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We consider network revenue management problems with flexible products. In our problem setting, we

have a network of resources with limited capacities. To each customer arriving into the system, we offer an

assortment of products. The customer chooses a product within the offered assortment or decides to leave

without a purchase. The products are flexible in the sense that there are multiple possible combinations of

resources that we can use to serve a customer with a purchase for a particular product. We refer to each

such combination of resources as a route. The service provider chooses the route to serve a customer with a

purchase for a particular product. Such flexible products occur, for example, when customers book at-home

cleaning services, but leave the timing of service to the company that provides the service, as long as the

service is within their preferred morning or afternoon hours. Our goal is to find a policy to decide which

assortment of products to offer to each customer to maximize the total expected revenue, while making sure

that there are always feasible route assignments for the customers with purchased products. We start by

considering the case where we make the route assignments at the end of the selling horizon. The dynamic

programming formulation of the problem is significantly different from its analogue without flexible products,

as the state variable keeps track of the number of purchases for each product, rather than the remaining

capacity of each resource. Letting L be the maximum number of resources in a route, we give a policy that is

guaranteed to obtain at least 1/(1+L) fraction of the optimal total expected revenue. To our knowledge, this

is the first performance guarantee for network revenue management with flexible products. We extend our

policy to the case where we make the route assignments periodically over the selling horizon and maintain

the same performance guarantee. Through computational experiments, we demonstrate that our policies

perform well and quantify the benefit from making the route assignments with different frequencies.

1. Introduction

In network revenue management problems, we manage the limited capacities of resources to serve

the demand for products that arrive randomly over time. These problems find applications in

areas as diverse as air travel, hospitality, media advertising and cloud computing. In air travel,

for example, the resources take the form of capacities on the flight legs, whereas the products

take the form of itineraries that can potentially use multiple flight legs. In the traditional network

revenue management setting, the products are inflexible in the sense that the sale of a product

consumes the capacities of a fixed combination of resources that depends on the product. The sale

of a ticket for a particular itinerary, for example, consumes the capacities of the flight legs in the

itinerary. Over the last decade or so, partly fueled by the larger role that online retail and the

sharing economy started playing in our lives and partly fueled by the need of service providers to

utilize their resources more effectively, offering flexible products became more common. In network
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revenue management problems with flexible products, there are multiple possible combinations of

resources that we can use to serve a customer with a purchase for a particular product. There are

many examples of flexible products in air travel, hospitality, online retail and the sharing economy.

Airlines sell discount tickets for a specific origin-destination pair and departure date, but do not

specify the exact itinerary the customer will take until a day or two before the departure time.

Online travel agencies sell hotel rooms for a particular star rating and geographic area, but disclose

the specific property the customer is assigned to only after the purchase happens. Online retailers

sell clothing items but do not specify the color of the item the customer will get in return for a

discount. Providers of at-home cleaning or pet walking services allow their customers to specify

whether they prefer morning or afternoon hours, but the service provider gets to choose the time of

service. Especially in hospitality and online retail, flexible products are often referred to as opaque

products. In many applications, flexible and inflexible products are offered together with a premium

attached to inflexible ones. In some settings, the service provider needs to decide which combination

of resources to use to serve a flexible product purchase right after the purchase happens, which is

usually the case for hospitality and online retail. In other settings, the service provider can delay

the decision, which is usually the case for airlines or at-home service providers.

We consider network revenue management problems with flexible products. We have a network of

resources with limited capacities. To each customer arriving into the system, we offer an assortment

of products. The customer chooses a product within the offered assortment or decides to leave

without a purchase. The products are flexible in the sense that there are multiple combinations of

resources that we can use to serve a customer with a purchase for a particular product. Motivated

by airline applications, we refer to each combination of resources that we can use to serve a

customer as a route, but our model is general enough to encompass other applications discussed

in the previous paragraph. Our goal is to find a policy to decide which assortment of products

to offer to each customer to maximize the total expected revenue over the selling horizon, while

making sure that we always have routes with enough capacity to accommodate all customers with

a purchased product on their hands. We start by considering the case where we make the route

assignments at the end of the selling horizon, but we make extensions to the case where allow

making route assignments at any frequency throughout the selling horizon, including making the

route assignment decision for each customer right after her purchase. Our approach also allows

having inflexible products, along with flexible ones. In particular, an inflexible product can be

viewed as a flexible product that can be served only through a single possible route.

Contributions. Our main technical contribution is a policy that is guaranteed to obtain at

least 1/(1+L) fraction of the optimal total expected revenue, where L is the maximum number
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of resources in any route. The number of resources and products in practical applications can be

large, but the number of resources in a route is usually uniformly bounded. In airline applications,

the number of flights in an itinerary rarely exceeds two, yielding L= 2. In online retail, serving a

flexible product purchase uses the capacity of one product, yielding L= 1. Thus, our policy provides

a constant-factor guarantee when L is uniformly bounded. There are several challenges that we

needed to resolve to obtain this performance guarantee. Dynamic programming formulation of

the network revenue management problem with flexible products is significantly different from its

counterpart with only inflexible products. When we have only inflexible products, we know exactly

which resource capacities will be depleted by the product purchases right after each purchase

occurs, so the state variable in the dynamic program keeps track of the remaining capacity of

each resource. When we have flexible products, we do not know which resource capacities will

be depleted by the product purchases until we make the route assignment decisions. The route

assignment decisions may not happen until the end of the selling horizon, so the state variable in

the dynamic program needs to keep track of the number of purchases for each product.

Our approach is based on constructing approximations to the value functions. Due to the

significantly different nature of the dynamic programming formulation under flexible products, it is

not immediately clear how to construct a value function approximation. Considering the case with

only inflexible products, letting L be the set of resources, we can use w= (wi : i∈L) to capture the

state of the remaining resource capacities, where wi is the remaining capacity of resource i. At time

period t in the selling horizon, a reasonable value function approximation is of the form Ψ̂t(w),

where we expect Ψ̂t(w) to be monotone increasing and concave in wi. Monotonicity implies that

a larger remaining capacity should yield larger total expected revenue, whereas concavity implies

that each incremental unit of remaining capacity should yield smaller marginal total expected

revenue. Turning to our case with flexible products, letting J be the set of products, we can use

x= (xj : j ∈J ) to capture the state of the product purchases, where xj is the number of purchases

for product j. Letting W(x) be the set of all possible remaining resource capacities after making

the route assignment decisions for the product purchases x, the breakthrough for us was to use a

value function approximation of the form Ĵt(x) =maxw∈W(x) Ψ̂t(w).

Note that simply computing our value function approximation at a particular point requires

solving an optimization problem. Intuitively, by using this optimization problem, we convert the

value function approximation Ψ̂t(w), which is defined as a function of the remaining resource

capacities, into the value function approximation Ĵt(x), which is defined as a function of the

product purchases. The advantage of using the optimization problem to compute our value function

approximations is that there is vast literature on network revenue management without flexible
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products, guiding our choice of the approximation Ψ̂t(w), in which case, we use the optimization

problem to convert the value function approximation Ψ̂t(w) to the value function approximation

Ĵt(x) for our problem. To our knowledge, such a conversion idea does not appear in the literature

to obtain performance guarantees. The implicit assumption in using the optimization problem is

that even if we make the route assignment decisions at the end of the selling horizon, the total

expected revenue starting at time period t with product purchases x can be approximated by

making the route assignment decisions immediately to obtain the remaining resource capacities

w and focusing on the total expected revenue starting at time period t with remaining resource

capacities w. This assumption turns out to be adequate to get our performance guarantee.

There is work constructing value function approximations without flexible products. Ma et al.

(2020) use the so-called availability tracking value function approximations for problems without

flexible products. These approximations are functions of the remaining resource capacities. They

have one component for each product. The component that corresponds to a certain product

takes value zero when there is not enough remaining capacity on some resource to serve the

product. The value function approximation Ψ̂t(w) that we use in our optimization problem is also

an availability tracking approximation. We give an algorithm to calibrate the parameters of the

value function approximation Ψ̂t(w) such that the greedy policy with respect to the value function

approximation Ĵt(x) =maxw∈W(x) Ψ̂t(w) has a performance guarantee. In that sense, our work is

a generalization of Ma et al. (2020) to flexible products, but it is not a priori clear that we can

obtain a performance guarantee under flexible products after we distort the approximation Ψ̂t(w)

through the problem Ĵt(x) =maxw∈W(x) Ψ̂t(w). The idea of using the last optimization problem to

convert an approximation that is a function of remaining resource capacities to an approximation

that is a function of product purchases is the key original driver of our work and we believe that

it may find applications in other settings. Moreover, as far as we are aware, there are no available

performance guarantees for network revenue management with flexible products.

We show that our approach extends to the case where we periodically make the route assignment

decisions without waiting for the end of the selling horizon. We get the same performance guarantee

of 1/(1+L). This extension is not immediate either because the state variable under periodic route

assignments needs to keep track of the resource capacities consumed by the product purchases

for which we already made the route assignments, as well as the number of purchases for each

product for which we have not yet made the route assignments. We give computational experiments

in the settings of providing at-home cleaning or pet sitting services, as well as managing airline

bookings, to demonstrate that our policies perform well. Using the policy with periodic resource

assignments, we also computationally investigate the benefit from making route assignments with
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different frequencies. Frequent route assignments are customer-centric as the customers get to know

their flight itinerary, hotel property, product color or time of service without waiting for the end of

the selling horizon, but delayed route assignments are firm-centric, allowing the service provider to

utilize the resources more efficiently. Lastly, there are two sources of difficulty for network revenue

management with flexible resources. First, the state variable is a high-dimensional vector. Second,

when offering a product, we always need to check that we have routes with enough capacity to

accommodate all customers with a purchased product. This check needs to be made by any policy,

as it is an inherent part of dealing with flexible resources. Carrying out this check is NP-complete

and we rely on the strength of the modern integer programming solvers for this check, but our

approach fully addresses the source of difficulty due to the high-dimensional state variable.

Related Literature. There are a number of papers on revenue management problems with

flexible products. Gallego and Phillips (2004) give a stylized model with two flights between an

origin-destination pair and one flexible product, allowing the airline to assign the customers to

either of the flight legs. Gallego et al. (2004) study a linear programming approximation for network

revenue management with flexible products and give policies that are asymptotically optimal as

the resource capacities and expected demand are scaled linearly with the same rate. Gonsch et al.

(2014) build on the linear programming approximation to give heuristic policies under flexible

products. Koch et al. (2017) give a characterization of when it would be optimal to make the route

assignment of a customer as soon as the purchase occurs without necessarily waiting for the end

of the selling horizon. The policies in the last two papers do not have performance guarantees.

Upgradeable products are a form of flexible products, because the service provider may serve a

customer with a premium product when the originally purchased product is not available. Shumsky

and Zhang (2009) study the structure of the optimal policy when the customers can be

upgraded only one level above their original purchase. Gallego and Stefanescu (2009) use a linear

programming approximation to manage upgrades. Xu et al. (2011) consider a setting where the

customers decide whether to accept a substitute product and establish the concavity of the value

functions. Steinhardt and Gonsch (2012) give heuristic policies for managing upgrades, as well

as conditions under which it would be optimal to upgrade the customer as soon as the purchase

occurs, without waiting for the end of the selling horizon. Yu et al. (2015) characterize the structure

of the optimal policy under upgrades with multiple levels.

There is work on pricing and assortment optimization for opaque products. Fay and Xie (2008)

use a one-period model to quantify the benefit from offering an opaque product. Xiao and Chen

(2014) formulate a dynamic program for selling an opaque product and give upper and lower bounds

on the value functions. Fay and Xie (2015) use a two-period model to compare the implications of
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making the route assignment decisions after the demand uncertainty resolves to different extents.

Elmachtoub et al. (2015) study the optimal inventory and allocation policies in the presence

of opaque products. The papers so far in this paragraph focus on two resources, using which

one opaque product is offered. Elmachtoub et al. (2019) study the design of opaque products.

Elmachtoub and Hamilton (2021) use a single-period model to understand when offering opaque

products can make up for the expected revenues obtained by other pricing mechanisms that may

be perceived as unfair. Overbooking problems also resemble managing flexible products because

cancellations prevent the service provider from knowing which resource capacities will be used, so

their dynamic programming formulations keep track of the numbers of different product purchases,

rather than remaining resource capacities. Bertsimas and Popescu (2003) use a linear programming

approximation to make overbooking decisions over a network. Karaesmen and van Ryzin (2004)

study an overbooking problem over multiple flights between the same origin-destination pair,

where the excess demand from one flight can be shifted to another. Erdelyi and Topaloglu (2010)

heuristically decompose the overbooking problem over a flight network by resources.

Ma et al. (2020) establish the performance guarantee of 1/(1+L) without flexible products, but

as discussed earlier, due to the significantly different nature of the dynamic program under flexible

products, it is not clear how to extend this work to flexible products. In particular, the form of

the value functions under flexible products is not clear. As far as we are aware, our work is first to

provide performance guarantees under flexible products. Also, our problem is a stochastic version of

the set packing problem. Hazan et al. (2006) show that it is NP-hard to approximate a set packing

problem within a factor of Ω(logL/L), where L is the maximum number of elements in a set. Thus,

our performance guarantee is accurate up to a logarithmic factor in L. Baek and Ma (2022) extend

the 1/(1 + L) performance guarantee to the case where some of the resource constraints have a

matroid structure and the performance guarantee is independent of the constraints in the matroid

structure. There have been a number of recent papers on developing policies with performance

guarantees for revenue management problems, but these papers do not consider flexible products

or network of resources; see, for example, Alaei et al. (2012), Rusmevichientong et al. (2020), Ma

et al. (2021), Manshadi and Rodilitz (2022) and Feng et al. (2022).

Organization. In Section 2, we give a dynamic programming formulation under flexible

products. In Section 3, we formulate the optimization problem that we solve to compute our value

function approximations and give an algorithm to calibrate the parameters of our approximations.

In Section 4, we give our policy with 1/(1+L) performance guarantee. In Section 5 we give a proof

for the performance guarantee. In Section 6, we extend our work to the periodic route assignment

setting. In Section 7, we give computational experiments. In Section 8, we conclude.
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2. Problem Formulation

The set of resources is L. We have ci units of resource i. The set of products is J . We use fj

to denote the revenue associated with product j. There are T time periods in the selling horizon

indexed by T = {1, . . . , T}. The time periods correspond to small enough durations of time that

there is one customer arrival at each time period. If we offer the assortment of products S ⊆ J

at time period t, then the arriving customer purchases product j with probability ϕjt(S). With

probability 1−
∑

j∈J ϕjt(S), the arriving customer leaves without making a purchase. We assume

that the choice probabilities satisfy the substitutability property ϕjt(S)≥ ϕjt(Q) for all S ⊆Q⊆J ,

j ∈ S and t ∈ T , which implies that if we offer a smaller assortment, then the choice probability

of each product in the smaller assortment gets larger. All choice models based on random utility

maximization satisfy the substitutability property. We use Rj to denote the set of possible routes

to serve a customer with a purchase for product j. Each route corresponds to a combination of

resources. To capture the resources used by a route, let aip = 1 if route p uses resource i; otherwise,

aip = 0. We make all of the route assignments at the end of the selling horizon.

Our goal is to find a policy to decide which assortment of products to offer at each time period

so that we maximize the total expected revenue over the selling horizon, while ensuring that we

always have routes with enough capacity to accommodate all of the customers with a purchased

product. We proceed to giving a dynamic program to compute the optimal policy. Letting xj be

the number of customers with a purchase for product j at the beginning of a generic time period,

we use the vector x = (xj : j ∈ J ) ∈ Z|J |
+ to capture the state of the system. To ensure that we

have routes with enough capacity for all of the customers with a purchased product, we always

need to be able to assign each customer with a purchased product to a route in such a way that

the route assignments do not violate the resource capacities. To characterize the possible route

assignments for the customers, we use the decision variables y= (yjp : j ∈J , p∈Rj)∈Z
∑

j∈J |Rj |
+ ,

where yjp is the number of customers with a purchase for product j that we assign to route p. Thus,

if the numbers of customers with purchases for different products are given by the state vector x,

then we can capture the set of feasible route assignments for the customers as

F(x) =

{
y ∈Z

∑
j∈J |Rj |

+ :
∑
p∈Rj

yjp = xj ∀j ∈J ,
∑
j∈J

∑
p∈Rj

aip yjp ≤ ci ∀ i∈L

}
, (1)

where the first constraint ensures that we assign each customer to a route and the second constraint

ensures that the route assignments do not violate the resource capacities.

Given that the system is in state x, if F (x) ̸= ∅, then there exists a way of making route

assignments without violating the capacities of the resources. In this case, using ej ∈Z|J |
+ to denote
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the j-th unit vector and 1(·) to denote the indicator function, we can find the optimal policy by

computing the value functions {Jt : t∈ T } through the dynamic program

Jt(x) = max
S⊆J

{∑
j∈J

ϕjt(S)1(F(x+ej) ̸=∅)

[
fj +Jt+1(x+ej)

]
+
[
1−

∑
j∈S

ϕjt(S)F (x+ej)
]
Jt+1(x)

}

= max
S⊆J

{∑
j∈J

ϕjt(S)1(F(x+ej) ̸=∅)

[
fj +Jt+1(x+ej)−Jt+1(x)

]}
+Jt+1(x), (2)

with the boundary condition JT+1 = 0. In the first equality above, if a customer chooses product

j and there exists feasible route assignments after the purchase for product j, then we generate a

revenue of fj and have one more purchase for product j at the beginning of the next time period.

The second equality follows by arranging the terms. The dynamic program above allows offering

product j even if F(x+ ej) =∅ so that there does not exist feasible route assignments after the

purchase for product j, but using the substitutability assumption, we can argue that there exist

an optimal policy that does not offer product j whenever F(x + ej) = ∅. In particular, in the

maximization problem on the right side of the second equality, the net revenue contribution from a

purchase for product j is 1(F(x+ej )̸=∅) (fj+Jt+1(x+ej)−Jt+1(x)). Considering any optimal solution

to this problem, if we drop each product j with 1(F(x+ej )̸=∅) (fj + Jt+1(x + ej) − Jt+1(x)) ≤ 0,

then by the substitutability property, the choice probability of all other products in the solution

increases. In this way, we eliminate all products with non-positive net revenue contributions from

the optimal solution and the remaining products have larger choice probabilities, so the solution

that we obtain must also be optimal to the maximization problem on the right side above.

The state variable in (2) keeps track of the numbers of purchases for different products, which is in

contrast to standard network revenue management problems, where the state variable keeps track of

the remaining capacities of the resources. In that sense, the network revenue management problem

with flexible products is significantly different from the one without flexible products. There are two

sources of difficulty for the dynamic program in (2). First, the state variable is a high-dimensional

vector, so storing the value functions Jt(x) for each possible state vector x is intractable. Second,

computing the value of 1(F(x)̸=∅) at any state vector x requires finding out whether the set in

(1) is non-empty, which, in turn, equivalent to checking the feasibility of a packing problem. In

Appendix A, we give a direct reduction from the set packing problem to argue that computing

the value of 1(F(x) ̸=∅) is NP-complete. In this paper, our approximation strategy fully addresses

the first source of difficulty, but it will require computing the value of 1(F(x)̸=∅) and we rely on

the strength of integer programming solvers for this purpose. Lastly, our formulation allows having

inflexible products. In particular, there may be a product j such that |Rj|= 1, in which case, a

customer with a purchase for product j can be assigned to only one possible route.
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3. Value Function Approximations

We construct an approximation to the value function Jt(x). The argument x in this value function

keeps track of the numbers of customers with purchases for different products. It is difficult to

conjecture a form for a value function approximation when the state variable keeps track of the

number of customers with purchases for different products. Instead, we start with an auxiliary value

function approximation whose argument keeps track of the remaining capacities of the resources. To

approximate the value of Jt(x) at any vector of product purchases x, we make the route assignments

for all these purchases in such a way that we maximize the value of the auxiliary approximation

attained at the remaining resource capacities after the route assignments. To formalize our

approach, we capture the remaining resource capacities by using the vector w= (wi : i∈L), where

wi is the remaining capacity for resource i. If the remaining capacities after we make the route

assignments are given by the vector w, then we approximate the optimal total expected revenue

over the time periods t, . . . , T by a function of the form Ψ̂t(w). In this case, our approximation to

Jt(x) is given by the optimal objective value of the problem

Ĵt(x) = max
(y,w)∈Z

∑
j∈J |Rj |+|L|

+

{
Ψ̂t(w) :

∑
p∈Rj

yjp = xj ∀ j ∈J ,

∑
j∈J

∑
p∈Rj

aip yjp +wi = ci ∀ i∈L

}
, (3)

where the two constraints are similar to those in (1), but the second constraint above explicitly

computes the remaining capacity of each resource after route assignments.

Problem (3), intuitively speaking, converts the auxiliary value function approximation Ψ̂t(w) to

Ĵt(x). Thus, we need to solve problem (3) just to compute the value function approximation Ĵt(x)

at one point x. Throughout the paper, using Ap = {i ∈ L : aip = 1} to denote the set of resources

used by route p, letting ψp(w) = mini∈Ap{
wi
ci
} for notational brevity, we use the functional form

Ψ̂t(w) =
∑

j∈J
∑

r∈Rj
γ̂jptψp(w), where (γ̂jpt : j ∈J , p∈Rj, t∈ T ) are adjustable parameters. We

shortly give an algorithm to calibrate these parameters. To motivate the form of the approximation

Ψ̂t(w) =
∑

j∈J
∑

p∈Rj
γ̂jptψp(w), recall that if the remaining capacities after we make the route

assignments are given by the vector w, then we approximate the optimal total expected revenue

over the time periods t, . . . , T by using
∑

j∈J
∑

p∈Rj
γ̂jptψp(w). Using c= (ci : i∈L) to denote

full resource capacities, by the definition of ψp(w), we have ψp(c) = 1. Therefore, if we have full

capacities, then we approximate the optimal total expected revenue over the time periods t, . . . , T

by
∑

j∈J
∑

p∈Rj
γ̂jpt. We interpret γ̂jpt as an approximation to the total expected revenue from the

requests for product j that are assigned to route p, given that we have full capacities. Because
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ψp(w) ∈ [0,1] for any w ∈ Z|L|
+ , we modulate the approximation γ̂jpt by ψp(w) depending on the

resource availabilities. If wi = 0 for some i ∈ Ap, so that we do not have capacity for a resource

in route p, then ψp(w) = 0. Thus, our approximation to the total expected revenue from the

requests for product j that are assigned to route p is zero. This discussion only gives an intuition

for the approximation
∑

j∈J
∑

p∈Rj
γ̂jptψp(w), but this approximation will be enough to get a

performance guarantee. Noting that ψp(w) is piecewise linear and concave in w, we can formulate

(3) as an integer program. To fully specify the approximation
∑

j∈J
∑

p∈Rj
γ̂jptψp(w), we need to

calibrate the parameters (γ̂jpt : j ∈J , p∈Rj, t∈ T ). We use the following algorithm to calibrate

these parameters. We set γ̂jp,T+1 = 0 for all j ∈J and p∈Rj. Letting θ≥ 1 be a tuning parameter,

starting from the last time period, for each t= T,T − 1, . . . ,1, we execute the three steps.

• Find an ideal route for each product at the current time period: For each j ∈J , set the ideal

route p̂jt at the current time period as

p̂jt = argmax
p∈Rj

{
fj − θ

∑
i∈Ap

1

ci

∑
k∈J

∑
q∈Rk

aiq γ̂kq,t+1

}
. (4)

• Choose the ideal assortment at the current time period: Set the ideal assortment of products

Ŝt at the current time period as

Ŝt = argmax
S⊆J

{∑
j∈J

ϕjt(S)

(
fj − θ

∑
i∈Ap̂jt

1

ci

∑
k∈J

∑
q∈Rk

aiq γ̂kq,t+1

)}
. (5)

• Compute the adjustable parameters as the current time period: For each j ∈J and p∈Rj, set

the adjustable parameter γ̂jpt at the current time period as

γ̂jpt = ϕjt(Ŝt) 1(p̂jt=p)

(
fj − θ

∑
i∈Ap

1

ci

∑
k∈J

∑
q∈Rk

aiq γ̂kq,t+1

)
+ γ̂jp,t+1. (6)

The algorithm above specifies the parameters (γ̂jpt : j ∈J , p∈Rj, t∈ T ), in which case, we can

use (3) to compute the value function approximation Ĵt(x) at any x∈Z|J |
+ .

We give an intuitive interpretation for (4)-(6). Considering Ψ̂t(w) =
∑

j∈J
∑

p∈Rj
γ̂jptψp(w),

using ei ∈ Z|L|
+ to denote the i-th unit vector, the difference Ψ̂t(w)− Ψ̂t(w −

∑
i∈Ap

ei) captures

the opportunity cost of giving up the capacities in route p. Using the definition of ψp(w), through

algebraic manipulations, we can show that the difference Ψ̂t(w) − Ψ̂t(w −
∑

i∈Ap
ei) is upper

bounded by
∑

i∈Ap

1
ci

∑
k∈J

∑
q∈Rk

aiq γ̂kqt. This upper bound does not depend on w, so we use∑
i∈Ap

1
ci

∑
k∈J

∑
q∈Rk

aiq γ̂kqt as a crude state-independent approximation to the opportunity cost

of giving up the capacities in route p. In (4), we compute the ideal route for product j at time

period t by finding the route that maximizes the revenue from the product after subtracting the
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opportunity cost of giving up the capacities in the route. Once we compute the ideal route, we view

fj −
∑

i∈Ap̂jt

1
ci

∑
k∈J

∑
q∈Rk

aiq γ̂kq,t+1 as the net revenue from product j at time period t. In (5),

we compute the ideal assortment at time period t by finding the assortment that maximizes the net

expected revenue obtained from a customer at time period t. In (6), recall that γ̂jpt captures the

total expected revenue over time periods t, . . . , T from the requests for product j that are assigned

to route p. At time period t, if we offer the ideal assortment, then a customer chooses product j

with probability ϕjt(Ŝt). If the customer chooses product j, then we assign her to the ideal route

p̂jt, in which case, the net revenue from the customer is fj −
∑

i∈Ap̂jt

1
ci

∑
k∈J

∑
q∈Rk

aiq γ̂kq,t+1. In

addition to the net revenue from the customer at time period t, note that γ̂jp,t+1 on the right side

of (6) corresponds to the total expected revenue over time periods t+1, . . . , T .

The interpretation for (4)-(6) in the previous paragraph is at an intuitive level, but we

will give a precise performance guarantee for an approximate policy based on the value

function approximations constructed through (4)-(6). Letting L=maxj∈J , p∈Rj
|Ap| to capture the

maximum number of resources used by any route, for any θ≥ 1, we will show that the greedy policy

with respect to the value function approximations {Ĵt : t ∈ T } is guaranteed to obtain at least

1/(1 + θL) fraction of the optimal total expected revenue. Setting the tuning parameter as θ = 1

yields the strongest performance guarantee from a theoretical perspective. However, the numerical

performance of our policy may improve when we use values of θ that are larger than one, so we

leave θ as a tuning parameter and experiment with different values.

4. Approximate Policy

We give a description of our approximate policy. Using (4)-(6), we compute the parameters

(γ̂jpt : j ∈J , p∈Rj, t∈ T ), in which case, we can compute the value function approximation Ĵt(x)

at any x ∈ Z|J |
+ by solving problem (3). Note that computing our value function approximation

at a single point requires solving an optimization problem. In our approximate policy, we follow

the greedy action with respect to the value function approximations {Ĵt : t∈ T }. In particular, our

approximate policy makes its decisions at time period t by replacing Jt+1 on the right side of (2)

with Ĵt+1 and solving the corresponding maximization problem. Thus, if the numbers of customers

at time period t with purchases for different products are given by the state vector x, then our

approximate policy offers the assortment of products given by

SApp
t (x) = max

S⊆J

{∑
j∈J

ϕjt(S)1(F(x+ej )̸=∅)

[
fj + Ĵt+1(x+ej)− Ĵt+1(x)

]}
. (7)

By the same reasoning right after (2), there exists an optimal solution to the problem above such

that if F(x+ej) =∅, then product j is not in SApp
t (x). Thus, if there does not exist feasible route
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assignments after a purchase for product j, then our approximate policy does not offer product

j. In the next theorem, we give a performance guarantee for the approximate policy. Recall that

L=maxj∈J , p∈Rj
|Ap| is the maximum number of resources used by a route.

Theorem 4.1 (Performance Guarantee) The total expected revenue obtained by the

approximate policy is at least 1/(1+ θL) fraction of the optimal total expected revenue.

We give the full proof of the theorem in the next section. We discuss the main ingredients of

the proof. We consider a linear program to obtain an upper bound on the optimal total expected

revenue. In this linear program, we use the decision variables (ht(S) : S ⊆J , t∈ T ), where ht(S)

is the probability of offering assortment S at time period t, as well as the decision variables

(yjp : j ∈J , p∈Rj), where yjp is the expected number of purchases for product j that we assign to

route p. Our linear program can be interpreted as a deterministic approximation to the dynamic

program in (2) that is formulated under the assumption that the choices of the customers take on

their expected values. In particular, we consider the linear program

Z∗
LP = max

∑
t∈T

∑
S⊆J

∑
j∈J

fj ϕjt(S)ht(S) (8)

st
∑
t∈T

∑
S⊆J

ϕjt(S)ht(S) =
∑
p∈Rj

yjp ∀ j ∈J

∑
j∈J

∑
p∈Rj

aip yjp ≤ ci ∀ i∈L

∑
S⊆J

ht(S) = 1 ∀ t∈ T

ht(S)≥ 0 ∀S ⊆J , t∈ T , yjp ≥ 0 ∀ j ∈J , p∈Rj.

Note that
∑

t∈T
∑

S⊆J ϕjt(S)ht(S) is the total expected number of purchases for product j. The

first constraint ensures that the total expected number of purchases for product j equals the total

expected number of route assignments made for product j. By the second constraint, the expected

number of route assignments that consume the capacity of resource i does not exceed the capacity

of resource i. The third constraint implies that we offer an assortment with probability one at time

period t. Linear programs similar to the linear program above have been used in the literature to

obtain upper bounds on the optimal total expected revenue in numerous contexts. Accordingly, we

can show that Z∗
LP is an upper bound on the optimal total expected revenue.

Since Z∗
LP is an upper bound on the optimal total expected revenue, it is enough to show that the

total expected revenue of the approximate policy is at least Z∗
LP/(1 + θL). The proof of Theorem

4.1 will have two steps. First, we show that we can use the parameters (γ̂jpt : j ∈J , p∈Rj, t∈ T )
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to upper bound on Z∗
LP. In particular, we show that (1 + θL)

∑
j∈J

∑
p∈Ri

γ̂jp1 ≥ Z∗
LP. To show

this result, we use the parameters (γ̂jpt : j ∈ J , p ∈ Rj, t ∈ T ) to construct a feasible solution

to the dual of problem (8) and this feasible dual solution provides an objective value of at least

(1+ θL)
∑

j∈J
∑

p∈Ri
γ̂jp1. Second, we show that the total expected revenue of the approximate

policy is at least Ĵ1(0), where 0∈R|J |
+ is the vector of all zeros. To show this result, letting Ut(x) be

the total expected revenue obtained by the approximate policy over time periods t, . . . , T starting

with the state vector x, we use induction over the time periods to show that Ut(x)≥ Ĵt(x). Lastly,

if we solve problem (3) with t= 1 and x= 0, then the only feasible solution w to this problem has

wi = ci for all i∈L, so letting c= (ci : i∈L) and noting that ψp(c) = 1 at this feasible solution, we

get Ĵ1(0) =
∑

j∈J
∑

p∈Rj
γ̂jp1. Putting the results together, the total expected revenue obtained by

the approximate policy satisfies U1(0)≥ Ĵ1(0) =
∑

j∈J
∑

p∈Rj
γ̂jp1 ≥Z∗

LP/(1+ θL).

5. Performance Guarantee

In this section, we give a proof for Theorem 4.1. Associating the dual variables (αj : j ∈ J ),

(µi : i∈L) and (σt : t∈ T ) with the constraints, the dual of problem (8) is

min
∑
t∈T

σt +
∑
i∈L

ci µi (9)

st σt ≥
∑
j∈J

ϕjt(S) (fj −αj) ∀S ⊆J , t∈ T∑
i∈L

aip µi ≥ αj ∀ j ∈J , p∈Rj

αj, σt are free ∀ j ∈J , t∈ T , µi ≥ 0 ∀ i∈L.

Problem (8) is feasible and bounded. In particular, setting ht(∅) = 1 for all t ∈ T and the

other decision variables to zero provides a feasible solution to this problem. The expected

number of purchases for any product cannot exceed T , so the optimal objective value is

bounded by T maxj∈J fj. Therefore, the objective function of the dual above is also Z∗
LP. We

make two observations to simplify problem (9). First, noting the objective function, we need

to choose the value of σt as small as possible, in which case, by the first constraint, we have

σt =maxS⊆J
∑

j∈J ϕjt(S) (fj −αj) in an optimal solution. Second, since we need to choose the

value of σt as small as possible, by the first constraint, we need to choose the value of αj as large as

possible, so by the second constraint, we have αj =minp∈Rj

∑
i∈L aip µi. Therefore, by our second

observation, we have fj −αj =maxp∈Rj
{fj −

∑
i∈L aip µi}, in which case, our first observation yields

σt =maxS⊆J
∑

j∈J ϕjt(S) maxp∈Rj
{fj −

∑
i∈L aip µi}. Thus, replacing σt in the objective function
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of problem (9) with the last expression, using the vector of decision variables µ= (µi : i ∈ L), we

can write problem (9) equivalently as

Z∗
LP = min

µ∈R|L|
+

{∑
t∈T

max
S⊆J

{∑
j∈J

ϕjt(S) max
p∈Rj

{
fj −

∑
i∈L

aip µi

}}
+
∑
i∈L

ci µi

}
. (10)

Note that the only decision variables in the problem above are (µi : i∈L). In the next proposition,

we use the parameters (γ̂jpt : j ∈J , p∈Rj, t∈ T ) to upper bound Z∗
LP.

Proposition 5.1 (Optimal Performance Benchmark) Letting (γ̂jpt : j ∈J , p∈Rj, t∈ T ) be

computed through (4)-(6), we have (1+ θL)
∑

j∈J
∑

p∈Rj
γ̂jp1 ≥Z∗

LP.

Proof: Let ∆jt = fj − θ
∑

i∈Ap̂jt

1
ci

∑
k∈J

∑
q∈Rk

aiq γ̂kq,t+1 for notational brevity, so problem (5) is

of the form Ŝt = argmaxS⊆J
∑

j∈J ϕjt(S)∆jt. We can use a reasoning similar to the one right

after (2) to argue that if j ∈ Ŝt in (5), then ∆jt ≥ 0. In particular, assume that ∆jt < 0 for some

j ∈ Ŝt. If we drop each product k with ∆kt < 0 from Ŝt, then the substitutability property of

the choice model implies that the choice probability of all other products in Ŝt increases. In this

way, we eliminate each product k with ∆kt < 0 from Ŝt and the remaining products have even

larger choice probabilities, so the solution that we obtain in this way must also be an optimal

solution to problem (5). By (6), if p= p̂jt, then γ̂jpt = ϕjt(Ŝt)∆jt + γ̂jp,t+1, whereas if p ̸= p̂jt, then

γ̂jpt = γ̂jp,t+1. Thus, because ∆jt ≥ 0 for all j ∈ Ŝt, we get γ̂jpt ≥ γ̂jp,t+1. By the boundary condition

γ̂jp,T+1 = 0, we get γ̂jp1 ≥ γ̂jp2 ≥ . . .≥ γ̂jpT ≥ γ̂jp,T+1 = 0. We define a solution to problem (10) as

µ̂i =
θ
ci

∑
k∈J

∑
q∈Rj

aiq γ̂kq1 for all i∈L. Since γ̂jp1 ≥ 0, this solution is feasible to (10). Evaluating

the objective value of problem (10) at this feasible solution, we upper bound Z∗
LP, so

Z∗
LP ≤

∑
t∈T

max
S⊆J

{∑
j∈J

ϕjt(S) max
p∈Rj

{
fj −

∑
i∈Ap

µ̂i

}}
+
∑
i∈L

ci µ̂i

(a)
=
∑
t∈T

max
S⊆J

{∑
j∈J

ϕjt(S) max
p∈Rj

{
fj − θ

∑
i∈Ap

1

ci

∑
k∈J

∑
q∈Rj

aiq γ̂kq1

}}
+ θ
∑
i∈L

∑
k∈J

∑
q∈Rj

aiq γ̂kq1

(b)

≤
∑
t∈T

max
S⊆J

{∑
j∈J

ϕjt(S) max
p∈Rj

{
fj − θ

∑
i∈Ap

1

ci

∑
k∈J

∑
q∈Rj

aiq γ̂kq,t+1

}}
+ θL

∑
k∈J

∑
q∈Rj

γ̂kq1

(c)
=
∑
t∈T

max
S⊆J

{∑
j∈J

ϕjt(S)

(
fj − θ

∑
i∈Ap̂jt

1

ci

∑
k∈J

∑
q∈Rj

aiq γ̂kq,t+1

)}
+ θL

∑
k∈J

∑
q∈Rj

γ̂kq1

(d)
=
∑
t∈T

∑
j∈J

ϕjt(Ŝt)

(
fj − θ

∑
i∈Ap̂jt

1

ci

∑
k∈J

∑
q∈Rj

aiq γ̂kq,t+1

)
+ θL

∑
k∈J

∑
q∈Rj

γ̂kq1

In the chain of inequalities above, (a) is by the definition of µ̂i, (b) holds because γ̂kp1 ≥ γ̂kp,t+1

by the discussion in the previous paragraph and L≥ |Aq|=
∑

i∈L aiq for any j ∈J and q ∈Rj, (c)
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holds by the definition of p̂jt in (4) and (d) holds by the definition of Ŝt in (5). Observe that we

can express the right side of the chain of inequalities above equivalently as

∑
t∈T

∑
j∈J

∑
p∈Rj

ϕjt(Ŝt)1(p=p̂jt)

(
fj − θ

∑
i∈Ap

1

ci

∑
k∈J

∑
q∈Rj

aiq γ̂kq,t+1

)
+ θL

∑
k∈J

∑
q∈Rj

γ̂kq1

(e)
=
∑
t∈T

∑
j∈J

∑
p∈Rj

(γ̂jpt − γ̂jp,t+1)+ θL
∑
k∈J

∑
q∈Rj

γ̂kq1
(f)
= (1+ θL)

∑
j∈J

∑
p∈Rj

γ̂jp1,

where (e) uses (6) and (f) follows by canceling the telescoping terms in the first sum. Collecting

the two chains of inequalities above yields the desired result.

Proposition 5.1 is the first step for the proof of Theorem 4.1 discussed in the previous section.

The second step uses two lemmas. In the next lemma, we upper bound the opportunity cost.

Lemma 5.2 (Opportunity Cost) Recalling that Ψ̂t(w) =
∑

j∈J
∑

p∈Rj
γ̂jptψp(w) and ei ∈ Z|L|

+

is the i-th unit vector, for any w ∈Z|L|
+ , we have

Ψ̂t(w)− Ψ̂t

(
w−

∑
i∈Ap

ei

)
≤

∑
i∈Ap

1

ci

∑
k∈J

∑
q∈Rk

aiq γ̂kqt.

Proof: For two vectors α = (α1, . . . , αn) and β = (β1, . . . , βn), we have the standard inequality

miniαi − mini βi ≤
∑n

i=1 |αi − βi|. Note that the i-th component of the vector w −
∑

i∈Ap
ei

is wi − aip. Therefore, using the definition of ψp(w), we obtain ψq(w)−ψq(w−
∑

i∈Ap
ei) =

mini∈Aq{
wi
ci
}−mini∈Aq{

wi−aip
ci

} ≤
∑

i∈Aq

aip
ci
, which yields

Ψ̂t(w)− Ψ̂t

(
w−

∑
i∈Ap

ei

)
=
∑
k∈J

∑
q∈Rk

γ̂kqt min
i∈Aq

{
wi

ci

}
−
∑
k∈J

∑
q∈Rk

γ̂kqt min
i∈Aq

{
wi − aip
ci

}
≤
∑
k∈J

∑
q∈Rk

∑
i∈Aq

γ̂kqt
aip
ci

(a)
=
∑
k∈J

∑
q∈Rk

∑
i∈L

aiq γ̂kqt
aip
ci

(b)
=

∑
i∈Ap

1

ci

∑
k∈J

∑
q∈Rk

aiq γ̂kqt,

where (a) holds because i ∈ Aq if and only if aiq = 1 and (b) follows by arranging the terms and

using the fact that aip = 1 if and inly if i∈Ap.

In the next lemma, we use a feasibility argument in problem (3) to lower bound the value function

approximation after the purchase for a product.

Lemma 5.3 (Value Function Approximation Bound) For any x ∈ Z|J |
+ , y ∈ F(x), j ∈ J

and p∈Rj, letting wi = ci−
∑

k∈J
∑

q∈Rk
aiq ykq for all i∈L, if we have wi ≥ 1 for all i∈Ap, then

F(x+ej) ̸=∅ and Ĵt(x+ej)≥ Ψ̂t(w−
∑

i∈Ap
ei).

Proof: Fixing x ∈Z|J |
+ , y =F(x), j ∈J and p ∈Rj, let w= (wi : i ∈L) be as given in the lemma.

Define ŷ = (ŷkq : k ∈J , q ∈Rk) as ŷkq = ykq +1((k,q)=(j,p)). We have
∑

q∈Rk
ŷkq =

∑
q∈Rk

ykq +
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q∈Rk

1((k,q)=(j,p)) =
∑

q∈Rk
ykq +1(k=j) = xk+1(k=j), where the last equality holds since y ∈F(x).

Thus, ŷ satisfies the first constraint when we replace x in (1) with x+ej. Also, we have∑
k∈J

∑
q∈Rk

aiq ŷkq =
∑
k∈J

∑
q∈Rk

aiq ykq+
∑
k∈J

∑
q∈Rk

aiq 1((k,q)=(j,p)) =
∑
k∈J

∑
q∈Rk

aiq ykq + aip
(a)
= ci −wi + aip

(b)

≤ ci,

where (a) uses the definition of wi and (b) uses the fact that wi ≥ 1 for all i ∈ Ap, which is

equivalent to wi ≥ aip for all i ∈ L. Thus, ŷ satisfies the second constraint when we replace x

in (1) with x+ ej. In this case, we get ŷ ∈ F(x+ ej), so F(x+ ej) ̸= ∅, establishing the first

statement in the lemma. By the first and fourth expressions in the chain of equalities above, we have∑
k∈J

∑
q∈Rk

aiq ŷkq+wi−aip = ci. Thus, noting that the i-th component of the vectorw−
∑

i∈Ap
ei

is wi−aip, the last equality shows that (ŷ,w−
∑

i∈Ap
ei) satisfies the second constraint in problem

(3) when we replace x with x+ej. By the discussion at the beginning of the proof, (ŷ,w−
∑

i∈Ap
ei)

also satisfies the first constraint in problem (3) when we replace x with x+ ej. Since the optimal

objective value of this problem is Ĵt(x+ ej), we get Ĵt(x+ej)≥ Ψ̂t(w−
∑

i∈Ap
ei), which is the

second statement in the lemma.

Let Ut(x) be the total expected revenue obtained by the approximate policy over time periods

t, . . . , T starting with the state vector x at time period t. We can compute {Ut : t∈ T } by

Ut(x) =
∑
j∈J

ϕjt(S
App
t (x))1(F(x+ej) ̸=∅)

[
fj +Ut+1(x+ej)−Ut+1(x)

]
+Ut+1(x), (11)

with the boundary condition UT+1 = 0. The dynamic program above is similar to the one

in (2), but the decision at each time period in (11) is fixed by the approximate policy, as

given in (7). We refer to {Ut : t∈ T } as the value functions of the approximate policy. One useful

observation is that if we arrange the terms on the right side of (11), then the coefficient of

Ut+1(x) is 1−
∑

j∈J ϕjt(S
App
t (x))1(F(x+ej) ̸=∅). Noting that

∑
j∈J ϕjt(S

App
t (x)) ≤ 1, this coefficient

is non-negative. Thus, if we replace Ut+1(x) on the right side of (11) with a larger quantity, then

the right side of (11) becomes larger. This observation will shortly become useful. In the next

proposition, using the two lemmas above, we focus on the second part of the proof of Theorem 4.1

discussed in the previous section. In particular, we show that the value functions of the approximate

policy are lower bounded by our value function approximations.

Proposition 5.4 (Approximate Policy Performance Benchmark) For any x ∈ Z|J |
+ with

F(x) ̸=∅ and t∈ T , we have Ut(x)≥ Ĵt(x).

Proof: We show the result by using induction over the time periods. We have UT+1 = 0 = ĴT+1,

so the result holds at time period T +1. Assuming that the result holds at time period t+1, we
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show that the result holds at time period t. Throughout the proof, we fix the state vector x. Let

(ŷ, ŵ) be an optimal solution to problem (3) with the value of the state vector we fix. Therefore,

we have ŷ ∈ F(x), ŵi = ci −
∑

j∈J
∑

p∈Rk
aip ŷjp for all i ∈ L and Ĵt(x) = Ψ̂t(ŵ). We make three

observations. First, (ŷ, ŵ) is a feasible solution to problem (3) when we solve this problem for

the value of the state vector we fix but for time period t+ 1. Thus, Ĵt+1(x) ≥ Ψ̂t+1(ŵ). Second,

since ŷ ∈F(x), by Lemma 5.3, for any j ∈J and p∈Rj, having ŵi ≥ 1 for all i∈Ap implies that

F(x+ej) ̸=∅ and Ĵt(x+ej)≥ Ψ̂t(ŵ−
∑

i∈Ap
ei). Thus, for any j ∈J and p∈Rj, we have∏

i∈Ap

1(ŵi≥1) ≤ 1(F(x+ej )̸=∅), (12)( ∏
i∈Ap

1(ŵi≥1)

)
Ĵt(x+ej)≥

( ∏
i∈Ap

1(ŵi≥1)

)
Ψ̂t

(
ŵ−

∑
i∈Ap

ei

)
. (13)

Third, by the same reasoning right after (2), there exists an optimal solution to problem (7) such

that if we have fj + Ĵt+1(x+ej)− Ĵt+1(x)≤ 0 in (7), then j ̸∈ SApp
t (x).

By the induction argument, Ut+1(x)≥ Ĵt+1(x) and Ut+1(x+ej)≥ Ĵt+1(x+ej). By the discussion

right before the theorem, the right side of (11) is increasing in Ut+1(x), so (11) implies

Ut(x) ≥
∑
j∈J

ϕjt(S
App
t (x))1(F(x+ej) ̸=∅)

[
fj + Ĵt+1(x+ej)− Ĵt+1(x)

]
+ Ĵt+1(x)

(a)
=
∑
j∈J

ϕjt(S
App
t (x))1(F(x+ej) ̸=∅)

[
fj + Ĵt+1(x+ej)− Ĵt+1(x)

]+
+ Ĵt+1(x)

(b)

≥
∑
j∈J

ϕjt(Ŝt)1(F(x+ej )̸=∅)

[
fj + Ĵt+1(x+ej)− Ĵt+1(x)

]+
+ Ĵt+1(x), (14)

where (a) holds because we can assume that fj + Ĵt+1(x+ ej)− Ĵt+1(x)> 0 for all j ∈ SApp
t (x) by

the third observation and (b) holds because Ŝt in (5) may not be optimal to problem (7).

All of the terms in the last sum in (14) are non-negative, in which case, using (12) with the ideal

route p̂jt for product j in (4), we can lower bound the right side of (14) as

∑
j∈J

ϕjt(Ŝt)
∏

i∈Ap̂jt

1(ŵi≥1)

[
fj + Ĵt+1(x+ej)− Ĵt+1(x)

]+
+ Ĵt+1(x)

(c)

≥
∑
j∈J

ϕjt(Ŝt)
∏

i∈Ap̂jt

1(ŵi≥1)

[
fj +Ψ̂t+1

(
ŵ−

∑
i∈Ap̂jt

ei

)
− Ĵt+1(x)

]+
+ Ĵt+1(x)

(d)

≥
∑
j∈J

ϕjt(Ŝt)
∏

i∈Ap̂jt

1(ŵi≥1)

[
fj +Ψ̂t+1

(
ŵ−

∑
i∈Ap̂jt

ei

)
−Ψ̂t+1(ŵ)

]+
+Ψ̂t+1(ŵ), (15)

where (c) follows by (13), whereas (d) uses the fact that Ĵt+1(x)≥ Ψ̂t+1(ŵ) by the first observation,

as well as noting that
∑n

i=1 δi[x− y]+ + y is increasing in y when δi ≥ 0 for all i = 1, . . . , n and
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i=1 δi ≤ 1. We can use Lemma 5.2 to upper bound the difference Ψ̂t+1(ŵ)− Ψ̂t+1(ŵ−
∑

i∈Ap̂jt
ei),

in which case, we can lower bound the right side of (15) as∑
j∈J

ϕjt(Ŝt)
∏

i∈Ap̂jt

1(ŵi≥1)

[
fj −

∑
i∈Ap̂jt

1

ci

∑
k∈J

∑
q∈Rk

aiq γ̂kq,t+1

]+
+Ψ̂t+1(ŵ)

=
∑
j∈J

∑
p∈Rj

ϕjt(Ŝt) 1(p=p̂jt)

∏
i∈Ap

1(ŵi≥1)

[
fj −

∑
i∈Ap

1

ci

∑
k∈J

∑
q∈Rk

aiq γ̂kq,t+1

]+
+Ψ̂t+1(ŵ)

(e)

≥
∑
j∈J

∑
p∈Rj

ϕjt(Ŝt) 1(p=p̂jt)ψp(ŵ)
[
fj −

∑
i∈Ap

1

ci

∑
k∈J

∑
q∈Rk

aiq γ̂kq,t+1

]+
+Ψ̂t+1(ŵ), (16)

where (e) holds by noting that 1(z≥1) ≥ z
ci

for any z ∈ Z+ with 0 ≤ z ≤ ci, in which case, the

definition of ψp implies that
∏

i∈Ap
1(ŵi≥1) ≥mini∈Ap{

ŵi
ci
}=ψp(ŵ).

If we do not round the term in the square brackets on the right side of (16) up to zero, then this

term becomes smaller. Also, noting that θ≥ 1, we lower bound the right side of (16) as

∑
j∈J

∑
p∈Rj

ϕjt(Ŝt) 1(p=p̂jt)ψp(ŵ)
[
fj − θ

∑
i∈Ap

1

ci

∑
k∈J

∑
q∈Rk

aiq γ̂kq,t+1

]
+Ψ̂t+1(ŵ)

(f)
=
∑
j∈J

∑
p∈Rj

(γ̂jpt − γ̂jp,t+1)ψp(ŵ)+ Ψ̂t+1(ŵ)
(g)
= Ψ̂t(ŵ)

(h)
= Ĵt(x), (17)

where (f) holds by (6), (g) is by the definition of Ψ̂t and (h) follows by the definition of ŵ.

Collecting (14)-(17), we have Ut(x)≥ Ĵt(x), which completes the induction argument.

Below, we use Propositions 5.1 and 5.4 to give a proof for Theorem 4.1.

Proof of Theorem 4.1: Noting that we do not have any purchases for any products at the

beginning of the selling horizon, the total expected revenue of the approximate policy is U1(0),

whereas the optimal total expected revenue is J1(0). In Appendix B, we show that the optimal

objective value of the linear program in (8) is an upper bound on the optimal total expected

revenue, so Z∗
LP ≥ J1(0). This result follows by using the decisions of the optimal policy to construct

a feasible solution to problem (8). On the other hand, if we solve problem (3) with t= 1 and x= 0,

then the only feasible solution to this problem must have wi = ci for all i∈L. Thus, using the vector

c= (ci : i ∈ L), since ψp(c) = 1, we get Ĵ1(0) =
∑

j∈J
∑

p∈Rj
γ̂jp1ψp(c) =

∑
j∈J

∑
p∈Rj

γ̂jp1. In this

case, by Propositions 5.1 and 5.4, we get U1(0)≥ Ĵ1(0) =
∑

j∈J
∑

p∈Rj
γ̂jp1 ≥ 1

1+θL
Z∗

LP ≥ 1
1+θL

J1(0).

6. Periodic Route Assignments

By making the route assignments at the end of the selling horizon, we pool the purchases over the

whole selling horizon without committing to a route assignment until the end. While this approach
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allows us to make use of the resource capacities most efficiently, customers do not know what

routes they are assigned to until the end. A sensible approach to strike a tradeoff between making

use of the resource capacities most efficiently and letting the customers know what routes they are

assigned to in a timely manner is to designate a set of time periods as route assignment periods.

At each of these route assignment periods, we make irrevocable route assignments for the product

purchases that have occurred since the last route assignment period. In this way, the customers

do not have to wait until the end of the selling horizon to know what routes they are assigned

to, but we also do not have to make a route assignment right after each purchase. We can extend

our approximate policy to the case where we make the route assignments periodically, while still

maintaining the performance guarantee of 1/(1 +L). In this section, we discuss the main points

of this extension, deferring the detailed analysis to Appendix C. We use this extension in our

numerical experiments to study the revenue implications of making irrevocable route assignments

periodically, instead of delaying the route assignments to the end of the selling horizon.

Dynamic Programming Formulation:

We use the same notation in Section 2, adding two pieces. We use A ⊆ T to denote the set

of route assignment periods. If A = {T}, then we delay the route assignments until the end of

the selling horizon. If, on the other hand, A = {1, . . . , T}, then we make a route assignment for

each product purchase immediately. The set of route assignment periods can be anywhere between

these two extremes, but it is fixed a priori. Let R = ∪j∈JRj be the set of all routes. The state

of the system at the beginning of a generic time period has two components. Letting xj be the

number of customers with a purchase for product j since the last route assignment period, the first

component of the state is x= (xj : j ∈J )∈Z|J |
+ . Letting zp be the number of purchases that have

been irrevocably assigned to route p, the second component of the state is z = (zp : p ∈R) ∈ Z|R|
+ .

Therefore, we use (x,z)∈Z|J |+|R|
+ to represent the state of the system at the beginning of a generic

time period. Let yjp be the number of purchases for product j that we assign to route p. Using the

decision variables y= (yjp : j ∈J , p∈Rj)∈Z
∑

j∈J |Rj |
+ , if the state of the system at the beginning

of a time period is (x,z), then the set of feasible route assignments is given by

F(x,z) =

{
y ∈Z

∑
j∈J |Rj |

+ :
∑
p∈Rj

yjp = xj ∀j ∈J ,
∑
j∈J

∑
p∈Rj

aip yjp +
∑
p∈R

aip zp ≤ ci ∀ i∈L

}
, (18)

which is similar to (1), but the feasible set above considers the fact that we cannot make route

assignments for the purchases that have already been irrevocably assigned to a route.

If time period t is a route assignment period, then we make the route assignments after observing

the product purchase, if any, at time period t. Given that the state of the system is (x,z) after
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observing the product purchase at time period t, we use Gt(x,z) to denote the set of possible states

at the beginning of time period t+1. If t ̸∈ A, so that time period t is not a route assignment period,

then the state of the system cannot change after observing the product purchase at time period t.

Thus, we have Gt(x,z) = {(x,z)}. If t∈A, so that time period t is a route assignment period, then

we need to make route assignments for all product purchases without route assignments. Thus,

we have Gt(x,z) = {(0,z) : ∃y ∈F(x,z) : zp = zp +
∑

j∈J 1(p∈Rj) yjp ∀p∈R}, which is to say that

the set of possible states of the system at the beginning of time period t+1 is obtained by using

some feasible route assignment to ensure that all product purchases without a route assignment are

assigned to a route. In this case, we can find the optimal policy by computing the value functions

(Jt : t∈ T ) through the dynamic program

Jt(x,z) =max
S⊆J

{∑
j∈J

ϕjt(S)1(F(x+ej ,z)̸=∅)

{
fj + max

(x,z)∈Gt(x+ej ,z)

Jt+1(x,z) − max
(x,z)∈Gt(x,z)

Jt+1(x,z)

}}

+ max
(x,z)∈Gt(x,z)

Jt+1(x,z), (19)

with the boundary condition JT+1 = 0. The dynamic program above is similar to (2), but the route

assignments can change the state of the system from time period t to t+1.

Value Function Approximation and Approximate Policy:

Using ψp(w) =mini∈Ap{wi/ci} and letting the adjustable parameters (γ̂jpt : j ∈J , p∈Rj, t∈ T )

be computed exactly as in (4)-(6), we consider value function approximations of the form

Ĵt(x,z) = max
(y,w)∈Z

∑
j∈J |Rj |+|L|

+

{∑
j∈J

∑
p∈Rj

γ̂jptψp(w) :
∑
p∈Rj

yjp = xj ∀ j ∈J ,

∑
j∈J

∑
p∈Rj

aip yjp +
∑
p∈R

aip zp +wi = ci ∀ i∈L

}
. (20)

The way we compute the value function approximation above is similar to the way we compute the

value function approximation in (3), but the problem above takes into account the fact that we

cannot change the route assignments for the product purchases that have already been irrevocably

assigned to a route. In the value function approximation above, we still use the functional form

ψp(w) = mini∈Ap{
wi
ci
} as before. Furthermore, we continue calibrating the adjustable parameters

(γ̂jpt : j ∈J , p∈Rj, t∈ T ) in the value function approximation above exactly as in (4)-(6).

Although we calibrate the adjustable parameters (γ̂jpt : j ∈J , p∈Rj, t∈ T ) as in (4)-(6), the way

we compute the value function approximations in (20) is different from (3). We will be able to

show that we can use the value function approximations in (20) to come up with a policy with a

performance guarantee under periodic route assignments. Lastly, we give our approximate policy
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that is driven by our value function approximations. If the state of the system at the beginning of

time period t is (x,z), then our approximate policy offers the assortment of products

SApp
t (x,z) =max

S⊆J

{∑
j∈J

ϕjt(S)1(F(x+ej) ̸=∅)

{
fj + max

(x,z)∈Gt(x+ej ,z)

Ĵt+1(x,z) − max
(x,z)∈Gt(x,z)

Ĵt+1(x,z)

}}
.

Furthermore, after observing the product purchase at time period t, if the state of the system

is (x,z), then our approximate policy makes the route assignments in such a way that the state

of the system at the beginning of time period t+ 1 is ZApp
t (x,z) = argmax(x,z)∈Gt(x,z) Ĵt+1(x,z).

If time period t is not a route assignment period, then Gt(x,z) = {(x,z)}, which implies that

ZApp
t (x,z) = (x,z). Thus, our approximate policy follows the greedy action with respect to the

value function approximations to decide which assortment to offer. After observing the product

purchase, if we are at a route assignment period, then our approximate policy maximizes the value

function approximation to make the route assignment decisions. In the next theorem, we give a

performance guarantee for our approximate policy under periodic route assignments. We defer the

proof to Appendix C. The proof digs into the properties of the problem max(x,z)∈Gt(x,z) Ĵt+1(x,z),

using which we lower bound the total expected revenue of our approximate policy.

Theorem 6.1 (Performance Guarantee under Periodic Route Assignments) The total

expected revenue obtained by the approximate policy under periodic route assignments is at least

1/(1+ θL) fraction of the optimal total expected revenue.

In our computational experiments, we will use our approximate policy to explore the revenue

implications of making irrevocable route assignments during the course of the selling horizon.

7. Computational Experiments

We give two sets of computational experiments. The first one is on providing at-home services in

hourly blocks, whereas the second one is on selling flexible airline tickets.

7.1 At-Home Service Provider

We describe our experimental setup, followed by our benchmark policies and computational results.

We also investigate the benefit from making the route assignments with different frequencies.

Experimental Setup: We consider a company providing at-home services, such as cleaning,

pet walking or plant care, in hourly blocks. Some customers would like to receive service at a fixed

time, whereas others are flexible, deferring the choice to the company in return for a discount.

We focus on a particular day of services. The resources correspond to one-hour blocks. There
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are eight hours in the day and services start and end at the beginning of an hour. Thus, the

set of resources is L= {1, . . . ,8}, where resource ℓ is the service capacity during hour ℓ. Services

purchased by the customers have two dimensions. First, customers can purchase service for one

or two hours. Second, customers can purchase service starting at a fixed time or at a flexible

time in the morning, in the afternoon or throughout the whole day. In the last three cases, the

company chooses the time of service. We use the pair (d, [ℓ, k]) to denote a product, where d is the

duration of service and [ℓ, k] is set of possible starting times for service. Thus, the set of products

is J = {(d, [ℓ, k]) : d = 1,2, [ℓ, k] = [1,1], [2,2], . . . , [8,8], [1,4], [5,8], [1,8]}, where, for example, the

product (d, [ℓ, ℓ]) corresponds d hours of service service starting at fixed hour ℓ and the product

(d, [1,4]) corresponds d hours of service starting at a flexible time in the morning. If a customer

purchases the product (d, [ℓ, ℓ]), then the only route to serve the customer includes the resources

{ℓ, ℓ+d−1}. If a customer purchases the product (d, [1,4]), then there are four routes to serve the

customer, each route including the set of resources {ℓ, ℓ+ d− 1} for ℓ= 1, . . . ,4. Using the route

{ℓ, ℓ+ d− 1} to serve a customer with a purchase for product (d, [1,4]) corresponds to starting

service at hour ℓ and providing service for d hours. The revenues associated with products of the

form (d, [ℓ, ℓ]), (d, [1,4]), (d, [5,8]) and (d, [1,8]) are, respectively, d × 80, β d × 80, β d × 80 and

β2d× 80, where β is the discount factor for being flexible in the time of service. We vary β.

In our model and technical results, the customers arriving into the system at a particular time

period choose among the offered products according to the same choice model, but it is simple to

extend our work to the case where there are multiple customer types and customers of different

types choose according to different choice models. In our computational experiments, we have a

total of 18 customer types, 16 of them are inflexible and two are flexible. We index the inflexible

customer types by CFixed = {(d, ℓ) : d= 1,2, ℓ= 1,2, . . . ,8}, where an inflexible customer of type (d, ℓ)

is interested in receiving service for d hours starting at the fixed hour ℓ. If product (d, [ℓ, ℓ]) is made

available to this customer, then she purchases. Otherwise, she leaves without a purchase. We index

the flexible customer types by CFlex = {(d,∅) : d= 1,2}, where a flexible customer of type (d,∅) is

interested in receiving service for d hours, but she is not keen on the time of service. She makes

a choice within the set of products (d, [1,4]), (d, [5,8]) and (d, [1,8]). We use the multinomial logit

model to capture the choice process of the flexible customers. Using vdj to denote the preference

weight that a flexible customer of type (d,∅) attaches to product j ∈ {(d, [1,4]), (d, [5,8]), (d, [1,8])}

and vd0 to denote the preference weight of the no-purchase option, if such a customer is offered

the assortment of products S ⊆ {(d, [1,4]), (d, [5,8]), (d, [1,8])}, then she purchases product j in the

assortment with probability vdj /(v
d
0+
∑

k∈S v
d
k). We generate the preference weights for the products

by sampling them from the uniform distribution over [0,5]. We calibrate the preference weight of
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the no-purchase option so that if we offer all products {(d, [1,4]), (d, [5,8]), (d, [1,8])} to a flexible

customer, then she leaves without a purchase with probability P0. We vary P0.

There are T = 100 time periods in the selling horizon. Using {(d, ℓ) : d= 1,2, ℓ=∅,1,2, . . . ,8} to

index all customer types, at time period t, a customer of type (d, ℓ) arrives into the system with

probability λ(d,ℓ),t. We calibrate the arrival probabilities in such a way that the arrival probabilities

of inflexible customers increases over time, whereas the arrival probabilities of flexible customers

decrease. In this way, it becomes important to carefully reserve the capacity for the inflexible

customers that tend to arrive later in the selling horizon. Lastly, we proceed as follows to generate

the available capacity for each resource. If all inflexible customers make a purchase for the product

they are interested in, then the total expected demand for resource ℓ from the inflexible customers

is
∑

t∈T
∑

(d,k)∈CFixed
1(k≤ℓ≤k+d−1) λ(d,ℓ),t. For each of the flexible customer types, we consider offering

the full assortment of products {(d, [1,4]), (d, [5,8]), (d, [1,8])} that such customers are interested in.

Assuming that if a flexible customer makes a purchase, then we assign the customer to one of the

routes for the purchased product with equal probability, we compute the total expected demand for

resource ℓ from the flexible customers. Letting Demandℓ be the total expected demand for resource

ℓ from the inflexible and flexible customers, we set the capacity of resource ℓ as ⌊Demandℓ/α⌋,

where α controls the tightness of the capacities. We also vary α.

Varying β ∈ {0.8,0.9}, P0 ∈ {0.1,0.4,0.6} and α ∈ {1.2,1.4,1.6}, we obtain 18 parameter

configurations. For each one, we generate a test problem as in the previous three paragraphs.

Benchmark Policies: We use two benchmarks. The first benchmark is the approximate policy

that we gave in Section 4. We refer to this benchmark as AP, standing for approximate policy. The

second benchmark uses a linear program of the form in (8) to estimate the value of a unit of resource,

which is called the bid price of a resource. We refer to this benchmark as BP, standing for bid

price policy. We detail each benchmark. In our construction of the value function approximations

used by AP, we use a tuning parameter θ. Although we get the strongest performance guarantee

with θ = 1, setting θ = 1 may not necessarily lead to the best numerical performance. We use a

numerical procedure to choose the value of θ. We consider the values of θ in the interval [1,8) in

increments of 0.1, yielding 70 possible values. Using {θk : k= 1, . . . ,70} to capture these values, we

compute the value function approximations used by AP under each value of θk for k= 1, . . . ,70 and

simulate the performance of the corresponding policy. Given that we set the tuning parameter as

θk, we use Revkt to denote the total expected revenue obtained by AP over time periods t, . . . , T . In

our implementation of AP, we split the selling horizon to five equal segments. At the beginning of

segment q, which is time period (q− 1)T
5
+1, we switch to using the value function approximation

computed with the value of the tuning parameter θ = argmaxk=1,...,70Rev
k
(q−1)T5 +1. Adjusting the
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value of the tuning parameter in this fashion improves the performance of AP by about a percentage

point. Thus, while the improvement is noticeable, it is not dramatic.

Considering BP, the second constraint in problem (8) ensures we do not violate the resource

capacities. Letting (µ∗
i : i∈L) be the optimal values of the dual variables for these constraints, we

use µ∗
i to capture the value of a unit of resource i. For each product j, we choose an ideal route given

by argmaxp∈Rj
fj −

∑
i∈L aip µ

∗
i , where we maximize the revenue from the product net of the values

of the resources used by the route. Letting f j be the optimal objective value of the last problem,

f j is the net revenue from product j after adjusting for the values of the resources in the ideal

route. If the state of the system at time period t is x, then BP offers the assortment of products

argmaxS⊆J
∑

j∈J ϕjt(S)1(F(x+ej) ̸=∅) f j, which is the assortment that maximizes the expected net

revenue from a customer. Our discussion of BP so far has been for the case with a single customer

type, but extending the discussion to multiple customer types requires minor adjustments. In our

implementation of BP, we split the selling horizon into five equal segments and re-compute the

bid prices at the beginning of each segment by re-solving problem (8). In particular, if the state

of the system at the beginning of segment q is x, then we replace the set of time periods with

{(q− 1)T
5
+1, . . . , T} and add xj to the right side of the first constraint in (8). We use the optimal

values of the dual variables for the second constraint as bid prices until we re-solve problem (8).

Computational Results:We give our computational results in Table 1. The first column shows

the parameters (β,P0, α) for each test problem. To estimate the total expected revenues obtained by

AP and BP, we simulate their performance for 100 sample paths under common random numbers.

Recalling that the optimal objective value of the linear program in (8) is an upper bound on the

optimal total expected revenue, the second and third columns, respectively, give the total expected

revenues obtained by AP and BP expressed as a percentage of the upper bound on the optimal

total expected revenue. Our results indicate that AP performs significantly and consistently better

than BP for our test problems. Over all test problems, the average percent gap between the total

expected revenues obtained by AP and BP is 5.46%. There are test problems where the performance

gap between the two benchmarks reaches 9.98%. The performance gap between AP and BP tends

to increase as α increases so that the resource capacities get tighter. For the test problems with

α= 1.2,1.4 and 1.6, the average percent gaps between the total expected revenues of AP and BP

are, respectively, 4.19%, 5.72% and 6.48%. When the resource capacities are tight, it is especially

important to reserve the capacity for the inflexible customers that tend to arrive later. It appears

that AP is able to do a better job of reserving the capacity for the inflexible customers.

In our results in Table 1, we focus on the case where the route assignments are made at the end

of the selling horizon, so the customers with a purchase for a flexible product get to know their hour
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Params.
(β,P0, α) AP BP

(0.9,0.1,1.2) 94.11 90.94
(0.9,0.1,1.4) 94.18 88.05
(0.9,0.1,1.6) 94.07 90.36

(0.9,0.4,1.2) 91.58 86.02
(0.9,0.4,1.4) 92.03 87.30
(0.9,0.4,1.6) 92.38 85.26

(0.9,0.6,1.2) 88.76 84.94
(0.9,0.6,1.4) 89.44 83.05
(0.9,0.6,1.6) 90.18 81.17

Average 91.86 86.34

Params.
(β,P0, α) AP BP

(0.8,0.1,1.2) 92.93 88.16
(0.8,0.1,1.4) 93.37 88.38
(0.8,0.1,1.6) 92.76 89.61

(0.8,0.4,1.2) 90.03 87.19
(0.8,0.4,1.4) 90.37 86.05
(0.8,0.4,1.6) 90.62 84.97

(0.8,0.6,1.2) 87.37 84.67
(0.8,0.6,1.4) 87.28 82.54
(0.8,0.6,1.6) 87.78 81.11

Average 90.28 85.85

Table 1 Computational results for the at-home service provider setting.

of service just before receiving service. In Section 6, we show that we can use our model to make

the route assignments periodically, where we designate fixed time periods such that all customers

with a purchase for a flexible product so far are assigned to a route when we reach one of those time

periods. Delaying the route assignments to the end of the selling horizon provides more flexibility,

resulting in higher total expected revenues, but making the route assignments periodically lets the

customers know about their hour of service earlier, resulting in better service. In Table 2, we focus

on one test problem with (β,P0, α) = (0.9,0.6,1.2) and give the total expected revenue obtained by

AP when we make the route assignments every κ time periods. Setting κ= 100 delays the route

assignments to the end of the selling horizon, whereas setting κ= 1 lets each customer know about

her route assignment just after her purchase. We vary κ ∈ {1,10,20,30,40,50,100}. The first row

shows the value of κ. Letting Base be the total expected revenue obtained by AP with κ= 1, the

second row shows the percent gap between the total expected revenues obtained with a particular

value of κ and Base. Compared with making the route assignments immediately for each customer,

maintaining maximum amount of flexibility and delaying the route assignments to the end of the

selling horizon provides an improvement of 4.22% in the total expected revenue. Thus, there is

significant value in delaying the route assignments as much as possible. Noting the data point

with κ= 50, introducing just one more time point at which we make routing assignments in the

middle of the selling horizon reduces the percent gap with Base to 1.40%. For this test problem,

maintaining full flexibility and delaying route assignments as much as possible has significant

benefits. We report results for one test problem, but we observed similar behavior in others. Thus,

for our test problems, maintaining full flexibility appears to be important. Using our model, one

can quantify similar tradeoffs in other problem settings.

7.2 Airline Network

We consider an airline network, where there are multiple routes that connect an origin-destination

pair. Customers purchasing flexible products know their origin-destination pair, but they do not
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κ 1 10 20 30 40 50 100

% Gap 0.00 0.25 0.62 1.17 1.35 1.40 4.22

Table 2 Changes in the total expected revenue with periodic route assignments when compared with κ= 1.

Figure 1 Configuration of the airports and flights.

know their exact itinerary until we make the route assignments. We use the same two benchmarks

that we used for our computational experiments on at-home services.

Experimental Setup: We consider an airline providing service between three cities, labeled as

{A,B,C}. Each city has two airports. We label the airports in cities A, B and C, respectively,

as {A1,A2}, {B1,B2} and {C1,C2}. There are flights that connect each airport in city A to each

airport in city B, as well as each airport in city B to each airport in city C. In Figure 1, we show the

configuration of the airports and flights. The resources correspond to the flights. We use the pair

(o, d) to denote a resource, where o and d are, respectively, the origin and destination airports for the

flight. Thus, the set of resources is L= {(o, d) : (o, d)∈ {A1,A2}×{B1,B2}∪ {B1,B2}×{C1,C2}},
resulting in eight resources. The airline sells tickets that connect every possible origin-destination

pair at two fare levels. The two fare levels are adult and student. We use the triplet (o, d, f)

to denote a product, where o and d are, respectively, the origin and destination airports and f

is the fare level. We use f ∈ {1,2} for the two fare levels. In Figure 1, any airport in city C

can be reached from any airport in city A through an airport in city B, so an airport in city

A and an airport in city C is a possible origin-destination pair. Thus, the set of products is

J = {(o, d, f) : (o, d)∈ {A1,A2}×{B1,B2,C1,C2}∪ {B1,B2}×{C1,C2}, f ∈ {1,2}}, resulting in 24

products. If a customer purchases a product that connects an airport in city A to an airport in

city B or an airport in city B to an airport in city C, then there is only one route to serve the

customer, which includes the direct flight that connects the origin to the destination. If a customer

purchases a product that connects an airport in city A to an airport in city C, then there are two

routes to serve the customer, each of the two routes connecting at airport B1 or airport B2. For

example, if a customer purchases a product that connects airport A1 to airport C1, then we can

use one of the routes {(A1,B1), (B1,C1)} or {(A1,B2), (B2,C1)} to serve the customer.

To come up with the revenues of the products, we start by associating a revenue for each flight

that is sampled from the uniform distribution over [50,100]. The revenue associated with a route
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is the sum of the revenues of the flights in the route. For a product at student fare, if there is only

one route to serve the product, then the revenue of the product is the revenue of this route. Letting

β be the discount in exchange for being able to serve the demand for a product by more than one

route, if there is more than one route to serve the product, then the revenue of the product is the

minimum of the revenues of these routes times β. For a product at adult fare, its revenue is κ times

the corresponding product at student fare. We vary β and κ.

Similar to our test problems for at-home services, we have multiple customer types. We use

the triplet (s, τ, f) to denote a customer type, where s and τ are, respectively, the origin and

destination cities for the customer and f is the fare level. Thus, the set of customer types is

C = {(s, τ, f) : (s, t)∈ {(A,B), (A,C), (B,C)}, f ∈ {1,2}}. A customer of type (s, τ, f) is interested

in the products that connect any airport in city s to any airport in city τ at fare level f . We

use the multinomial logit model to capture the choice process of the customers. Letting v
(s,τ,f)
j be

the preference weight that a customer of type (s, τ, f) associates with product j, if the customer

type (s, τ, f) is interested in product j, then we sample the preference weight from the uniform

distribution over [0,5]. Otherwise, we set the preference weight to zero. We calibrate the preference

weight of the no-purchase option so that if we offer all products that the customer is interested in,

then she leaves without a purchase with probability P0. We vary P0 as well.

There are T = 200 time periods in the selling horizon. We calibrate the arrival probabilities

for each customer type in such a way that student fare customers tend to arrive earlier in the

selling horizon. Lastly, to come up with the capacities for the resources, for each customer type,

we find the assortment of products to offer that maximizes the expected revenue. In particular,

letting ϕj,(s,τ,f)(S) be the probability that a customer of type (s, τ, f) chooses product j within the

assortment S and fj be the revenue of product j, we solve S
∗
(s,τ,f) = argmaxS⊆J

∑
j∈S ϕj,(s,τ,f)(S)fj.

Assuming that we always offer the assortment S∗
(s,τ,f) to the customers of type (s, τ, f) and we

assign the customer to one of the possible routes for the purchased product with equal probability,

we compute the total expected demand for resource i over the selling horizon. Letting Demandi be

the total expected demand for resource i over the selling horizon, we set the capacity of resource i

as ⌊Demandi/α⌋, where α controls the tightness of the capacities. We vary α.

We vary κ ∈ {4,8}, β ∈ {0.8,0.9}, P0 ∈ {0.1,0.4} and α ∈ {1.2,1.4,1.6} to obtain 24 parameter

configurations. For each parameter configuration, we generate a different test problem by using the

approach described above. We continue using the benchmarks AP and BP. We choose the value of

the tuning parameter θ for AP and re-compute the bid prices for BP using the same approach that

we described earlier for our test problems for at-home services. We estimate the total expected

revenues obtained by the two benchmarks by simulating their decisions under common random
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Params.
(κ,β,P0, α) AP BP

(4,0.9,0.1,1.2) 97.40 87.85
(4,0.9,0.1,1.4) 97.06 87.58
(4,0.9,0.1,1.6) 95.56 86.62

(4,0.9,0.4,1.2) 94.95 93.84
(4,0.9,0.4,1.4) 95.36 92.58
(4,0.9,0.4,1.6) 93.68 89.88

(4,0.8,0.1,1.2) 97.31 95.16
(4,0.8,0.1,1.4) 96.94 86.51
(4,0.8,0.1,1.6) 95.39 87.22

(4,0.8,0.4,1.2) 95.06 91.58
(4,0.8,0.4,1.4) 95.39 87.69
(4,0.8,0.4,1.6) 93.51 89.87

Average 95.63 89.70

Params.
(κ,β,P0, α) AP BP

(8,0.9,0.1,1.2) 98.60 86.89
(8,0.9,0.1,1.4) 98.25 86.23
(8,0.9,0.1,1.6) 95.95 85.61

(8,0.9,0.4,1.2) 97.20 94.61
(8,0.9,0.4,1.4) 97.03 92.32
(8,0.9,0.4,1.6) 94.25 90.16

(8,0.8,0.1,1.2) 98.51 86.73
(8,0.8,0.1,1.4) 98.03 86.39
(8,0.8,0.1,1.6) 96.15 87.10

(8,0.8,0.4,1.2) 97.20 91.50
(8,0.8,0.4,1.4) 97.01 86.84
(8,0.8,0.4,1.6) 94.20 89.65

Average 96.87 88.67

Table 3 Computational results for the airline network setting.

numbers. We report the total expected revenues as a percentage of the upper bound on the optimal

total expected revenue provided by problem (8).

Computational Results: We give our computational results in Table 3. The layout of this

table is identical to that of Table 1. Similar to our observations on the test problems for at-home

services, AP provides significant and consistent improvements over BP in terms of total expected

revenue. Over all of our test problems, the average gap between the total expected revenues of the

two benchmarks is 7.31%. There are test problems where the total expected revenue of AP exceeds

that of BP by more than 12%. The performance gap between the two benchmarks increase as κ

gets large and the fare difference between student and adult fare products increases. Customer

types that are interested in student fare products tend to arrive earlier in the selling horizon. Thus,

making a sale to a customer type that is interested in student fare may end up using capacities

that could have been used for a customer type that is interested adult fare later. As the difference

between student and adult fare increases, it becomes important to reserve capacity for the customer

types that are interested in adult fare. By explicitly taking into account the temporal dynamics of

the customer arrivals, AP appears to do a better job of reserving capacity.

8. Conclusions

We gave a policy with a performance guarantee for network revenue management problems with

flexible products. They key ingredient in our approach is to solve an optimization problem to

convert a value function approximation that is defined as a function of the remaining resource

capacities into a value function that is defined as a function of the numbers of product purchases. As

far as we are aware, such a conversion idea has not been used in the literature to obtain performance

guarantees and it allows us to give the first policy with a performance guarantee for network
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revenue management problem with flexible resources. The performance guarantee holds irrespective

of whether we make the route assignments at the end of the selling horizon, right after each

product purchase or periodically over the selling horizon. Using our model, we can numerically

check the benefit from making the route assignment decisions with different frequencies. An avenue

of future research is to give upper and lower bounds on the benefit from the delaying route

assignment decisions, quantifying the tradeoff between being customer-centric through frequent

route assignments and firm-centric through delayed route assignments. Even a stylized model to

investigate such tradeoffs would be interesting. The necessity to check whether F(x) ̸= ∅ is an

inherent part of our dynamic programming formulation of the problem, rather than our specific

approximate policy. It is NP-complete to carry out this check. Another interesting research avenue

is to study alternative formulations and application settings where either carrying out this check

is not necessary or this check can be carried out in polynomial time.
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Electronic Companion:

Performance Guarantees for Network Revenue Management

with Flexible Products

Appendix A: Checking the Existence of Feasible Route Assignments

We use a simple reduction from the set packing problem to show that checking whether F(x) ̸=∅

is NP-complete. We use a reduction from the feasibility version of the set packing problem.

Set Packing Feasibility:

Given a ground set C, a collection of subsets of the ground set {Rp : p ∈Q} with Rp ⊆ C for all

p∈Q and a target K ∈Z+, we want to check whether there exist K disjoint subsets in {Rp : p∈Q}.

Theorem A.1 Considering F(x) in (1), it is NP-complete to check whether F(x) ̸=∅.

Proof: We are given an instance of the set packing feasibility problem with the ground set

C, collection of subsets {Rp : p ∈ Q} and threshold K. It is known that the set packing

feasibility problem is NP-complete; see Garey and Johnson (1979). Define the decision variables

y= (yp : p∈Q)∈ {0,1}|Q|, where yp = 1 if and only if we pick subset Rp in the set packing feasibility

problem. The set packing feasibility problem asks whether there exists y ∈ {0,1}|Q| such that∑
p∈Q yp =K and

∑
p∈Q 1(i∈Rp) yp ≤ 1 for all i ∈ C, where the two constraints ensure that we pick

K subsets that are disjoint. Corresponding to the instance of the set packing problem, we define

an instance of the network revenue management problem with flexible products as follows. The

set of resources is C. There is a single product. The set of possible routes for the product is Q.

Route p uses the capacities of the resources Rp, so aip = 1(i∈Rp) for all p ∈ Q and i ∈ C. Because

there is a single product, the vector x in (1) has one component. Dropping the index for the

single product and noting that the set of possible routes for the product is Q, by (1), we have

F(K) = {y ∈Z|Q|
+ :

∑
p∈Q yp =K,

∑
p∈Q 1(i∈Rp) yp ≤ 1 ∀ i∈ C}. Therefore, F(K) ̸=∅ if and only if

the set packing feasibility problem has a solution.

Appendix B: Upper Bound on the Optimal Total Expected Revenue

We show that the optimal objective value of the linear program in (8) is an upper bound on the

optimal total expected revenue.

Theorem B.1 We have Z∗
LP ≥ J1(0).

Proof: Define the Bernoulli random variable H∗
t (S), where H

∗
t (S) = 1 if and only if the optimal

policy offers assortment S at time period t. Furthermore, define the Bernoulli random variable
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Φ∗
jt, where Φ∗

jt = 1 if and only if the customer arriving at time period t purchases product j under

the optimal policy. Note that P{Φ∗
jt = 1 |H∗

t (S) = 1}= ϕjt(S), which yields E{Φ∗
jt}= P{Φ∗

jt = 1}=∑
S⊆J P{Φ∗

jt = 1 |H∗
t (S) = 1}P{H∗

t (S) = 1}=
∑

S⊆J ϕjt(S)E{H∗
t (S)}. Define the random variable

Y ∗
jp to capture the number of purchases for product j that the optimal policy assigns to route p.

We claim that the solution ĥ= (ĥt(S) : S ⊆ J , t ∈ T ) and ŷ= (ŷjp : j ∈J , p∈Rj) with ĥt(S) =

E{H∗
t (S)} and ŷjp =E{Y ∗

jp} is feasible to (8). Noting that the total number of purchases for product

j under the optimal policy is
∑

t∈T Φ∗
jt, we have

∑
t∈T Φ∗

jt =
∑

p∈Rj
Y ∗
jp in any sample path of the

optimal policy. Taking expectations of both sides, by the argument at the beginning of the proof,

we get
∑

p∈Rj
ŷjp =

∑
t∈T E{Φ∗

jt}=
∑

t∈T
∑

S⊆J ϕjt(S) ĥt(S), so (ĥ, ŷ) satisfies the first constraint

in problem (8). Similarly, in any sample path of the optimal policy, we have
∑

j∈J
∑

p∈Rj
aip Y

∗
jp ≤ ci

and
∑

S⊆J H
∗
t (S) = 1, in which case, taking expectations of both sides, (ĥ, ŷ) satisfies the second

and third constraints in problem (8) as well. Thus, the claim follows. In the case, noting that the

total number of purchases for product j under the optimal policy is
∑

t∈T Φ∗
jt, the optimal total

expected revenue is J1(c) =
∑

j∈J fj
∑

t∈T E{Φ∗
jt}. Thus, we get

J1(c) =
∑
j∈J

fj
∑
t∈T

E{Φ∗
jt}

(a)
=
∑
j∈J

fj
∑
t∈T

∑
S⊆J

ϕjt(S) ĥt(S)
(b)

≤ Z∗
LP,

where (a) is by the discussion at the beginning of the proof, whereas (b) holds because (ĥ, ŷ) is a

feasible solution to (8) providing the objective value
∑

j∈J fj
∑

t∈T
∑

S⊆J ϕjt(S) ĥt(S).

Appendix C: Performance Guarantee under Periodic Route Assignments

In this section, we give a proof for Theorem 6.1. We need two lemmas in the proof. In the next

lemma, we give a useful property of the problem max(x,z)∈Gt(x,z) Ĵt+1(x,z).

Lemma C.1 Considering F(x,z) in (18) and Ĵt(x,z) in (20), for any (x,z) such that

F(x,z) ̸=∅, we have Ĵt+1(x,z) =max(x,z)∈Gt(x,z) Ĵt+1(x,z).

Proof: For t ̸∈ A, we have Gt(x,z) = {(x,z)} and the result follows. Throughout the rest of the proof,

we focus on the case where we have t ∈ A. First, we show the claim that Ĵt+1(x,z) ≤ Ĵt+1(x̂, ẑ)

for any (x,z)∈ Gt(x̂, ẑ). By the definition of Gt(x̂, ẑ), if (x,z)∈ Gt(x̂, ẑ), then we have x= 0. Let

(y,w) be an optimal solution to problem (20) when we solve this problem at time period t+ 1

with (x,z) = (x,z). Thus, we have Ĵt+1(x,z) =
∑

j∈J
∑

p∈Rj
γ̂jp,t+1ψp(w). Furthermore, because

x = 0, by the first constraint in (20), we have yjp = 0 for all j ∈ J and p ∈ Rj, in which case,

by the second constraint in (20), we have
∑

p∈R aip zp +wi = ci for all i ∈ L. On the other hand,

because (x,z) ∈ Gt(x̂, ẑ), by the definition of Gt(x̂, ẑ), there exists some ỹ ∈ F(x̂, ẑ) such that

zp = ẑp +
∑

j∈J 1(p∈Rj) ỹjp for all p ∈ R. Lastly, by the definition of F(x̂, ẑ), having ỹ ∈ F(x̂, ẑ)
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implies that
∑

p∈Rj
ỹjp = x̂j for all j ∈ J . Thus, noting that we established

∑
p∈R aip zp +wi = ci

and zp = ẑp +
∑

j∈J 1(p∈Rj) ỹjp, we get

ci =
∑
p∈R

aip zp +wi =
∑
p∈R

aip

(
ẑp +

∑
j∈J

1(p∈Rj) ỹjp

)
+wi =

∑
j∈J

∑
p∈Rj

aip ỹjp +
∑
p∈R

aip ẑp +wi,

in which case, (ỹ,w) satisfies the second constraint in (20) when we solve this problem at time

period t+1 with (x,z) = (x̂, ẑ). Also, noting that we established
∑

p∈Rj
ỹjp = x̂j, (ỹ,w) satisfies

the first constraint in (20) when we solve this problem at time period t+ 1 with (x,z) = (x̂, ẑ).

Thus, we have Ĵt+1(x̂, ẑ)≥
∑

j∈J
∑

p∈Rj
γ̂jp,t+1ψp(w) = Ĵt+1(x,z), so the claim follows. Second, we

show the claim that for any (x̂, ẑ) such that F(x̂, ẑ) ̸=∅, there exists some (x,z) ∈ Gt(x̂, ẑ) such

that Ĵt+1(x,z)≥ Ĵt+1(x̂, ẑ). Let (ŷ, ŵ) be an optimal solution to problem (20), when we solve this

problem at time period t+ 1 with (x,z) = (x̂, ẑ). Thus, Ĵt+1(x̂, ẑ) =
∑

j∈J
∑

p∈Rj
γ̂jp,t+1ψp(ŵ),∑

p∈Rj
ŷjp = x̂j for all j ∈J and

∑
j∈J

∑
p∈Rj

aip ŷjp+
∑

p∈R aip ẑp+ ŵi = ci for all i∈L. By the last

two equalities, ŷ ∈F(x̂, ẑ). Define (x,z) as xj = 0 for all j ∈J and zp = ẑp+
∑

j∈J 1(p∈Rj) ŷjp for all

p∈R. In this case, we write the equality
∑

j∈J
∑

p∈Rj
aip ŷjp+

∑
p∈R aip ẑp+ ŵi = ci equivalently as∑

p∈R aip(
∑

j∈J 1(p∈Rj) ŷjp + ẑp)+ ŵi = ci, which is, in turn, equivalent to
∑

p∈R aipzp + ŵi = ci. In

this case, letting yjp = 0 for all j ∈J and p∈Rj, noting that x= 0, it follows that (y, ŵ) is a feasible

solution to problem (20) when we solve this problem at time period t+1 with (x,z) = (x,z). Thus,

we have Ĵt+1(x,z) ≥
∑

j∈J
∑

p∈Rj
γ̂jp,t+1ψp(ŵ) = Ĵt+1(x̂, ẑ). Lastly, by the definition of (x,z),

we have xj = 0 for all j ∈ J , zp = ẑp +
∑

j∈J 1(p∈Rj) ŷjp for all p ∈ R and ŷ ∈ F(x̂, ŷ), in which

case, the definition of Gt(x̂, ŷ) implies that (x,z) ∈ Gt(x̂, ẑ), so the claim follows. By the two

claims, if F(x̂, ẑ) ̸=∅, then Ĵt+1(x,z)≤ Ĵt+1(x̂, ẑ) for any (x,z) ∈ Gt(x̂, ẑ), but there exists some

(x,z)∈ Gt(x̂, ẑ) such that Ĵt+1(x,z)≥ Ĵt+1(x̂, ẑ), so the desired result follows.

The next lemma is an analogue of Lemma 5.3. Its proof follows from an argument similar to the

one in the proof of Lemma 5.3. We omit the proof.

Lemma C.2 For any (x,z) ∈ Z|J |+|R|
+ , y ∈ F(x,z), j ∈ J and p ∈ Rj, letting wi = ci −∑

k∈J
∑

q∈Rk
aiq ykq −

∑
q∈R aiq zq for all i∈L, if wi ≥ 1 for all i∈Ap, then F(x+ej,z) ̸=∅ and

Ĵt(x+ej,z)≥ Ψ̂t

(
w−

∑
i∈Ap

ei

)
.

In the proof of Theorem B.1, we use Y ∗
jp to capture the number of purchases for product j

that the optimal policy assigns to route p, but do not specify when the route assignments are

made. Interpreting Y ∗
jp as the total number of purchases for product j that the optimal policy

assigns to route p over the whole selling horizon, we can follow the proof of the theorem line by
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line to show that the optimal objective value of problem (8) still provides an upper bound on the

optimal total expected revenue when we have periodic route assignments. Furthermore, because

we continue using (4)-(6) to compute the adjustable parameters (γ̂jpt : j ∈ J , p ∈ Rj, t ∈ T )

under periodic route assignments, Proposition 5.1 holds under periodic route assignments and we

have (1+ θL)
∑

j∈J
∑

p∈Rj
γ̂jp1 ≥Z∗

LP. We turn our attention to lower bounding the total expected

revenue obtained by the approximate policy. By the discussion in Section 6, if we are at time period

t with the state (x,z), then our approximate policy offers the assortment SApp
t (x,z). If the state

of the system after observing the purchase at time period t is (x,z), then the approximate policy

makes the route assignments so that the state of the system at the beginning of time period t+1

is ZApp
t (x,z). In this case, let Ut(x,z) be the total expected revenue obtained by the approximate

policy over time period t, . . . , T starting with the state vector (x,z) at time period t. We can

compute {Ut : t∈ T } using the dynamic program

Ut(x,z) =
∑
j∈J

ϕjt(S
App
t (x,z))1(F(x+ej ,z)̸=∅)

[
fj +Ut+1(Z

App
t (x+ej,z))−Ut+1(Z

App
t (x,z))

]
+Ut+1(Z

App
t (x,z)), (21)

with the boundary condition UT+1 = 0. This dynamic program is similar to the one in (19). In the

next proposition, we lower bound the total expected revenue obtained by the approximate policy.

Proposition C.3 For any (x,z)∈Z|J |+|R|
+ with F(x,z) ̸=∅ and t∈ T , the total expected revenue

obtained by the approximate policy satisfies Ut(x,z)≥ Ĵt(x,z).

Proof: We use induction over the time periods to show the result. We have UT+1 = 0= ĴT+1, so the

result holds at time period T + 1. Assuming that the result holds at time period t+ 1, we show

that the result holds time period t. Throughout the proof, we fix the state vector (x,z) such that

F(x,z) ̸=∅. Let (ŷ, ŵ) be an optimal solution to problem (20) with the value of the state vector

we fix. Thus, we have Ĵt(x,z) = Ψ̂t(ŵ), where we recall that Ψ̂t(w) =
∑

j∈J
∑

p∈Rj
γ̂jptψp(w).

Analogues of the three observations that we make at the beginning of the proof of Proposition 5.4

hold. First, we have Ĵt+1(x,z)≥ Ψ̂t+1(ŵ). Second, by Lemma C.2, for any j ∈J and p∈Rj, we have∏
i∈Ap

1(ŵi≥1) ≤ 1(F(x+ej )̸=∅) and (
∏

i∈Ap
1(ŵi≥1)) Ĵt(x+ ej,z) ≥ (

∏
i∈Ap

1(ŵi≥1)) Ψ̂t(ŵ −
∑

i∈Ap
ei).

Third, our approximate policy offers an assortment such that if j ∈ SApp
t (x,z), then

fj + max
(x,z)∈Gt(x+ej ,z)

Ĵt+1(x,z) − max
(x,z)∈Gt(x,z)

Ĵt+1(x,z) ≥ 0.

By the same argument that we gave right after (11), if we replace Ut+1(Z
App
t (x,z)) on the right side

of (21) with a smaller quantity, then the right side of (21) becomes smaller. In this case, letting
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St = SApp
t (x,z) for notational brevity for the state vector (x,z) we fix, recalling that ZApp

t (x,z) =

argmax(x,z)∈Gt(x,z) Ĵt+1(x,z), using the induction assumption in (21) yields

Ut(x,z)≥
∑
j∈J

ϕjt(St)1(F(x+ej ,z) ̸=∅)

{
fj+Ĵt+1(Z

App
t (x+ej,z))− Ĵt+1(Z

App
t (x,z))

}
+Ĵt+1(Z

App
t (x,z))

=
∑
j∈J

ϕjt(St)1(F(x+ej ,z)̸=∅)

{
fj + max

(x,z)∈Gt(x+ej ,z)

Ĵt+1(x,z)− max
(x,z)∈Gt(x,z)

Ĵt+1(x,z)
}
+ Ĵt+1(Z

App
t (x,z))

(a)
=
∑
j∈J

ϕjt(St)1(F(x+ej ,z)̸=∅)

[
fj + max

(x,z)∈Gt(x+ej ,z)

Ĵt+1(x,z)− max
(x,z)∈Gt(x,z)

Ĵt+1(x,z)
]+
+ Ĵt+1(Z

App
t (x,z))

(b)

≥
∑
j∈J

ϕjt(Ŝt)1(F(x+ej ,z)̸=∅)

[
fj + max

(x,z)∈Gt(x+ej ,z)

Ĵt+1(x,z)− max
(x,z)∈Gt(x,z)

Ĵt+1(x,z)
]+
+ Ĵt+1(Z

App
t (x,z)),

where (a) uses the third observation and (b) holds because St is an optimal solution to the problem

that defines SApp
t (x,z) in Section 6 but Ŝt given by (6) is only feasible to this problem.

By Lemma C.1, we have the identity Ĵt+1(x,z) = max(x,z)∈Gt(x,z) Ĵt+1(x,z), in which case, we

can express the right side of the chain of equalities above equivalently as∑
j∈J

ϕjt(Ŝt)1(F(x+ej ,z)̸=∅)

[
fj + Ĵt+1(x+ej,z)− Ĵt+1(x,z)

]+
+ Ĵt+1(x,z),

(c)

≥
∑
j∈J

ϕjt(Ŝt)
∏

i∈Ap̂jt

1(ŵi≥1)

[
fj + Ĵt+1(x+ej,z)− Ĵt+1(x,z)

]+
+ Ĵt+1(x,z)

(d)

≥
∑
j∈J

ϕjt(Ŝt)
∏

i∈Ap̂jt

1(ŵi≥1)

[
fj +Ψ̂t+1

(
ŵ−

∑
i∈Ap̂jt

ei

)
− Ĵt+1(x,z)

]+
+ Ĵt+1(x,z)

(e)

≥
∑
j∈J

ϕjt(Ŝt)
∏

i∈Ap̂jt

1(ŵi≥1)

[
fj +Ψ̂t+1

(
ŵ−

∑
i∈Ap̂jt

ei

)
−Ψ̂t+1(ŵ)

]+
+Ψ̂t+1(ŵ),

where (c) and (d) use the second observation and (e) holds because Ĵt+1(x,z)≥ Ψ̂t+1(ŵ) by the

first observation and
∑

j∈J δj[xj − y]+ + y is increasing in y when
∑

j∈J |δj| ≤ 1.

On the right side of the last chain of inequalities, the function Ψ̂t(w) =
∑

j∈J
∑

p∈Rj
γ̂jptψp(w)

only depends on the adjustable parameters (γ̂jpt : j ∈ J , p ∈ Rj, t ∈ T ). Thus, the right side of

the last chain of inequalities above only depends on the ideal routes (p̂jt : j ∈ J , t ∈ T ), ideal

assortments (Ŝt : t ∈ T ) and adjustable parameters (γ̂jpt : j ∈ J , p ∈Rj, t ∈ T ). These quantities

under periodic route assignments are still computed as in (4)-(6). Thus, using precisely the same

steps in (16)-(17) in the proof of Proposition 5.4, we can show that the right side of the last chain

of inequalities above is lower bounded by Ψ̂t(ŵ), which is equal to Ĵt(x,z). Therefore, the two

chains of inequalities above yield Ut(x,z)≥ Ĵt(x,z), completing the induction argument.

By the discussion right before (21), the optimal objective value of problem (8) provides an

upper bound on the optimal total expected revenue under periodic route assignments and the
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adjustable parameters (γ̂jpt : j ∈ J , p ∈Rj, t ∈ T ) satisfy (1+ θL)
∑

j∈J
∑

p∈Rj
γ̂jp1 ≥ Z∗

LP. Using

this discussion together with Proposition C.3, we give a proof for Theorem 6.1.

Proof of Theorem 6.1: Using 0 ∈ R|R|
+ to denote the vector of all zeros, the total expected

revenue of the approximate policy is U1(0,0) and the optimal total expected revenue is J1(0,0). If

we solve problem (20) with t= 1 and (x,z) = (0,0), then the only feasible solution to this problem

has wi = ci for all i ∈ L. When wi = ci for all i ∈ L, we have ψp(w) = 1, in which case, we get

Ĵ1(0,0) =
∑

j∈J
∑

p∈Rj
γ̂jp1. Thus, using Proposition C.3, as well as noting the discussion right

before the proof, we get U1(0,0)≥ Ĵ1(0,0) =
∑

j∈J
∑

p∈Rj
γ̂jp1 ≥ 1

1+θL
Z∗

LP ≥ 1
1+θL

J1(0,0).


