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Abstract. In this paper we consider a Poisson cluster process N as a generating process for the
arrivals of packets to a server. This process generalizes in a more realistic way the infinite source
Poisson model which has been used for modeling teletraffic for a long time. At each Poisson point
Γj , a flow of packets is initiated which is modeled as a partial iid sum process Γj +

Pk

i=1 Xji,
k ≤ Kj , with a random limit Kj which is independent of (Xji) and the underlying Poisson points
(Γj). We study the covariance structure of the increment process of N . In particular, the covariance
function of the increment process is not summable if the right tail P (Kj > x) is regularly varying
with index α ∈ (1, 2), the distribution of the Xji’s being irrelevant. This means that the increment
process exhibits long-range dependence. If var(Kj) < ∞ long-range dependence is excluded. We
study the asymptotic behavior of the process (N(t))t≥0 and give conditions on the distribution of

Kj and Xji under which the random sums
PKj

i=1 Xji have a regularly varying tail. Using the form
of the distribution of the interarrival times of the process N under the Palm distribution, we also
conduct an exploratory statistical analysis of simulated data and of Internet packet arrivals to a
server. We illustrate how the theoretical results can be used to detect distributional characteristics
of Kj , Xji, and of the Poisson process.

1. The model

Recent analysis of broadband measurements shows that the data sets exhibit two characteristic
properties: heavy tails and long-range dependence (LRD). Traditional traffic models using indepen-
dent inter-arrival times of jobs with distribution tails of job sizes which are exponentially bounded
imply short range dependence in the traffic and hence are not appropriate for describing high-speed
network traffic. Empirical evidence on the existence of LRD in traffic measurements can be found,
for example, in Crovella and Bestavros [9], Crovella et al. [10], Leland et al. [21].

A standard model for explaining these empirically observed facts is the so-called ON/OFF model.
In it, traffic is generated by a large number of independent ON/OFF sources such as workstations
in a big computer lab. An ON/OFF source transmits data at a constant rate to a server if it is ON
and remains silent if it is OFF. Every individual ON/OFF source generates an ON/OFF process
consisting of independent alternating ON- and OFF-periods. The lengths of the ON-periods are
identically distributed and so are the lengths of OFF-periods. Support for this model in the form
of statistical analysis of Ethernet Local Area Network traffic of individual sources was provided in
Willinger et al. [34]; the conclusions of this study are that the lengths of the ON- and OFF-periods
are heavy-tailed and in fact Pareto-like with tail parameter between 1 and 2. In particular, the
lengths of the ON- and OFF-periods have finite means but infinite variances. Further evidence
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is in Crovella et al. [9, 10], and Leland et al. [21] which present evidence of Pareto-like tails in
file lengths, transfer times and idle times in World Wide Web traffic. It is then an immediate
consequence of the heavy-tailed ON/OFF periods that the stationary ON/OFF process exhibits
LRD in the sense that its covariance function is not absolutely summable, see Heath et al. [17].
Standard references to stationary processes exhibiting LRD are Brockwell and Davis [7], Section
13.2, or Samorodnitsky and Taqqu [32], Chapter 7.

A closely related model is the infinite source Poisson model. In it, transmission initiations or
connections by sources happen at the points of a rate λ Poisson process. The transmission durations
are iid random variables independent of the times of connection initiation. The transmission lengths
have finite mean, infinite variance and heavy tails. During a transmission, a source transmits at
unit rate. This model was studied in Mikosch et al. [25]. In this model, LRD of the stationary
process of active sources at a given time is due to the infinite variance of the transmission lengths.
This is in agreement with the ON/OFF model mentioned above.

It is the goal of the present paper to study another model which extends the infinite source
Poisson and the ON/OFF models in a simple, but more realistic way. We assume that the first

packets of a flow arrive at the points Γj of a rate λ > 0 Poisson process Ñ on R and enumerate the
positive points as follows: 0 < Γ1 < Γ2 < · · · . Each flow then consists of several packets, which
arrive at the times

Yjk = Γj + Sjk ,

where for every j,

Sjk =

k∑

i=1

Xji , 0 ≤ k ≤ Kj .

Here Xji are iid non-negative random variables and Kj are iid integer-valued random variables.
We also assume that (Γj), (Kj) and (Xji) are mutually independent. In what follows, we write K,
X, etc., for generic random variables with the same distribution as Kj , Xji, etc., and we also write

S0 = 0 , Sn = X1 + · · · +Xn , n ≥ 1 ,

where (Xn) is an iid sequence with common distribution as Xji. Notice that this model coincides
with the infinite source Poisson model if K = 0. In the literature, this model is also referred to
as Poisson cluster process (Bartlett [4]) or branching Poisson process (Lewis [22]); cf. Daley and
Vere-Jones [12] and the references therein. Lewis used this model for analyzing computer failure
patterns and Bartlett applied it to bunching in motor traffic. Hohn et al. [19] applied the Poisson
cluster process for modeling computer traffic. In particular, they model flows arriving at the points
of a Poisson process. In that paper the authors also conduct an extensive wavelet based empirical
study in order to get support for their model. See also Hohn and Veitch [18] where, in particular,
a cluster model with gamma intra-cluster arrivals is fitted to real-life data.

We consider the point process N on R given by

N(B) = #{(j, k) : j ∈ Z , 0 ≤ k ≤ Kj : Yjk ∈ B} , B ∈ B ,
where B is the Borel σ-field of R. Notice that N is stationary due to the stationarity of the
underlying Poisson process. For a Borel set A ⊂ R we will also write

NA(B) = #{(j, k) : j ∈ Z , 0 ≤ k ≤ Kj : Γj ∈ A and Yjk ∈ B} , B ∈ B .
We also write for convenience

N(t) = N(0, t] , t ≥ 0 .

Here and in what follows, we write for any measure M and intervals (a, b), [a, b), etc., M(a, b) =
M((a, b)), M [a, b) = M([a, b)), etc. Finally, we denote by H the counting process generated by a



MODELING TELETRAFFIC ARRIVALS BY A POISSON CLUSTER PROCESS 3

single cluster starting at time zero:

H(B) = #{k : 0 ≤ k ≤ K, Sk ∈ B} , B ∈ B .

We consider a non-decreasing enumeration of the non-negative points of N :

0 ≤ T1 ≤ T2 ≤ · · ·

The Palm measure of the stationary point process N puts a point T0 = 0 at the origin, and under
this measure the interarrival times Tn − Tn−1, n = 1, 2, . . . form a stationary sequence (see e.g.
Baccelli and Bremaud [2] or Daley and Vere-Jones [12].) We will denote its marginal distribution
by F0.

We start our studies of the process N in Section 2, where we characterize some of its basic
properties such as its expectation, the variance as well as its covariance structure. In particular, we
determine conditions under which the covariance function γN (h) = cov(N(t, t+ 1], N(t+ h, t+ h])
of the stationary increment process (N(t, t + 1])t∈N has power law behavior in the sense that
γN (h) = L(h)h−γ for some γ ∈ (0, 1) and a slowly varying function L, i.e., L(cx)/L(x) → 1 as
x→ ∞ for every c > 0. Notice that γN is then not summable, i.e., the increment process exhibits
LRD. An interesting observation in this context is given in Proposition 2.4: LRD is not possible
unless var(K) = ∞ and the distribution of X is not relevant in this context. However, if P (K > x)
is regularly varying with index −α, α ∈ (1, 2) and EX < ∞, regular variation of the increment
process results; see Theorem 2.5. We mention in this context that we will also say that the random
variable K is regularly varying with index α and use this convention throughout the paper.

In Section 3 we prove asymptotic results for the process (N(t))t≥0, including the central limit
theorem with Brownian motion and stable Lévy motion limits. Both are processes with independent
stationary increments.

One of the interesting questions when considering real-life teletraffic data is where the heavy
tails of the random marks SK =

∑K
i=1Xi come from. This question is answered in Section 4. One

possible explanation is that the Xi’s are heavy-tailed and the tail of K is smaller compared to
P (X > x). Then the tail P (SK > x) is essentially determined by P (X > x); see Proposition 4.1.
Alternatively, a heavy tail of P (SK > x) results from the heavy tail P (K > x) if the tail P (X > x)
is of smaller order than P (K > x); see Proposition 4.3. We also address the reverse question: given
we know that P (SK > x) is regularly varying, may we conclude that K or X is regularly varying?

In Section 5 we study the Palm distribution of the process N . Under this distribution, the
interarrival process (Ti−Ti−1) constitutes a stationary ergodic sequence with T0 = 0 a.s. We derive
the distribution of Ti − Ti−1 under the Palm distribution.

In Section 6 we use the previous results for an exploratory analysis of real-life Internet and
simulated data. Assuming the data come from a Poisson cluster model, we use the strong law of
large numbers of N(t) and the ergodic theorem for the interarrival times Ti − Ti−1 under the Palm
distribution in order to get estimates of the quantities λ and EK. Here we assume that we only
observe the packet arrival times Ti and that we do not know which flow a given packet belongs to,
how many packets are there in each flow, etc. Assuming that K is regularly varying with index α
and that the tail of X is lighter than the tail of K, we also estimate the tail parameter α by using
wavelet based estimation techniques.

Although we are aware of the fact that the Poisson cluster model is a rather simple model for
real-life teletraffic, we think that it is more realistic than the commonly used ON-OFF or the infinite
source Poisson models. In particular, cluster models can be extended in various ways. For example,
Mikosch and Samorodnitsky [24] model traffic by a very general a stationary marked point process.
At each arrival time an activity starts and the marks stand for the amount of work brought into the
system at the arrival. Here many different limiting regimes are possible for the workload process.
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2. Expectation, variance and covariance structure of N

Consider a marked point process obtained by marking the Poisson point Γj by the pair
(Kj , (Xji, i ≥ 1)). The obtained process N ∗ is a Poisson point process in E = R × {0, 1, . . .} × R

∞

with mean measure m∗ = (λLeb) × FK × F∞
X , where FK and FX are, correspondingly, the laws of

K and X. Then for every interval (a, b] we have

(2.1) N(a, b] =

∫

E

f(a,b](γ, k, (xi)i=1,2,...)N
∗(d(γ, k, (xi)i=1,2,...)) ,

where

(2.2) f(a,b](γ, k, (xi)i=1,2,...) =
k∑

j=0

I{γ+
Pj

i=0 xi∈(a,b]} .

From the well-known properties of integrals with respect to the Poisson random measures (just
differentiate the Laplace functional in, say, Resnick [31], Proposition 3.6) we know that N(a, b] <∞
a.s. if and only if

(2.3)

∫

E

min
(
1, f(a,b](γ, k, (xi)i=1,2,...)

)
m∗(d(γ, k, (xi)i=1,2,...)) <∞,

and that

(2.4) EN(a, b] =

∫

E

f(a,b](γ, k, (xi)i=1,2,...)m
∗(d(γ, k, (xi)i=1,2,...)),

and

(2.5) var(N(a, b]) =

∫

E

f2
(a,b](γ, k, (xi)i=1,2,...)m

∗(d(γ, k, (xi)i=1,2,...)).

2.1. The expectation.

Proposition 2.1. Assume EK <∞. Then

EN(t) = λ t (EK + 1) , t ≥ 0 .(2.6)

Proof. For each k = 0, 1, . . ., let N (k) be the point process of the kth points in each flow. That is,
N (k) has as its points Yjk, j ∈ Z, such that Kj ≥ k. Then by the properties of a Poisson process

we immediately see that each N (k) is a homogeneous Poisson process on R with rate λP (K ≥ k).
Since N =

∑
k N

(k), we see immediately that

EN(t) =
∞∑

k=0

EN (k)(t) =
∞∑

k=0

λP (K ≥ k) t = λ t (EK + 1) ,

as required. �

Interestingly, the mean of N(t) (and, in particular, the fact that it is finite) does not depend on
the distribution of X. This last fact extends to the finiteness of the higher moments of N(t), as
will be seen in the next subsection.

2.2. The covariance structure of the increment process. We start with

Proposition 2.2. Assume EK <∞. Then for any −∞ < a < b <∞, EN 2(a, b] <∞.
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Proof. By stationarity it is enough to prove the claim for a = 0, b = 1. Since the mean of N(0, 1] is
finite by Proposition 2.1, we only need to check that the right-hand side of (2.5) is finite. We have

∫

E

f2
(0,1](γ, k, (xi)i=1,2,...)m

∗(d(γ, k, (xi)i=1,2,...))

= λ

∫

R

E




K∑

j=0

I{γ+Sj∈(0,1]}




2

dγ

≤ λ

∫ ∞

0
E




K∑

j=0

I{Sj∈(γ,γ+1]}




2

dγ + λEH2[0, 1].

Since the last term in the right-hand side above is, obviously, finite, it remains to prove that the
first term in the right-hand side above is finite as well. For γ > 0 let Mγ = inf{j ≥ 0 : Sj > γ}.
Then

E




K∑

j=0

I{Sj∈(γ,γ+1]}




2

≤ E
[
I{K≥Mγ , SMγ≤γ+1}EH

2(0, 1]
]
,

and so we only need to check that
∫ ∞

0
P
(
K ≥Mγ , SMγ ≤ γ + 1

)
dγ <∞.

This, however, follows from the fact that by Proposition 2.1 and (2.4)

∞ >

∫

E

f(0,1](γ, k, (xi)i=1,2,...)m
∗(d(γ, k, (xi)i=1,2,...)) = λ

∫

R

E




K∑

j=0

I{γ+Sj∈(0,1]}


 dγ

≥ λ

∫ ∞

0
E




K∑

j=0

I{Sj∈(γ,γ+1]}


 dγ ≥ λ

∫ ∞

0
P
(
K ≥Mγ , SMγ ≤ γ + 1

)
dγ.

�

Interestingly, EK < ∞ is a sufficient condition for the second moment of N(a, b] to be finite.
A very similar argument shows that, in the case EK < ∞, all moments of N(a, b] are finite.
Furthermore, using (2.3) instead of (2.5) we see that, unless EK <∞, N(a, b] = ∞ a.s. Hence the
condition EK < ∞ is necessary and sufficient for the finiteness of N(a, b] for −∞ < a < b < ∞,
and, when finite, N(a, b] has finite moments of all orders. Therefore, in the remainder of this paper
we always assume, often without explicit mentioning, that EK <∞.

Let U∗ be a measure on R
2 defined by

U∗(A×B) = E

[
K∑

n1=0

I{Sn1∈A}

K∑

n2=0

I{Sn2∈B}

]
, A,B ∈ B .(2.7)

Proposition 2.3. Let EK <∞. For any two bounded Borel sets A,B

cov(N(A), N(B)) = λ

∫

R

U∗((s+A) × (s+B)) ds .(2.8)

Proof. The statement is an immediate consequence of the isometry property (2.5) and the definition
of U∗. �
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There are several immediate conclusions from this. First of all, since we can write

cov(N(A), N(B)) = λ

∫

R

ds

∫

R2
+

I{y1−s∈A ,y2−s∈B}U
∗(d(y1, y2))

= λ

∫

R2
+

U∗(d(y1, y2))

∫

R

I{u∈A ,u+y2−y1∈B} du ,

the covariance measure γ̃2 of the process N (see Daley and Vere-Jones [12]) is given by

γ̃2 = λU∗ ◦ T−1 ,

where T : R
2
+ → R is defined by the relation T (y1, y2) = y2 − y1.

Further, utilizing the definition of U ∗ in (2.7) and writing G = 1 − G for the right tail of any
distribution G, we have for the covariance function γN (h) = cov(N(0, 1], N(h, h+1]) of the process
(N(t, t+ 1]), if h ≥ 1,

γN (h) = λ

∫ ∞

−1
U∗((s, s+ 1] × (s+ h, s+ h+ 1]) ds

= λE

[
K∑

n=0

K∑

m=0

∫ ∞

−1
I{s<Sn≤s+1 ,s+h<Sm≤s+h+1} ds

]

= λE

[
K∑

n=0

K∑

m=n+1

E
(
Sn ∧ (Sm − h) − (Sn − 1) ∨ (Sm − h− 1)

)
+

]

= λE

[
K∑

n=0

K∑

m=n+1

∫

(h−1,h]
(y + 1 − h)FSm−n

(dy) +

∫

(h,h+1]
(h+ 1 − y)FSm−n

(dy)

]

= λE

[
K∑

n=0

K∑

m=n+1

(∫

(h−1,h]
F Sm−n

(z) dz −
∫

(h,h+1]
F Sm−n

(z) dz

)]

= λE

[
K∑

k=1

(K − k + 1)

∫

(0,1]

(
F Sk

(x+ h− 1) − F Sk
(x+ h)

)
dx

]
.(2.9)

This result gives an expression for γN in terms of the distributions FSn of the partial sums Sn and
the distribution of K. An immediate consequence is the following result.

Proposition 2.4. Assume EK < ∞. We have for the integrated covariance function γN of the
process (N(t, t+ 1])

∫ ∞

1
γN (h) dh = λE

K∑

k=1

(K − k + 1)

∫ 1

0

(
x ∧ (2 − x)

)
F Sk

(x) dx ,

and the sum on the right-hand side converges if and only if var(K) <∞.

This is an interesting observation insofar that LRD in the sense of non-summability of the
covariance function is excluded for the increment process (N(t, t+1]) unless var(K) = ∞, and this
property is completely independent of the distribution of X.

The actual rate of decay of the covariance function γN (h) as h→ ∞ when var(K) = ∞ depends
on the tail of the distribution of K, and here the distribution of X does play a role. The result
below is an example of what the situation may be.
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Theorem 2.5. Assume that K is regularly varying with index α ∈ (1, 2) or α = 1 and EK < ∞.
Assume also that X has a non-arithmetic distribution and EX <∞. Then

γN (h) ∼ λ (EX)α−2

∫ ∞

h
FK(y) dy

∼ λ (EX)α−2 1

α− 1
hFK(h) , if α > 1

as h→ ∞.

Proof. We have by (2.9)

γN (h) = λ

∞∑

k=1

E(K − k + 1)+

∫

(0,1]

(
F Sk

(x+ h− 1) − F Sk
(x+ h)

)
dx

= λ

∫ h+1

h

( ∞∑

k=1

E(K − k + 1)+
(
F Sk

(y − 1) − F Sk
(y)
)
)
dy .(2.10)

The function E(K−k+1)+ =
∫
x≥k−1 FK(x) dx is non-increasing and, by Karamata’s theorem (see

Bingham et al. [6]), regularly varying with index −α+ 1. Furthermore, for α > 1,

E(K − k + 1)+ ∼ 1

α− 1
k FK(k) .

By a weighted renewal function argument (see Theorem 2 of Alsmeyer [1]) it then follows that
∞∑

k=1

E(K − k + 1)+
(
F Sk

(y − 1) − F Sk
(y)
)
∼ E(K − y + 2)+ (EX)α−2 , y → ∞ ,

and the statement of the theorem follows by substitution into (2.10).
�

Let us go back to the case var(K) <∞, and notice that in this case the discrete sum

(2.11)

∞∑

h=1

γN (h) = λE

K∑

k=1

(K − k + 1)

∫ 1

0
F Sk

(x) dx <∞ .

This implies that, taking the limit over the integers, we obtain

(2.12) lim
m→∞

var(N(m))

m
= γN (0) + 2

∞∑

h=1

γN (h) .

A computation similar to that in (2.9) gives us

(2.13) γN (0) = λ
(
EK + 1

)
+ 2λE

K∑

k=1

(K − k + 1)

∫ 1

0

(
1 − F Sk

(x)
)
dx .

Substituting (2.11) and (2.13) in (2.12), one obtains

lim
m→∞

var(N(m))

m
= λE[(K + 1)2] .

By the stationarity of the point process N , the asymptotically linear growth of the variance extends
to the continuous limit.

Proposition 2.6. Assume that var(K) <∞. Then

lim
t→∞

var(N(t))

t
= λE[(K + 1)2] .
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3. Asymptotic results for N

3.1. The strong law of large numbers.

Proposition 3.1. We have

N(t)/t
a.s.→ λ (EK + 1) , t→ ∞ .

Proof. The stationary point process N is ergodic since it is a cluster process with an ergodic parent
process (the underlying Poisson process); see Westcott [33], and the statement of the proposition
follows (see, e.g., Daley and Vere-Jones [12]). �

Remark 3.2. The above result also follows from Daley [11] who proved strong law of large numberss
for more general so-called center point processes (not necessarily Poisson) with iid clusters.

3.2. The central limit theorems. We first consider the situation where the cluster size K + 1
has a finite variance.

Proposition 3.3. Assume var(K) <∞. Then N satisfies the functional central limit theorem:
(
N(rt) − λrt(EK + 1)√

λrE[(K + 1)2]
, 0 ≤ t ≤ 1

)
⇒
(
B(t) , 0 ≤ t ≤ 1

)
, as r → ∞(3.14)

in terms of convergence of the finite-dimensional distributions, where
(
B(t) , 0 ≤ t ≤ 1,

)
is standard

Brownian motion.

Remark 3.4. Daley [11] proves one-dimensional central limit theorems for more general (not
necessarily Poisson) cluster processes with iid clusters.

Proof. Observe that the stationarity of the point process N implies that any weak (in terms of
convergence of the finite-dimensional distributions) limit point of the left-hand side of (3.14) has
stationary increments. It follows that, in order to prove the functional central limit theorem (3.14),
it is enough to show the one-dimensional convergence

N(rt) − λrt(EK + 1)√
λrE[(K + 1)2]

⇒ B(t) as r → ∞(3.15)

for every t > 0. Indeed, (3.15) implies that all finite-dimensional distributions in the left-hand
side of (3.14) form tight families. Any limit point must be an infinitely divisible process with
Gaussian marginals, and so the whole process is Gaussian. By the stationarity of the increments
and (3.15) its covariance function must coincide with that of the standard Brownian motion, and so
the latter is the only possible limit point. This will imply the convergence of the finite-dimensional
distributions in (3.14).

It is, clearly, enough to prove (3.15) for t = 1. We first calculate the variance of N(0,r](0, r]. Using
the order statistics property of the Poisson process, with U1, U2, . . . being i.i.d. uniform random
variables in (0, 1) independent of all other random variables below, we have

var(N(0,r](0, r]) = var




eN(r)∑

j=1

Kj∑

k=0

I{r Uj+Sjk≤r}


(3.16)

= λr E



(

K∑

k=0

I{Sk≤r U}

)2



∼ λr E[(K + 1)2]
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as r → ∞. We conclude by Proposition 2.6 that var(N(−∞,0](0, r]) = o(r) as r → ∞ and the central
limit theorem for N(r) is completely determined by N(0,r](0, r]. Recalling the representation in law
for N(0,r](0, r] used in (3.16),

N(0,r](0, r]
d
=

eN(r)∑

j=1

Gj ,(3.17)

where Gj =
∑Kj

k=0 I{Sjk≤rUj} . we see that the right-hand side of (3.17) is a random sum of iid

random variables. Since Ñ(r) is independent of (Kj), (Uj) and (Xjk), we may apply a standard
central limit result for double arrays of independent random variables. According to Petrov [30],
Theorem 4.2, it suffices to verify the following conditions

r P (|G−EG| > ε
√
r) → 0 , ∀ε > 0 , r → ∞ ,(3.18)

√
r E[G−EG]I{|G−EG|≤√

r} → 0 , r → ∞ ,(3.19)

E[G2]/E[(K + 1)2] → 1 , r → ∞ .(3.20)

Since |G−EG| ≤ K+1+EK and var(K) <∞, it immediately follows that (3.18) holds. Moreover,
the left-hand term in (3.19) can be bounded as follows

∣∣∣−
√
rE[G−EG]I{|G−EG|>√

r}

∣∣∣ ≤
√
r E([K + 1 +EK]I{K+1+EK>

√
r}) → 0 , r → ∞ ,

since var(K) <∞. Relation (3.20) follows by Lebesgue dominated convergence.
The proves the convergence of the finite-dimensional distributions. �

Next, we consider the situation described in Theorem 2.5, where the cluster size has infinite
variance. Note that the assumption of non-arithmeticity of the distribution of X is not needed
here.

Proposition 3.5. Assume that K is regularly varying with index α ∈ (1, 2) and that EX < ∞.
Then N satisfies the functional central limit theorem:

(
N(rt) − λrt(EK + 1)

Θ(r)
, 0 ≤ t ≤ 1

)
⇒
(
Lα(t) , 0 ≤ t ≤ 1

)
, as r → ∞ ,(3.21)

in terms of convergence of the finite-dimensional distributions, where Θ : (0,∞) → (0,∞) is a
nondecreasing function such that

(3.22) lim
r→∞

r P
(
K > Θ(r)

)
= 1

and
(
Lα(t) , 0 ≤ t ≤ 1,

)
is a spectrally positive α-stable Lévy motion with Lα(1) ∼ Sα(σ, 1, 0). Here

σ = 1/Cα with

Cα =

(∫ ∞

0
x−α sinx dx

)−1

=





1−α
Γ(2−α) cos(πα/2) if α 6= 1

2/π if α = 1

.

Remark 3.6. It follows immediately from (3.22) that the function Θ is regularly varying at infinity
with exponent 1/α. Examples of such functions can be obtained from the usual inverses of the tail
P (K > ·); see Resnick [31].

Note also that we are using the standard notation for the distribution of stable random vari-
ables, and that Cα is the multiplicative constant in the tail of an α-stable random variable; see
Samorodnitsky and Taqqu [32].
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Proof. We will prove the following two statements:

(3.23)
N(−∞,0](0, r] −EN(−∞,0](0, r]

Θ(r)
→ 0 as r → ∞

in probability and

(3.24)
N(0,r](0, r] −EN(0,r](0, r]

Θ(r)
⇒ Lα(1) as r → ∞.

In order to see that the statement of the proposition will then follow, take any k ≥ 1 and 0 = t0 <
t1 < · · · < tk and write

(
N(rti) − λrti(EK + 1)

Θ(r)
, i = 1, . . . , k

)
=

1

Θ(r)

(
I1, . . . , Ik

)
+

1

Θ(r)

(
J1, . . . , Jk

)
,

where

Ii =

i∑

j=1

(
N(tj−1 ,tj ](tj−1, tj ] −EN(tj−1 ,tj ](tj−1, tj ]

)

and

Ji =

i∑

j=1

(
N(−∞,tj−1](tj−1, tj ] −EN(−∞,tj−1](tj−1, tj ]

)

for i = 1, . . . , k. It follows from (3.23), (3.24), stationarity and independent increments of the
underlying Poisson process and regular variation of the function Θ that

(
N(rti) − λrti(EK + 1)

Θ(r)
, i = 1, . . . , k

)

⇒


t1/α

1 R1, t
1/α
1 R1 +

(
t2 − t1

)1/α
R2, . . . ,

k∑

j=1

(
tj − tj−1

)1/α
Rj


 as r → ∞,

where R1, . . . , Rk are i.i.d. copies of Lα(1), from which (3.21) follows.
We proceed, therefore, to prove (3.23) and (3.24). We start with observing that the ratio on the

left-hand side of (3.23) is an infinitely divisible random variable with characteristic function of the
form

(3.25) ψr(θ) = exp

{
−
∫ ∞

0

(
1 − eiθx − iθx

)
µr(dx)

}
,

where the Lévy measure µr is given by

(3.26) µr = λ (Leb × P ) ◦ T−1
r ,

and Tr : R+ × Ω → R+ is given by

Tr(u, ω) =
H(u, u+ r](ω)

Θ(r)
.

To see this, simply write N(−∞,0](0, r] as an integral with respect to a Poisson random measure as
in (2.1) and use, for example, Lemma 12.2 in Kallenberg [20].

It follows from Theorem 15.14 in Kallenberg [20] that (3.23) will result once we show that, as
r → ∞,

µr ⇒ o (null measure) vaguely on R \ {0},
∫

x≤1
x2 µr(dx) → 0 and

∫

x>1
xµr(dx) → 0.
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All of these statements will follow once we show that for every y > 0

(3.27)

∫ ∞

0

(
y2 ∧ x2

)
µr(dx) → 0

as r → ∞ and that

(3.28) lim
y→∞

lim sup
r→∞

∫

x>y
xµr(dx) = 0.

Note that the left-hand side of (3.27) is

λ

∫ ∞

0
E

(
y2 ∧

(
H(u, u+ r]

Θ(r)

)2
)
du ≤ λ

∫ ∞

0
E

(
y2 ∧

(
H(u,∞)

Θ(r)

)2
)
du

and so by the dominated convergence theorem (3.27) will follow once we show that
∫ ∞

0
E
(
y2 ∧ (H(u,∞))2

)
du <∞.

This is, however, clear because the integral above cannot exceed

y2ESK = y2EX EK <∞.

Furthermore,
∫

x>y
xµr(dx) = λ

∫ ∞

0
E

(
H(u, u+ r]

Θ(r)
In

H(u,u+r]
Θ(r)

>y
o
)
du

≤ λ

Θ(r)
E

[
I{K>y Θ(r)}

∫ ∞

0
H(u, u+ r] du

]

≤ λ r

Θ(r)
E
[
KI{K>yΘ(r)}

]
,

and so by Karamata’s theorem

lim sup
r→∞

∫

x>y
xµr(dx) ≤ λ

α

α− 1
y−(α−1).

Now (3.28) follows, and so we have established (3.23).
We now switch to proving (3.24). Once again, the ratio on the left-hand side of (3.24) is an infin-

itely divisible random variable with characteristic function of the form (3.25), with Lévy measure
µr given by (3.26), but this time Tr : [0, r] × Ω → R+ is given by

Tr(u, ω) =
H(0, u](ω)

Θ(r)
.

By appealing once again to Theorem 15.14 in Kallenberg [20] we see that (3.24) will follow once
we check that, as r → ∞,

(3.29) µr(y,∞) → λ y−α

for all y > 0,

(3.30)

∫ 1

0
x2 µr(dx) → λ

∫ 1

0
x2 αx−(α+1) dx

and

(3.31)

∫ ∞

1
xµr(dx) → λ

∫ ∞

1
xαx−(α+1) dx.
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Note that

µr(y,∞) = λ

∫ r

0
P (H(0, u] > yΘ(r)) du

= λE
[
I{K>y Θ(r)}

(
r − S[y Θ(r)]

)
+

]

= λP (K > yΘ(r)) E
(
r − S[y Θ(r)]

)
+
.

Since

r − [yΘ(r)]EX ≤ E
(
r − S[y Θ(r)]

)
+
≤ r,

we recall (3.22), the regular variation of the tail of K, and the fact that Θ is regularly varying with
exponent 1/α, to obtain (3.29).

Furthermore, for any ε, δ > 0 we have by the regular variation of K,
∫ ε

0
x2 µr(dx) = λ

∫ r

0
E

[(
H(0, u]

Θ(r)

)2

I{H(0,u]≤εΘ(r)}

]
du

≤ λ
r

Θ(r)2
E
(
K2I{K≤δΘ(r)}

)
+ λ

1

Θ(r)2

∫ r

0
E
[
(H(0, u])2I{K>δΘ(r),H(0,u]≤εΘ(r)}

]
du

≤ λ
r

Θ(r)2

(
C
(
δΘ(r)

)2
P
(
K > δΘ(r)

))
+ λε2rP

(
K > δΘ(r)

)
.

Here C is a finite positive constant. Therefore, using (3.22) and the regular variation of the tail of
K we obtain

lim sup
r→∞

∫ ε

0
x2 µr(dx) ≤ λ

(
Cδ2 + ε2

)
δ−α.

Letting first ε→ 0 and then δ → 0 we see that

lim
ε→0

lim sup
r→∞

∫ ε

0
x2 µr(dx) = 0.

Using (3.29), we now obtain (3.30).
Finally, the same argument that led to (3.28) also shows that the statement holds with the new

Lévy measures µr and, as before, (3.31) follows from (3.29). This proves (3.24), and so completes
the proof of the proposition. �

4. The tail behavior

In real-life teletraffic one observes heavy tails in various disguises, for example for transferred
file lengths, interarrival times of transmissions, etc. In this paper we are merely interested in the
periods of activity of one source given by the Poisson arrivals Γj of a packet which initiates a flow
composed of packets with arrival times Γj + Sjk, 0 ≤ k ≤ Kj.

A natural question in this context arises as to where the observed heavy tails of distributions of
interarrival times come from — from the interarrival times Xji or from the number of packets Kj

initiated at the Poisson arrival Γj. It is the goal of this section to answer this question by studying
the right tail of the random sum

SK =

K∑

i=1

Xi ,

where, as usual, (Xi) and K are independent. We are interested in conditions on the distributions
of X and K under which SK is regularly varying. We start with the case when X has heavier tail
than K.
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Proposition 4.1. Assume X is regularly varying for some α > 0, EK < ∞ and P (K > x) =
o(P (X > x)). Then, as x→ ∞,

P (SK > x) ∼ EK P (X > x) .(4.32)

Remark 4.2. The tail of SK has been studied even for the class of subexponential distributions
of X under the assumption that the tail P (K > x) decays exponentially fast. Then (4.32) remains
valid. The subexponential distributions include the regularly varying ones as a subclass, see Em-
brechts et al. [13], Chapter 1 and Appendix A3, for the definition and properties of subexponential
distributions, their relationship with regularly varying distributions and the mentioned result about
the tail of SK . Proposition 4.1 above gives (4.32) under very weak conditions on the tail of K.

Proof. By independence of K and (Xi),

P (SK > x)

P (X > x)
=

∞∑

k=1

P (K = k)
P (Sk > x)

P (X > x)
.

By subexponentiality of the distribution of X for every fixed k0,

k0∑

k=1

P (K = k)
P (Sk > x)

P (X > x)
→

k0∑

k=1

P (K = k) k .

Choose bk = ck, where
{
c > 0 is arbitrary if EX = ∞ ,

c = EX if EX <∞ .

Choose ε ∈ (0, 1). Then

∞∑

k=k0+1

P (K = k)
P (Sk > x)

P (X > x)
=

∞∑

k=k0+1

P (K = k)
P (Sk − bk > x− bk)

P (X > x)

=


 ∑

k0<k,k≤εx

+
∞∑

k0<k,k>εx


P (K = k)

P (Sk − bk > x− bk)

P (X > x)

= I1 + I2 .

Then

I2 ≤ P (K > εx)

P (X > x)
= o(1)

since P (K > x) = o(P (X > x)) and P (X > x) is regularly varying with index −α. For k ≤ εx,
x− bk ≥ k(ε−1 − c) > 0 for ε small. By the large deviation results of A.V. Nagaev [27, 28] (cf. S.V.
Nagaev [29]) for α > 2 and Cline and Hsing [8] for α ≤ 2 it follows for any δ > 0 that

sup
y>δk

∣∣∣∣
P (Sk − bk > y)

k P (X > y)
− 1

∣∣∣∣→ 0 .(4.33)

Hence, for some positive constant C,

lim sup
x→∞

I1 ≤ C
∞∑

k=k0+1

P (K = k) k → 0 , k0 → ∞ .

This proves the proposition. �
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Real-life teletraffic interarrivals Xji are often not very heavy-tailed due to technological restric-
tions on the file length and the transmission times. However, it is observed that SK has tails which
are well approximated by power laws. The next result gives an explanation of this phenomenon. It
makes plausible that the heavy tail of SK comes from the heavy tail of K.

Proposition 4.3. Assume K is regularly varying with index β ≥ 0. If β = 1, assume that
EK <∞. Moreover, let (Xi) be an iid sequence such that EX <∞ and P (X > x) = o(P (K > x)).
Then, as x→ ∞,

P (SK > x) ∼ P (K > (EX)−1 x) ∼ (EX)β P (K > x) .(4.34)

Before we give the proof of this result we provide an auxiliary result.

Lemma 4.4. Assume 0 < h(x) → 0 as x → ∞. Then there exists a slowly varying function L
such that L(x) → ∞ and L(x)h(x) → 0 as x→ ∞.

Proof. We construct L as follows. Let L(x) = 1 for x ∈ [0, x0], where x0 = sup{y : h(y) > 1}.
Then set L(x) = 2 for x ∈ (x0, x1], where x1 = sup{sup{y : h(y) > 2−2}, 2x0}. Then set L(x) = 3
for x ∈ (x1, x2], where x2 = sup{sup{y : h(y) > 3−2}, 3x1} and continue this construction in the
straightforward way. The function L is slowly varying since for any c > 0 and sufficiently large x,
cx and x are either in the same interval (xk, xk+1] or in two neighboring intervals of this form. The
fact that L(x) → ∞ is obvious, as well as the fact that L(x)h(x) → 0 since L(x)h(x) ≤ 1/k for
x > xk. This concludes the proof. �

Proof of Proposition 4.3. Notice that for ε ∈ (0, 1), by the law of large numbers,

P (SK > x) =

∞∑

k=1

P (K = k)P (Sk > x)

≥ P (K > (1 + ε)(EX)−1x)P (S[(1+ε)(EX)−1x] > x)

∼ P (K > (1 + ε)(EX)−1x) ∼ (1 + ε)−β P (K > (EX)−1x) .

Letting ε ↓ 0, this proves the lower bound in (4.34). As to the upper bound, for ε ∈ (0, 1),

P (SK > x) ≤ P (K > (EX)−1(1 − ε)x) +
∑

k≤(EX)−1(1−ε)x

P (K = k)P (Sk > x) .

By regular variation,

P (K > (EX)−1(1 − ε)x) ∼ (1 − ε)−β P (K > (EX)−1x) .

From this relation the lower bound in (4.34) follows by letting ε ↓ 0, provided one can show that

(4.35) p(x) =
∑

k≤(EX)−1(1−ε)x

P (K = k)P (Sk > x) = o(P (K > x)) .

We will consider several cases. Suppose first that β ≥ 1. In particular, EK < ∞. Let (X ′
i) be an

iid sequence of regularly varying random variables with the property that P (X > x) ≤ P (X ′ >
x) = o(P (K > x)) and that X ′ is regularly varying with index β. Such a construction is possible
by virtue of Lemma 4.4. Write S ′

k = X ′
1 + · · · +X ′

k. Then we have P (Sk > x) ≤ P (S′
k > x) for all

x ≥ 0. An application of (4.33) yields

p(x) ≤ C
∑

k≤(EX)−1(1−ε)x

P (K = k) k P (X ′ > x) ≤ C EK P (X ′ > x) = o(P (K > x)) .

for some positive C, as required.
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Next we consider the case β < 1. Let δ > 0 be a small positive number. We have

p(x) ≤
∑

k≤δx

P (K = k)P (Sk > x) +
∑

δx<k≤(EX)−1(1−ε)x

P (K = k)P (Sk > x)

:= p1(x; δ) + p2(x; δ).

Note that for every δx < k ≤ (EX)−1(1 − ε)x, by the law of large numbers

P (Sk > x) ≤ P (S[(1−ε)(EX)−1x] > x) → 0

as x→ ∞. Therefore, for any δ as above,

p2(x; δ) ≤ o(1)P (K > δx) = o
(
P (K > x)

)

by the regular variation of K. Furthermore, since P (Sk > x) ≤ kEX/x, we have

p1(x; δ) ≤ EX
1

x

∑

k≤δx

k P (K = k) ≤ EX
1

x

∑

k≤δx

P (K > k).

By Karamata’s theorem

∑

k≤δx

P (K > k) ∼ 1

1 − β
δxP (K > δx) ∼ 1

1 − β
δ1−βxP (K > x).

Therefore,

lim
δ→0

lim sup
k→∞

p1(x; δ)

P (K > x)
≤ lim

δ→0

EX

1 − β
δ1−β = 0,

from which (4.35) follows. �

Remark 4.5. One case has been left out in the assumptions of Proposition 4.3, the case where
β = 1 and EK = ∞. Somewhat surprisingly, the statement of the proposition fails, in general, in

this case, as the following example shows. Let dn = en
4

for n ≥ 1 and let the distribution of X be
concentrated on the set {d1, d2, . . .} with P (X = dn) = c1/

(
dn(log(dn))1/2), n = 1, 2, . . . for some

c1 > 0. Notice that EX < ∞. If we let P (K = k) = c2/k
2, k ≥ 1 for some c2 > 0, we see that

P (X > x) = o(P (K > x)). We have for every k ≤ x

P (Sk > x) ≥ P

(
max

i=1,...,k
Xi > x

)

≥ kP (X > x) − k(k − 1)

2
(P (X > x))2

≥ kP (X > x) [1 − xP (X > x)]

≥ 1

2
kP (X > x)



16 G. FAŸ, B. GONZÁLEZ-ARÉVALO, T. MIKOSCH, AND G. SAMORODNITSKY

for x large enough since EX < ∞ implies xP (X > x) → 0 as x → ∞. Therefore for x large
enough,

P (SK > x) ≥
∑

k≤x

P (K = k)P (Sk > x)

≥ 1

2


∑

k≤x

k P (K = k)


P (X > x)

∼ c2
2

log xP (X > x)

as x → ∞. Letting x → ∞ over the set {d1, d2, . . .} we see that lim supx→∞ P (SK > x)/P (K >
x) = ∞.

On the other hand, if in the case β = 1 and EK = ∞ one assumes that xP (X > x) = o(P (K >
x)), then the conclusion on the proposition still holds. See the proof of Proposition 4.9 below.

Remark 4.6. Under more restrictive assumptions the statement of Proposition 4.3 is in the PhD
thesis of Hansen [16], Lemma 3.3.5.

Remark 4.7. A modification of the proof of Proposition 4.1 shows that in the case when P (K >
x) ∼ cP (X > x) for some c > 0 and if X is regularly varying with index α ≥ 1 and EX <∞, then

P (SK > x) ∼ (EK + c (EX)α)P (X > x)

(suggested by Daryl Daley (personal communication)). It is also likely that certain results in this
section can be extended from the regularly varying case to the more general subexponential case.

In the rest of this section we are interested in the reverse problem: given we know that SK has
regularly varying tail, what can we say about the tails of X and K? In view of Propositions 4.1 and
4.3 above it is clear that this question cannot be answered without additional conditions. Indeed,
these lemmas suggest that one has to specify in advance which of the tails P (X > x) or P (K > x)
is asymptotically heavier.

We consider a situation where K has a sufficiently light tail. Notice the similarity with Propo-
sition 4.1.

Proposition 4.8. Assume SK is regularly varying with index α > 0 and EK1∨(α+δ) <∞ for some
positive δ. Then X is regularly varying with index α and P (SK > x) ∼ EK P (X > x).

Proof. First assume α ∈ (0, 1). An application of Karamata’s Tauberian theorem (see Bingham et
al. [6]) yields

sαL(1/s) ∼ 1 −Ee −sSK = E[1 − (Ee−sX)K ] , s ↓ 0 ,

for some slowly varying function L. An application of Lebesgue dominated convergence and EK <
∞ imply that

E[1 − (Ee−sX)K ] ∼ E[K (1 −Ee −sX)] = EK (1 −Ee −sX)

as s ↓ 0. Another application of Karamata’s Tauberian theorem proves that X is regularly varying
with index α.

Now assume α ≥ 1. We will prove that, under the assumptions of the proposition,

(4.36) P
(
X2

1 + · · · +X2
K > x

)
is regularly varying with exponent α/2.

Then, proceeding by induction we may conclude for α ∈ [2l, 2l+1), l ≥ 0, that X2l+1

1 + · · · +X2l+1

k

is regularly varying with index α/2l+1 ∈ (0, 1). By the first part of the proof, X2l+1

1 is regularly
varying with index α/2l+1 and hence X1 is regularly varying with index α. It remains, therefore,
to prove (4.36).
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Notice that for ε ∈ (0, 1),

P (X2
1 + · · · +X2

K > x) ≤ P (S2
K > x) ≤ P (X2

1 + · · · +X2
K > (1 − ε)x)

+P


2

∑

1≤i<j≤K

XiXj > εx


 .

We will show that

(4.37) P


2

∑

1≤i<j≤K

XiXj > εx


 = o

(
P (S2

K > x)
)
.

If this is true, then we have

(1 − ε)α/2 = lim
x→∞

P (S2
K > (1 − ε)−1x)

P (S2
K > x)

≤ lim inf
x→∞

P (X2
1 + · · · +X2

K > x)

P (S2
K > x)

≤ lim sup
x→∞

P (X2
1 + · · · +X2

K > x)

P (S2
K > x)

≤ 1 .

Letting ε ↓ 0, (4.36) follows from regular variation of S2
K .

We prove now (4.37), which will follow once we show that for some β > α/2,

(4.38) E


 ∑

1≤i<j≤K

XiXj




β

<∞ .

Suppose first that 1 ≤ α < 2. Choose α/2 < β < min(1, (α+ δ)/2). Since P (X > x) ≤ P (SK > x),
we know that EXρ

1 < ∞ for any 0 < ρ < 1. Choose β < ρ < 1, ρ > 2β/(α + δ) and observe that,
in the obvious notation,

E


 ∑

1≤i<j≤K

XiXj




β

= EK




EX




 ∑

1≤i<j≤K

XiXj




ρ


β/ρ




≤ EK






EX


 ∑

1≤i<j≤K

Xρ
i X

ρ
j






β/ρ




= (EXρ
1 )

2β/ρ
E

(
K(K − 1)

2

)β/ρ

<∞

by the choice of ρ, proving (4.38). The argument in the case α ≥ 2 is similar: choose α/2 < β <

min
(
(α + δ)/2, α

)
and recall that the inequality P (X > x) ≤ P (SK > x) implies that EXβ

1 < ∞.
We have

E


 ∑

1≤i<j≤K

XiXj




β

≤ E



(
K(K − 1)

2

)β−1 ∑

1≤i<j≤K

(XiXj)
β




=
(
EXβ

1

)2
E

(
K(K − 1)

2

)β

<∞

by the choice of β. This proves (4.38) in all cases and, hence, completes the proof. �
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Next we consider the situation where the tail of X is sufficiently light. Notice the similarity with
Proposition 4.3.

Proposition 4.9. Assume SK is regularly varying with index α > 0. Suppose that EX < ∞
and P (X > x) = o(P (SK > x)) as x → ∞. In the case α = 1 and ESK = ∞, assume that
xP (X > x) = o(P (SK > x)) as x→ ∞. Then K is regularly varying with index α and

P (SK > x) ∼ (EX)α P (K > x) .(4.39)

Proof. The upper bound

lim sup
x→∞

P (K > x)

P (SK > x)
≤ 1

(EX)α

follows in the same way as in Proposition 4.3. To prove the corresponding lower bound, rule out,
first, the case α = 1 and ESK = ∞. As in the proof of Proposition 4.3, we need to show that for
every 0 < ε < 1

(4.40) p(x) =
∑

k≤(EX)−1(1−ε)x

P (K = k)P (Sk > x) = o(P (SK > x)) .

If we prove that

(4.41) lim sup
x→∞

P (K > x)

P (SK > x)
<∞ ,

then the above statement will follow in the same way as in Proposition 4.3. To prove (4.41), choose
θ > 0 such that P (X > θ) > 0. Write Y =

∑n
i=1 I{Xi>θ} and observe that Y ∼ Bin(n, P (X > θ)).

Notice that

P (SK > x) ≥ P

(
K >

2x

θP (X > θ)

)
inf

{
P
(
Y >

n

2
P (X > θ)

)
: n ≥ 2x

θP (X > θ)

}

∼ P

(
K >

2x

θP (X > θ)

)

as x→ ∞, from which (4.41) follows because of the regular variation of the tail of SK .
Finally, consider the case α = 1 and ESK = ∞, where we assume that xP (X > x) = o(P (SK >

x)). To prove (4.40) in this case, notice that for a (small) δ > 0 we have

p(x) ≤ P
(
S[(EX)−1(1−ε)x] > x

)

≤ P
(
Xi > δx for some i ≤ [(EX)−1(1 − ε)x]

)

+P


 ∑

i≤[(EX)−1(1−ε)x]

XiI{|Xi|≤δx} > εx




:= p1(x) + p2(x) .

Notice that
p1(x) ≤ (EX)−1(1 − ε)xP (X > δx) = o(P (SK > x))

because of the regular variation of the tail of SK . It remains to consider the second term in the
right-hand side above. For θ > 0 denote µθ = EXI{X≤θ} and notice that µθ is uniformly bounded
in θ. Therefore, for x so large that µθ ≤ εx/2 we have

p2(x) ≤ P


 ∑

i≤[(EX)−1(1−ε)x]

Yi >
εx

2


 ,

where Yi = XiI{Xi≤δx} − µδx, i = 1, 2, . . ..
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Notice that Y1, Y2, . . . are zero mean random variables, and for x large enough we have |Yi| ≤ δx.
Using Prokhorov’s inequality (see Petrov [30], e.g. Lemma A3.6 in Mikosch and Samorodnitsky
[23]) we have

p2(x) ≤ exp



− ε

8δ
arcsinh


 εδx2

4 var
(∑

i≤[(EX)−1(1−ε)x] Yi

)





 .

It follows from the assumption xP (X > x) = o(P (SK > x)) that

var


 ∑

i≤[(EX)−1(1−ε)x]

Yi


 = o(1)x

∫ δx

0
P (Sk > z) dz = o(1)x2P (Sk > x)

as x→ ∞. Since arcsinh(y) ∼ log y as y → ∞, we see that, by selecting δ > 0 small enough relative
to ε, we will also have

p2(x) = o(P (SK > x)) ,

completing the proof of the proposition. �

5. The distribution of the interarrival times under the Palm measure

In this section we derive an explicit expression for the tail of the distribution function of the
interarrival times of the process N under the Palm measure. We will use it in the next section as
a tool to fit the parameters of a model to data.

Recall that F0 denotes the distribution of the interarrival times under the Palm measure. Under
this measure T0 = 0 a.s. and the interarrival times of the non-decreasing enumeration 0 ≤ T1 ≤
T2 ≤ · · · of the non-negative points of N constitute a stationary ergodic process; see Daley and
Vere-Jones [12]. By the Palm-Khinchin formula (Baccelli and Bremaud [2], p. 20 or p. 24) we have

λ(EK + 1)

∫ ∞

t
F 0(x) dx = P (T1 > t) , t ≥ 0 ,

where F 0 = 1 − F0 denotes the right tail of F0.
For any cluster the fact whether or not any of its point belongs to the interval [0, t] depends only

on the arrival time of the cluster and not on any other clusters. Therefore, by the time-dependent
thinning of a Poisson process

P (T1 > t) = P (N(0, t] = 0)

= exp
{
−E
(
number of clusters that contribute at least one point to [0, t]

)}

= exp

{
−λ
∫ t

−∞
P
(
a cluster arriving at time s contributes

at least one point to [0, t]
)}

ds

= exp

{
−λ
[
t+

∫ 0

−∞
P
(
W (−s,−s+ t] > 0

)
ds

]}

= exp

{
−λ
[
t+

∫ ∞

0
P
(
W (x, x+ t] > 0

)
dx

]}
,

where for any Borel set A,

W (A) =

K∑

i=1

I{Si∈A} .
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Now,
∫ ∞

0
P (W (x, x+ t] > 0) dx = E

(∫ ∞

0
I{W (x,x+t]>0} dx

)

= E

(
K∑

i=1

∫ Si+1

Si

I{W (x,x+t]>0} dx

)
.

Now, for every i = 0, 1, 2, . . . and x ∈ (Si, Si+1],

W (x, x+ t] = 0 if and only if x+ t < Si+1 .

Hence
∫ Si+1

Si

I{W (x,x+t]>0} dx = Xi+1I{Xi+1≤t} + t I{Xi+1>t} = Xi+1 ∧ t .

This implies

∫ ∞

0
P (W (x, x+ t] > 0) dx = E

(
K∑

i=1

(Xi ∧ t)
)

= EK E(X ∧ t) .

Therefore

P (T1 > t) = exp {−λ(t+EK E(X ∧ t))}

= exp

{
−λ(t+EK

∫ t

0
P (X > x)) dx)

}
,

and so
∫ ∞

t
F 0(x) dx =

1

λ(EK + 1)
exp

{
−λ(t+EK

∫ t

0
P (X > x) dx)

}
.

By differentiating this expression, we obtain

F 0(t) =
1

EK + 1
(1 +EKP (X > t)) exp

{
−λ(t+EK

∫ t

0
P (X > x) dx)

}
.(5.42)

Under somewhat more restrictive assumptions this expression was also obtained in Bartlett [4].

6. Fitting the model to Internet traffic data

In this section we fit the proposed Poisson cluster model to real-life Internet data. In order to
do this we need some parametric assumptions on the distributions of K and X. Empirical Internet
studies suggest that the number of packets in a flow is long-range dependent due to heavy tails of the
distribution ofK rather than heavy tails of the distribution ofX. We assume that the integer-valued
random variable K is regularly varying with unknown index α. We also assume the simplifying
condition that X is exponentially distributed. If α ∈ (1, 2), it follows from Proposition 4.3 that the
flow lengths are regularly varying with index α and the increment process of N has slowly decaying
correlations, see Theorem 2.5.

With these assumptions on the distributions of X and K we want to get some exploratory
statistical information about the following quantities of interest.

• The arrival rate of the Poisson process: λ.
• The mean of the exponential distribution of X: 1/θ.
• The tail index of the distribution of K: α.
• The expected value of K: EK.
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6.1. Description of the data set. The data set consists of the times of packet arrivals to a server
at the University of North Carolina. These traces were taken on Sunday, April 20, 2003, starting
at 7:00pm. Since the data set is extremely large we will only use the first 10 million observa-
tions, accounting for approximately 245 seconds. In this very short time period the assumption of
stationarity of the process N is acceptable. The data may be downloaded from

http://www-dirt.cs.unc.edu/ts_len/2003_Apr_20_Sun_1900.ts_len.gz.
This data set has two columns: packet arrival time stamp and packet length. The latter was

ignored in our analysis.

6.2. Estimation of λ. As mentioned before, we cannot discriminate between the Poisson arrivals
Γj and the points Yji. Therefore the estimation of the Poisson arrival rate λ is a major problem.
We will extract some information about it by using the results of Section 5 about the distribution
of the interarrival times under the Palm distribution. Recalling (5.42), we have

log(F 0(t)) ∼ −λt , t→ ∞ .(6.43)

Now replace in this asymptotic relation F0 by its empirical counterpart Fn calculated from the
sample of the interarrival times Ti − Ti−1. Under the Palm distribution, this sequence constitutes

a stationary ergodic process and therefore supx |Fn(x) − F0(x)| a.s.→ 0. The latter limit relation and
(6.43) encourage one to perform a linear regression of log(F n) on t, for large values of t. We will
ignore the very large values of t since, for those values, the empirical distribution function Fn(t) is
a poor estimator of F0(t). However, we do not expect this restriction to have significant impact on
our analysis since the sample size is very large.

In Figure 6.1 we can see that t ranges between 0 and 1.2 × 10−3 seconds, but the empirical
distribution function Fn(t) is unreliable after 0.7× 10−3 seconds. Therefore, we will fit a regression
line for t ∈ [0.4 × 10−3, 0.7 × 10−3], where log(F n) is close to a straight line.
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x 10−3
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Figure 6.1. The continuous line shows the natural logarithm of the empirical distribution function,
log(F n), and the dotted line shows the fitted regression line for the points where t ∈ [0.4×10−3, 0.7×
10−3]. The negative of the slope of this regression line is our estimate of λ.

In Figure 6.1 we can see this fitted regression line. The negative of the slope of this regression

line is our estimate for λ. That is, λ̂ ≈ 1, 837.
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6.3. Estimation of θ. We conclude from Section 5 that the mean excess function of F0 is given
by

EF0(Y − t | Y > t) =

∫∞
t F 0(x) dx

F 0(t)
=

1

λ(1 +EKP (X > t))
→ 1

λ
, t→ ∞ .(6.44)

Replacing F0 by its sample version Fn, we have as n→ ∞,

EFn(Y − t | Y > t)
a.s.→ EF0(Y − t | Y > t)(6.45)

by the ergodic theorem, uniformly on t-compact sets. The asymptotic relations (6.44) and (6.45)
encourage one to estimate P (X > t). Since we have a very large sample size n we expect that

(6.46) rn(t) =
1

EFn(Y − t | Y > t)
≈ λ (1 +EK P (X > t)) .

Under the assumption that X has an exponential distribution with mean 1/θ, a reorganization of
(6.46) yields

(6.47) log

[
1

EK

(
1

λ
rn(t) − 1

)]
≈ −θt .

This approximation is inaccurate for too large t-values. Therefore, we use moderately large values
of t to fit a regression to the left-hand side of (6.47) on t. We interpret the negative of the slope of
this regression line as an estimate of θ.

In Figure 6.2 we see that the left-hand side of (6.47) is roughly linear for t ∈ [0.2×10−3, 0.4×10−3],
where we fit the linear regression, shown with a dotted line. This gives us an estimate of θ of

θ̂ ≈ 16, 239.
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Figure 6.2. The continuous line shows log
[

1
EK

(
1
λrn(t) − 1

)]
, and the dotted line shows the fitted

regression line for t ∈ [0.2× 10−3, 0.4× 10−3]. The negative of the slope of this line is our estimate
of θ.



MODELING TELETRAFFIC ARRIVALS BY A POISSON CLUSTER PROCESS 23

6.4. Estimation of α. We know from Theorem 2.5 that the covariance function γN of the incre-
ment process N is regularly varying with index 1 −α provided α ∈ (1, 2). Figure 6.3 suggests that
this is a reasonable assumption for our data set. Thus we may apply commonly used methods for
estimating the so-called Hurst parameter H = (3−α)/2. Several of these methods can be classified
as Fourier or wavelet based methods. Both have high computational efficiency which is necessary
for large data sets encountered in telecommunications. In this application we will use wavelet based
methods.
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Figure 6.3. Sample autocorrelation function (ACF) for the increment process (N(t10−3, (t +
1)10−3])t∈Z.

We give a short description of the method; for details we refer to Bardet et al. [3]. Let dj,k, j, k ∈
Z, denote the wavelet coefficients of the increment process of N with respect to the Haar mother
wavelet. For a variety of models and under appropriate conditions including regular variation of
the covariance function one has

(1) (within-scale behavior) the continuous or discrete wavelet transform performs as an approx-
imate whitening of the data, i.e. the wavelet coefficients at a given scale form a stationary
weakly dependent time series

(2) (between-scale behavior) the variance of the wavelet coefficients are related to the scale j as
a power law with an exponent depending linearly on α as j → ∞:

vj := var(dj,k) ≈ 2(2−α)j .(6.48)

There exists a large number of papers where α is estimated via a linear regression of log(v̂j) on
j. Here v̂j is the empirical variance of the wavelet coefficients at scale j. Most of the results are
obtained in the Gaussian case, see Bardet et al. [3]. An empirical wavelet based application to the
cluster Poisson model can be found in Hohn et al. [19]. Using the above properties of the wavelet
coefficients, in particular (6.48), an alternative estimation procedure was suggested by Moulines et
al. [26]; see also Wornell and Oppenheim [35]. They propose to estimate α by minimization of a
local Whittle contrast, defined as follows:

α̂ = arg min
α′



log

( ∑

(j,k)∈∆

d2
j,k

2(2−α′)j

)
+ log 2(2 − α′)

∑

(j,k)∈∆

j



 ,(6.49)
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where we choose ∆ as follows: assume that dj,k is observable for Jmin ≤ j ≤ Jmax and 0 ≤ k <

2Jmax−j . Then we take

∆ = {j, k|J0 ≤ j ≤ Jmax , 0 ≤ k < 2Jmax−j} ,
for some J0 ∈ [Jmin, Jmax). Faÿ et al. [14] show that this procedure leads to a consistent estimate
of the Hurst parameter for the infinite source Poisson model under the following conditions

J0 → ∞ , Jmax − J0 → ∞ and lim supJ0/Jmax < 1/α .

Notice that J0 = [Jmax/2] is a possible choice satisfying the above conditions for α ∈ (1, 2). The
choice of J0 corresponds to a bias-variance trade-off, similarly to the choice of the frequency interval
for the classical regression estimators based on the periodogram. Simulations indicate that wavelet
Whittle estimators outperform the classical Fourier methods when α is close to 1.

Since theoretical results for this model are not available at present, we conducted a small Monte-
Carlo study to confirm acceptable performance of the wavelet estimator (6.49) for the Poisson
cluster model, before we applied it to the telecommunication data. We simulated NMC = 50 traces
of the Poisson cluster process with parameters λ = 1800 and θ = 16000 and α in {1.2, 1.4, 1.6, 1.8}.
The duration of each trace is 2.4 seconds. The increment process is computed by dividing each path
into 213 intervals of equal length, corresponding to Jmax = 13. According to (6.49), the estimator
α̂k is computed from the wavelet coefficients, for all possible choices of J0 ∈ {1, . . . , 12}. Finally, the

empirical mean-square error 1
NMC

∑NMC
k=1 (α̂k −α)2 is also computed. In Figure 6.4 the bias-variance

trade-off is illustrated. Moreover, it is indicated in Figure 6.5 that the optimal choice of J0 is not
very sensitive with respect to the value of α: the value J0 = 5 is efficient for the chosen values α.
Thus one can avoid sophisticated adaptive procedures for the estimation of α from the data given
that the remaining parameters are fixed.

Back to the data set, we sampled the increasing process at 219 points, and performed the esti-
mation on the 32 disjoint subsamples of size 213, with J0 = 5. Averaging the estimates, we get
α̂ ' 1.66.

6.5. Estimation of EK. We proceed by estimating the mean number of packets in a flow, that
is, EK + 1, or, equivalently, EK, exploiting Proposition 3.1. In Figure 6.6 we see that N(t)/t
approaches a constant for increasing t, as we expect from the theory. Thus we take the estimate
of λ(EK + 1) to be N(T )/T = 10,000,000

245 ≈ 40, 816, where T is the total length of time when the
measurements were taken.

From this estimate and the estimate λ̂ of the rate of the Poisson process (see Section 6.2) we get

an estimate for the expected value of K: ÊK = 21.
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