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Abstract

We consider pricing problems when customers choose under the Markov chain choice model. In
this choice model, a customer arriving into the system is interested in a certain product with
a certain probability. Depending on the price charged for this product, the customer decides
whether to purchase the product. If the customer purchases the product, then she leaves the
system. Otherwise, the customer transitions to another product or to the no purchase option
with certain transition probabilities. In this way, the customer transitions between the products
until she purchases a product or reaches the no purchase option. We study three fundamental
pricing problems under this choice model. First, for the monopolistic pricing problem, we show
how to compute the optimal prices efficiently. Second, for the competitive pricing problem, we
show that a Nash equilibrium exists, prove that Nash equilibrium prices are no larger than the
prices computed by a central planner controlling all prices and characterize a Nash equilibrium
that Pareto dominates all other Nash equilibria. Third, for the dynamic pricing problem with a
single resource, we show that the optimal prices decrease as we have more resource capacity or
as we get closer to the end of the selling horizon. We also consider a deterministic approximation
formulated under the assumption that the demand for each product takes on its expected value.
Although the objective function and constraints in this approximation do not have explicit
expressions, we develop an equivalent reformulation with explicit expressions for the objective
function and constraints.



Discrete choice models have been gaining attention in the revenue management literature as they

capture the demand for a particular product as a joint function of the features of all products that

are made available to the customers. By using discrete choice models, we can capture the fact

that increasing the price for a certain product may not only decrease the demand for this product,

but may also increase the demand for other products, since the customers may substitute for the

more expensive product by using less expensive alternatives. In this case, the demand for a certain

product depends not only on its price, but also on the prices of all other products. Although

discrete choice models allow us to construct rich models of the customer demand, if we model the

customer demand by using a discrete choice model, then solving the corresponding optimization

problems to find the optimal prices to charge can be challenging.

In this paper, we consider a Markov chain choice model to describe how the customers choose

among the products as a function of the prices of all of the available products and we solve pricing

problems under this choice model. In our Markov chain choice model, a customer arriving into the

system is interested in a certain product with a certain probability. Depending on the price charged

for this product, the customer decides whether to purchase the product. If the customer purchases

the product, then she leaves the system. If the customer does not purchase the product, then she

transitions to another product or to the no purchase option with certain transition probabilities. If

the customer transitions to another product, then she decides whether to purchase the other

product depending on the price of this product. In this way, the customer transitions between

the products until she purchases a product or she reaches the no purchase option. We study three

fundamental multi-product pricing problems when customers choose according to the Markov chain

choice model. First, we study monopolistic pricing problems, where the prices for the products are

controlled by a single firm. The goal is to set the prices for the products to maximize the expected

profit from each customer. Second, we study competitive pricing problems with multiple firms,

where each firm controls the prices for a different subset of the products. The customers choose

among all products offered by all firms. The goal of each firm is to set the prices for its own products

to maximize the expected profit from each customer. Third, we study dynamic pricing problems

with a single resource, where the sale of each product consumes a unit of the resource. The goal

is to find a policy to dynamically set the prices for the products to maximize the total expected

profit over a finite selling horizon. We proceed to explaining our main findings.

Main Results and Contributions. First, we study monopolistic pricing problems, where

there is a single firm that controls the prices for all of the products. Customers choose among the

products according to the Markov chain choice model. Following the literature on pricing problems

with multiple products, there is also a unit cost incurred when a sale of a product occurs. The goal

is to set the prices for the products to maximize the expected profit obtained from each customer,

where the profit is given by the difference between the revenue and the cost associated with the

sold product. A standard formulation of the problem presents critical difficulties. The objective

function of this formulation turns out to be nonconcave. Thus, it is not clear how to obtain a

global maximizer of the expected profit function. Furthermore, if we charge certain prices for the
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products, then we need to solve a system of equations to compute the probability that a customer

chooses each one of the products. Thus, simply computing the objective value of the formulation at

particular prices requires solving a system of equations. We develop an approach to find the prices

for the products that maximize the expected profit obtained from each customer. Although the

objective function of the standard formulation is not concave, we show that our approach finds a

global maximizer of the objective function (Theorem 3). Surprisingly, our approach requires solving

a sequence of single dimensional optimization problems, which can be done efficiently. Also, we give

comparative statistics for the optimal prices in the monopolistic pricing problem. In particular,

we show that if the unit cost associated with a certain product increases, then the optimal price

of this product increases, whereas the optimal prices of all other products decrease (Lemma 4). To

interpret these results, note that if we increase the unit cost of a product, then the optimal price of

this product increases to make up for the increase in the unit cost, but this increase in the optimal

price results in a decrease in the expected number of customers making a purchase. To make up

for the decrease in the expected number of customers making a purchase, the optimal prices of all

other products decrease to generate sales.

Second, we study competitive pricing problems with multiple firms. Each firm owns a certain

subset of the products and controls the prices for the products that it owns. Customers choose

among all products owned by all firms. The goal of each firm is to set the prices for the products

that it owns to maximize the expected profit it obtains from each customer. We show that a Nash

equilibrium exists (Theorem 6). Our existence proof uses first principles and also allows us to

derive structural properties. In particular, we show that the prices in any Nash equilibrium are no

larger than those charge by a central planner, who maximizes the expected profit obtained from

each customer (Theorem 7). Thus, competition between the firms tends to lower the prices. Also,

we show that there exists a Pareto dominant equilibrium, where the expected profit of each firm

is at least as large as its expected profit in any other Nash equilibria (Theorem 8). Thus, the

Pareto dominant equilibrium is simultaneously preferred by all firms. We show that the prices at

the Pareto dominant equilibrium decrease as the control of the products are split among a larger

number of firms and the intensity of competition increases (Theorem 9). Lastly, we show that if

each firm owns a single product, then all prices in the Pareto dominant equilibrium increase when

the unit cost of any product increases (Lemma 10).

Third, we study dynamic pricing problems with a single resource. Customers arrive randomly

over time and choose among the products according to the Markov chain choice model. There

is limited inventory of the resource. The sale of a product consumes a unit of the resource. The

goal is to find a policy to dynamically decide what prices to charge for the products to maximize

the total expected profit over a finite selling horizon. We show that if we have more units of

the resource at a particular time period, then the optimal prices for the products decrease. Also,

if we get closer to the end of the selling horizon with a certain inventory of the resource, then

the optimal prices for the products decrease as well (Lemma 12). Thus, if we have more units

of the resource or we get closer to the end of the selling horizon, then the pressure to liquidate
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the resource inventory takes precedence and we charge lower prices. Furthermore, we consider a

deterministic approximation formulated under the assumption that the demands for the products

take on their expected values. As we discuss in our literature review, there is work on constructing

approximate policies from such a deterministic approximation. Under the Markov chain choice

model, the deterministic approximation has a nonconcave objective function and a nonconvex

feasible set. Also, the objective function and the constraints do not have closed form expressions. We

give an equivalent reformulation for the deterministic approximation with closed form expressions

for the objective function and the constraints (Theorem 13). The feasible set for the equivalent

reformulation is a polytope. We characterize when the objective function is concave.

Beside the three classes of pricing problems above, our formulation of the Markov chain choice

model makes useful contributions. The Markov chain choice model was proposed by Blanchet et al.

(2016) under the assumption that the prices for the products are fixed. It is not a priori clear how to

use this choice model when the choice process of the customers reacts to the prices. One can make the

transition probabilities a function of the prices, but this approach makes the corresponding pricing

problems intractable. In our approach, the transition probabilities are independent of the prices,

but when a customer visits a certain product, she decides whether to purchase this product based

on the price of the product. Although the transition probabilities are independent of the prices, the

ultimate purchase probability of a product depends jointly on all prices. We show that our extension

of the Markov chain choice model is compatible with the random utility maximization principle,

where each customer associates random utilities with all alternatives, choosing the alternative with

the largest utility (Theorem 1). We show that we can calibrate the Markov chain choice model so

that the purchase probabilities under this choice model become identical to those under generalized

attraction models, where the purchase probability of a product can be written as the ratio of

the attraction of the product to the total attraction of all alternatives and the attraction of the no

purchase option can increase as we charge larger prices (Lemma 2). Thus, although the derivation of

the Markov chain choice model is different from that of the generalized attraction model, their choice

probabilities can be made compatible. The multinomial logit model is a subclass of generalized

attraction models. We give a numerical study to demonstrate that the flexibility provided by the

Markov chain choice model can be beneficial and this choice model can do a better job of predicting

the customer purchases when compared with the multinomial logit model.

Literature Review. The Markov chain choice model is proposed in Blanchet et al. (2016). The

authors show how to solve assortment optimization problems under this choice model. In

the assortment optimization setting, the prices for the products are fixed and the goal is to

decide which assortment of products to offer to customers to maximize the expected profit

from each customer. Feldman and Topaloglu (2017) consider various assortment optimization

problems under the Markov chain choice model and they characterize the structure of the optimal

assortments. Desir et al. (2015) solve assortment optimization problems under the Markov chain

choice model when there is a constraint that limits the capacity consumption of the offered products.

All of the work that has been done so far under the Markov chain choice model is under the
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assumption that the prices for the products are fixed and there is a single firm that chooses the

assortment of products to offer to the customers.

There is work on estimating the parameters of the Markov chain choice model by using maximum

likelihood estimation. Feldman and Topaloglu (2017) give an efficient approach to compute the

gradient of the likelihood function with respect to the parameters of the Markov chain choice

model, allowing the use of a gradient ascent algorithm to find a local maximizer of the likelihood

function. Their computational experiments demonstrate that the Markov chain choice model can

provide noticeable benefits in predicting the purchase behavior of the customers, when compared

with the multinomial logit model. Simsek and Topaloglu (2017) give an expectation-maximization

algorithm to find a stationary point of the likelihood function. Their algorithm requires only solving

systems of linear equations. Their computational experiments are partly based on real data and

they also demonstrate the potential benefits from using the Markov chain choice model. Wang

and Yuan (2017) compare the performance of the expectation-maximization and gradient ascent

algorithms to estimate the parameters of the Markov chain choice model. Thus, there is recent

work indicating that it is possible to calibrate the Markov chain choice model in a computationally

tractable fashion so that we can predict the customer purchase behavior more accurately when

compared with simpler models, such as the multinomial logit model. All of this work is under the

assumption that the prices are fixed, but our numerical study indicates that we can calibrate the

Markov chain choice model to obtain similar benefits when the prices are adjustable.

Markov chains are also used to describe the choice process in other settings. Jeuland (1979) gives

a model to capture the brand loyalty behavior. In each purchase, the customer either stays with the

brand in her last purchase or chooses a brand according to a fixed probability distribution. Givon

(1984) uses a similar model to capture the brand variety seeking behavior. In each purchase, the

customer either switches to a new brand uniformly over all brands that are not in her last purchase

or chooses a brand according to a fixed probability distribution. Bawa (1990) postulates that the

utility of a customer from the brand that is in her last purchase is a quadratic function of the

number of successive times she purchased this brand. The utilities of the brands that are not in

her last purchase are fixed. In her next purchase, the customer chooses according to a multinomial

logit model among all brands. In the model used by Gilboa and Pazgal (1995), the customer keeps

preference rankings of all brands. In each purchase, the customer purchases the most preferred

brand and updates only the preference ranking of the purchased brand. Craswell et al. (2008)

propose the cascade model to capture the choice process within search engine results. In the

cascade model, a user scans the results starting from the top one. With a certain probability, she

either clicks this result or moves on to the next one. Guo et al. (2009) extend the cascade model

to allow multiple clicks during a search session. The papers discussed in this paragraph focus on

parameter estimation, but not on optimizing product prices or rankings

Considering pricing problems under choice models other than the Markov chain choice model,

Hanson and Martin (1996) work with the multinomial logit model and observe that the expected
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profit is not a concave function of the prices. Gallego et al. (2006) study competitive pricing

problems under the multinomial logit model. They show that there exists a unique and stable

equilibrium. Song and Xue (2007) consider pricing problems under the multinomial logit model and

show that the expected profit is concave in the market shares of the products. They solve the pricing

problem by using the market shares of the products as decision variables. Chen and Hausman (2000)

and Wang (2012) study joint assortment and pricing problems under the multinomial logit model,

where the set of offered products, as well as their corresponding prices are decision variables. Keller

et al. (2014) consider pricing problems when there are constraints on the expected sales of a

product. Gallego et al. (2015) propose generalized attraction models, which can be viewed as a

generalization of the multinomial logit model, where the attraction of the no purchase option

increases as we offer a more restricted subset of products.

Li and Huh (2011) study pricing problems under the nested logit model when the products in

the same nest have the same price sensitivity. The authors show that the pricing problem can be

formulated as a convex program. They consider the competitive pricing problem, as well as the

monopolistic one. Gallego and Wang (2014) relax the assumption that the products in the same

nest have the same price sensitivity and show that the pricing problem can be solved as a single

dimensional optimization problem. They make extensions to the case where there are multiple

firms, each controlling the prices for the products in a different nest. Gallego and Topaloglu (2014)

study pricing problems under the nested logit model when the price for a product is chosen within

a finite set of possible prices and formulate the problem as a linear program. Li et al. (2015) study

pricing problems under the nested logit model with multiple levels of nests.

Our study of dynamic pricing problems with a single resource is motivated by Maglaras and

Meissner (2006), where the authors draw parallels between control mechanisms that are based on

adjusting the prices of the products or the set of available products. Gallego and van Ryzin (1994)

use a deterministic approximation to develop approximate policies for dynamic pricing problems

with a single resource. Gallego and van Ryzin (1997) extend this work to dynamic pricing problems

over a network of resources, where the sale of a product consumes a combination of resources. Since

dynamic programming formulations of capacity control problems over a network of resources

involve high dimensional state variables, it is common to formulate deterministic approximations by

assuming that the demands for the products take on their expected values. Beside Gallego and van

Ryzin (1997), such approximations appear in Talluri and van Ryzin (1998), Gallego et al. (2004),

Liu and van Ryzin (2008), Vossen and Zhang (2015) and Zhang and Lu (2013).

Organization. In Section 1, we describe the Markov chain choice model. We show that this

choice model is compatible with the random utility maximization principle and we can calibrate

its parameters to ensure that the choice probabilities under the Markov chain choice model are

identical to those under the generalized attraction model. In Section 2, we focus on monopolistic

pricing. In Section 3, we focus on competitive pricing. In Section 4, we focus on dynamic pricing

with a single resource. In Section 5, we give our numerical study. In Section 6, we conclude.
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1 Markov Chain Choice Model

There are n products indexed by N = {1, . . . , n}. We use pi to denote the price charged for

product i. The set of feasible prices for product i is Pi = [Li, Ui]. With probability λi, a customer

arriving into the system visits product i. A customer visiting product i purchases product i with

probability θi(pi), where the function θi(·) : Pi → [0, 1] maps the price of product i to the probability

that a customer visiting product i purchases this product. With probability 1− θi(pi), a customer

visiting product i does not purchase product i, in which case, she transitions from product i

to product j with probability ρij and visits product j. If a customer visiting product i does not

purchase this product, then she transitions to the no purchase option and leaves the system without

making a purchase with probability 1−
∑

j∈N ρij . In this way, the customer transitions between

the different products until she purchases one of the products or decides to leave the system without

a purchase. We proceed to computing the probability that a customer purchases a certain product

as a function of the prices p = {pi : i ∈ N} charged for the products. We use vi(p) to denote the

expected number of times that a customer visits product i when the prices charged for the products

are given by p. We can compute {vi(p) : i ∈ N} by solving the system of equations

vi(p) = λi +
∑
j∈N

ρji (1− θj(pj)) vj(p) ∀ i ∈ N. (1)

We interpret the system of equations in (1) as follows. By definition, the term vi(pi) on the left

side corresponds to the expected number of times that a customer visits product i. Each customer

arriving into the system visits product i with probability λi. Thus, the expected number of times

that a customer visits product i on arrival is λi, yielding the term λi on the right side. The expected

number of times that a customer visits some product j is vj(p), but each time the customer visits

some product j, she does not purchase product j with probability 1− θj(pj) and transitions from

product j to product i with probability ρji. In this case, she ends up visiting product i, yielding

the term ρji (1 − θj(pj)) vj(p) on the right side. We can solve the n linear equations in (1) for

the n unknowns in {vi(p) : i ∈ N} to compute the expected number of times a customer visits

each product. Each time a customer visits product i, she purchases this product with probability

θi(pi). Therefore, if the prices charged for the products are given by p, then a customer purchases

product i with probability θi(pi) vi(p). Note that the parameters of the Markov chain choice model

are {λi : i ∈ N}, {θi(·) : i ∈ N} and {ρij : i, j ∈ N}. Next, we describe the assumptions that we

make regarding the parameters of the Markov chain choice model.

Regarding {λi : i ∈ N}, we assume that λi > 0 for all i ∈ N , in which case, by (1), we get vi(p) >

0 for all i ∈ N . Our results in the paper hold with minor modifications when λi = 0 for some i ∈ N ,

but assuming that λi > 0 for all i ∈ N allows us to avoid degenerate cases. We allow having∑
i∈N λi < 1, in which case, we have no customer arrival with probability 1−

∑
i∈N λi. Regarding

{θi(·) : i ∈ N}, we assume that θi(·) is differentiable and strictly decreasing, so that the probability

that a customer visiting product i purchases this product is strictly decreasing in the price of

product i. Also, we assume that θi(pi) (pi − x) is strictly quasiconcave in pi ∈ Pi for any x ∈ <,
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which ensures that the optimization problems that we solve have unique optimal solutions. Lastly,

we assume that limpi→Ui θi(pi) = 0 and limpi→Ui pi θi(pi) = 0 for all i ∈ N . Thus, there exists

a large enough price that yields a purchase probability of zero for each product and we cannot

obtain arbitrarily large expected profit with arbitrarily large prices. There are several choices of

θi(·) and Pi that satisfy this assumption, including θi(pi) = e−βi pi with Pi = [0,∞) and θi(pi) =

1 − βi pi with Pi = [0, 1/βi], where we have βi > 0. Regarding {ρij : i, j ∈ N}, we assume that∑
j∈N ρij < 1 for all i ∈ N , in which case, if a customer visiting product i decides not to purchase

this product, then she transitions to the no purchase option with the strictly positive probability

1−
∑

j∈N ρij . Therefore, the choice process is always guaranteed to terminate.

Since we use the system of equations in (1) to compute the choice probabilities, a natural

question is whether this system of equations always has a unique solution with nonnegative

entries. Using the matrix Q(p) = {ρij (1−θi(pi)) : i, j ∈ N} and the vectors v(p) = {vi(p) : i ∈ N}
and λ = {λi : i ∈ N}, we write (1) equivalently as v(p) = λ + Q(p)> v(p). Since

∑
j∈N ρij < 1,

the sum of the entries in each row of Q(p) is strictly less than one, in which case, using I ∈ <n×n

to denote the identity matrix, by Theorem 3.2.c in Puterman (1994), I−Q(p) is invertible and its

inverse has nonnegative entries. Thus, (I −Q(p))> = I −Q(p)> is invertible and its inverse has

nonnegative entries as well, which implies that the system of equations in (1) always has a unique

solution given by v(p) = (I−Q>(p))−1 λ and this solution has nonnegative entries.

Random Utility Maximization and Relationship to Other Choice Models. A standard

way to construct choice models is based on the random utility maximization principle. Under this

principle, a customer associates random utilities with all products and the no purchase option. The

distribution of the utility for each product depends on its price. The customer chooses the alternative

that provides the largest utility. We use the random variable Ui(pi) to denote the utility of

product i given that we charge the price pi for this product. For notational uniformity, we use

the random variable U0(p0) to denote the utility of the no purchase option, but the no purchase

option does not have a price under our control. Under the random utility maximization principle,

if we charge the prices p for the products, then a customer chooses product i with probability

P{Ui(pi) = maxj∈N∪{0} Uj(pj)}, where we assume that there is always a unique maximum element

of the set {Uj(pj) : j ∈ N ∪ {0}}. In the next theorem, we show that the choice probabilities under

the Markov chain choice model can be captured by using appropriately defined utility random

variables {Ui(·) : i ∈ N ∪ {0}}. The proofs of all results in the paper are in Appendix A.

Theorem 1 For any Markov chain choice model, there exist utility random variables

{Ui(·) : i ∈ N ∪ {0}} such that if we charge the prices p, then the purchase probability of product i

under the Markov chain choice model can be written as P{Ui(pi) = maxj∈N∪{0} Uj(pj)}.

The proof of Theorem 1 is constructive, where we explicitly construct the utility random

variables by using the first visit times in a Markov chain with the initial distribution {λi : i ∈ N}
and the transition probabilities {ρij : i, j ∈ N}. The utility Ui(pi) of product i in our construction
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depends only on the price of product i, but not on the prices of the other products. It is not a

priori clear that the Markov chain choice model can be represented by using one utility random

variable for each alternative, whose distribution depends on the price of only that alternative. An

inspection of the proof of Theorem 1 also indicates that the utility Ui(pi) of product i satisfies

Ui(p
0
i ) ≥ Ui(p

+
i ) with probability one for any p0i ≤ p+i . Therefore, the utility random variable

for each product satisfies the intuitive property that it increases as the price for the product

decreases. Lastly, viewing E{Ui(pi)} as the deterministic component and Ui(pi)−E{Ui(pi)} as the

random shock, we can view the utility of product i as the sum of a deterministic component and a

random shock. Here, the distribution of the random shock depends on the price as well.

Under certain choices of the parameters {λi : i ∈ N}, {θi(·) : i ∈ N} and {ρij : i, j ∈ N}, we can

relate the Markov chain choice model to other choice models. Using the vector λ = {λi : i ∈ N}
and the matrix R = {ρij : i, j ∈ N}, we consider the case where R is a rank one matrix of the

form R = β λ> for some vector β = {βi : i ∈ N}. So, we have ρij = βi λj . Since we need to have∑
j∈N ρij < 1, we assume that βi < 1 for all i ∈ N , in which case, we get

∑
j∈N ρij = βi

∑
j∈N λj <

1, where the inequality uses the fact that
∑

i∈N λi ≤ 1. In this case, the parameters of the Markov

chain choice model are {λi : i ∈ N}, {θi(·) : i ∈ N} and {βi : i ∈ N}. We refer to this Markov chain

choice model as the rank one Markov chain choice model. In the next lemma, we give a closed form

expression for the purchase probabilities under the rank one Markov chain choice model.

Lemma 2 If we charge the prices p, then the purchase probability of product i under the rank one

Markov chain choice model is given by

λi θi(pi)

1−
∑
j∈N

λj +
∑
j∈N

λj (1− βj) (1− θj(pj)) +
∑
j∈N

λj θj(pj)
.

The choice probability in the lemma above has an intuitive interpretation. We view λi θi(pi) as

the attractiveness of product i. Since θi(·) is decreasing, increasing the price of product i decreases

its attractiveness. We view 1−
∑

j∈N λj +
∑

j∈N λj (1− βj) (1− θj(pi)) as the attractiveness of the

no purchase option. Noting that 1− θj(·) is increasing, increasing the price of a product increases

the attractiveness of the no purchase option. The parameter 1− βj captures how much increasing

the price of product j increases the attractiveness of the no purchase option. If βj = 1, then the

attractiveness of the no purchase option does not increase with an increase in the price of product

j. So, the purchase probability of product i in the lemma is given by the ratio of the attractiveness

of product i to the total attractiveness of all alternatives, including the no purchase option.

Gallego et al. (2015) develop the generalized attraction model when the prices of the products are

fixed. In their generalized attraction model, the attractiveness of the no purchase option increases

as some products are not offered to the customers. Lemma 2, in essence, gives a generalized

attraction model when the prices of the products are adjustable. For fixed parameters {µi : i ∈ N}
and {αi : i ∈ N} with αi > 0, if we set λi = eµi/(1 +

∑
j∈N eµj ), θi(pi) = e−αi pi and βi = 1, then
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the purchase probability in Lemma 2 becomes eµi−αi pi/(1 +
∑

j∈N eµj−αj pj ), which is the purchase

probability under the multinomial logit model. Therefore, we can set the parameters of the Markov

chain choice model so that the purchase probabilities under the Markov chain choice model become

identical to those under the multinomial logit model. Blanchet et al. (2016) show a similar result,

but they consider the case where the prices of the products are fixed.

We should not view the Markov chain choice model as a faithful model of the mental thought

process of the customers when they purchase a product. In other words, by using the Markov chain

choice model, we do not insist that the customers transition from one product to another in their

minds until they make a choice. In the same vein, the cascade model captures the click process of a

user by using transitions from a higher ranked document to a lower ranked one, but the users do not

necessarily click on the search engine results by going through such a thought process. Also, we did

not construct the Markov chain choice model by using the random utility maximization principle,

but after the construction, we can establish its compatibility with the random utility maximization

principle. This principle ensures that if an individual prefers option 1 to option 2 and option 2 to

option 3, then this individual prefers option 1 to option 3. So, individuals are consistent. Since the

utilities are random, different individuals may have different preference orders.

2 Monopolistic Pricing

We consider the monopolistic pricing problem, where the prices of all products are controlled by

a single firm and the goal is to set the prices for the products to maximize the expected profit

from each customer. Similar to our notation in the previous section, we index the products by

N = {1, . . . , n}. We use pi ∈ Pi to denote the price charged for product i and ci to denote the unit

cost incurred for the sale of product i. Therefore, if we sell one unit of product i, then we obtain a

profit of pi− ci. It is standard to include unit costs in multi-product pricing problems; see Gallego

and Wang (2014). Customers choose among the products according to the Markov chain choice

model. In other words, if the prices charged for the products are given by p = {pi : i ∈ N}, then

a customer purchases product i with probability θi(pi) vi(p), where {vi(p) : i ∈ N} is the solution

to the system of equations in (1). The goal is to set the prices for the products to maximize the

expected profit obtained from each customer, yielding the optimization problem

max
p∈×i∈NPi

{∑
i∈N

θi(pi) vi(p) (pi − ci)

}
. (2)

We can come up with counterexamples to show that the objective function of problem (2) is not

necessarily concave in the prices. Also, we do not have an explicit expression for vi(p). Thus,

maximizing the objective function of problem (2) directly can be difficult.

To obtain an optimal solution to problem (2), we follow an alternative approach based on

dynamic programming. We use r̂i to denote the optimal expected profit obtained from a customer

currently visiting product i. If we charge the price pi for product i, then a customer visiting
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product i purchases this product with probability θi(pi), in which case, we obtain an optimal

expected profit of simply pi − ci. On the other hand, if we charge the price pi for product i, then

a customer visiting product i does not purchase this product with probability 1 − θi(pi) and

she transitions from product i to product j with probability ρij , in which case, we obtain an

optimal expected profit of r̂j . Therefore, if we charge the price pi for product i, then we obtain

an optimal expected profit of θi(pi) (pi − ci) + (1 − θi(pi))
∑

j∈N ρij r̂j from a customer currently

visiting product i. The preceding discussion intuitively suggests that if we use r̂i to denote the

optimal expected profit obtained from a customer visiting product i, then r̂ = {r̂i : i ∈ N} should

satisfy r̂i = maxpi∈Pi{θi(pi) (pi − ci) + (1− θi(pi))
∑

j∈N ρij r̂j} for all i ∈ N . To write the last

equality succinctly, for all i ∈ N , we define the operator fi(·) : <n → < as

fi(r) = max
pi∈Pi

{
θi(pi) (pi − ci) + (1− θi(pi))

∑
j∈N

ρij rj

}
, (3)

in which case, r̂ should satisfy r̂i = fi(r̂) for all i ∈ N . For any two vectors r = {ri : i ∈ N} and

q = {qi : i ∈ N}, in Appendix B, we establish that |fi(r) − fi(q)| ≤ maxi∈N{
∑

j∈N ρij}‖r − q‖
for all i ∈ N , where we define the norm ‖ · ‖ as ‖r‖ = maxi∈N{|ri|}. Since

∑
j∈N ρij < 1 for all

i ∈ N , the last inequality implies that the operator {fi(·) : i ∈ N} : <n → <n is a contraction

with respect to the norm ‖ · ‖, in which case, by Theorem 6.2.3.a in Puterman (1994), there exists

r̂ = {r̂i : i ∈ N} that satisfies r̂i = fi(r̂) for all i ∈ N . On the surface, there is no immediate

relationship between problem (2) and the operator fi(·) in (3). For example, the choice probability

θi(pi) vi(p) under the prices p explicitly appears in problem (2) but not in the definition of the

operator fi(·) in (3). In the next theorem, we formally show that we can obtain an optimal solution

to problem (2) by using r̂ = {r̂i : i ∈ N} that satisfies r̂i = fi(r̂) for all i ∈ N .

Theorem 3 The prices p̂ = {p̂i : i ∈ N} are an optimal solution to problem (2) if and only if the

price p̂i is an optimal solution to the problem

max
pi∈Pi

{
θi(pi) (pi − ci) + (1− θi(pi))

∑
j∈N

ρij r̂j

}
(4)

for all i ∈ N , where r̂ = {r̂i : i ∈ N} satisfies r̂i = fi(r̂) for all i ∈ N .

Assuming that r̂ satisfies r̂i = fi(r̂) for all i ∈ N , if we let p̂i be an optimal solution to problem

(4) for all i ∈ N , then by Theorem 3, p̂ = {p̂i : i ∈ N} is an optimal solution to problem (2). Since

we assume that θi(pi) (pi−x) is quasiconcave in pi for any x ∈ <, the objective function of problem

(4) is quasiconcave, so that we can obtain an optimal solution to problem (4) by checking its first

order condition. Therefore, if we can find r̂ satisfying r̂i = fi(r̂) for all i ∈ N , then we can efficiently

obtain an optimal solution to problem (2) by using problem (4). To find r̂ satisfying r̂i = fi(r̂) for

all i ∈ N , we generate the sequence {r(t) : t ∈ N} by initializing r(0) ∈ <n arbitrarily and using

the relationship ri(t + 1) = fi(r(t)) for all i ∈ N . Since the operator {fi(·) : i ∈ N} : <n → <n
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is a contraction, Theorem 6.2.3.b in Puterman (1994) implies that the sequence {r(t) : t ∈ N}
converges to r̂ that satisfies r̂i = fi(r̂) for all i ∈ N .

Using problem (4), we can also characterize how the optimal solution to problem (2) changes

as a function of the unit costs. As a function of the unit costs c = {ci : i ∈ N}, we use p̂(c) to

denote an optimal solution to problem (2). We let e ∈ <n be the vector of all ones and ei ∈ <n

be the unit vector with a one for product i. In the next lemma, we show that if the unit cost of

a product increases, then its optimal price increases, but the optimal prices of the other products

decrease. If all unit costs increase by the same amount, then all optimal prices increase.

Lemma 4 For any ε > 0, we have p̂i(c+ ε ei) ≥ p̂i(c), p̂j(c+ ε ei) ≤ p̂j(e) for all j ∈ N \ {i} and

p̂j(c+ ε e) ≥ p̂j(c) for all j ∈ N .

To provide some intuition for the result in Lemma 4, if we increase the unit cost of product i,

then we increase the optimal price for product i to make up for the increase in the unit cost, which

results in a decrease in the expected number of customers making a purchase. To make up for this

decrease, we expect a decrease in the optimal prices of the other products. The lemma above may

be of independent interest, but we also use this lemma to develop structural properties for the

optimal policy in the dynamic pricing problem with a single resource.

3 Competitive Pricing

In this section, we consider the competitive pricing problem, where there are multiple firms and

each firm sets the prices of its products to maximize its own expected profit.

3.1 Best Response

There are multiple firms. Different firms own different partitions of the products. The price of

a product is controlled by the firm that owns the product. Customers choose among all of the

products according to the Markov chain choice model. If a customer purchases a product, then

the firm that owns the product obtains the profit. The goal of each firm is to set the prices for

the products that it owns to maximize the expected profit that it obtains from each customer. We

pursue the following outline. In this section, we show that we can use a dynamic programming

idea to find the best response of each firm to the others. In Section 3.2, we show that there is

a Nash equilibrium for competitive pricing. In Section 3.3, we give structural properties for the

Nash equilibrium, where we compare the prices in a Nash equilibrium under different levels of

competition in a sense that we make precise. In Section 3.4, we give a computational method to

check the uniqueness of the Nash equilibrium for a particular problem instance.

Our notation is similar to the one used in the previous two sections, but we introduce some new

notation to capture the products owned by each firm. We index the products by N = {1, . . . , n}
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and the firms by M = {1, . . . ,m}. The set of products owned by firm k is Nk, where we have

∪k∈MNk = N . Since different firms own different partitions of the products, we have Nk ∩N l = ∅
for k 6= l. Letting pi ∈ Pi be the price charged for product i, the prices charged for the products

owned by firm k are given by pk = {pi : i ∈ Nk}, whereas the prices charged for the products

owned by firms other than firm k are given by p−k = {pi : i 6∈ Nk}. Since the customers choose

among all of the products according to the Markov chain choice model, if firm k charges the

prices pk = {pi : i ∈ Nk} for the products that it owns and the other firms charge the prices

p̂−k = {p̂i : i 6∈ Nk} for the products that they own, then a customer purchases product i ∈ Nk

with probability θi(pi) vi(p
k, p̂−k), where vi(p

k, p̂−k) is the expected number of times a customer

visits product i when the prices charged for all of the products are given by (pk, p̂−k). In particular,

{vi(pk, p̂−k) : i ∈ Nk, k ∈M} satisfies a slightly modified version of the system of equations in (1)

given by vi(p
k, p̂−k) = λi +

∑
j∈Nk ρji (1− θj(pj)) vj(pk, p̂−k) +

∑
j 6∈Nk ρji (1− θj(p̂j)) vj(pk, p̂−k)

for all i ∈ N , where the prices charged by firm k are fixed at pk and the prices charged by the

other firms are fixed at p̂−k. In this case, if the firms other than firm k charge the prices p̂−k for

their products, then firm k can find the prices to charge for its products to maximize the expected

profit that it obtains from each customer by solving the problem

max
pk∈×

i∈NkPi

{ ∑
i∈Nk

θi(pi) vi(p
k, p̂−k) (pi − ci)

}
. (5)

To solve problem (5), we follow an approach based on dynamic programming. We use r̂ki to denote

the optimal expected profit that firm k obtains from a customer visiting product i, given that the

other firms charge the prices p̂−k for their products. First, we consider the case i ∈ Nk so that firm

k owns product i. If firm k charges the price pi for product i, then a customer visiting product i

purchases this product with probability θi(pi), in which case, firm k obtains an optimal expected

profit of simply pi − ci. Also, a customer visiting product i does not purchase this product with

probability 1 − θi(pi) and transitions from product i to product j with probability ρij , in which

case, firm k obtains an optimal expected profit of r̂kj . Thus, if firm k charges the price pi for product

i, then it obtains an optimal expected profit of θi(pi) (pi − ci) + (1 − θi(pi))
∑

j∈N ρij r̂
k
j from a

customer visiting product i ∈ Nk. Second, we consider the case i 6∈ Nk so that firm k does not own

product i. Since firm k does not own product i, if a customer visiting product i purchases it, then

firm k does not obtain a profit. If the firms other than firm k charge the prices p̂−k, then a customer

visiting product i does not purchase this product with probability 1 − θi(p̂i) and transitions from

product i to product j with probability ρij , in which case, firm k obtains an optimal expected profit

of r̂kj . Thus, if the firms other than firm k charge the prices p̂−k, then firm k obtains an optimal

expected profit of (1− θi(p̂i))
∑

j∈N ρij r̂
k
j from a customer visiting product i 6∈ Nk.

The discussion in the previous paragraph intuitively suggests that if we use r̂ki to denote the

optimal expected profit that firm k obtains from a customer visiting product i given that the

other firms charge the prices p̂−k for their products, then r̂k = {r̂ki : i ∈ N} should satisfy r̂ki =

maxpi∈Pi{θi(pi) (pi−ci)+(1−θi(pi))
∑

j∈N ρij r̂
k
j } for all i ∈ Nk and r̂ki = (1−θi(p̂i))

∑
j∈N ρij r̂

k
j for
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all i 6∈ Nk. Shortly, we make this intuition formal. In the last equality, we observe that since i 6∈ Nk,

the price of product i is controlled by a firm other than firm k and its price is fixed at p̂i. To write

the last two equalities succinctly, we define the operator gki (· | p̂−k) : <n → < as

gki (rk | p̂−k) =


max
pi∈Pi

{
θi(pi) (pi − ci) + (1− θi(pi))

∑
j∈N

ρij r
k
j

}
if i ∈ Nk

(1− θi(p̂i))
∑
j∈N

ρij r
k
j if i 6∈ Nk,

(6)

in which case, r̂k should satisfy r̂ki = gki (r̂k | p̂−k) for all i ∈ N . For any two vectors rk =

{rki : i ∈ N} and qk = {qki : i ∈ N}, we can follow the same approach in Appendix B to show that

|gki (rk | p̂−k) − gki (qk | p̂−k)| ≤ maxi∈N{
∑

j∈N ρij} ‖rk − qk‖ for all i ∈ N , which implies that the

operator {gki (· | p̂−k) : i ∈ N} : <n → <n is a contraction with respect to the norm ‖ · ‖. In this

case, there exists r̂k = {r̂ki : i ∈ N} that satisfies r̂ki = gki (r̂k | p̂−k) for all i ∈ Nk. In the next

lemma, we formally show that we can indeed obtain an optimal solution to problem (5) by using

r̂k = {r̂ki : i ∈ N} that satisfies r̂ki = gki (r̂k | p̂−k) for all i ∈ N . The proof of this lemma follows the

same approach in the proof of Theorem 3 and we do not give a proof.

Lemma 5 The prices p̂k = {p̂i : i ∈ Nk} are an optimal solution to problem (5) if and only if the

price p̂i is an optimal solution to the problem

max
pi∈Pi

{
θi(pi) (pi − ci) + (1− θi(pi))

∑
j∈N

ρij r̂
k
j

}

for all i ∈ Nk, where r̂k = {r̂ki : i ∈ N} satisfies r̂ki = gki (r̂k | p̂−k) for all i ∈ N .

Problem (5) computes the best response of firm k to the prices p̂−k charged by the other

firms. Lemma 5 uses r̂k satisfying r̂ki = gki (r̂ | p̂−k) for all i ∈ N to find the best response. This

lemma ultimately becomes useful to establish the existence of a Nash equilibrium.

We comment on the assumption that different firms own different partitions of the products. In

our model, two different products i and j owned by two different firms could correspond to the

same product sold by two different firms. For example, two products i and j could correspond

to the same soap sold by two different supermarket chains. A customer purchasing product i

would correspond to a customer purchasing the soap from the first supermarket chain, whereas

a customer purchasing product j would correspond to a customer purchasing the soap from the

second supermarket chain. The approach that we use in our model is consistent with the one in

Gallego et al. (2006), Li and Huh (2011) and Gallego and Wang (2014). In Appendix C, we discuss

an alternative model. In this model, if the same soap is sold by two supermarket chains, then there

is only one product corresponding to this soap in the Markov chain choice model. If a customer

visits this product, then she decides which supermarket chain to purchase from, based on the prices

charged by the two supermarket chains. Depending on the parameters of the model, we demonstrate

that the same soap may or may not be offered by the two supermarket chains simultaneously.
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3.2 Existence of Equilibrium

In this section, we show that there exists a Nash equilibrium for competitive pricing. We use p =

{pi : i ∈ Nk, k ∈ M} to denote the prices charged for the products, where pk = {pi : i ∈ Nk}
captures the prices that firm k charges for its products and p−k = {pi : i 6∈ Nk} captures the

prices that the other firms charge for their products. The prices p̂ = {p̂i : i ∈ Nk, k ∈M} are

a Nash equilibrium if and only if, for all k ∈ M , the prices p̂k = {p̂i : i ∈ Nk} are an optimal

solution to problem (5) for firm k when the other firms charge the prices p̂−k = {p̂i : i 6∈ Nk} for

their products. In other words, the prices p̂ = {p̂i : i ∈ Nk, k ∈M} are a Nash equilibrium if and

only if, for all k ∈ M , the prices p̂k = {p̂i : i ∈ Nk} are a best response of firm k to the prices

p̂−k = {p̂i : i 6∈ Nk} that the other firms charge for their products. One approach for establishing

the existence of a Nash equilibrium is based on supermodular games; see Topkis (1979), Milgrom

and Roberts (1990) and Vives (1990). However, we can generate counterexamples to show that our

competitive pricing setting does not yield a supermodular game. In particular, consider a Markov

chain choice model with two products. There are two firms, each of which owning one of the

products. The unit costs c1 and c2 are both zero. We use π1(p1, p2) to denote the expected profit of

the first firm when the firms charge the prices (p1, p2), so that π1(p1, p2) = θ1(p1) v1(p1, p2) p1. The

parameters of the Markov chain choice model are

λ1 = 0.1, λ2 = 0.9, θ1(p1) = e−0.1 p1 , θ2(p2) = e−0.4 p2 ,

ρ12 = 0.2, ρ21 = 0.8, ρ11 = ρ22 = 0.

For p+1 = 15, p01 = 8, p+2 = 4 and p02 = 2, we have π1(p
+
1 , p

+
2 )− π1(p01, p

+
2 ) < π1(p

+
1 , p

0
2)− π1(p01, p02),

indicating that the expected profit of the first firm π1(p1, p2) does not have increasing differences

in (p1, p2). Thus, our competitive pricing setting does not yield a supermodular game.

Although the competitive pricing setting does not yield a supermodular game, it is possible

to use first principles to characterize a Nash equilibrium and to show that a Nash equilibrium

exists. We follow a dynamic programming approach that is similar to the one in the previous

section to give a characterization of a Nash equilibrium. We use r̂ki to denote the expected profit

that firm k obtains from a customer visiting product i given that each firm charges the prices

that are its best response to the others. First, we consider the case where i ∈ Nk so that firm

k owns product i. Similar to the discussion in the previous section, if firm k charges the price

pi for product i and the other firms charge the prices that are their best responses, then firm k

obtains an expected profit of θi(pi) (pi − ci) + (1− θi(pi))
∑

j∈N ρij r̂
k
j from a customer visiting

product i ∈ Nk. Thus, firm k can find its best response to the other firms by solving the problem

maxpi∈Pi{θi(pi) (pi − ci) + (1− θi(pi))
∑

j∈N ρij r̂
k
j }. We use p̂i to denote an optimal solution to

this problem. Second, we consider the case where i 6∈ Nk so that firm k does not own product

i. In this case, if the firms other than firm k charge the prices that are their best responses, then

firm k obtains an expected profit of (1 − θi(p̂i))
∑

j∈N ρij r̂
k
j from a customer visiting product

i 6∈ Nk. The preceding discussion intuitively suggests that if we use r̂ki to denote the expected

profit that firm k obtains from a customer visiting product i given that each firm charges the
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prices that are its best response to the others, then r̂k = {r̂ki : i ∈ Nk} for all k ∈ M should

satisfy r̂ki = maxpi∈Pi{θi(pi) (pi − ci) + (1 − θi(pi))
∑

j∈N ρij r̂
k
j } for all i ∈ Nk, k ∈ M and

r̂ki = (1− θi(p̂i))
∑

j∈N ρij r̂
k
j for all i 6∈ Nk, k ∈M , where, for all i ∈ Nk, k ∈M , p̂i is an optimal

solution to problem maxpi∈Pi{θi(pi) (pi − ci) + (1 − θi(pi))
∑

j∈N ρij r̂
k
j }. (Since ∪k∈MNk = N ,

the prices {p̂i : i ∈ Nk, k ∈ M} provide a price p̂i for each product i ∈ N .) Shortly, we formally

show that we can use these equalities to characterize a Nash equilibrium. To write these equalities

succinctly, for all i ∈ N , k ∈M , we define the operator hki (·, . . . , ·) : <n×m → <+ as

hki (r
1, . . . , rm) =


max
pi∈Pi

{
θi(pi) (pi − ci) + (1− θi(pi))

∑
j∈N

ρij r
k
j

}
if i ∈ Nk

(1− θi(p̂i))
∑
j∈N

ρij r
k
j if i 6∈ Nk,

(7)

where, for all i ∈ Nk, k ∈ M , the price p̂i used in the second case above is given by an optimal

solution to the problem maxpi∈Pi{θi(pi) (pi − ci) + (1 − θi(pi))
∑

j∈N ρij r
k
j }. Thus, the preceding

discussion implies that (r̂1, . . . , r̂m) should satisfy r̂ki = hki (r̂
1, . . . , r̂m) for all i ∈ N , k ∈M . To

compute hki (r
1, . . . , rm), we begin by solving the maximization problem in the first case in (7)

for all i ∈ Nk, k ∈ M to obtain {p̂i : i ∈ N}. Once we have {p̂i : i ∈ N}, we can compute

(1 − θi(p̂i))
∑

j∈N ρij r
k
j as in the second case in (7). We observe that the operator hki (·, . . . , ·)

is similar to the operator gki (· | p̂−k) defined in the previous section, but the price p̂i used in

the second case in the definition of hki (·, . . . , ·) is given by an optimal solution to the problem

maxpi∈Pi {θi(pi) (pi − ci) + (1− θi(pi))
∑

j∈N ρij r
k
j }, whereas, the price p̂i used in the second case

in the definition of gki (· | p̂−k) is fixed by the prices p̂−k. Due to this difference, it is possible to

generate counterexamples to show that the operator {hki (·, . . . , ·) : i ∈ N, k ∈M} : <n×m → <n×m

is not a contraction. However, as we demonstrate shortly, we can start from first principles to show

that there exists (r̂1, . . . , r̂m) that satisfies r̂ki = hki (r̂
1, . . . , r̂m) for all i ∈ N , k ∈M .

In the next theorem, we formally show that we can use (r̂1, . . . , r̂m) that satisfies r̂ki =

hki (r̂
1, . . . , r̂m) for all i ∈ N , k ∈ M to obtain a Nash equilibrium. After this theorem, we argue

that there indeed exists (r̂1, . . . , r̂m) that satisfies r̂ki = hki (r̂
1, . . . , r̂m) for all i ∈ N , k ∈M .

Theorem 6 The prices p̂ = {p̂i : i ∈ Nk, k ∈ M} are a Nash equilibrium for competitive pricing

if and only if the price p̂i is an optimal solution to the problem

max
pi∈Pi

{
θi(pi) (pi − ci) + (1− θi(pi))

∑
j∈N

ρij r̂
k
j

}
(8)

for all i ∈ Nk, k ∈M , where (r̂1, . . . , r̂m) satisfies r̂ki = hki (r̂
1, . . . , r̂m) for all i ∈ N , k ∈M .

In the proof of Theorem 6, we use the characterization of the best response that we give in

Lemma 5. Assuming (r̂1, . . . , r̂m) satisfies r̂ki = hki (r̂
1, . . . , r̂m) for all i ∈ N , k ∈ M , if we use

p̂i to denote an optimal solution to problem (8) for all i ∈ Nk, k ∈ M , then Theorem 6 implies
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that p̂ = {p̂i : i ∈ Nk, k ∈M} is a Nash equilibrium. Therefore, if we can show that there exists

(r̂1, . . . , r̂m) that satisfies r̂ki = hki (r̂
1, . . . , r̂m) for all i ∈ N , k ∈ M , then it follows that there

exists a Nash equilibrium for competitive pricing. Next, we proceed to arguing that there indeed

exists (r̂1, . . . , r̂m) that satisfies r̂ki = hki (r̂
1, . . . , r̂m) for all i ∈ N , k ∈ M . In Appendix D,

we show that the operator hki (·, . . . , ·) is monotone. In other words, if rki ≤ qki for all i ∈ N ,

k ∈ M , then we have hki (r
1, . . . , rm) ≤ hki (q

1, . . . , qm) for all i ∈ N , k ∈ M . We generate the

sequence {(r̄1(t), . . . , r̄m(t)) : t ∈ N} by using the relationship r̄ki (t+ 1) = hki (r̄
1(t), . . . , r̄m(t)) for

all i ∈ N , k ∈ M and starting with the initial condition that r̄ki (0) = ū for all i ∈ N , k ∈M for

some ū ∈ <+. In this case, in Appendix E, we use the monotonicity of the operator hki (·, . . . , ·) to

show that if we choose ū large enough, then the sequence {(r̄1(t), . . . , r̄m(t)) : t ∈ N} is decreasing

and bounded from below, satisfying r̄ki (t) ≥ r̄ki (t+ 1) ≥ 0 for all i ∈ N , k ∈M , t ∈ N. In particular,

letting ρmax = maxi∈N{
∑

j∈N ρij} and ∆ = maxi∈N{maxpi∈Pi{θi(pi) (pi − ci)}}, it suffices to fix

ū as ū = ∆/(1 − ρmax) to ensure that the sequence {(r̄1(t), . . . , r̄m(t)) : t ∈ N} is decreasing and

bounded from below. Since the sequence is decreasing and bounded from below, it has a limit.

Using (r̄1, . . . , r̄m) to denote the limit, noting that the sequence {(r̄1(t), . . . , r̄m(t)) : t ∈ N} is

generated by using the relationship r̄ki (t+ 1) = hki (r̄
1(t), . . . , r̄m(t)) for all i ∈ N , k ∈M , its limit

(r̄1, . . . , r̄m) must satisfy r̄ki = hki (r̄
1, . . . , r̄m) for all i ∈ N , k ∈ M , which establishes that there

exists (r̂1, . . . , r̂m) that satisfies r̂ki = hki (r̂
1, . . . , r̂m) for all i ∈ N , k ∈ M . Therefore, by the

discussion right after Theorem 6, there exists a Nash equilibrium.

3.3 Properties of Equilibrium

We show four structural properties of the Nash equilibrium. First, we show that the price for each

product in any Nash equilibrium is no larger than its price when a central planner computes the

prices to maximize the expected profit obtained from each customer. Second, we show that there

exists a Nash equilibrium that Pareto dominates any other Nash equilibria. Third, we show that

if the competition gets more intense in a sense that we make precise, then all prices in the Pareto

dominant equilibrium get smaller. Fourth, we show that if each firm owns one product, then all

prices in the Pareto dominant equilibrium increase when the unit cost of any product increases. In

the next theorem, we show that the price for each product in any Nash equilibrium is no larger

than its price in an optimal solution to problem (2). Note that problem (2) corresponds to the case

where a central planner computes all prices without any competition.

Theorem 7 If the prices p̂ = {p̂i : i ∈ Nk, k ∈M} are a Nash equilibrium for competitive pricing

and the prices p̃ = {p̃i : i ∈ N} are an optimal solution to problem (2), then we have p̂i ≤ p̃i for

all i ∈ Nk, k ∈M .

In the proof of Theorem 7, we show that if (r̂1, . . . , r̂m) satisfies r̂ki = hki (r̂
1, . . . , r̂m) for all

i ∈ N , k ∈ M and r̃ = {r̃i : i ∈ N} satisfies r̃i = fi(r̃) for all i ∈ N , then r̂ki ≤ r̃i for all i ∈ N ,

k ∈ M . In this case, the result follows by arguing that the optimal solutions to problems (4)
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and (8) are respectively increasing in r̂j and r̂kj . Theorem 7 shows that the prices charged for the

products in any Nash equilibrium do not exceed their corresponding prices computed by a central

planner. Therefore, competition has the effect of lowering the prices of the products.

Another property of the Nash equilibrium for competitive pricing is that there exists a

Nash equilibrium that Pareto dominates any other Nash equilibria. In other words, there

exists a Nash equilibrium where the expected profit obtained by each firm is at least as large

as its corresponding expected profit in any other Nash equilibria. Thus, the Pareto dominant

equilibrium is simultaneously preferred by all firms. To show this result, we consider the sequence

{(r̄1(t), . . . , r̄m(t)) : t ∈ N} used in the previous section. Letting ū = ∆/(1 − ρmax) be as

defined right after Theorem 6, this sequence is generated by using the relationship r̄ki (t + 1) =

hki (r̄
1(t), . . . , r̄m(t)) for all i ∈ N , k ∈ M with the initial condition that r̄ki (0) = ū for all i ∈ N ,

k ∈ M . In the previous section, we argue that the sequence {(r̄1(t), . . . , r̄m(t)) : t ∈ N} has

a limit (r̄1, . . . , r̄m) satisfying r̄ki = hki (r̄
1, . . . , r̄m) for all i ∈ N , k ∈ M . In this case, if we

let p̄i be an optimal solution to the problem maxpi∈Pi{θi(pi) (pi − ci) + (1− θi(pi))
∑

j∈N ρij r̄
k
j },

then Theorem 6 implies that p̄ = {p̄i : i ∈ Nk, k ∈M} is a Nash equilibrium. We refer to the

Nash equilibrium p̄ = {p̄i : i ∈ Nk, k ∈M} as the Nash equilibrium induced by the sequence

{(r̄1(t), . . . , r̄m(t)) : t ∈ N}. Noting (5), the expected profit that firm k obtains from each customer

in this Nash equilibrium is
∑

i∈Nk θi(pi) vi(p̄
k, p̄−k) (p̄i − ci), where p̄k = {p̄i : i ∈ Nk} captures

the prices that firm k charges and p̄−k = {p̄i : i 6∈ Nk} captures the prices that the other firms

charge. In the next theorem, we show that the expected profit that each firm obtains in this Nash

equilibrium is at least as large as the one that it obtains in any other Nash equilibria.

Theorem 8 If the prices p̄ = {p̄i : i ∈ Nk, k ∈M} are the Nash equilibrium induced by the

sequence {(r̄1(t), . . . , r̄m(t)) : t ∈ N} and the prices p̂ = {p̂i : i ∈ Nk, k ∈ M} are any Nash

equilibrium, then
∑

i∈Nk θi(p̄i) vi(p̄
k, p̄−k) (p̄i−ci) ≥

∑
i∈Nk θi(p̂i) vi(p̂

k, p̂−k) (p̂i−ci) for all k ∈M .

By Theorem 6, if p̂ is some Nash equilibrium, then p̂ki is an optimal solution to problem (8),

where (r̂1, . . . , r̂m) satisfies r̂ki = hki (r̂
1, . . . , r̂m) for all i ∈ N , k ∈ M . Letting (r̄1, . . . , r̄m)

be the limit of the sequence {(r̄1(t), . . . , r̄m(t)) : t ∈ N}, the proof of Theorem 8 is based on

showing that r̄ki ≥ r̂ki for all i ∈ N , k ∈ M and relating the expected profit of a firm in the

Nash equilibrium p̂ to (r̂1, . . . , r̂m). By Theorem 8, the Nash equilibrium induced by the sequence

{(r̄1(t), . . . , r̄m(t)) : t ∈ N} is Pareto dominant. Next, we study the prices in this Pareto dominant

equilibrium as the competition gets more intense. We consider two systems. In both systems,

the set of products is N . In the first system, the set of firms is M = {1, . . . ,m}. The sets of

products owned by the firms are N1, . . . , Nm−1, Nm. In the second system, the set of firms is

M̃ = {1, . . . ,m+1}. The sets of products owned by the firms are N1, . . . , Nm−1, Ñ
m
, Ñ

m+1
, where

Ñ
m ∪ Ñm+1

= Nm. So, there is an additional firm in the second system. The firms 1, . . . ,m − 1

own the same sets of products in the two systems. The set of products owned by firm m in the first

system is split between firms m and m+ 1 in the second system. Thus, the second system is more
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competitive than the first one in some sense. In both systems, the customers choose according to

Markov chain choice model with the same parameters. We say that second system is marginally

more competitive than the first one. In the next theorem, we show that the prices in the Pareto

dominant equilibrium in the second system are no larger than those in the first system.

Theorem 9 Consider two systems, where the second system is marginally more competitive

than the first system. In this case, letting the prices p̂ = {p̂i : i ∈ Nk, k ∈M} and p̃ =

{p̃i : i ∈ Nk, k ∈ M̃} respectively be the Pareto dominant equilibria in the first and second systems,

we have p̂i ≥ p̃i for all i ∈ N .

The proof of the theorem above follows from an argument similar to the one that we use in

the proof of Theorem 7. We can successively apply the result in Theorem 9. In particular, we can

start with a system with only one firm owning all products, corresponding to a system controlled

by a central planner. We can split the set of products owned by this firm to obtain a second system

marginally more competitive than the first one. We can keep on splitting the products owned by

the firms to obtain any competitive setting with any desired division of the products among the

firms. By Theorem 9, the optimal prices in the first system, which is controlled by a central planner,

are at least as large as the prices in the Pareto dominant equilibrium in the competitive pricing

setting. This observation resembles the result in Theorem 7, but neither of these results is more

general than the other. In particular, Theorem 7 compares the prices charged by a central planner

with those in any Nash equilibrium, which may or may not be the Pareto dominant equilibrium. In

contrast, Theorem 9 compares the prices in the Pareto dominant equilibria in two competitive

pricing settings, one of which may or may not involve a central planner.

In Figure 1, we consider an example with eight products and m firms. Each firm owns 8/m

products. The products owned by firm k are {(k − 1) 8/m+ 1, . . . , k 8/m}. We vary the number

of firms over m ∈ {1, 2, 4, 8}. In Appendix F, we give all parameters of the Markov chain choice

model governing the choices of the customers. For each value of m, we compute the Pareto dominant

equilibrium. On the left side of Figure 1, we show prices in the equilibrium when there are different

numbers of competing firms. The horizontal axis shows the products. Different data series plot

prices in the equilibrium when there are different numbers of competing firms. Competition can

have a significant effect on the prices. The price for product 1 ranges between 8.43 to 3.63 depending

on the number of firms. On the right side of Figure 1, we show the sum of the expected profits

obtained by all firms from a customer when there are different numbers of competing firms. The

horizontal axis shows the number of firms. Different bars show the total expected profit obtained

by all firms when there are different numbers of competing firms. The expected profit obtained

from a customer ranges between 5.21 to 3.25 depending on the number of firms.

Lastly, we consider how the unit costs affect the prices in a Nash equilibrium. In the next

lemma, we focus on the case where each firm owns a single product and show that if the unit cost

of a product increases, then the prices charged by all firms for all products in the Pareto dominant
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Figure 1: Prices and total expected profit from a customer in the Pareto dominant equilibrium.

equilibrium increase. In this lemma, we use p̂(c) = {p̂i(c) : i ∈ Nk, k ∈ M} to denote the prices

in the Pareto dominant equilibrium as a function of the unit costs c = {ci : i ∈ N}.

Lemma 10 Consider a system where each firm owns one product. For any ε > 0, we have

p̂i(c+ ε ej) ≥ p̂i(c) for all i ∈ Nk, k ∈M , j ∈ N .

Intuitively speaking, if the unit cost of a product increases, then the firm owning this product

increases the price for this product to make up for the increase in the unit cost. This increase in

the price creates an opportunity for all other firms to increase their prices as well. Thus, if the

unit cost of a product increases, then the prices charged by all firms for all of the products in the

Pareto dominant equilibrium increases. In Appendix G, we give a counterexample to show that

if each firm owns an arbitrary number of products, then an increase in the unit cost of a product

owned by a firm may result in an increase or a decrease in the prices charged by its competitors

in the Pareto dominant equilibrium. Therefore, it is not possible to extend the result in the lemma

above to the case where each firm owns an arbitrary number of products.

3.4 Checking Uniqueness of Equilibrium

There exists a Nash equilibrium in the competitive pricing setting, but we leave the question

of whether the equilibrium is, in general, unique open. In particular, a counterexample with

multiple Nash equilibria or a proof of uniqueness for the Nash equilibrium have both been elusive

to us. Nevertheless, we can give an efficient procedure that can be used to definitively check

whether a particular problem instance has a unique Nash equilibrium. This procedure eliminates

the need for an exhaustive search to check whether a particular problem instance has multiple Nash

equilibria. In our procedure, we consider the sequence {(r̄1(t), . . . , r̄m(t)) : t ∈ N} defined in Section

3.2. Letting ū = ∆/(1 − ρmax) be as defined right after Theorem 6, this sequence is generated by

initializing (r̄1(0), . . . , r̄m(0)) ∈ <n×m as r̄ki (0) = ū for all i ∈ N , k ∈M and using the relationship
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r̄ki (t+ 1) = hki (r̄
1(t), . . . , r̄m(t)) for all i ∈ N , k ∈ M . In Section 3.2, we argue that the sequence

{(r̄1(t), . . . , r̄m(t)) : t ∈ N} has a limit (r̄1, . . . , r̄m) satisfying r̄ki = hki (r̄
1, . . . , r̄m) for all i ∈ N ,

k ∈ M . Here, we also consider an analogue of this sequence generated by using a different initial

condition. In particular, we consider the sequence {(
¯
r1(t), . . . ,

¯
rm(t)) : t ∈ N} that is generated by

initializing (
¯
r1(0), . . . ,

¯
rm(0)) ∈ <n×m as

¯
rki (0) = 0 for all i ∈ N , k ∈M and using the relationship

¯
rki (t+ 1) = hki (¯

r1(t), . . . ,
¯
rm(t)) for all i ∈ N , k ∈ M . In Appendix H, we show that the sequence

{(
¯
r1(t), . . . ,

¯
rm(t)) : t ∈ N} has a limit, which we denote by (

¯
r1, . . . ,

¯
rm). In the next lemma, we

show that if the limits of the sequences {(r̄1(t), . . . , r̄m(t)) : t ∈ N} and {(
¯
r1(t), . . . ,

¯
rm(t)) : t ∈ N}

are the same, then there is a unique Nash equilibrium.

Theorem 11 Letting (r̄1, . . . , r̄m) and (
¯
r1, . . . ,

¯
rm) respectively be the limits of the sequences

{(r̄1(t), . . . , r̄m(t)) : t ∈ N} and {(
¯
r1(t), . . . ,

¯
rm(t)) : t ∈ N}, if r̄ki =

¯
rki for all i ∈ N , k ∈ M ,

then there is a unique Nash equilibrium for competitive pricing.

We can use Theorem 11 to give a procedure to check whether the Nash equilibrium for a

particular problem instance is unique. We can generate the sequence {(r̄1(t), . . . , r̄m(t)) : t ∈ N}
starting with r̄ki (0) = ū for all i ∈ N , k ∈ M and using the relationship r̄ki (t + 1) =

hki (r̄
1(t), . . . , r̄m(t)) for all i ∈ N , k ∈M . In this way, we can compute the limit (r̄1, . . . , r̄m) of this

sequence. We can also compute the limit (
¯
r1, . . . ,

¯
rm) of the sequence {(

¯
r1(t), . . . ,

¯
rm(t)) : t ∈ N}

similarly. If we have r̄ki =
¯
rki for all i ∈ N , k ∈M , then there is a unique Nash equilibrium. Naturally,

we cannot compute the limits (r̄1, . . . , r̄m) and (
¯
r1, . . . ,

¯
rm) exactly, but we can estimate them quite

accurately. If the estimates are close, then the proof of Theorem 11 indicates that there do not

exist Nash equilibria that significantly differ from each other.

4 Dynamic Pricing with a Single Resource

In this section, we study dynamic pricing problems with a single resource. We give structural

properties of the optimal policy. We show that a deterministic approximation often used to develop

heuristic policies has a tractable formulation. We index the products by N = {1, . . . , n}. The set

of time periods in the selling horizon is T = {1, . . . , τ}. At the beginning of the selling horizon, we

have q units of resource available, which is exogenously given. The sale of each product consumes

one unit of the resource. A time period in the selling horizon corresponds to a small enough interval

of time that there is at most one customer arrival at each time period. The customer arriving at time

period t chooses among the products according to the Markov chain choice model with parameters

{λit : i ∈ N}, {θit(·) : i ∈ N} and {ρijt : i, j ∈ N}. Since we allow having
∑

i∈N λit < 1, with

probability 1 −
∑

i∈N λit, there is no customer arrival at time period t. We use Pit = [Lit, Uit] to

denote the set of feasible prices for product i at time period t. The goal is to find a policy to decide

what prices to charge at each time period to maximize the total expected revenue. Letting pt =

{pit : i ∈ N} be the prices that we charge for the products at time period t, we use {vit(pt) : i ∈ N}
to denote the expected number of times a customer visits product i during the course of her
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choice process, given that the customer chooses according to the Markov chain choice model with

parameters {λit : i ∈ N}, {θit(·) : i ∈ N} and {ρijt : i, j ∈ N}. We can obtain {vit(pt) : i ∈ N}
by solving the system of equations in (1). In this case, if we charge the prices pt for the products

at time period t, then a customer purchases product i with probability θit(pit) vit(pt). Using xt to

denote the number of units of remaining resource at the beginning of time period t, we can compute

the value functions {Vt(·) : t ∈ T} by solving the dynamic program

Vt(xt) = max
pt∈×i∈NPit

{∑
i∈N

θit(pit) vit(pt)
{
pit + Vt+1(xt − 1)

}
+
{

1−
∑
i∈N

θit(pit) vit(pt)
}
Vt+1(xt)

}

= max
pt∈×i∈NPit

{∑
i∈N

θit(pit) vit(pt)
{
pit −∆Vt+1(xt)

}}
+ Vt+1(xt), (9)

where we use ∆Vt+1(xt) = Vt+1(xt)− Vt+1(xt − 1). In the dynamic program above, the boundary

conditions are Vt(0) = 0 for all t ∈ T and Vτ+1(·) = 0.

In the next lemma, we show that the optimal policy obtained through the dynamic program

above satisfies certain intuitive structural properties. In particular, we show that the optimal

prices to charge for the products at a certain time period decreases as we have more units of the

resource. Furthermore, if the Markov chain choice models that govern the choice behavior of the

customers at different time periods have the same parameters, then the optimal prices to charge

decrease as we get closer to the end of the selling horizon.

Lemma 12 Letting p̂t(x) = {p̂it(x) : i ∈ N} be the optimal prices to charge at time period t when

we have x units of remaining resource, we have p̂it(x + 1) ≤ p̂it(x) for all i ∈ N . Furthermore, if

the Markov chain choice models at the different time periods have the same parameters, then we

have p̂i,t+1(x) ≤ p̂it(x) for all i ∈ N .

By a standard result in the revenue management literature, the marginal value ∆Vt(x) of a unit

of resource is decreasing in x and t; see Proposition 2-2.A.4 in Talluri and van Ryzin (2005). In

the proof of Lemma 12, we use this fact and Lemma 4. By the lemma above, as we have more

units of the resource at a certain time period, we have more incentive to sell products, motivating

us to charge lower prices to sell products. Also, as we get closer to the end of the selling horizon,

we run out of opportunities to sell products, also motivating us to charge lower prices to sell

products. Although the structural properties in Lemma 12 are intuitive, they do not hold under

arbitrary choice models. In Appendix I, we give a counterexample where the prices may increase

as we have more units of the resource or as we get closer to the end of the selling horizon. In this

counterexample, the same choice model governs the customer choices at different time periods and

the choice model is compatible with the random utility maximization principle.

Gallego and van Ryzin (1994) use a deterministic approximation to come up with an a priori

fixed price trajectory to charge over the selling horizon. In this deterministic approximation, we
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use the decision variables p = {pit : i ∈ N, t ∈ T}, where pit is the price charged for product i at

time period t. In this case, we consider the deterministic approximation

max
p∈<n×τ

{∑
t∈T

∑
i∈N

θit(pit) vit(pt) pit :
∑
t∈T

∑
i∈N

θit(pit) vit(pt) ≤ q, pit ∈ Pit ∀i ∈ N, t ∈ T

}
. (10)

In problem (10),
∑

i∈N θit(pit) vit(p) pit is the expected revenue at time period t. In the constraint,∑
i∈N θit(pit) vit(pt) is the expected resource consumption at time period t. Thus, we enforce the

capacity constraint only in the expected sense. Note that {vit(pt) : i ∈ N} is given by the solution

to the system of equations in (1), so there are no closed form expressions for the objective function

and the constraint above. We give an equivalent formulation for problem (10) with closed form

expressions for the objective function and the constraint. Also, under certain assumptions on

{θit(·) : i ∈ N, t ∈ T}, the equivalent formulation is a convex program.

In the equivalent formulation, we use the decision variables x = {xit : i ∈ N, t ∈ T} and y =

{yit : i ∈ N, t ∈ T}, where xit is the number of times that a customer arriving at time period t visits

product i during the course of her choice process and yit is the probability that a customer arriving

at time period t purchases product i. Therefore, the decision variables (x,y) relate to the prices

p in problem (10) as xit = vit(pt) and yit = θit(pit) vit(pt), so that yit/xit = θit(pit). Since θit(·) is

strictly decreasing, its inverse exists and we get pit = θ−1it (yit/xit). Substituting pit = θ−1it (yit/xit)

and θit(pit) vit(pt) = yit in problem (10), we obtain the formulation

max
(x,y)∈<2×n×τ

+

{∑
t∈T

∑
i∈N

yit θ
−1
it (yit/xit) :

∑
t∈T

∑
i∈N

yit ≤ q, θ−1it (yit/xit) ∈ Pit ∀ i ∈ N, t ∈ T,

xit = λit +
∑
j∈N

ρjit (xjt − yjt) ∀ i ∈ N, t ∈ T

}
. (11)

In the problem above, the objective function and the first and second constraints follow by setting

pit = θ−1it (yit/xit) and θit(pit) vit(pt) = yit in (10). By (1), since vit(pt) satisfies vit(pt) = λit +∑
j∈N ρjit (1−θjt(pjt)) vjt(pt), writing the last expression as λit+

∑
j∈N ρjit (vjt(pt)−θjt(pjt) vjt(pt))

and substituting xit = vit(pt) and yit = θit(pit) vit(pt), we get the third constraint above. The first

and third constraints are linear in (x,y). Since Pit = [Lit, Uit] and θit(·) is decreasing, we write

the second constraint as yit/xit ∈ [θit(Uit), θit(Lit)] or θit(Uit)xit ≤ yit ≤ θit(Lit)xit, which is also

linear in (x,y). In the next theorem, we show that problems (10) and (11) are equivalent.

Theorem 13 If (x̂, ŷ) is an optimal solution to problem (11), then letting p̂it = θ−1it (yit/xit) for

all i ∈ N , t ∈ T , p̂ = {p̂i : i ∈ N, t ∈ T} is an optimal solution to problem (10). Conversely, if

p̂ is an optimal solution to problem (10), then letting x̂it = vit(p̂t) and ŷit = θit(p̂it) vit(p̂t) for all

i ∈ N , t ∈ T , (x̂, ŷ) = {(x̂it, ŷit) : i ∈ N, t ∈ T} is an optimal solution to problem (11).

In the proof of Theorem 13, we explicitly construct a feasible solution to one of problems (10)

and (11) by using an optimal solution to the other one such that the objective values provided by
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the two solutions for their respective problems are equal to each other. The objective function and

the constraints in problem (11) have closed form expressions. Also, the constraints are linear in

(x,y). The objective function of problem (11) is not always concave in (x,y), but we can come

up with conditions to ensure concavity. In particular, in Appendix J, we show that if 1/θit(pit)

is convex in pit, then yit θ
−1
it (yit/xit) is concave in (xit, yit). So, if θit(pit) = e−βit pit with βit > 0,

then 1/θit(pit) = eβit pit , which is convex in pit, in which case, by the discussion in Appendix J,

yit θ
−1
it (yit/xit) is concave in (xit, yit). Similarly, if θit(pit) = 1−βit pit with βit > 0, then 1/θit(pit) =

1/(1 − βit pit), which is also convex in pit, in which case, yit θ
−1
it (yit/xit) is concave in (xit, yit) as

well. So, there are some choices of θit(·) that render the objective function of problem (11) concave

in (x,y). Since the constraints of this problem are linear in (x,y), problem (11) becomes a convex

program. Instead of trying to solve problem (10) directly, solving the equivalent formulation in

(11) can provide significant benefits in the quality of the solutions that we obtain. In Appendix K,

we provide a numerical study to demonstrate such benefits.

Gallego and van Ryzin (1994) use a problem similar to the one in (10) to come up with a heuristic

policy and they show a performance guarantee for their heuristic policy. Gallego and van Ryzin

(1997) study a similar heuristic policy in the network revenue management setting, where there

are a set of resources with finite inventories and the sale of a product consumes a combination of

resources. In that setting, we index the resources by M = {1, . . . ,m}. We have q` units of resource

` at the beginning of the selling horizon. A sale of product i consumes a`i units of resource `. In this

case, Gallego and van Ryzin (1997) consider a deterministic approximation similar to the one in (10),

but the only difference is that the first constraint is replaced by
∑

t∈T
∑

i∈N a`i θit(pit) vit(pt) ≤ q`
for all ` ∈ M , ensuring that the total expected capacity consumption of each resource does not

exceed its availability. In this case, we can also give an equivalent formulation similar to the one

in (11). All we need to do is to modify the first constraint in (11) as
∑

t∈T
∑

i∈N a`i yit ≤ q` for

all ` ∈M . We can use the same proof technique in the proof of Theorem 13 to show that the two

formulations are equivalent to each other, even when we have multiple resources.

5 Numerical Experiments

We give numerical experiments to demonstrate the potential benefits from using the Markov chain

choice model to capture the customer choice process, instead of simpler models, such as the

multinomial logit model. As discussed in the introduction section, there is work by Feldman and

Topaloglu (2017), Simsek and Topaloglu (2017) and Wang and Yuan (2017) to demonstrate that

it is possible to calibrate the Markov chain choice model in a computationally tractable fashion so

that we can predict the customer purchase behavior more accurately when compared with simpler

models, such as the multinomial logit model. The work by these authors focuses on the assortment

optimization setting, where the prices of the products are fixed and the sets of products that

are offered to the customers are decision variables. Our goal is demonstrate that such numerical

benefits from using the Markov chain choice model can carry from the assortment optimization
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to the pricing setting. The focus of our paper is not on estimating the parameters of the Markov

chain choice model, so a full set of computational experiments on estimating the parameters of the

Markov chain choice model is naturally beyond our scope.

In our numerical setup, we assume that the customer choices are governed by a ground choice

model that is not related to the multinomial logit or the Markov chain choice model. In particular,

we assume that the customer choices are governed by the exponomial choice model. In this choice

model, the utility of product i is Ui(pi) = µi− γi pi−Zi, where µi and γi are fixed parameters and

Zi is an exponential random variable. For notational uniformity, we let U0(p0) = µ0 − Z0 be the

utility of the no purchase option, but there is, naturally, no price for the no purchase option. A

customer chooses product i with probability P{Ui(pi) = maxj∈N∪{0} Uj(pj)}. Alptekinoglu and

Semple (2016) propose the exponomial choice model. They show that if the exponential random

variables {Zi : i ∈ N ∪ {0}} are independent and have the same mean, then there is a closed form

expression for the purchase probabilities of the products. In our numerical setup, there are five

products. To come up with {µi : i ∈ N}, we sample µi from the uniform distribution over [µL, µU ],

where µL and µU are parameters that we vary. We fix µ0 = µL. To come up with {γi : i ∈ N},
we set γi = Γ for all i ∈ N , where Γ is another parameter that we vary. The exponential random

variables {Zi : i ∈ N ∪ {0}} have mean κ, where we also vary the parameter κ. By using the

approach in this paragraph, we generate the parameters of the exponomial model that governs the

choices of the customers and fix this choice model as the ground choice model.

Once we fix the ground choice model, we generate the purchase history for τ customers. We

denote this purchase history by {(p̂`, i`) : ` = 1, . . . , τ}, where p̂` = {p̂`i : i ∈ N} are the prices

offered to customer ` and i` is the product purchased by customer `. If customer ` leaves without

a purchase, then we have i` = 0. To come up with the prices {p̂` : ` = 1, . . . , τ} in the purchase

history, we solve the problem maxpi∈<+ P{Ui(pi) > U0(p0)} pi, which finds the price that maximizes

the expected profit under the exponomial choice model when the customers choose only between

product i and the no purchase option. Letting p∗i be the optimal solution to this problem, we

sample p̂`i from the uniform distribution over [12p
∗
i ,

3
2p
∗
i ]. After generating the prices, we generate

the choice i` of customer ` in the purchase history according to the ground choice model, given

that the customer ` is offered the prices p̂`. In other words, i` takes value i with probability

P{Ui(p̂`i) = maxj∈N∪{0} Uj(p̂
`
j)}. By following the approach described so far in this paragraph,

we generate the purchase history for τ customers and use this purchase history as the training

data. We vary τ over {1,000, 2,500, 5,000} to capture different levels of data availability. Using the

same approach, we also generate the purchase history for another 10,000 customers and use this

purchase history as the testing data. We fit our choice models to the training data and test the

performance of the fitted choice models on the testing data.

We fit a Markov chain choice model to the training data by using maximum likelihood

estimation. To fit a Markov chain choice model, we use the function θi(pi) = e−γi pi in our

Markov chain choice model. Letting 1(·) be the indicator function, we estimate the parameters
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λ = {λi : i ∈ N}, γ = {γi : i ∈ N} and ρ = {ρij : i, j ∈ N} of the Markov chain choice model by

maximizing the log-likelihood of the training data given by

τ∑
`=1

∑
i∈N

1(i` = i) log(θi(p̂
`
i |γ) vi(p̂

` |λ,γ,ρ)) +
τ∑
`=1

1(i` = 0) log
(

1−
∑
i∈N

θi(p̂
`
i |γ) vi(p̂

` |λ,γ,ρ)
)

over (λ,γ,ρ) ∈ <2n+n2

+ subject to the constraints that
∑

i∈N λi ≤ 1 and
∑

j∈N ρij ≤ 1 for all

i ∈ N . In the log-likelihood function above, we make the dependence of vi(p) satisfying (1) on

(λ,γ,ρ) and the dependence of θi(pi) on γ explicit. The expression θi(p̂
`
i |γ) vi(p̂

` |λ,γ,ρ) is

the purchase probability of product i by customer `. We use the fmincon routine in Matlab to

maximize the log-likelihood function above. We estimate the parameters of the multinomial logit

model by maximizing a similar log-likelihood function, but by using the purchase probabilities

under the multinomial logit model. In the multinomial logit model, we assume that the mean

utility of product i is given by σi − αi pi for fixed parameters σi and αi. Once we fit a Markov

chain choice model and a multinomial logit model to the training data, we use the testing data to

check the ability of these fitted choice models to predict the purchase behavior of the customers

that are not in the training data. In particular, for CM ∈ {MC,ML}, we use ChoiceCMi (p)

to denote the purchase probability of product i under the fitted choice model CM when we

charge the prices p. Having CM = MC corresponds to the Markov chain choice model, whereas

having CM = ML corresponds to the multinomial logit model. In this case, we compute the

out of sample log-likelihood for the fitted choice models on the testing data, which is given

by
∑10,000

`=1

∑
i∈N 1(i` = i) logChoiceCMi (p̃`) +

∑10,000
`=1 1(i` = 0) log(1−

∑
i∈N logChoiceCMi (p̃`)) for

CM ∈ {MC,ML}, where {(p̃`, i`) : ` = 1, . . . , 10, 000} are the prices charged to and the choices

of the customers in the testing data. The out of sample log-likelihood is of the same form as the

log-likelihood of the training data given above. A larger value for the out of sample log-likelihood

indicates that the choice model under consideration more accurately predicts the purchase behavior

of the customers that are not in the training data.

We vary (µL, µU ) over {(100, 150), (150, 200)}, Γ over {1, 2} and κ over {10, 15} to obtain eight

configurations for the ground choice model. For each configuration, we generate the ground choice

model as an exponomial choice model as discussed above and fix it. Once we fix the ground choice

model, we generate the training and testing data sets from the ground choice model. We use the

training data to fit a Markov chain choice model and a multinomial logit model. We check the

out of sample log-likelihoods for the fitted choice models on the testing data. In Table 1, we show

our results. In this table, the first column shows the configuration for the ground choice model.

In the rest of the table, there are three blocks of three columns. Each block corresponds to a

different number of customers in the training data, capturing different levels of data availability

for estimation. In each block, the first column shows the out of sample log-likelihoods of the

fitted Markov chain choice model, the second column shows the out of sample log-likelihoods of

the fitted multinomial logit model and the third column shows the percent gap between the two

log-likelihoods. In 22 out of 24 cases, the out of sample log-likelihoods of the fitted Markov chain
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Ground. Ch. τ = 1, 000 τ = 2, 500 τ = 5, 000
Config. Likeli. Likeli. Perc. Likeli. Likeli. Perc. Likeli. Likeli. Perc.

(µL, µU ,Γ, κ) MC ML Gap MC ML Gap MC ML Gap

(100, 150, 1, 10) -7,865 -7,837 -0.35 -7,734 -7,767 0.42 -7,723 -7,757 0.45
(100, 150, 1, 15) -11,677 -11,716 0.34 -11,611 -11,687 0.66 -11,571 -11,664 0.81

(100, 150, 2, 10) -9,802 -9,830 0.29 -9,726 -9,818 0.94 -9,703 -9,811 1.12
(100, 150, 2, 15) -9,994 -10,005 0.12 -9,941 -9,971 0.30 -9,926 -9,959 0.33

(150, 200, 1, 10) -9,459 -9,541 0.86 -9,384 -9,480 1.02 -9,374 -9,474 1.06
(150, 200, 1, 15) -11,935 -11,918 -0.15 -11,851 -11,896 0.38 -11,811 -11,881 0.59

(150, 200, 2, 10) -11,596 -11,617 0.18 -11,514 -11,584 0.61 -11,507 -11,586 0.68
(150, 200, 2, 15) -11,208 -11,229 0.18 -11,101 -11,184 0.75 -11,090 -11,182 0.83

Table 1: Out of sample log-likelihoods for the fitted Markov chain choice model and the fitted
multinomial logit model on the testing data.

choice model are larger than those of the fitted multinomial logit model. Small differences in

log-likelihoods can still correspond to significant differences in the purchase probability predictions,

since the logarithmic scale has the effect of shrinking significant differences in the purchase

probability predictions. The two cases where the log-likelihoods of the fitted multinomial logit

model are larger correspond to the cases with the smallest amount of training data. The multinomial

logit model has O(n) parameters given by {(σi, αi) : i ∈ N}, whereas the Markov chain choice

model has O(n2) parameters given by {(λi, γi) : i ∈ N} and {ρij : i, j ∈ N}. When we have

smaller amount of training data, it can be difficult to estimate a larger number of parameters due

to overfitting. Our numerical experiments indicate that the Markov chain choice model can provide

noticeably better predictions of the purchase behavior of the customers when compared with the

multinomial logit model, but we, of course, cannot claim that the Markov chain choice model is

universally better than the multinomial logit model. In this section, we compare the fitted choice

models using out of sample log-likelihoods. In Appendix L, we compare the fitted choice models

using two additional performance measures, which are the errors in the purchase probability and

expected revenue predictions of the fitted choice models. We observe similar results.

6 Conclusions

In this paper, we gave a Markov chain choice model to deal with the case where the prices for the

products are adjustable and the choice process for the customers reacts to the prices charged for the

products. We focused on three fundamental pricing problems under this choice model, which are

monopolistic pricing, competitive pricing and dynamic pricing with a single resource. We can give

slight generalizations of our results. In particular, we can allow the transition probability ρij(pi)

to depend on the price of product i, but not on the price of product j. In this case, our approach

in Section 2 to compute the optimal prices and our approach in Section 3.1 to compute the best

response still work, but we lose the structural properties of the optimal prices and the prices at an

equilibrium. However, even without allowing the transition probabilities to depend on the prices,

the Markov chain choice model can provide useful modeling flexibility in capturing the customer
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purchase behavior. More sophisticated versions of the Markov chain choice model is certainly one

avenue for future work. Another avenue for future work is to consider the case where there are

constraints on the prices. In quality consistent pricing problems, for example, the prices for the

products of higher quality must be larger than the prices for the products of lower quality. When

we have constraints that link the prices charged for the different products, our approach for solving

pricing problems do not work and extensions in this direction appear to be nontrivial. Also, there

has been recent work on estimating the parameters of the Markov chain choice model. Another

useful research direction is to use the Markov chain choice model in different application areas

to check its benefits in predicting the customer purchase behavior. On the theory side, one can

develop computationally efficient methods to estimate the parameters of the Markov chain choice

model. On the practice side, one can use the Markov chain choice model to predict the purchase

behavior of customers in real data. Both activities will likely help improve the practical appeal of the

Markov chain choice model. Lastly, a useful feature of the multinomial logit model is that we can

parameterize the mean utilities and the price sensitivities of the products by using a small number

of features. In this case, the number of parameters in the multinomial logit model grows linearly

with the number of features, instead of the number of products. Also, we do not have to refit the

model when a new product is introduced, as long as we know the features of the new product. It

would be useful to investigate whether we can characterize the parameters of the Markov chain

choice model by using a small number of features.
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A Appendix: Omitted Proofs

In this section, we provide the proofs that are omitted in the paper.

A.1 Proof of Theorem 1

Consider the Markov chain {Xt : t ∈ N} over the state space N ∪ {0}. Visiting state i ∈ N

corresponds to visiting product i, whereas visiting state 0 corresponds to visiting the no purchase

option. The probability law for the Markov chain is P{X0 = i} = λi and P{Xt+1 = j |Xt = i} = ρij ,

where, for notational brevity, we let ρ00 = 1 and ρi0 = 1−
∑

j∈N ρij for all i ∈ N . Note that state

0 is absorbing. For all i ∈ N ∪ {0}, we consider the sequence of independent random variables

{Yit(pi) : t ∈ T}, each taking value zero or one, where we have P{Yit(pi) = 1} = θi(pi) and

P{Y0t(p0) = 1} = 1. Having Yit(pi) = 1 corresponds to a customer purchasing product i whenever

she visits product i at transition t. Note that the Markov chain {Xt : t ∈ N} corresponds to

the states visited by a customer making a choice under the Markov chain choice model and the

sequence of random variables {Yit(pi) : t ∈ N} captures the purchase decisions of a customer under

the Markov chain choice model whenever she visits product i. Under the Markov chain choice model,

for a customer to purchase product i, this product should be the first product the customer visits for

which she makes a purchase decision. In particular, we use the random variable τi(pi) to denote the

first visit time for product i when the customer makes a purchase decision for this product. That is,

we have τi(pi) = min{t ∈ N : Xt = i and Yit(pi) = 1}. If the last set is empty, then we set τi(pi) =

∞. Similarly, we define τ0(p0) = min{t ∈ N : Xt = 0 and Y0t(p0) = 1} = min{t ∈ N : Xt = 0}, since

we have Y0t(p0) = 1 with probability one. For a customer to purchase product i, product i needs

to be the first product that the customer visits for which she makes a purchase decision. So, the

purchase probability of product i is P{τi(pi) = arg minj∈N∪{0} τj(pj)}. If we define the utility of

product i as Ui(pi) = −τi(pi), then the last expression implies that the purchase probability of

product i is P{−τi(pi) = arg maxj∈N∪{0}−τj(pj)} = P{Ui(pi) = arg maxj∈N∪{0} Uj(pj)}. Thus,

there exist utility random variables {Ui(·) : i ∈ N} such that if we charge the prices p, then

purchase probability of product i under the Markov chain choice model can be written as

P{Ui(pi) = maxj∈N∪{0} Uj(pj)}, which is the desired result.

A.2 Proof of Lemma 2

For the rank one Markov chain choice model, the system of equations in (1) takes the form vi(p) =

λi+λi
∑

j∈N βj (1−θj(pi)) vj(p) for all i ∈ N . It is simple to check that the solution to this system

of equations is given by vi(p) = λi/(1 −
∑

j∈N λj βj (1 − θj(pj)) for all i ∈ N . In this case, the

choice probability of product i is given by θi(pi) vi(p) = λi θi(pi)/(1−
∑

j∈N λj βj (1− θj(pj)). The

desired result holds since we can use simple algebraic manipulations to verify that the expression

in the denominator of the last fraction is equivalently given by 1 −
∑

j∈Nλj βj (1 − θj(pj)) =

1−
∑

j∈N λj +
∑

j∈N λj (1− βj) (1− θj(pj)) +
∑

j∈N λj θj(pj).
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A.3 Proof of Theorem 3

Assume that r̂ = {r̂i : i ∈ N} satisfies r̂i = fi(r̂) for all i ∈ N . First, we show that if p̂i is

an optimal solution to problem (4) for all i ∈ N , then p̂ = {p̂i : i ∈ N} is an optimal solution

to problem (2). Since p̂i is an optimal solution to problem (4) for all i ∈ N and r̂i = fi(r̂),

we have r̂i = fi(r̂) = θi(p̂i) (p̂i − ci) + (1 − θi(p̂i))
∑

j∈N ρij r̂j for all i ∈ N . Multiplying this

equality with vi(p̂) and adding over all i ∈ N , we get
∑

i∈N vi(p̂) r̂i =
∑

i∈N θi(p̂i) vi(p̂) (p̂i − ci) +∑
j∈N

∑
i∈N ρij (1− θi(p̂i)) vi(p̂) r̂j . Noting that

∑
i∈N ρij (1− θi(p̂i)) vi(p̂) = vj(p̂)−λj by (1), the

last equality is equivalent to
∑

i∈N vi(p̂) r̂i =
∑

i∈N θi(p̂i) vi(p̂) (p̂i − ci) +
∑

j∈N (vj(p̂)− λj) r̂j , in

which case, canceling the terms on both sides yields
∑

i∈N θi(p̂i) vi(p̂) (p̂i−ci) =
∑

i∈N λi r̂i. For any

p̃ = {p̃i : i ∈ N} ∈ ×i∈NPi, since p̃i is a feasible, but not necessarily an optimal solution to problem

(4), we have r̂i = fi(r̂) ≥ θi(p̃i) (p̃i − ci) + (1 − θi(p̃i))
∑

j∈N ρij r̂j for all i ∈ N . Multiplying this

inequality with vi(p̃) and adding over all i ∈ N , we get
∑

i∈N vi(p̃) r̂i ≥
∑

i∈N θi(p̃i) vi(p̃) (p̃i − ci)+∑
j∈N

∑
i∈N ρij (1− θi(p̃i)) vi(p̃) r̂j . Since

∑
i∈N ρij (1− θi(p̃i)) vi(p̃) = vj(p̃) − λj by (1), the last

inequality is equivalent to
∑

i∈N vi(p̃) r̂i ≥
∑

i∈N θi(p̃i) vi(p̃) (p̃i−ci)+
∑

j∈N (vj(p̃)− λj) r̂j and we

can cancel the terms on both sides to obtain
∑

i∈N θi(p̃i) vi(p̃) (p̃i−ci) ≤
∑

i∈N λi r̂i. Thus, we have∑
i∈N θi(p̂i) vi(p̂) (p̂i − ci) =

∑
i∈N λi r̂i ≥

∑
i∈N θi(p̃i) vi(p̃) (p̃i − ci) for any p̃ ∈ ×i∈NPi, which

shows that p̂ is an optimal solution to problem (2). We observe that the last chain of inequalities

also implies that the optimal objective value of problem (2) is
∑

i∈N λi r̂i.

Second, we show that if p̂ = {p̂i : i ∈ N} is an optimal solution to problem (2), then p̂i is

an optimal solution to problem (4) for all i ∈ N . Since p̂i is a feasible, but not necessarily an

optimal solution to problem (4), we have r̂i = fi(r̂) ≥ θi(p̂i) (p̂i − ci) + (1 − θi(p̂i))
∑

j∈N ρij r̂j

for all i ∈ N . To get a contradiction, assume that p̂i is not an optimal solution to problem (4)

for some i ∈ N so that the last inequality is strict for some i ∈ N . Since λi > 0, by (1),

we have vi(p̂) > 0 for all i ∈ N . If we multiply the last inequality by vi(p̂) and add over all

i ∈ N , then noting that vi(p̂) > 0 for all i ∈ N and the last inequality is strict for some i ∈ N ,

we obtain
∑

i∈N vi(p̂) r̂i >
∑

i∈N θi(p̂i) vi(p̂) (p̂i − ci) +
∑

j∈N
∑

i∈N ρij (1− θi(p̂i)) vi(p̂) r̂j . As

before, since
∑

i∈N ρij (1− θi(p̂i)) vi(p̂) = vj(p̂) − λj by (1), the last inequality is equivalent to∑
i∈N vi(p̂) r̂i >

∑
i∈N θi(p̂i) vi(p̂) (p̂i − ci) +

∑
j∈N (vj(p̂) − λj) r̂j . Canceling the terms on both

sides yields
∑

i∈N θi(p̂i) vi(p̂) (p̂i − ci) <
∑

i∈N λi r̂i. The desired result follows by noting that the

last inequality contradicts the fact that p̂ is an optimal solution to problem (2) and the optimal

objective value of this problem is given by
∑

i∈N λi r̂i.

A.4 Proof of Lemma 4

We use the notation fi(· | c) to make the dependence of the operator fi(·) in (3) on the unit costs

explicit. Let r̂(c) = {r̂i(c) : i ∈ N} be such that r̂i(c) = fi(r̂(c) | c) for all i ∈ N . We claim that

the chain of inequalities r̂j(c) − ε ≤ r̂j(c + ε e) ≤ rj(c + ε ei) ≤ r̂j(c) holds for all j ∈ N . For

economy of space, we only show that the first inequality in this chain of inequalities holds. The

other two inequalities follow from a similar argument. We consider the sequence {r̃(t) : t ∈ N}
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that is generated by using the relationship r̃i(t + 1) = fi(r̃(t) | c) and r̃i(0) = 0 for all i ∈ N . By

the discussion right after (3), the sequence {r̃(t) : t ∈ N} converges to r̂(c) = {r̂i(c) : i ∈ N}
that satisfies r̂i(c) = fi(r̂(c) | c) for all i ∈ N . Similarly, we consider the sequence {r̄(t) : t ∈ N}
that is generated by using the relationship r̄i(t + 1) = fi(r̄(t) | c + ε e) and r̄i(0) = 0 for all

i ∈ N . The sequence {r̄(t) : t ∈ N} converges to r̂(c + ε e) = {r̂i(c + ε e) : i ∈ N} that satisfies

r̂i(c+ ε e) = fi(r̂(c+ ε e) | c+ ε e) for all i ∈ N . We use induction to show that r̃i(t)− ε ≤ r̄i(t) for

all i ∈ N , t ∈ N. In this case, taking limits on both sides, we obtain r̂i(c) − ε ≤ r̂i(c + ε e) for all

i ∈ N , as desired. Since r̃i(0) = 0 = r̄i(0), we have r̃i(0)−ε ≤ r̄i(0). Assuming that r̃i(t)−ε ≤ r̄i(t)
for all i ∈ N , we show that r̃i(t+ 1)− ε ≤ r̄i(t+ 1) for all i ∈ N . We use p̃i to denote an optimal

solution to problem (3) when we solve this problem after replacing r with r̃(t), so that the optimal

objective value of this problem gives fi(r̃(t) | c). Since r̃i(t+ 1) = fi(r̃(t) | c), we get

r̃i(t+ 1) = fi(r̃(t) | c) = θi(p̃i) (p̃i − ci) + (1− θi(p̃i))
∑
j∈N

ρij r̃j(t)

≤ θi(p̃i) (p̃i − ci) + (1− θi(p̃i))
∑
j∈N

ρij (r̄j(t) + ε)

≤ θi(p̃i) (p̃i − ci − ε) + (1− θi(p̃i))
∑
j∈N

ρij r̄j(t) + ε ≤ fi(r̄(t) | c+ ε e) + ε = r̄i(t+ 1) + ε.

Here, the first inequality is by the induction assumption. The second inequality is by the fact that

(1 − θi(p̃i))
∑

j∈N ρij ≤ (1 − θi(p̃i)). The third inequality is by the fact that p̃i is a feasible, but

not necessarily an optimal, solution to problem (3) when we solve this problem with the unit costs

c+ ε e. Thus, we have r̃i(t+ 1)− ε ≤ r̄i(t+ 1), completing the induction argument.

Dropping the constant terms, an optimal solution to problem (3) can be obtained by solving the

problem maxpi∈Pi{θi(pi) (pi− ci−
∑

j∈N ρij rj)}. By Theorem 3, p̂i(c+ ε ei) is an optimal solution

to problem (3) after replacing ci with ci+ ε and rj with r̂j(c+ ε ei). Thus, p̂i(c+ ε ei) is an optimal

solution to the problem maxpi∈Pi{θi(pi) (pi−ci−ε−
∑

j∈N ρij r̂j(c+ε ei))}. By a similar argument,

p̂i(c) is an optimal solution to the problem maxpi∈Pi{θi(pi) (pi − ci −
∑

j∈N ρij r̂j(c))}. Note that

ε +
∑

j∈N ρij r̂j(c + ε ei) ≥ ε +
∑

j∈N ρij (r̂j(c) − ε) ≥
∑

i∈N ρij r̂j(c), where the first inequality

follows from the chain of inequalities established in the previous paragraph. A simple lemma,

given as Lemma 19 in Appendix M, shows that the unique optimal solution to the problem

maxpi∈Pi{θi(pi)(pi− ci−x)} is increasing in x. So, since ε+
∑

j∈N ρij r̂j(c+ ε ei) ≥
∑

j∈N ρij r̂j(c),

it follows that p̂i(c + ε ei) ≥ p̂i(c), establishing the first inequality in the lemma. The inequalities

p̂j(c+ ε ei) ≤ p̂j(c) and p̂j(c+ ε e) ≥ p̂j(c) follow from a similar reasoning.

A.5 Proof of Theorem 6

Fix some (r̂1, . . . , r̂m) ∈ <n×m arbitrarily and let p̂i be an optimal solution to the problem

maxpi∈Pi{θi(pi) (pi − ci) + (1 − θi(pi))
∑

j∈N ρij r̂
k
j } for all i ∈ Nk, k ∈ M . We claim that

having r̂ki = gki (r̂k | p̂−k) for all i ∈ N , k ∈ M is identical to having r̂ki = hki (r̂
1, . . . , r̂m) for

all i ∈ N , k ∈ M . To see the claim, if r̂ki = gki (r̂k | p̂−k) for all i ∈ N , k ∈ M , then by (6), it
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follows that r̂ki = maxpi∈Pi{θi(pi) (pi − ci) + (1 − θi(pi))
∑

j∈N ρij r̂
k
j } for all i ∈ Nk, k ∈ M and

r̂ki = (1−θi(p̂i))
∑

j∈N ρij r̂
k
j for all i 6∈ Nk, k ∈M . Noting that p̂i is defined as an optimal solution

to the problem maxpi∈Pi{θi(pi) (pi − ci) + (1 − θi(pi))
∑

j∈N ρij r̂
k
j } for all i ∈ Nk, k ∈ M , by (7),

the last two equalities are precisely the conditions to ensure that r̂ki = hki (r̂
1, . . . , r̂m) for all i ∈ N ,

k ∈M , which establishes the claim.

We show the desired result in two parts. First, we assume that p̂ = {p̂i : i ∈ Nk, k ∈ M} is a

Nash equilibrium. We show that p̂i is an optimal solution to problem (8) for all i ∈ Nk, k ∈ M ,

where (r̂1, . . . , r̂m) satisfies r̂ki = hki (r̂
1, . . . , r̂m) for all i ∈ N , k ∈ M . If p̂ is a Nash equilibrium,

then p̂k is a best response of firm k to the prices p̂−k for all k ∈M . In this case, by Lemma 5, p̂i is

an optimal solution to the problem maxpi∈Pi{θi(pi) (pi−ci)+(1−θi(pi))
∑

j∈N ρij r̂
k
j } for all i ∈ Nk,

k ∈ M , where r̂k satisfies r̂ki = gki (r̂ | p̂−k) for all i ∈ N . By the claim in the previous paragraph,

having p̂i be an optimal solution to the problem maxpi∈Pi{θi(pi) (pi−ci)+(1−θi(pi))
∑

j∈N ρij r̂
k
j }

for all i ∈ Nk, k ∈ M and r̂ki = gki (r̂ | p̂−k) for all i ∈ N , k ∈ M is identical to having r̂ki =

hki (r̂
1, . . . , r̂m) for all i ∈ N , k ∈M . Thus, if p̂ is a Nash equilibrium, then p̂i is an optimal solution

to the problem maxpi∈Pi{θi(pi) (pi − ci) + (1 − θi(pi))
∑

j∈N ρij r̂
k
j } for all i ∈ Nk, k ∈ M , where

(r̂1, . . . , r̂m) satisfies r̂ki = hki (r̂
1, . . . , r̂m) for all i ∈ N , k ∈M . Second, we assume that (r̂1, . . . , r̂m)

satisfies r̂ki = hki (r̂
1, . . . , r̂m) for all i ∈ N , k ∈ M and p̂i is an optimal solution to problem (8) for

all i ∈ Nk, k ∈M . We show that p̂ is a Nash equilibrium. By the claim in the previous paragraph,

if p̂i is an optimal solution to the problem maxpi∈Pi{θi(pi) (pi − ci) + (1− θi(pi))
∑

j∈N ρij r̂
k
j } for

all i ∈ Nk, k ∈ M , then having r̂ki = hki (r̂
1, . . . , r̂m) for all i ∈ N , k ∈ M is identical to having

r̂ki = gki (r̂k | p̂−k) for all i ∈ N , k ∈ M . In this case, it follows that p̂i is an optimal solution to

the problem maxpi∈Pi{θi(pi) (pi − ci) + (1 − θi(pi))
∑

j∈N ρij r̂
k
j } for all i ∈ Nk, k ∈ M , where r̂k

satisfies r̂ki = gki (r̂k | p̂−k) for all i ∈ N , k ∈ M . By Lemma 5, we observe that the last statement

is equivalent to the prices p̂k being the best response to the prices p̂−k for all k ∈ M , which is, in

turn, equivalent to the prices p̂ being a Nash equilibrium.

A.6 Proof of Theorem 7

Since the prices p̂ = {p̂i : i ∈ Nk, k ∈ M} are a Nash equilibrium, by Theorem 6, for all i ∈ Nk,

k ∈M , p̂i is an optimal solution to the problem maxpi∈Pi{θi(pi) (pi−ci)+(1−θi(pi))
∑

j∈N ρij r̂
k
j },

where (r̂1, . . . , r̂m) satisfies r̂ki = hki (r̂
1, . . . , r̂m) for all i ∈ N , k ∈M . Dropping the constant terms,

p̂i is also given by an optimal solution to maxpi∈Pi{θi(pi) (pi − ci −
∑

j∈N ρij r̂
k
j )}. Similarly, since

the prices p̃ = {p̃i : i ∈ N} are an optimal solution to problem (2), by Theorem 3, p̃i is an optimal

solution to the problem maxpi∈Pi{θi(pi) (pi − ci) + (1 − θi(pi))
∑

j∈N ρij r̃j} for all i ∈ N , where

r̃ = {r̃i : i ∈ N} satisfies r̃i = fi(r̃) for all i ∈ N . Dropping the constant terms, p̃i is also given by

an optimal solution to maxpi∈Pi{θi(pi) (pi − ci −
∑

j∈N ρij r̃j)}. By Lemma 19 in Appendix M, the

unique optimal solution to the problem maxpi∈Pi{θi(pi) (pi−ci−x)} is increasing in x. So, if we can

show that r̂ki ≤ r̃i for all i ∈ N , k ∈M , then we obtain p̂i ≤ p̃i, which is the desired result. To show

that r̂ki ≤ r̃i for all i ∈ N , k ∈ M , we observe that since r̂ki = hki (r̂
1, . . . , r̂m) for all i ∈ N , k ∈ M
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and p̂i is an optimal solution to the problem maxpi∈Pi{θi(pi) (pi − ci) + (1 − θi(pi))
∑

j∈N ρij r̂
k
j }

for all i ∈ Nk, k ∈M , by (7), we have r̂ki = maxpi∈Pi{θi(pi) (pi − ci) + (1− θi(pi))
∑

j∈N ρij r̂
k
j } =

θi(p̂i) (p̂i − ci) + (1 − θi(p̂i))
∑

j∈N ρij r̂
k
j for all i ∈ Nk, k ∈ M and r̂ki = (1 − θi(p̂i))

∑
j∈N ρij r̂

k
j

for all i 6∈ Nk, k ∈ M . Using 1(·) to denote the indicator function, for fixed i ∈ N , if we add the

last two equalities over all k ∈M , then we get∑
k∈M

r̂ki =
∑
k∈M

{
1(i ∈ Nk) r̂ki + 1(i 6∈ Nk) r̂ki

}
=
∑
k∈M

{
1(i ∈ Nk)

{
θi(p̂i) (p̂i − ci) + (1− θi(p̂i))

∑
j∈N

ρij r̂
k
j

}
+ 1(i 6∈ Nk)

{
(1− θi(p̂i))

∑
j∈N

ρij r̂
k
j

}}

=
∑
k∈M

{
1(i ∈ Nk) θi(p̂i) (p̂i − ci)

}
+ (1− θi(p̂i))

∑
j∈N

ρij

{∑
k∈M

{
1(i ∈ Nk) r̂kj + 1(i 6∈ Nk) r̂kj

}}

= θi(p̂i) (p̂i − ci) + (1− θi(p̂i))
∑
j∈N

ρij

{∑
k∈M

r̂kj

}
,

where the last equality uses the fact that there is only one firm that owns each product i so that∑
k∈M 1(i ∈ Nk) θi(p̂i) (p̂i − ci) = θi(p̂i) (p̂i − ci). Letting q̂i =

∑
k∈M r̂ki for notational brevity, the

chain of equalities above implies that q̂i = θi(p̂i) (p̂i − ci) + (1 − θi(p̂i))
∑

j∈N ρij q̂j for all i ∈ N .

Also, since r̃i = fi(r̃), by (3), we have r̃i = maxpi∈Pi{θi(pi) (pi − ci) + (1− θi(pi))
∑

j∈N ρij r̃j} ≥
θi(p̂i) (p̂i − ci) + (1− θi(p̂i))

∑
j∈N ρij r̃j . Subtracting the last equality from the last inequality, we

obtain r̃i − q̂i ≥ (1− θi(p̂i))
∑

j∈N ρij (r̃j − q̂j) for all i ∈ N .

We claim that r̃i− q̂i ≥ 0 for all i ∈ N . To get a contradiction, we let ∆ = mini∈N{r̃i − q̂i} and

assume that ∆ < 0. Since r̃i − q̂i ≥ ∆ for all i ∈ N , we have
∑

j∈N ρij (r̃j − q̂j) ≥
∑

j∈N ρij ∆ >

∆, where the last inequality uses the fact that
∑

j∈N ρij < 1 and ∆ < 0. Thus, we have∑
j∈N ρij (r̃j − q̂j) > ∆ for all i ∈ N . If

∑
j∈N ρij (r̃j− q̂j) < 0, then having

∑
j∈N ρij (r̃j− q̂j) > ∆

implies that (1−θi(p̂i))
∑

j∈N ρij (r̃j− q̂j) > ∆. If, on the other hand,
∑

j∈N ρij (r̃j− q̂j) ≥ 0, then

since ∆ < 0, it immediately follows that (1 − θi(p̂i))
∑

j∈N ρij (r̃j − q̂j) ≥ 0 > ∆. Therefore, we

obtain (1−θi(p̂i))
∑

j∈N ρij (r̃j−q̂j) > ∆ for all i ∈ N , irrespective of whether
∑

j∈N ρij (r̃j−q̂j) < 0

or
∑

j∈N ρij (r̃j − q̂j) ≥ 0. In this case, noting the inequality at the end of the previous paragraph,

we obtain r̃i − q̂i ≥ (1 − θi(p̂i))
∑

j∈N ρij (r̃j − q̂j) > ∆ for all i ∈ N , which contradicts the fact

that ∆ = mini∈N{r̃i − q̂i} and establishes the claim that r̃i − q̂i ≥ 0 for all i ∈ N . Therefore,

we have r̃i − q̂i = r̃i −
∑

k∈M r̂ki ≥ 0 for all i ∈ N . By a simple lemma, given as Lemma 20 in

Appendix M, if (r̂1, . . . , r̂m) satisfies r̂ki = hki (r̂
1, . . . , r̂m) for all i ∈ N , k ∈ M , then we must

have r̂ki ≥ 0 for all i ∈ N , k ∈ M . Therefore, since r̂ki ≥ 0 for all i ∈ N , k ∈ M , we obtain

r̃i − r̂ki ≥ r̃i −
∑

l∈M r̂li ≥ 0 for all i ∈ N , k ∈M , as desired.

A.7 Proof of Theorem 8

Since p̂ = {p̂i : i ∈ Nk, k ∈ M} is a Nash equilibrium, by Theorem 6, p̂i is an optimal solution

to the problem maxpi∈Pi{θi(pi) (pi − ci) + (1 − θi(pi))
∑

j∈N ρij r̂
k
j }, where (r̂1, . . . , r̂m) satisfies
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r̂ki = hki (r̂
1, . . . , r̂m) for all i ∈ N , k ∈M . In this case, by the definition of hki (·, . . . , ·) in (7), we have

r̂ki = maxpi∈Pi{θi(pi) (pi−ci)+(1− θi(pi))
∑

j∈N ρij r̂
k
j } = θi(p̂i) (p̂i−ci)+(1− θi(p̂i))

∑
j∈N ρij r̂

k
j

for all i ∈ Nk and r̂ki = (1 − θi(p̂i))
∑

j∈N ρij r̂
k
j for all i 6∈ Nk. Multiplying the last two

equalities by vi(p̂
k, p̂−k), adding the first equality over all i ∈ Nk and adding the second

equality over all i 6∈ Nk, we obtain
∑

i∈N vi(p̂
k, p̂−k) r̂ki =

∑
i∈Nk vi(p̂

k, p̂−k) θi(p̂i) (p̂i − ci) +∑
j∈N

∑
i∈N ρij (1− θi(p̂i)) vi(p̂k, p̂−k) r̂kj . By the discussion right before problem (5), we observe

that {vi(p̂k, p̂−k) : i ∈ N} satisfies vi(p̂
k, p̂−k) = λi+

∑
j∈N ρji (1− θj(p̂j)) vj(p̂k, p̂−k) for all i ∈ N ,

which implies that
∑

i∈N ρij (1− θi(p̂i)) vi(p̂k, p̂−k) = vj(p̂
k, p̂−k) − λj . Thus, the last equality is

equivalent to
∑

i∈N vi(p̂
k, p̂−k) r̂ki =

∑
i∈Nk vi(p̂

k, p̂−k) θi(p̂i) (p̂i− ci) +
∑

j∈N (vj(p̂
k, p̂−k)− λj) r̂kj .

Canceling the terms on both sides yields∑
i∈Nk

vi(p̂
k, p̂−k) θi(p̂i) (p̂i − ci) =

∑
i∈N

λi r̂
k
i . (12)

Similarly, by the discussion right before the theorem, p̄i is an optimal solution to the problem

maxpi∈Pi{θi(pi) (pi − ci) + (1 − θi(pi))
∑

j∈N ρij r̄
k
j }, where (r̄1, . . . , r̄m) is the limit of the

sequence {(r̄1(t), . . . , r̄m(t)) : t ∈ N} and this limit satisfies r̄ki = hki (r̄
1, . . . , r̄m) for all i ∈ N ,

k ∈M . In this case, we can follow the same argument in the previous paragraph to show that∑
i∈Nk vi(p̄

k, p̄−k) θi(p̄i) (p̄i − ci) =
∑

i∈N λi r̄
k
i . Therefore, if we can show that r̂ki ≤ r̄ki for all

i ∈ N , then using (12), we get
∑

i∈Nk vi(p̂
k, p̂−k) θi(p̂i) (p̂i − ci) =

∑
i∈N λi r̂

k
i ≤

∑
i∈N λi r̄

k
i =∑

i∈Nk vi(p̄
k, p̄−k) θi(p̄i) (p̄i − ci), which is the desired result.

To conclude the proof, we show that r̂ki ≤ r̄ki for all i ∈ N , k ∈M . In Lemma 20 in Appendix M,

we show that if (r̂1, . . . , r̂m) satisfies r̂ki = hki (r̂
1, . . . , r̂m) for all i ∈ N , k ∈M , then we must have

r̂ki ≤ ū for all i ∈ N , k ∈M , where ū is as defined right after Theorem 6. So, we have r̂ki ≤ ū = r̄ki (0),

where the equality holds since we initialize the sequence {(r̄1(t), . . . , r̄m(t)) : t ∈ N} as r̄ki (0) = ū.

Also, if we assume that r̂ki ≤ r̄ki (t) for all i ∈ N , k ∈ M , then we obtain r̂ki = hki (r̂
1, . . . , r̂m) ≤

hki (r̄
1(t), . . . , r̄m(t)) = r̄ki (t + 1) for all i ∈ N , k ∈ M , where the first equality uses the fact

that (r̂1, . . . , r̂m) satisfies r̂ki = hki (r̂
1, . . . , r̂m) for all i ∈ N , k ∈ M and the inequality is by the

monotonicity of hki (·, . . . , ·) in Lemma 15 in Appendix D and the assumption that r̂ki ≤ r̄ki (t) for

all i ∈ N , k ∈ M . So, by induction, we get r̂ki ≤ r̄ki (t) for all i ∈ N , k ∈ M , t ∈ N. So, the limit

(r̄1, . . . , r̄
m) of the sequence {(r̄1(t), . . . , r̄m(t)) : t ∈ N} also satisfies r̂ki ≤ r̄ki for all i ∈ N , k ∈M .

A.8 Proof of Theorem 9

Consider two systems. In both systems, the set of products is N . In the first system, the set of

firms is M = {1, . . . ,m}. The sets of products owned by these firms are N1, . . . , Nm. In the second

system, the set of firms is M̃ = {1, . . . ,m + 1}. The sets of products owned by these firms are

Ñ
1
, . . . , Ñ

m+1
, where we have Ñ

1
= N1, . . . , Ñ

m−1
= Nm−1 and Ñ

m ∪ Ñm+1
= Nm. We observe

that we have N1∪ . . .∪Nm = N = Ñ
1∪ . . .∪ Ñm+1

. For the first system, we consider the sequence

{(r̂1(t), . . . , r̂m(t)) : t ∈ N}, where we initialize (r̂1(0), . . . , r̂m(0)) ∈ <n×m as r̂ki (0) = ū and use

the relationship r̂ki (t+ 1) = hki (r̂
1(t), . . . , r̂m(t)) for all i ∈ N , k ∈M . Letting (r̂1, . . . , r̂m) be the
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limit of the sequence {(r̂1(t), . . . , r̂m(t)) : t ∈ N}, by the discussion right before Theorem 8, for

i ∈ Nk, k ∈ M , the price p̂i in the Pareto dominant equilibrium p̂ is given by an optimal solution

to the problem maxpi∈Pi{θi(pi) (pi − ci) + (1− θi(pi))
∑

j∈N ρij r̂
k
j }. Dropping the constant terms,

p̂i is also given by an optimal solution to maxpi∈Pi{θi(pi) (pi − ci −
∑

j∈N r̂
k
j )}. Note that since

limpi→Ui θi(pi) = 0 and limpi→Ui θi(pi) pi = 0, if rki ≥ 0 for all i ∈ N , k ∈ M , then by (7),

hki (r
1, . . . , rm) ≥ 0. Therefore, r̂ki (t) ≥ 0 for all i ∈ N , k ∈M , t ∈ N.

For the second system, we consider the sequence {(r̃1(t), . . . , r̃m+1(t)) : t ∈ N}, where we

initialize (r̃1(0), . . . , r̃m+1(0)) ∈ <n×(m+1) as r̃ki (0) = ū and use the relationship r̃ki (t + 1) =

hki (r̃
1(t), . . . , r̃m+1(t)) for all i ∈ N , k ∈ M̃ . Letting (r̃1, . . . , r̃m+1) be the limit of the sequence

{(r̃1(t), . . . , r̃m+1(t)) : t ∈ N}, for i ∈ Ñk
, k ∈ M̃ , the price p̃i in the Pareto dominant equilibrium

p̃ is given by an optimal solution to maxpi∈Pi{θi(pi) (pi−ci−
∑

i∈N ρij r̃
k
j )}. As above, we also have

r̃ki (t) ≥ 0 for all i ∈ N , k ∈ M̃ . By Lemma 19 in Appendix M, the optimal solution to the problem

maxpi∈Pi{θi(pi) (pi−ci−x)} is increasing in x. Therefore, if we can show that r̂ki ≥ r̃ki for all i ∈ N ,

k ∈ {1, . . . ,m − 1} and r̂mi ≥ max{r̃mi , r̃
m+1
i } for all i ∈ N , then comparing the problems that we

solve to obtain p̂i and p̃i, it follows that p̂i ≥ p̃i for all i ∈ N , which is the desired result. In the rest

of the proof, we use induction to show that r̂ki (t) ≥ r̃ki (t) for all i ∈ N , k ∈ {1, . . . ,m − 1}, t ∈ N
and r̂mi (t) ≥ max{r̃mi (t), r̃m+1

i (t)} for all i ∈ N , t ∈ N, in which case, the limits of the sequences

{(r̂1(t), . . . , r̂m(t)) : t ∈ N} and {(r̃1(t), . . . , r̃m+1(t)) : t ∈ N} satisfy the inequalities r̂ki ≥ r̃ki for

all i ∈ N , k ∈ {1, . . . ,m− 1} and r̂mi ≥ max{r̃mi , r̃
m+1
i } for all i ∈ N as well.

We have θi(pi) (pi − ci − x) ≥ 0 in the optimal solution to maxpi∈Pi{θi(pi) (pi − ci − x)},
since noting that limpi→Ui θi(pi) = 0 and limpi→Ui θi(pi) pi = 0, we can always make the

objective value arbitrarily close to zero. Moving on to the induction argument, since r̂ki (0) = ū

and r̃ki (0) = ū, we have r̂ki (0) ≥ r̃ki (0) for all i ∈ N , k ∈ {1, . . . ,m − 1} and r̂mi (0) ≥
max{r̃mi (0), r̃m+1

i (0)} for all i ∈ N . Assuming that r̂ki (t) ≥ r̃ki (t) for all i ∈ N , k ∈ {1, . . . ,m− 1}
and r̂mi (t) ≥ max{r̃mi (t), r̃m+1

i (t)} for all i ∈ N , we proceed to showing that r̂ki (t + 1) ≥
r̃ki (t + 1) for all i ∈ N , k ∈ {1, . . . ,m − 1} and r̂mi (t + 1) ≥ max{r̃mi (t + 1), r̃m+1

i (t)} for

all i ∈ N . For all i ∈ Nk, k ∈ M , we let p̂i(t) be an optimal solution to the problem

maxpi∈Pi{θi(pi) (pi − ci) + (1− θi(pi))
∑

j∈N ρij r̂
k
j (t)}. For all i ∈ Ñ

k
, k ∈ M̃ , we use p̃i(t) be

an optimal solution to the problem maxpi∈Pi{θi(pi) (pi − ci) + (1− θi(pi))
∑

j∈N ρij r̃
k
j (t)}. Since

r̂ki (t) ≥ r̃ki (t) for all i ∈ N , k ∈ {1, . . . ,m − 1} and r̂mi (t) ≥ max{r̃mi (t), r̃m+1
i (t)} for all i ∈ N , by

the same reasoning at the end of the previous paragraph, it holds that p̂i(t) ≥ p̃i(t) for all i ∈ Nk,

k ∈M . We consider the four cases given below.

First, consider the case i 6∈ Nk, k ∈ {1, . . . ,m − 1}. By (7), we have the chain of inequalities

r̂ki (t+ 1) = hki (r̂
1(t), . . . , r̂m(t)) = (1 − θi(p̂i(t))

∑
j∈N ρij r̂

k
j (t) ≥ (1 − θi(p̃i(t))

∑
j∈N ρij r̃

k
j (t) =

hki (r̃
1(t), . . . , r̃m(t)) = r̃ki (t + 1), where the inequality follows from the fact that p̂i(t) ≥ p̃i(t)

and θi(·) is decreasing and noting the induction assumption. Second, consider the case i ∈ Nk,

k ∈ {1, . . . ,m − 1}. By (7), r̂ki (t + 1) = maxpi∈Pi{θi(pi) (pi − ci) + (1 − θi(pi))
∑

j∈N ρij r̂
k
j (t)} ≥

maxpi∈Pi{θi(pi) (pi − ci) + (1− θi(pi))
∑

j∈N ρij r̃
k
j (t)} = r̃ki (t + 1), where the inequality is by the
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induction assumption. Third, consider the case i 6∈ Nm. Since Nm = Ñ
m ∪ Ñm+1

, having i 6∈ Nm

implies that i 6∈ Ñm
and i 6∈ Ñm+1

. So, by (7), we obtain

r̂mi (t+ 1) = (1− θi(p̂i(t))
∑
j∈N

ρij r̂
m
j (t) ≥ (1− θi(p̃i(t))

∑
j∈N

ρij max{r̃mj (t), r̃m+1
j (t))}

≥ max

{
(1− θi(p̃i(t))

∑
j∈N

ρij r̃
m
j (t), (1− θi(p̃i(t))

∑
j∈N

ρij r̃
m+1
j (t)

}
= max{r̃mi (t+ 1), r̃m+1

i (t+ 1)},

where the first inequality is by the induction assumption and the fact that p̂i(t) ≥ p̃i(t). Fourth,

consider the case i ∈ Nm. For the moment, assume that i ∈ Ñ
m

and i 6∈ Ñ
m+1

. So, by (7),

since i ∈ Ñ
m

, we have r̃mi (t+ 1) = maxpi∈Pi{θi(pi) (pi − ci) + (1 − θi(pi))
∑

j∈N ρij r̃
m
j (t)} and

p̃i(t) is an optimal solution to the last problem. By the discussion at the beginning of the previous

paragraph, we have θi(p̃i(t)) (p̃i(t) − ci) ≥ θi(p̃i(t)) (p̃i(t) − ci −
∑

j∈N ρij r̃
m
j (t)) ≥ 0 Also, by (7),

since i 6∈ Ñm+1
, we have r̃m+1

i (t+ 1) = (1− θi(p̃i(t)))
∑

j∈N ρij r̃
m+1
j (t). Thus, we get

max{r̃mi (t+ 1), r̃m+1
i (t+ 1)}

= max

{
θi(p̃i(t)) (p̃i(t)− ci) + (1− θi(p̃i(t)))

∑
j∈N

ρij r̃
m
j (t), (1− θi(p̃i(t)))

∑
j∈N

ρij r̃
m+1
j (t)

}
≤ θi(p̃i(t)) (p̃i(t)− ci) + (1− θi(p̃i(t)))

∑
j∈N

ρij max{r̃mj (t), r̃m+1
j (t)}

≤ max
pi∈Pi

{
θi(pi) (pi − ci) + (1− θi(pi))

∑
j∈N

ρij r̂
m
j (t)

}
= r̂mi (t+ 1),

where the first inequality is by the fact that θi(p̃i(t)) (p̃i(t) − ci) ≥ 0, the second inequality is by

the induction assumption and the last equality is by the fact that i ∈ Nm so that we can compute

r̂mi (t+ 1) by using the first case in (7). If i 6∈ Ñm
and i ∈ Ñm+1

, we can repeat the same argument

to show that max{r̃mi (t+ 1), r̃m+1
i (t+ 1)} ≤ r̂mi (t+ 1). The four cases above collectively show that

r̂ki (t+ 1) ≥ r̃ki (t+ 1) for all i ∈ N , k ∈ {1, . . . ,m− 1} and r̂mi (t+ 1) ≥ max{r̃mi (t+ 1), r̃m+1
i (t+ 1)}

for all i ∈ N , which completes the induction argument.

A.9 Proof of Lemma 10

Fixing some firm ` ∈M , we let product q ∈ N ` be the only product that firm ` owns. Throughout

the proof, we use the notation hki (·, . . . , · | c) to make the dependence of the operator hki (·, . . . , ·)
in (7) on unit costs explicit. We generate the sequence {(r̂1(t), . . . , r̂m(t)) : t ∈ N} by

using the relationship r̂ki (t + 1) = hki (r̂
1(t), . . . , r̂m(t) | c) for all i ∈ N , k ∈ M and starting

with the initial condition that r̂ki (0) = ū for all i ∈ N , k ∈ M . By the discussion right

before Theorem 8, the sequence {(r̂1(t), . . . , r̂m(t)) : t ∈ N} has a limit. Furthermore, using

(r̂1, . . . , r̂m) to denote this limit, given that the unit costs are c, for all i ∈ Nk, k ∈ M ,

the price p̂i in the Pareto dominant equilibrium p̂ is given by an optimal solution to the

problem maxpi∈Pi{θi(pi) (pi − ci) + (1− θi(pi))
∑

j∈N ρij r̂
k
j }. Thus, dropping the constant terms,
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p̂i is also given by an optimal solution to the problem maxpi∈Pi{θi(pi) (pi − ci −
∑

j∈N ρij r̂
k
j )}.

Similarly, we generate the sequence {(r̃1(t), . . . , r̃m(t)) : t ∈ N} by using the relationship r̃ki (t+1) =

hki (r̃
1(t), . . . , r̃m(t) | c + ε eq) for all i ∈ N , k ∈ M and starting with the initial condition that

r̃ki (0) = ū for all i ∈ N , k ∈ M . The sequence {(r̃1(t), . . . , r̃m(t)) : t ∈ N} has a limit. Using

(r̃1, . . . , r̃m) to denote this limit, given that the unit costs are c + ε eq, for all i ∈ Nk, k ∈ M ,

the price p̃i in the Pareto dominant equilibrium p̃ is given by an optimal solution to the problem

maxpi∈Pi{θi(pi) (pi − ci − 1(i = q) ε) + (1− θi(pi))
∑

j∈N ρij r̃
k
j }. Since each firm owns one product,

considering the fixed firm ` and the product q that this firm owns, we have i = q in the last problem

if and only if k = `, in which case, we can replace the expression 1(i = q) with 1(k = `). Thus,

dropping the constant terms in the last problem, p̃i is also given by an optimal solution to the

problem maxpi∈Pi{θi(pi) (pi − ci − 1(k = `) ε−
∑

j∈N ρij r̃
k
j )}. By Lemma 19 in Appendix M, the

unique optimal solution to the problem maxpi∈Pi{θi(pi) (pi − ci − x)} is increasing in x. Therefore,

if we can show that r̂ki − 1(k = `) ε ≤ r̃ki for all i ∈ N , k ∈M , then we obtain∑
j∈N

ρij r̂
k
j ≤

∑
j∈N

ρij (r̃kj + 1(k = `) ε) ≤
∑
j∈N

ρij r̃
k
j + 1(k = `) ε.

In this case, comparing the problems that we solve to obtain p̂i and p̃i, it follows that p̃i ≥ p̂i for

all i ∈ N , which is the desired result. In the rest of the proof, we use induction to show that the

sequences {(r̂1(t), . . . , r̂m(t)) : t ∈ N} and {(r̃1(t), . . . , r̃m(t)) : t ∈ N} satisfy r̂ki (t) − 1(k = `) ε ≤
r̃ki (t) for all i ∈ N , k ∈ M , t ∈ N, in which case, the limits (r̂1, . . . , r̂m) and (r̃1, . . . , r̃m) of these

sequences satisfy r̂ki − 1(k = `) ε ≤ r̃ki for all i ∈ N , k ∈M as well.

Since r̂ki (0) = ū = r̃ki (0) for all i ∈ N , k ∈ M , we get r̂ki (0) − 1(k = `) ε ≤ r̃ki (0). Assuming

that r̂ki (t) − 1(k = `) ε ≤ r̃ki (t) for all i ∈ N , k ∈ M , we proceed to showing that r̂ki (t + 1) −
1(k = `) ε ≤ r̃ki (t+ 1) for all i ∈ N , k ∈M . We consider two cases. First, consider the case i ∈ Nk,

k ∈ M . Since r̂ki (t + 1) = hki (r̂
1(t), . . . , r̂m(t) | c) and r̃ki (t + 1) = hki (r̃

1(t), . . . , r̃m(t) | c + ε eq),

noting the first case in (7), for all i ∈ Nk, k ∈M , we obtain

r̂ki (t+ 1) = max
pi∈Pi

{
θi(pi) (pi − ci) + (1− θi(pi))

∑
j∈N

ρij r̂
k
j (t)

}

≤ max
pi∈Pi

{
θi(pi) (pi − ci) + (1− θi(pi))

∑
j∈N

ρij (r̃kj (t) + 1(k = `) ε)

}

≤ max
pi∈Pi

{
θi(pi) (pi − ci − 1(k = `) ε) + (1− θi(pi))

∑
j∈N

ρij r̃
k
j (t)

}
+ 1(k = `) ε

= r̃ki (t+ 1) + 1(k = `) ε,

where the first inequality is by the induction assumption, the second inequality is by the fact that∑
j∈N ρij < 1 so that (1−θi(pi))

∑
j∈N ρij 1(k = `) ε ≤ (1−θi(pi))1(k = `) ε and the second equality

is by the fact that r̃ki (t+1) = hki (r̃
1(t), . . . , r̃m(t) | c+ε eq). Therefore, we have r̂ki (t+1)−1(k = `) ε ≤

r̃ki (t+1) for all i ∈ Nk, k ∈M . Second, consider the case i 6∈ Nk, k ∈M . In the chain of inequalities

above, we let p̂i(t) be an optimal solution to the first maximization problem and p̃i(t) be an optimal
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solution to the third maximization problem. Using precisely the same reasoning at the end of

the previous paragraph, but replacing r̂ki and r̃ki with r̂ki (t) and r̃ki (t) and noting the induction

assumption that r̂ki (t) − 1(k = `) ≤ r̃ki (t), we obtain p̃i(t) ≥ p̂i(t). Therefore, since r̂ki (t+ 1) =

hki (r̂
1(t), . . . , r̂m(t) | c) and r̃ki (t+ 1) = hki (r̃

1(t), . . . , r̃m(t) | c+ ε eq), noting the second case in (7),

for all i 6∈ Nk, k ∈M , we obtain the chain of inequalities

r̂ki (t+ 1) = (1− θi(p̂i(t))
∑
j∈N

ρij r̂
k
j (t) ≤ (1− θi(p̂i(t))

∑
j∈N

ρij (r̃kj (t) + 1(k = `) ε)

≤ (1− θi(p̃i(t))
∑
j∈N

ρij r̃
k
j (t) + 1(k = `) ε = r̃ki (t+ 1) + 1(k = `) ε,

where the first inequality is by the induction assumption and the second inequality is by the fact

that p̃i(t) ≥ p̂i(t), in which case, we have 1 − θi(p̃i(t)) ≥ 1 − θi(p̂i(t)), along with the fact that

(1 − θi(p̂i(t)))
∑

j∈N ρij ≤ 1. Therefore, we have r̂ki (t + 1) − 1(k = `) ε ≤ r̃ki (t + 1) for all i 6∈ Nk,

k ∈M as well, competing the induction argument. Putting the two cases together, it follows that

r̂ki (t)− 1(k = `) ε ≤ r̃ki (t) for all i ∈ N , k ∈M , t ∈ N.

A.10 Proof of Theorem 11

Consider any (r̂1, . . . , r̂m) ∈ <n×m satisfying r̂ki = hki (r̂
1, . . . , r̂m) for all i ∈ N , k ∈M . We claim

that if r̄ki =
¯
rki for all i ∈ N , k ∈ M , then we have r̄ki = r̂ki =

¯
rki . In particular, Lemma 20 in

Appendix M shows that if (r̂1, . . . , r̂m) satisfies r̂ki = hki (r̂
1, . . . , r̂m) for all i ∈ N , k ∈ M , then

we must have ū ≥ r̂ki ≥ 0 for all i ∈ N , k ∈ M . Thus, since r̄ki (0) = ū and
¯
rki (0) = 0, we

have r̄ki (0) ≥ r̂ki ≥ ¯
rki (0) for all i ∈ N , k ∈ M . In Lemma 15 in Appendix D, we show that the

operator hki (·, . . . , ·) is monotone. Thus, applying this operator on all sides of the last inequality,

we get r̄ki (1) = hki (r̄
1(0), . . . , r̄m(0)) ≥ hki (r̂

1, . . . , r̂m) ≥ hki (¯r
1(0), . . . ,

¯
rm(0)) =

¯
rki (1). Noting that

r̂ki = hki (r̂
1, . . . , r̂m), the last inequality yields r̄ki (1) ≥ r̂ki ≥ ¯

rki (1) for all i ∈ N , k ∈ M . Repeating

the same argument, we get r̄ki (t) ≥ r̂ki ≥ ¯
rki (t) for all i ∈ N , k ∈ M , t ∈ N. Since the limits of the

sequences {(r̄1(t), . . . , r̄m(t)) : t ∈ N} and {(
¯
r1(t), . . . ,

¯
rm(t)) : t ∈ N} are respectively (r̄1, . . . , r̄m)

and (
¯
r1, . . . ,

¯
rm), we get r̄ki ≥ r̂ki ≥ ¯

rki for all i ∈ N , k ∈ M , establishing the claim. By the claim

that we just established, if r̄ki =
¯
rki for all i ∈ N , k ∈ M , then there exists a unique (r̂1, . . . , r̂m)

that satisfies r̂ki = hki (r̂
1, . . . , r̂m) for all i ∈ N , k ∈M and this unique (r̂1, . . . , r̂m) is given by the

common value of (r̄1, . . . , r̄m) and (
¯
r1, . . . ,

¯
rm).

By Theorem 6, if the prices p̂ = {p̂i : i ∈ Nk, k ∈M} are a Nash equilibrium, then p̂i must

be an optimal solution to the problem maxpi∈Pi{θi(pi) (pi − ci) + (1 − θi(pi))
∑

j∈N ρij r̂
k
j } for all

i ∈ Nk, k ∈M , where (r̂1, . . . , r̂m) satisfies r̂ki = hki (r̂
1, . . . , r̂m) for all i ∈ N , k ∈M . Dropping the

constant terms, an optimal solution to the last optimization problem is also given by an optimal

solution to the problem maxpi∈Pi{θi(pi) (pi − ci −
∑

j∈N ρij r̂
k
j )}. Since θi(pi) (pi − x) is strictly

quasiconcave in pi for any x ∈ <, there exists a unique solution to this problem. In this case, the

desired result follows from the fact that if r̄ki =
¯
rki for all i ∈ N , k ∈M , then there exists a unique

(r̂1, . . . , r̂m) that satisfies r̂ki = hki (r̂
1, . . . , r̂m) for all i ∈ N , k ∈M .
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A.11 Proof of Lemma 12

We can follow a standard argument in the revenue management literature to show that if the

value functions {Vt(·) : t ∈ T} are computed through the dynamic program in (9), then we have

∆Vt(x) ≥ ∆Vt(x+ 1) for all x = 1, . . . , q − 1, t ∈ T ; see the proof of Proposition 2-2.A.4 in Talluri

and van Ryzin (2005) for the proof technique. Noting (9), the prices p̂t(x + 1) are an optimal

solution to the problem maxp∈×i∈NPit{
∑

i∈N θit(pi) vit(p) (pi −∆Vt+1(x+ 1))}. Defining the cost

vector c = ∆Vt+1(x+ 1) e, using the notation in Lemma 4, the optimal solution to this problem is

denoted by p̂(c). Also, the prices p̂t(x) are an optimal solution to the problem

max
p∈×i∈NPit

{∑
i∈N

θit(pi) vit(p) (pi −∆Vt+1(x))

}

= max
p∈×i∈NPit

{∑
i∈N

θit(pi) vit(p) (pi − (∆Vt+1(x+ 1) + ∆Vt+1(x)−∆Vt+1(x+ 1))

}
.

Letting ε = ∆Vt+1(x)−∆Vt+1(x+1), we have ε ≥ 0 since ∆Vt+1(x) ≥ ∆Vt+1(x+1). Letting the unit

cost vector c = ∆Vt+1(x+ 1) e as above and using the notation in Lemma 4, the optimal solution

to the problem above is denoted by p̂(c + ε e). Thus, by Lemma 4, we have p̂i(c + ε e) ≥ p̂i(c),

which implies that p̂it(x) ≥ p̂it(x + 1). On the other hand, by using the approach in the proof of

Proposition 2-2.A.4 in Talluri and van Ryzin (2005), we can also show that ∆Vt(x) ≥ ∆Vt+1(x) for

all x = 1, . . . , q, t ∈ T , in which case, we can follow a reasoning similar to the one that we used

earlier in this proof to show that p̂it(x) ≥ p̂i,t+1(x).

A.12 Proof of Theorem 13

First, given an optimal solution to problem (11), we use the transformation in the theorem to

construct a feasible solution to problem (10) such that the objective values provided by the two

solutions match. Assume that (x̂, ŷ) is an optimal solution to problem (11). We define the

solution p̂ for problem (10) as p̂it = θ−1it (ŷit/x̂it) for all i ∈ N , t ∈ T . Since (x̂, ŷ) is a feasible

solution to problem (11), we have x̂it = λit +
∑

j∈N ρjit (1 − ŷjt/x̂jt) x̂jt for all i ∈ N . Noting

that p̂it = θ−1it (ŷit/x̂it), we have ŷit/x̂it = θit(p̂it), in which case, we write the last equality as

x̂it = λit +
∑

j∈N ρjit (1 − θit(p̂it)) x̂jt for all i ∈ N . Thus, {x̂it : i ∈ N} solves the system of

equations in (1) under the prices p̂t = {p̂it : i ∈ N}. As discussed in Section 1, this system of

equations has a unique solution. Thus, it must be the case that x̂it = vit(p̂t) for all i ∈ N , where

vit(p̂t) is the expected number of times a customer visits product i under the Markov chain choice

model with parameters {λit : i ∈ N}, {θit(·) : i ∈ N} and {ρijt : i, j ∈ N} when we charge the prices

p̂t. Also, since ŷit/x̂it = θit(p̂it), we have ŷit = θit(p̂it) vit(p̂t). In this case, the optimal objective

value of problem (11) is given by
∑

t∈T
∑

i∈N ŷit θ
−1
it (ŷit/x̂it) =

∑
t∈T
∑

i∈N θit(p̂it) vit(p̂t) p̂it.

Therefore, the solution p̂ provides the same objective value for problem (10) as does the solution

(x̂, ŷ) for problem (11). To see that the solution p̂ is feasible for problem (10), note that∑
t∈T
∑

i∈N θit(p̂it) vit(pt) =
∑

t∈T
∑

i∈N ŷit ≤ q, where the inequality follows from the fact that
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(x̂, ŷ) is a feasible solution to problem (11). Since (x̂, ŷ) is a feasible solution to problem (11), we

have θ−1it (ŷit/x̂it) ∈ Pit, which implies that p̂it ∈ Pit. Thus, p̂ is feasible to problem (10).

Second, given an optimal solution to problem (10), we use the transformation in the theorem

to construct a feasible solution to problem (11) such that the objective values provided by the two

solutions match. Assume that p̂ is an optimal solution to problem (10). We define the solution

(x̂, ŷ) to problem (11) as x̂it = vit(p̂t) and ŷit = θit(p̂it) vit(p̂t), where vit(p̂t) is as defined in the

previous paragraph. In this case, we have θit(p̂it) = ŷit/x̂it, which implies that θ−1it (ŷit/x̂it) = p̂it.

Thus, the optimal objective value of problem (10) is given by
∑

t∈T
∑

i∈N θit(p̂it) vit(p̂t) p̂it =∑
t∈T
∑

i∈N ŷit θ
−1
it (ŷit/x̂it). Therefore, the solution (x̂, ŷ) provides the same objective value for

problem (11) as does the solution p̂ for problem (10). To see that the solution (x̂, ŷ) is feasible

to problem (11), note that
∑

t∈T
∑

i∈N ŷit =
∑

t∈T
∑

i∈N θit(p̂it) vit(p̂t) ≤ q, where the inequality

follows from the fact that p̂ is a feasible solution to problem (10). Similarly, since p̂ is a feasible

solution to problem (10), we have p̂it ∈ Pit, which implies that θ−1it (ŷit/x̂it) ∈ Pit. Lastly, the

expected number of visits to product i under the prices p̂t satisfies the system of equations in (1),

so that vit(p̂t) = λit+
∑

j∈N ρjit (1− θjt(p̂jt)) vjt(p̂t). By the definitions of x̂it and ŷit, this equality

is equivalent to x̂it = λit +
∑

j∈N ρjit (x̂jt − ŷjt). Thus, (x̂, ŷ) is feasible to problem (11), in which

case, the desired result follows.

B Appendix: Contraction Property

In the next lemma, we show that the operator {fi(·) : i ∈ N} : <n → <n is a contraction. This

result is used in Section 2.

Lemma 14 For any r = {ri : i ∈ N} ∈ <n and q = {qi : i ∈ N} ∈ <n, we have |fi(r) − fi(q)| ≤
maxi∈N{

∑
j∈N ρij}‖r − q‖ for all i ∈ N .

Proof. By (3), we have fi(r) = maxpi∈Pi{θi(pi) (pi−ci)+(1−θi(pi))
∑

j∈N ρij rj}. Letting p̂i be an

optimal solution to this problem, we obtain fi(r) = θi(p̂i) (p̂i − ci) + (1− θi(p̂i))
∑

j∈N ρij rj . Also,

we have fi(q) = maxpi∈Pi{θi(pi) (pi − ci) + (1 − θi(pi))
∑

j∈N ρij qj}. As p̂i is a feasible,

but not necessarily an optimal, solution to this problem, we get fi(q) ≥ θi(p̂i) (p̂i − ci) +

(1− θi(p̂i))
∑

j∈N ρij qj . In this case, we obtain fi(r) − fi(q) ≤ (1 − θi(p̂i))
∑

j∈N ρij (rj − qj) ≤
(1 − θi(p̂i))

∑
j∈N ρij ‖r − q‖ ≤ maxi∈N{

∑
j∈N ρij} ‖r − q‖. Repeating the same argument after

interchanging the role of r and q, we obtain fi(q)−fi(r) ≤ maxi∈N{
∑

j∈N ρij} ‖r−q‖ as well. Thus,

we have |fi(r)− fi(q)| ≤ maxi∈N{
∑

j∈N ρij}‖r − q‖. �

C Appendix: An Alternative Model with Common Products

At the end of Section 3.1, we discuss the assumption that different firms own different partitions

of the products. Although different firms own different partitions of the products, two products i
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and j that are owned by two different firms may still, for example, correspond to the same soap

sold by two different supermarket chains. In our model, if the two supermarket chains charge

different prices for this soap, then both supermarket chains can garner demand for it. Naturally,

if one supermarket chain decreases the price that it charges for this soap, then the probability

that a customer purchases the soap from the other supermarket chain decreases. This approach is

consistent with the one in Gallego et al. (2006), Li and Huh (2011) and Gallego and Wang (2014). In

this section, we discuss an alternative model where if the same soap is sold by two supermarket

chains, then there is only one product corresponding to this soap in the Markov chain choice model.

If a customer visits this product and she decides to purchase, then she decides which supermarket

chain to purchase from, if any, based on the prices charged by the two supermarket chains.

We consider the case with two firms, but we can extend the model to the case with more

than two firms. We index the firms by M = {1,−1} and the products by N = {1, . . . , n}. For

notational uniformity, we follow the convention that all products are offered by both firms, but if

a customer visits a certain product during the course of her choice process, then the probability

that the customer decides to purchase this product from one of the firms may be zero irrespective

of the prices. In this case, the product in question is effectively offered only by the other firm. Let

p = {pki : i ∈ N, k ∈M} be the prices charged for the products, where pki is the price charged for

product i by firm k. Since all products are offered by both firms, we have a price for each product

and for each firm. In contrast, we have a single price for each product in Section 3.1.

The set of feasible prices that firm k can charge for product i is Pki = [Lki , U
k
i ]. With probability

λi, a customer arriving into the system visits product i. A customer visiting product i decides to

purchase this product from firm k with probability θki (pki , p
−k
i ). If product i is a product that is not

offered by firm k, then it must be the case that θki (pki , p
−k
i ) = 0 and θ−ki (p−ki , pki ) is independent

of pki . With probability 1 − θki (pki , p
−k
i ) − θ−ki (p−ki , pki ), a customer visiting product i decides not

to purchase this product, in which case, she transitions to product j with probability ρij . If a

customer visiting product i decides not to purchase this product, then she transitions to the no

purchase option with probability 1 −
∑

j∈N ρij . Therefore, the parameters of the Markov chain

choice model are {λi : i ∈ N}, {θki (·, ·) : i ∈ N, k ∈M} and {ρij : i, j ∈ N}.

We use pk = {pki : i ∈ N} to denote the prices charged by firm k. Given that firm k charges

the prices pk and the other firm charges the prices p̂−k, we use vi(p
k, p̂−k) to denote the expected

number of times that a customer visits product i during the course of her choice process. In this case,

{vi(pk, p̂−k) : i ∈ N} satisfies a slightly modified version of the system of equations in (1), where

we have vi(p
k, p̂−k) = λi+

∑
j∈N ρji (1−θkj (pkj , p̂

−k
j )−θ−kj (p̂−kj , pkj )) vj(p

k, p̂−k) for all i ∈ N . Thus,

if the prices charged by both firms are given by (pk, p̂−k), then a customer purchases product

i from firm k with probability θki (pki , p̂
−k
i ) vi(p

k, p̂−k). Thus, firm k computes its best response

to the prices p̂−k charged by firm −k by maximizing
∑

i∈N θ
k
i (pki , p̂

−k
i ) vi(p

k, p̂−k) (pki − ci) over

pk ∈ ×i∈NPki . In this expression, as before, ci is the unit cost of product i. We use r̂ki to denote

the optimal expected profit of firm k from a customer visiting product i, given that the other firm
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charges the prices p̂−k. By using a dynamic programming argument similar to the one in Section

3.1, if firm k charges the price pki for product i and the other firm charges the prices p̂−k for the

products, then the optimal expected profit that firm k obtains from a customer visiting product

i is given by θki (pki , p̂
−k
i ) (pki − ci) + (1 − θki (pki , p̂

−k
i ) − θ−ki (p̂−ki , pki ))

∑
j∈N ρij r̂

k
j . Therefore, firm

k can find the price of product i in the best response to the prices p̂−k charged by the other firm

by maximizing the last expression over pki ∈ Pki . To write this problem succinctly, we define the

operator gki (· | p̂−k) : <n → < as

gki (rk | p̂−k) = max
pki ∈Pki

{
θki (pki , p̂

−k
i ) (pki − ci) + (1− θki (pki , p̂

−k
i )− θ−ki (p̂−ki , pki ))

∑
j∈N

ρij r
k
j

}
. (13)

In this case, r̂k = {r̂ki : i ∈ N} needs to satisfy r̂ki = gki (r̂k | p̂−k) for all i ∈ N . We can show

that the operator {gki (· | p̂−k) : i ∈ N} : <n → <n is a contraction. Therefore, we can use precisely

the same approach right before Lemma 5 to compute the best response of firm k to the prices p̂−k

charged by firm −k. All we need to do is to find the value of r̂k = {r̂ki : i ∈ N} that satisfies

r̂ki = gki (r̂k | p̂−k) for all i ∈ N and solve the problem on the right side above after replacing rkj
with r̂kj . The approach discussed in this paragraph provides a tractable way to compute the best

response of firm k to the prices p̂−k charged by firm −k.

Although it is tractable to compute the best response of one firm to the prices charged by the

other, characterizing the structural properties of the Nash equilibrium under the model that we

develop in this section is difficult. The difficulty is that if there are products that are offered by

both firms, then it is not clear how to define an operator similar to the operator hki (·, . . . , ·) in (7)

to characterize a Nash equilibrium. In the operator in (7), different firms own different partitions

of the products. In this case, to compute hki (r
1, . . . , rm) for all i ∈ N , k ∈ M , we can solve the

maximization problem in the first case in (7) to compute p̂i for all i ∈ Nk, k ∈ M . In this way,

we obtain a price for each product. Furthermore, the optimal objective value of the maximization

problem in the first case yields hki (r
1, . . . , rm) for all i ∈ Nk, k ∈ M as well. Once we have the

price p̂i for all i ∈ Nk, k ∈ M , we can use these prices in the second case in (7) to compute

hki (r
1, . . . , rm) for all i 6∈ Nk, k ∈ M . In other words, when applying the operator in (7), since

different firms own different partitions of the products, we can compute the prices charged by each

firm for the products that it offers. In the model that we develop in this section, however, since

the probability that a customer visiting product i purchases this product depends on the prices

charged by both firms, it is not clear how to define an analogue of the operator hki (·, . . . , ·). One can

show the existence of a Nash equilibrium by appealing to general results that exploit the continuity

of the payoff function for each firm and the compactness of the action space, but it is difficult to

come up with structural properties for the Nash equilibrium similar to those in Section 3.3, which

compare the prices in a Nash equilibrium as the market gets more competitive and give comparative

statistics for the prices as a function of the unit costs.

Nevertheless, we can still use the operator in (13) to numerically try to reach a Nash equilibrium

by successively computing the best response of each firm to the other. One interesting observation
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is that depending on the problem parameters, the two firms may or may not be simultaneously

in the market for the common products in a Nash equilibrium. In other words, using p̂ =

{p̂ki : i ∈ N, k ∈M} to denote the prices charged by the two firms in a Nash equilibrium, in some

problem instances, we may have some product i such that θki (p̂ki , p̂
−k
i ) > 0 and θ−ki (p̂−ki , p̂ki ) > 0,

indicating that both firms garner demand for product i in a Nash equilibrium. In some other

problem instances, we may have some product i such that θki (p̂ki , p̂
−k
i ) > 0 and θ−ki (p̂−ki , p̂ki ) = 0,

indicating that firm k garners demand for product i in a Nash equilibrium, but not firm −k. To give

a specific example, consider a problem instance where we have two firms and three products. The

unit costs are zero. The parameters of the underlying Markov chain choice model are

λ1 = λ2 = λ3 =
1

3
,

θ11(p11, p
−1
1 ) = 1− p11, θ−11 (p−11 , p11) = 0,

θ12(p12, p
−1
2 ) =

1

2
− 1

4
p12, θ−12 (p−12 , p12) =

1

2
− 1

4
p−12 ,

θ13(p13, p
−1
3 ) = 0, θ−13 (p−13 , p13) = 1− 1

10
p−13 ,

ρ11 = 0.1, ρ12 = 0, ρ13 = 0.8,

ρ21 = 0, ρ22 = 0.4, ρ23 = 0.4,

ρ31 = 0.1, ρ32 = 0, ρ33 = 0.8.

The set of feasible prices for each product i and for each firm k are those that ensure that the

function θki (·, ·) takes nonnegative values. Note that firm −1 cannot garner demand for product 1,

whereas firm 1 cannot garner demand for product 3. Thus, these products are, in essence, offered

by one firm. In contrast, both firms can garner demand for product 2. For this problem instance,

considering the prices p̂1 = (0.533, 1.086, 0) charged by firm 1 and the prices p̂−1 = (0, 2, 7.176)

charged by firm−1, the prices p̂k are a best response to the prices p̂−k for all k ∈ {1,−1}. Therefore,

these prices form a Nash equilibrium. In this Nash equilibrium, we have θ12(p̂12, p̂
−1
2 ) = 0.229, but

θ−12 (p̂−12 , p̂12) = 0, indicating that firm 1 garners demand for product 2 in the Nash equilibrium,

whereas firm −1 shuts off the demand for product 2 by charging a high price.

To see the intuitive reason for firm −1 to shut off the demand for product 2, since we have

θ−13 (p−13 , p13) = 1 − 1
10p
−1
3 , note that firm −1 can increase the price of product 3 up to 10. In

other words, firm −1 has access to a product whose demand is somewhat price insensitive. By

shutting off the demand for product 2, firm −1 tries to minimize the probability that a customer

visiting product 2 purchases this product. In this case, if the customer visiting product 2 happens

to transition from product 2 to product 3, then firm −1 has a chance to obtain a relatively large

profit from this customer. Therefore, firm −1 does not have to rely on product 2 to maximize its

expected profit. In contrast, firm 1 does not have access to a product whose demand is as price

insensitive and it relies on product 2 to maximize its expected profit.

In Figure 2, we numerically verify the Nash equilibrium. Given that firm −k charges the prices

p̂−k, we use πk(pk | p̂−k) to denote the expected profit of firm k as a function of the prices pk that
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Figure 2: Expected profits of firms 1 and −1 as a function of their prices.

it charges. On the left side of Figure 2, we give a contour plot for π1((p11, p
1
2, 0) | (0, 2, 7.176)) as

a function of (p11, p
1
2). Since θ13(p13, p

−1
3 ) = 0, firm 1 cannot garner demand from product 3, so we

can fix the price p13 = 0. In the figure, if firm −1 charges its equilibrium prices, then the expected

profit of firm 1 is maximized at p11 = 0.533 and p12 = 1.086, which are the equilibrium prices of firm

1. On the right side of Figure 2, we give a contour plot for π−1((0, p−12 , p−13 ) | (0.533, 1.086, 0)) as a

function of (p−12 , p−13 ). Since θ−11 (p−11 , p11) = 0, we can fix the price p−11 = 0. In the figure, if firm

1 charges its equilibrium prices, then the expected profit of firm −1 is maximized at p−12 = 2 and

p−13 = 7.176, which are the equilibrium prices of firm −1.

We can also give a specific example where the two firms are simultaneously in the market for

the common products in a Nash equilibrium. We consider a problem instance with two firms and

three products. All unit costs are zero. The parameters of the Markov chain choice model are

symmetric for the two firms and they are given by

λ1 = λ2 = λ3 =
1

3
,

θ11(p11, p
−1
1 ) = 1− p11, θ−11 (p−11 , p11) = 0,

θ12(p12, p
−1
2 ) =

1

2
− 1

2
p12, θ−12 (p−12 , p12) =

1

2
− 1

2
p−12 ,

θ13(p13, p
−1
3 ) = 0, θ−13 (p−13 , p13) = 1− p−13 ,

ρ11 = 0.1, ρ12 = 0.4, ρ13 = 0,

ρ21 = 0, ρ22 = 0.4, ρ23 = 0,

ρ31 = 0, ρ32 = 0.4, ρ33 = 0.1.

For this problem instance, the prices p̂1 = (0.547, 0.532, 0) and p̂−1 = (0, 0.532, 0.547) are a Nash

equilibrium. In this Nash equilibrium, we have θ12(p̂12, p̂
−1
2 ) = θ−12 (p̂−12 , p̂12) = 0.234, indicating that

both firms garner demand from product 2 in the Nash equilibrium. Indeed, firm 1 garners demand

from products 1 and 2, whereas firm −1 garners demand from products 2 and 3.
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D Appendix: Monotonicity of the Equilibrium Operator

In the next lemma, we show that the operator hki (·, . . . , ·) in (7) is monotone. We use this result

at the end of Section 3.2 when showing the existence of a Nash equilibrium.

Lemma 15 If (r1, . . . , rm) ∈ <n×m+ and (q1, . . . , qm) ∈ <n×m+ satisfy rki ≤ qki for all i ∈ N , k ∈M ,

then we have hki (r
1, . . . , rm) ≤ hki (q1, . . . , qm) for all i ∈ N , k ∈M .

Proof. First, consider the case i ∈ Nk. We have maxpi∈Pi{θi(pi) (pi−ci)+(1−θi(pi))
∑

j∈N ρij r
k
j } ≤

maxpi∈Pi{θi(pi) (pi−ci)+(1−θi(pi))
∑

j∈N ρij q
k
j }, since rki ≤ qki for all i ∈ N , k ∈M . In this case,

by (7), we get hki (r
1, . . . , rm) ≤ hki (q

1, . . . , qm). Second, consider the case i 6∈ Nk. We use p̂i to

denote an optimal solution to the problem maxpi∈Pi{θi(pi) (pi−ci)+(1−θi(pi))
∑

j∈N ρij r
k
j }. If we

drop the constant terms, then an optimal solution to the last problem is also given by an optimal

solution to maxpi∈Pi{θi(pi) (pi − ci −
∑

j∈N ρij r
k
j )}. Similarly, we use ŝi to denote an optimal

solution to the problem maxpi∈Pi{θi(pi) (pi − ci) + (1 − θi(pi))
∑

j∈N ρij q
k
j }, which is also given

by an optimal solution to maxpi∈Pi{θi(pi) (pi − ci −
∑

j∈N ρij q
k
j )}. By Lemma 19 in Appendix

M, the unique optimal solution to the problem maxpi∈Pi{θi(pi) (pi − ci − x)} is increasing in x. In

this case, since rki ≤ qki for all i ∈ N , k ∈ M , noting the maximization problems that we solve to

compute p̂i and ŝi, it follows that p̂i ≤ ŝi for all i ∈ N . Since we consider the case i 6∈ Nk, by (7),

we get hki (r
1, . . . , rm) = (1− θi(p̂i))

∑
j∈N ρij r

k
j ≤ (1− θi(ŝi))

∑
j∈N ρij q

k
j = hki (q

1, . . . , qm), where

the inequality is by the fact that θi(·) is decreasing, p̂i ≤ ŝi and rkj ≤ qkj for all j ∈ N . �

E Appendix: Monotonicity of the Expected Profit Sequence

Letting ρmax = maxi∈N{
∑

j∈N ρij} and ∆ = maxi∈N{maxpi∈Pi{θi(pi) (pi − ci)}}, we define ū as

ū = ∆/(1 − ρmax). We generate the sequence {(r̄1(t), . . . , r̄m(t)) : t ∈ N} by using the recursion

r̄ki (t+ 1) = hki (r̄
1(t), . . . , r̄m(t)) for all i ∈ N , k ∈M with r̄ki (0) = ū. In the next lemma, we show

that the sequence {(r̄1(t), . . . , r̄m(t)) : t ∈ N} is decreasing and bounded from below.

Lemma 16 If the sequence {(r̄1(t), . . . , r̄m(t)) : t ∈ N} is generated by r̄ki (0) = ū and r̄ki (t+ 1) =

hki (r̄
1(t), . . . , r̄m(t)) for all i ∈ N , k ∈M , then r̄ki (t) ≥ r̄ki (t+ 1) ≥ 0 for all i ∈ N , k ∈M , t ∈ N.

Proof. First, we show that r̄ki (t) ≥ 0 for all i ∈ N , k ∈ M , t ∈ N. Since limpi→Ui θi(pi) = 0 and

limpi→Ui θi(pi) pi = 0, if rki ≥ 0 for all i ∈ N , k ∈ M , then the optimal objective value of the

maximization problem in the first case in (7) is nonnegative. If rki ≥ 0 for all i ∈ N , k ∈ M , then

the quantity in the second case in (7) is nonnegative as well. Therefore, if (r1, . . . , rm) satisfies

rki ≥ 0 for all i ∈ N , k ∈M , then it follows that hki (r
1, . . . , rm) ≥ 0 for all i ∈ N , k ∈M . Similarly,

since limpi→Ui θi(pi) = 0, we have maxpi∈Pi{θi(pi) (pi− ci)} ≥ 0, which implies that ∆ ≥ 0. Noting

that
∑

j∈N ρij < 1 for all i ∈ N , we get ū ≥ 0. Since r̄ki (0) = ū ≥ 0 for all i ∈ N , k ∈ M , by
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the discussion at the beginning of the proof, we have r̄ki (1) = hki (r̄
1(0), . . . , r̄m(0)) ≥ 0. Repeating

the argument recursively, we obtain r̄ki (t) ≥ 0 for all i ∈ N , k ∈ M , t ∈ N. Thus, the sequence

{(r̄1(t), . . . , r̄m(t)) : t ∈ N} is bounded from below by zero. Second, we use induction to show that

r̄ki (t) ≥ r̄ki (t+ 1) for all i ∈ N , k ∈M , t ∈ N. Considering the case i 6∈ Nk, by (7), we have r̄ki (1) =

hki (r̄
1(0), . . . , r̄m(0)) = (1 − θi(p̂i))

∑
j∈N ρij r̄

k
j (0) = (1 − θi(p̂i))

∑
j∈N ρij ū ≤ ū = r̄ki (0). On the

other hand, considering the case i ∈ Nk, we have

r̄ki (1) = hki (r̄
1(0), . . . , r̄m(0)) = max

pi∈Pi

{
θi(pi) (pi − ci) + (1− θi(pi))

∑
j∈N

ρij r̄
k
j (0)

}

≤ max
pi∈Pi

{
θi(pi) (pi − ci)

}
+
∑
j∈N

ρij ū ≤ ∆ + ρmax ū = ū = r̄ki (0),

where the second inequality uses the definition of ∆ and ρmax, whereas the second equality uses the

fact that ū = ∆/(1−ρmax). Therefore, we obtain r̄ki (1) ≤ r̄ki (0) in both cases. Next, assuming that

r̄ki (t+1) ≤ r̄ki (t) for all i ∈ N , k ∈M , we proceed to showing that r̄ki (t+2) ≤ r̄ki (t+1) for all i ∈ N ,

k ∈M . In particular, since r̄ki (t+1) ≤ r̄ki (t) for all i ∈ N , k ∈M , by Lemma 15 in Appendix D, we

immediately get r̄ki (t+ 2) = hki (r̄
1(t+ 1), . . . , r̄m(t+ 1)) ≤ hki (r̄

1(t), . . . , r̄m(t)) = r̄ki (t+ 1), which

completes the induction argument. �

F Appendix: Parameters of the Markov Chain Choice Model

We give the parameters of the Markov chain choice model in the numerical example at the end of

Section 3.3. For each product i, the function θi(·) is of the form θi(pi) = e−αi pi . So, the parameters

of the Markov chain choice model are {λi : i ∈ N}, {αi : i ∈ N} and {ρij : i, j ∈ N}. We give

the values for these parameters in Table 2. We generate the parameters in the table randomly

by using the following approach. To come up with {λi : i ∈ N}, we sample βi uniformly over

the interval [0.1, 1] and set λi = βi/
∑

j∈N βj . To come up with {αi : i ∈ N}, we sample αi

uniformly over the interval [0.1, 1]. To come up with {ρij : i, j ∈ N}, we sample γij from the

uniform distribution over [0, 1] and ζi from the uniform distribution over [0.85, 1], in which case,

we set ρij = γij ζi/
∑

k∈N γik. Since
∑

j∈N ρij = ζi, if a customer visiting product i decides not to

purchase this product, then she transitions to the no purchase option with probability 1− ζi. The

set of feasible prices for each product i is Pi = [0,∞). The unit costs {ci : i ∈ N} are zero.

G Appendix: Effect of the Unit Costs on the Equilibrium Prices

We give a counterexample to demonstrate that if each firm owns an arbitrary number of products,

then an increase in the unit cost of a product owned by a firm may result in an increase or

a decrease in the prices charged by its competitors in the Pareto dominant equilibrium. This

counterexample indicates that we cannot extend the result in Lemma 10 to the case where each

firm owns an arbitrary number of products. We consider a problem instance with two firms and

four products. Firm 1 owns products 1 and 2, whereas firm 2 owns products 3 and 4. The unit
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{λi : i ∈ N}
0.12 0.15 0.12 0.09 0.09 0.13 0.11 0.19

{αi : i ∈ N}
0.32 0.30 0.82 0.24 0.10 0.28 0.73 0.55

{ρij : i, j ∈ N}
0.15 0.08 0.04 0.07 0.21 0.00 0.21 0.20
0.21 0.09 0.07 0.06 0.11 0.02 0.17 0.14
0.10 0.03 0.19 0.22 0.00 0.14 0.20 0.03
0.20 0.22 0.07 0.23 0.07 0.00 0.06 0.06
0.27 0.06 0.11 0.06 0.12 0.06 0.24 0.01
0.16 0.02 0.16 0.24 0.05 0.09 0.11 0.08
0.10 0.20 0.12 0.18 0.10 0.09 0.08 0.06
0.19 0.04 0.03 0.11 0.11 0.11 0.16 0.14

Table 2: Parameters of the Markov chain choice model that we use in the numerical example in
Section 3.3.

costs of all products are zero. The parameters of the Markov chain choice model that governs the

customer choice process are given by

λ1 = λ2 = λ3 = λ4 =
1

4
θ1(p1) = e−0.1 p1 , θ2(p2) = e−0.2 p2 , θ3(p3) = e−0.2 p3 , θ4(p4) = e−0.3 p4 ,

ρ11 = 0.3, ρ12 = 0.3, ρ13 = 0, ρ14 = 0.1,

ρ21 = 0.3, ρ22 = 0.1, ρ23 = 0.4, ρ24 = 0,

ρ31 = 0, ρ32 = 0.5, ρ33 = 0.4, ρ34 = 0,

ρ41 = 0.4, ρ42 = 0.3, ρ43 = 0.1, ρ44 = 0.1.

For this problem instance, when the unit costs of all products are zero, the price of products 3

and 4 in the Pareto dominant equilibrium are respectively 6.869 and 4.428. When the unit cost of

product 1 is 36 and the unit costs of all other products are still zero, the prices of products 3 and

4 in the Pareto dominant equilibrium are respectively 6.794 and 4.485. Thus, if the unit cost of

product 1 increases, then the price of product 3 decreases, but the price of product 4 increases.

H Appendix: Limit of the Expected Profit Sequence

We generate the sequence {(
¯
r1(t), . . . ,

¯
rm(t)) : t ∈ N} by using the recursion

¯
rki (t+ 1) =

hki (¯
r1(t), . . . ,

¯
rm(t)) for all i ∈ N , k ∈ M with

¯
rki (0) = 0. In the next lemma, we show that

the sequence {(
¯
r1(t), . . . ,

¯
rm(t)) : t ∈ N} is increasing and bounded from above, which immediately

implies that this sequence has a limit. We use this result in the discussion at the beginning of

Section 3.4. In this lemma, ū = ∆/(1− ρmax) is as defined right after Theorem 6.

Lemma 17 If the sequence {(
¯
r1(t), . . . ,

¯
rm(t)) : t ∈ N} is generated by

¯
rki (0) = 0 and

¯
rki (t+ 1) =

hki (¯
r1(t), . . . ,

¯
rm(t)) for all i ∈ N , k ∈M , then

¯
rki (t) ≤

¯
rki (t+ 1) ≤ ū for all i ∈ N , k ∈M , t ∈ N.

Proof. First, we use induction to show that
¯
rki (t) ≤ ū for all i ∈ N , k ∈ N , t ∈ N. We have

¯
rki (0) = 0 ≤ ū for all i ∈ N , k ∈ M . Next, assuming that

¯
rki (t) ≤ ū for all i ∈ N , k ∈ M ,
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we show that
¯
rki (t + 1) ≤ ū. Considering the case i 6∈ Nk, by the second case in (7), we get

¯
rki (t+ 1) = hki (¯

rm(t), . . . ,
¯
rm(t)) = (1− θi(p̂i))

∑
j∈N ρij ¯

rkj (t) ≤ (1− θi(p̂i))
∑

j∈N ρij ū ≤ ū, where

the first inequality is by the induction assumption. Considering the case i ∈ Nk, by (7), we

have
¯
rki (t + 1) = hki (¯

r1(t), . . . ,
¯
rm(t)) = maxpi∈Pi{θi(pi) (pi − ci) + (1− θi(pi))

∑
j∈N ρij ¯

rkj (t)} ≤
maxpi∈Pi{θi(pi) (pi − ci)} +

∑
j∈N ρij ū ≤ ∆ + ρmax ū = ū, where the first inequality follows from

the induction assumption and the last equality is by the fact that ū = ∆/(1 − ρmax). We get

¯
rki (t + 1) ≤ ū in both cases, which completes the induction argument. Therefore, it follows that

¯
rki (t) ≤ ū for all i ∈ N , k ∈M , t ∈ N.

Second, we show that
¯
rki (t) ≤

¯
rki (t+ 1) for all i ∈ N , k ∈ M , t ∈ N. Since limpi→Ui θi(pi) = 0

and limpi→Ui θi(pi) pi = 0, if rki ≥ 0 for all i ∈ N , k ∈ M , then the optimal objective value

of the maximization problem in the first case in (7) is nonnegative. In this case, noting that

¯
rki (0) = 0 for all i ∈ N , k ∈ M , we obtain

¯
rki (1) = hki (¯

r1(0), . . . ,
¯
rm(0)) ≥ 0 =

¯
rki (0) for all

i ∈ N , k ∈ M . Next, if we assume that
¯
rki (t+ 1) ≥

¯
rki (t) for all i ∈ N , k ∈ M , then applying

the operator hki (·, . . . , ·) on both sides of the last inequality, by Lemma 15 in Appendix D, we get

¯
rki (t+2) = hki (¯

r1(t+ 1), . . . ,
¯
rm(t+ 1)) ≥ hki (¯r

1(t), . . . ,
¯
rm(t)) =

¯
rki (t+ 1). Therefore, by induction,

we can conclude that
¯
rki (t+ 1) ≥

¯
rki (t) for all i ∈ N , k ∈M , t ∈ N. �

I Appendix: Structural Properties of the Optimal Policy

We give a counterexample to show that Lemma 12 may not hold under arbitrary choice models,

even if these choice models are compatible with the random utility maximization principle.

Choice Model. We consider a choice model where each customer associates random willingness

to pay amounts with the products. The surplus of a product is the difference between the willingness

to pay amount that the customer associates with the product and the price of the product. The

customer chooses the product with the largest nonnegative surplus. If there are no products with

nonnegative surplus, then the customer leaves without a purchase. We index the products by N =

{1, . . . , n}. Let the random variable Wi be the willingness to pay amount that a customer associates

with product i. Thus, if we charge the prices p = {pi ∈ N} for the products, then a customer

purchases product i with probability Θi(p) = P{Wi − pi = maxj∈N{Wj − pj} and Wi − pi ≥ 0},
where we assume that there is a unique maximum element of the set {Wj − pj : j ∈ N}
with probability one. If {Wi : i ∈ N} have a continuous distribution, then this assumption is

satisfied. In our discussion, we focus on the case with two products. The joint density function for

the willingness to pay amounts (W1,W2) is given by

f(w1, w2) =


42
11 if w1 ∈ [0, 12 ] and w2 ∈ [12 , 1]
2
11 if w1 ∈ [12 , 1] and w2 ∈ [0, 12 ]

0 otherwise.

(14)

We proceed to deriving a formula for the probability Θi(p1, p2) that a customer purchases product i

as a function of the prices (p1, p2) that we charge for the products. Note that the willingness to pay
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amount for each product is between zero and one. Therefore, there is no reason to charge a price

that is outside the interval from zero to one, so we derive the purchase probabilities for the products

when the prices are between zero and one. In Figure 3, we show seven regions A,B,C,D,E, F

and G that partition the unit square [0, 1] × [0, 1]. Focusing on each region separately, given that

the prices (p1, p2) that we charge for the products are in each one of the regions, we derive the

probabilities that a customer purchases products 1 and 2. We begin by considering the case where

the prices (p1, p2) for the two products are in region A.

Consider the prices (p1, p2) that are in region A. On the left side of Figure 4, the horizontal and

vertical axes respectively correspond to the willingness to pay amounts for products 1 and 2. The

black dot shows a possible value for the prices (p1, p2) in region A. The thick dotted line is a 45

degree line starting at the point (p1, p2). Note that if the willingness to pay amounts (w1, w2) for

the two products fall into region A0, then we have w1− p1 < 0 and w2− p2 < 0, in which case, the

customer leaves without a purchase. If the willingness to pay amounts (w1, w2) for the two products

fall into region A1, then we have w1 − p1 > w2 − p2 and w1 − p1 > 0, in which case, the customer

purchases product 1. Lastly, if the willingness to pay amounts (w1, w2) for the two products fall

into region A2, then we have w2 − p2 > w1 − p1 and w2 − p2 > 0, in which case, the customer

purchases product 2. Therefore, if we charge the prices (p1, p2) in region A, then the probabilities

that a customer purchases products 1 and 2 are given by Θ1(p1, p2) = P{(W1,W2) ∈ A1} and

Θ2(p1, p2) = P{(W1,W2) ∈ A2}. Next, we explicitly compute these probabilities.

On the right side of Figure 4, we partition region A1 into subregions A11, A12, A13 and

A14. Noting the form of the joint density function in (14), this density function takes the value

42/11 over subregion A11, takes the value 2/11 over subregion A14 and takes the value zero over

subregions A12 and A13. Therefore, using Area(A11) and Area(A14) to respectively denote the areas

of subregions A11 and A14, the probability that the willingness to pay amounts (W1,W2) take

a value in region A1 is 42
11 Area(A11) + 2

11 Area(A14). By a simple geometric reasoning, we have

Area(A11) = 1
2 (p2 − 2 p1) (1 − p2) + (p2 − 1

2) (12 − p1) and Area(A14) = 1
4 . Therefore, we obtain

Θ1(p1, p2) = P{(W1,W2) ∈ A1} = 42
11×

1
2 (p2−2 p1) (1−p2)+ 42

11×(p2− 1
2) (12−p1)+ 2

11×
1
4 . Similarly,

the density function in (14) takes the value 42/11 over region A2. Using Area(A2) to denote the

area of region A2, the probability that the willingness to pay amounts (W1,W2) take a value in

region A2 is 42
11 Area(A2). It is simple to check that Area(A2) = 1

2 (1− p2) (1 + 2 p1 − p2). Thus, we

obtain Θ2(p1, p2) = P{(W1,W2) ∈ A2} = 42
11 ×

1
2 (1− p2) (1 + 2 p1 − p2).

By the discussion in the previous two paragraphs, we have the purchase probability of each

product as a function of the prices that we charge, when the prices of the products are in

region A. Using the same argument, when the prices of the products are in regions B, C, D,

E, F and G in Figure 3, we can derive the purchase probability of each product as a function of

the prices that we charge. In Table 3, we show the purchase probability of each product, given that

the prices of the products are in a certain region. For example, if the prices (p1, p2) that we charge

are in region E, then the purchase probability of product 2 is 2
11 ×

1
2 (p1 − p2)2 + 42

11 ×
1
4 . Thus,
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Figure 3: Seven regions partitioning the unit square [0, 1]× [0, 1].
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Figure 4: Computation of the purchase probabilities of the products given that the prices (p1, p2)
are in region A.
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Region for prices Θ1(p1, p2) Θ2(p1, p2)

A
42
11
× 1

2
(p2 − 2 p1) (1− p2)

+ 42
11
× (p2 − 1

2
) ( 1

2
− p1) + 2

11
× 1

4

42
11
× 1

2
(1− p2) (1− p2 + 2 p1)

B 42
11
× 1

2
(2 p2 − p1 − 1

2
) ( 1

2
− p1) + 2

11
× 1

4

42
11
× p1 (1− p2)

+ 42
11
× 1

2
( 1
2
− p1) ( 3

2
+ p1 − 2 p2)

C 42
11
× 1

2
(p2 − p1)2 + 2

11
× 1

4

42
11
× 1

2
(1− p2 + p1) (p2 − p1)

+ 42
11
× 1

2
( 1
2
− p2 + p1)

D 2
11
× 1

2
(1− p1) 42

11
× 1

2
(1− p2)

E
2
11
× 1

2
(1− p1 + p2) (p1 − p2)

+ 2
11
× 1

2
( 1
2
− p1 + p2)

2
11
× 1

2
(p1 − p2)2 + 42

11
× 1

4

F
2
11
× p2 (1− p1)

+ 2
11
× 1

2
( 1
2
− p2) ( 3

2
+ p2 − 2 p1)

2
11
× 1

2
(2 p1 − p2 − 1

2
) ( 1

2
− p2) + 42

11
× 1

4

G 2
11
× 1

2
(1− p1) (1− p1 + 2 p2)

2
11
× 1

2
(p1 − 2 p2) (1− p1)

+ 2
11
× (p1 − 1

2
) ( 1

2
− p2) + 42

11
× 1

4

Table 3: Purchase probabilities of the products when the prices (p1, p2) are in each one of the seven
regions.

Table 3 gives a complete characterization of the purchase probabilities Θ1(p1, p2) and Θ2(p1, p2) of

the two products as a function of the prices (p1, p2).

Under the choice model described so far, we let π(p1, p2 | c̄) be the expected profit from a

customer as a function of the prices (p1, p2) of the two products, given that both products have

the same unit cost c̄. So, we have π(p1, p2 | c̄) = (p1 − c̄) Θ1(p1, p2) + (p2 − c̄) Θ2(p1, p2). Using the

expressions for the choice probabilities in Table 3, we can check that if the unit costs of the products

are zero, then the optimal solution to the problem max(p1,p2)∈[0,1]2 π(p1, p2 | 0) is (p̂1, p̂2) = (0.5, 0.5)

yielding the optimal objective value of π(p̂1, p̂2 | 0) = 0.5. If the unit costs of the products are 0.1,

then the optimal solution to the problem max(p1,p2)∈[0,1]2 π(p1, p2 | 0.1) is (p̃1, p̃2) = (0.447, 0.567)

yielding the optimal objective value of π(p̃1, p̃2 | 0) = 0.406. Thus, under this choice model, if the

unit costs of all products increase by the same amount, then the optimal price of a product may

increase or decrease. Under the Markov chain choice model, by Lemma 4, if the unit costs of all

products increase by the same amount, then the optimal prices of all products increase.

Dynamic Pricing with a Single Resource. Using the observations in the previous

paragraph, we construct a counterexample to show that the structural properties of the optimal
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policy in Lemma 12 do not necessarily hold under arbitrary choice models. Our notation closely

follows the one in Section 4. We consider a problem instance where there are τ = 2 time periods in

the selling horizon and n = 2 products. At the beginning of the selling horizon, we have q = 2 units

of resource available. At each time period, a customer arrives into the system with probability

Λ = 0.2. As a function of the prices of the products, an arriving customer chooses among the

products according to the choice model described earlier in this section. If we charge the prices

(p1t, p2t) for the products at time period t, then a customer purchases product i with probability

Θi(p1t, p2t). The sale of a product consumes one unit of the resource. Note that the choice model

governing the choice process of the customers is stationary. Our goal is to find a policy that

maximizes the total expected revenue over the selling horizon. Using xt to denote the number of

units of remaining resource at the beginning of time period t, we can find the optimal policy by

computing the value functions {Vt(·) : t ∈ T} through the dynamic program

Vt(xt) = max
(p1t,p2t)∈[0,1]2

{ ∑
i∈{1,2}

Λ Θi(p1t, p2t)
{
pit + Vt+1(xt − 1)

}

+
{

1− Λ + Λ
(

1−
∑

i∈{1,2}

Θi(p1t, p2t)
)}

Vt+1(xt)

}

= max
(p1t,p2t)∈[0,1]2

{ ∑
i∈{1,2}

Λ Θi(p1t, p2t)
{
pit −∆Vt+1(xt)

}}
+ Vt+1(xt), (15)

with the boundary conditions that Vt(0) = 0 and for all t ∈ T and Vτ+1(·) = 0. In the first equality,

we use the fact that if there is no customer arrival at a time period or a customer arrives and

purchases nothing, then there is no change in the resource inventory.

Let p̂it(x) be the optimal price to charge for product i at time period t when we have x units

of remaining resource. We show that if the customers choose under the choice model described

earlier in this section, then p̂11(1) = 0.447 ≤ 0.5 = p̂11(2). Therefore, the optimal price to charge

for product 1 at time period 1 increases as we have more units of the resource. Under the Markov

chain choice model, by Lemma 12, the optimal prices to charge at a certain time period decrease

as we have more units of the resource. Also, we show that if the customers choose under the choice

model described earlier in this section, then p̂11(1) = 0.447 ≤ 0.5 = p̂12(1). Therefore, the optimal

price to charge for product 1 increases as we get closer to the end of the selling horizon with one unit

of resource. Under the Markov chain choice model, by Lemma 12, if the choice models governing

the choice behavior of the customers at different time periods are the same, then the optimal prices

to charge decrease as we get closer to the end of the selling horizon. Therefore, our counterexample

shows that Lemma 12 does not necessarily hold under arbitrary choice models.

We compute the optimal prices at time period 2 when there is one unit of resource. By the

boundary conditions of the dynamic program in (15), we have V3(·) = 0, in which case, if there is

one unit of resource at time period 2, then we can compute the optimal prices by solving the problem

max(p12,p22)∈[0,1]2
∑

i∈{1,2} Λ Θi(p12, p22) pi2. Ignoring the constant Λ, the last maximization problem

53



is the same as the profit maximization problem that we solved earlier in this section with the unit

costs of the products being zero. We know that the optimal solution to this problem is obtained by

setting p12 = 0.5 and p22 = 0.5. Thus, we have p̂12(1) = 0.5 and p̂22(1) = 0.5. Ignoring the constant

Λ, we know that the optimal objective value of the last maximization problem is 0.5. Since Λ = 0.2,

the optimal objective value of the last maximization problem is 0.2 × 0.5 = 0.1. This calculation

also shows that the value function at time period 2 satisfies V2(1) = 0.1. Using precisely the same

computation, we have V2(2) = 0.1. Lastly, by the boundary conditions of the dynamic program in

(15), we have V2(0) = 0. To summarize our computations for time period 2, we have p̂12(1) = 0.5,

V2(2) = V2(1) = 0.1 and V2(0) = 0.

Next, we compute the optimal prices at time period 1 when there is one unit of resource. By

(15), if we have one unit of remaining resource at time period 1, then we can compute the optimal

prices by solving the problem max(p11,p21)∈[0,1]2
∑

i∈{1,2} Λ Θi(p11, p21) (pi1 −∆V2(1)). Ignoring the

constant Λ, since ∆V2(1) = V2(1)− V2(0) = 0.1, the last maximization problem is the same as the

profit maximization problem that we solved earlier in this section with the unit costs of the products

being 0.1. We know that the optimal solution to this problem is obtained by setting p11 = 0.447

and p21 = 0.567. Thus, we have p̂11(1) = 0.447 and p̂21(1) = 0.567. Similarly, if we have two units of

remaining resource at time period 1, then we can compute the optimal prices by solving the problem

max(p11,p21)∈[0,1]2
∑

i∈{1,2} Λ Θi(p11, p21) (pi1 −∆V2(2)). Since ∆V2(2) = V2(2)− V2(1) = 0, the last

maximization problem is the same as the profit maximization problem that we solved earlier in this

section with the unit costs of the products being zero, so p̂11(2) = 0.5 and p̂21(2) = 0.5. Thus, we

have p̂11(1) = 0.447 ≤ 0.5 = p̂11(2) and p̂11(1) = 0.447 ≤ 0.5 = p̂12(1).

J Appendix: Concavity of the Objective Function

Consider a differentiable and strictly decreasing function θ(·) such that 1/θ(x) is convex in x. In

the next lemma, we show that y θ−1(y/x) is concave in (x, y).

Lemma 18 For an interval P ⊂ <, consider a differentiable and strictly decreasing function θ(·) :

P → [0, 1] such that 1/θ(α) is convex in α for α ∈ P. Then, defining f(·) : [0, 1] → P as

f(x) = θ−1(x), the function F (x, y) = y f(y/x) is concave in (x, y) for y ∈ <+ and y/x ∈ [0, 1].

Proof. We use ∂2XXF (x, y) to denote the second derivative of F (·, ·) with respect to the first

argument evaluated at (x, y). We use ∂2XY F (x, y) and ∂2Y Y F (x, y) with similar interpretations. By

direct differentiation, it is simple to verify that

∂2XXF (x, y) =
y2

x3

{
2 f ′(y/x) +

y

x
f ′′(y/x)

}
, ∂2XY F (x, y) = − y

x2

{
2 f ′(y/x) +

y

x
f ′′(y/x)

}
,

∂2Y Y F (x, y) =
1

x

{
2 f ′(y/x) +

y

x
f ′′(y/x)

}
,

which implies that ∂2XXF (x, y) ∂2Y Y F (x, y)− (∂2XY F (x, y))2 = 0. Therefore, to show that F (x, y) =

y f(y/x) is concave in (x, y), it is enough to show that ∂2XXF (x, y) ≤ 0 and ∂2Y Y F (x, y) ≤ 0. To
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show the last two inequalities, by the expressions for the partial derivatives above, it is enough to

show that 2 f ′(y/x) + y
x f
′′(y/x) ≤ 0 for all y/x ∈ [0, 1]. Letting z = y/x, we show that 2 f ′(z) +

z f ′′(z) ≤ 0 for all z ∈ [0, 1]. Since f(z) = θ−1(z), we have θ(f(z)) = z. Differentiating, we

get θ′(f(z)) f ′(z) = 1 so that f ′(z) = 1/θ′(f(z)). Differentiating one more time, we get f ′′(z) =

−θ′′(f(z)) f ′(z)/θ′(f(z))2 = −θ′′(f(z))/θ′(f(z))3. Letting Θ(α) = 1/θ(α), by the assumption in

the lemma, Θ(·) is convex. Differentiating, we get Θ′(α) = −θ′(α)/θ(α)2. Differentiating one more

time, we have Θ′′(α) = 2 θ′(α)2

θ(α)3
− θ′′(α)

θ(α)2
≥ 0, where the inequality is by the fact that Θ(·) is convex.

Using the last inequality with α = f(z) and noting that θ(f(z)) = z, we get

Θ′′(f(z)) = 2
θ′(f(z))2

θ(f(z))3
− θ′′(f(z))

θ(f(z))2
=

(
θ′(f(z))

z

)3{
2

θ′(f(z))
− z θ

′′(f(z))

θ′(f(z))3

}

=

(
θ′(f(z))

z

)3 {
2 f ′(z) + z f ′′(z)

}
≥ 0,

where the third equality uses the fact that f ′(z) = 1/θ′(f(z)) and f ′′(z) = −θ′′(f(z))/θ′(f(z))3 and

the inequality follows from the fact that Θ(·) is convex. Since θ(·) is strictly decreasing, the chain

of inequalities above implies that 2 f ′(z) + z f ′′(z) ≤ 0. �

K Appendix: Numerical Study for the Equivalent Formulation

We give a numerical study to check the benefit in the quality of the solutions that we obtain by

solving the equivalent formulation in (11), instead of trying to solve problem (10) directly. In

our numerical study, we randomly generate a large number of instances of the dynamic pricing

problem with a single resource. For each problem instance, we solve problem (10) directly by

using a nonconvex optimization software with 10 different initial solutions. Since problem (10) is

not a convex program, the solutions that we obtain may not be global optima. Also, we solve

the equivalent formulation in (11) for each problem instance. In all of our test problems, we have

θit(pit) = e−αit pit , in which case, by the discussion right after Theorem 13, problem (11) is a convex

program. Our goal is to demonstrate that the nonconvexity of problem (10) can be a concern and

we can get stuck at inferior local optima when we try to solve problem (10) directly.

We use the following approach to generate our problem instances. The Markov chain choice

models that govern the choices of the customers at different time periods are stationary. Therefore,

we use {λi : i ∈ N}, {θi(·) : i ∈ N} and {ρij : i, j ∈ N} to denote the parameters of the Markov

chain choice model. For each product i, the function θi(·) is of the form θi(pi) = e−αi pi with

Pi = [0,∞). To come up with the parameters of the Markov chain choice model, we sample

βi from the uniform distribution over [0, 1] and set λi = βi/
∑

j∈N βj . Also, we sample αi

from the uniform distribution over [0.1, 1]. Lastly, we sample γij from the uniform distribution

over [0, 1] and ζi from the uniform distribution over [0, 0.001], in which case, we set ρij =

γij (1− ζi)/
∑

k∈N γik. Under this setup, note that
∑

j∈N ρij = 1− ζi, where the largest value of ζi

is 0.001. In all of our test problems, there are τ = 100 time periods in the selling horizon. To come
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up with the initial capacity of the resource q, we compute the prices that maximize the expected

revenue when there is no capacity constraint on the resource. To compute such prices, we solve the

problem maxp∈×i∈NPi
∑

i∈N θi(pi)vi(p) pi by using the approach in Section 2. We use p̂ to denote

an optimal solution to the last problem. If there is no capacity constraint on the resource, then it is

optimal to charge the prices p̂ at each time period. If we charge the prices p̂ at each time period, then

the total expected consumption of the resource over the whole selling horizon is τ
∑

i∈N θi(p̂i)vi(p̂),

so we set the initial capacity of the resource as q = ∆ τ
∑

i∈N θi(p̂i)vi(p̂), where ∆ is a parameter

that we vary. The parameter ∆ captures the tightness of the resource capacity. Recalling that we

use n to denote the number of products, we vary (n,∆) ∈ {5, 10, 20} × {0.4, 0.6, 0.8, 1.0}, which

provides 12 parameter combinations in our numerical setup.

In each parameter combination, we randomly generate 100 individual problem instances by

using the approach described in the previous paragraph. For each problem instance, we obtain

locally optimal solutions directly by solving problem (10) by using the fmincon routine in Matlab

with 10 different initial solutions. In the initial solutions, the price of each product is sampled from

the uniform distribution over [0, 100]. For problem instance k, we let Localk` be the objective value

in (10) at the local optimum obtained by starting from the `-th initial solution. For each problem

instance, we also solve the equivalent formulation in (11). Since problem (11) is a convex program,

we can obtain its globally optimal solution, which, in turn, yields the optimal objective value for

problem (10). We solve problem (11) by using the fmincon routine in Matlab as well. For problem

instance k, we use Globalk to denote the objective value of problem (10) at the global optimum.

We show our results in Table 4. In this table, the first column shows the parameter configuration

by using the pair (n,∆). The second column shows the average percent optimality gap of the

locally optimal solutions, where the average is computed over all 100 problem instances in a

parameter configuration and all locally optimal solutions that we obtain by starting from 10 different

initial solutions. In particular, recall that we generate 100 problem instances in each parameter

configuration. For problem instance k in a parameter configuration, the percent optimality

gap of the locally optimal solution that we obtain by starting from the `-th initial solution is

Gapk` = 100× Globalk−Localk`
Globalk

. Therefore, the second column shows 1
1000

∑100
k=1

∑10
`=1 Gap

k
` . The third

column shows the frequency of locally optimal solutions with optimality gaps exceeding 1%. In

other words, the third column shows 1
1000

∑100
k=1

∑10
`=1 1(Gapk` ≥ 1).

Over all of our test problems, the average optimality gap of the locally optimal solutions is about

10.56%. In about 0.404 fraction of the locally optimal solutions, the optimality gaps exceed 1%. As

the number of products increases and the number of decision variables in problem (10) gets larger,

the optimality gaps tend to increase slightly. In particular, considering the problem instances

with 5, 10 and 25 products separately, the average percent optimality gaps of the locally optimal

solutions are respectively 10.05%, 10.39% and 11.23%. Similarly, considering the problem instances

with 5, 10 and 25 products separately, the fractions of locally optimal solutions with more than

1% optimality gaps are respectively 0.283, 0.346 and 0.585. Considering the CPU seconds to solve
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Param. Avg. Freq.
Conf. Opt. Gap
(n,∆) Gap ≥ 1%

(5, 0.4) 10.43% 0.319
(5, 0.6) 9.38% 0.301
(5, 0.8) 9.56% 0.292
(5, 1.0) 10.83% 0.219

Average 10.05% 0.283

Param. Avg. Freq.
Conf. Opt. Gap
(n,∆) Gap ≥ 1%

(10, 0.4) 10.91% 0.303
(10, 0.6) 11.14% 0.419
(10, 0.8) 10.12% 0.292
(10, 1.0) 9.41% 0.369

Average 10.39% 0.346

Param. Avg. Freq.
Conf. Opt. Gap
(n,∆) Gap ≥ 1%

(25, 0.4) 9.81% 0.565
(25, 0.6) 10.06% 0.544
(25, 0.8) 12.38% 0.596
(25, 1.0) 12.68% 0.634

Average 11.23% 0.585

Table 4: Performance of the locally optimal solutions that we obtain by solving problem (10)
directly.

problems (10) and (11), for the problem instances with 25 products, which are the largest ones in

our numerical study, solving problem (10) directly takes about 1.36 second on average, whereas

solving problem (11) takes about about 0.58 seconds on average. Overall, our results indicate that

we can get stuck at local optima with noticeably inferior solution quality when we try to solve

problem (10) directly, instead of using the equivalent formulation in (11).

L Appendix: Comparison of the Fitted Choice Models

In Section 5, we compare the fitted choice models from the perspective of out of sample

log-likelihoods. In this section, we compare the fitted choice models from the perspective of

two additional performance measures, which are the errors in the purchase probability and

expected revenue predictions of the fitted choice models. Recall that we have eight different

configurations of the ground choice model, which we indicate by using the tuple (µL, µU ,Γ, κ)

with (µL, µU ) ∈ {(100, 150), (150, 200)}, Γ ∈ {1, 2} and κ ∈ {10, 15}. For each configuration of

the ground choice model, we generate the purchase history of τ customers and use this purchase

history as the training data. We have τ ∈ {1,000, 2,500, 5,000}, corresponding to different levels

of data availability. We also generate the past purchase history for another 10,000 customers to

use as the testing data. We fit a Markov chain choice model and a multinomial logit model to the

training data and test the performance of the fitted choice models on the testing data.

We begin by considering the error in the purchase probability predictions of the fitted choice

models. For CM ∈ {GR,MC,ML}, we use ChoiceCMi (p) to denote the purchase probability of

product i under the choice model CM when we charge the prices p. Having CM = GR corresponds

to the ground choice model that actually governs the choices of the customers in the training and

testing data, having CM = MC corresponds to the fitted Markov chain choice model and having

CM = ML corresponds to the fitted multinomial logit model. Note that we have access to the

ground choice model. We capture the testing data by {(p̃`, i`) : ` = 1, . . . , 10, 000}, where the

prices offered to customer ` are p̃` and the product purchased by customer ` is i`. To check the

error in the purchase probability predictions of the fitted Markov chain choice model, we compute
1

10,000×n
∑10,000

`=1

∑
i∈N |Choice

GR
i (p̃`) − ChoiceMC

i (p̃`)|, which is the average absolute error in the

purchase probabilities of the products under the fitted Markov chain choice model, given that we
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Ground. Ch. τ = 1, 000 τ = 2, 500 τ = 5, 000
Config. Err. Err. Perc. Err. Err. Perc. Err. Err. Perc.

(µL, µU ,Γ, κ) MC ML Gap MC ML Gap MC ML Gap

(100, 150, 1, 10) 0.0205 0.0196 -4.96 0.0164 0.0169 3.01 0.0157 0.0161 2.26
(100, 150, 1, 15) 0.0225 0.0245 8.03 0.0198 0.0235 15.86 0.0164 0.0218 25.01

(100, 150, 2, 10) 0.0249 0.0228 -8.96 0.0202 0.0220 8.51 0.0183 0.0218 15.99
(100, 150, 2, 15) 0.0215 0.0207 -3.82 0.0182 0.0191 4.24 0.0171 0.0183 6.69

(150, 200, 1, 10) 0.0205 0.0235 13.05 0.0173 0.0197 12.51 0.0171 0.0196 12.59
(150, 200, 1, 15) 0.0251 0.0226 -11.29 0.0174 0.0203 14.17 0.0145 0.0193 24.86

(150, 200, 2, 10) 0.0224 0.0223 -0.28 0.0175 0.0214 18.03 0.0170 0.0213 20.03
(150, 200, 2, 15) 0.0234 0.0233 -0.43 0.0175 0.0216 18.96 0.0164 0.0210 21.96

Table 5: Average absolute error in the purchase probabilities under the fitted Markov chain choice
model and the fitted multinomial logit model on the testing data.

charge the prices in the testing data. We check the error in the purchase probability predictions of

the fitted multinomial logit model in a similar fashion. In Table 5, we show the average absolute

error in the purchase probabilities of the fitted choice models. The layout of this table is identical

to that of Table 1. After the first column, there are three blocks of three columns. In each of the

three blocks, we focus on the Markov chain choice model and the multinomial logit model fitted

to the training data by using three different levels of data availability. In each block, the first

column shows the average absolute error in the purchase probabilities of the fitted Markov chain

choice model, the second column shows the average absolute error in the purchase probabilities of

the fitted multinomial logit model and the third column shows the percent gap between the two

average absolute errors. In 18 out of 24 cases, the average absolute error of the fitted Markov chain

choice model is smaller than that of the fitted multinomial logit model. The remaining six cases

where the average absolute error of the fitted multinomial logit model is smaller correspond to the

cases with the smallest amount of training data with τ = 1,000.

Next, we consider the error in the expected revenue predictions of the fitted choice models. For

CM ∈ {GR,MC,ML}, we use RevCM(p) to denote the expected revenue under the choice model CM

when we charge the prices p. In other words, we have RevCM(p) =
∑

i∈N ChoiceCMi (p) pi. To check

the error in the expected revenue predictions of the fitted Markov chain choice model, we compute
1

10,000

∑10,000
`=1 |RevGR(p̃`)−RevMC(p̃`)|, which is the average absolute error in the expected revenues

under the fitted Markov chain choice model, given that we charge the prices in the testing data.

We check the error in the expected revenue predictions of the fitted multinomial logit model in a

similar fashion. In Table 6, we show the average absolute error in the expected revenues of the fitted

choice models. The layout of this table is identical to that of Table 5. The only difference is that

we focus on the average absolute error in the expected revenues, rather than the average absolute

error in the purchase probabilities. Our results indicate that the fitted Markov chain choice model

compares quite favorably with the fitted multinomial logit model from the perspective of the errors

in the expected revenue predictions as well.
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Ground. Ch. τ = 1, 000 τ = 2, 500 τ = 5, 000
Config. Err. Err. Perc. Err. Err. Perc. Err. Err. Perc.

(µL, µU ,Γ, κ) MC ML Gap MC ML Gap MC ML Gap

(100, 150, 1, 10) 0.7795 0.7852 0.73 0.6075 0.7663 20.72 0.6411 0.8105 20.89
(100, 150, 1, 15) 0.5944 0.6950 14.47 0.5916 0.8002 26.07 0.4964 0.7912 37.26

(100, 150, 2, 10) 0.3885 0.4109 5.44 0.3008 0.4060 25.90 0.2897 0.4032 28.15
(100, 150, 2, 15) 0.3122 0.4035 22.62 0.2387 0.3204 25.48 0.2260 0.3025 25.30

(150, 200, 1, 10) 0.5488 0.7892 30.45 0.5685 0.6576 13.55 0.5744 0.6854 16.21
(150, 200, 1, 15) 0.6384 1.0087 36.71 0.4793 0.8287 42.17 0.4904 0.7945 38.27

(150, 200, 2, 10) 0.1785 0.2469 27.71 0.1313 0.2083 36.94 0.1389 0.2156 35.59
(150, 200, 2, 15) 0.3614 0.5552 34.91 0.3435 0.4983 31.06 0.3038 0.4751 36.07

Table 6: Average absolute error in the expected revenues under the fitted Markov chain choice
model and the fitted multinomial logit model on the testing data.

M Appendix: Omitted Results

In this section, we give two auxiliary results used in our proofs. In the next lemma, we show that

the unique optimal solution to the problem maxpi∈Pi{θi(pi) (pi − ci − x)} is increasing in x.

Lemma 19 There exists a unique optimal solution to the problem maxpi∈Pi{θi(pi) (pi − ci − x)}
and this unique optimal solution is increasing in x.

Proof. By the assumption that θi(pi) (pi− ci−x) is strictly quasiconcave in pi for any x ∈ <, there

exists a unique optimal solution to the problem in the lemma. Fix x+ and x0 with x+ > x0. Let p̂+i
be the optimal solution to the problem in the lemma with x = x+ and p̂0i be the optimal

solution to the problem in the lemma with x = x0. To get a contradiction, assume that

p̂+i < p̂0i . Since p̂+i < p̂0i and both p̂+i and p̂0i are in the interval Pi, p̂+i is not the upper bound

of the interval. Thus, since p̂+i is the optimal solution with x = x+, the first order condition

implies that θ′i(p̂
+
i ) (p̂+i − ci − x+) + θi(p̂

+
i ) ≤ 0. Furthermore, since θi(pi) (pi − ci − x) is strictly

quasiconcave in x, its derivative with respect to pi changes sign from positive to negative only once

as pi increases. Once the derivative changes sign from positive to negative, the sign of the derivative

stays negative. Thus, since θ′i(p̂
+
i ) (p̂+i − ci − x+) + θi(p̂

+
i ) ≤ 0 and p̂+i < p̂0i ,

0 > θ′i(p̂
0
i ) (p̂0i − ci − x+) + θi(p̂

0
i ) = θ′i(p̂

0
i ) (p̂0i − ci − x0) + θi(p̂

0
i ) + θ′i(p̂

0
i ) (x0 − x+).

Noting that θi(·) is decreasing and x+ > x0, we have θ′i(p̂
0
i ) (x0 − x+) ≥ 0, in which case, the chain

of inequalities above yields θ′i(p̂
0
i ) (p̂0i −ci−x0)+θi(p̂

0
i ) < 0. So, the derivative of θi(pi) (pi−ci−x0)

with respect to pi at p̂0i is strictly negative. Since p̂+i < p̂0i , p̂
0
i is not the lower bound of the interval

Pi. Thus, we can decrease p̂0i by an infinitesimal amount to increase the value of the function

θi(pi) (pi − ci − x0), contradicting the fact that p̂0i maximizes this function over the interval Pi. �

In the next lemma, we show that if r̂ki = hki (r̂
1, . . . , r̂m) for all i ∈ N , k ∈ M , then we have

0 ≤ r̂ki ≤ ū for all i ∈ N , k ∈M , where ū = ∆/(1− ρmax) is as defined right after Theorem 6.
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Lemma 20 If (r̂1, . . . , r̂m) satisfies r̂ki = hki (r̂
1, . . . , r̂m) for all i ∈ N , k ∈M , then we must have

0 ≤ r̂ki ≤ ū for all i ∈ N , k ∈M .

Proof. Assume that r̂ki = hki (r̂
1, . . . , r̂m) for all i ∈ N , k ∈ M . Letting µ = mini∈N, k∈M{r̂ki }, we

show that µ ≥ 0. To get a contradiction, assume that µ < 0. First, consider some i ∈ Nk. By (7), we

have r̂ki = hki (r̂
1, . . . , r̂m) = maxpi∈Pi {θi(pi) (pi − ci) + (1− θi(pi))

∑
j∈N ρij r̂

k
j } ≥

∑
j∈N ρij r̂

k
j ≥∑

j∈N ρij µ > µ, where the first inequality is by the fact limpi→Ui θi(pi) = 0 and limpi→Ui θi(pi) pi =

0 and the third inequality is by the fact that
∑

j∈N ρij < 1 and µ < 0. Second, consider some

i 6∈ Nk. By (7), we have r̂ki = hki (r̂
1, . . . , r̂m) = (1− θi(p̂i))

∑
j∈N ρij r̂

k
j ≥ (1−θi(p̂i))

∑
j∈N ρij µ >

µ, where we, again, use the fact that
∑

j∈N ρij < 1 and µ < 0. Therefore, we have r̂ki > µ for all

i ∈ N , k ∈ M , which contradicts the fact that µ = mini∈N, k∈M{r̂ki }. Thus, we must have µ ≥ 0,

which implies that r̂ki ≥ 0 for all i ∈ N , k ∈M .

Next, letting ζ = maxi∈N, k∈M{r̂ki }, we show that ζ ≤ ū. To get a contradiction, assume

that ζ > ū. First, consider some i ∈ Nk. Recall that we define ū as ū = ∆/(1 − ρmax), where

∆ = maxi∈N{maxpi∈Pi{θi(pi) (pi − ci)}} and ρmax = maxi∈N{
∑

j∈N ρij}. In this case, by (7),

we get r̂ki = hki (r̂
1, . . . , r̂m) = maxpi∈Pi{θi(pi) (pi − ci) + (1− θi(pi))

∑
j∈N ρij r̂

k
j } ≤ ∆ + ρmax ζ =

(1 − ρmax) ū + ρmax ζ < ζ, where the first inequality uses the fact that ζ = maxi∈N, k∈M{r̂ki } and

the last inequality follows from the fact that ρmax ∈ [0, 1) and ζ > ū. Second, consider some

i 6∈ Nk. By (7), we have r̂ki = hki (r̂
1, . . . , r̂m) = (1− θi(p̂i))

∑
j∈N ρij r̂

k
j ≤ ρmax ζ < ζ, where the

second inequality uses the fact that ρmax ∈ [0, 1). Therefore, we have r̂ki < ζ for all i ∈ N , k ∈M ,

which contradicts the fact that ζ = maxi∈N, k∈M{r̂ki }. Thus, we must have ζ ≤ ū, which implies

that r̂ki ≤ ū for all i ∈ N , k ∈M . �
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