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Abstract

In this paper, we propose a new method to compute lower bounds on the optimal objective value of
a stochastic program and show how this method can be used to construct separable approximations
to the recourse functions. We show that our method yields tighter lower bounds than Jensen’s lower
bound and it requires a reasonable amount of computational effort even for large problems. The
fundamental idea behind our method is to relax certain constraints by associating dual multipliers
with them. This yields a smaller stochastic program that is easier to solve. We particularly focus on
the special case where we relax all but one of the constraints. In this case, the recourse functions of
the smaller stochastic program are one dimensional functions. We use these one dimensional recourse
functions to construct separable approximations to the original recourse functions. Computational
experiments indicate that our lower bounds can significantly improve Jensen’s lower bound and our
recourse function approximations can provide good solutions.



Stochastic programs form a powerful tool to model a variety of situations in which the decisions are
made over time without completely knowing the realizations of the future random quantities; see Birge
and Louveaux (1997) and Ruszczynski and Shapiro (2003). Despite their wide applicability, however,
stochastic programs often pose significant optimization challenges. If the problem involves continuous
random variables, then it is quite difficult to come up with tractable solution methods. If the random
variables take on finitely many possible realizations, then the problem can be formulated as an equivalent
deterministic linear program, but the size of this linear program grows exponentially with the number
of time periods and the number of possible realizations. Very often, one has to be content with a
small number of possible realizations for the random variables, use Monte Carlo techniques or resort to

approximation strategies.

In this paper, we propose a new method to compute lower bounds on the optimal objective value of
a stochastic program and demonstrate how this method can be used to construct separable piecewise
linear approximations to the recourse functions. We consider stochastic programs that include random
variables only on the right side of their constraints. The fundamental idea behind our method is to
relax some of these constraints by associating dual multipliers with them. This yields smaller stochastic
programs that are hopefully easier to solve. We particularly focus on the special case where we relax all
but one of the constraints. In this case, the recourse functions of the smaller stochastic programs are
one dimensional functions, roughly capturing the “curvature” of the original recourse functions along
different directions. We use these one dimensional recourse functions to construct separable piecewise

linear approximations to the original recourse functions.

A traditional method to compute lower bounds on the optimal objective value of a stochastic program
is to formulate a deterministic problem by replacing all of the random variables with their expected
values and to use Jensen’s inequality. We show that the lower bounds obtained by our method improve
the ones that are obtained by using Jensen’s inequality. Also, our method is quite fast and requires
a reasonable amount of computational effort even for large problems. In addition, it allows the user
to specify for which random variables to use the full distribution information and for which random
variables to use only the first moment information. Finally, it turns out that the decisions made under
the guidance of the separable piecewise linear recourse function approximations that are obtained by
our method can provide significantly better performance when compared with the common engineering
practice of ignoring the uncertainty in the problem and assuming that the random variables take on

their expected values.

There has been a long line of research for computing bounds on the optimal objective values of
stochastic programs. Jensen’s lower bound mentioned above is a common approach and one way to
visualize this lower bound is to assume that the probability distributions in the problem are replaced with
degenerate distributions that put mass only on the expected values of the random variables; see Kall and
Wallace (1994). On the other hand, Edmundson Madansky upper bound is obtained by replacing the
probability distributions in the problem with two point distributions that put mass only on the extreme
points of the supports of the random variables; see Madansky (1959). An important shortcoming of

Edmundson Madansky upper bound is that the computational effort for it grows exponentially as the



number of random variables in the problem increases. Wallace (1987) uses restrictions of stochastic
programs with network structure to develop separable piecewise linear upper bounds on the recourse
functions, and Birge and Wallace (1988) extend this approach to general stochastic programs. Following
very similar ideas, Birge and Wets (1989) use the sublinearity of the recourse functions to develop
separable piecewise linear upper bounds on the recourse functions. The computational effort for the
last three methods grows linearly as the number of random variables in the problem increases, but
the numerical experiments in Birge and Wallace (1988) and Birge and Wets (1989) demonstrate that
the upper bounds that are obtained by these methods can be less tight than Edmundson Madansky
upper bound. Morton and Wood (1999) construct upper and lower bounds on the recourse functions by
relaxing some of the constraints in the problem and penalizing the violations of the relaxed constraints.
Their approach has similarities with ours, but if we work with stochastic programs that include random
variables only on the right side of their constraints, then the lower bounds obtained by Morton and
Wood (1999) collapse to Jensen’s lower bound, whereas our lower bounds have the potential to improve
Jensen’s lower bound. Cheung and Powell (1996) and Godfrey and Powell (2001) exclusively focus
on stochastic programs with network structure. Cheung and Powell (1996) use relaxations to develop
separable piecewise linear lower bounds on the recourse functions. Godfrey and Powell (2001) propose
a Monte Carlo simulation method to construct approximations to the recourse functions, which are

neither lower nor upper bounds.

In this paper, we make the following research contributions. 1) We propose a tractable method to
compute lower bounds on the optimal objective value of a stochastic program that includes random
variables only on the right side of its constraints. 2) We show that the lower bounds that are obtained
by our method are tighter than Jensen’s lower bound. 3) The fundamental idea behind our method is
to relax certain constraints by associating dual multipliers with them. We show the intuitive property
that we can obtain progressively tighter lower bounds by relaxing fewer constraints. This shows how
we can trade off computational tractability with accuracy. 4) By focusing on the special case where we
relax all but one of the constraints, we demonstrate how we can use our method to construct separable
piecewise linear approximations to the recourse functions. 5) Computational experiments indicate that
the lower bounds that are obtained by our method can significantly improve Jensen’s lower bound. We
also compare the quality of the solutions that are obtained by our separable piecewise linear recourse
function approximations with the quality of the solutions that are obtained under the assumption that
the random variables take on their expected values. This is an important comparison that tests the
viability of our approach to obtain good solutions. Majority of the literature tests the tightness of
the lower bounds but not the quality of the solutions that are obtained by using the lower bounds as

recourse function approximations.

The rest of the paper is organized as follows. Section 1 describes a method to compute lower bounds
on the optimal objective value of a stochastic program. Section 2 shows that the lower bounds obtained
by this method are at least as tight as Jensen’s lower bound and our method can obtain progressively
tighter lower bounds by relaxing fewer constraints. Section 3 illustrates how our method can be used
to construct separable piecewise linear approximations to the recourse functions. Section 4 presents

computational experiments.



1 BOUNDING METHOD

In this section, we describe a method to compute lower bounds on the optimal objective value of a
stochastic program. All of the results in this section hold for multi-stage stochastic programs, but we
illustrate them on two-stage stochastic programs to minimize the notational clutter. Nevertheless, we
emphasize that when presenting our computational experiments in Section 4, we go back to working

with multi-stage stochastic programs.

We are interested in computing lower bounds on the optimal objective value of the stochastic program

given by
(sp=min cz+E{Q(z,w)} (1)
subject to Az <b (2)
Tix—2z=0 i=1,...,n (3)
x>0, (4)
where ¢, x and T; are vectors of compatible dimensions, z = {z; : i = 1,...,n} is an n dimensional
vector, w = {w; : i = 1,...,n} is an n dimensional random variable, and A and b are respectively a

matrix and a vector of compatible dimensions. For notational brevity, we do not distinguish between
column and row vectors in the paper and the distinction will always be clear from the context. The

recourse function is defined by

Q(z,w) = min hy (5)
subject to W,y < z; + w; i=1,...,n (6)
y >0, (7)

where h, y and W; are vectors of compatible dimensions. It is well-known that Q(z,w) is a convex
function of w and Jensen’s inequality implies that Q(z,E{w}) < E{Q(z,w)}. Therefore, the optimal

objective value of the problem

(s =min cz+ Q(z,E{w})
subject to  (2)-(4)

provides a lower bound on (gp. Using the definition of the recourse function in problem (5)-(7), we can

write the last problem above as

(sp=min cx+hy (8)
subject to Az <b (9)
Wiy — T v < E{w;} i=1,...,n (10)
z,y > 0. (11)

Therefore, the optimal objective value of problem (8)-(11) is a lower bound on (gp and this lower bound

is known as Jensen’s lower bound in the stochastic programming literature.



The method that we propose in this paper is based on using the optimal values of the dual variables
associated with constraints (10) to construct a partial linear approximation to the recourse function
and completing this partial linear approximation by solving a smaller stochastic program. Specifically,
we let {f1; : i =1,...,n} be the optimal values of the dual variables associated with constraints (10) in
problem (8)-(11). For given Z C {1,...,n}, we let Z = {1,...,n} \ Z for notational brevity and relax

some of constraints (6) in problem (5)-(7) to define the |Z| dimensional recourse function

QT (ZFwh) =min  [h—> Wiy (12)
i€l

subject to Wiy < 2z + w; i€l (13)

y >0, (14)

where zZ = {z; : i € T} denotes the vector composed of the components of z corresponding to Z and
wl = {w; : i € T} denotes the random variable composed of the components of w corresponding to Z.
Comparing problems (5)-(7) and (12)-(14), we note that solving the latter problem can be much easier

than solving the former one.

The next proposition shows that Q% (2%, w?) + 3°,c7 fli zi + > ;o7 fi w; provides a lower bound on

Q(z,w). Consequently, > .7 fi; zi+ ;7 fli w; can be visualized as a partial linear approximation to the
recourse function. We complete this approximation by using Q% (zI ,wk ), which is obtained by solving
a smaller stochastic program that involves an |Z| dimensional recourse function and an |Z| dimensional

random variable.
Proposition 1 We have Q* (21, w?) + 3,7 flizi + > ez i wi < Q(z,w).

Proof Since {ji; : i =1,...,n} are the optimal values of the dual variables associated with constraints
(10), we have f1; <0 for all  =1,...,n. If we let y be an optimal solution to problem (5)-(7), then we
have Q(z,w) = h§ > h+3 ez fli 2it D ier i Wi— D iez i Wi > QF (25, wh) + 2 ez fii 2t D7 i wis
where the first inequality follows from the fact that ; < 0and W; 9 < z; +w; forall ¢ =1,...,n and
the second inequality follows from the fact that g is a feasible but not necessarily an optimal solution
to problem (12)-(14). O

We propose solving the problem

GEp=min  [e+d uTi]e+E{QT(F,wh)} + ) fE{w} (15)
i€l i€l

subject to Az <b (16)

Tix—z=0 el (17)

x>0, (18)

to compute a lower bound on (gp. Using Proposition 1, it is easy to see that the optimal objective

value of the last problem above indeed provides a lower bound on (gp. In particular, if we let (z, 2) be



an optimal solution to problem (1)-(4) and 2% = {2; : i € T}, then we have

Csp —cx—HE{Q Z,w) } > cx—l—E{QI 7 Wt }+Zulz,+ZuZIE{wl}
ieT i€l
=ca+E{QT(ZX W)} + > iz + > piB{wit + Y mTii— Y iz >CEg (19)
i€l i€l i€l i€l
where the first inequality follows from Proposition 1, the second equality follows from the fact that
%)

T;2—2;=0forall i = 1,...,n and the second inequality follows from the fact that (z, 2*) is a feasible

but not necessarily an optimal solution to problem (15)-(18).

2 COMPARISON OF THE BOUNDS

Since 7 is an arbitrary subset of {1,...,n}, we have some freedom when computing the lower bound
provided by problem (15)-(18). If we choose Z = {1,...,n}, then problem (15)-(18) is equivalent to the
original stochastic program and we have (élé”"n} = (sp. If, on the other hand, we choose Z = (), then
it is possible to show that C% g = ¢sB. The next proposition shows that (% g is always between (g and
(sp for any choice of Z. Therefore, the lower bound provided by problem (15)-(18) is always at least as

tight as Jensen’s lower bound.
Proposition 2 We have (jp < QfB < (sp.

Proof The second inequality is already shown in (19) and we only show the first inequality here. If

we let (2%, w?) be an optimal solution to problem (12)-(14) as a function of 2% and w?, then we have

QI( Z i Wi I I)

i€l
D Wi 9O 4D s+ Y iwi— Y Wi (2", wh)
i€l i€l i€l i€l
+Zﬂzzz+ZMzwz_Zﬂz zy ) (20)
i€L i€l

where the inequality follows from the fact that fi; < 0 for all i = 1,...,n and W; (2%, w?) < 2 +w; for
all i € Z. Similarly, if we let (2, 2%) be an optimal solution to problem (15)-(18), then we have

(Gp=lct ) mT]a+E{QT(ET,wh} + > 1 E{w}

i€l i€l
= C+ZMZ i x"‘E{QI AI I}+ZMZE{WZ}+ZMZT$_ZM2%
i€l icT i€ i€l
n n n
>ci+ Y T +hE{gE O} + ) pE{w} =Y WiB{g(2%, o)}, (21)
i=1 i=1 i=1

where the second equality follows from the fact that T; £ — 2; = 0 for all ¢ € Z and the inequality follows
from (20). On the other hand, by linear programming duality, since {/i; : i = 1,...,n} are the optimal



values of the dual variables associated with constraints (10) in problem (8)-(11), the optimal objective

value of the problem
n n n
min  cx+hy+ Y LE{w}t - mWiy+» T
i=1 i=1 =
subject to Ax <b

z,y >0

is equal to (yp. The result follows from the inequality in (21) and the fact that (x E{y (3%, w? )}) is a

feasible solution to the last problem above. O

If Z includes many elements, then solving problem (15)-(18) becomes computationally more difficult,
since this requires dealing with an |Z| dimensional recourse function and an |Z| dimensional random
variable. The next proposition illustrates the tradeoff between the computational effort and the tightness
of the lower bounds. In particular, it shows that we can tighten the lower bound C% g by adding more

elements into 7.
Proposition 3 If the sets K and I satisfy KK C Z, then we have CL’CB <.

Proof If we let (22, w?) be an optimal solution to problem (12)-(14) as a function of zZ and w?, then

we have
QI( = Zﬂz i g I’WI)
i€l
= Wil g W)+ > iz Y fiwi— Y Wig(ewh)
i€l i€ET\K i€T\K i€T\K
=hjh W)+ > izt Y piwi— > Wig(, wh)
i€T\K i€T\K iek
> QN (N, N + Z fi zi + Z fi Wiy (22)
i€T\K i€T\K

where the first inequality follows from the fact that j; < 0 for alli = 1,...,n and W; §(z%,w?) < 2 +w;
for all i € Z, the second equality follows from the fact that K C Z and the second inequality follows
from the fact that §(z%,w?) is a feasible but not necessarily an optimal solution when we solve problem
(12)-(14) after replacing Z with K. On the other hand, if we let (i,2%) be an optimal solution to
problem (15)-(18), then we have

Fp=[c+d uT]) e +E{QT(T, D)} + D i E{w}

ieZ i€l
- c—l—z,u, 3 x—l—E{QI 2T Z}—FZMZE{wZ}—l— ZuZT:c Z,&iéi
i€l i€l 1€I\K 1€T\K
C+Z,UJ1 ) x“‘E{Q’C ’C IC }+ZMZE{w2}>CLBa
iek iek

where the second equality follows from the fact that T; £ — Z; = 0 for all 4 € Z, the first inequality follows
from (22) and the fact that K C Z and the last inequality follows from the fact that (i, %) is a feasible

but not necessarily an optimal solution when we solve problem (15)-(18) after replacing Z with K. O



3 A SEPARABLE RECOURSE FUNCTION APPROXIMATION

In this section, we focus on the lower bound Cf p under the assumption that 7 is a singleton and show

how we can use problem (15)-(18) to construct a separable approximation to the recourse function.

If 7 is a singleton, then we only need to deal with a one dimensional recourse function and a one
dimensional random variable in problem (15)-(18), and this makes problem (15)-(18) relatively easy to
solve. Indeed, in many practical settings, it may be possible to solve problem (15)-(18) only when Z is
a singleton. Furthermore, if we have Z = {i} for some i € {1,...,n}, then E{Q{i}(z{i},w{i})} is a one
dimensional piecewise linear function and it is straightforward to store one dimensional piecewise linear
functions in a computer environment. Finally, if we compute C L g for all © € {1,...,n}, then we have
CI{:; < (gp for all i € {1,...,n} and we can use MAaX;e (1, .. n} CLB as a lower bound on (gp. This is the

tightest lower bound that we can obtain by using singletons.

The method that we use to construct a separable approximation to the recourse function is based
on the observation that we can use Proposition 1 to visualize the lower bound QU3 (211} wi}) +
Zje{%} fij zj + Zje{i} fijw; as an approximation to Q(z,w). Roughly speaking, the piecewise linear
component Q{4 (21 w{) in this approximation captures the “curvature” of Q(z,w) in the direction of
the i-th component of z and w. On the other hand, the linear component fi; z; + fi; w; captures the slope
of Q(z,w) in the direction of the j-th component of z and w for j € {i}. Since the latter component is

linear in z and w, it does not capture “curvature” information.

To be able to capture “curvature” information in all directions, we propose computing the lower

bound Q1 (2{#} with 4 > e iz + X je Ay wy forall i € {1,...,n}. In this case, we can average

over all i € {1,...,n} and use
1~
EZQ{W{Z} ZZu]sz ZZ“J% (23)
=1 =1 jefi} =1 je{i}

as a separable piecewise linear approximation to Q(z,w). Noting that Q¥ (21} Wi + Zje{i} fj 25 +
Zje{%} fij wj is a lower bound on Q(z,w) for all i = 1,...,n, it is clear that the approximation in (23)
is also a lower bound on Q(z,w). In this case, we can replace Q(z,w) in problem (1)-(4) with the

approximation in (23) and solve the problem

min cx+ — ZE{Q{} {’ {Z }+ Zz,ujzj—i— ZZMJE{WJ} (24)

= 1]6{7/ = 1]6{1
subject to  (2)-(4) (25)

to obtain an approximate solution to problem (1)-(4). We do not have a performance guarantee for the
solution that is obtained by solving problem (24)-(25), but since the approximation in (23) is a lower
bound on the recourse function, the optimal objective value of problem (24)-(25) is also a lower bound
on the optimal objective value of problem (1)-(4). We also note that the solution obtained by solving
problem (24)-(25) is feasible to the original problem, since we impose constraints (2)-(4) in problem
(24)-(25). Finally, we observe that the term 13", > jeqi P E{w;} in the objective function is a
constant and it can be dropped without changing the optimal solution to problem (24)-(25).



4 COMPUTATIONAL EXPERIMENTS

In this section, we numerically compare the lower bounds obtained by our method with Jensen’s lower
bounds and test the quality of the solutions obtained by solving problem (24)-(25). We work with four
problem classes. The first problem class is a multi-stage stochastic program that takes place over a
time-staged network with random node supplies. The second problem class is a multi-stage stochastic
program that models the airline network revenue management problem. The third problem class is a
two-stage stochastic program that arises in capacity expansion planning. The fourth problem class is a

two-stage stochastic program that models an assemble to order production line.

For the four problem classes, our computational results indicate that the lower bounds obtained by
our method can noticeably improve Jensen’s lower bounds and the solutions obtained by solving problem
(24)-(25) can perform quite well. This is especially the case when the underlying random variables have
high variability. Nevertheless, we emphasize that it is possible to construct small pathological problem
instances where the gaps among (sp, Cf p and (yp are arbitrarily large. Therefore, the reader should
be cautious about deriving broad generalizations from our computational results and realize that it is

important to test our method for the particular problem class that he or she is interested in.

4.1 TIME-STAGED NETWORK WITH RANDOM NODE SUPPLIES

In this problem, we are interested in generating profits by relocating boxcars along the arcs of the
directed graph (N, A). The problem takes place over the planning horizon {1,...,7}. A random
number of boxcars become available at each node at the beginning of each time period. We use wj;
to denote the random boxcar supply at node i at time period t. We assume that the supply random
variables at different time periods are independent and the boxcars available at a particular node remain
at this node until they are shipped elsewhere. We use r;;; and w;;; to respectively denote the profit and
upper bound associated with arc (7, j) at time period ¢t. The objective is to maximize the total expected
profit over the planning horizon, but for consistency with the earlier development, we formulate the
problem to minimize the total expected cost. Letting z;; be the number of boxcars available at node ¢
at time period ¢ due to the earlier decisions and z;;; be the number of cars that move from node i to

node j at time period ¢, the problem can be formulated as a multi-stage stochastic program as

Qi(z,wy) = min Z —rijt Tijt + B{Quy1(2e41, wit1) } (26)
(i.4)eA

subject to Z Tijt = Zig + Wit ieN (27)
j:(i,5)EA

Z Tijt — Zja+1 =0 jeEN (28)
i:(4,7)EA

0 < @i < ugje (i,5) € A (29)

Zit+1 =0 ieN, (30)

with Q;41(-,-) = 0. We assume that z;; = 0 for all i € N and let (gp = E{Ql(zl,wl)}, which is

the optimal total expected cost over the planning horizon. We can compute Jensen’s lower bound



by replacing Q¢(z¢,w:) and E{Qt+1(zt+1,wt+1)} in the objective function and w;; in constraints (27)
in the problem above respectively with Q¢(z¢, E{w:}), Qi+1(2t+1, E{wir1}) and E{w;}. This simply
corresponds to replacing all random variables with their expected values and solving a deterministic
problem. We let {ji;; : i € N, t =1,...,7} be the optimal values of the dual variables associated with

constraints (27) when we compute Jensen’s lower bound.

Problem (26)-(30) is a multi-stage stochastic program, but as mentioned at the beginning of Section
1, it is possible to follow the same ideas in the paper to compute a lower bound on (gp by relaxing
some of constraints (27). We denote this lower bound by (5, where T is the subset of constraints
(27) that we choose to leave in problem (26)-(30). For computational tractability, when computing
Cf p in this and the next three sections, we only concentrate on the case where 7 is a singleton. To
have a feel for the quality of the solutions that are obtained by the separable approximation strategy
described in Section 3, we replace Q¢+1(zt+1,wi+1) in the objective function of problem (26)-(30) with

IN\ D ieN Qt+1 (th, ;{i}l)—i-ﬁ D ieN 2ojen\ (i} Agt+1 Zj,t+1 and solve this problem to make the decisions

at time period t.

Table 1 shows the computational results. Our test problems take place over 10 time periods and we
label them by ([N, v), where |[A] is the number of nodes and v is the average coefficient of variation
for the supply random variables. The second and third columns in Table 1 show (;p and max;cn C]{:g,
which are respectively Jensen’s lower bound and the tightest lower bound that can be obtained by our
method by using singletons. The fourth column shows the percent gap between the second and third
columns. The fifth column shows the CPU seconds required to compute the lower bound max;ear Cé%
on a Pentium IV desktop PC with 2.6 GHz CPU and 1 GB RAM. The sixth column shows the total
expected cost incurred by the strategy that replaces E{Qt+1(2t+1,&]t+1)} in the objective function of
problem (26)-(30) with Q¢41(zt+1, E{wt+1}) and solves this problem to make the decisions at time period
t. This strategy corresponds to the common engineering practice of ignoring the uncertainty in the
problem and assuming that the random variables take on their expected values. We note that the total
expected cost in the sixth column is different from Jensen’s lower bound. To see this, we emphasize
that ignoring the uncertainty in the problem and assuming that the random variables take on their
expected values yields a suboptimal policy and the total expected cost incurred by doing so is naturally
greater than or equal to the optimal total expected cost. On the other hand, Jensen’s lower bound is
less than or equal to the optimal total expected cost. The seventh column shows the total expected cost
incurred by the strategy that replaces Qi+1(zi+1,wi+1) in the objective function of problem (26)-(30)
with IN\ D ieN Qt+1(zt+}1, wfﬁl) + ﬁ DieN 2jenn\{i} it+1 Zje+1- This is the separable approximation
strategy described in Section 3 and in the paragraph above. Since it is impossible to compute the total
expected costs in the sixth and seventh columns explicitly, we estimate them through simulation. The
last column shows the percent gap between the sixth and seventh columns. We emphasize that even the
smallest test problem in Table 1 is too large to be solved as a multi-stage stochastic program through

an equivalent deterministic linear programming formulation.

The profit parameters, upper bounds and expected values of the supply random variables in the

first and last five consecutive test problems in Table 1 are the same. Therefore, Jensen’s lower bounds



Problem CiB Determ. Sep. Determ.

(N, v) (B (LB vs. (g CPU app. app. vs. sep.
(2, 0.7) -213,124  -208,120 2.3 0.5 -201,450 -203,982 1.3
(2, 1.0) -213,124  -204,523 4.0 0.1 -192,126  -197,592 2.8
(2, 1.4) -213,124 -202,999 4.8 0.4 -186,288 -192,761 3.5
(2,3.0) -213,124 -198,011 7.1 0.6 -143,704 -154,676 7.6
(2, 4.4) -213,124  -191,905 10.0 0.2 -116,268 -129,923 11.7
(4,0.7) -964,696  -962,257 0.3 1.5 -955,452  -958,532 0.3
(4,2.0) -964,696 -956,409 0.9 2.7 -909,207 -919,672 1.2
(4, 3.0) -964,696  -953,372 1.2 3.1 -819,629 -829,495 1.2
(4,4.4) -964,696 -951,526 1.4 1.0 -727,496  -739,876 1.7
(4,5.4) -964,696  -949,531 1.6 2.2 -666,863 -679,476 1.9

Table 1: Computational results for time-staged network with random node supplies.

for these test problems are also the same. As the average coefficient of variation for the supply random
variables increases, the gap between Jensen’s lower bound and the lower bound obtained by our method
gets larger. The lower bound obtained by our method can be up to 10.0% tighter than Jensen’s lower
bound. Similarly, if the variability in the supply random variables is small, then the performances of the
deterministic and separable approximation strategies are close to each other. We use common random
numbers when simulating the performances of the two strategies and the performance gap between
the two strategies is statistically significant at 95% level for all of the test problems. As expected, as
the average coefficient of variation for the supply random variables increases, the performance of the
deterministic approximation strategy deteriorates and the performance gap between the deterministic

and separable approximation strategies gets larger.

4.2 AIRLINE NETWORK REVENUE MANAGEMENT

This problem is the traditional airline network revenue management problem; see Talluri and van Ryzin
(2004). We have a set of flight legs that can be used to satisfy the itinerary requests that arrive randomly
over time. Accepted itinerary requests generate revenues and consume capacities on the relevant flight
legs, whereas rejected itinerary requests simply leave the system. The problem takes place over the
planning horizon {1,...,7}. The set of flight legs is £ and the set of itineraries is J. If we accept a
request for itinerary j, then we generate a revenue of r; and consume a;; units of capacity on flight leg
i. We use wj; to denote the random amount of demand for itinerary j at time period ¢, and assume
that the demand random variables at different time periods are independent. We are interested in
maximizing the total expected revenue over the planning horizon. Letting z;; be the remaining capacity
on flight leg 7 at time period ¢ and x;; be the amount of demand for itinerary j that we satisfy at time

period t, the problem can be formulated as a multi-stage stochastic program as

Qu(z,wy) =min Y —rj 2y + E{Qer1 (2141, wer1) }

JjeTJ

subject to Z Qi Tjt + Zig41 = Zit 1€ L
JjeJ
0<zjs <wj jeJ
Zig+1 = 0 ieL,
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Problem CiB Determ. Sep. Determ.

(L],1T1, ey &) (iB §7:] vs. (g CPU app. app. vSs. sep.
(4,12,1.0,4) -11,114 -10,951 15 0.3 -10,537 -10,654 11
(4,12,1.0,8) -17,558  -17,367 1.1 0.3 -16,598  -16,955 2.1
(4,12,1.2,4) -10,163 -10,029 1.3 02 9475  -9,729 2.7
(4,12,1.2,8) -16,607 -16,440 1.0 0.2  -15,194 -15976 5.1
(4,12,1.6,4) -8,827 -8,698 1.5 0.2 -8,033 -8,381 4.3
(4,12,1.6,8) -15,271  -15,103 1.1 0.2 -13,524  -14,587 7.9
(8,40,1.0,4) 21531 -21,280 1.1 12 -19,780 -19,970 1.0
(8,40,1.0,8) -34,571  -34,281 0.8 1.2 -31,632 -32,265 2.0
(8,40,1.2,4) -19,882  -19,670 1.1 1.0 -17,873  -18,357 2.7
(8,40,1.2,8) -32,922 -32,656 0.8 1.0 -29,022  -30,536 5.2
(8,40,1.6,4) -17,530 -17,325 1.2 0.8 -15,345 -15,945 3.9
(8,40,1.6,8) -30,570  -30,306 0.9 0.8 -26,086  -27,968 7.2

Table 2: Computational results for airline network revenue management.

with Qr4+1(+,-) = 0. The initial capacities on the flight legs are given by {z;; : i € L} and they are

known quantities.

Table 2 shows the computational results in the same format as Table 1. All of our test problems take
place over 200 time periods. We label our test problems by (|£],|J]|, @, k), where |£]| is the number of
flight legs, | 7| is the number of itineraries, « is the ratio of the total expected demand to the total initial

capacity and k is the ratio of the revenues associated with the most and least expensive itineraries.

For a majority of the test problems, the lower bound obtained by our method is more than 1% tighter
than Jensen’s lower bound. This is a significant gap for the network revenue management setting. More
importantly, especially for the test problems with tight leg capacities and large revenue differences
between the most and least expensive itineraries, the performance gap between the deterministic and
separable approximation strategies can be as high as 7.9%. We note that the regret associated with
making an “incorrect” decision increases when the leg capacities are tight and there is a large revenue
difference between the most and least expensive itineraries. In particular, if the leg capacities are tight
and we accept an itinerary request that we should not have accepted, then this “incorrect” decision
limits our ability to accept a more desirable itinerary request in the future. Similarly, if the revenue
difference between the most and least expensive itineraries is large, then if we accept a request for a
cheap itinerary that we should not have accepted, then this “incorrect” decision limits our ability to
accept a future request that may bring substantially higher revenue. Thus, it is fundamental to observe
the tradeoff between when to accept the requests for cheap itineraries so that the flight legs do not
take off empty and when to reserve the seats for the future requests for expensive itineraries so that we
make the most revenue from the seats. These tradeoffs become more obvious when the leg capacities
are tight and there is a large revenue difference between the most and least expensive itineraries. It is

encouraging that separable approximation strategy performs significantly better in these cases.

4.3 CAPACITY EXPANSION PLANNING

We take this problem from Higle and Sen (1994). We are interested in purchasing production capacity

on several machines to satisfy the demand for parts. The set of machines is M and the set of parts
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Problem (iB Determ. Sep. Determ.

v CiB (LB vs. (g CPU app. app. vs. sep. Csp
0.68 90,200 150,974 67.4 0.0 366,898 373,281 -1.7 355,159
0.82 90,200 181,193 100.9 0.0 442,065 442,065 0.0 422,948
0.94 90,200 221,264 145.3 0.0 504,679 491,600 2.6 482,855
1.00 90,200 237,300 163.1 0.0 537,794 514,258 4.4 514,252

Table 3: Computational results for capacity expansion planning.

is P. The current capacity on machine j is h; hours and it costs ¢; to purchase one hour of capacity.
Machine j cannot be used for more than u; hours and it requires ¢; hours of maintenance for every
hour of usage. The total maintenance time for all of the machines cannot exceed T" hours. Part ¢ can
be produced on machine j with a production rate of a;; units per hour and at a cost of g;; per hour.
The random demand for part i is w;. All demand has to be satisfied and it is possible to purchase part
¢ from a subcontractor at a premium price of p; per unit. Letting z; and z; respectively be the hours
of production capacity purchased and used on machine j, y;; be the hours of production capacity used
on machine j to produce part i and s; be the units of part ¢ purchased from the subcontractor, the

problem can be formulated as a two-stage stochastic program as

min Z Cjx;+ E{Q(Z>W)}

JEM

subject to  —x; + z; < h; jeM
> tjz <T
JEM
0§2j§uj' ]EM
.’EjZO jeM,

where the recourse function is given by

Q(z,w) =min Y N gy + Y pisi

i€P jeM i€P
subject to Z aij Yij + 8i = wj 1€P
JEM
Zyij < zj JEM
i€P
Yij, $i = 0 1EP, jEM.

Table 3 shows the computational results in the same format as Table 1. We label our test problems
by v, where v is the average coefficient of variation for the demand random variables. The first test
problem in Table 3 corresponds to the original problem parameters used by Higle and Sen (1994). Since
the test problems are not too large, the last column in Table 3 shows the optimal total expected cost,
which we obtain by solving the stochastic program above through an equivalent deterministic linear

programming formulation.

The cost parameters, maintenance and production times and expected values of the demand random

variables in all of our test problems are the same. Therefore, Jensen’s lower bounds for all of our
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Problem (B Determ. Sep. Determ.

v (iB (LB vs. (g CPU app- app- VS. sep. Csp
0.21 -8,300 -7,955 4.2 0.0 -7,062 -7,366 4.3 -7437
0.33 -8,300 -7,650 7.8 0.0 -6,008 -6,723 11.9 -6797

0.49 -8,300 -7,025 15.4 0.0 -4,298 -5,179 20.5 -5521
0.71 -8,300 -6,563 20.9 0.0 -1,644  -3,752 128.2 -3979

Table 4: Computational results for assemble to order production line.

test problems are also the same. The capacity expansion problem is well-known in the literature for
its loose Jensen’s lower bounds and the lower bounds obtained by our method substantially improve
Jensen’s lower bounds. When the average coefficient of variation for the demand random variables is
small, the performance of the deterministic approximation strategy is better than that of the separable
approximation strategy. As expected, as the variability in the demand random variables increases,
the separable approximation strategy tends to perform better. We note that the performance of the

separable approximation strategy is very close to optimal for the last test problem.

4.4 ASSEMBLE TO ORDER PRODUCTION LINE

In this problem, we are interested in serving the demand for different products by assembling the
products from different components. The set of components is C and the set of products is P. The cost
of purchasing one unit of component 7 is ¢; and the revenue from one unit of product j is r;. Product
Jj is assembled from a;; units of component 7. The random demand for product j is w;. Letting 2; be
the units of component 7 purchased and y; be the units of product j assembled, the problem can be

formulated as a two-stage stochastic program as

min Zci zi +E{Q(z,w)}
ieC
subject to z; > 0 i1 €C,

where the recourse function is given by

Q(z,w) = min Z —Tj Y

JEP

subject to Z ai; Y5 < % 1eC
JEP
0< Yj < wj jeP.

Table 4 shows the computational results in the same format as Table 1. All of our test problems
involve three components and seven products. We label our test problems by v, where v is the average
coefficient of variation for the demand random variables. Similar to Table 3, since the test problems
are not too large, the last column in Table 4 shows the optimal total expected cost and we obtain the
optimal total expected cost by solving the stochastic program above through an equivalent deterministic

linear programming formulation.
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The cost and revenue parameters and the expected values of the demand random variables in all of
our test problems are the same. Therefore, Jensen’s lower bounds for all of our test problems are also
the same. The results indicate that Jensen’s lower bound can be quite loose when the average coefficient
of variation is high. As the average coefficient of variation increases, the solutions that are obtained
by the separable approximation strategy can perform substantially better than the solutions that are
obtained under the assumption that the demand random variables take on their expected values. For
example, the performance gap between the two solutions can be as high as 128.2% when the average
coefficient of variation is 0.71. For many of the test problems, the performance of the solutions that
are obtained by the separable approximation strategy is quite close to the optimal total expected cost,
but the performance of the solutions that are obtained under the assumption that the demand random

variables take on their expected values can be quite poor.

5 CONCLUSIONS

In this paper, we proposed a tractable method to compute lower bounds on the optimal objective
value of a stochastic program. We showed that the lower bounds obtained by our method improve
Jensen’s lower bounds. We also showed how a special case of our method can be used to construct
separable piecewise linear approximations to the recourse functions. A unifying observation from all of
our computational experiments is that when the underlying random variables have high coefficient of
variation, the performance of the solutions that are obtained by our separable approximation strategy
is significantly better than the performance of the solutions that are obtained under the assumption
that the random variables take on their expected values. This can be observed by noting the gaps in
the eight column in Tables 1, 3 and 4. Therefore, our separable approximation strategy can provide
significant advantages when the randomness in the problem plays a substantial role. Similarly, for
the airline network revenue management test problems, our separable approximation strategy performs
better than the deterministic approximation strategy when the leg capacities are tight and the revenue
difference between the most and least expensive itineraries is large. As discussed at the end of Section
4.2, these test problems capture the case where the regret associated with making an “incorrect” decision
is high and one has to address the stochastic and dynamic elements of the problem more carefully. As a
result, our separable approximation strategy appears to provide noticeable improvements when dealing

with problems where uncertain and dynamic elements play a crucial role.

There are two possible directions for future research. First, the quality of the solutions obtained
by the separable approximation strategy should be investigated within the context of different problem
classes. The results for the time-staged network with random node supplies and airline network revenue
management settings are quite encouraging. Our separable approximation strategy has the potential to
make an impact in finding good solutions for practical stochastic programs. Second, our computational
experiments focus on the case where 7 is a singleton, but as Proposition 3 shows, it is possible to tighten
the lower bounds by adding more elements into Z. If 7 is to include k elements, then there are (Z)
possible choices. In this case, a complete enumeration of (Z) possible choices to obtain the tightest
lower bound can be prohibitive and a method to predict which subset of {1,...,n} yields the tightest

lower bound can be useful.
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