gp.
Param. COG CLP Secs. COG 1%Secs.

(m,P0, λ,κ) Secs. Secs. Ratio Secs. Ratio
(25,0.1,0.25,0.6) 62.51 4.24 14.74 22.82 5.38
(25,0.1,0.25,0.8) 58.34 5.09 11.46 21.06 4.14
(25,0.1,0.75,0.6) 70.50 4.79 14.72 37.98 7.93
(25,0.1,0.75,0.8) 72.07 7.72 9.34 31.94 4.14
(25,0.2,0.25,0.6) 55.21 4.11 13.43 23.56 5.73
(25,0.2,0.25,0.8) 52.23 5.37 9.73 20.03 3.73
(25,0.2,0.75,0.6) 86.15 5.02 17.16 36.20 7.21
(25,0.2,0.75,0.8) 74.90 9.80 7.64 31.43 3.21

Average 12.28 5.18

1%Gp. 1%Gp.
Param. COG CLP Secs. COG Secs.

(m,P0, λ,κ) Secs. Secs. Ratio Secs. Ratio
(50,0.1,0.25,0.6) 101.38 6.02 16.84 29.63 4.92
(50,0.1,0.25,0.8) 93.84 4.11 22.83 27.99 6.81
(50,0.1,0.75,0.6) 128.20 6.95 18.45 46.15 6.64
(50,0.1,0.75,0.8) 143.04 8.78 16.29 55.12 6.28
(50,0.2,0.25,0.6) 139.19 5.15 27.03 29.62 5.75
(50,0.2,0.25,0.8) 149.65 5.12 29.23 46.32 9.05
(50,0.2,0.75,0.6) 145.13 10.32 14.06 55.17 5.35
(50,0.2,0.75,0.8) 122.47 11.07 11.06 38.22 3.45

Average 19.47 6.03

Table EC.3 Running times for solving the Choice-Based LP through two methods.

quickly but may take a while to close the remaining portion of the optimality gap. To check for

this possibility, the fifth column gives the running time for COG to solve the Choice-Based LP with

a 1% optimality gap. The sixth column gives the ratio of the running times in the third and fifth

columns. Our results indicate that CLP can improve the running times for COG by up to a factor

of 29.23. The average improvement in the running times is a factor of 15.88. If we allow COG to

terminate with a 1% optimality gap, but run CLP until it gets to the optimal solution, then CLP

can still improve the running times for COG by up to a factor of 9.05. The improvements in the

running times become more pronounced when m is larger, so that we have problem instances with

a larger number of resources. In our test problems, most of the running time for CLP is spent on

solving the Compact LP. It takes less than one-tenths of a second to recover an optimal solution to

the Choice-Based LP by using the Recovery formula.

We also compare the performance of COG and CLP for larger test problems with n = 500

products and m= 100 resources. For such test problems, COG does not reach an optimal solution

within one hour of running time. We give our results in Table EC.4. The first column shows the

problem parameters. The interpretation of the problem parameters P0, λ, and κ is the same as the

one presented earlier in this section. The second column shows the optimality gap for COG after

one hour of running time. The third column shows the running time for CLP to get the optimal

solution. Over all the test problems, the average optimality gap of the solutions obtained by COG

after one hour of running time is 8.56%. There are test problems for which COG terminates with

more than a 14% optimality gap. The average running time for CLP to obtain an optimal solution

is about 23 minutes, the longest running time not exceeding 41 minutes. Thus, the benefits from

the Compact LP are even more pronounced when we work with larger test problems.

Appendix J: Detailed Description of the Expectation-Maximization Algorithm

In Section 7.1, we give a closed-form expression for the conditional expectations that we need to

compute in the expectation step. Furthermore, we argue that the optimization problems that we
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COG
Param. % Opt. CLP
(P0, λ,κ) Gap. Secs.

(0.1,0.25,0.6) 4.93 676.13
(0.1,0.25,0.8) 5.27 2139.15
(0.1,0.75,0.6) 14.27 909.10
(0.1,0.75,0.8) 9.51 2420.80

Average 8.49 1536.29

COG
Param. % Opt. CLP
(P0, λ,κ) Gap. Secs.

(0.2,0.25,0.6) 7.17 408.59
(0.2,0.25,0.8) 4.71 1059.42
(0.2,0.75,0.6) 14.10 950.74
(0.2,0.75,0.8) 8.53 2458.98

Average 8.63 1219.43

Table EC.4 Optimality gaps and running times for the two methods for solving the Choice-Based LP with n= 500

products and m= 100 resources.

need to solve in the maximization are convex problems and they decompose by the two segments.

Below is a step-by-step description of our expectation-maximization algorithm.

Expectation-Maximization Algorithm:

The input is {(St, it) : t= 1, . . . , τ}, where St is the assortment offered to customer t and it is the

product purchased by customer t. If customer t left without a purchase, then it = 0.

Step 1. Choose the initial parameter estimates (λ1,θ1,v1), such that λ1 ∈ [0,1], θ1 ∈ [0,1]n,∑
i∈N θ

1
i ≤ 1 and v1 ∈ [0,B]n. Initialize the iteration counter by setting `= 1.

Step 2. (Compute the Conditional Expectations) For each customer t= 1, . . . , τ in the purchase

history, compute z`t ∈ [0,1] as

z`t =



λ` θ`it

λ` θ`it + (1−λ`)
v`it

1+
∑
j∈St v

`
j

if it 6= 0

λ`(1−
∑

i∈St θ
`
i )

λ` (1−
∑

i∈St θ
`
i ) + (1−λ`) 1

1+
∑
j∈St v

`
j

if it = 0.

(29)

Step 3. (Maximize the Likelihood) Compute the parameters (λ`+1,θ`+1,v`+1) at the next

iteration by solving the problems

λ`+1 = arg max
λ∈[0,1]

{
τ∑
t=1

{
z`t logλ+ (1− z`t) log(1−λ)

}}

θ`+1 = arg max
θ∈[0,1]n

{
τ∑
t=1

z`t

{∑
i∈St

1(i= it) log θi +1(it = 0) log
(

1−
∑
i∈St

θi

)}
:
∑
i∈N

θi ≤ 1

}

v`+1 = arg max
v∈[0,B]n

{
τ∑
t=1

(1− z`t)
{∑
i∈St

1(i= it) log vi− log
(

1 +
∑
j∈St

vj

)}}
.

Step 4. For fixed ε > 0, if max{|λ`+1− λ`|,‖θ`+1− θ`‖,‖v`+1− v`‖} ≤ ε, then stop. Otherwise,

increase the iteration counter ` by one and go to Step 2.

Recall that we use the random variable Z with support {0,1} to capture the market segment

of a generic customer, whereas we use the random variable P (S) with support S ∪{0} to capture
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the choice of a generic customer within the assortment S. In Step 2, given that the customers

choose according to our mixture model with parameters (λ`,θ`,v`), we compute the expectation

z`t =E{Z |P (St) = it}. In Step 3, given the complete purchase history C` = {(z`t, St, it) : t= 1, . . . , τ},

we find a maximizer of the likelihood function L(λ,θ,v;C`) given in (4). As discussed in Section 7.1,

the three optimization problems in this step can be formulated as convex programs. In Step 4,

we stop the algorithm when the estimates of the parameters do not change significantly from one

iteration to the next. The norm ‖·‖ stands for the Euclidean norm. In the remainder of this section,

we show that the sequence of parameter estimates generated by our expectation-maximization

algorithm monotonically improves the likelihood function built by using the purchase history

H= {(St, it) : t= 1, . . . , τ} that is available for estimation. Thus, we can also stop the algorithm

when the improvement in the likelihood function diminishes.

Monotonicity of the Likelihood Function:

Consider the likelihood function built by using the purchase history H= {(St, it) : t= 1, . . . , τ}

available to estimate the parameters of our mixture model. This likelihood function is given by

L(λ,θ,v;H) =
τ∏
t=1

∏
i∈St

(
λθi + (1−λ)

vi
1 +V (St)

)1(it=i)

×

(
λ
(

1−
∑
i∈St

θi

)
+ (1−λ)

1

1 +V (St)

)1(it=0)
 . (30)

The likelihood function above is known as the incomplete likelihood function, whereas the likelihood

function in (4) is known as the complete likelihood function.

In the next proposition, we argue that the iterates of our expectation-maximization algorithm

monotonically improve the likelihood function in (30).

Proposition J.1 Letting the sequence {(λ`,θ`,v`) : `= 1,2, . . .} be generated by the expectation-

maximization algorithm, we have L(λ`+1,θ`+1,v`+1;H)≥L(λ`,θ`,v`;H) for all `= 1,2, . . ..

Proof. The set of parameter values P = {(λ,θ,v)∈ [0,1]1+n× [0,B]n :
∑

i∈N θi ≤ 1} for our mixture

model and the incomplete likelihood function in (30) satisfy properties (5)-(7) in Wu (1983). Noting

the definition of z`t in (29), z`t is continuous in the parameters (λ`,θ`,v`). Also, the likelihood

function in (4) is continuous in zt. Therefore, the likelihood function in (4) satisfies the continuity

property (10) in Wu (1983) as well. In this case, the result holds by Theorem 2 in Wu (1983).

The data that we have available to estimate the parameters of our mixture model is

H= {(St, it) : t= 1, . . . , τ}. In particular, we do not have access to {zt : t= 1, . . . , τ}, which capture
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the type of each customer. Therefore, to estimate the parameters of our mixture model, we need

to maximize the likelihood function in (30). Our expectation-maximization algorithm uses the

likelihood function in (4), but the sequence of parameters that is generated by our expectation-

maximization algorithm does monotonically improve the likelihood function in (30), which is indeed

the likelihood function that we would like to maximize to estimate the parameters of our mixture

model. Thus, we can view our expectation-maximization algorithm as an alternative approach to

find a local maximizer of the likelihood function in (30).

Appendix K: Performance Guarantee for Pricing

To minimize notational overhead, we consider the case where we have ci = 0 for all i ∈ N . Our

discussion naturally extends to the case where the products have non-zero marginal costs. Using

ν to denote the common value of the price sensitivity parameters {ηi : i∈N} and {βi : i ∈ N},

we want to solve the problem maxp∈Rn+
∑

i∈N

(
λαi

eµi−ν pi
1+eµi−ν pi

+ (1 − λ) eγi−ν pi

1+
∑
j∈N e

γj−ν pj

)
pi. In this

problem, we make the change of variables wi = eγi−ν pi , in which case, we have pi = 1
ν

(γi− logwi).

Since pi ≥ 0, we obtain wi ≤ eγi . Letting σi = eµi/eγi for notational brevity, using the decision

variables w= {wi : i∈N}, the problem given in this paragraph is equivalent to

1

ν
max
w∈Rn+

{∑
i∈N

(
λαi

σiwi
1 +σiwi

+ (1−λ)
wi

1 +
∑

j∈N wj

)
(γi− logwi)

}
. (31)

In the rest of our discussion, we drop the constant multiplier 1
ν

above. In the next lemma, we give

bounds on the decision variables in an optimal solution to problem (31).

Lemma K.1 Letting Ui = eγi and Li = eγi−1/ exp
(∑

j∈N e
µj +

∑
j∈N e

γj
)
, there exists an optimal

solution w∗ to problem (31) that satisfies Li ≤w∗i ≤Ui for all i∈N .

The lemma above follows by checking the derivatives of the objective function of problem (31).

We defer the proof to the end of this section. For fixed t∈R+, consider the problem

G(t) = max
w∈Rn+

{∑
i∈N

(
λαi

σiwi
1 +σiwi

+ (1−λ)
wi

1 + t

)
(γi− logwi) :

∑
i∈N

wi ≤ t

}
. (32)

Noting Lemma K.1, there exists an optimal solution w∗ to problem (31) that satisfies∑
i∈N w

∗
i ∈ [

∑
i∈N Li,

∑
i∈N Ui], so it is enough to consider the values of t ∈ [

∑
i∈N Li,

∑
i∈N Ui]

in (32). Letting t∗ = arg maxt∈[
∑
i∈N Li,

∑
i∈N Ui]G(t), we can show that if we solve problem (32) with

t= t∗, then we obtain an optimal solution to the pricing problem in (31). For fixed t∈R+, we can

solve problem (32) by using a dynamic program with a continuous state space. In this dynamic

program, the decision epochs correspond to the products. In the decision epoch for product i, the

action is to choose the value of wi for product i and the state variable is the value of
∑i−1

j=1wi
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accumulated over the decision epochs 1, . . . , i− 1. If we take action wi in decision epoch i, then

the reward is (λαi
σiwi

1+σiwi
+ (1− λ) wi

1+t
) (γi− logwi). Lastly, if the value of the state variable after

the last decision epoch exceeds t, then we obtain a reward of −∞, ensuring that we find a solution

w that satisfies
∑

i∈N wi ≤ t. Using such a dynamic program to obtain an optimal solution to

problem (32) poses two sources of difficulty. First, to solve this dynamic program, we need to

discretize the state space, so we should characterize the error from discretizing the state space.

Second, discretizing the state space in the dynamic program allows us to approximately compute

G(t) at a fixed t. To solve the problem maxt∈[
∑
i∈N Li,

∑
i∈N Ui]G(t), we need to discretize the interval

[
∑

i∈N Li,
∑

i∈N Ui], so we should also characterize the error from discretizing this interval.

We proceed to giving an approach to discretize the state space in the dynamic program and

the interval [
∑

i∈N Li,
∑

i∈N Ui] in the problem maxt∈[
∑
i∈N Li,

∑
i∈N Ui]G(t), so that we obtain a

solution to the pricing problem (31) with a performance guarantee that we can quantify. Our

approach resembles the construction of our FPTAS in Section 5. For a fixed accuracy parameter

α > 0, we consider the grid points that are integer powers of 1 + α, which are given by

Grid= {(1 +α)k : k ∈Z}. Noting Lemma K.1, letting Gridi = (Grid∩ (Li,Ui))∪{Li,Ui}, we consider

the values of wi ∈Gridi in problem (32). Thus, Gridi includes all points of Grid in the interval (Li,Ui)

as well as the two points Li and Ui. In this case, writing the constraint in (32) as
∑

i∈N
n
αt
wi ≤ n

α
,

we consider an approximate version of problem (32) given by

Ĝ(t) = max
w∈Rn+

{∑
i∈N

(
λαi

σiwi
1 +σiwi

+ (1−λ)
wi

1 + t

)
(γi− logwi) :

∑
i∈N

⌊ n
αt
wi

⌋
≤
⌈n
α

⌉
, wi ∈Gridi ∀ i∈N

}
. (33)

By the definition of Grid, for any wi ∈ [Li,Ui], there exists some ŵi ∈ Gridi such that

ŵi ≤wi ≤ (1 +α) ŵi. In the next lemma, we show that we can construct a feasible solution to

problem (33) by using a feasible solution to problem (32).

Lemma K.2 Using w∗ to denote an optimal solution to problem (31), let t̂ and w̃ be such that∑
i∈N w

∗
i ≤ t̂ ≤ (1 + α)

∑
i∈N w

∗
i , w̃i ≤ w∗i ≤ (1 + α) w̃i and w̃i ∈ Gridi for all i ∈N . Then, w̃ is a

feasible solution to problem (33) when we solve this problem with t= t̂.

Proof. By our choice of t̂ and w̃, we have
∑

i∈N w̃i ≤
∑

i∈N w
∗
i ≤ t̂, which yields

∑
i∈N

n
αt̂
w̃i ≤ n

α
.

In this case, we get
∑

i∈Nb
n
αt̂
w̃ic ≤ dnαe, so w̃ satisfies the constraint in problem (33). Noting that

w̃i ∈Gridi for all i∈N , w̃ is a feasible solution to problem (33).

Note that w̃i in the lemma above is obtained by rounding w∗i down to the nearest point in Gridi.

In the next lemma, we show that we can use problem (33) to obtain a solution with a performance

guarantee for problem (31). Recall that problem (31) is equivalent to our pricing problem.
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Lemma K.3 Using w∗ to denote an optimal solution to problem (31) with the expected revenue

z∗, let t̂ be such that
∑

i∈N w
∗
i ≤ t̂ ≤ (1 + α)

∑
i∈N w

∗
i . Then, letting ŵ be an optimal solution to

problem (33) with t= t̂, ŵ provides an expected revenue of at least 1
(1+2α) (1+α)2

z∗.

Proof. To compute the expected revenue provided by the solution ŵ, using the fact that x≤ bxc+1

and dxe ≤ x+ 1, we get the chain of inequalities

∑
i∈N

ŵi =
αt̂

n

∑
i∈N

n

αt̂
ŵi ≤

αt̂

n

∑
i∈N

(⌊
n

αt̂
ŵi

⌋
+ 1

)
(a)
=

αt̂

n

(∑
i∈N

⌊
n

αt̂
ŵi

⌋
+n

)
(b)

≤ αt̂

n

(⌈
n

α

⌉
+n

)
≤ αt̂

n

(
n

α
+ 1 +n

)
= t̂

(
1 +

α

n
+α

)
≤ t̂ (1 + 2α), (34)

where (a) holds since |N |= n and (b) holds since ŵ is a feasible solution to problem (33) when we

solve this problem with t= t̂.

Let w̃ be such that w̃i ≤w∗i ≤ (1+α) w̃i and w̃i ∈Gridi for all i∈N . By Lemma K.2, w̃ is feasible

to problem (33) when we solve this problem with t= t̂. In this case, we get∑
i∈N

(
λαi

σi ŵi
1 +σi ŵi

+ (1−λ)
ŵi

1 +
∑

j∈N ŵj

)
(γi− log ŵi)

(c)

≥
∑
i∈N

(
λαi

σi ŵi
1 +σi ŵi

+ (1−λ)
ŵi

1 + (1 + 2α) t̂

)
(γi− log ŵi)

≥ 1

1 + 2α

∑
i∈N

(
λαi

σi ŵi
1 +σi ŵi

+ (1−λ)
ŵi

1 + t̂

)
(γi− log ŵi)

(d)

≥ 1

1 + 2α

∑
i∈N

(
λαi

σi w̃i
1 +σi w̃i

+ (1−λ)
w̃i

1 + t̂

)
(γi− log w̃i), (35)

where (c) holds by (34) and log ŵi ≤ logUi = γi since ŵi ∈ Gridi, whereas (d) holds since ŵ is an

optimal solution to problem (33) with t= t̂ but w̃ is only feasible to problem (33) with t= t̂.

We lower bound each term in the summation on the right side above. In particular, noting that

(1 +α) w̃i ≥w∗i ≥ w̃i, we obtain(
λαi

σi w̃i
1 +σi w̃i

+ (1−λ)
w̃i

1 + t̂

)
(γi− log w̃i)≥

(
λαi

σi
w∗i

1+α

1 +σi
w∗i

1+α

+ (1−λ)

w∗i
1+α

1 + t̂

)
(γi− logw∗i )

(e)

≥ 1

1 +α

(
λαi

σiw
∗
i

1 +σiw∗i
+ (1−λ)

w∗i
1 + t̂

)
(γi− logw∗i )

(f)

≥ 1

(1 +α)2

(
λαi

σiw
∗
i

1 +σiw∗i
+ (1−λ)

w∗i
1 +

∑
j∈N w

∗
j

)
(γi− logw∗i ),

where (e) holds by writing the first fraction in the parenthesis on the left side of the inequality

as
σiw

∗
i

1+α+σiw
∗
i

and noting that
σiw

∗
i

1+α+σiw
∗
i
≥ 1

1+α

σiw
∗
i

1+σiw
∗
i
, whereas (f) holds because we have
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t̂≤ (1 +α)
∑

i∈N w
∗
i by our choice of t̂. Using the last chain of inequalities above on the right side

of (35), it follows that∑
i∈N

(
λαi

σi ŵi
1 +σi ŵi

+ (1−λ)
ŵi

1 +
∑

j∈N ŵj

)
(γi− log ŵi)

≥ 1

(1 + 2α)(1 +α)2

∑
i∈N

(
λαi

σiw
∗
i

1 +σiw∗i
+ (1−λ)

w∗i
1 +

∑
j∈N w

∗
j

)
(γi− logw∗i ).

The desired result follows by noting that the sums on the left and right side above, respectively,

correspond to the objective values of problem (31) evaluated at ŵ and w∗.

Similar to the development of our FPTAS, for fixed t, we can find an optimal solution to

problem (33) by using the dynamic program

Ji(q ; t) = max
wi∈Gridi

{(
λαi

σiwi
1 +σiwi

+ (1−λ)
wi

1 + t

)
(γi− logwi) + Ji+1

(
q+

⌊ n
αt
wi

⌋
; t

)}
. (36)

The boundary condition is that Jn+1(q; t) = 0 if q≤ dn
α
e, whereas Jn+1(q; t) =−∞ otherwise, so we

find a solution w to problem (33) that satisfies
∑

i∈Nb
n
αt
wic ≤ dnαe.

Noting that b n
αt
wic is an integer, the state variable in the dynamic program takes on integer

values. Furthermore, as we move from one decision epoch to the next, the state variable in the

dynamic program can only increase. If the state variable exceeds dn
α
e at any decision epoch, then

we can immediately conclude that the value function takes the value −∞, since the boundary

condition of the dynamic program depends on whether the state variable exceeds dn
α
e. In this case,

noting that the state variable takes on integer values, we have O(n
α

) possible values for the state

variable. Since there are |Gridi| possible actions in each decision epoch, for fixed t, we can solve

the dynamic program in (36) in O
(
n
α

∑
i∈N |Gridi|

)
operations. Thus, for fixed t, we can obtain an

optimal solution to problem (33) in the same number of operations.

As discussed just after (32), it is enough to focus on t ∈ [
∑

i∈N Li,
∑

i∈N Ui]. Letting w∗ be an

optimal solution to problem (31), by the definition of Grid, there exists t̂∈Grid∩ [
∑

i∈N Li,
∑

i∈N Ui]

such that
∑

i∈N w
∗
i ≤ t̂ ≤ (1 + α)

∑
i∈N w

∗
i . By Lemma K.3, if we solve problem (33) with t = t̂,

then we get a 1
(1+2α) (1+α)2

-approximate solution to the pricing problem. So, if we solve problem

(33) with t= t̂ for each t̂∈Grid∩ [
∑

i∈N Li,
∑

i∈N Ui] and pick the solution that provides the largest

expected revenue, then we get a 1
(1+2α) (1+α)2

-approximate solution to the pricing problem. We have

O
(

log(
∑
i∈N Ui/

∑
i∈N Li)

log(1+α)

)
=O

(
1
α

log
(∑

i∈N Ui∑
i∈N Li

))
points in Grid∩ [

∑
i∈N Li,

∑
i∈N Ui]. Thus, noting the

number of operations to solve the dynamic program in (36), we can get a 1
(1+2α) (1+α)2

-approximate

solution to the pricing problem in O
(
n
α2 log

(∑
i∈N Ui∑
i∈N Li

) ∑
i∈N |Gridi|

)
operations.

Given ε∈ (0,1), we choose the accuracy parameter in Grid as α= ε/4. Since α= ε/4∈ (0,1) and

1
(1+2α) (1+α)2

≥ (1− 4α) = 1− ε for any α∈ (0,1), we can use the approach outlined above to obtain
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a solution to the pricing problem in (31) such that the expected revenue provided by this solution

deviates from the optimal expected revenue by at most a factor of 1− ε and we can obtain this

solution in O
(
n
ε2

log
(∑

i∈N Ui∑
i∈N Li

) ∑
i∈N |Gridi|

)
operations. By the definition of Ui and Li in Lemma

K.1, we have Ui
Li

= O(exp(
∑

i∈N e
µi +

∑
i∈N e

γi)) and
∑
i∈N Ui∑
i∈N Li

= O(exp(
∑

i∈N e
µi +

∑
i∈N e

γi)), in

which case, the first equality yields |Gridi|=O
(

log(Ui/Li)

log(1+α)

)
=O( 1

ε
(
∑

i∈N e
µi +

∑
i∈N e

γi)). So, we can

obtain a (1− ε)-approximate solution to the pricing problem in O
(
n
ε2

log
(∑

i∈N Ui∑
i∈N Li

) ∑
i∈N |Gridi|

)
=

O(n
2

ε3
(
∑

i∈N e
µi +

∑
i∈N e

γi)2) operations. If eµi and eγi are uniformly bounded by a fixed constant,

then this running time is polynomial in the size of the input and in 1/ε. If eµi and eγi are parts of

the problem input, then this running time is pseudo-polynomial in the size of the input and in 1/ε.

In either case, the discussion in this section shows how we can focus on a finite number of solutions

that scale polynomially in the number of products and 1/ε to obtain a (1− ε)-approximate solution

to the pricing problem. In the rest of this section, we give a proof for Lemma K.1.

Proof of Lemma K.1:

Noting that wi = eγi−ν pi and pi ≥ 0, we have wi ≤ eγi , so wi ≤ Ui. In the rest of the proof, we

focus on showing that there exists an optimal solution w∗ that satisfies w∗i ≥Li for all i∈N . For

notational brevity, let gi(wi) = wi
1+σiwi

(γi− logwi) and h(w) =
∑
i∈N wi (γi−logwi)

1+
∑
i∈N wi

, in which case, the

objective function of problem (31) is ψ(w) = λ
∑

i∈N αi σi gi(wi) + (1− λ)h(w). We show that if

wi <Li for some i ∈N , then ∂ψ(w)

∂wi
> 0, which implies that we can increase the value of ψ(w) by

increasing wi infinitesimally. Thus, we cannot have w∗i <Li in an optimal solution w∗ to problem

(31) and the desired result follows. First, we claim that if wi <Li, then dgi(wi)

dwi
> 0. In particular,

differentiating gi(·), we have dgi(wi)

dwi
= 1

1+σiwi

(
γi−logwi
1+σiwi

− 1
)

. Since wi <Li, noting the definition Li,

we get wi < e
γi−1/ exp(

∑
j∈N e

µj ) = eγi−1/ exp(
∑

j∈N σje
γj ), where the equality uses the definition

of σi. Thus, we have logwi <γi− 1−
∑

j∈N σj e
γj ≤ γi− 1−σi eγi . In this case, we obtain

dgi(wi)

dwi
=

1

1 +σiwi

(
γi− logwi
1 +σiwi

− 1

)
(a)

>
1

1 +σiwi

(
1 +σi e

γi

1 +σiwi
− 1

)
(b)

≥ 0,

where (a) holds since logwi < γi− 1− σi eγi and (b) holds noting the fact that wi ≤ eγi . Thus, the

chain of inequalities above establishes that the first claim holds.

Second, we claim that if wi <Li, then ∂h(w)

∂wi
> 0. Since wi <Li, by the definition of Li, we get

wi < e
γi−1/ exp(

∑
j∈N e

γj ). Differentiating h(·), we also have

∂h(w)

∂wi
=

(γi− 1− logwi)
(

1 +
∑

j∈N wj

)
−
∑

j∈N wj (γj − logwj)(
1 +

∑
j∈N wj

)2 . (37)

Since wi < eγi−1/ exp(
∑

j∈N e
γj ), we have γi − 1− logwi >

∑
j∈N e

γj . Thus, we get the inequality

(γi − 1 − logwi) (1 +
∑

j∈N wj) > (
∑

j∈N e
γj ) (1 +

∑
j∈N wj) >

∑
j∈N e

γj . On the other hand, the
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maximum value of the function f(x) = x (γj − logx) over the interval [0,∞) is eγj−1, so have

wj (γj − logwj)< e
γj−1 Thus, noting the last inequality in this paragraph, it follows that

(γi− 1− logwi)
(

1 +
∑
j∈N

wj

)
−
∑
j∈N

wj (γj − logwj)>
∑
j∈N

eγj −
∑
j∈N

eγj−1 > 0,

in which case, by (37), we have ∂h(w)

∂wi
> 0, so the second claim holds. By the two claims, we get if

wi <Li for some i∈N , then ∂ψ(w)

∂wi
> 0.

Appendix L: Computational Experiments under Censored Demands

In this section, we modify our expectation-maximization algorithm to handle demand censorship

and give computational experiments under censored demands.

L.1 Expectation-Maximization Algorithm

Demand censorship refers to the fact that if we did not have sales over a period of time, then we

may not necessarily know whether no customer arrivals occurred or the arriving customers did not

purchase anything. We divide the data collection horizon into small enough time periods that there

is at most one customer arrival at each time period. We use H= {(St, it) : t= 1, . . . , τ} to capture

the purchase history observed over the data collection horizon, where τ is the number of time

periods in the data collection horizon, St is the assortment of products offered during time period

t and it is the product purchased, if any, during time period t. If there was no purchase during

time period t, then it = 0. The parameters that we need to estimate are (β,λ,θ,v), where the

parameters (λ,θ,v) of our mixture model are as in Section 7 and β is the probability that we have

a customer arrival during a time period. We make use of the following observation to construct our

expectation-maximization algorithm. In addition to the purchase historyH= {(St, it) : t= 1, . . . , τ},

if we knew whether there was an arrival during each time period, as well as the segment of the

arriving customer, if any, then we could estimate the arrival probability β separately from the

parameters (λ,θ,v) of our mixture model. Moreover, we could separately fit independent demand

and multinomial logit models to the purchases from the two segments.

For the moment, assume that we do have access to whether there is a customer arrival during each

time period and the segment of the customer arriving during each time period. For (at, yt)∈ {0,1}2

for each t= 1, . . . , τ , we use C{(at, yt, St, it) : t= 1, . . . , τ} to capture the complete purchase history,

where at = 1 if and only if we had a customer arrival during time period t and yt = 1 if and only if

we had a customer arrival during time period t and this customer was in the independent demand

segment. Note that at ≥ yt, so at − yt ∈ {0,1} and at − yt = 1 if and only if we had a customer

arrival during time period t and this customer was in the multinomial logit segment. If we had
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access to the complete purchase history C = {(at, yt, St, it) : t = 1, . . . , τ}, then we could estimate

the parameters (β,λ,θ,v) by maximizing the likelihood function

LCens(β,λ,θ,v;C) =
τ∏
t=1

{
(1−β)1−at

(
β λ

∏
i∈St

θ
1(it=i)
i

(
1−

∑
i∈St

θi

)1(it=0)
)yt

×

(
β (1−λ)

∏
i∈St v

1(it=i)
i 11(it=0)

1 +V (St)

)at−yt . (38)

In the likelihood expression above, if 1−at = 1, then we do not have an arrival during time period t,

so the likelihood of this event is 1 − β. If yt = 1, then we have a customer arrival during time

period t and this customer is in the independent demand segment, so the likelihood of this event

is β λ. Also, if the customer arriving during time period t is in the independent demand segment,

then she purchases product i∈ St with probability θi, whereas she leaves without a purchase with

probability 1 −
∑

i∈St θi. If, however, at − yt = 1, then we have a customer arrival during time

period t and this customer is in the multinomial logit segment, so the likelihood of this event is

β (1− λ). Also, if the customer arriving during time period t is in the multinomial logit segment,

then she purchases product i∈ St with probability vi
1+V (St)

, whereas she leaves without a purchase

with probability 1
1+V (St)

, resulting in the likelihood function in (38). We will need three random

variables. We use the random variable A with support {0,1} to capture whether there is a customer

arrival during a generic time period, where A= 1 if and only if there is a customer arrival. We use

the random variable Y with support {0,1} to capture whether there is a customer arrival during

a generic time period and the segment of the arriving customer, where Y = 1 if and only if there

is a customer arrival and this customer is in the independent demand segment. Lastly, we use the

random variable P (S) with support S ∪ {0} to capture the product sold during a generic time

period, where P (S) = i if and only if there is a sale for product i ∈ S. If P (S) = 0, then we may

have a customer arrival and this customer left without a purchase or no customer arrival at all. If

the parameters of our mixture model are (β,λ,θ,v), then A is Bernoulli with parameter β, Y is

Bernoulli with parameter βλ and P (S) takes value i∈ S with probability β λθi +β (1−λ) vi
1+V (S)

.

Description of the Expectation-Maximization Algorithm:

At iteration ` of our expectation-maximization algorithm, we have the current parameter

estimates (β`, λ`,θ`,v`). Letting {(a`t, y`t) : t = 1, . . . , τ} be the estimates of {(a`t, y`t) : t = 1, . . . , τ}

at iteration `, we compute a`t as the expectation of A conditional on the fact that the arrival

and choice process during time period t is governed by our mixture model with parameters

(β`, λ`,θ`,v`) and the product purchased, if any, during this time period is it. We compute y`t as the

expectation of Y conditional on the same information. In this way, we obtain the estimated complete
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purchase history C` = {(a`t, y`t, St, it) : t = 1, . . . , τ} at iteration `. The parameters of our mixture

model take values in the set Q= {(β,λ,θ,v) ∈ [0,1]2+n × [0,B]n :
∑

i∈N θi ≤ 1}. We maximize the

likelihood function LCens(β,λ,θ,v;C`) subject to the constraint that (β,λ,θ,v) ∈Q to obtain the

parameter estimates (β`+1, λ`+1,θ`+1,v`+1) at the next iteration. Thus, during the course of our

expectation-maximization algorithm, given that the arrival and choice process is governed by our

mixture model with some parameters (β,λ,θ,v), we need to compute conditional expectations of

the form E{A |P (S) = i} and E{Y |P (S) = i}. Noting that the support of the random variables

A and Y are {0,1}, the last two conditional expectations are equal to P{A = 1 |P (S) = i} and

P{Y = 1 |P (S) = i}, in which case, we can compute them as

P{A= 1 |P (S) = i}=
P{A= 1, P (S) = i}

P{P (S) = i}
=



1 if i 6= 0

β
(
λ (1−

∑
i∈S θi) + (1−λ) 1

1+V (S)

)
(1−β) +β

(
λ (1−

∑
i∈S θi) + (1−λ) 1

1+V (S)

) if i= 0,

P{Y = 1 |P (S) = i}=
P{Y = 1, P (S) = i}

P{P (S) = i}
=



β λθi

β
(
λθi + (1−λ) vi

1+V (S)

) if i 6= 0

β λ (1−
∑

i∈S θi)

(1−β) +β
(
λ (1−

∑
i∈S θi) + (1−λ) 1

1+V (S)

) if i= 0.

In the first case of the first equality, having P (S) = i with i 6= 0 means that we have a purchase for

product i, so a customer must have arrived. Thus, if i 6= 0, then P{A= 1, P (S) = i}= P{P (S) = i}.

In the second case, having P (S) = 0 means that we do not have a purchase, which happens when

either a customer does not arrive or a customer arrives and she leaves without a purchase. In the

first case of the second equality, having Y = 1 and P (S) = i with i 6= 0 means that a customer

arrives, she is in the independent demand segment and she purchases product i, which happens

with probability β λθi. Also, having P (S) = i with i 6= 0 means that we have a purchase for product

i, which happens when there is a customer arrival and she purchases product i regardless of her

segment. We can interpret the second case of the second equality similarly.

During the course of our expectation-maximization algorithm, for some complete purchase

history C, we also need to maximize the likelihood function LCens(β,λ,θ,v;C) subject to the

constraint that (β,λ,θ,v) ∈ Q. We can express the logarithm of the last likelihood function

as logLCens(β,λ,θ,v;C) = LCens
1 (β;C) + LCens

2 (λ;C) + LCens
3 (θ;C) + LCens

4 (v;C), where LCens
2 (λ;C),

LCens
3 (θ;C) and LCens

4 (v;C) have, respectively, the same form as L1(λ;C), L2(θ;C) and L3(v;C)

in Section 7.1 after replacing each occurrence of zt with yt and each occurrence of 1 − zt with

at − yt. Lastly, LCens
1 (β;C) has the form LCens

1 (β;C) =
∑τ

t=1{at logβ + (1− at) log(1− β)}. Putting
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the discussion in the last two paragraphs together, below is a step-by-step description of our

expectation-maximization algorithm under censored demands.

Expectation-Maximization Algorithm Step-by-Step under Censored Demands:

The input is {(St, it) : t = 1, . . . , τ}, where St is the assortment offered and it is the product

purchased during time period t. If there was no purchase during time period t, then it = 0.

Step 1. Choose the initial parameter estimates (β1, λ1,θ1,v1), such that β1 ∈ [0,1], λ1 ∈ [0,1],

θ1 ∈ [0,1]n,
∑

i∈N θ
1
i ≤ 1 and v1 ∈ [0,B]n. Initialize the iteration counter by setting `= 1.

Step 2. (Compute the Conditional Expectations) For each time period t = 1, . . . , τ in the

purchase history, compute a`t ∈ [0,1] and y`t ∈ [0,1] as

a`t =



1 if it 6= 0

β`
(
λ` (1−

∑
i∈St θ

`
i ) + (1−λ`) 1

1+
∑
j∈St v

`
j

)
(1−β`) +β`

(
λ` (1−

∑
i∈St θ

`
i ) + (1−λ`) 1

1+
∑
j∈St v

`
j

) if it = 0,

(39)

y`t =



β` λ` θ`it

β`
(
λ` θ`it + (1−λ`) v`i

1+
∑
j∈St v

`
j

) if it 6= 0

β` λ` (1−
∑

i∈St θ
`
i )

(1−β`) +β`
(
λ` (1−

∑
i∈St θ

`
i ) + (1−λ`) 1

1+
∑
j∈St v

`
j

) if it = 0.

(40)

Step 3. (Maximize the Likelihood) Compute the parameters (β`+1, λ`+1,θ`+1,v`+1) at the next

iteration by solving the problems

β`+1 = arg max
β∈[0,1]

{
τ∑
t=1

{
a`t logβ+ (1− a`t) log(1−β)

}}

λ`+1 = arg max
λ∈[0,1]

{
τ∑
t=1

{
y`t logλ+ (a`t − y`t) log(1−λ)

}}

θ`+1 = arg max
θ∈[0,1]n

{
τ∑
t=1

y`t

{∑
i∈St

1(i= it) log θi +1(it = 0) log
(

1−
∑
i∈St

θi

)}
:
∑
i∈N

θi ≤ 1

}

v`+1 = arg max
v∈[0,B]n

{
τ∑
t=1

(a`t − y`t)
{∑
i∈St

1(i= it) log vi− log
(

1 +
∑
j∈St

vj

)}}
.

Step 4. For fixed ε > 0, if max{|β`+1 − β`|, |λ`+1 − λ`|,‖θ`+1 − θ`‖,‖v`+1 − v`‖} ≤ ε, then stop.

Otherwise, increase the iteration counter ` by one and go to Step 2.

By the discussion in Section 7.1, the last three optimization problems in Step 3 have concave

objective functions and linear constraints. The first optimization problem in Step 3 share the
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same characteristics. Next, we discuss the monotonicity of the likelihood function at the iterates

generated by our expectation-maximization algorithm.

Monotonicity of the Likelihood Function:

Using the past purchase history H = {(St, it) : t = 1, . . . , τ} that we have available to estimate

the parameters of our mixture model, we have the likelihood function

L
Cens

(β,λ,θ,v;H) =
τ∏
t=1

∏
i∈St

(
β λθi +β (1−λ)

vi
1 +V (St)

)1(it=i)

×

(
(1−β) +β λ

(
1−

∑
i∈St

θi

)
+β (1−λ)

1

1 +V (St)

)1(it=0)
 , (41)

where we use the fact that if we have no purchase during time period t so that it = 0, then either

there was no customer arrival during time period t, which happens with probability 1−β, or there

was a customer arrival during time period t, but this customer left without a purchase, which

happens with probability β λ (1−
∑

i∈St θi) + β (1− λ) 1
1+V (St)

. In the next proposition, we argue

that the sequence of parameter estimates generated by our expectation-maximization algorithm

monotonically increases the likelihood function in (41).

Proposition L.1 Letting the sequence {(β`, λ`,θ`,v`) : `= 1,2, . . .} be generated by the

expectation-maximization algorithm, we have L
Cens

(β`+1, λ`+1,θ`+1,v`+1;H)≥LCens
(β`, λ`,θ`,v`;H)

for all `= 1,2, . . ..

Proof. The result follows by verifying the conditions of Theorem 2 in Wu (1983). The likelihood

function in (41) and the set Q of possible values for the parameters of our mixture model

satisfy properties (5)-(7) in Wu (1983). By (39)-(40), a`t and y`t are continuous in the parameters

(β`, λ`,θ`,v`). Furthermore, the likelihood function in (38) is continuous in at and yt. Thus, the

likelihood function in (38) satisfies the continuity property (10) in Wu (1983). Therefore, the result

follows from Theorem 2 in Wu (1983).

Thus, the monotonicity of the likelihood function at the iterates of our expectation-maximization

algorithm follows by verifying the conditions of a classical result in Wu (1983).

L.2 Experimental Results

We give computational experiments under censored demands to check the ability of our mixture

model to predict customer choices and to identify profitable assortments.

Experimental Setup. Our experimental setup closely follows the one in Section 7.2. We use the

dataset from Kamishima (2018) exactly as in that section to come up with the ground choice
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model. Recall that the parameter ψ controls the length of the preference lists in the ground

choice model. Once we come up with the ground choice model, we generate the purchase histories

of customers making purchases according to the ground choice model. In the past purchase

history {(St, it) : t = 1, . . . , τ}, τ corresponds to the number of time periods, St corresponds to

the assortment offered during time period t and it is the product purchased, if any, during time

period t. To generate the past purchase history, we include each product in the assortment St with

probability 0.5. During each time period t, no customer arrival occurs with probability 0.1. If a

customer arrival does occur, then we sample the product purchased by the customer according to

the ground choice model. During each time period t, we may not have a purchase because a customer

did not arrive or the arriving customer left without making a purchase. We fit our mixture choice

model, multinomial logit model and independent demand model to the past purchase histories that

we generate. The Python code in Berbeglia et al. (2021) to fit exponomial and Markov chain choice

models is not designed to work with censored demands and we do not provide comparisons with the

exponomial and Markov chain choice models. We vary ψ over {0.5,0.6, . . . ,1.0} to obtain different

lengths for the preference lists in the ground choice model. We vary τ over {1250,2500,5000} to

capture different levels of data availability in the training data.

Comparing Out-of-Sample Log-Likelihoods. We use MIX to refer to our fitted mixture choice

model, MNL to refer to the fitted pure multinomial logit model and IDM to refer to the fitted

pure independent demand model. In Table EC.5, we compare the out-of-sample log-likelihoods of

MIX, MNL and IDM. We use the same approach in Section 7.3 to compare the out-of-sample log-

likelihoods under censored demands. The top, middle and bottom blocks of the table correspond to

the values of τ ∈ {1250,2500,5000}. Recall that we repeat our computational experiments 50 times,

each replication involving a different ground choice model, as well as training and testing data. The

first column gives the value of the parameter ψ controlling the length of the preference lists. The

second, third and fourth columns give the average out-of-sample log-likelihoods obtained by MIX,

MNL and IDM. The next three columns compare the performance of MIX and MNL, where the

fifth column gives the percent gap between the average out-of-sample log-likelihoods of MIX and

MNL, the sixth column gives the number of replications in which the out-of-sample log-likelihood

of MIX exceeds that of MNL and the seventh column gives the number of replications in which the

outcome is reversed. The last three columns compare the performance of MIX and IDM similarly.

Out-of-sample log-likelihoods of MIX are noticeably better than those of MNL and IDM. These

gaps in log-likelihoods transfer to gaps in expected revenues, as we demonstrate shortly.

Comparing Expected Revenues. In Table EC.6, we compare the expected revenue performance of

MIX, MNL and IDM. We use the same approach in Section 7.3 to compare the expected revenues.
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τ = 1250
Out-of-Sample MIX vs. MNL MIX vs. IDM
Log-Likelihood Perc. MIX MNL Perc. MIX IDM

ψ MIX MNL IDM Gap Btr. Btr. Gap Btr. Btr.
0.5 -3,709 -3,712 -3,846 0.09 40 10 3.57 50 0
0.6 -3,646 -3,652 -3,741 0.15 42 8 2.52 50 0
0.7 -3,589 -3,597 -3,655 0.23 44 6 1.82 50 0
0.8 -3,532 -3,542 -3,574 0.29 45 5 1.18 50 0
0.9 -3,486 -3,498 -3,515 0.33 49 1 0.83 50 0
1.0 -3,443 -3,456 -3,463 0.39 49 1 0.58 48 2
Avg. -3568 -3576 -3632 0.24 44.8 5.2 1.79 49.7 0.3

τ = 2500
Out-of-Sample MIX vs. MNL MIX vs. IDM
Log-Likelihood Perc. MIX MNL Perc. MIX IDM

ψ MIX MNL IDM Gap Btr. Btr. Gap Btr. Btr.
0.5 -3,704 -3,710 -3,844 0.15 44 6 3.63 50 0
0.6 -3,641 -3,649 -3,738 0.22 47 3 2.61 50 0
0.7 -3,584 -3,594 -3,653 0.28 47 3 1.89 50 0
0.8 -3,527 -3,540 -3,572 0.36 49 1 1.26 50 0
0.9 -3,482 -3,496 -3,514 0.40 50 0 0.91 50 0
1.0 -3,437 -3,453 -3,460 0.47 50 0 0.67 50 0
Avg. -3562 -3574 -3630 0.31 47.8 2.2 1.86 50.0 0.0

τ = 5000
Out-of-Sample MIX vs. MNL MIX vs. IDM
Log-Likelihood Perc. MIX MNL Perc. MIX IDM

ψ MIX MNL IDM Gap Btr. Btr. Gap Btr. Btr.
0.5 -3,701 -3,708 -3,842 0.19 47 3 3.67 50 0
0.6 -3,638 -3,648 -3,737 0.26 49 1 2.65 50 0
0.7 -3,581 -3,593 -3,652 0.33 49 1 1.95 50 0
0.8 -3,524 -3,538 -3,571 0.41 50 0 1.32 50 0
0.9 -3,480 -3,495 -3,513 0.43 50 0 0.96 50 0
1.0 -3,435 -3,452 -3,460 0.50 50 0 0.71 50 0
Avg. -3560 -3572 -3629 0.35 49.2 0.8 1.91 50.0 0.0

Table EC.5 Out-of-sample log-likelihoods of the fitted choice models under censored demands.

The top, middle and bottom blocks of the table correspond to the values of τ ∈ {1250,2500,5000}.
The first column gives the value of the parameter ψ controlling the length of the preference lists in

the ground choice model. The second, third and fourth columns give the average expected revenues

obtained by the assortments that are computed under the assumption that the choices of the

customers are governed by the fitted MIX, MNL and IDM. Recall that the averages are computed

over the 50 replications. The next three columns compare the performance of MIX and MNL, where

the fifth column gives the percent gap between the average expected revenues of MIX and MNL,

the sixth column gives the number of replications in which the expected revenue of MIX exceeds

that of MNL and the seventh column gives the number of replications in which the outcome is

reversed. The last three columns compare the performance of MIX and IDM similarly. If customers

choose under the independent demand model, then it is always optimal to offer all products. Thus,

the expected revenue performance of the assortments obtained by IDM does not change from one

replication to the next. Our results in the table indicate that the assortments obtained by using the

fitted MIX perform noticeably better than those obtained by using the fitted MNL and IDM. The

noticeably superior performance of MIX over MNL and IDM is largely consistent across the 50

replications under each value of the parameter ψ.
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τ = 1250
MIX vs. MNL MIX vs. IDM

Expected Revenue Perc. MIX MNL Perc. MIX IDM
ψ MIX MNL IDM Gap Btr. Btr. Gap Btr. Btr.
0.5 5.821 5.803 5.503 0.32 33 17 5.77 50 0
0.6 5.713 5.655 5.503 1.02 48 2 3.80 50 0
0.7 5.641 5.535 5.503 1.92 50 0 2.50 50 0
0.8 5.587 5.441 5.503 2.68 50 0 1.51 49 1
0.9 5.551 5.362 5.503 3.52 50 0 0.85 48 2
1.0 5.527 5.292 5.503 4.45 50 0 0.43 47 3
Avg. 5.640 5.515 5.503 2.27 46.8 3.2 2.48 49.0 1.0

τ = 2500
MIX vs. MNL MIX vs. IDM

Expected Revenue Perc. MIX MNL Perc. MIX IDM
ψ MIX MNL IDM Gap Btr. Btr. Gap Btr. Btr.
0.5 5.842 5.803 5.503 0.67 46 4 6.15 50 0
0.6 5.737 5.657 5.503 1.43 50 0 4.25 50 0
0.7 5.658 5.537 5.503 2.19 50 0 2.81 50 0
0.8 5.599 5.441 5.503 2.90 50 0 1.72 50 0
0.9 5.561 5.364 5.503 3.67 50 0 1.04 50 0
1.0 5.536 5.294 5.503 4.57 50 0 0.59 50 0
Avg. 5.655 5.516 5.503 2.53 49.3 0.7 2.76 50.0 0.0

τ = 5000
MIX vs. MNL MIX vs. IDM

Expected Revenue Perc. MIX MNL Perc. MIX IDM
ψ MIX MNL IDM Gap Btr. Btr. Gap Btr. Btr.
0.5 5.861 5.805 5.503 0.96 50 0 6.50 50 0
0.6 5.755 5.658 5.503 1.71 50 0 4.56 50 0
0.7 5.670 5.539 5.503 2.36 50 0 3.02 50 0
0.8 5.608 5.443 5.503 3.04 50 0 1.90 50 0
0.9 5.567 5.365 5.503 3.76 50 0 1.15 50 0
1.0 5.540 5.295 5.503 4.62 50 0 0.66 50 0
Avg. 5.667 5.518 5.503 2.70 50.0 0.0 2.96 50.0 0.0

Table EC.6 Expected revenues obtained by the fitted choice models under censored demands.


