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Abstract

We consider a competitive pricing problem where there are multiple firms with limited
inventories of substitutable products. Each firm chooses the prices that it charges for its product
over a finite selling horizon. The demand of each firm jointly depends on the prices of all firms
in a deterministic fashion through a linear demand function. The goal of each firm is to choose
its prices to maximize its total revenue. We study two types of equilibrium. In equilibrium
without recourse, each firm chooses its entire price trajectory at the beginning of the selling
horizon. In equilibrium with recourse, each firm adjusts its price at each time period as a
function of the current inventories of all of the firms. Although the demand of each firm is
a deterministic function of the prices so that there is no uncertainty in the responses of the
firms, there is a stark difference between equilibria with and without recourse. Considering the
commonly studied diagonally dominant regime, where the demand of a firm is affected more
by its price than the prices of the other firms, we show that the equilibrium without recourse
exists and it is unique. In contrast, we demonstrate that the equilibrium with recourse may
not exist or may not be unique. Motivated by this result, we look for approximate equilibrium
with recourse. Considering a low influence regime, where the effect of the price of each firm
on the demand of the others is diminishing, we show that the equilibria without recourse is an
approximate equilibrium even when we allow the firms not to commit to a price trajectory at
the beginning of the selling horizon.

1 Introduction

In many practical situations, multiple firms selling substitutable products set their prices

competitively to sell limited inventories over a finite selling horizon, when the demand of each

firm jointly depends on the prices charged by all firms. For example, airlines competitively set the

prices for their limited seat inventories in a particular market. Firms selling electronic products

take the prices of their competitors into consideration when setting their prices. In this paper, we

consider multiple firms with limited inventories of substitutable products. Each firm chooses the

prices that it charges for its product over a finite selling horizon. The demand that each firm faces

is a deterministic function of the prices charged by all of the firms, where the demand of a firm is

linearly decreasing in its price and linearly increasing in the prices of the other firms. Each firm

chooses its prices over a finite selling horizon to maximize its total revenue.

Main Contributions. We study two types of equilibrium for the competitive pricing setting

described in the previous paragraph. In equilibrium without recourse, at the beginning of the selling

horizon, each firm chooses the prices that it charges over the whole selling horizon and commits

to this price trajectory, under the assumption that the other firms do the same. In equilibrium

1Jiayang Gao and Krishnamurhy Iyer are with School of Operations Research and Information Engineering, Cornell
University, Ithaca, NY 14853. Huseyin Topaloglu is with School of Operations Research and Information Engineering,
Cornell Tech, New York, NY 10011. The email addresses of the authors are jg838@cornell.edu, kriyer@cornell.edu
and topaloglu@orie.cornell.edu.

1



with recourse, at each time period in the selling horizon, each firm observes the inventories of all

of the firms and chooses its price at the current time period, again under the assumption that the

other firms do the same. Despite the fact that the demand of each firm is a deterministic function

of the prices so that there is no uncertainty in the responses of the firms, we show a clear contrast

between the equilibrium without recourse and the equilibrium with recourse.

We consider the diagonal dominant regime, where the price charged by each firm affects its

demand more than the prices charged by the other firms. In other words, if all of the competitors

of a firm decrease their prices by a certain amount, then the firm can decrease its price by the

same amount to ensure that its demand does not decrease. This regime is rather standard in the

existing literature and it is used in, for example, Allon and Federgruen (2007) and Gallego and Hu

(2014). Focusing on the equilibrium without recourse, we show that the best response of each firm

to the price trajectories of the other firms is a contraction mapping, when viewed as a function

of the prices of the other firms. In this case, it immediately follows that the equilibrium without

recourse always exists and it is unique. To our knowledge, this contraction property in the setting

of price competition with limited inventories is new.

We give counterexamples to show that the equilibrium with recourse may not exist or may

not be unique. Motivated by this observation, we look for an approximate equilibrium that is

guaranteed to exist. In particular, we consider the setting where a firm can adjust its price at each

time period based on the current inventories of all of the firms. We call a strategy profile for the

firms an ε-equilibrium with recourse if no firm can improve its total revenue by more than ε by

deviating from its strategy profile. We consider a low influence regime, where the effect of the price

of a firm on the demand of another firm is diminishing, which naturally holds when the number

of firms is large. We show that the equilibrium without recourse, which we know to uniquely

exist, is an ε-equilibrium with recourse even when the firms may adjust their prices. So, intuitively

speaking, an ε-equilibrium with recourse is expected to exist when the number of firms is large.

Our results fills a gap in a fundamental class of revenue management problems. Although there

is no uncertainty in the responses of the firms, the equilibria with and without recourse are not the

same concept and they can actually be qualitatively rather different. While the equilibrium without

recourse uniquely exists, one cannot say the same thing for the equilibrium with recourse. Also,

as far as we are aware, our contraction argument for showing the existence and uniqueness of the

equilibrium without recourse does not appear in the literature. This argument becomes surprisingly

effective when dealing with linear demand functions, but it is still an open question whether similar

arguments hold for other demand functions. Lastly, our results indicate that the equilibrium

without recourse in a low influence regime turns out to be an approximate equilibrium with recourse,

even when the firms are allowed to not to commit to a price trajectory.

Literature Review. Similar to us, Gallego and Hu (2014) consider price competition among

multiple firms with limited inventories over a finite selling horizon. In the diagonally dominant
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regime, they show the unique existence of the equilibrium without recourse, but their argument

does not show the contraction of the best response. Having the contraction property allows finding

the equilibrium without recourse by successively computing the best response of each firm to the

others. Furthermore, for the setting we consider, we show that the equilibrium with recourse can

be different from the equilibrium withour recourse and the former equilibrium may not exist or

may not be unique, but the equilibrium without recourse may be a good approximation to the

equilibrium with recourse in the low influence regime.

There are a number of papers that study price competition over a single period. Milgrom and

Roberts (1990) show that pure Nash equilibrium exists for a wide class of so called supermodular

demand models. Gallego et al. (2006) provide sufficient conditions for uniqueness of equilibrium

in the Bertrand game when the demands of the firms are nonlinear functions of the prices, there

is a cost associated with satisfying a certain volume of demand and each firm is interested in

maximizing its expected profit. In particular, the authors use a slightly more general version

of the multinomial demand model to capture the relationship between price and demand. The

cost is a nonlinear function of the demand volume. Pierson et al. (2013) identify the conditions

for existence and uniqueness of pure Nash equilibrium when the demands are characterized by a

mixture of multinomial logit models and the cost of satisfying a certain volume of demand is linear

in the demand volume. Gallego and Wang (2014) consider the price competition between multiple

firms when the relationship between demand and price is characterized by the nested logit model

and provide conditions to ensure the existence and uniqueness of the equilibrium. Nazerzadeh and

Perakis (2015) prove the existence of pure strategy equilibrium in a price competition game between

two suppliers when capacity is private information.

Considering the papers on price competition over multiple time periods, Levin et al. (2009)

study a stochastic game when there are strategic consumers choosing the time to purchase. Lin

and Sibdari (2009) study a competitive pricing problem when the relationship between demand

and price is captured by the multinomial logit model and inventory levels are public information.

Martinez-de Albeniz and Talluri (2011) study the pricing game between two firms with limited

inventories facing stochastic demand. The authors characterize the unique subgame perfect

equilibrium. Liu and Zhang (2013) show that there exists a unique pure strategy Markov perfect

equilibrium in a pricing game between two firms offering vertically differentiated products.

Organization. In Section 2, we describe the competitive pricing setting, formulate the

optimization problem that computes the best response of a firm when the firms commit to price

trajectories at the beginning of the selling horizon and show that the best response is a contraction

mapping when viewed as a function of the prices of the other firms, which allows us to conclude

that the equilibrium without recourse uniquely exists. In Section 3, we define the equilibrium with

recourse and provide counterexamples to show that the equilibrium with recourse may not exist or

may not be unique. In Section 4, we show that the equilibrium without recourse is an ε-equilibrium

with recourse in a low influence regime. In Section 5, we conclude.
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2 Equilibrium without Recourse

There are n firms indexed by N = {1, . . . , n}. Firm i has ci units of initial inventory, which

cannot be replenished over the selling horizon. There are τ time periods in the selling horizon

indexed by T = {1, . . . , τ}. We use pti to denote the price charged by firm i at time period t. Using

pt = (pt1, . . . , p
t
n) to denote the prices charged all of the firms at time period t, the demand faced

by firm i at time period t is given by Dt
i(p

t) = αti − βti pti +
∑

j 6=i γ
t
i,j p

t
j , where αti > 0, βti > 0

and γti,j > 0. We assume that the price charged by each firm affects its demand more than the

prices charged by the other firms, in the sense that
∑

j 6=i γ
t
i,j < βti for all i ∈ N , t ∈ T . Also, using

pt−i = (pt1, . . . , p
t
i−1, p

t
i+1, . . . , p

t
n) to denote the prices charged by firms other than firm i at time

period t, to avoid negative demand quantities, we restrict the strategy space of the firms such that

each firm i charges the price pti at time period t that satisfies αti−βti pti +
∑

j 6=i γ
t
i,j p

t
j ≥ 0, given the

prices pt−i charged by the other firms. If the firms other than firm i commit to the price trajectories

p−i = {pt−i : t ∈ T}, then we can obtain the best response of firm i by solving the problem

max

{∑
t∈T

(
αti − βti pti +

∑
j 6=i

γti,j p
t
j

)
pti :

∑
t∈T

(
αti − βti pti +

∑
j 6=i

γti,j p
t
j

)
≤ ci,

αti − βti pti +
∑
j 6=i

γti,j p
t
j ≥ 0 ∀ t ∈ T, pti ≥ 0 ∀ t ∈ T

}
. (1)

Since βti > 0, problem (1) has a strictly convex objective function and linear constraints, which

implies that the best response of firm i is unique.

Using the non-negative dual multipliers vi and {uti : t ∈ T} for the first and second constraint

in problem (1), the Karush-Kuhn-Tucker (KKT) conditions for this problem are(∑
t∈T

(
αti − βti pti +

∑
j 6=i

γti,j p
t
j

)
− ci

)
vi = 0,

(
αti − βti pti +

∑
j 6=i

γti,j p
t
j

)
uti = 0 ∀ t ∈ T, (2)

αti − 2βti p
t
i +
∑
j 6=i

γti,j p
t
j + βti (vi − uti) = 0 ∀ t ∈ T.

Since problem (1) has a concave objective function and linear constraints, the KKT conditions
above are necessary and sufficient at optimality; see Boyd and Vandenberghe (2004). In other

words, for a feasible solution {pti : t ∈ T} to problem (1), there exist corresponding non-negative

dual multipliers vi and {uti : t ∈ T} that satisfy the KKT conditions in (2) if and only if {pti : t ∈ T}
is the optimal solution to problem (1). Note that we do not associate dual multipliers with the

constraints pti ≥ 0 for all t ∈ T in problem (1) since it is never optimal for firm i to charge a

negative price. Therefore, we can actually view the constraints pti ≥ 0 for all t ∈ T as redundant

constraints. We use the KKT conditions in (2) extensively to characterize the best response of firm

i to the price trajectories p−i of the other firms. In the rest of this section, we exclusively focus on

the strategies without recourse, where each firm i commits to a price trajectory {pti : t ∈ T} at the

beginning of the selling horizon and does not adjust these prices during the course of the selling

horizon. If the price trajectory {pti : t ∈ T} chosen by each firm i is the best response to the price
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trajectories p−i chosen by the other firms, then we say that the price trajectories {pt : t ∈ T} chosen

by the firms is an equilibrium without recourse. We show that there exists a unique equilibrium

without recourse. Furthermore, if we start with any price trajectory {pt : t ∈ T} for the firms

and successively compute the best response of each firm to the price trajectories of the other firms,

then the best response of each firm forms a contraction mapping when viewed as a function of the

prices charged by the other firms. Using this result, we show that there exists a unique equilibrium

without recourse. To capture the best response of firm i to the prices charged by the other firms,

we define the set of time periods

Ti(ν,p−i) =
{
t ∈ T :

αti +
∑

j 6=i γ
t
i,j p

t
j

βti
> ν

}
.

In the next lemma, we use Ti(ν,p−i) to give a succinct characterization of the solution {pti : t ∈ T}
and the corresponding dual multipliers vi and {uti : t ∈ T} that satisfy the KKT conditions.

Lemma 1 If a feasible solution {pti : t ∈ T} to problem (1) and the corresponding non-negative

dual multipliers vi and {uti : t ∈ T} satisfy the KKT conditions in (2), then we have

pti =


αti +

∑
j 6=i γ

t
i,j p

t
j

2βti
+
vi
2

if t ∈ Ti(vi,p−i)

αti +
∑

j 6=i γ
t
i,j p

t
j

βti
if t 6∈ Ti(vi,p−i),

uti =


0 if t ∈ Ti(vi,p−i)

vi −
αti +

∑
j 6=i γ

t
i,j p

t
j

βti
if t 6∈ Ti(vi,p−i).

Proof. Since the solution {pti : t ∈ T}, along with the dual multipliers vi and {uti : t ∈ T}, satisfies

the KKT conditions in (2), solving for uti in the third KKT condition, we have

uti =
αti +

∑
j 6=i γ

t
i,j p

t
j

βti
− 2 pti + vi. (3)

For notational brevity, we let ∆t
i = (αti +

∑
j 6=i γ

t
i,j p

t
j)/β

t
i . Therefore, we can write (3) as

uti = ∆t
i − 2 pti + vi. Furthermore, noting that βti > 0 and dividing the second KKT condition

in (2) by βti , we observe that (∆t
i − pti)u

t
i = 0 for all t ∈ T . Consider any t ∈ Ti(vi,p−i).

By the definition of Ti(vi,p−i), we have ∆t
i > vi. In this case, by (3), it follows that uti =

∆t
i − 2 pti + vi < 2 (∆t

i − pti). Multiplying the last chain of inequalities by uti and noting that

(∆t
i − pti)u

t
i = 0, we get (uti)

2 ≤ 0, which implies that uti = 0. Using this value of uti in

(3) and solving for pti, we have pti = ∆t
i/2 + vi/2. Therefore, the desired result holds for any

t ∈ Ti(vi,p−i). Consider any t 6∈ Ti(vi,p−i). By the definition of Ti(vi,p−i), we have ∆t
i ≤ vi.

In this case, using (3), it follows that uti = ∆t
i − 2 pti + vi ≥ 2 (∆t

i − pti). Multiplying the

last chain of inequalities by ∆t
i − pti and noting that (∆t

i − pti)uti = 0, we have (∆t
i − pti)

2 ≤ 0,

which implies that pti = ∆t
i. Using this value of pti in (3) and noting the definition of ∆t

i, we get

uti = vi −∆t
i. Therefore, the desired result holds for any t 6∈ Ti(vi,p−i). �

By Lemma 1, we can characterize the solution {pti : t ∈ T} and the dual multipliers vi and

{uti : t ∈ T} that satisfy the KKT conditions in (2) only by using the value of vi. If we know the
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value of vi, then we can compute the set of time periods Ti(vi,p−i), in which case, we can choose

the values of {pti : t ∈ T} and {uti : t ∈ Ti} as given in Lemma 1. Throughout the rest of this

section, we indeed choose the values of {pti : t ∈ T} and {uti : t ∈ Ti} as given in Lemma 1, since we

are interested in solution thats satisfy the KKT conditions. Naturally, we do not know the value

of vi that allows us to obtain the solution {pti : t ∈ T} and the dual multipliers vi and {uti : t ∈ T}
that satisfy the KKT conditions. In the next lemma, we give a characterization of the value of vi

that corresponds to the solution {pti : t ∈ T} and the dual multipliers vi and {uti : t ∈ T} satisfying

the KKT conditions in (2). In particular, we consider the function

Gi(ν,p−i) =



∑
t∈Ti(ν,p−i)

(
αti − βti ν +

∑
j 6=i

γti,j p
t
j

)
− 2 ci if ν > 0

max

{ ∑
t∈Ti(ν,p−i)

(
αti +

∑
j 6=i

γti,j p
t
j

)
− 2 ci, 0

}
if ν = 0.

In the appendix, Lemma 7 shows that Gi(·,p−i) is strictly decreasing over some [0, ν∗] and has a

unique root. In the next lemma, we use its root to characterize a solution to the KKT conditions.

Lemma 2 If a feasible solution {pti : t ∈ T} to problem (1) and the corresponding non-negative

dual multipliers vi and {uti : t ∈ T} satisfy the KKT conditions in (2), then we have Gi(vi,p−i) = 0.

Proof. As in the proof of Lemma 1, we let ∆t
i = (αti +

∑
j 6=i γ

t
i,j p

t
j)/β

t
i for notational brevity. By

Lemma 1, we have pti = (∆t
i + vi)/2 for all t ∈ Ti(vi,p−i) and pti = ∆t

i for all t 6∈ Ti(vi,p−i). First,

we assume that vi = 0. Since αti > 0, we have Ti(vi,p−i) = T by the definition of Ti(vi,p−i),
which implies that pti = (∆t

i + vi)/2 = ∆t
i/2 for all t ∈ T . In this case, we obtain 1

2

∑
t∈T β

t
i ∆t

i =∑
t∈T β

t
i(∆

t
i − pti) =

∑
t∈T (αti − βti p

t
i +

∑
j 6=i γ

t
i,j p

t
j) ≤ ci, where the second equality uses the

definition of ∆t
i and the inequality follows from the fact that {pti : t ∈ T} is a feasible solution to

problem (1). The last chain of inequalities imply that
∑

t∈T β
t
i ∆t

i − 2 ci ≤ 0. Noting the definition

of ∆t
i and the fact that Ti(vi,p−i) = T , we obtain

∑
t∈Ti(vi,p−i)

(αti +
∑

j 6=i γ
t
i,j p

t
j) − 2 ci ≤ 0,

which implies that Gi(vi,p−i) = Gi(0,p−i) = 0. Therefore, the desired result holds when vi = 0.

Second, we assume that vi > 0. Using the fact that pti = (∆t
i + vi)/2 for all t ∈ Ti(vi,p−i) and

pti = ∆t
i for all t 6∈ Ti(vi,p−i), we have

∑
t∈T (αti − βti p

t
i +

∑
j 6=i γ

t
i,j p

t
j) =

∑
t∈T β

t
i (∆t

i − pti) =∑
t∈Ti(vi,p−i)

βti (∆t
i − vi)/2. Since vi > 0, by the first KKT condition in (2), we also have ci =∑

t∈T (αti − βti pti +
∑

j 6=i γ
t
i,j p

t
j). In this case, by the last chain of equalities, we get

ci =
1

2

∑
t∈Ti(vi,p−i)

βti (∆t
i − vi).

By the definition of ∆t
i, the equality above is equivalent to

∑
t∈Ti(vi,p−i)

(αti − βivi +
∑

j 6=i γ
t
i,j p

t
j)−

2 ci = 0, which implies that Gi(vi,p−i) = 0. Therefore, the desired result holds when vi > 0. �

By Lemma 2, if a feasible solution {pti : t ∈ T} to problem (1) and the corresponding non-

negative dual multipliers vi and {uti : t ∈ T} satisfy the KKT conditions in (2), then vi must be
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the unique root of Gi(·,p−i). Also, by Lemma 1, the values of {pti : t ∈ T} and {uti : t ∈ T} must

be given as in Lemma 1. In the next theorem, we use these results to show that the best response

of firm i is a contraction mapping when viewed as a function of the prices of the other firms.

Theorem 3 Let {pti(p−i) : t ∈ T} be the optimal solution to problem (1) as a function of the prices

charged by the firms other than firm i. For any two price trajectories p̂−i = {p̂t−i : t ∈ T} and

p̃−i = {p̃t−i : t ∈ T} adopted by the firms other than firm i, we have

|pti(p̂−i)− pti(p̃−i)| ≤ max
t∈T

{∑
j 6=i γ

t
i,j |p̂tj − p̃tj |
βti

}
.

Proof. For notational brevity, we let p̂ti = pti(p̂−i) and p̃ti = pti(p̃−i). In other words,

{p̂ti : t ∈ T} is the optimal solution to problem (1) when we solve this problem after replacing

p−i with p̂−i. Similarly, {p̃ti : t ∈ T} is the optimal solution to problem (1) when we solve this

problem after replacing p−i with p̃−i. Also, we let v̂i and ṽi be such that Gi(v̂i, p̂−i) = 0 and

Gi(ṽi, p̃−i) = 0. Without loss of generality, we assume that v̂i ≥ ṽi. Otherwise, we interchange

the roles of v̂i and ṽi. Finally, we let ∆̂t
i = (αti +

∑
j 6=i γ

t
i,j p̂

t
j)/β

t
i and ∆̃t

i = (αti +
∑

j 6=i γ
t
i,j p̃

t
j)/β

t
i

for notational brevity. Note that |∆̂t
i − ∆̃t

i| ≤
∑

j 6=i γ
t
i,j |p̂tj − p̃tj |/βti . In this case, using Mi =

maxt∈T {
∑

j 6=i γ
t
i,j |p̂tj − p̃tj |/βti}, we have |∆̂t

i − ∆̃t
i| ≤ Mi for all t ∈ T . We proceed to examining

four cases to show that |p̂ti − p̃ti| ≤ 1
2Mi + 1

2 max{Mi, v̂i − ṽi} for all t ∈ T . First, we assume that

t ∈ Ti(v̂i, p̂−i) and t ∈ Ti(ṽi, p̃−i). Using Lemma 1, we have |p̂ti − p̃ti| = 1
2 |∆̂

t
i + v̂i − ∆̃t

i − ṽti | ≤
1
2 |∆̂

t
i − ∆̃t

i| + 1
2(v̂i − ṽi) ≤ 1

2Mi + 1
2(v̂i − ṽi) ≤ 1

2Mi + 1
2 max{Mi, v̂i − ṽi}, as desired. Second, we

assume that t 6∈ Ti(v̂i, p̂−i) and t 6∈ Ti(ṽi, p̃−i). Using Lemma 1 once more, we have |p̂ti − p̃ti| =

|∆̂t
i − ∆̃t

i| ≤ Mi ≤ 1
2Mi + 1

2 max{Mi, v̂i − ṽi}, as desired. Third, we assume that t ∈ Ti(v̂i, p̂−i)
and t 6∈ Ti(ṽi, p̃−i). Since t ∈ Ti(vi, p̂−i), we have ∆̂t

i > v̂i, which implies v̂i − ∆̃t
i < ∆̂t

i − ∆̃t
i ≤ Mi.

Also, since t 6∈ Ti(ṽi, p̃−i), we have ∆̃t
i ≤ ṽi, which implies v̂i − ∆̃t

i ≥ v̂i − ṽi. Noting the last two

inequalities, it follows that |v̂i− ∆̃t
i| ≤ max{Mi, v̂i− ṽi}. In this case, using Lemma 1 one last time

and using the fact that |v̂i − ∆̃t
i| ≤ max{Mi, v̂i − ṽi}, we obtain |p̂ti − p̃ti| = |12∆̂t

i + 1
2 v̂i − ∆̃t

i| ≤
1
2 |∆̂

t
i − ∆̃t

i| + 1
2 |v̂i − ∆̃t

i| ≤ 1
2 Mi + 1

2 |v̂i − ∆̃t
i| ≤ 1

2 Mi + 1
2 max{Mi, v̂i − ṽi}, as desired. Fourth,

we assume that t 6∈ Ti(v̂i, p̂−i) and t ∈ Ti(ṽi, p̃−i), in which case, we can follow the same argument

in the third case to obtain |p̂ti − p̃ti| ≤ 1
2 Mi + 1

2 max{Mi, v̂i − ṽi}. The preceding discussion shows

that |p̂ti − p̃ti| ≤ 1
2 Mi + 1

2 max{Mi, v̂i − ṽi}. If v̂i ≤Mi, then noting that ṽi ≥ 0, the last inequality

implies that |p̂ti− p̃ti| ≤Mi, which is the result we want to show! In the rest of the proof, we proceed

under the assumption that v̂i > Mi.

Consider the function Gi(·, p̃−i). By Lemma 7 in the appendix, the function Gi(·, p̃−i) is

strictly decreasing over the interval [0, ν∗) for some ν∗ and constant over the interval [ν∗,∞). By

the same lemma, we also have Gi(ν
∗, p̃−i) = −2 ci < 0. In the rest of the proof, we show that

Gi(v̂i−Mi, p̃−i) ≥ 0. Also, we have Gi(ṽi, p̃−i) = 0 by Lemma 2. In this case, since Gi(ν
∗, p̃−i) < 0

and Gi(·, p̃−i) is strictly decreasing over the interval [0, ν∗) and constant over the interval [ν∗,∞),

having Gi(v̂i −Mi, p̃−i) ≥ 0 and Gi(ṽi, p̃−i) = 0 implies that v̂i −Mi ≤ ṽi. Therefore, we have
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v̂i − ṽi ≤ Mi, so that we get |p̂ti − p̃ti| ≤ 1
2 Mi + 1

2 max{Mi, v̂i − ṽi} = Mi, which is the result we

want to show. It remains to show that Gi(v̂i −Mi, p̃−i) ≥ 0. Using 1(·) to denote the indicator

function, since v̂i > Mi, by the definition of Gi(·, p̃−i), we have

Gi(v̂i −Mi, p̃−i) =
∑

t∈Ti(v̂i−Mi,p̃−i)

(
αti − βti (v̂i −Mi) +

∑
j 6=i

γti,j p̃
t
j

)
− 2 ci

=
∑

t∈Ti(v̂i,p̂−i)

(
αti − βti (v̂i −Mi) +

∑
j 6=i

γti,j p̃
t
j

)
− 2 ci

+
∑
t∈T

1(t ∈ Ti(v̂i −Mi, p̃−i) \ Ti(v̂i, p̂−i))
(
αti − βti (v̂i −Mi) +

∑
j 6=i

γti,j p̃
t
j

)
−
∑
t∈T

1(t ∈ Ti(v̂i, p̂−i) \ Ti(v̂i −Mi, p̃−i))
(
αti − βti (v̂i −Mi) +

∑
j 6=i

γti,j p̃
t
j

)
. (4)

We consider each one of the three terms on the right side above one by one. For the first term, by

Lemma 2, we have Gi(v̂i, p̂−i) = 0. By the definition of Mi, we also have
∑

j 6=i γ
t
i,j |p̂tj− p̃tj |/βti ≤Mi

for all t ∈ T , so that
∑

t∈Ti(v̂i,p̂−i)

∑
j 6=i γ

t
i,j |p̂tj − p̃tj | ≤Mi

∑
t∈Ti(v̂i,p̂−i)

βti . Thus, we get∑
t∈Ti(v̂i,p̂−i)

(
αti − βti (v̂i −Mi) +

∑
j 6=i

γti,j p̃
t
j

)
− 2 ci

=
∑

t∈Ti(v̂i,p̂−i)

(
αti − βti v̂i +

∑
j 6=i

γti,j p̂
t
j

)
− 2 ci +

∑
t∈Ti(v̂i,p̂−i)

∑
j 6=i

γti,j (p̃tj − p̂tj) +Mi

∑
t∈Ti(v̂i,p̂−i)

βti

= Gi(v̂i, p̂−i) +
∑

t∈Ti(v̂i,p̂−i)

∑
j 6=i

γti,j (p̃tj − p̂tj) +Mi

∑
t∈Ti(v̂i,p̂−i)

βti

≥ Gi(v̂i, p̂−i)−
∑

t∈Ti(v̂i,p̂−i)

∑
j 6=i

γti,j |p̃tj − p̂tj |+Mi

∑
t∈Ti(v̂i,p̂−i)

βti ≥ 0,

where the second equality uses the fact that v̂i > Mi ≥ 0 so that we have Gi(v̂i, p̂−i) =∑
t∈Ti(v̂i,p̂−i)

(αti − βti v̂i +
∑

j 6=i γ
t
i,j p̂

t
j) − 2 ci. Therefore, the first term on the right side

of (4) is non-negative. For the second term, by the definition of Ti(v̂i − Mi, p̃−i), we

have αti +
∑

j 6=i γ
t
i,j p̃

t
j > βti (v̂i − Mi) for all t ∈ Ti(v̂i − Mi, p̃−i). Therefore, we have

1(t ∈ Ti(v̂i −Mi, p̃−i) \ Ti(v̂i, p̂−i)) (αti − βti (v̂i −Mi) +
∑

j 6=i γ
t
i,j p̃

t
j) ≥ 0, which implies that the

second term on the right side of (4) is non-negative. For the third term, we have αti+
∑

j 6=i γ
t
i,j p̃

t
j ≤

βti (v̂i −Mi) for all t 6∈ Ti(v̂i −Mi, p̃−i). Therefore, we have 1(t ∈ Ti(v̂i, p̂−i) \ Ti(v̂i −Mi, p̃−i)) ×
(αti − βti (v̂i −Mi) +

∑
j 6=i γ

t
i,j p̃

t
j) ≤ 0, indicating that the third term on the right side of (4) is

non-positive. So, the first and second terms on the right side of (4) is non-negative, whereas the

third term is non-positive, in which case, we have Gi(v̂i −Mi, p̃−i) ≥ 0. �

For the vector y = {yt : t ∈ T}, we define the norm on <τ as ‖y‖∞ = maxt∈T |yt|. By the

assumption that
∑

j 6=i γ
t
i,j < βti for all i ∈ N and t ∈ T , Theorem 3 implies that the best response

of firm i is a contraction mapping with respect to the norm ‖ · ‖∞, when viewed as a function of

the prices of the other firms. Therefore, it immediately follows that if the price charged by each

firm affects its demand more than the prices charged by the other firms, then there always exists

a unique equilibrium without recourse.
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3 Equilibrium with Recourse

In this section, we consider strategies with recourse, where each firm can change its price at the

current time period as a function of its inventory and the inventories of the other firms. In other

words, the firms do not commit to a price trajectory at the beginning of the selling horizon. We let

xti be the inventory of firm i at the beginning of time period t. Focusing on Markovian strategies

without loss of generality, as a function of the inventories xt = (xt1, . . . , x
t
n) of all of the firms, we

use P ti (x
t) to denote the price charged by firm i at time period t. It is useful to view P ti (·) as a

function that determines the strategy of firm i at time period t as a function of the inventories of

all of the firms. We use P t = (P t1(·), . . . , P tn(·)) to capture the strategies of all of the firms at time

period t and P t
−i = (P t1(·), . . . , P ti−1(·), P ti+1(·), . . . , P tn(·)) to capture the strategies of the firms other

than firm i at time period t. If the firms other than firm i use the strategies P−i = {P t
−i : t ∈ T},

then we can find the best response strategy of firm i by solving the dynamic program

V t
i (xt) = max

{(
αti − βti pti +

∑
j 6=i

γti,j P
t
j (x

t)
)
pti + V t+1

i (xt+1) : αti − βti pti +
∑
j 6=i

γti,j P
t
j (x

t) ≥ 0,

xt+1
i = xti −

(
αti − βti pti +

∑
j 6=i

γti,j P
t
j (x

t)
)
,

xt+1
` = xt` −

(
αt` − βt` P t` (xt) + γt`,i p

t
i +

∑
j 6∈{i,`}

γt`,j P
t
j (x

t)
)
∀ ` ∈ N \ {i},

pti ≥ 0, xt+1
` ≥ 0 ∀ ` ∈ N

}
,

with the boundary condition that V τ+1
i (·) = 0. An optimal solution to the problem above

characterizes the best response strategy of firm i at time period t.

If the strategy {P ti (·) : t ∈ T} chosen by each firm i is the best response to the strategy P−i

chosen by the other firms, then we say that the strategies {P t : t ∈ T} chosen by the firms is

an equilibrium with recourse. In the previous section, we show that there always exists a unique

equilibrium when we focus on strategies without recourse. We give two numerical examples to show

that if we focus on strategies with recourse, then there may not exist an equilibrium or there may

be multiple equilibria. Consider the case where there are two firms and the selling horizon has

two time periods. For given inventories of the two firms at the second time period, the problem of

computing the equilibrium strategy at the second time period is identical to finding an equilibrium

without recourse. So, there exists a unique equilibrium strategy for the firms at the second time

period for given inventories. Note that the prices charged by the firms in an equilibrium without

recourse at the second time period depends on the inventories of the firms at the second time period,

which, in turn, depends on the prices charged by the firms at the first time period. To obtain an

equilibrium with recourse, we compute the best response strategy of each firm at the first time

period as a function of the price of the other firm at the first time period. Recall that if we fix the

prices of the firms at the first time period, then we fix the inventories at the second time period,

9
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Figure 1: Best response of each firm when equilibrium with recourse does not exist and revenue of
the first firm.

in which case, we can compute the equilibrium strategies at the second time period. We plot the

best response of each firm at the first time period as a function of the price of the other firm. An

equilibrium with recourse corresponds to the intersection of the two best response curves.

Consider the parameters αti = 4, β1
i = 4, β2

i = 2, γ1
i,j = 16/5, γ2

i,j = 1, ci = 3 for all i ∈ {1, 2},
j ∈ {1, 2} \ {i} and t ∈ {1, 2}, which satisfy

∑
j 6=i γ

t
i,t < βti for all i ∈ {1, 2, } and t ∈ {1, 2}, so that

we know that there exists a unique equilibrium without recourse. On the left side of Figure 1, the

solid line plots the best response of second firm at the first time period on the vertical axis, as a

function of the price of the first firm on the horizontal axis, whereas the dashed line plots the best

response of the first firm at the first time period on the horizontal axis as a function of the price of

the second firm on the vertical axis. The two best response functions do not intersect. Therefore,

there does not exists an equilibrium with recourse. The main driver of the lack of equilibrium is the

discontinuity in the best response function. The discontinuity is due to the fact that the revenue of

each firm is a multi-modal function of its price at the first time period. On the right side of Figure

1, we show the revenue of the first firm as a function of its price at the first time period, when the

price of the second firms is fixed at 2.2. So, firm 1 can jump from one mode to another based on

the price of the second firm. Considering the parameters αti = 4, β1
i = 5, β2

i = 2, γ1
i,j = 0.1, γ2

i,j = 1

and ci = 5 for all i ∈ {1, 2}, j ∈ {1, 2} \ {i} and t ∈ {1, 2}, Figure 2 shows the best response of

each firm at the first time period as a function of the price charged by the other firm. The best

response functions intersect at two points, indicating multiple equilibria with recourse.

4 An Approximate Equilibrium

If the strategy {P ti (·) : t ∈ T} chosen by each firm i cannot increase the revenue of firm i by

more than ε given the the other firms use the strategies P−i, then we say that the price strategies

{P t : t ∈ T} chosen by the firms is an ε-equilibrium with recourse. Since there may not exist an
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Figure 2: Best response of each firm when there are multiple equilibria with recourse.

equilibrium with recourse or there may be multiple equilibria with recourse, we focus on ε-equilibria

with recourse. We consider a low influence regime, where, roughly speaking, the price charged by a

firm affects its demand more than the prices charged by each of the other firms. In particular, letting

M = maxi∈N,t∈T
∑

j 6=i γ
t
i,j/β

t
i and noting the assumption that

∑
j 6=i γ

t
i,j < βti for all i ∈ N , t ∈ T , we

have M < 1. We consider the regime where the price charged by a firm affects its demand so much

more than the prices charged by each of the other firms such that we have γti,j/β
t
i < (1/M)−1. When∑

j 6=i γ
t
i,j/β

t
i < 1 and the number of firms is large, we expect this assumption to hold. For example,

if we have a symmetric setting, where the parameters related to each firm are the same, then

under the assumption that
∑

j 6=i γ
t
i,j < βti , we have γti,j/β

t
i < 1/(n − 1), in which case, the low

influence regime naturally holds as the number of firms gets large. In the low influence regime, we

show that the equilibrium without recourse studied in the previous section is an ε-equilibrium with

recourse. Intuitively speaking, this result uses the fact that if γti,j/β
t
i is small, then any deviation

of a firm from a given price trajectory has little influence on the prices of the other firms in the

subsequent time periods. In the next lemma, we formalize this idea. Throughout the rest of this

section, we use µ = maxi∈N, j∈N\{i}, t∈T γ
t
i,j/β

t
i and β̄ = maxi∈N, t∈T β

t
i/mini∈N, t∈T β

t
i . Note that µ

is expected to be small in the low influence regime.

Lemma 4 Fixing the prices p̂1 charged by the firms at the first time period, let the prices

{p̂t : t ∈ T \ {1}} form the equilibrium without recourse in the remaining portion of the selling

horizon. Define the prices p̃1 at the first time period as p̃1
i = p̂1

i + δ and p̃1
j = p̂j for all j ∈ N \ {i}

for some δ ≥ 0. Fixing the prices p̃1 charged by the firms at the first time period, let the prices

{p̃t : t ∈ T \ {1}} form the equilibrium without recourse in the remaining portion of the selling

horizon. If we have µ < (1/M)− 1, then maxj 6=i, t∈T\{1} |p̂tj − p̃tj | ≤
2µ β̄ δ

1−M−Mµ .

Proof. We consider the problem over the time periods T \ {1} where the inventory for each firm `

at the second time period is given by c` −D1
` (p̃

1). By the discussion that follows Theorem 3, if we

start with any set of prices for the firms at the initial iteration and iteratively we compute the best
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response of each firm to prices at the previous iteration, then we reach the equilibrium without

recourse. Therefore, to compute {p̃t : t ∈ T \ {1}}, we consider the problem over the time periods

T \ {1} with the inventory of each firm ` at the second time period given by c`−D1
` (p̃

1) and starting

with the prices {p̂t : t ∈ T \{1}} at the initial iteration, we iteratively compute the best response of

each firm to the prices at the previous iteration. Letting {p̃t,k : t ∈ T \ {1}} be the price trajectories

for the firms at iteration k, we know that limk→∞ p̃t,k` = p̃t` for all ` ∈ N , t ∈ T \ {1}. Therefore,

for all t ∈ T \ {1} and ` ∈ N , we have |p̂t` − p̃t`| = |p̂t` − p̃
t,1
` +

∑∞
k=1(p̃t,k` − p̃

t,k+1
` )| ≤∑∞

k=1 |p̃
t,k
` − p̃

t,k+1
` |, where the inequality uses the fact that p̃t,1` = p̂t`. In this case, to bound

|p̂t` − p̃t`|, we can bound |p̃t,k` − p̃
t,k+1
` | for all k = 1, 2, . . . and add up the bounds on the

latter quantity. We proceed to bounding |p̃t,k` − p̃t,k+1
` |. By definition, the price trajectory

{p̃t,k+1
` : t ∈ T \ {1}} of firm ` at iteration k + 1 is the best response of firm ` to the price

trajectories {p̃t,k−` : t ∈ T \ {1}} of the other firms at iteration k. In this case, Theorem 3

implies that |p̃t,k+1
` − p̃t,k` | ≤ maxt∈T\{1}{

∑
j 6=` γ

t
`,j |p̃

t,k
j − p̃

t,k−1
j |/βt`} for all ` ∈ N , t ∈ T \ {1},

k = 2, 3, . . .. For notational brevity, we let Φk
` = maxt∈T\{1}{|p̃

t,k+1
` − p̃t,k` |} so that the last

inequality yields Φk
` ≤ maxt∈T\{1}

∑
j 6=` γ

t
`,j Φk−1

j /βt` for all ` ∈ N , k = 2, 3, . . .. Using the inequality

Φk
` ≤ maxt∈T\{1}

∑
j 6=` γ

t
`,j Φk−1

j /βt` for firm ` = j with j 6= i and noting the definitions of M and

µ, it follows that

Φk
j ≤ max

t∈T\{1}

{∑
`∈N\{j,i} γ

t
j,` Φk−1

`

βtj
+
γtj,i Φk−1

i

βtj

}
≤M max

`∈N\{j,i}

{
Φk−1
`

}
+ µΦk−1

i (5)

for all j 6= i and k = 2, 3, . . .. Using the inequality Φk
` ≤ maxt∈T\{1}

∑
j 6=` γ

t
`,j Φk−1

j /βt` again for firm

` = i, we get Φk
i ≤ maxt∈T\{1}

∑
j 6=i γ

t
i,j Φk−1

j /βti ≤ M maxj 6=i Φk−1
j for all k = 2, 3, . . .. If we use

the last inequality in (5), then for all j 6= i and k = 3, 4, . . ., we have Φk
j ≤M max`∈N\{j,i}{Φk−1

` }+

Mµ maxj 6=i{Φk−2
j }. So, letting Θk = maxj 6=i Φk

j , the last inequality yields

Θk ≤MΘk−1 +MµΘk−2

for all k = 3, 4, . . .. Adding the inequality above over all k = 3, 4, . . ., we obtain
∑∞

k=3 Θk ≤
M
∑∞

k=2 Θk + Mµ
∑∞

k=1 Θk, which is equivalent to
∑∞

k=1 Θk ≤ M
∑∞

k=2 Θk + Mµ
∑∞

k=1 Θk +

Θ1 + Θ2 = (M + Mµ)
∑∞

k=1 Θk + (1 −M) Θ1 + Θ2. Rearranging the terms in the last chain of

inequalities, we get
∑∞

k=1 Θk ≤ ((1−M) Θ1 + Θ2)/(1−M −Mµ).

Therefore, if we can bound Θ1 and Θ2, then we can bound
∑∞

k=1 Θk. When we increase the price

of firm i at the first time period by δ, the inventory of firm i at the second time period changes by at

most β1
i δ and the inventory of firm j 6= i at the second time period changes by at most γ1

j,i δ. In the

appendix, Lemma 8 shows that if we fix the price trajectories of the firms other than firm i, then the

best response of firm i, when viewed as a function of its initial inventory, is Lipschitz with constant

1/βmin, where we let βmin = mini∈N, t∈T β
t
i . Note that the best response of firm i does not depend

on the inventories of the other firms, since the price trajectories of the other firms is fixed. By

definition, if we consider the problem over the time periods T \{1} with the inventory of each firm `

at the second time period given by c`−D1
` (p̂

1), by definition, {p̂t` : t ∈ T \{1}} is the best response
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to the price trajectories {p̂t−` : t ∈ T \ {1}}. Also, if we consider the problem over the time periods

T \{1} with the inventory of each firm ` at the second time period given by c`−D1
` (p̃

1), by definition,

{p̃t,2` : t ∈ T \ {1}} is the best response to the price trajectories {p̃t,1−` : t ∈ T \ {1}}. Since the price

trajectories {p̂t−` : t ∈ T \ {1}} and {p̃t,1−` : t ∈ T \ {1}} are the same, Lemma 8 in the appendix

implies that |p̃t,2` − p̃
t,1
` | = |p̃

t,2
` − p̂

t
`| ≤ |(c` −D1

` (p̃
1))− (c` −D1

` (p̂
1))|/βmin for all t ∈ T \ {1}. As

discussed at the beginning of this paragraph, the expression on the right side of the last inequality

is bounded by β1
i δ when ` = i and bounded by γ1

j,i δ when ` = j with j 6= i. Therefore, we obtain

|p̃t,2i − p̃
t,1
i | ≤ β1

i δ/βmin ≤ β̄ δ and |p̃t,2j − p̃
t,1
j | ≤ γ1

j,i δ/βmin ≤ β̄ µ δ for all j 6= i. The second one

of the last two inequalities yields Θ1 = maxj 6=i, t∈T\{1}{|p̃
t,2
j − p̃

t,1
j |} ≤ µ β̄ δ. The first one of the

last two inequalities yields Φ1
i = maxt∈T\{1}{|p̃

t,2
i − p̃

t,1
i |} ≤ β̄ δ, in which case, noting (5), we get

Θ2 = maxj 6=i{Φ2
j} ≤M Θ1 +µΦ1

i ≤Mµ β̄ δ+µ β̄ δ. Thus, Θ1 and Θ2 are respectively bounded by

µ β̄ δ and (1 +M)µ β̄ δ. In this case, for all j 6= i and t ∈ T \ {1}, we have

|p̂tj − p̃tj | ≤
∞∑
k=1

|p̃t,k+1
j − p̃t,kj | ≤

∞∑
k=1

max
j 6=i,t∈T\{1}

{
|p̃t,k+1
j − p̃t,kj |

}
=

∞∑
k=1

Θk

≤ (1−M) Θ1 + Θ2

1−M −Mµ
≤ (1−M)µ β̄ δ + (1 +M)µ β̄ δ

1−M −Mµ
≤ 2µ β̄ δ

1−M −Mµ
,

where the first inequality follows from the discussion at the beginning of the proof and the equality

is by the definition of Θk and Φk
` . �

Consider the problem over the time periods κ, . . . , τ when the inventories of the firms at time

period κ are given by x = (x1, . . . , xn). We use pN,ti (κ,x) to denote the price charged by firm i at

time period t in the equilibrium without recourse. We consider the following strategy with recourse

for firm i. If the inventories of the firms at time period t is given by x, then firm i charges the price

pN,ti (t,x). In other words, letting PR,ti (·) be the strategy function of firm under this strategy with

recourse, we have PR,ti (x) = pN,ti (t,x). Using PR,t = (PR,t1 (·), . . . , PR,tn (·)) to capture the strategies

of all of the firms at time period t and c = (c1, . . . , cn) to denote the inventories of the firms at the

first time period, note that if all firms use the strategies {PR,t : t ∈ T} over the selling horizon,

then the price charged by each firm i at each time period t is given by pN,ti (1, c), which is precisely

the prices corresponding to the equilibrium without recourse when we consider the problem over

the time periods T with the inventories of the firms at the first time period given by c. However, if

one of the firms deviate from the strategies {PR,t : t ∈ T} at a time period, then the prices charged

by the firms will be different from those in the equilibrium without recourse. Therefore, it is not

generally true that the strategies {PR,t : t ∈ T} correspond to an equilibrium with recourse. In the

remainder of this section, we show that the strategies {PR,t : t ∈ T} correspond to an ε-equilibrium

without recourse in the low influence regime. In the next lemma, we show that if firm i unilaterally

deviates from the strategy {PR,ti (·) : t ∈ T}, but the other firms use the strategies {PR,t : t ∈ T},
then firm i does not increase its revenue by more than a simple function of µ.

In the proof of the next lemma, we make use of the fact that there is a natural upper

bound on the prices that can be used by each firm. As discussed in Section 2, we restrict
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the strategy space of the firms such that αti − βti p
t
i +

∑
j 6=i γ

t
i,j p

t
j ≥ 0 for all i ∈ N . Noting

the definition of M , for all i ∈ N , we get pti ≤ αti/β
t
i +

∑
j 6=i γ

t
i,j p

t
j/β

t
i ≤ maxi∈N{αti/βti} +

maxi∈N{
∑

j 6=i γ
t
i,j/β

t
i} × maxj∈N{ptj} ≤ maxi∈N{αti/βti} + M maxj∈N{ptj}, which implies that

maxi∈N{pti} ≤ maxi∈N{αti/βti} + M maxj∈N{ptj}. In this case, we obtain the upper bound on

the maximum price given by maxi∈N{pti} ≤ maxi∈N{αti/βti}/(1−M).

Lemma 5 Assume that the strategies of all of the firms are {PR,t : t ∈ T}. Let ΠN
i be the revenue

of firm i under these strategies. Also, assume that the strategies of the firms other than firm i are

{PR,t
−i : t ∈ T}, but firm i deviates to charge an arbitrary price at the first time period and uses the

strategy {PR,ti (·) : t ∈ T \ {1}} at the other time periods. Let ΠD
i be the revenue of firm i under

this strategy. Letting Pmax = maxi∈N{αti/βti}/(1−M) and βmax = maxi∈N,t∈T β
t
i , we have

ΠD
i −ΠN

i ≤
2 β̄ Mβmax P

2
max (τ − 1)µ

1−M −Mµ
.

Proof. We let p̂ti be the price charged by firm i at time period t in the equilibrium without

recourse. As discussed right before the lemma, given that all of the firms use the strategy

{PR,t : t ∈ T}, the realized prices are {p̂ti : i ∈ N, t ∈ T}. We use q̂1
i to denote the arbitrary price

charged by firm i at the first time period. Given that firm i uses the strategy {PR,ti (·) : t ∈ T \{1}} at

the other time periods and the other firms use the strategy {PR,t
−i : t ∈ T}, we let {q̂ti : i ∈ N, t ∈ T}

be the realized prices. For each firm j 6= i, note that q̂1
j = PR,1j (c) = pN,1j (1, c) = p̂1

j . Also, by

Lemma 4, for all j 6= i and t ∈ T \ {1}, we have |p̂tj − q̂tj | ≤ 2µ β̄ |p̂1
i − q̂1

i |/(1 − M − Mµ) ≤
2µ β̄ Pmax/(1−M −Mµ). We use πti(p

t
i,p

t
−i) to denote the revenue of firm i at time period t when

firm i charges the price pti and the other firms charge the price pt−i = (pt1, . . . , p
t
i−1, p

t
i+1, . . . , p

t
n). We

have ΠN
i =

∑
t∈T π

t
i(p̂

t
i, p̂

t
−i) and ΠD

i =
∑

t∈T π
t
i(q̂

t
i , q̂

t
−i). In this case, we get

ΠN
i =

∑
t∈T

πti(p̂
t
i, p̂

t
−i) ≥

∑
t∈T

πti(q̂
t
i , p̂

t
−i) = ΠD

i −
∑

t∈T\{1}

πti(q̂
t
i , q̂

t
−i) +

∑
t∈T\{1}

πti(q̂
t
i , p̂

t
−i),

where the inequality uses the fact that {p̂ti : t ∈ T} is the best response of firm i to the prices

{p̂t−i : t ∈ T} and the second equality uses the fact that q̂1
−i = p̂1

−i. Using Dt
i(p

t
i,p

t
−i) to denote

the demand of firm i at time period t when firm i charges the price pti and the other firms charge

the prices pt−i, by the inequality above, we get ΠD
i − ΠN

i ≤
∑

t∈T\{1} |πti(q̂ti , q̂t−i)− πti(q̂ti , p̂t−i)| =∑
t∈T\{1} |q̂ti Dt

i(q̂
t
i , q̂

t
−i)− q̂tiDt

i(q̂
t
i , p̂

t
−i)|. Since Dt

i(q̂
t
i , q̂

t
−i)−Dt

i(q̂
t
i , p̂

t
−i) = (αti+β

t
i q̂

t
i−
∑

j 6=i γ
t
i,j q̂

t
j)−

(αti + βti q̂
t
i −

∑
j 6=i γ

t
i,j p̂

t
j) =

∑
j 6=i γ

t
i,j (p̂tj − q̂tj), the last chain of inequalities yields ΠD

i − ΠN
i ≤∑

t∈T\{1} q̂
t
i

∑
j 6=i γ

t
i,j |q̂tj − p̂tj | ≤

∑
t∈T\{1} PmaxMβti maxj 6=i |q̂tj − p̂tj |, where we use the fact that

q̂ti ≤ Pmax and M ≥
∑

j 6=i γ
t
i,j/β

t
i . At the beginning of the proof, we show that |p̂tj − q̂tj | ≤

2µ β̄ Pmax/(1 − M − Mµ) for all j 6= i and t ∈ T \ {1}. In this case, we obtain ΠD
i − ΠN

i ≤∑
t∈T\{1} PmaxMβti maxj 6=i{|q̂tj − p̂tj |} = 2 β̄MβmaxP

2
max (τ − 1)µ/(1−M −Mµ). �

In the next theorem, we show that the strategy {PR,t : t ∈ T} is an ε-equilibrium with recourse,

when the number of firms is large so that µ is expected to be small.
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Theorem 6 Assume that the strategies of all of the firms are {PR,t : t ∈ T}. Let ΠN
i be the

revenue of firm i under these strategies. Also, assume that the strategy of the firms other than firm

i are {PR,T
−i : t ∈ T}, but firm i uses an arbitrary strategy over the whole selling horizon. Let ΠA

i be

the revenue of firm i under these strategies. Letting Γµ = β̄ Mβmax P
2
max/(1−M −Mµ), we have

ΠA
i −ΠN

i ≤ Γµ τ (τ − 1)µ.

Proof. Consider the problem over the time periods κ, . . . , τ . We use Revκi (P κi (·), . . . , P τi (·),P−i,x)

to denote the revenue of firm i over the time periods κ, . . . , τ , when the firm uses the

strategy {P κi (·), . . . , P τi (·)}, the other firms use the strategy P−i and the inventories at time

period κ are given by x. We let {Qti(·) : t ∈ T} be an arbitrary strategy used by firm

i. We use induction over the time periods to show that Revκi (Qκi (·), . . . , Qτi (·),PR
−i,x) −

Revκi (PR,κi (·), . . . , PR,τi (·),PR
−i,x) ≤ Γµ (τ − κ + 1) (τ − κ)µ . In this case, the result follows

by noting that ΠA
i = Rev1

i (Q
1
i (·), . . . , Qτi (·),PR

−i,x), ΠN
i = Rev1

i (P
R,1
i (·), . . . , PR,τi (·),PR

−i,x) and

using the last inequality with κ = 1. Consider the case κ = τ . We have Revτi (Qτi (·),PR
−i,x) −

Revτi (PR,τi (·),PR
−i,x) ≤ 0, where the inequality follows form the fact that PR,τi (x) is the best

response of firm i to the prices PR,t
−i (x). Therefore the result holds for κ = τ . Assuming that the

result holds for κ = t+ 1, we show that the result holds for κ = t. Using Dt(pti,p
t
−i) to denote the

vector of demands for the firms when the prices are (pti,p
t
−i) and letting x′ = x−Dt(Qti(x),P t

−i(x)),

observe that Revti(Q
t
i(·), Q

t+1
i (·), . . . , Qτi (·),PR

−i,x) − Revti(Q
t
i(·), P

R,t+1
i (·), . . . , PR,τi (·),PR

−i,x) =

Revt+1
i (Qt+1

i (·), . . . , Qτi (·),PR
−i,x

′) − Revt+1
i (PR,t+1

i (·), . . . , RR,τi (·),PR
−i,x

′), since all firms make

the same pricing decisions at time period t in the two revenue expressions on the left

side of the equality. By the induction assumption, the right side of the last equality is

bounded by Γµ (τ − t) (τ − t − 1)µ. Also, considering Revti(Q
t
i(·), P

R,t+1
i (·), . . . , RR,τi (·),PR

−i,x) −
Revti(P

R,t
i (·), PR,t+1

i (·) . . . , PR,τi (·),PR
−i,x), this expression is the change in the revenue of firm i

when firm i deviates from the strategy {PR,ti (·) : t ∈ T} only at the initial period and there are

τ − t + 1 time periods in the problem. By Lemma 5, this expression is bounded by 2 Γµ (τ − t)µ.

In this case, noting that

Revti(Q
t
i(·), . . . , Qτi (·),PR

−i,x)− Revti(P
R,t
i (·), . . . , PR,τi (·),PR

−i,x)

= Revti(Q
t
i(·), Qt+1

i (·), . . . , Qτi (·),PR
−i,x)− Revti(Q

t
i(·), P

R,t+1
i (·), . . . , RR,τi (·),PR

−i,x)

+ Revti(Q
t
i(·), P

R,t+1
i (·), . . . , RR,τi (·),PR

−i,x)− Revti(P
R,t
i (·), . . . , PR,τi (·),PR

−i,x),

the two differences on the right side above are bounded by Γµ (τ − t) (τ − t+ 1)µ and 2 Γµ (τ − t)µ.

Since Γµ (τ − t) (τ − t− 1)µ+ 2 Γµ (τ − t)µ = Γµ (τ − t+ 1) (τ − t)µ, the result holds for κ = t. �

We observe that as µ approaches zero, Γµ τ (τ − 1)µ approaches zero as well. Therefore, by

the theorem above, if we are in the low influence regime, then no firm can improve its revenue

significantly by deviating from the policy {PR,t : t ∈ T}, which implies that {PR,t : t ∈ T} is an

ε-equilibrium with recourse. As discussed earlier, the price trajectory realized under the strategy

{PR,t : t ∈ T} is precisely the price trajectory of the equilibrium without recourse.
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5 Conclusions

We studied a competitive pricing problem. In equilibrium without recourse, each firm commits to a

price trajectory, whereas in equilibrium with recourse, each firm can adjust its price at the current

time period based on the inventories of all of the firms. Although the demand is a deterministic

function of the prices so that there is no uncertainty in the responses of the firms, we showed

that the two equilibrium concepts can be quite different. While the equilibrium without recourse

always uniquely exists, the equilibrium with recourse may not exist or may not be unique. Our

uniqueness proof for the equilibrium without recourse uses a contraction property. A natural

research direction is to extend such contraction properties to demand models other than the linear

demand model. Also, it would be useful to see whether an analogue of equilibrium without recourse

can be defined under stochastic demand and check whether it uniquely exists.
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A Appendix: Omitted Results

In the following lemma, we show elementary properties for the function Gi(·,p−i). We use these

properties throughout the paper.

Lemma 7 For fixed p−i, let ν∗ = inf{ν ∈ <+ : Ti(ν,p−i) = ∅}. The function Gi(·,p−i) satisfies

the following properties.

(a) The function Gi(ν,p−i) is continuous in ν ∈ (0,∞).

(b) The function Gi(ν,p−i) is strictly decreasing in ν ∈ [0, ν∗) and constant in ν ∈ [ν∗,∞)

satisfying Gi(ν,p−i) = −2 ci for all ν ∈ [ν∗,∞).

(c) There exists unique ν̂ ∈ [0,∞) satisfying Gi(ν̂,p−i) = 0.

Proof. First, we show Part a. Fix ν > 0 and ε > 0 small enough that ν − ε > 0. The definition

of Ti(ν,p−i) implies that Ti(ν − ε,p−i) ⊇ Ti(ν,p−i). Also, if t ∈ Ti(ν − ε,p−i) \ Ti(ν,p−i), then we

have ν ≥ αt
i+

∑
j 6=i γ

t
i,j p

t
j

βt
i

> ν− ε, which implies that we have 0 ≥ αti−βti ν+
∑

j 6=i γ
t
i,j p

t
j > −βti ε. For

notational brevity, we let T +
i = Ti(ν,p−i), T −i = Ti(ν − ε,p−i) and Ui = T −i \ T

+
i so that T −i =

T +
i ∪ Ui. Noting the definition of Gi(ν,p−i), we have

Gi(ν,p−i)−Gi(ν − ε,p−i)

=

{ ∑
t∈T +

i

(
αti − βti ν +

∑
j 6=i

γti,j p
t
j

)
− 2 ci

}
−

{ ∑
t∈T −i

(
αti − βti (ν − ε) +

∑
j 6=i

γti,j p
t
j

)
− 2 ci

}

= −
∑
t∈Ui

(
αti − βti ν +

∑
j 6=i

γti,j p
t
j

)
−
∑

t∈T +
i ∪ Ui

βti ε,

Since 0 ≥ αti−βti ν+
∑

j 6=i γ
t
i,j p

t
j > −βti ε for all t ∈ Ui, the equality above yields −

∑
t∈T +

i ∪ Ui
βti ε ≤

Gi(ν,p−i)−Gi(ν − ε,p−i) ≤ −
∑

t∈T +
i
βti ε, so that Gi(ν,p−i) is continuous in ν ∈ (0,∞).

Second, we show Part b. Fix ν ∈ (0, ν∗), in which case, by the definition of ν∗, we have

Ti(ν,p−i) 6= ∅. In the proof of Part a, we show that Gi(ν,p−i)−Gi(ν−ε,p−i) ≤ −
∑

t∈Ti(ν,p−i)
βti ε

for all ε > 0 small enough that ν − ε > 0. Since βti > 0 for all t ∈ T and Ti(ν,p−i) 6= ∅, the last

inequality implies that Gi(ν − ε,p−i) > Gi(ν,p−i) for all ν ∈ (0, ν∗) and ε > 0 small enough that

ν−ε > 0. Also, noting that αti > 0 and βti > 0, by the definition of Ti(ν,p−i), we have Ti(ε,p−i) = T

for small enough ε > 0. In this case, by the definition of Gi(ν,p−i), we obtain Gi(0,p−i) ≥∑
t∈T (αti +

∑
j 6=i γ

t
i,j p

t
j) − 2 ci >

∑
t∈T (αti − βti ε +

∑
j 6=i γ

t
i,j p

t
j) − 2 ci = Gi(ε,p−i), which implies

that Gi(0,p−i) > Gi(ε,p−i) for small enough ε > 0. Therefore, we have Gi(ν − ε,p−i) > Gi(ν,p−i)

for all ν ∈ (0, ν∗) and ε > 0 small enough that ν − ε > 0. Also, we have Gi(0,p−i) > Gi(ε,p−i)

for small enough ε > 0. The last two statements establish that Gi(ν,p−i) is strictly decreasing

in ν ∈ [0, ν∗). Lastly, fix ν ∈ (ν∗,∞). By the definition of ν∗, we have Ti(ν,p−i) = ∅, in which

case, by the definition of Gi(ν,p−i), we obtain Gi(ν,p−i) = −2 ci. Since Gi(ν,p−i) = −2 ci for all
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ν ∈ (ν∗,∞) and Gi(ν,p−i) is continuous in ν ∈ (0,∞), it must be the case that Gi(ν
∗,p−i) = −2 ci

as well. Therefore, we have Gi(ν,p−i) = −2 ci for all ν ∈ [ν∗,∞).

Third, we show Part c. Assume that Gi(0,p−i) > 0. Since αti > 0 and βti > 0, we have

Ti(0,p−i) = T by the definition of Ti(ν,p−i). In this case, by the definition of Gi(ν,p−i), we

get Gi(0,p−i) =
∑

t∈T (αti +
∑

j 6=i γ
t
i,j p

t
j) − 2 ci > 0. Similarly, since αti > 0 and βti > 0, we

have Ti(ε,p−i) = T for small enough ε > 0. In this case, by the definition of Gi(ν,p−i), we

have Gi(ε,p−i) =
∑

t∈T (αti − βti ε+
∑

j 6=i γ
t
i,j p

t
j) − 2 ci. Therefore, we have limε→0Gi(ε,p−i) =

Gi(0,p−i), indicating thatGi(ν,p−i) is continuous at ν = 0. Noting Part a, it follows thatGi(ν,p−i)

is continuous in ν ∈ [0,∞). Since Gi(ν,p−i) is strictly decreasing in ν ∈ [0, ν∗) and Gi(v,p−i) < 0

for all ν ∈ [ν∗,∞) by Part b and Gi(ν,p−i) is continuous in ν ∈ [0,∞) with Gi(0,p−i) > 0, there

exists unique ν̂ such that Gi(ν̂,p−i) = 0. Next, assume that Gi(0,p−i) = 0. Clearly ν̂ = 0 satisfies

Gi(ν̂,p−i) = 0. Also, since Gi(ν,p−i) is strictly decreasing in ν ∈ [0, ν∗) and constant at a negative

value for ν ∈ [ν∗,∞) by Part b, there cannot be another ν̂ such that Gi(ν̂,p−i) = 0. �

In the next lemma, we show that if we fix the price trajectories of the firms other than firm i,

then the best response of firm i, when viewed as a function of its initial inventory, is Lipschitz.

Lemma 8 Fix the prices p−i charged by the firms other than firm i and let {pti(ci) : t ∈ T}
be the optimal solution to problem (1) as a function of the initial inventory of firm i. Letting

βmin = mini∈N, t∈T β
t
i , for any two initial inventory levels ĉi and c̃i, we have

max
t∈T

{
|pti(ĉi)− pti(c̃i)|

}
≤ 1

βmin
|ĉi − c̃i|.

Proof. Since the prices p−i charged by the firms other than firm i are fixed and we work with

two different initial inventory levels, we drop the argument p−i from Gi(ν,p−i) and make the

dependence of Gi(ν,p−i) on ci explicit. Thus, we use Gi(ν, ci) to denote Gi(ν,p−i) throughout

the proof. For notational brevity, we let p̂ti = pti(ĉi) and p̃ti = pti(c̃i). Noting Lemma 2, we let v̂i

and ṽi be such that Gi(v̂i, ĉi) = 0 and Gi(ṽi, c̃i) = 0. Without loss of generality, we assume that

v̂i ≥ ṽi. Since Gi(ν, ci) is non-increasing in ν ∈ [0,∞) by Lemma 7 and Gi(ṽi, c̃i) = 0, we have

Gi(v̂i, c̃i) ≤ 0. Repeating the same argument in the first paragraph of the proof of Theorem 3, we

also get |p̂ti − p̃ti| ≤ 1
2(v̂i − ṽi) for all t ∈ T . The only difference is that we have Mi = 0 in this

context since the prices charged by the firms other than firm i are fixed. If v̂i ≤ 2 |ĉi − c̃i|/βmin,

then the last inequality implies that |p̂ti − p̃ti| ≤ |ĉi − c̃i|/βmin, which is the result that we want to

show! In the rest of the proof, we proceed under the assumption that v̂i > 2 |ĉi − c̃i|/βmin.

Noting that Gi(v̂i, ĉi) = 0 and Gi(ν, ĉi) < 0 for all ν ∈ [ν∗,∞) by Lemma 7, the definition of ν∗

implies that Ti(v̂i,p−i) 6= ∅. If, otherwise, Ti(v̂i,p−i) = ∅, then we obtain ν∗ ≤ v̂i by the definition

of ν∗, which contradicts the fact that Gi(v̂i, ĉi) = 0, Gi(ν
∗, ĉi) < 0 and Gi(·, ĉi) is decreasing. Also,

since v̂i > 2 |ĉi − c̃i|/βmin ≥ 0, by the definition of Gi(ν, ci), we obtain Gi(v̂i, c̃i) − Gi(v̂i, ĉi) =

−2 (c̃i − ĉi). Noting that Gi(v̂i, ĉi) = 0, the last equality yields Gi(v̂i, c̃i) = 2 (c̃i − ĉi). In the proof
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of Part a of Lemma 7, we show that Gi(ν, ci)−Gi(ν − ε, ci) ≤ −
∑

t∈Ti(ν,p−i)
βti ε for all ν ∈ (0,∞)

and ε > 0 small enough that ν − ε > 0. Using this inequality with ν = v̂i and ci = c̃i, we obtain

Gi(v̂i−ε, c̃i) ≥ Gi(v̂i, c̃i)+
∑

t∈Ti(v̂i,p−i)
βti ε. Using the last inequality with ε = 2 |ĉi− c̃i|/βmin, since

Ti(v̂i,p−i) 6= ∅ and Gi(v̂i, c̃i) = 2 (c̃i − ĉi), we get

Gi

(
v̂i −

2

βmin
|ĉi − c̃i|, c̃i

)
≥ 2 (c̃i − ĉi) + βmin

2

βmin
|ĉi − c̃i| ≥ 0 = Gi(ṽi, c̃i).

Noting that Gi(ν, ci) is strictly decreasing in ν ∈ [0, ν∗) and constant at a negative value for

ν ∈ [ν∗,∞) by Part b of Lemma 7, having Gi(v̂i − 2
βmin
|ĉi − c̃i|, c̃i) ≥ 0 = Gi(ṽi, c̃i) implies that

v̂i − 2
βmin
|ĉi − c̃i| ≤ ṽi. So, we obtain |p̂ti − p̃ti| ≤ 1

2(v̂i − ṽi) ≤ 1
βmin
|ĉi − c̃i| for all t ∈ T . �
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