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We study the joint assortment and inventory planning problem with stockout-based substitution. In this

problem, we pick the number of units to stock for the products at the beginning of the selling horizon. Each

arriving customer makes a choice among the set of products with remaining on-hand inventories. Our goal

is to pick the stocking quantities to maximize the total expected revenue from the sales net of the stocking

cost. Using a fluid approximation for the problem, we give solutions with performance guarantees that

significantly improve earlier results. Letting T be the number of time periods in the selling horizon and n be

the number of products, when customers choose under a general choice model, we show that we can round

the solution to the fluid approximation to obtain stocking quantities with an optimality gap of O(n+
√
nT ),

improving earlier optimality gaps by a logarithmic factor. More importantly, when customers choose under

the multinomial logit model, we develop a rounding scheme that uses the solution to the fluid approximation

to generate stocking quantities with an optimality gap of O(logT
√
T logT ). The optimality gap that we

give under the multinomial logit model is the first one that does not depend on the number of products.

Such an optimality gap has important implications in the many-products regime. Earlier results cannot

guarantee that the stocking quantities generated by the fluid approximation perform well when both the

demand volume and number of products are large, which is a regime becoming more relevant for online retail

applications with large product variety. In contrast, we can guarantee that the stocking quantities generated

by our rounding scheme perform well when both the demand volume and number of products are large.

Key words : assortment optimization, multinomial logit model, fluid approximation.

1. Introduction

One of the common challenges faced by the retailers involves deciding which products to offer

and how much inventory to stock at the beginning of a selling season when the customers choose

and substitute among the products that are available to them. There are multiple tradeoffs to

balance in such a problem setting. Due to the substitution possibilities, when the inventory for a

product runs out, its demand shifts to other products, so it is difficult to quantify the demand for

each product a priori without knowing the stocking quantities. On the other hand, the stocking

quantities should, in turn, depend on the demand for the products. Therefore, there is a two-way

interaction between the demand for each product and stocking quantities. Moreover, even putting

the inventory considerations aside, finding the right variety of products to offer to customers is a

non-trivial problem. If the product variety is too low, then a large portion of the customers may

not find what they are looking for and leave without a purchase. If the product variety is too high,
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then there may be too many low-margin products introduced into the the mix, which may end

up cannibalizing the sales of high-margin products. These considerations point out that finding

the right product variety and stocking quantities requires considering how the demand for each

product is shaped by the inventories of all products and the substitution behavior.

Two types of substitution models have attracted attention. The first substitution model is static

substitution, which is used when customers cannot observe the product availability, as in online

retail. Under static substitution, customers choose within the product assortment without knowing

the real-time inventories. If the customer chooses a product without on-hand inventory, then she

may leave without a purchase or be served through an emergency procurement. Static substitution

takes its name due to the fact that the set of products among which a customer chooses does not

depend on real-time inventories. Such a substitution model simplifies the assortment and inventory

planning problem significantly. Due to the goodwill cost, however, it may not be desirable to

let a customer choose a product without on-hand inventory. Also, customers in brick-and-mortar

retail do see the real-time inventories on the shelf when making their choices. Thus, the second

substitution model is stockout-based substitution, where customers choose only among the products

with on-hand inventories. Under stockout-based substitution, the real-time inventories influence

the choices, so the choice probabilities for the products evolve with the on-hand inventories.

Assortment and inventory planning under stockout-based substitution is a notoriously difficult

problem that has been of interest to academics and practitioners for a long time. One approach is

to calculate stocking quantities using a fluid approximation formulated under the assumption that

the choices of the customers take on their expected values. There are three papers critical to us

that use this approach. Honhon and Seshadri (2013) consider customers choosing under a general

choice model. Letting T be the number of time periods in the selling horizon and n be the number

of products, the authors show that implementing the optimal solution of the fluid approximation

yields an optimality gap of O(n
√
T ). El Housni et al. (2021) also study the problem under a general

choice model. Using a fluid approximation, along with a sample average approximation approach,

the authors obtain a solution with an optimality gap of O(n+
√

nT log(nT )). Liang et al. (2022)

focus on the case where the customers choose under the multinomial logit model. The authors use

a fluid approximation to obtain a solution with an optimality gap of O(
√
nT log(nT )) when the

number of products is smaller than the number of time periods in the selling horizon.

Our Contributions: In many problem settings, it is straightforward to argue that the optimal

total expected profit increases linearly with T . In the three papers discussed in the previous

paragraph, the optimality gaps of the proposed solutions also increase in T , but sublinearly. In this

case, the relative optimality gaps of the proposed solutions in the three papers become arbitrarily
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close to zero as the number of time periods in the selling horizon gets large. In other words, we

have some theoretical assurance for using the solutions in these three papers under large demand

volume, all else being equal. On the other hand, it is not possible to argue that the optimal total

expected profit increases linearly with n. In fact, it is straightforward to come up with examples

where the optimal total expected profit remains constant in n. The optimality gaps of the proposed

solutions in the three papers above increase in n. In this case, the relative optimality gaps of the

proposed solutions do not become arbitrarily close to zero when both the number of time periods

and the number of products get large. In other words, we do not have any theoretical assurance for

using the solutions in these three papers under large demand volume, when the number of products

is also large. Therefore, the solutions in earlier results are for a regime where the demand volume

is large but the number of products remain bounded. However, it is reasonable to think of large

systems not only with large demand volume, but also with large number of products.

In this paper, we give improved optimality gaps. When customers choose under a general choice

model, we show that we can round the solution from a fluid approximation to get a solution with

an optimality gap of O(n+
√
nT ). This optimality gap is tight in both T and n. Our optimality gap

improves earlier results by a factor of O(
√
log(nT )). This improvement may be viewed modest, but

we build on this result to give much improved optimality gaps under the multinomial logit model,

which is one of the most popular choice models. Under the multinomial logit model, we develop

a new rounding scheme for the fluid approximation. When the preference weights of the products

are not infinitesimal, we show that the solution from our rounding scheme has an optimality gap

of O(logT
√
T logT ), which is independent of the number of products. Our proof involves fully

novel components, where we give a rounding scheme to prioritize high-margin products and use a

dynamic program to bound the expected no-purchases, yielding a key closed-form bound on the

expected no-purchases that exploits the special structure of the multinomial logit model.

To our knowledge, the optimality gap that we give under the multinomial logit model is the

first one that is independent of the number of products. Due to the fact that our optimality

gap increases sublinearly in T , whereas it does not increase in n, our rounding scheme generates

solutions with relative optimality gaps arbitrarily close to zero as both the demand volume and

the number of products get large. Furthermore, the optimality gap of O(
√

nT log(nT )) established

in earlier results is not an artifact of loose analysis. In Figure 1, as a function of the number of

products in a problem instance, we plot the percent gap between the upper bound on the optimal

total expected profit provided by the fluid approximation and the total expected profit obtained

by two stocking quantities. The solid line plots the gap for the stocking quantities obtained by our

rounding approach, whereas the dotted line plots the gap for the stocking quantities obtained
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Figure 1 Optimality gaps provided by two socking quantities as a function of the number of products.

by the rounding approach in Liang et al. (2022). Indeed, the gap for our stocking quantities remain

stable, whereas the gap for the stocking quantities in Liang et al. (2022) increases in n. Thus,

the fact that our rounding scheme yields optimality gaps independent of n is not a technical

curiosity. We can compute stocking quantities that perform significantly better.

Other Related Literature: The paper by van Ryzin and Mahajan (1999) studies joint

assortment and inventory planning under the multinomial logit model with static substitution and

products with identical margins, characterizing the structure of the optimal solution. Cachon et al.

(2005) incorporate customer search costs. Topaloglu (2013) relaxes the assumption of identical

product margins. Moving on to work under dynamic substitution, Mahajan and van Ryzin (2001)

give a stochastic gradient algorithm to compute locally optimal stocking quantities. Gaur and

Honhon (2006) use a locational choice model and obtain an upper bound. Hopp and Xu (2008)

propose a static approximation for substitution behavior that is based on a fluid network model.

Honhon et al. (2010) give a fluid approximation and solve it in O(8n) operations. Lastly, we

distinguish our work from other two streams of literature. The first stream is online assortment

optimization, where the assortment of products offered to each customer can be adjusted by the

retailer; see, for example, Golrezaei et al. (2014), Rusmevichientong et al. (2020) and Ma et al.

(2021). In our problem, the set of products available for the customers is automatically implied by

on-hand inventories. The second stream is assortment and inventory planning under stockout-based

substitution with an upper bound on the total units stocked; see, for example, Goyal et al. (2016),

Aouad et al. (2018), Aouad et al. (2019) and Aouad and Segev (2022). In this problem, stocking

costs are ignored but there is an upper bound on the total units stocked. Exploiting the fact that

the objective function does not involve a cost component, the focus is on developing multiplicative

performance guarantees.

Outline: In Section 2, we formulate the problem and discuss the fluid approximation that drives

our stocking quantities. In Section 3, we give our optimality gap under a general choice model. In

Section 4, we give our optimality gap under the multinomial logit model. In Section 5, we illustrate

our results numerically. In Section 6, we conclude.
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2. Problem Formulation

We have n products indexed by N = {1, . . . , n}. Selling a unit of product i yields a revenue of pi. We

procure each unit of product i at a cost of ci. There are T time periods in the selling horizon indexed

by T = {1, . . . , T}. For notational brevity, we follow the convention that there is one customer

arrival at each time period. At the beginning of the selling horizon, we decide how many units of

each product to stock. Each customer arriving into the system makes a choice within the set of

products with remaining inventories, either purchasing one unit of a product or deciding to leave

without a purchase. In particular, if the set of products with remaining inventories at a certain

time period is S, then the customer purchases product i with probability ϕi(S). Naturally, we have

ϕi(S) = 0 for all i ̸∈ S. With probability ϕ0(S) = 1−
∑

i∈N ϕi(S), the customer leaves without a

purchase. We assume that we have ϕi(S \ {j})≥ ϕi(S) for all i, j ∈ S, so that dropping a product

from the set of available products increases the purchase probability of all other available products.

This property is called the substitutability property and it is satisfied by all choice models that

are based on random utility maximization. Due to the substitutability property, the purchase

probability of a product is non-decreasing over the time periods until it is sold out.

Our goal is to decide how many units of each product to stock at the beginning of the selling

horizon to maximize the total expected profit. We use the vector q = (q1, . . . , qn) ∈ Zn
+ to capture

the inventories on-hand at the beginning of a generic time period, where qi is the inventory on-hand

for product i. If the inventories on-hand at the current time period are q, then the set of available

products is given by A(q) = {i ∈ N : qi > 0}, in which case, the sale for product i at the current

time period is a Bernoulli random variable with parameter ϕi(A(q)). Given that the inventories

on-hand at the current time period are q, we use the random vector D(q) = (D1(q), . . . ,Dn(q))

to capture the sales for the products, where Di(q) is the sale for product i. Using ei ∈ Zn
+ to

denote the i-th unit vector, note that we have D(q) = ei with probability ϕi(A(q)). We use the

random variable Xi(q, t) to capture the total sales for product i over τ time periods given that

the inventories on-hand at the beginning of these τ time periods are q. Therefore, the random

variable Xi(q, τ) is recursively defined as Xi(q, τ) =Di(q)+Xi(q−D(q), τ −1) with the boundary

condition that Xi(q,0) = 0. In this case, if the stocking quantities at the beginning of the selling

horizon are chosen to be q, then the total expected profit that we obtain is given by

Π(q) =
∑
i∈N

piE{Xi(q, T )}−
∑
i∈N

ci qi. (1)

The optimal total expected profit is opt = maxq∈Zn
+
Π(q). Putting aside solving the last

optimization problem, to our knowledge, computing Π(q) at fixed stocking quantities requires
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solving a dynamic program with a high-dimensional state variable keeping track of the remaining

inventories of each product. We use a fluid approximation to get a tractable benchmark.

Upper Bound from a Fluid Approximation:

Instead of comparing the total expected profit from the approximate stocking quantities that we

compute with opt, we will compare it with an upper bound on opt. Consider the problem

V fluid = T max
S⊆N

{∑
i∈N

ϕi(S) (pi − ci)

}
. (2)

The maximization problem above finds a subset of products to offer to maximize the expected

profit extracted from the customer arriving at each time period. Using Sfluid to denote an optimal

solution to the maximization problem above, we define the stocking quantities qfluid = (qfluid1 , . . . , qfluidn )

as qfluidi = T ϕi(S
fluid) for all i∈N . In this case, if the sale for product i at a time period were to take

the deterministic and fractional value of ϕi(S
fluid), then stocking qfluidi units of product i would imply

that the inventories of all products are depleted simultaneously at the end of the selling horizon.

Meanwhile, we would be extracting the maximum expected profit from the customer arriving at

each time period. Thus, we can show that V fluid is an upper bound on the optimal total expected

profit. That is, we have V fluid ≥ opt; see Proposition 2.1 in El Housni et al. (2021). This upper

bound on the optimal total expected profit is computed under the assumption that the demand for

each product is deterministic and fractional, so we refer to this upper bound on the optimal total

expected profit as the fluid upper bound. While it is difficult to compute the optimal total expected

profit efficiently, we can often compute the fluid upper bound efficiently. In particular, problem

(2) is of combinatorial nature, but we can solve this problem efficiently when the choices of the

customers are governed by a variety of choice models, including the multinomial logit, generalized

attraction, nested logit, multi-level nested logit and Markov chain choice model; see Talluri and van

Ryzin (2004), Davis et al. (2014), Gallego et al. (2015), Li et al. (2015) and Blanchet et al. (2016).

For any approximate stocking quantity q, the optimality gap of this approximate stocking quantity

is given by opt−Π(q). Noting that opt−Π(q)≤ V fluid −Π(q), to upper bound the optimality gap

of the approximate stocking quantity, it will be enough to upper bound V fluid −Π(q).

In the next section, we consider the case where the customers choose under a general choice

model and give a performance bound for the solutions from the fluid upper bound.

3. Performance Guarantee under a General Choice Model

We consider the case where the choices of the customers are governed by a general choice model and

give a performance guarantee for stocking quantities from the fluid upper bound. We obtain the
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fluid upper bound by using stocking quantities that are depleted simultaneously for all products

at the end of the selling horizon. Thus, the set of products with on-hand inventories do not change

throughout the selling horizon. Motivated by this observation, we focus on a problem that is

formulated under the assumption that the customers always make a choice among the products

that are stocked at the beginning of the selling horizon, but if the product they choose does not

have on-hand inventory anymore, then they leave without a purchase. If the stocking quantities

are q, then the set of stocked products is given by A(q). A customer chooses product i among this

set of products with probability ϕi(A(q)). We use the random vector Ct(q) = (C1t(q), . . . ,Cnt(q))

to capture the choice of the customer arriving at time period t among the set of products A(q).

Thus, we have Ct(q) = ei with probability ϕi(A(q)). Under the assumption that the customers

always make a choice among the products that are stocked at the beginning of the selling horizon,

if we stock the quantities q, then the total expected profit is

Πstatic(q) =
∑
i∈N

piE

{
min

{
qi,
∑
t∈T

Cit(q)

}}
−
∑
i∈N

ci qi. (3)

In the expression in (3), the set of products among which the customers choose does not change

during the course of the selling horizon, so we refer (3) as the static approximation. We can argue

that the purchase probability of each product at each time period in (3) is no larger than its

counterpart in (1). In particular, the customers choose among the set of products stocked at the

beginning of the selling horizon in (3), whereas the customers choose among the set of products

with on-hand inventories in (1). Thus, by the assumption that ϕi(S)≤ ϕi(S \ {j}) for all i, j ∈ S,

the purchase probability of each product at each time period in (3) is no larger than its counterpart

in (1). In this case, the total expected profit in (3) is no larger than the total expected profit in

(1), so Πstatic(q)≤ Π(q) for all q ∈ Zn
+. Recalling that Sfluid is an optimal solution to problem (2)

and qfluidi = T ϕi(S
fluid), using ⌈·⌉ to denote the round up operator, we define the stocking quantities

⌈qfluid⌉= (⌈qfluid1 ⌉, . . . , ⌈qfluidn ⌉). In the next theorem, we give a performance guarantee for the stocking

quantities ⌈qfluid⌉. Throughout the rest of the paper, we set p=maxi∈N pi and c=maxi∈N ci.

Theorem 3.1 If p and c are independent of n and T , then there exist absolute constants C1 and

C2 such that

V fluid −Πstatic(⌈qfluid⌉) ≤ C1 n+C2

√
nT .

We give the proof of the theorem in Appendix A. Using the fact that V fluid ≥ opt and

Πstatic(q)≤Π(q) for all q ∈ Zn
+, Theorem 3.1 implies that opt − Π(⌈qfluid⌉) ≤ C1 n + C2

√
nT , so
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the optimality gap of the stocking quantities ⌈qfluid⌉ is upper bounded by C1 n + C2

√
nT . We

briefly outline the proof of the theorem. In the fluid upper bound, we incur the total procurement

cost T
∑

i∈N ϕi(S
fluid) ci =

∑
i∈N ci q

fluid
i . In the static upper bound, corresponding to the stocking

quantities qfluid, we incur the total procurement cost
∑

i∈N ci ⌈qfluidi ⌉. The difference in the total

procurement cost is upper bounded by cn, so we are left to analyze the difference in the total

expected revenue. In the fluid upper bound, the total expected revenue from product i is given

by T ϕi(S
fluid)pi = pi q

fluid
i . In the static upper bound, corresponding to the stocking quantities

⌈qfluid⌉, the total expected revenue from product i is piE{min{⌈qfluidi ⌉,
∑

t∈T Cit(⌈qfluid⌉)}}. Thus, the

difference between the total expected revenue from product i is given by

pi

(
qfluidi −E

{
min

{
⌈qfluidi ⌉,

∑
t∈T

Cit(⌈qfluid⌉)

}})
.

Using the Jensen inequality, we upper bound the difference by p
√

ϕi(Sfluid)T , in which case, using

this upper bound for all products with Cauchy-Schwarz inequality yields the result.

If the number of time periods in the selling horizon is larger than the number of products,

then Theorem 3.1 gives an optimality gap of O(
√
nT ). We shortly give an example where this

optimality gap is tight, followed by another example where we improve this optimality gap when

the products are highly substitutable. Theorem 3.1 makes use of the static upper bound, which

ignores the substitution behavior based on the on-hand product inventories. El Housni et al.

(2021) argue that ignoring substitution behavior based on the on-hand product inventories can

lead to large optimality gaps and use sample average approximation to get an optimality gap of

O(n+
√
nT log(nT )). Theorem 3.1 improves the last optimality gap by a factor of O(

√
log(nT ))

when the number of time periods is larger than the number of products.

Independent Demand Model:

We give an example where the optimality gap in Theorem 3.1 is tight. Using 1(·) to denote the

indicator function, the choice probabilities are given by ϕi(S) = 1(i∈ S) 1
1+n

. Thus, if a product is

available, its choice probability is 1
1+n

, irrespective of what other products are available. The unit

revenues and procurement cost are respectively pi = 2 and ci = 1 for all i∈N . We assume that T
1+n

is an integer. The optimal solution to problem (2) is Sfluid =N , so we have qfluidi = T
1+n

for all i∈N

and V fluid = T n
1+n

. We compute the static approximation to the total expected profit at the stocking

quantities ⌈qfluid⌉, which is given by Πstatic(⌈qfluid⌉). Since qfluidi > 0 for all i ∈N , A(⌈qfluid⌉) =N , so

ϕi(A(⌈qfluid⌉)) = 1
1+n

. Therefore, Cit(⌈qfluid⌉) is a Bernoulli random variable with parameter 1
1+n

, so∑
t∈T Cit(⌈qfluid⌉) is a binomial random variable with parameters (T, 1

1+n
). Using binomial(k, p) to
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denote a binomial random variable with parameters (k, p), Lemma A.1 in Appendix A shows that

E{[k p− binomial(k, p)]+} ≥ 1√
2π

√
k p (1− p)−O(1). Thus, we obtain

V fluid −Πstatic(⌈qfluid⌉) =
Tn

1+n
−n

[
2E

{
min

{
T

1+n
,binomial

(
T,

1

1+n

)}}
− T

1+n

]

= 2
Tn

1+n
− 2nE

{
min

{
T

1+n
,binomial

(
T,

1

1+n

)}}

= 2nE

{[
T

1+n
− binomial

(
T,

1

1+n

)]+}
≥ 2n

(
1√
2π

√
T

n

(1+n)2
−O(1)

)
= Ω(

√
nT −n),

so if the number of time periods in the selling horizon is larger than the number of products, then

we have V fluid −Πstatic(⌈qfluid⌉) =Ω(
√
nT ).

Fully Substitutable Demand Model:

We give an example where we can improve the optimality gap in Theorem 3.1 under a choice

model where the products are fully substitutable. This example suggests that the optimality gap

in Theorem 3.1 is, in general, tight, but by focusing on choice models with a special structure, we

can improve the optimality gap. The choice probabilities are given by ϕi(S) =
n

1+n
1(i∈ S) 1

|S| . We

interpret these choice probabilities as follows. A customer is interested in making a purchase with

probability n
1+n

. If interested in making a purchase, then the customer chooses any of the available

products with equal probability. We have pi = 2 and ci = 1 for all i ∈N for the unit revenues and

procurement costs. We continue assuming that T
1+n

is an integer. Considering problem (2), any

non-empty subset of products is an optimal solution, so we use Sfluid = {1}. In this case, noting

that ϕ1({1}) = n
1+n

, we get V fluid = T n
1+n

and qfluid1 = Tn
1+n

, qfluidi = 0 for all i= 2, . . . , n. Furthermore,∑
t∈T C1t(⌈qfluid⌉) is a binomial random variable with parameters (T, n

1+n
). Lemma 1 Gallego and

Moon (1993) shows that E{[k p− binomial(k, p)]+} ≤ 1
2

√
k p (1− p). Thus, we obtain

V fluid −Πstatic(⌈qfluid⌉) =
Tn

1+n
−

[
2E

{
min

{
Tn

1+n
,binomial

(
T,

n

1+n

)}}
− Tn

1+n

]

= 2
Tn

1+n
− 2E

{
min

{
Tn

1+n
,binomial

(
T,

n

1+n

)}}

= 2E

{[
Tn

1+n
− binomial

(
T,

n

1+n

)]+}
≤
√
T

n

(1+n)2
= O(

√
T/n),

so the optimality gap of the stocking quantities qfluid is O(
√

T/n). Intuitively speaking, for n large,

each customer makes a purchase with probability one, making the problem much easier.

For both examples, because of the choice of the unit revenues and procurement costs, ⌈qfluid⌉
happens to be the optimal stocking quantities. By the first example, the optimality gap of the fluid

approximation, in general, cannot be improved beyond O(
√
nT ), but we can get better optimality

gaps under choice models with a special structure.
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4. Performance Guarantee under the Multinomial Logit Model

We focus on the case where the choices of the customers are governed by the multinomial logit

model and show that we can obtain stocking quantities from the fluid upper bound with optimality

gap independent of the number of products. By the discussion right after Theorem 3.1, there

are two contributors to the optimality gap given in the theorem. First, the fluid upper bound

works with the stocking quantities qfluid, whereas the static approximation works with the stocking

quantities ⌈qfluid⌉. Thus, the first contributor is the rounding error. Second, the fluid upper bound

assumes that the demand for product i at each time period takes the deterministic and fractional

value ϕi(S
fluid), whereas the static approximation assumes that the demand for product i at each

time period is a Bernoulli random variable with parameter ϕi(S
fluid). Under the multinomial logit

model, we tighten our analysis to deal with both contributors to the optimality gap more effectively.

Instead of rounding up the stocking quantities from the fluid approximation for all products, we

develop a rounding scheme that can round up or down the stocking quantity for each product.

Furthermore, we use the specific substitution behavior under the multinomial logit model to analyze

the stochastic evolution of the demand over the selling horizon.

Multinomial logit model is arguably one of the most popular choice models, both in practical

applications and academic research. Under this choice model, a customer associates a preference

weight of wi with product i and a preference weight of w0 with the no-purchase option.

If the set of available products is S, then a customer chooses product i with probability

ϕi(S) = 1(i∈ S) wi
w0+

∑
j∈S wj

. Consider computing the fluid upper bound in (2) when customers

choose according to the multinomial logit model. It is known that the optimal solution to

problem (2) is margin-ordered in the sense that Sfluid offers a certain number of products with

the largest margins. In particular, without loss of generality, we index the products such that

p1 − c1 ≥ p2 − c2 ≥ . . .≥ pn − cn. In this case, the optimal solution to problem (2) is of the form

Sfluid = {1,2, . . . , j} for some j ∈N . Thus, we can solve problem (2) by checking the objective value

provided by each solution of the form {1,2, . . . , j} and there are at most n solutions of this form.

Once we obtain Sfluid efficiently in this fashion, we continue computing the stocking quantities

from the fluid approximation as qfluidi = T ϕi(S
fluid) = T 1(i∈ Sfluid) wi

w0+
∑

j∈Sfluid wj
. Next, we describe

a procedure to round this solution to obtain integer stocking quantities.

Rounding Procedure:

Using ⌊·⌋ to denote the round down operator, the rounding budget is δ=
⌈∑

i∈Sfluid(qfluidi −⌊qfluidi ⌋)
⌉
.

The rounded stocking quantities qround = (qroundi , . . . , qroundn ) are given by qroundi = ⌊qfluidi ⌋+1 for i≤ δ and

qroundi = ⌊qfluidi ⌋ for i > δ. In the next lemma, we give properties of the rounded stocking quantities.

Intuitively speaking, this lemma states that the rounded stocking quantities shift the stocking
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quantities in the solution to the fluid upper bound from products with lower margins to those with

higher margins, while keeping the total stocking quantities nearly unchanged.

Lemma 4.1 The rounded stocking quantities qround and the stocking quantities from the fluid upper

bound qfluid satisfy the inequalities

0≤
∑

i∈Sfluid

(qroundi − qfluidi )≤ 1,
∑

i∈Sfluid

(pi − ci) (q
fluid
i − qroundi )≤ 0,

∣∣∣{i∈N : qroundi > 0}
∣∣∣≤ T +1.

We give the proof of the lemma in Appendix B. To see the benefit from using the stocking

quantities qround instead of ⌈qfluid⌉, setting X0(q, τ) = τ −
∑

i∈A(q)Xi(q, τ), we have

V fluid −Π(qround) =
∑

i∈Sfluid

(pi − ci) q
fluid
i −

[ ∑
i∈Sfluid

piE{Xi(q
round, T )}−

∑
i∈Sfluid

ci q
round
i

]

=
∑

i∈Sfluid

(pi − ci)
(
qfluidi − qroundi

)
+
∑

i∈Sfluid

pi

(
qroundi −E{Xi(q

round, T )}
)

(a)

≤
∑

i∈Sfluid

(pi − ci)
(
qfluidi − qroundi

)
+ p

[ ∑
i∈Sfluid

qroundi +X0(q
round, T )−T

]
(b)
=
∑

i∈Sfluid

(pi − ci)
(
qfluidi − qroundi

)
+ p

{
E{X0(q

round, T )}−T ϕ0(S
fluid)

}
+ p

∑
i∈Sfluid

(qroundi − qfluidi )

(c)

≤ p
{
E{X0(q

round, T )}−T ϕ0(S
fluid)

}
+ p,

where (a) uses the definition of X0(q, T ), (b) holds because we have qfluidi = T ϕi(S
fluid) and∑

i∈Sfluid ϕi(S
fluid)+ϕ0(S

fluid) = 1 and (c) uses the first two inequalities in Lemma 4.1.

By the chain of inequalities above, the difference
∑

i∈Sfluid(qroundi − qfluidi ) is O(1), so this difference

contributes the term p to the optimality gap V fluid−Π(qround), which is independent of the number

of products. In contrast, the difference
∑

i∈Sfluid(⌈qfluidi ⌉ − qfluidi ) is O(n). Thus, using the stocking

quantities qround instead of ⌈qfluid⌉ eliminates the contribution of the rounding error to the optimality

gap. Furthermore, by the chain of inequalities above, to bound the optimality gap V fluid−Π(qround),

it is enough to upper bound the difference E{X0(q
round, T )}−T ϕ0(S

fluid). Note that E{X0(q
round, T )}

is the expected number of customers without a purchase when the stocking quantities are qround,

whereas Tϕ0(S
fluid) is the deterministic and fractional number of customers without a purchase

under the fluid approximation. We will upper bound the difference E{X0(q
round, T )} − T ϕ0(S

fluid)

by an expression that is independent of the number of products. In this case, the optimality gap

of the stocking quantities qround will be independent of the number of products.

In the next theorem, we give a performance guarantee for the stocking quantities qround under

the multinomial logit model. Throughout the rest of the paper, we set w=mini∈N wi.
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Theorem 4.2 Considering customers choosing under the multinomial logit model, if p and w0/w

are independent of n and T , then there exist absolute constants C1 and C2 such that

V fluid −Π(qround) ≤ C1 logT
√
T logT +C2.

We give the proof of the theorem in Appendix B. Noting that V fluid ≥ opt, Theorem 4.2 implies

that opt−Π(qround)≤ C1 logT
√
T logT +C2, so optimality gap of the stocking quantities qround is

O(logT
√
T logT ), which is independent of the number of products. We briefly outline the proof of

the theorem. Exploiting the multinomial logit model, we develop a dynamic program to bound the

expected no-purchases through a closed-form as E{X0(q, T )} ≤ 1+w0 maxi∈N

{
qi
wi

}
log
∑

i∈N qi +

[T −
∑

i∈N qi]
+ for any stocking quantities q ∈ Z+. This inequality is the key driver of the proof

of the theorem. If the number of customer arrivals is small in the sense that T ≤K |Sfluid| logT

for some constant K independent of n and T , then using this inequality along with the fact that∑
i∈N qfluidi = T

∑
i∈N ϕi(S

fluid)≤ T in our key inequality allows us to bound E{X0(q, T )}.

If, on the other hand, T ≥K |Sfluid| logT , then we proceed as follows. Using Chernoff bound, we

characterize a time period T̃ close to T such that no product is sold out by time period T̃ with

high probability. Given that none of the products is sold out by time period T̃ , the total number

customers without a purchase by time period T̃ is a binomial random variable, which allows us to

show that the conditional total expected number of customers without a purchase by time period

T̃ is no larger than T ϕ0(S
fluid). Lastly, given that none of the products is sold out by time period T̃ ,

we show that the on-hand inventory of each product at time period T̃ is O(
√
T ). In this case, using

our key inequality over the remaining T − T̃ time periods, we show that the expected number of

customers without a purchase over these time periods is O(logT
√
T logT ).

5. Numerical Study

We give a numerical study to test the performance of the solutions qround and ⌊qfluid⌋ under the

multinomial logit model. The solution qround has an optimality gap ofO(logT
√
T logT ). In Section 3,

we work with the solution ⌈qfluid⌉ because this solution is simpler to analyze, but we can show that

the solution ⌊qfluid⌋ has an optimality gap of O(n+
√
nT ) as well. We use the solution ⌊qfluid⌋ in our

numerical study, because Liang et al. (2022) use this solution. In all of our test problems, the unit

revenue and procurements costs of all products are pi = 2 and ci = 1 for all i ∈N . The preference

weights of all products are wi = 1 for all i∈N . The preference weight of the no-purchase option is

w0 = 1. We vary the number of products n over {2k : k= 1, . . . ,9} and the number of time periods

T over {10× 2k : k= 1, . . . ,9}. For each test problem, we compute the fluid upper bound V fluid and
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T = 1000

n 2 4 8 16 32 64 128 256 512

V fluid 666.7 800.0 888.9 941.2 969.7 984.6 992.2 996.1 998.1

Π(qround) 650.3 781.3 870.1 923.0 953.6 970.3 979.4 984.7 987.8

V fluid −Π(qround) 16.43 18.69 18.75 18.20 16.12 14.32 12.81 11.40 10.23

100× 1
V fluid (V

fluid −Π(qround)) 2.46 2.34 2.11 1.93 1.66 1.45 1.29 1.14 1.03

Π(⌊qfluid⌋) 650.3 781.6 870.1 923.6 955.1 960.0 896.0 768.0 512.0

V fluid −Π(⌊qfluid⌋) 16.41 18.42 18.75 17.56 14.60 24.65 96.25 228.1 486.1

100× 1
V fluid (V

fluid −Π(⌊qfluid)⌋) 2.46 2.30 2.11 1.87 1.51 2.50 9.70 22.9 48.7

Table 1 Optimality gaps for the stocking quantities qround and ⌊qfluid⌋ for varying n.

n= 100

T/10 2 4 8 16 32 64 128 256 512

V fluid 19.80 39.60 79.21 158.4 316.8 633.7 1267 2535 5069

Π(qround) 15.69 34.70 73.61 151.6 308.5 622.7 1252 2515 5042

V fluid −Π(qround) 4.11 4.91 5.60 6.85 8.31 10.98 14.83 19.66 27.12

100× 1
V fluid (V

fluid −Π(qround)) 20.76 12.39 7.06 4.33 2.62 1.73 1.17 0.78 0.53

Π(⌊qfluid⌋) 0 0 0 100 300 600 1200 2499 5000

V fluid −Π(⌊qfluid⌋) 19.80 39.60 79.21 58.42 16.84 33.66 67.33 34.66 69.31

100× 1
V fluid (V

fluid −Π(⌊qfluid)⌋) 100 100 100 36.87 5.31 5.31 5.31 1.37 1.37

Table 2 Optimality gaps for the stocking quantities qround and ⌊qfluid⌋ for varying T .

stocking quantities ⌊qfluid⌋ and qround. We estimate the total expected profit obtained by these two

sets of stocking quantities using Monte Carlo simulation with 10,000 sample paths.

In Table 1, we fix the number of time periods in the selling horizon at T = 1000 and vary the

number of products. The first row gives the number of products. The second row gives the value

of the fluid upper bound. The block of next three rows focus on the stocking quantities qround. The

first row gives the total expected profit obtained by using the stocking quantities qround, the second

row gives the absolute gap between the fluid upper bound and the total expected profit from the

stocking quantities qround and the third row gives the same gap in relative percentage terms. The

block of last three rows focus on the stocking quantities ⌊qfluid⌋ and provide the same performance

measures. Consistent with Theorem 4.2, the absolute gap between the fluid upper bound and the

total expected profit from the stocking quantities qround remains stable as the number of products

increases. In contrast, consistent with Theorem 3.1, the absolute gap between the fluid upper

bound and the total expected profit from the stocking quantities ⌊qfluid⌋ increases as the number of

products increases. For n= 256 or 512, the stocking quantities ⌊qfluid⌋ perform rather poorly, with

optimality gaps exceeding 20%, whereas the optimality gaps of the stocking quantities qround stay

close to 1%. Other work, such as Liang et al. (2022), works with the stocking quantities ⌊qfluid⌋, but

this solution is relevant when the number of time periods is large relative to number of products.

When the number of products is large, the stocking quantities ⌊qfluid⌋ can be poor.

In Table 2, we fix the number of the number of products at n= 100 and and vary the number

of time periods in the selling horizon. The layout of this table is identical to that of Table 1. By
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Theorem 4.2, the optimality gap of the stocking quantities qround is O(logT
√
T logT ). Accordingly,

the absolute gap between the fluid upper bound and the total expected profit obtained by using

the stocking quantities qround increases slightly with T , but noting that V fluid increases linearly

in T , the relative gap between the two quantities decrease. When T = 20,40,80 or 160 so that

the number of products is large relative to the number of time periods, the stocking quantities

⌊qfluid⌋ are not practically useful as they have optimality gaps exceeding 30%. When T = 2560 or

5120, the optimality gaps of the stocking quantities ⌊qfluid⌋ are just over 1%, but the optimality

gaps of the stocking quantities qround are below 1% for these numbers of time periods in the selling

horizon. Overall, the superior theoretical performance guarantee that we can give for qround over

⌊qfluid⌋ carries over to the practical performance of these stocking quantities.

6. Conclusions

We analyzed fluid relaxations for the assortment and inventory planning problem under

stockout-based substitution that has been of interest for a long time. Under a general choice

model, we tightened the optimality gap of a solution from the fluid approximation by a factor of

O(
√
log(nT )) when compared with the earlier literature. More interestingly, under the multinomial

logit model, we showed that we can obtain a solution from the fluid approximation with an

optimality gap of O(logT
√
T logT ), which is independent of the number of products. The result

is significant for both theoretical and practical reasons. In particular, our solutions perform well

under large demand volume even when the number of products is large, whereas the solutions in

earlier results perform poorly when the number of products gets large. It would be interesting to

obtain such tighter performance guarantees under other choice models.
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Appendix A: Proofs of Results in Section 3

Proof of Theorem 3.1:

Recall Ct(⌈qfluid⌉) denotes the choice of the customer arriving at time period t among the set of

products A(⌈qfluid⌉) and a customer chooses product i among this set of products with probability

ϕi(A(⌈qfluid⌉)). By (2) and (3), we have

V fluid −Πstatic(⌈qfluid⌉) =
∑
i∈N

(pi − ci)q
fluid
i −

∑
i∈N

piE

{
min

{
⌈qfluidi ⌉,

∑
t∈T

Cit(⌈qfluid⌉)

}}
+
∑
i∈N

ci⌈qfluidi ⌉

≤
∑

i∈Sfluid

piE

{
qfluidi −min

{
qfluidi ,

∑
t∈T

Cit(⌈qfluid⌉)

}}
+
∑

i∈Sfluid

ci

=
∑

i∈Sfluid

piE


[
qfluidi −

∑
t∈T

Cit(⌈qfluid⌉)

]++
∑

i∈Sfluid

ci ≤
∑

i∈Sfluid

piE

{∣∣∣∣∣qfluidi −
∑
t∈T

Cit(⌈qfluid⌉)

∣∣∣∣∣
}
+
∑

i∈Sfluid

ci

(a)

≤
∑

i∈Sfluid

pi

√√√√√E


(
qfluidi −

∑
t∈T

Cit(⌈qfluid⌉)

)2
+

∑
i∈Sfluid

ci
(b)
=
∑

i∈Sfluid

pi

√√√√Var

{∑
t∈T

Cit(⌈qfluid⌉)

}
+
∑

i∈Sfluid

ci

=
∑

i∈Sfluid

pi
√
Tϕi(Sfluid)(1−ϕi(Sfluid))+

∑
i∈Sfluid

ci ≤
∑

i∈Sfluid

pi
√

Tϕi(Sfluid)+
∑

i∈Sfluid

ci

(c)

≤ p̄
√

|Sfluid|T + c̄
∣∣Sfluid

∣∣ ,
where (a) holds by Jensen’s inequality, (b) holds because E

{∑
t∈T Cit(⌈qfluid⌉)

}
= qfluidi and (c)

follows from Cauchy-Schwarz inequality and
∑

i∈Sfluid ϕi(S
fluid)≤ 1.

Lemma A.1 Suppose k p is integral, it holds that

E{[k p− binomial(k, p)]+} ≥ 1√
2π

√
k p (1− p)−O(1).

Proof: Let q = 1− p and (Xi)
k
i=1 denote k independent and identical distributed binary random

variables such that Xi =Bernoulli(p)− p, then we have

E
{
[k p− binomial(k, p)]

+
}
=

1

2
E{|k p− binomial(k, p)|+ k p− binomial(k, p)]

=
1

2
E{|k p− binomial(k, p)|}=E

{
[binomial(k, p)− k p]+

}
=
√

k pqE


[∑k

i=1Xi√
k pq

]+
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=
√
k pq

∫ ∞

0

P

(∑k

i=1Xi√
k pq

> x

)
dx≥

√
k pq

∫ ∞

0

(
P (Norm(0,1)>x)− C

(1+x3)
√
k pq

)
dx

=

√
k pq

2π
−C

∫ ∞

0

1

1+x3
dx,

where C is a constant and the last inequality follows from the nonuniform Berry-Esseen inequality

(Nagaev 1965). Note that∫ ∞

0

1

1+x3
dx≤ 1+

∫ ∞

1

1

1+x3
dx≤ 1+

∫ ∞

1

1

x3
dx≤ 3

2
,

therefore,

E{[k p− binomial(k, p)]+} ≥
√

k pq

2π
− 3

2
C.

Appendix B: Proofs of Results in Section 4

Proof of Lemma 4.1:

We first note that δ= ⌈
∑

i∈Sfluid(qfluidi −⌊qfluidi ⌋)⌉ ≤ |Sfluid|, thus,∑
i∈Sfluid

(qroundi − qfluidi ) =
∑

i∈Sfluid

(⌊qfluidi ⌋− qfluidi )+ δ=
⌈ ∑
i∈Sfluid

(qfluidi −⌊qfluidi ⌋)
⌉
−
∑

i∈Sfluid

(qfluidi −⌊qfluidi ⌋)∈ [0,1].

Next, we have

∑
i∈Sfluid

(pi − ci)(q
fluid
i − qroundi ) =

∑
i∈Sfluid

(pi − ci)q
fluid
i −

δ∑
i=1

(pi − ci)(⌊qfluidi ⌋+1)−
|Sfluid|∑
i=δ+1

(pi − ci)⌊qfluidi ⌋

≤
∑

i∈Sfluid

(pi − ci)q
fluid
i −

δ∑
i=1

(pi − ci)q
fluid
i − (pδ − cδ)

(
δ+

δ∑
i=1

(⌊qfluidi ⌋− qfluidi )

)
−

|Sfluid|∑
i=δ+1

(pi − ci)⌊qfluidi ⌋

=

|Sfluid|∑
i=δ+1

(pi − ci)(q
fluid
i −⌊qfluidi ⌋)− (pδ − cδ)

(
δ−

δ∑
i=1

(qfluidi −⌊qfluidi ⌋)

)

≤ (pδ − cδ)

 ∑
i∈Sfluid

(qfluidi −⌊qfluidi ⌋)− δ

≤ 0.

Finally, we have ∣∣{i : qroundi > 0
}∣∣≤ ∑

i∈Sfluid

qroundi ≤
∑

i∈Sfluid

qfluidi +1≤ T +1.

We use a sequence of preliminary lemmas to give a proof for Theorem 4.2.

Lemma B.1 Given any nonzero inventory q ∈ZN
+ with T customers, it holds that

E{X0(q, T )} ≤ 1+w0max
i∈N

{
qi
wi

}
log

(∑
i∈N

qi

)
+

[
T −

∑
i∈N

qi

]+
.
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Proof: Note that for each customer t, the no-purchase random variable follows the Bernoulli

distribution with success probability 1−
∑

i∈N ϕi(St) where St is the set of available items observed

by the customer and ϕi(St) is the purchase probability of item i. Since each customer can buy at

most one item, it is sufficient to consider the problem where the decision maker removes one unit of

product per period in order to maximize the total expected no-purchase probability V 0
1 (q), which

can be recursively computed as

V 0
t (q

′) =
w0

w0 +
∑

i:q′i>0

wi

+ max
i:q′i>0

V 0
t+1(q

′ −ei),

where V 0
T+1(q

′) = 0 for any q′. To bound V 0
1 (q), we consider an auxiliary problem given by

Ṽ 0
t (q

′) =
w0

w0 +
∑

i:q′>0

wiq′i/qi
+ max

i:q′i>0
Ṽ 0
t+1(q

′ −ei). (4)

We claim that for any time period t and inventory q′ ≤ q, V 0
t (q

′)≤ Ṽ 0
t (q

′). We show the claim by

induction. It is clear that the claim holds for time period T +1. Now assume the claim holds for

time period t+1, then for time period t, we have

V 0
t (q

′) =
w0

w0 +
∑

i:q′i>0

wi

+ max
i:q′i>0

V 0
t+1(q

′ −ei)≤
w0

w0 +
∑

i:q′i>0

wi

+ max
i:q′i>0

Ṽ 0
t+1(q

′ −ei)

≤ w0

w0 +
∑

i:q′i>0

wiq′i/qi
+ max

i:q′i>0
Ṽ 0
t+1(q

′ −ei) = Ṽ 0
t (q

′).

Therefore, the claim holds by induction, which implies that V 0
1 (q)≤ Ṽ 0

1 (q).

The auxiliary problem is equivalent to the problem that splits each item with qi inventories to qi

items with preference weight wi/qi. Without loss of generality, we assume the
∑

i∈N qi items follow

the decreasing order of w′
k, where w

′
k is the weight of the k-th item in the auxiliary problem. Thus,

an optimal policy to the dynamic program in (4) selects an item with largest index. So, we have

Ṽ 0
1 (q)≤

∑
i∈N

qi∑
k=1

w0

w0 +

∑
i∈N qi∑
j=k

w′
k

+

[
T −

∑
i∈N

qi

]+

≤

 w0/mink{w′
k}

w0/mink{w′
k}+1

+ · · ·+ w0/mink{w′
k}

w0/mink{w′
k}+

∑
i∈N

qi

+

[
T −

∑
i∈N

qi

]+

≤ 1+
w0

mink{w′
k}

(
log

(
w0

mink{w′
k}

+
∑
i∈N

qi

)
− log

(
w0

mink{w′
k}

+1

))
+

[
T −

∑
i∈N

qi

]+

≤ 1+w0max
i∈N

{
qi
wi

}
log

(∑
i∈N

qi

)
+

[
T −

∑
i∈N

qi

]+
.
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The result then follows from E{X0(q, T )} ≤ Ṽ 0
1 (q).

In what follows, we let w̃=w0 +
∑

i∈Sfluid wi for simplicity.

Lemma B.2 Suppose T̃ =
⌊
T − w̃

w
−
√

2 w̃
w
T log (|Sfluid|T )

⌋
≥ 0, then it holds that

P
(
Xi(q

round, T̃ )< qroundi ,∀i∈ Sfluid
)
≥ 1− 1

T
.

Proof: Since T ≥ w̃/w, we have qfluidi ≥ 1 for any i∈ Sfluid and thus A(qround) = Sfluid. Note that when

all products are available, the item purchased by a customer within T̃ periods follows a multinomial

distribution (X0,X1, . . . ,X|Sfluid|)∼ (T̃ ,w0/w̃, . . . ,w|Sfluid|/w̃). Therefore, by union bound,

P
(
Xi(q

round, T̃ )< qroundi ,∀i∈ Sfluid
)
= P

(
Xi < qroundi ,∀i∈ Sfluid

)
= 1−P

(
∃i∈ Sfluid,Xi ≥ qroundi

)
≥ 1−

∑
i∈Sfluid

P
(
Xi ≥ qroundi

)
.

For any i∈ Sfluid, since Xi is a binomial random variable, we have

P
(
Xi ≥ qroundi

)
≤ P

(
Xi ≥

wi

w̃
T − 1

)
= P

(
Xi ≥

wi

w̃
T̃ +

wi

w̃
(T − T̃ )− 1

)
= P

(
Xi ≥

wi

w̃
T̃

(
1+

T − T̃

T̃
− w̃

wiT̃

))
(a)

≤ exp

−
wi
w̃
T̃
(

T−T̃
T̃

− w̃
wiT̃

)2

1+ T
T̃
− w̃

wiT̃


= exp

−
wi
w̃

(
T − T̃ − w̃

wi

)2

T̃ +T − w̃
wi

≤ exp

−

(
T − T̃ − w̃

wi

)2

2 w̃
wi
T

≤ exp

−

(
T − T̃ − w̃

w

)2

2 w̃
w
T

≤ 1

|Sfluid|T
,

where (a) follows from Chernoff bound.

Lemma B.3 Given no item is sold out until time period T̃ , the expected number of no-purchases

until time period T̃ is bounded by

E
{
X0(q

round, T̃ )
∣∣∣Xi(q

round, T̃ )< qroundi ,∀i∈ Sfluid
}
≤ w0

w̃
T.

Proof: Using Lemma B.2, we have

E
{
X0(q

round, T̃ )
∣∣∣Xi(q

round, T̃ )< qroundi ,∀i∈ Sfluid
}

=E

{
T̃ −

∑
i∈N

Xi(q
round, T̃ )

∣∣∣∣∣Xi(q
round, T̃ )< qroundi ,∀i∈ Sfluid

}

=E

{
T̃ −

∑
i∈N

Xi

∣∣∣∣∣Xi < qroundi ,∀i∈ Sfluid

}
=E

{
X0

∣∣Xi < qroundi ,∀i∈ Sfluid
}

≤ E{X0}
P(Xi < qroundi ,∀i∈ Sfluid)

≤ T

T − 1

w0

w̃
T̃ ≤ w0

w̃
T.
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Lemma B.4 Given no item is sold out until time period T̃ , there exist constants C1 and C2 such

that the expected number of no-purchase after time period T̃ is bounded by

E
{
X0(q

round, T )−X0(q
round, T̃ )

∣∣∣Xi(q
round, T̃ )< qroundi ,∀i∈ Sfluid

}
≤C1 logT

√
T logT +C2.

Proof: Conditional on that no item is sold out until time period T̃ , then the inventory left after

time period T̃ is q̃= qround −X, where X is the multinomial random variable defined in the proof

of Lemma B.2. By Lemma B.1, we have

E
{
X0(q

round, T )−X0(q
round, T̃ )

∣∣∣Xi(q
round, T̃ )< qroundi ,∀i∈ Sfluid

]

≤E


1+w0 max

i∈Sfluid

{
q̃i
wi

}
log

 ∑
i∈Sfluid

q̃i


︸ ︷︷ ︸

(a)

+

T − T̃ −
∑

i∈Sfluid

q̃i

+

︸ ︷︷ ︸
(b)

∣∣∣∣∣∣∣∣∣∣∣
Xi(q

round, T̃ )< qroundi ,∀i∈ Sfluid


.

We focus on the second term (b) first. Let κ=w0/w,

E


T − T̃ −

∑
i∈Sfluid

q̃i

+∣∣∣∣∣∣Xi(q
round, T̃ )< qroundi ,∀i∈ Sfluid


=E


T −

∑
i∈Sfluid

qroundi − T̃ +
∑

i∈∈Sfluid

Xi

+∣∣∣∣∣∣Xi < qroundi ,∀i∈ Sfluid


(c)

≤ E


T −

∑
i∈Sfluid

qfluidi − T̃ +
∑

i∈Sfluid

Xi

+∣∣∣∣∣∣Xi < qroundi ,∀i∈ Sfluid


=E


w0

w̃
T − T̃ +

∑
i∈Sfluid

Xi

+∣∣∣∣∣∣Xi < qroundi ,∀i∈ Sfluid

≤E


w0

w̃
T − T̃ +

∑
i∈Sfluid

Xi

+
≤

√√√√√E


 ∑

i∈Sfluid

Xi − T̃ +
w0

w̃
T

2 (d)
=

√
E
{(w0

w̃
T −X0

)2
}

=

√
w0(w̃−w0)

w̃2
T̃ +

(w0

w̃
(T − T̃ )

)2

≤

√√√√(w0

w̃

)2
(
w̃

w
+1+

√
2
w̃

w
T log(|Sfluid|T )

)2

+
w0

w̃
T̃

=

√√√√(w0

w

)2

+2
w2

0

w̃w
(1+T log(T |Sfluid|))+

(w0

w̃

)2
(
1+2

(
1+

w̃

w

)√
2
w̃

w
T log(|Sfluid|T )

)
+

w0

w̃
T̃

≤

√√√√κ2 +
2κ2

|Sfluid|
(1+T log(|Sfluid|T ))+ κ2

|Sfluid|2
+2

(√
κ4

|Sfluid|3
+

√
κ4

|Sfluid|

)√
2T log(|Sfluid|T )+ κ

|Sfluid|
T̃

≤

√√√√4κ2 +2κ2
T

|Sfluid|
log(|Sfluid|T )+ 4κ2

√
2

T

|Sfluid|
log(|Sfluid|T )+κ

T

|Sfluid|
,
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where (c) follows from Lemma 4.1 and (d) holds because X is a multinomial random variable with

T̃ trials. Therefore, there exists constants D1 and D2 such that

E


T − T̃ −

∑
i∈Sfluid

q̃i

∣∣∣∣∣∣Xi(q
round, T̃ )< qroundi ,∀i∈ Sfluid

≤D1

√
T log(T |Sfluid|)+D2.

Now we analyze the first item (a). We have

E

w0 max
i∈Sfluid

{
q̃i
wi

}
log

 ∑
i∈Sfluid

q̃i

∣∣∣∣∣∣Xi(q
round, T̃ )< qroundi ,∀i∈ Sfluid


=E

w0 max
i∈Sfluid

{
qroundi −Xi

wi

}
log

 ∑
i∈Sfluid

(
qroundi −Xi

)∣∣∣∣∣∣Xi < qroundi ,∀i∈ Sfluid


(e)

≤ E

w0 max
i∈Sfluid

{
qfluidi −Xi +1

wi

}
log

 ∑
i∈Sfluid

qfluidi +1

∣∣∣∣∣∣Xi < qroundi ,∀i∈ Sfluid


≤E

{
w0 max

i∈Sfluid

{
qfluidi −Xi +1

wi

}
log (T +1)

∣∣∣∣Xi < qroundi ,∀i∈ Sfluid

}
≤
(
E
{
max
i∈Sfluid

{
qfluidi −Xi

wi

}∣∣∣∣Xi < qroundi ,∀i∈ Sfluid

}
+

1

w

)
w0 log (T +1) ,

where inequality (e) follows from Lemma 4.1. We are left to bound the first term in the inequality

above. Note that

w0E
{
max
i∈Sfluid

{
qfluidi −Xi

wi

}∣∣∣∣Xi < qroundi ,∀i∈ Sfluid

}
≤ w0

P (Xi < qroundi ,∀i∈ Sfluid)
E

{
max
i∈Sfluid

{[
qfluidi −Xi

wi

]+}}
(f)

≤ T

T − 1

max
i∈Sfluid

{
E
{
w0

wi

[
qfluidi −Xi

]+}}
+

√√√√ ∑
i∈Sfluid

Var
{
w0

wi

[qfluidi −Xi]
+

}
≤ T

T − 1

max
i∈Sfluid


√√√√E

{(
w0

wi

(qfluidi −Xi)

)2
}+

√√√√ ∑
i∈Sfluid

E

{(
w0

wi

(qfluidi −Xi)

)2
} ,

where (f) follows from Theorem 2.1 in Aven (1985). Finally, we have

E

{(
w0

wi

(
qfluidi −Xi

))2
}
=Var

{
w0

wi

Xi

}
+

(
w0

wi

qfluidi −E
{
w0

wi

Xi

})2

=
w2

0 (w̃−wi)

wiw̃2
T̃ +

(w0

w̃
T − w0

w̃
T̃
)2

≤ w2
0T̃

wiw̃
+

w2
0

w̃2

(
w̃

w
+1+

√
2
w̃

w
T log(|Sfluid|T )

)2

≤ w2
0

ww̃
T̃ +

(
w0

w
+

w0

w̃

)2

+2
w2

0

w̃2

(
w̃

w
+1

)√
2
w̃

w
T log (|Sfluid|T )+ 2

w2
0

w̃w
T log(|Sfluid|T )
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≤ κ2

|Sfluid|
T̃ +4κ2 +2κ2

√
2

T

|Sfluid|
log(|Sfluid|T )+ 2κ2

√
T

|Sfluid|3
log(|Sfluid|T )+ 2κ2 T

|Sfluid|
log(|Sfluid|T )

≤ 4κ2 +3κ2 T

|Sfluid|
log(|Sfluid|T )+ 6κ2

√
T

|Sfluid|
log(|Sfluid|T ).

Combining the preceding inequalities, term (a) can be bounded by

E

w0 max
i∈Sfluid

{
q̃i
wi

}
log

 ∑
i∈Sfluid

q̃i

∣∣∣∣∣∣Xi(q
round, T̃ )< qroundi ,∀i∈ Sfluid


≤ κ

1+2
(
1+

√
|Sfluid|

)
√√√√4+3

T

|Sfluid|
log(|Sfluid|T )+ 6

√
T

|Sfluid|
log(|Sfluid|T )


 log(T +1)

≤ κ

(
1+4

√
4|Sfluid|+3T log(|Sfluid|T )+

√
|Sfluid|T log(|Sfluid|T )

)
log(T +1).

Since T̃ ≥ 0, i.e.,

T >
w̃

w
+

√
2
w̃

w
T log(|Sfluid|T ),

we have qfluidi ≥ 1 for any product i ∈ Sfluid and then |Sfluid| ≤
∑

i∈Sfluid qfluidi ≤ T , thus there exist

constants D3 and D4 such that

E

w0 max
i∈Sfluid

{
q̃i
wi

}
log

 ∑
i∈Sfluid

q̃i

∣∣∣∣∣∣Xi(q
round, T̃ )< qroundi ,∀i∈ Sfluid

≤
(
D3

√
T log(T )+D4

)
log(T ).

In conclusion, combining the analysis for terms (a) and (b), there exist constants C1 and C2 such

that

E
{
X0(q

round, T )−X0(q
round, T̃ )

∣∣∣Xi(q
round, T̃ )< qroundi ,∀i∈ Sfluid

}
≤C1 log(T )

√
T log(T )+C2.

Proof of Theorem 4.2:

We focus on problems with T ≥ 3, otherwise, we have V fluid − Π(qround) ≤ 4p̄. We consider two

possible cases:

(i) The demand is relatively small, specifically,

T ≤ w̃

w
+

√
2
w̃

w
T log(|Sfluid|T ).

We claim that T ≤ 8(w̃/w) log(|Sfluid|T ). Suppose not, then

w̃

w
+

√
2
w̃

w
T log(|Sfluid|T )< T

2 log(|Sfluid|T )
+

T

2
<T,



ec8 e-companion to Assortment and Inventory Planning under Stockout-Based Substitution

which leads to a contradiction and thus the claim holds. By Lemma B.1, we have

V fluid −Π(qround)≤ p̄

(
E
{
X0(q

round, T )
}
− Tw0

w̃
+1

)

≤ p̄

w0max
i∈N

{
qroundi

wi

}
log

(∑
i∈N

qroundi

)
+

[
T −

∑
i∈N

qroundi

]+
− Tw0

w̃

+2p̄

(a)

≤ p̄

w0max
i∈N

{
⌈qfluidi ⌉
wi

}
log

 ∑
i∈Sfluid

qfluidi +1

+T −
∑

i∈Sfluid

qfluidi − w0

w̃
T

+2p̄

= p̄w0max
i∈N

{
⌈qfluidi ⌉
wi

}
log

 ∑
i∈Sfluid

qfluidi +1

+2p̄≤ p̄w0

(
T

w̃
+

1

w

)
log (T +1)+2p̄

(b)

≤ p̄κ
(
8 log

(
|Sround|T

)
+1
)
log (1+T )+ 2p̄

(c)

≤ p̄κ (8 log (T (T +1))+1) log (1+T )+ 2p̄,

where (a) and (c) follows from Lemma 4.1 and (b) holds because T ≤ 8(w̃/w) log(|Sfluid|T ) and if

T > w̃/w, then Sround = Sfluid.

(ii) The demand is relatively large, specifically,

T >
w̃

w
+

√
2
w̃

w
T log(|Sfluid|T ).

Combining Lemma B.1, B.2, B.3 and B.4, we have

V fluid −Π(qround)≤ p̄

(
E
{
X0(q

round, T )
}
− Tw0

w̃

)
+ p̄

≤ p̄
(
E
{
X0(q

round, T )
∣∣∣Xi(q

round, T̃ )< qroundi ,∀i∈ Sfluid
}
P
(
X0(q

round, T̃ )< qroundi ,∀i∈ Sfluid
)
− w0

w̃
T +2

)
≤ p̄

(
E
{
X0(q

round, T )
∣∣∣Xi(q

round, T̃ )< qroundi ,∀i∈ Sfluid
}
+2− w0

w̃
T
)

≤ p̄
(
C1 log(T )

√
T log(T )+C2 +2

)
.

Combining case (i) and (ii) leads to the result.


