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Abstract. The notion of long range dependence is discussed from a va-

riety of points of view, and a new approach is suggested. A number of re-

lated topics is also discussed, including connections with non-stationary

processes, with ergodic theory, self-similar processes and fractionally dif-

ferenced processes, heavy tails and light tails, limit theorems and large

deviations.

1. Introduction

Long range dependence and long memory are synonymous notions, that

are arguably very important. This importance can be judged, for example,

by the very large number of publications having one of these notions in the

title, in areas such as finance (e.g. Lo (2001)), econometrics (e.g. Robin-

son (2003)), internet modelling (e.g. Karagiannis et al. (2004)), hydrol-

ogy (e.g. Painter (1998)), climate studies (e.g. Varotsos and Kirk-Davidoff

(2006)), lingustics (e.g. Alvarez-Lacalle et al. (2006)) or DNA sequencing

(e.g. Karmeshu and Krishnamachari (2004)). These publications address a

great variety of issues: detection of long memory in the data, statistical es-

timation of parameters of long range dependence, limit theorems under long

range dependence, simulation of long memory processes, and many others.

Surprisingly, very few of these publications address is what long range de-

pendence is. When definitions are given, they vary from author to author

(the econometric survey Guégan (2005) mentiones 11 different definitions).

The notion of long range dependence can also be applied to different aspects

of a given stochastic process (e.g. Heyde (2002)). More diverse definitions

become possible if, instead of looking at the “usual” stationary processes,

one studies stationary point processes, as in Daley and Vesilo (1997). It is
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the purpose of this survey to discuss what is meant (often implicitly) by

long range dependence, clarify why this notion is important, mention differ-

ent point of views on the topic and, hopefully, remove some of the mystery

that surrounds it.

The notion of long range dependence has, clearly, something to do with

memory in a stochastic process. Memory is, by definition, something that

lasts. It is the requirement that the memory has to be “long” that is special.

Why is it important that in one model the memory is “a bit longer” than

in another model? The first serious argument that this can be important is

in a series of papers of B. Mandelbrot and his co-authors, e.g. Mandelbrot

(1965) and Mandelbrot and Wallis (1968). It is also due to the influence

of these early papers and subsequent publications of Mandelbrot (especially

Mandelbrot (1983)) that long range dependence has also become associated

with scaling and fractal behaviour. We survey some of the early history in

Section 2.

The “specialness” of long memory indicates that most stationary stochas-

tic processes do not have it. This also makes it intuitive that non-stationary

processes can provide an alternative explanation to the empirical phenom-

ena that the notion of long range dependence is designed to address. This

connection between long memory and lack of stationarity is very important.

It is related to such well known phenomena as unit root problem (see Phillips

(1987)) and regime switching (Diebold and Inoue (2001)). We discuss the

connections with non-stationary processes in Section 3.

A very attractive point of view on long range dependence is based on

ergodic-theoretical properties of the dynamical system on which a station-

ary stochastic process is constructed. Many features that are intuitively

associated with long memory are automatically found in such an approach.

For several reasons this approach has not become widely accepted. We dis-

cuss this in Section 4.

Most of the definitions of long range dependence appearing in literature

are based on the second order properties of stochastic process. Such prop-

erties include asymptotic behaviour of covariances, spectral density, and
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variances of partial sums. The reasons for popularity of the second order

properties in this context are both historical and practical: second order

properties are relatively simple conceptually and easy to estimate from the

data. This approach to the notion of long memory is discussed in Section 5.

The term “fractional” appears very frequently in the context of long range

dependence. This usually refers to a model constructed using a generalized

operation of a non-integer order, whereas the “usual” order of the opera-

tion has to be integer. The examples include differencing or differentiation

“non-integral number of times”. Certain features often associated with long

memory can sometimes be obtained by doing so. Models obtained in this

way are discussed in Section 6.

It is, once again, largely due to the early history that the notion of long

range dependence has become closely associated with self-similar processes.

Self-similar processes are stochastic models with the property that a scaling

in time is equivalent to an appropriate scaling in space. The connection

between the two types of scaling is determined by a constant often called

the Hurst exponent, and it has been argued that the value of this exponent

determines whether or not the increments of a self-similar process with sta-

tionary increments possess long range dependence. We discuss self-similar

processes in Section 7.

The final part of this survey, Section 8, introduces a different approach

to understanding long memory, a one that is related to the notion of phase

transitions. We argue that this approach makes the notion of long range

dependence both intuitive and practical. One should hope for major future

research effort in this direction.

2. Some history. The Hurst phenomenon

The history of long range dependence as a concrete phenomenon believed

to be important in its own right should be regarded as beginning in the

1960s with a series of papers of Benoit Mandelbrot and his co-workers, even

though even earlier empirical findings had occurred. The cause was a need

to explain an empirical phenomenon observed by Hurst (1951, 1955) who

studied the flow of water in the Nile river. A particular data set Hurst
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looked at appears on Figure 2.1. There are many things that are interesting
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Figure 2.1. Annual minima of the water level in the Nile river for the years
622 to 1281, measured at the Roda gauge near Cairo.

about about this data set (one of which is how far back in time the data go).

Harold Hurst, who was interested in dam design, looked at this data through

a particular statistic. Given a sequence of n observations X1,X2, . . . ,Xn,

define the partial sum sequence Sm = X1 + . . .+Xm for m = 0, 1, . . . (with

S0 = 0). The statistics Hurst looked at is

(2.1)
R

S
(X1, . . . ,Xn) =

max0≤i≤n(Si − i
nSn) − min0≤i≤n(Si − i

nSn)

( 1
n

∑n
i=1(Xi − 1

nSn)2)1/2
.

Note that Sn/n is the sample mean of the data. Therefore, max0≤i≤n(Si −
i
nSn), for example, measures how far the partial sums get above the straight

line they would follow if all observations were equal (to the sample mean),

and the difference between the maximum and the minimum of the numerator

in (2.1) is the difference between the highest and lowest positions of the

partial sums with respect to the straight line of uniform growth. It is referred

to as the range of the observations. The denominator of (2.1) is, of course,

the sample standard deviation. The entire statistic in (2.1) has, then, been

called the rescaled range or the R/S statistic.

Suppose now that X1,X2, . . . is a sequence of random variables. One

can apply the R/S statistic to the first n observations X1,X2, . . . ,Xn for
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increasing values of n. What would one expect the resulting sequence of

values of the R/S statistic to be like? Let us do some simple calculations.

Consider the space D[0, 1] of right continuous and having left limits func-

tions on [0, 1] equipped with the Skorohod J1 topology (see Billingsley

(1999)). The function f : D[0, 1] → R defined by

f(x) = sup
0≤t≤1

(x(t) − tx(1)) − inf
0≤t≤1

(x(t) − tx(1)) ,

x = (x(t), 0 ≤ t ≤ 1) ∈ D[0, 1], is easily seen to be continuous. We would

like to apply this function to the D[0, 1]-valued version of the partial sum

sequence, the so-called partial sum process.

Suppose that X1,X2, . . . is, in fact, a stationary sequence of random vari-

ables with a finite variance, and a common mean µ. The partial sum process

is defined by

(2.2) S(n)(t) = S[nt] − [nt]µ, 0 ≤ t ≤ 1 .

The classical Functional Central Limit Theorem (Donsker’s Theorem, in-

variance principle) says that, if X1,X2, . . . are i.i.d., then

(2.3)
1√
n
S(n) ⇒ σ∗B weakly in D[0, 1],

where σ2
∗ is equal to the common variance σ2 of the observations, andB is the

standard Brownian motion on [0, 1] (Theorem 14.1 in Billingsley (1999)). In

fact, the Functional Central Limit Theorem is known to hold for stationary

processes with a finite variance that are much more general than an i.i.d.

sequence (with the limiting standard deviation σ∗ not equal, in general, to

the standard deviation of the Xi’s); see a recent survey in Merlevéde et al.

(2006).

It is straightforward to check that the range of the first n observations

(the numerator in the R/S statistic) is equal to f(S(n)). Therefore, if the

invariance principle (2.3) holds, then by the continuous mapping theorem,

1√
n

( the range of the first n observations ) = f

(

1√
n
S(n)

)

⇒ f(σ∗B) = σ∗

[

sup
0≤t≤1

(B(t) − tB(1)) − inf
0≤t≤1

(B(t) − tB(1))
]

:= σ∗
[

sup
0≤t≤1

B0(t) − inf
0≤t≤1

B0(t)
]

,
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where B0 is a Brownian bridge on [0, 1]. Furthermore, if the stationary

sequence X1,X2, . . . is ergodic, then the sample standard deviation is a

consistent estimator of the population standard deviation, and so

(
1

n

n
∑

i=1

(Xi −
1

n
Sn)2)1/2 → σ with probability 1.

Under these circumstances we see that

(2.4)
1√
n

R

S
(X1, . . . ,Xn) ⇒ σ∗

σ

[

sup
0≤t≤1

B0(t) − inf
0≤t≤1

B0(t)
]

.

That is, the R/S statistic grows as the square root of the sample size.

When Harold Hurst calculated the R/S statistic on the Nile river data

on Figure 2.1 he found, however, the empirical rate of growth closer to

n.74 (with n being the number of observations). This phenomenon became

known as the Hurst phenomenon, and finding a stochastic model that would

explain it proved to be tricky. The assumptions made above to guarantee

the convergence in (2.4) are reasonably mild, and one would expect that

even if exact convergence in (2.4) was difficult to establish, the square root

of the sample of the sample size was still the order of magnitude of the R/S

statistic. A drastic departure from the assumptions was needed.

One such departure was suggested in Moran (1964), and it consisted of

dropping the assumption of a finite variance of the observations X1,X2, . . .

and assuming, instead, that the observations are in the domain of attraction

of an infinite variance α-stable distribution with 0 < α < 2 (Moran, actually,

assumed the observations to have a symmetric α-stable law). It was pointed

out in Mandelbrot and Taqqu (1979), however, that the self-normalizing

feature of the R/S statistic prevents infinite variance alone from explaining

the Hurst phenomenon. Let us sketch why.

We will assume, for simplicity, that the observations (in addition to being

i.i.d.) have balanced power tails:

(2.5) P (|X1| > x) ∼ cx−α as x→ ∞, and

lim
x→∞

P (X1 > x)

P (|X1| > x)
= p, lim

x→∞

P (X1 < −x)
P (|X1| > x)

= q

for some 0 < α < 2, c > 0 and 0 ≤ p, q ≤ 1, p+q = 1. The general domain of

attraction assumption allows a slowly varying function in the tail of |X1| (see
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e.g. Feller (1971)). The greater generality may introduce a slowly varying

(in the sample size) function in the order of magnitude of the R/S statistic,

but it cannot change the crucial exponent of n in that order of magnitude.

Assuming (2.5), one can use a very important point process convergence

result (from which a large number of other heavy tailed limit theorems fol-

low). For n ≥ 1 we define

Nn =

n
∑

j=1

δ(j/n,Xj/n1/α)

and view Nn as a point process on [0, 1]× ([−∞,∞] \{0}). Here δ(t,x) is the

point mass at a point (t, x). Then

(2.6) Nn ⇒ N :=

∞
∑

j=1

δ(Uj ,Jj)

weakly in the space of Radon discrete random measures on the space [0, 1]×
([−∞,∞] \ {0}), where the Radon property means that a measure assigns

finite values to sets bounded away from the origin. In the right hand side

of (2.6), (Jj) are the points of a Poisson process on R with mean measure

µ given by

m
(

(x,∞)
)

= c p x−α, m
(

(−∞,−x)
)

= c q x−α

for x > 0, while (Uj) are i.i.d. standard uniform random variables indepen-

dent of the Poisson process. The space of Radon discrete random measures

is endowed with the topology of vague convergence. The result is (4.70) in

Resnick (1986), which can also be consulted for technical details.

It is possible to apply (2.6) to understand the “size” of the R/S statistic,

starting with a typical “truncation” step, needed because various sums of

points are not continuous functionals of point processes in the topology of

vague convergence (but see Davydov and Egorov (2005) for recent progress

towards topologies that may make certain sums of the points continuous

functionals). Using Theorem 3.2 in Billingsley (1999) and verifying certain

technical conditions, one obtains

(2.7)
1√
n

R

S
(X1, . . . ,Xn) ⇒ g(N) ,
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where

g(N) =

sup
0≤t≤1

∞
∑

j=1

(

1(Uj ≤ t) − t
)

Jj − inf
0≤t≤1

∞
∑

j=1

(

1(Uj ≤ t) − t
)

Jj

(
∑∞

j=1 J
2
j )1/2

;

we omit the details. Note that (2.7) means that even in the heavy tailed

case the R/S statistic grows as the square root of the sample size.

We conclude, therefore, as did Mandelbrot and Taqqu (1979), that infinite

variance alone cannot explain the Hurst phenomenon. A different drastic

departure from the assumptions leading to the square root of the sample size

rate of growth of the R/S statistic was suggested in Mandelbrot (1965) (see

also Mandelbrot and Wallis (1968)), and it had nothing to do with heavy

tails. The idea was, instead, to take as a model a stationary process with a

finite variance, but with correlations decaying so slowly as to invalidate the

Functional Central Limit Theorem (2.3). The simplest model of that sort is

the Fractional Gaussian Noise.

Let us start with a zero mean Gaussian process (BH(t), t ≥ 0) satisfying

BH(0) = 0 and E(BH(t) − BH(s))2 = σ2|t − s|2H for some σ > 0 and

0 < H ≤ 1. We will see below that such a process does exist, and it has

stationary increments (that is, the law of (BH(t + h) − BH(h), t ≥ 0) does

not depend on h ≥ 0). It is called a Fractional Brownian motion, or FBM,

and it becomes the usual Brownian motion when H = 1/2. Clearly, this

process has the self-similarity property (BH(ct), t ≥ 0)
d
= (cHBH(t), t ≥ 0)

for any c > 0.

The power-like behaviour of the incremental variance immediately allows

one to check the metric entropy condition (see Dudley (1967)) or the Kol-

mogorov criterion (see e.g. Durrett (1996)) to conclude that a Fractional

Brownian motion has a continuous version, and we always assume that we

are working with such a version. Furthermore, an easy computation of the

covariance function shows that for H = 1, B1(t) = tB1(1) with probability

1 for each t ≥ 0, and so to avoid trivialities we always take 0 < H < 1.

A Fractional Gaussian Noise, or FGN, is a discrete step increment process

of a Fractional Brownian motion defined by Xj = BH(j) − BH(j − 1) for
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j = 1, 2, . . .. The stationarity of the increments of the FBM implies that this

is a stationary Gaussian process. Using the fact ab = (a2 + b2 − (a− b)2)/2

and the incremental variance of the FBM, we easily see that

(2.8) Cov(Xj+n,Xj) =
σ2

2

[

(n+ 1)2H + (n− 1)2H − 2n2H
]

for j ≥ 1, n ≥ 0. That is,

(2.9) ρn := Corr(Xj+n,Xj) ∼ H(2H − 1)n−2(1−H) as n→ ∞.

In particular, ρn → 0 as n → ∞. This implies that the FGN is a mixing,

hence ergodic, process; see Cornfeld et al. (1982). Furthermore, by the

self-similarity of the FBM, for every n

(2.10) Var(X1 + . . .+Xn) = VarBH(n) = σ2n2H .

Suppose now that a set of observations X1,X2, . . . forms a Fractional

Gaussian Noise as defined above, and let us consider the behaviour of the

R/S statistic on these observations. The ergodicity of the FGN implies that

the denominator of the statistic converges a.s. to the standard deviation of

the observations, σ. For the numerator of the R/S statistic we recall that

Si = BH(i) for every i, and the self-similarity of the FBM gives us

max
0≤i≤n

(Si −
i

n
Sn) − min

0≤i≤n
(Si −

i

n
Sn)

= max
0≤i≤n

(BH(i) − i

n
BH(n)) − min

0≤i≤n
(BH(i) − i

n
BH(n))

d
= nH

[

max
0≤i≤n

(BH(
i

n
) − i

n
BH(1)) − min

0≤i≤n
(BH(

i

n
) − i

n
BH(1))

]

.

By the continuity of the sample paths of the FBM we have

max
0≤i≤n

(BH(
i

n
) − i

n
BH(1)) − min

0≤i≤n
(BH(

i

n
) − i

n
BH(1))

→ sup
0≤t≤1

(BH(t) − tBH(1)) − inf
0≤t≤1

(BH(t) − tBH(1))

with probability 1. That is, for the FGN,

n−HR

S
(X1, . . . ,Xn) ⇒ sup

0≤t≤1
(BH(t) − tBH(1)) − inf

0≤t≤1
(BH(t) − tBH(1)) ,

and so the R/S statistic grows at the rate nH as a function of the sample size.

Therefore, selecting an appropriate H in the model will, finally, explain the

Hurst phenomenon. In particular, the parameter H of Fractional Brownian

motion is often referred to as Hurst parameter.
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This success of the Fractional Gaussian Noise model was, and still is,

striking. Of course, self-similarity of the FBM was used in the above com-

putation, but it was quickly realized that the really important fact was the

unusually slow decay of correlations in (2.9), especially for high values of

H (i.e. close to 1). For these values of H the variance of the partial sums

in (2.10) also increases unusually fast. Unlike the previous unsuccessful

attempt to explain the Hurst phenomenon by introducing in the model un-

usually heavy tails (infinite variance in this case), the FGN model succeeds

here by introducing unusually long memory. Particularly vivid terminology

was introduced in Mandelbrot and Wallis (1968), in the context of weather

and precipitation: unusually heavy tails were designated as Noah effect, re-

ferring to the biblical story of Noah and extreme incidents of precipitation,

while unusually long memory was designated as Joseph effect, referring to

the biblical story of Joseph and long stretches (seven years) of time higher

than average and lower than average precipitation. One can visually see the

domination of extreme observations in the left plot of Figure 2.2, where the

observations are Pareto random variables with parameter 1 (and so even fail

to have a finite mean), as opposed to a much less pronounced domination of

extreme observations in the right plot of Figure 2.2, where the observations

are standard exponential random variables.

Joseph effect, on the other hand, is clearly visible on Figure 2.3: in the left

plot, where the observations form FGN with Hurst parameter H = 0.8, there

are long stretches of time (hundreds of observations) where the observations

tend to be on one side of the true mean 0. This is, clearly, not the case on

the right plot of i.i.d. normal observations. Returning momentarily to the

Nile river data on Figure 2.1 we see evidence of Joseph effect there as well.

This brought the fact that memory of a certain length can make a big dif-

ference to the attention of many. The terms “long range dependent process”

and “long memory” came into being; they can already be found in the early

papers by Mandelbrot and co-authors. A number of surveys throughout

the years helped to maintain clarity in this otherwise mysterious subject;
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Figure 2.2. i.i.d. Pareto random variables with parameter 1 (left plot) and
i.i.d. exponential random variables with parameter 1 (right plot)
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Figure 2.3. Fractional Gaussian noise with H = 0.8 (left plot) and i.i.d.
standard Gaussian random variables (right plot)
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we mention Cox (1984), Rosenblatt (1984), a bibliographic guide of Taqqu

(1986), and the monograph of Beran (1994).

3. Long memory and non-stationarity

It is standard in theory of stochastic processes to apply the notion of long

range dependence only to stationary processes. This is not necessarily the

case in certain areas of application (such as, for example, physics, or self-

organizing criticality), where closely related terms (long-term correlations,

1/f noise, often in the context of power laws) are sometimes applied to non-

stationary models, such as Brownian motion. See e.g. Berg-Sørensen and

Flyvberg (2005). Because of that, it has also been suggested, e.g. in Heyde

and Yang (1997), to modify certain (second-order) definitions of long range

dependence to apply to non-stationary processes as well.

In general, the relationship between long range dependence and non-

stationarity is delicate in a number of ways. We have seen that the Joseph

effect involves long stretches of time when the process tends to be above

the mean, and long stretches of time when the process tends to be below

the mean. This and related phenomena can, of course, be taken to indi-

cate non-stationarity. Quoting a description in Mandelbrot (1983), page

251, of a Fractional Gaussian noise with H = 1/2: “Nearly every sample

looks like a “random noise” superimposed upon a background that performs

several cycles, whichever the sample’s duration. However, these cycles are

not periodic, that is, cannot be extrapolated as the sample lengthens.” In

application to real data, either stationary long memory models or appropri-

ate non-stationary models can and have been used. There is, obviously, no

“right” or “wrong” way to go here, beyond the principle of parsimony.

Among the first to demonstrate the difficulty of distinguishing between

stationary long memory models and certain non-stationary models was the

paper Bhattacharya et al. (1983) who suggested that, instead of Fractional

Gaussian noise or another model with long memory, the Hurst phenomenon

can be explained by a simple non-stationary model as follows. Let Y1, Y2, . . .

be a sequence of independent identically distributed random variables with
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a finite variance σ2. Let 0 < β < 1/2, choose a ≥ 0 and consider the model

(3.1) Xi = Yi + (a+ i)−β, i = 1, 2, . . . .

Clearly, the stochastic process X1,X2, . . . is non-stationary, for it contains

a non-trivial drift. However, it is asymptotically stationary (as the time

increases), and the drift can be taken to be very small to start with (by

taking a to be large). This process has no memory at all, as the sequence

Y1, Y2, . . . is i.i.d. It does, however, cause the R/S statistic to behave in the

same way as if the sequence X1,X2, . . . were a FGN, or another long range

dependent process. To see why, assume for simplicity that a = 0 above,

and note that for this model, the numerator of the R/S statistic is bounded

between

rn −RY
n ≤ max

0≤i≤n
(Si −

i

n
Sn) − min

0≤i≤n
(Si −

i

n
Sn) ≤ rn +RY

n ,

where

rn = max
0≤i≤n

(si −
i

n
sn) − min

0≤i≤n
(si −

i

n
sn) ,

RY
n = max

0≤i≤n
(SY

i − i

n
SY

n ) − min
0≤i≤n

(SY
i − i

n
SY

n ) ,

and SY
m = Y1 + . . . + Ym, sm =

∑m
j=1 j

−β for m = 0, 1, 2, . . .. Since sm

is a sum of a decreasing sequence of numbers, we see that min0≤i≤n(si −
i
nsn) = 0. On the other hand, the extremum in the max part of rn is

achieved at i = ⌊( 1
n

∑n
j=1 j

−β)−1/β⌉, and elementary computations show

that max0≤i≤n(si − i
nsn) ∼ Cβn

1−β with Cβ = β(1 − β)1/β−2. Since RY
n

grows as n1/2, we immediately conclude that

1

n1−β

[

max
0≤i≤n

(Si −
i

n
Sn) − min

0≤i≤n
(Si −

i

n
Sn)

]

→ Cβ

in probability as n→ ∞. Similarly, in the denominator of the R/S statistic

we have a bound

DY
n − dn ≤

(

n
∑

i=1

(Xi −
1

n
Sn)2

)1/2
≤ DY

n + dn ,

where

DY
n =

(

n
∑

i=1

(Yi −
1

n
SY

n )2
)1/2

, dn =
(

n
∑

i=1

(i−β − 1

n
sn)2

)1/2
.



14 G. SAMORODNITSKY

We know that DY
n /n

1/2 → σ a.s. as n→ ∞, while an elementary computa-

tion leads to dn/n
1/2−1/β → C ′β with C ′β = β2(1− β)−2(1− 2β). Therefore,

n−1/2
(

n
∑

i=1

(Xi −
1

n
Sn)2

)1/2
→ σ

a.s. and we conclude that

1

n1−β

R

S
(X1, . . . ,Xn) → Cβ

σ

in probability as n → ∞. Therefore, for the model (3.1) the R/S statistic

grows as n1−β, same rate as for the FGN with H = 1 − β, and so the R/S

statistic cannot distinguish between these two models. Apart from fooling

the R/S statistic, however, the model (3.1) is not difficult to tell apart from

a stationary process with correlations decaying as in (2.9). That this can be

done using the periodogram was quickly shown in Künsch (1986).

A very important class of non-stationary models that empirically re-

semble long memory stationary models is that of regime switching models.

The name is descriptive, and makes it clear where the lack of stationarity

comes from. The Fractional Gaussian noise also appear to exhibit differ-

ent “regimes” (the Joseph effect), but the non-stationary regime switching

models are usually those with break points, whose location changes with the

sample size, in either random or non-random manner.

One class of regime switching models obtains by taking a parametric

model that would be stationary is its parameters were kept constant and

then changing the parameters along a sequence of non-random time points,

again chosen relatively to the sample size. In Mikosch and Stărică (1999) and

Mikosch and Stărică (2000) such a procedure was applied to the GARCH(p, q)

model. Such a change can affect the mean and the variance (among many

other things) of the process after break points, and to many sample statistics

this will look like long memory.

To see what might happen here consider a sample X1, . . . ,Xn, where the

observations come from r subsamples of lengths proportional to the overall

sample size. That is, given fixed proportions 0 < pi < 1, i = 1, . . . , r with
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p1 + . . .+ pr = 1, the sample has the form

(3.2) X
(1)
1 , . . . ,X

(1)
[np1]

,X
(2)
[np1]+1, . . . ,X

(2)
[n(p1+p2)]

, . . . ,X
(r)
[n(1−pr)], . . . ,X

(r)
n ,

where the ith subsample forms a stationary ergodic process with a finite

variance, i = 1, . . . , r. Since one of the common ways to try to detect

long range dependence is by looking for a slow decay of covariances and

correlations, let us check the behaviour of the sample covariance on the

sample (3.2). Note that for a fixed time lag m

R̂m(n) =
1

n

n−m
∑

j=1

(Xj − X̄)(Xj+m − X̄) = Am(n) +Bm(n) ,

where X̄ is the overall sample mean,

Am(n) =
1

n

n−m
∑

j=1

XjXj+m − (X̄)2 ,

and

Bm(n) =
1

n
X̄





m
∑

j=1

Xj +

n
∑

j=n−m+1

Xj



− m

n
(X̄)2 .

Obviously Bm(n) → 0 in probability as n → ∞. By ergodicity, also X̄ →
∑r

i=1 piµi, where µi is the mean of the ith subsample. Finally, if Ii denotes

the set of indices corresponding to the ith subsample, i = 1, . . . , r, then by

the same ergodicity,

1

n

n−m
∑

j=1

XjXj+m

=

r
∑

i=1

Card(Ii ∩ (Ii −m))

n

1

Card(Ii ∩ (Ii −m))

∑

j∈Ii∩(Ii−m)

X
(i)
j X

(i)
j+m

+
1

n

r
∑

i=1

∑

j∈{1,...,n−m}
j∈Ii,j+m∈Ii+1

XjXj+m →
r
∑

i=1

pi(R
(i)
m + µ2

i ) ,

where R
(i)
m is the covariance at lag m of the ith subsample. We conclude

that

(3.3) R̂m(n) →
r
∑

i=1

pi

(

R(i)
m + µ2

i

)

−
(

r
∑

i=1

piµi

)2

=
r
∑

i=1

piR
(i)
m +

r
∑

i1=1

r
∑

i2=i1+1

pi1pi2 (µi1 − µi2)
2
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in probability as n → ∞. What (3.3) indicates is that, if there is regime

switching as we have described, and (some of) the mean values in different

regimes are different, then the estimated from the sample covariance function

will tend to stabilize, at large lags, at a positive value. This is what often

observed in practice and long memory is suspected. Of course, this regime

switching model is simply a deterministic way of mimicking Joseph effect

(recall Figure 2.3). Various other regime switching models mimicking long

range dependence are suggested in Diebold and Inoue (2001).

Overall, stationary long memory models have become more popular than

regime switching models. An important reason for this is, undoubtedly,

parsimony. Statistical goodness of fit should be and has been taken into

account as well. For example, the stationary Fractional Gaussian noise fits

the Nile river data very well (see Beran (1994), Chapter 10). On the other

hand, certain workload data in computer networks, often modeled as long

memory processes, can be well fit by nonstationary ARMA(p, 1, q) models

(Stegeman (2001)).

More generally, ARMA models (otherwise known as linear models in

time series) provide further connections between stationary long memory

processes and non-stationary models. A linear model is described by two

functions applied to the backshift operator, the autoregressive function and

moving average functions (both often polynomials); we refer the reader to

Brockwell and Davis (1987) for details. Stationarity of the model is easier

to achieve if the autoregressive function does not vanish on the unit circle

in the complex plane; if the order of a root there is at least 1, stationarity is

impossible - this is the so called unit root situation. On the other hand, roots

of certain fractional orders allow for stationary, long memory models. These

fractional models will be considered in Section 6 below. Distinguishing be-

tween non-stationary unit root models and stationary fractional models is

an important problem in econometrics; see e.g. Barkoulas et al. (1999).

It is possible to summarize the discussion of long memory and non-

stationarity by saying that the stationary long memory processes form a

layer among the stationary processes that is “near the boundary” with
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non-stationary processes, or, alternatively, as the layer separating the non-

stationary processes from the “usual” stationary processes (Samorodnitsky

(2006)). The processes in the “layer” resemble non-stationary models (the

Joseph effect), and they are unusual stationary processes to such an extent

that one can talk about a phase transition. This is discussed in details in

Section 8.

4. Long memory, ergodic theory and strong mixing

The notion of memory in a stationary stochastic process is by definition,

related to the connections between certain observations and those occur-

ring after an amount of time has passed. If X1,X2, . . . is the process then

the passage of time corresponds to a shifted process: Xk+1,Xk+2, . . ., for a

time shift k. In other words, the notion of memory is related to the con-

nections between the process and its shifts. Since the process is stationary,

the shifts do not change the distribution of the process. This makes various

notions from ergodic theory (of measure preserving transformations on mea-

sure spaces) a very attractive language in describing memory of a stationary

process. We refer the reader to Krengel (1985) and Aaronson (1997) for the

ergodic theoretical notions used in this survey.

It is convenient (but not necessary) to assume that the sample space as-

sociated with a stationary process is a space of sequences, on which shifts

are naturally defined. It is even more convenient (even though, once again,

not necessary) to take the sample space to be the space of two-sided se-

quences x = (. . . , x−1, x0, x1, x2, . . .) since the shifts are invertible on such

spaces. Let us, therefore, assume in this section that a stationary process

X = (. . . ,X−1,X0,X1,X2, . . .) is defined as the identity map on a proba-

bility space (Ω,F , P ) corresponding to such a sequence sample space (and

equipped with the usual cylindrical σ-field). Let T be the left shift on Ω

defined by

T (. . . , x−1, x0, x1, x2, . . .) = (. . . , x0, x1, x2, x3, . . .) .

The basic notion in ergodic theory is that of ergodicity of a transformation.

A transformation T is ergodic if there is no shift invariant measurable set A
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(i.e. a set satisfying P (A∆ (T−1A)) = 0) with 0 < P (A) < 1. Equivalently,

the shift transformation T is ergodic if for every measurable function f ∈
L1(Ω,F , P )

(4.1) lim
n→∞

1

n

n−1
∑

j=0

f(T jX) = Ef(X) a.s..

Here T jX is the jth shift of the process X: T j(. . . ,X−1,X0,X1,X2, . . .) =

(. . . ,Xj−1,Xj ,Xj+1,Xj+2, . . .) .

The usual terminology is to call a stationary stochastic process ergodic

if the corresponding shift transformation T defined on some (equivalently,

any) sequence sample space supporting the process is ergodic. It is easy to

see that a stationary stochastic process is not ergodic if and only if it can

be represented a non-trivial mixture of two different stationary stochastic

processes:

(4.2) X =

{

Y with probability p
Z with probability 1 − p

,

where 0 < p < 1 and Y and Z are stationary stochastic processes with

different finite dimensional distributions. Indeed, suppose that X is not

ergodic, and take a shift invariant measurable subset A of the sequence

space with p = P (A) ∈ (0, 1). Then (4.2) holds with both Y and Z being

the canonical processes on the sequence space equipped with probability

measures P1 = p−1P |A and P2 = (1−p)−1P |Ac , accordingly. Since A is shift

invariant, P1 and P2 are not affected by the shift, and so the two processes

are stationary. Since A and Ac are disjoint, the two probability measures

are different, and so Y and Z have different finite dimensional distributions.

Conversely, suppose that (4.2) holds. Then there is a bounded measurable

function f such that Ef(Y) 6= Ef(Z), and then by the ergodic theorem

lim
n→∞

1

n

n−1
∑

j=0

f(T jX) =

{

L1 with probability p
L2 with probability 1 − p

,

where L1 and L2 are random variables satisfying EL1 = Ef(Y) and EL2 =

Ef(Z), implying that (4.1) fails, and so X is not ergodic.

Note that it is very natural to say that a non-ergodic stationary process

X has infinite memory. Indeed, a non-ergodic process has the structure
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given in (4.2), and so the result of a single “coin toss” (with probabilities

p and 1 − p) will be “remembered forever”. Therefore, it certainly makes

sense to call stationary ergodic processes “processes with finite memory”,

and stationary non-ergodic processes “processes with infinite memory”.

It is, then, very tempting to try to find another ergodic theoretical notion,

stronger than ergodicity, corresponding to stationary processes with finite

and short memory. Then ergodic stationary processes that lack this stronger

property will be naturally called processes with long memory. A very natural

notion to try is mixing. Recall that a transformation T of a probability space

is mixing if for every two measurable sets A and B we have P
(

A∩T−nB
)

→
P (A)P (B) as n → ∞, and a stationary process is called mixing if the

corresponding shift transformation T is mixing. The shift transformation

can, once again, be defined on any sequence sample space supporting the

process.

It is obvious that a mixing stationary process is ergodic, and it is easy

to construct examples of ergodic but non-mixing stationary processes. A

candidate definition of a long range dependent process would then refer to

an ergodic but non-mixing process.

Such a definition has not become standard, for the reasons that will be

discussed below. Note, however, that the approaches to memory of a sta-

tionary process via the ergodic theoretical properties of the corresponding

shift transformation are very attractive from the following point of view.

Let X be a stationary process, and let the process Y be derived from the

process X by means of a point transformation Yn = g(Xn) for al n, where

g : R → R is a measurable function. Clearly, Y is also a stationary process.

It is intuitively clear that the process X “remembers at least as much” as

the process Y does. If, in particular, g is a one-to-one map, and g−1 is

also measurable, then this intuition says that the processes X and Y should

have “the same length of memory”: if one of them has long memory, then

so should do the other one.

This, apparently very natural, requirement has proved to be difficult to

satisfy by many of the proposed definitions of long range dependence. It
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is, however, automatic with ergodic theoretical-based definitions. Indeed, it

follows from the definition of the ergodicity and mixing that X is ergodic

(mixing) if and only if Y has this property.

It is instructive to record what the ergodic theoretical-based notions of

memory discussed above mean for stationary Gaussian processes. Let X be a

(real-valued) stationary Gaussian process with covariance function Rk, k ≥
0 and spectral measure F on (−π, π]. That is, Rk =

∫

(−π,π] cos(kx)F (dx)

for k ≥ 0. Then

• the process X is ergodic if and only if the spectral measure F is

atomless;

• the process X is mixing if and only if Rk → 0 as k → ∞;

see Cornfeld et al. (1982). The requirement that the covariance function

vanishes at the high lag limit has, however, proved to be insufficient when

dealing with long memory for Gaussian processes. Indeed, many “unusual”

phenomena have been observed for Gaussian processes whose covariance

function does vanish in the limit, but sufficiently slowly, as we have already

seen on the example of the Fractional Gaussian noise. Therefore, the mixing

property is not believed to be sufficiently strong to say that a stationary

process with this property has short memory. A stronger requirement is

needed.

Several such stronger requirements have been introduced; they are col-

lectively known under the name “strong mixing conditions” (even though

one of them carries that same name separately). We refer the reader to

the recent survey Bradley (2005) for a detailed discussion of the notions we

introduce here and their relation to the other possible conditions.

Let, once again, X = (. . . ,X−1,X0,X1,X2, . . .) be a stationary process.

Define for n ≥ 1

(4.3) αX(n) = sup
{

∣

∣P (A ∩B) − P (A)P (B)
∣

∣,

A ∈ σ
(

Xk, k ≤ 0
)

, B ∈ σ
(

Xk, k ≥ n
)

}

.

The process X is called strongly mixing if αX(n) → 0 as n→ ∞. A possible

connection between the strong mixing property and lack of long memory
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(i.e. short memory) has been observed beginning with Rosenblatt (1956).

Specifically, it turns out that strong mixing is related to the fact whether or

not the partial sums of the process X satisfy the Functional Central Limit

Theorem (2.3).

Let, as before, Sm = X1 + . . . +Xm, m = 0, 1, . . ., and define the partial

sum process by (2.2).

Theorem 4.1. Assume that X is a zero mean strongly mixing process such

that for some δ > 0, |X0|2+δ <∞. Assume that Var(Sm) → ∞ as m→ ∞,

and for some K <∞

E
∣

∣Sm

∣

∣

2+δ ≤ K (Var(Sm))1+δ/2 for all m.

Then the properly normalized partial sum process converges weakly to the

Brownian motion, i.e.

1

(Var(Sn))1/2
S(n) ⇒ B weakly in D[0, 1],

where B is the standard Brownian motion. Moreover, assume, in addition,

that the covariances Rn = Cov(X0,Xn), n = 0, 1, . . . are summable:

∞
∑

n=0

|Rn| <∞ ,

Then the limit σ2
∗ = limn→∞Var(Sn)/n exists, is finite and positive, and

(2.3) holds.

See Rosenblatt (1956), Merlevéde et al. (2006), Proposition 34, and Bradley

(1999) for the last comment.

Theorem 4.1 indicates that a strongly mixing process behaves, as far as the

central limit theorem is concerned, similarly to an i.i.d.sequence and, hence,

can be viewed as having short memory. Extra moment conditions involved

are somewhat disappointing, and turns out that imposing “a stronger strong

mixing condition” allows one to get rid of these extra conditions. For a

stationary process X define

(4.4) α∗
X

(n) = sup
S,T

sup
{

∣

∣P (A ∩B) − P (A)P (B)
∣

∣,

A ∈ σ
(

Xk, k ∈ S
)

, B ∈ σ
(

Xk, k ∈ T
)

}

,
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where the first supremum in (4.4) is taken over all subsets S and T of integers

satisfying

dist(S, T ) := min
k1∈S, k2∈T

|k1 − k2| ≥ n .

Clearly, αX(n) ≤ α∗
X

(n). The process X is interlaced strongly mixing if

α∗
X

(n) → 0 as n → ∞. The following is a central limit theorem under the

this stronger mixing assumption.

Theorem 4.2. Assume that X is a zero mean finite variance interlaced

strongly mixing process, and Var(Sm) → ∞ as m → ∞. Then the properly

normalized partial sum process converges weakly to the Brownian motion,

i.e.
1

(Var(Sn))1/2
S(n) ⇒ B weakly in D[0, 1],

where B is the standard Brownian motion. Furthermore, the limit σ2
∗ =

limn→∞Var(Sn)/n exists, is finite and positive, and (2.3) holds.

See Peligrad (1998) for a proof under the so-called “interlaced ρ-mixing

condition, and Bradley (1993) for the equivalence of the two “interlaced

conditions”. In fact, Theorem 4.2 holds for a strongly mixing stationary

process that satisfies α∗
X

(n) < 1 for some n ≥ 1.

For a stationary Gaussian process to be strongly mixing, it is neces-

sary that its spectral measure be absolutely continuous with respect to the

Lebesgue measure on (−π, π]. If the spectral density (i.e. the derivative of

the spectral measure with respect to the Lebesgue measure on (−π, π]) is

continuous and positive, then the process is interlaced strong mixing (see

Kolmogorov and Rozanov (1960) and Rosenblatt (1985)). Necessary and

sufficient conditions for strong mixing of a stationary Gaussian process were

later established in Helson and Sarason (1967). Explicit necessary and suffi-

cient conditions for interlaced strong mixing of stationary Gaussian process

do not appear to have been stated.

The above results explain why absence of one or another strong mixing

condition (as opposed to the ergodic-theoretical mixing) is sometimes taken

as the definition of long range dependence. The strong mixing properties

share with the ergodic-theoretical notions of ergodicity and mixing the very
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desirable feature discussed above: if a process Y is derived from a process

X by means of a one-to-one point transformation Yn = g(Xn) for al n, then

the process X has long memory in the sense of lacking of one of the strong

mixing properties if and only if the process Y does.

In spite of these attractive features of the strong mixing conditions have

not become standard. To some extent this is due to the fact that if one is

interested not in the partial sums of a stationary process but in, say, partial

maxima, then strong mixing conditions, while relevant, allow clustering and,

hence, limits different from the ones seen for i.i.d. sequences; see e.g. Lead-

better et al. (1983). More importantly, the strong mixing conditions are not

easily related to the natural building blocks of many stochastic models, and

are difficult to verify, with the possible exception of Gaussian processes and

Markov chains. Even in the latter cases necessary and sufficient conditions

are not always available, and the picture is not completely clear.

5. Second-order theory

By far the most popular point of view on long range dependence is through

a slow decay of correlations. This is related to the original explanation of the

Hurst phenomenon by Mandelbrot, discusses in Section 2, and to the simple

fact that correlations are one of the easiest to understand and estimate

features of a stochastic model. Clearly, such approaches to the notion of

long memory are restricted to second-order stationary processes, and this

is the assumption that will made throughout this section. A related, if not

entirely equivalent, second-order approach is through the behaviour of the

spectral density of the process (assuming its existence) at the origin. These

issues are discussed in this section.

Let, then, X = (X1,X2, . . .) be a zero mean stationary stochastic process

with a finite variance, EX2
1 = σ2 ∈ (0,∞), covariances Rn = Cov(X1,Xn+1)

and correlations ρn = Rn/σ
2, n = 0, 1, . . .. We start with an obvious com-

putation of the variance of the partial sum Sn = X1 + . . .+Xn. We have

(5.1) VarSn =

n
∑

i=1

n
∑

j=1

Cov(Xi,Xj)
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= σ2
n
∑

i=1

n
∑

j=1

ρ|i−j| = σ2(n + 2

n−1
∑

i=1

(n− i)ρi) ,

and the behaviour of the last sum is closely related to how fast the correla-

tions of the process decay. Assume that they are summable:

(5.2)

∞
∑

n=0

|ρn| <∞ .

Then by the dominated convergence theorem the limit

(5.3) lim
n→∞

VarSn

n
= σ2(1 + 2

∞
∑

i=1

ρi) := σ2
∗

exists, and is finite. However, it is possible that the limit σ2
∗ is equal to zero.

Assuming that it is not equal to zero, we conclude that the variance of the

partial sums of the process X grows linearly fast with the number of terms.

On the other hand, suppose that the correlations of the process are, in fact,

regularly varying at infinity:

(5.4) ρn = n−d L(n)

for n ≥ 1, where 0 ≤ d < 1, and L is a slowly varying at infinity function,

i.e. L is eventually non-zero, and for all t > 0, L(tx)/L(x) → 1 as x → ∞.

Then by Karamata’s theorem (see e.g. Theorem 0.6 in Resnick (1986)),

(5.5) VarSn ∼ 2σ2

(1 − d)(2 − d)
L(n)n2−d as n→ ∞.

That is, regular variation of correlations as in (5.4) implies that the vari-

ance of the partial sums grows much faster than in the case of summable

correlations. This is, of course, the case for the Fractional Gaussian Noise

(with H > 1/2) of Section 2, whose asymptotic behaviour is given by (2.9).

When the variance of the partial sums of a stationary process grows lin-

early fast with the number of terms, at least from that point of view, the

process “is not far” from an i.i.d. sequence. Furthermore, we have seen

in Section 4 that this, under certain strong mixing and moment assump-

tions, means that the classical invariance principle holds (modulo a different

variance of the limiting Brownian motion). This is also true, for example,

under the assumption of association - see Newman and Wright (1981). On

the other hand, when the variance of the partial sums grows as a regularly
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varying function with the exponent larger than 1 - as in (5.5) - it follows

immediately from Lamperti’s theorem (see e.g. Theorem 2.1.1 in Embrechts

and Maejima (2002)) that convergence to the Brownian motion is impossi-

ble, no matter what normalization one uses, and so the invariance principle

does not hold.

This is the main reason why the summability of correlations in (5.2) is

often taken as the indication of short memory, and its opposite, the diver-

gence of the series in the left hand side of (5.2), as the definition of the long

range dependence. On the other hand, it is also possible to take the rate

of increase of the variance of the partial sums itself do draw the bounadry.

From this point of view, one could say that a second order stationary process

has short memory if

(5.6) lim
n→∞

VarSn

n
<∞ ,

and the infinite limit in (5.6) would then be taken as an indication of long

range dependence. This is sometimes referred to as Allen variance short and

long memory; see e.g. Heyde and Yang (1997).

Of course, the summability of correlations (5.2) is not necessary for an at

most linear rate of increase of the variance in (5.6). In fact, rewrite (5.1) as

(5.7)
VarSn

n
= σ2



1 + 2
1

n

n−1
∑

j=1

j
∑

i=1

ρi



 .

In particular, if

(5.8) the sum

K
∑

n=0

ρn converges as K → ∞ ,

then, since the usual convergence implies the Cesaro convergence, we will

still obtain (5.3), regardless of the summability of the correlations. Such

situations are, clearly, possible. A simple example is ρn = sinna/na, n =

1, 2, . . . for 0 < a < π. However, even the convergence in (5.8) is not

necessary for (5.6), as another simple example ρn = (−1)n/2, n = 1, 2, . . .

shows.

To get better understanding of the condition (5.6) we need to concen-

trate on the spectrum of the covariance function of the process. Recall
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that the spectral measure F is a measure on (−π, π], satisfying Rk =
∫

(−π,π] cos(kx)F (dx) for k ≥ 0. Recall, further, that if the correlations

are absolutely summable as in (5.2), then the spectral measure has a contin-

uous density with respect to the Lebesgue measure on (−π, π], the spectral

density, given by

(5.9) f(x) =
σ2

2π

(

1 + 2

∞
∑

n=1

ρn cosnx
)

, −π < x < π .

A simple computation will allow us to relate the right hand side of (5.7) to

the spectral measure. Assuming that the spectral measure does not have

atoms at zero and at π, we have for every j ≥ 1

j
∑

i=1

ρi =
1

σ2

∫

(−π,π]

j
∑

i=1

ρi cos(ix)F (dx)

=
1

2σ2

∫

(−π,π]

1

sinx

(

sin(j + 1)x+ sin jx− sinx
)

F (dx)

=
1

2σ2

∫

(−π,π]

sin(j + 1)x

sinx
F (dx) +

1

2σ2

∫

(−π,π]

sin jx

sinx
F (dx) − 1

2
.

Furthermore, for n ≥ 1,

n−1
∑

j=1

1

2σ2

∫

(−π,π]

sin(j + 1)x

sinx
F (dx) =

1

2σ2

∫

(−π,π]

1

sinx

n−1
∑

j=1

sin(j + 1)xF (dx)

=
1

4σ2

∫

(−π,π]

1

sin2 x

(

cos x+ cos 2x− cosnx− cos(n+ 1)x
)

F (dx) .

Similarly,
n−1
∑

j=1

1

2σ2

∫

(−π,π]

sin jx

sinx
F (dx)

=
1

4σ2

∫

(−π,π]

1

sin2 x

(

1 + cos x− cos(n− 1)x− cosnx
)

F (dx) ,

and so

(5.10)
VarSn

n
= an−1 + 2an + an+1 + O(1)

where

(5.11) an =
1

2n

∫

(−π,π]

1 − cosnx

x2
F (dx), n = 1, 2, . . . .

One immediate conclusion is as follows.
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Proposition 5.1. Suppose that for some ǫ > 0 the spectral measure F has

a density in the interval (−ǫ, ǫ), and

(5.12) the density has a continuous at the origin version f .

Then

lim
n→∞

VarSn

n
= 2π f(0) .

Proof. Suppose first that the spectral measure has no atom at π. Then,

clearly,

an =
1

2n

∫ ǫ

−ǫ

1 − cosnx

x2
f(x) dx+ O(1)

=
f(0)

n

∫ ǫ

0

1 − cosnx

x2
dx+ O(1)

= f(0)

∫ nǫ

0

1 − cos y

y2
dy + O(1)

→ f(0)

∫ ∞

0

1 − cos y

y2
dy =

π

2
f(0) ,

and our statement follows from (5.10). Observing that adding an atom at

the point π does not change the rate of growth of the variance of the partial

sums, we see that the proof is complete. �

In particular, the condition

(5.13) the process has a continuous at the origin spectral density

is sometimes taken as another definition of a process with short memory.

This condition is also known to be sufficient for the Central Limit Theorem

for linear processes; see e.g. Corollary 5.2 in Hall and Heyde (1980). Of

course, Proposition 5.1 shows that this condition is not necessary for an

at most linear rate of increase of the variance as in (5.6), since it allows

arbitrarily “bad” spectral measure outside of a neighbourhood of zero. In

fact, (5.6) can happen even if there is no neighbourhood of zero where the

process has a continuous at the origin spectral density as the example of the

process with the spectral density f(x) = 1 + cos(1/x), −π < x < π, shows.

Summarizing, the assumptions (5.2), (5.6), (5.8) and (5.13) have all been

used to define a short memory process in the sense of the variance of the



28 G. SAMORODNITSKY

partial sums of the process increasing at most linearly fast. These assump-

tions are, of course, not equivalent. Moreover, it is also possible to have a

process with a bounded from zero and infinity spectral density for which

0 < lim inf
n→∞

VarSn

n
< lim sup

n→∞

VarSn

n
<∞ ;

an example is constructed in Bradley (1999).

Let us now see what can cause the variance of the partial sums grow faster

that linearly fast. Here is a counterpart to Proposition 5.1.

Proposition 5.2. Suppose that for some ǫ > 0 the spectral measure F has

a density in the interval (−ǫ, ǫ), with a version f such that

f(x) = x−(1−d)L1(x), 0 < x < ǫ ,

for some 0 < d < 1, where L1 is a slowly varying at zero function (i.e.

L1(1/·) is slowly varying at infinity). Then

VarSn ∼ 4Γ(d) cos(πd/2)

(1 − d)(2 − d)
L1(1/n)n2−d as n→ ∞.

Proof. As in the proof of Proposition 5.1 we may assume that the spectral

measure of the process has no atom at the point π. For an defined in (5.11)

we have

an ∼ 1

n

∫ ǫ

0

1 − cosnx

x2
f(x) dx =

1

n

∫ ǫ

0

1 − cosnx

x3−d
L1(x) dx

= n1−d

∫ nǫ

0

1 − cos y

y3−d
L1(y/n) dy .

By Potter’s bounds (see e.g. Proposition 0.8 in Resnick (1987)) there is

a finite positive constant C such that L1(y/n)/L1(1/n) ≤ C y−d/2 for all

n ≥ 1 and 0 < y < nǫ. By the dominated convergence theorem we obtain

an ∼ n1−d L1(1/n)

∫ ∞

0

1 − cos y

y3−d
dy

=
Γ(d) cos(πd/2)

(1 − d)(2 − d)
L1(1/n)n1−d as n→ ∞.

Now an appeal to (5.10) completes the proof. �

Comparing the statement of Proposition 5.2 with the consequence (5.5)

of the regular variation of the correlations in (5.4) we see that, for 0 < d < 1,
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the assumptions

(5.14) ρn ∼ n−d L(n) as n→ ∞

and existence in the neighbourhood of the origin of a spectral density satis-

fying

(5.15) f(x) ∼ x−(1−d)L(1/x)
σ2

2Γ(d) cos(πd/2)
as x ↓ 0

lead to the same asymptotic behaviour of the variance of the partial sums.

Example 5.3. The Fractional Gaussian Noise with covariance function

given by (2.8) has a spectral density given by the formula

(5.16) f(x) =
σ2

2
C(H)(1 − cos x)

∞
∑

j=−∞

|2πj + x|−(1+2H) ,

where

C(H) =
2H(1 − 2H)

Γ(2 − 2H)

1

cos πH
, H 6= 1/2 .

Indeed, with f as above,
∫

(−π,π]
cos(nx) f(x) dx =

σ2

2
C(H)

∫ ∞

−∞
|x|−(1+2H)(1 − cos x) cos(nx) dx

=
σ2

2
C(H)

[
∫ ∞

0
x−(1+2H)(1 − cos(n+ 1)x) dx

+

∫ ∞

0
x−(1+2H)(1 − cos(n− 1)x) dx− 2

∫ ∞

0
x−(1+2H)(1 − cosnx) dx

]

=
σ2

2
C(H)

∫ ∞

0
x−(1+2H)(1 − cos x) dx

[

(n+ 1)2H + |n− 1|2H − 2n2H
]

=
σ2

2

[

(n + 1)2H + |n− 1|2H − 2n2H
]

,

as in (2.8). Clearly, for 1/2 < H < 1 the spectral density in (5.16) satisfies

f(x) ∼ σ2

4
C(H)x−(2H−1) as x ↓ 0,

and it is easily verified that for FGN the asymptotic behaviour of correlations

in (2.9) and of the spectral density at zero are related as in (5.14) and (5.15).

In fact, all three statements (5.5), (5.14) and (5.15) have been taken as

definitions of long range dependence. The behaviour of the partial sum

variance in (5.5) is, clearly, the least demanding of these 3 statements. For
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example, a process with a spectral density equal in a neighbourhood of the

origin to

f(x) =
(

1 + cos(1/x)
)

x−(1−d)L(1/x)
σ2

2Γ(d) cos(πd/2)
,

which is not regularly varying, will still satisfy (5.5). However, the relation-

ship between (5.14) and (5.15) has been somewhat of a mystery, and in the

literature one can sometimes read that these latter statements are equiva-

lent. In fact, these statement are not equivalent; we will present examples

shortly. The claims of equivalence appear to stem from several sources, one

being a casual treatment of similar conditions in an influential paper of Cox

(1984), and the second a definition of a slowly varying function in Zygmund

(1968) that is different from, and more restrictive than, what is understood

by this notion today.

We start with a positive result, that gives sufficient conditions under

which the statements (5.14) and (5.15) imply each other. We will call an

eventually positive function L nice if

(5.17) for every δ > 0 the function g1 = xδL(x) is eventually increasing

and the function g2 = x−δL(x) is eventually decreasing.

Note that a nice function is automatically slowly varying, but there are

slowly varying functions that are not nice.

Theorem 5.4. (i) Assume that the correlations are regularly varying in the

sense of (5.14), and the function L is nice. Then the process has a spectral

density that is regularly varying at zero, in the sense that (5.15) holds.

(ii) Conversely, assume that the process has a spectral density that is

regularly varying at zero, in the sense that (5.15) holds, and the function L

is nice. Then the correlations are regularly varying in the sense of (5.14).

Part (i) of Theorem 5.4 is in Theorem (2-6) in Chapter V of Zygmund

(1968). The proof of part (ii) will appear separately.

The following is an example of a situation where a spectral density is

regularly varying at the origin as in (5.15), but correlations are not regularly

varying as in (5.14).
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Example 5.5. Let 0 < ǫ < π/2, and g a positive integrable function on

(0, ǫ) satisfying (5.15). Let

f(x) = g(|x|)1(0 < |x| < ǫ) + g(|π − x|)1(π − ǫ < |x| < π)

for −π < x < π. Then f is a spectral density satisfying (5.15). Notice that

Rn =

∫ π

−π
cosnx f(x) dx =

∫ ǫ

−ǫ
cosnx g(x) dx+

∫ ǫ

−ǫ
cosn(π − x) g(x) dx

=
(

1 + (−1)n
)

R̂n ,

where R̂n =
∫

cosnx g(x) dx. Since Rn vanishes for all odd lags n, the

correlations are not regularly varying, and (5.14) fails. Examples of this

sort can also be constructed by letting the spectral density “blow up” around

points other than x = π.

Next is an example of a situation where the correlations are regularly

varying as in (5.14), but there is no version of a spectral density that is

regularly varying at the origin as in (5.15).

Example 5.6. Let us start with a spectral density g that does satisfy (5.15),

and such that the correlations are also regularly varying as in (5.14) (for

example, one can take the spectral density of a FGN as in Example 5.3, or

any spectral density satisfying part (ii) of Theorem 5.4.) We will construct

a continuous nonnegative integrable function g1 on (0, π) such that

(5.18) lim inf
x↓0

x2g1(x) > 0

and

(5.19)

∫ π

−π
cosnx g1(x) dx = o

(

∫ π

−π
cosnx g(x) dx

)

as n → ∞. Then we will set f(x) = g(x) + g1(|x|) for −π < x < π. It

will follow from (5.18) that some pieces of f are too large near the origin to

permit f to be regularly varying as in (5.15), but (5.19) and regular variation

of the correlations corresponding to the density g mean that the correlations

corresponding to the density f will also satisfy (5.14).

We proceed with a construction of a function g1. Define

(5.20) g1(x) = 22j if 2−j ≤ x ≤ 2−j + 2−2j
for j = 0, 1, . . ..
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Clearly for x = 2−j , g1(x) = x−2, so (5.18) holds. Further,

∫ π

−π
cosnx g1(x) dx =

∞
∑

j=0

22j

∫ 2−j+2−2
j

2−j

cosnxdx

=
2

n

∞
∑

j=0

22j sin
(n

2
2−2j

)

cos
(

n
(

2−j + 2−2j−1
)

)

≤ 2

n

∞
∑

j=0

22j sin
(n

2
2−2j

)

=
2

n

∑

j≤log2 log2 n

22j sin
(n

2
2−2j

)

+
2

n

∑

j>log2 log2 n

22j sin
(n

2
2−2j

)

.

Clearly,
2

n

∑

j≤log2 log2 n

22j sin
(n

2
2−2j

)

≤ 2

n

∑

j≤log2 log2 n

22j

≤ c n−1
(

log2 n
)2

for some 0 < c <∞

and
2

n

∑

j>log2 log2 n

22j sin
(n

2
2−2j

)

≤ 2

n

∑

j>log2 log2 n

22j
(n

2
2−2j

)

=
∑

j>log2 log2 n

22j2−2j ≤ c n−1
(

log2 n
)2

for some 0 < c <∞

as well. This clearly implies (5.19).

Of course, the function g1 in (5.20) is not continuous, but it can be easily

made such by appropriately “connecting the dots” at the jump points of the

function in (5.20).

If one uses the second order approach to long range dependence in one of

related, but not equivalent, ways discussed above, it would be nice to know

that there is stability under point transformations discusses in Section 4.

Namely, if X is a stationary process with a finite variance with, say, regularly

varying correlations as in (5.14), and g : R → R is a one-to-one measurable

function such that Eg(Xi)
2 < ∞, then the process Yn = g(Xn) for n =

0, 1, . . . will also have a similar second-order behaviour. Unfortunately, this

turns out not to be the case, and the correlations of the process Y may turn

out to decay much slower or much faster than those of the process X. To

construct examples of this type we need the notion of Hermite polynomials.

For n ≥ 0 define a function of a real variable x by

Hn(x) = (−1)nex
2/2 d

n

dxn
e−x2/2
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(some authors include an extra factor of 1/n! in the definition of Hn; see

e.g. Nualart (1995), which can also be consulted for more details). Then

H0(x) = 1, H1(x) = x, Hx(x) = x2 − 1 and, in general,

Hn(x) =

[n/2]
∑

m=0

n!

m!(n− 2m)!
(−2)−mxn−2m

for real x. That is, each Hn is a polynomial of degree n, and is called the

nth Hermite polynomial. If X is standard normal, then

EHn(X) = 0 for all n ≥ 1, and VarHn(X) = n!.

More generally, ifX and Y are jointly normal, with zero mean, unit variance,

and correlation ρ, then

(5.21) EHn(X)Hm(Y ) =

{

0 if n 6= m
ρnn! if n = m

.

Furthermore, the family (Hn)n≥0 forms an orthogonal basis in the space

L2(R, µG), where µG is the law of the standard normal random variable.

That is, if X is standard normal, and Eg(X)2 <∞, then

(5.22) g(X) =
∞
∑

n=0

an

n!
Hn(X) ,

where for n ≥ 0, an = E
(

Hn(X)g(X)
)

, and the sum converges in L2. This

is the so-called Hermite expansion of the function g, and the smallest n ≥ 1

such that an 6= 0 is called the Hermite rank of the function g.

Suppose now that X is a stationary process Gaussian process, with zero

mean and unit variance, and correlations satisfying (5.14). Let g : R → R be

a measurable function such that Eg(Xi)
2 <∞, and define a new stationary

process Y by Yn = g(Xn) for n = 0, 1, . . .. As above, we tend to think that

the process X ”remembers at least as much” as the process Y does and, if

the function g is, additionally, one-to-one, then we expect the two processes

to have the same ”length of memory”. On the other hand, let k be the

Hermite rank of the function g. It turns out that it is possible to have a

one-to-one measurable function g such that kd > 1 (where 0 < d < 1 is the

exponent in (5.14)), as the following example indicates.
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Example 5.7. Take a > 0 such that

ae−a

∫ ∞

a
xexe−x2/2 dx =

∫ a

0
x2e−x2/2 dx ,

and define

g(x) =

{

− 1
ax if 0 ≤ x < a

ex−a if x ≥ a
.

Set g(x) = −g(−x) for x < 0. Clearly, the function g is odd, measurable,

one-to-one, and Eg(X)2 < ∞. Furthermore, by the choice of the number

a, E
(

Hn(X)g(X)
)

= 0 for n = 1, and, by the fact that g is odd, the same

is true for n = 2. Therefore, the Hermite rank of the function g is at least

3 (in fact, it is not difficult to check that in this case the rank k of g is

exactly equal to 3, but one can modify the construction and obtain one-

to-one functions of arbitrarily high rank). Therefore, if the exponent d in

(5.14) satisfies d > 1/3, then we have kd > 1.

For a process Yn = g(Xn) for n = 0, 1, 2, . . ., it follows from (5.22), (5.21)

and L2 convergence that the covariance function R(Y ) of the process Y

satisfies

R
(Y )
j =

∞
∑

n=k

a2
nρ

n
j ∼ a2

kρ
k
j

as j → ∞, where k is the Hermite rank of g. If g is a one-to-one function

g satisfying kd > 1, then the two processes, X and Y, have correlations

functions decaying at vastly different rates. In particular, the process Y

will have summable correlations, while the process X does not; recall that

we expected X and Y to have the same lengthy of memory as the function

g is one-to-one! In fact, depending on the Hermite rank of the function g,

the process Y satisfies the Central Limit Theorem only if kd ≥ 1, whereas

in the case kd < 1 it satisfies a so-called Non-Central Limit Theorem, see

Dobrushin and Major (1979) and Breuer and Major (1983).

Therefore, using the behaviour of the correlations as a definition of long

memory has the weakness that such behaviour can drastically change when

applying a one-to-one point map. This, unfortunately, is a problem with

many alternative definitions, other than ergodic and strong mixing notions

of Section 4. Still, this is a warning sign against relying too much on cor-

relations. Incidentally, in the example we have just considered, it definitely
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makes sense to view the process X as long range dependent, since it is a

centered Gaussian process, and the covariances carry full information about

such processes. The same cannot be said about the transformed process Y.

In general, the covariances may carry very little information about a process

unless it is similar to a Gaussian one.

6. Fractional processes and related models with long memory

One often encounters the adjective ”fractional” in the names of processes

purportedly having long range dependence (the Fractional Gaussian Noise

we encountered early on is an example). Partly this is due to the connotation

”unusual” the adjective ”fractional” carries. A deeper connection exists,

however, and it goes back to the issues of stationarity and non-stationarity.

If X = (. . . ,X−1,X0,X1, . . .) is a stationary process (note that we have

switched, once again, to two-sided processes, as in Section 4), then the

differenced process Y with Yn = Xn − Xn−1 for n ∈ Z is, clearly, also

stationary. The typical notation is Y = (I − B)X, where I is the identity

operator on the space of sequences x = (. . . , x−1, x0, x1, x2, . . .), and B is

the backward shift operator on that space:

B(. . . , x−1, x0, x1, x2, . . .) = (. . . , x−2, x−1, x0, x1, . . .)

(B is the inverse of the shift operator T of Section 4). On the other hand,

not every stationary process Y is of the form Y = (I − B)X for some

stationary process X; e.g. a sequence of i.i.d. not identically zero random

variables is not of this form. If, however, Y is of this form, one can write

X = (I −B)−1Y and call the process X an integrated process (specifically,

an integrated process Y). Obviously, if an integrated process exists, it is not

uniquely determined: one can add the same random variable to each Xn, as

long as doing so preserves stationarity.

It is intuitive that the differencing operator on stationary processes, ∆ =

I − B, makes the memory in the process ”less positive, more negative”;

this is simply a consequence of alternating plus and minus signs attached to

the same random variables. A simple illustration is obtained by considering

what happens to a sequence of i.i.d. random variables under differencing.



36 G. SAMORODNITSKY

Similarly, if it is possible ”to integrate” a stationary process (i.e. to apply

the inverse operator ∆−1 = (I − B)−1) and obtain a stationary process,

the integrated process will tend to have ”more positive” memory than the

original process. Long memory, when present, is usually ”of the positive

kind”, so one can try to obtain a process with long range dependence by

integrating some stationary process, and as many times as possible.

The problem is that, as we know, many ”natural” stationary processes

cannot be integrated even once, while preserving stationarity. It turns out,

however, that sometimes one can integrate a process a fractional number of

times, while preserving stationarity. This leads to a class of models known

as fractionally integrated processes. The success of the construction depends

on a definition of a fractional power of the differencing operator ∆, and the

starting point is the generalized Binomial formula (or the Taylor expansion):

for all real d

(6.1) (1 − x)d =

∞
∑

j=0

(−1)j
(

d

j

)

xj ,

where
(

d

j

)

=
d(d− 1) . . . (d− j + 1)

j!
.

If d is a nonnegative integer, (6.1) is just the classical Binomial formula, and

a sum with finitely many terms; otherwise it is an infinite sum, and then it

can be rewritten in the form

(6.2) (1 − x)d =

∞
∑

j=0

Γ(j − d)

Γ(j + 1)Γ(−d)x
j .

Using the Stirling formula for the Gamma function it is easy to check that

(6.3)
Γ(j − d)

Γ(j + 1)Γ(−d) ∼ j−(d+1)

Γ(−d)
as j → ∞, and so the infinite series in (6.2) converges absolutely for all

complex x with |x| < 1 (inside the unit circle), and also on the boundary of

that circle if d > 0.

Given a stationary process Y we can formally define the process X =

∆−dY by expanding ∆−d = (I − B)−d for d that are not nonpositive inte-

gers into powers of the backward shift operator B as in (6.2) by formally
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identifying the identity operator with the unity and the backshift operator

B with x to obtain

(6.4) Xn =

∞
∑

j=0

Γ(j + d)

Γ(j + 1)Γ(d)
Yn−j ,

n = . . . ,−1, 0, 1, 2, . . .. If d > 0, we view the process X is an integrated pro-

cess, while if d < 0, we view it as a differenced process Y. We are interested

in the ”integrated” case, with 0 < d < 1; if one needs to get beyond this

range, one can first perform the usual ”non-fractional” integration.

It is clear that, if the series in (6.4) converges in probability, then the

resulting process X is automatically stationary. Therefore, first of all we

need to make sure that the infinite series in (6.4) converges. This requires

imposing restrictions on the initial process Y.

We start with assuming that the process Y is a stationary zero mean finite

variance process with variance σ2 and correlation function ρ, satisfying (5.2),

that is, a process with absolutely summable correlations. Denoting the jth

coefficient in (6.4) by aj we note that for m,k ≥ 1

E





m+k
∑

j=m+1

ajYn−j





2

= σ2
m+k
∑

j=m+1

a2
j + 2σ2

m+k
∑

j=m+1

aj

m+k
∑

i=j+1

aiρi−j .

Since the sequence (aj) (with 0 < d < 1) is easily seen to be decreasing, we

conclude that

E





m+k
∑

j=m+1

ajYn−j





2

≤
(

1 + 2
∞
∑

n=1

|ρn|
)

σ2
m+k
∑

j=m+1

a2
j .

If 0 < d < 1/2, then the sum
∑

j a
2
j converges by (6.3), and so the series

(6.4) converges in L2 to a stationary process.

Under somewhat stronger assumptions than the absolute summability of

the correlations of the initial process Y, the rate of decay of the correlation

function of the partially integrated process is determined by the order of

partial integration, as the following proposition shows.

Proposition 6.1. Let Y be a stationary zero mean finite variance process

with variance σ2 and absolutely summable correlation function ρ. Let 0 <
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d < 1/2 and assume that

(6.5) Ψn :=

∞
∑

m=n

ρm = o
(

n−(1−2d)
)

as n→ ∞.

Then the process X defined by (6.4) is a well defined zero mean stationary

process whose covariance function R∗ satisfies

(6.6) R∗n ∼
(

σ2 Γ(1 − 2d)

Γ(d)Γ(1 − d)

∞
∑

m=−∞

ρm

)

n−(1−2d)

as n→ ∞.

Proof. We have already established that X is a well defined zero mean sta-

tionary process with finite variance. Its covariance function is given by

R∗n = σ2 lim
M→∞

M
∑

i=0

M
∑

j=0

aiajρn+i−j = σ2 lim
M→∞

M
∑

m=n−M

b
(M)
n−mρm ,

where

b
(M)
k =

(M−k)∧M
∑

i=−k∨0

aiai+k .

Since the numbers b
(M)
k are uniformly bounded (by

∑∞
−∞ a

2
i ) and the corre-

lations of the process X are absolutely summable, we can use the dominated

convergence theorem to obtain

R∗n = σ2
∞
∑

m=−∞

bn−mρm ,

with

bk =

∞
∑

i=−k∨0

aiai+k = b−k .

It follows from (6.3) that

(6.7) bk ∼ Γ(1 − 2d)

Γ(d)Γ(1 − d)
k−(1−2d) as k → ∞.

Similarly, since

(6.8) ak − ak+1 =
1 − d

k + 1
ak ∼ 1 − d

Γ(d)
k−(2−d) ,

we obtain also that

(6.9) gk := bk − bk+1 ∼ ck−2(1−d) as k → ∞
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for some c > 0. Clearly, the statement (6.6) will follow from (6.7) once we

check that

(6.10) lim
M→∞

lim sup
n→∞

n1−2d

∣

∣

∣

∣

∣

−M
∑

m=−∞

bn−mρm

∣

∣

∣

∣

∣

= 0

and

(6.11) lim
M→∞

lim sup
n→∞

n1−2d

∣

∣

∣

∣

∣

∞
∑

m=M

bn−mρm

∣

∣

∣

∣

∣

= 0 .

First of all, observe that by monotonicity, for M > 0
∣

∣

∣

∣

∣

−M
∑

m=−∞

bn−mρm

∣

∣

∣

∣

∣

≤ bn

−M
∑

m=−∞

|ρm| ,

and so (6.10) follows from (6.7) and summability of the correlations of the

process Y. Next, using summation by parts we see that

∞
∑

m=M

bn−mρm = bn−M+1ΨM +

∞
∑

m=M

gn−mΨm .

By (6.7), for a c > 0,

lim
M→∞

lim sup
n→∞

n1−2dbn−M+1ΨM = lim
M→∞

cΨM = 0 .

Furthermore, write

∞
∑

m=M

gn−mΨm =
∑

m≤n/2

+
∑

m>n/2

:= S(1)
n (M) + S(2)

n (M) .

By (6.9) and the assumption (6.5) wee see that for some constant c and

large n

∣

∣

∣S(1)
n (M)

∣

∣

∣ ≤ cn−2(1−d)

[n/2]
∑

m=M

|Ψm|

≤ cn−2(1−d)

[n/2]
∑

m=M

m−(1−2d) ≤ cn−2(1−2d) ,

and so for all M > 0

lim
n→∞

n1−2dS(1)
n (M) = 0 .

Finally, by the assumption (6.5) we have

∣

∣

∣
S(2)

n (M)
∣

∣

∣
≤ o(1)n−(1−2d)

∞
∑

m=−∞

|gm| .
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The sum in the right hand side above is finite by (6.9) and the fact that

g−k = −gk−1. Therefore, for all M > 0

lim
n→∞

n1−2dS(2)
n (M) = 0 ,

and we have checked (6.11) . �

In particular, if

(6.12)

∞
∑

m=−∞

ρm 6= 0 ,

then the correlations ρ∗n of the fractionally integrated process X satisfy ρ∗n ∼
cn−(1−2d) as n→ ∞ for some 0 < c <∞.

Note that it is not surprising that we could only perform above a construc-

tion of a fractionally integrated process of the order 0 < d < 1/2. Indeed,

our intuition tells us that the higher the degree of ”negative dependence”

in a stationary process, the easier it is to integrate it while preserving sta-

tionarity. The assumptions in the discussion preceding Proposition 6.1 (in

this case, absolute summability of correlations), while preventing the process

from having ”too much of positive dependence”, do not imply any ”negative

dependence” either. Therefore, the dependence in initial process Y can be

viewed as only assumed to be ”midway”, between a very negatively depen-

dent process, that can be integrated completely (of order d = 1), and a

very positively dependent process, that cannot be integrated at all. Hence,

intuitively at least, the boundary d < 1/2 is understandable. Processes with

certain negative dependence can be integrated to a higher order, as we will

see in the sequel. Such negative dependence will, in particular, imply that

(6.12) breaks down.

In practice one often starts with Y being an i.i.d. sequence, or a stationary

ARMA model (see Brockwell and Davis (1987)). In this case the process

Y has exponentially fast decaying correlations, and Proposition 6.1 applies.

The resulting models are typically called ARIMA models or, more explicitly,

fractional ARIMA (or FARIMA, alternatively ARFIMA) models, and were

originally introduced by Granger and Joyeux (1980) and Hosking (1981).

In the spectral domain things are even more transparent. Suppose that

the original process Y has absolutely summable correlations, and so it has a
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continuous spectral density f given by (5.9). Since the series (6.4) converges

in L2, the fractionally integrated process X has also a spectral density, f∗,

given by f∗(x) =
∣

∣

∑∞
m=0 ame

imx
∣

∣

2
f(x), (where (aj) are the coefficients in

(6.4)), and the infinite sum in the expression for the density converges in

L2
(

(−π, π], f(x)dx
)

; see e.g. Theorem 4.10.1 in Brockwell and Davis (1987).

Note that |∑∞m=0 amz
m|2 = |1 − z|−2d for complex numbers z with |z| < 1,

and the right hand side of this relation has a continuous extension to the

part of the unit circle that is bounded away from the point z = 1. It follows

that
∣

∣

∑∞
m=−∞ ame

imx
∣

∣

2
= |1 − eix|−2d for almost every x ∈ (−π, π] (with

respect to the Lebesgue measure), and so the integrated process X has a

spectral density given by

(6.13) f∗(x) = |1 − eix|−2df(x), x ∈ (−π, π] .

In particular,

(6.14) f∗(x) ∼ x−2df(0) =
(σ2

2π

∞
∑

m=−∞

ρm

)

x−2d as x ↓ 0.

If the correlations of the original process Y do not add up to zero (i.e. if

(6.12) holds), then the asymptotic behaviour at infinity of the correlations

of the fractionally integrated process and asymptotic behaviour of its spec-

tral density at the origin correspond, once again, to each other as (5.14)

corresponds to (5.15).

To what extent can one integrate a stationary process that does not have a

finite second moment, and what is the effect of existing negative dependence

in the original process Y? Here is one simple situation. Let S
(Y )
n = Y1 +

. . . + Yn, n = 0, 1, . . . be the partial sum sequence of the process Y. The

rate of growth of the partial sum sequence depends both on the memory in

the stationary process Y and on the marginal tails of the process. Assume

that for some θ ∈ (0, 1) there is c > 0 such that

(6.15) E|S(Y )
n | ≤ cnθ, n = 1, 2, . . . .

Recall that, if Y is a zero mean finite variance stationary process with

absolutely summable correlations (or such that the series in (5.8) converges),

then (6.15) holds with θ = 1/2, while certain slow decay of correlations (or
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a pole of the spectral density at the origin) can guarantee (6.15), but with

θ larger than 1/2; see (5.5) and Proposition 5.2. On the other hand, for the

Fractional Gaussian Noise with 0 < H < 1/2, the relation (6.15) holds with

θ smaller than 1/2; see (2.10).

Proposition 6.2. Let a stationary process Y be such that (6.15) holds for

some 0 < θ < 1. Then for any 0 < d < 1 − θ the series (6.4) converges in

L1 and the resulting process X is a well defined stationary process.

Proof. We may consider the sum (6.4) for n = 0, and we may also reverse

the time in the process Y noting that, marginally, the partial sums of the

time reversed process have the same law as those of the original process.

Using summation by parts we see that for m,k ≥ 1,

m+k
∑

j=m+1

ajYj =
m+k
∑

j=m+1

(aj − aj+1)S
(Y )
j + am+kS

(Y )
m+k − am+1S

(Y )
m .

The assumption d < 1−θ together with (6.15) and (6.3) shows that anS
(Y )
n →

0 in L1 as n→ ∞. Therefore, the last two terms in the above relation con-

verge to zero in L1 as m → ∞ uniformly in k. Similarly, for some c > 0 we

have by (6.15) and (6.8),

E

∣

∣

∣

∣

∣

∣

m+k
∑

j=m+1

(aj − aj+1)S
(Y )
j

∣

∣

∣

∣

∣

∣

≤ c

∞
∑

j=m+1

j−(2−d)jθ → 0

as m→ ∞ because d < 1 − θ. This shows the L1 convergence, and station-

arity is obvious. �

It is interesting to note that, if Y is a sequence of i.i.d. zero mean random

variables in the domain of attraction of an α-stable law with 1 < α < 2,

then (6.15) holds with any θ < 1/α (see e.g. Feller (1971)), and so by

Proposition 6.2 such sequences can be integrated up to the order 1 − 1/α.

I.i.d. sequences with even fatter tails (e.g. in the domain of attraction of

an α-stable law with 0 < α ≤ 1) cannot be fractionally integrated at all!

However, assuming appropriate negative dependence, even “very fat tailed”

stationary processes can be integrated up to some order (with the series

(6.4) also converging in an appropriately weaker sense).
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It is clear that much of the previous discussion depends on little more

than the asymptotic order of the magnitude of the coefficients in the infinite

series (6.4) and their differences. The specific choice arising from fractional

differencing is attractive both because of its intuitive meaning and because

of parsimony arising from dependence on a single parameter 0 < d < 1.

Fractionally integrated models, especially FARIMA models, have found

numerous applications in economics and econometrics; two examples are

Crato and Rothman (1994) and Gil-Alana (2004). In this area of appli-

cation one would like to combine fractional integration with the so-called

clustering of volatility, or conditional heteroscedasticity. The standard (but

non-fractional) model with clustering of volatility is the Generalized Autore-

gRessive Conditionally Heteroscedastic (or GARCH) process, introduced in

Engle (1982) in its original (non-generalized) form and generalized by Boller-

slev (1986). A possible way of introducing clustering of volatility into a

fractionally integrated model is to start with a process Y in (6.4) that has

the clustering of volatility property, for example with a GARCH process.

This approach is suggested in Hauser and Kunst (1998). Even earlier on, an

alternative model was suggested by Baillie et al. (1996). This model directly

combines fractional differencing/integration with the recursion for compu-

tation of the conditional variance of each subsequent observation, and has

become known as a Fractionally Integrated GARCH (or FIGARCH) model.

This model has proved difficult to analyze; even existence of a stationary

version of the model that has desired properties is an issue. Recent progress

has been made in Douc et al. (2006); see also Zaffaroni (2004).

7. Self-similar processes

Recall that a stochastic process Y = (Y (t), t ≥ 0) is called self-similar if

there is H such that for all c > 0 one has

(Y (ct), t ≥ 0)
d
= (cHY (t), t ≥ 0) .

The number H is alternatively referred to as the exponent of self-similarity,

the scaling exponent, or the Hurst exponent. If Xi = Y (i) − Y (i − 1), i =

1, 2, . . . is the increment process of Y, then the partial sum process Sn =
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X1 + . . . +Xn, n = 1, 2, . . ., clearly satisfies for n ≥ 1,

(7.1) Sn = Y (n) − Y (0)
d
= nH

(

Y (1) − Y (0)
)

= nHS1 .

If the process Y also has stationary increments, then the process X =

(X1,X2, . . .) is stationary, and then (7.1) shows that the scaling exponent H

determines the distributional order of magnitude of the partial sum process

of the stationary model X.

We have seen in Section 2 that the success of the Fractional Gaussian

Noise in explaining the Hurst phenomenon is, at least in part, related to the

fact that this stationary process is the increment process of the Fractional

Brownian motion, a self-similar process, with the scaling exponent in the

range 0 < H < 1. Recall also that the correlations of the Fractional Gaussian

Noise are summable when 0 < H ≤ 1/2, and not summable when 1/2 <

H < 1 (cf. (2.9)), while the spectral density of the Fractional Gaussian

Noise, given by (5.16), is continuous at the origin when 0 < H ≤ 1/2, while

diverging at the origin when 1/2 < H < 1. It is, therefore, attractive to

consider the class of stationary models given as increments of general self-

similar processes with stationary increments, and to call these stationary

processes long range dependent if the scaling exponent is large enough; see

e.g. Taqqu (1987) and Beran (1994).

This program has the advantage of being applicable to stationary pro-

cesses with or without finite second moment. The boundary between short

and long memory is, further, given by a single number - a certain critical

value of the scaling exponent. This last feature is also a drawback of the

approach: a single number does not usually represent well the dependence

structure of a stochastic process, despite the example of certain Gaussian

models. Another drawback of this approach is that a reasonably limited

family of the models is thus considered - the increments of self-similar sta-

tionary increments processes. To overcome this one can distinguish between

exactly self-similar models as above, and those that are only self-similar in

a certain asymptotic sense; see e.g. Lopez-Ardao et al. (2000). This class

of models has become subject of intense research since it was pointed out

in Leland et al. (1993) that Ethernet traffic data have features strikingly in



LONG RANGE DEPENDENCE 45

common with certain models of this type and a logically attractive explana-

tion of the connection of the network traffic to self-similarity was offered in

Willinger et al. (1997). Models arising from self-similar processes have also

been used in risk theory (see e.g. Michna (1998)) and finance (see e.g. Cont

(2005)).

Attractiveness of using the increment processes of self-similar processes

with stationary increments as “canonical” models with shorter or longer

types of memory is particularly obvious because such processes turn out to

be the only possible weak limit in a common class of limiting procedures.

Specifically, let (U(t), t ≥ 0) be a stochastic process, and an ↑ ∞ be a

sequence of positive numbers. If

(7.2)
( 1

an
U(nt), t ≥ 0

)

⇒
(

Y (t), t ≥ 0
)

in terms of finite-dimensional distributions, and the limiting process Y is

non-degenerate in the sense that P (Y (t) 6= 0) > 0 for all t > 0, then Y is H-

self-similar for some H > 0 (and the sequence (an) is automatically regularly

varying with exponent H). This was proved (in a slightly different form) by

Lamperti (1962), and is often referred to as the Lamperti theorem. Since

great many of the limiting results in probability theory and its applications

can be formulated in the form (7.2), it is not surprising the self-similar

models are ubiquitous. If, in addition, the process U in (7.2) has stationary

increments (as often happens in applications), the limiting process Y will

have stationary increments as well. Furthermore, the “type” of memory

the increments of the process U have, often translates into the “type” of

memory that the increments of the limiting self-similar process Y possess.

For example, the strong mixing properties in Theorem 4.1 and Theorem

4.2 above is the sort of short range dependence that guarantees that any

memory completely disappears in the limit, which in both theorems is a

Brownian motion, that has independent increments. On the other hand,

there are examples of processes U whose memory is so strong that it persists

in the limit; see e.g. Taqqu (1975) and Dobrushin and Major (1979). Then

the limiting self-similar process Y is not a Brownian motion; some of the

possible limiting processes are discussed below, and their increments can be
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strongly dependent. The results of the type (7.2) where the limiting process

Y is different from the Brownian motion are often referred to as non-central

limit theorems.

Many facts on self-similar processes can be found in Chapter 7 of Samorod-

nitsky and Taqqu (1994) and in a recent book of Embrechts and Maejima

(2002).

Let Y = (Y (t), t ≥ 0) be a self-similar process with stationary increments

(commonly abbreviated to an SSSI process). There are restrictions on the

feasible values of the scaling exponent H. It is immediate that the only

self-similar process with H < 0 is the trivial zero process Y (t) = 0 a.s. for

each t ≥ 0. The value H = 0 of the scaling exponent does allow some non-

trivial SSSI processes (the process for which Y (tj), j = 1, . . . , k are i.i.d. for

any t1, . . . , tk and k = 1, 2, . . . is an example), but, assuming that Y has a

measurable version, leaves only the constant process Y (t) = Y (1) a.s. for

each t ≥ 0 as a possibility (Vervaat (1985)). In modeling one assumes a

positive scaling exponent H, as we will do from now on. This assumption,

clearly, means that Y (0) = 0 a.s. We will assume in the sequel that we are

not dealing with the trivial zero process.

Further restrictions on the value of the scaling exponent of an SSSI process

Y are related to finiteness of the marginal moments of the process. For

example, suppose that for some 0 < γ < 1 we have E|Y (1)|γ < ∞. The

assumption that Y (1) 6= 0 with positive probability implies that for n large

enough, on a set of positive probability, at least 2 of the variables in a finite

stationary sequence (Y (1), Y (2) − Y (1), . . . , Y (n) − Y (n − 1)) are different

from zero at the same time. Then by the self-similarity and stationarity of

the increments

nγHE|Y (1)|γ = E|Y (n)|γ = E
∣

∣

∣

n
∑

j=1

(

Y (j) − Y (j − 1)
)

∣

∣

∣

γ

<

n
∑

j=1

|Y (j) − Y (j − 1)|γ = nE|Y (1)|γ ,

which implies that H < 1/γ. In particular, the finite mean assumption

E|Y (1)|γ <∞ implies that also E|Y (1)|γ <∞ for all 0 < γ < 1, and so we
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must have H < 1/γ for all such γ which is, clearly, equivalent to H ≤ 1.

Summarizing,

(7.3)

{

H < 1
γ if E|Y (1)|γ <∞ for 0 < γ < 1

H ≤ 1 if E|Y (1)| <∞.

In fact, the only SSSI process with a finite mean for which H = 1 is

the straight line process for which Y (t) = tY (1) a.s. for every t > 0, as

the following argument (due to Vervaat (1985)) shows. By self-similarity,

Y (n)/n
d
= Y (1) for all n ≥ 1. By the stationarity of the increments and

ergodic theorem

Y (n)

n
=

1

n

n
∑

j=1

(

Y (j) − Y (j − 1)
)

→ E
(

Y (1)
∣

∣

∣
I
)

with probability 1, where I is the invariant σ-field for the increment process

X. Therefore, Y (1)
d
= E

(

Y (1)
∣

∣I
)

. As Smit (1983) showed, this implies

that Y (1) is measurable with respect to the completion of I, and so Y (1) =

Y (n)−Y (n−1) a.s. for all n ≥ 1, implying that Y (t) = tY (1) a.s. for every

t = 1, 2, . . .. Now one can use self-similarity to extend this relation first to

t = 1, 1/2, 1/3, . . ., then to all rational t > 0 and, finally, by the continuity

in probability, which all SSSI processes with H > 0, clearly, possess, to all

t > 0.

Non-trivial finite mean SSSI models exist, therefore, only for 0 < H < 1,

and we will, correspondingly, restrict ourselves to that range when the mean

is finite. Since self-similarity forces EY (n) = nHEY (1), while stationarity

of the increments implies EY (n) = nEY (1), the non-trivial finite mean SSSI

models must have zero mean.

Suppose that Y is a zero mean finite variance SSSI process with 0 < H <

1. Denoting σ2 = EY (1)2, we immediately see that for all s, t ≥ 0

(7.4) Cov
(

Y (s), Y (t)
)

=
σ2

2

[

t2H + s2H − |t− s|2H
]

,

so the self-similarity and stationarity of the increments uniquely determine

the correlation function of any such process, which is then also the corre-

lation function of the Fractional Brownian motion introduced in Section 2.

It turns out that for any 0 < H < 1 the expression in the right hand side

of (7.4) is, in fact, nonnegative definite and, hence, a legitimate covariance
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function. This can be demonstrated by simply exhibiting a Gaussian process

whose covariance function is given by the right hand side of (7.4).

Let (B(t), t ∈ R) be the standard Brownian motion. Choose a real number

1/2 < γ < 1, γ 6= 3/2 −H, and define a stochastic process by

(7.5)

BH(t) =
σ

C(H, γ)

∫ ∞

−∞

(

∫ ∞

x
(v−x)−γ

(

|v|H+γ−3/2−|v−t|H+γ−3/2
)

dv
)

B(dx) ,

where

C(H, γ) =

(∫ ∞

−∞

(

∫ ∞

x
(v − x)−γ

(

|v|H+γ−3/2 − |v − 1|H+γ−3/2
)

dv
)2
dx

)1/2

.

This is a well defined centered Gaussian process, and its covariance function

is easily checked to be given by the right hand side of (7.4) (independently of

γ). Since that characteristic function has the property Cov
(

Y (cs), Y (ct)
)

=

c2HCov
(

Y (s), Y (t)
)

for all c > 0, we conclude that a centered Gaussian

process with that characteristic function is, in fact, self-similar with expo-

nent H. Since (7.4) is equivalent to the incremental variance statement

E
(

Y (t) − Y (s)
)2

= σ2|t − s|2H , it implies, for a Gaussian process, station-

arity of the increments as well. Therefore, we have constructed in (7.5) a

Fractional Brownian motion, which is then the only SSSI Gaussian process.

For H = 1/2 and 0 < γ < 1 (7.5) gives different representations of the

standard Brownian motion.

Other important finite variance SSSI processes, different from the Frac-

tional Brownian motion, can be represented as multiple Wiener-Itô integrals

with respect to the Brownian motion; we refer the reader to Major (1981)

or Section 1.1.2 in Nualart (1995) for basic information on the multiple in-

tegrals. For k = 1, 2, . . . and 1/2 < γ < 1/2 + 1/(2k), H + kγ 6= 1 + k/2,

define

(7.6) Y (k)(t) =

∫ ∞

−∞
. . .

∫ ∞

−∞
Q

(k)
t (x1, . . . , xk)B(dx1) . . . B(dxk)

for t ≥ 0, where (B(t), t ∈ R) is still the standard Brownian motion, and

the kernel Q
(k)
t is defined by

(7.7) Q
(k)
t (x1, . . . , xk) =

∫ ∞

max{x1,...,xk}

k
∏

j=1

(v − xj)
−γ
(

|v|H+kγ−1−k/2
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−|v − t|H+kγ−1−k/2
)

dv .

This process is mentioned in Mori and Oodaira (1986), following a similar

process introduced in Rosenblatt (1979) (for k = 2). It is, obviously, a

generalization of the Fractional Brownian motion in (7.5). If the latter can

be viewed as a linear functional of the sample paths of the Brownian motion,

the process in (7.6) can be viewed as a polynomial functional of order k of

these sample paths. The fact that the process Y in (7.6) is well defined

follows from the fact that

(7.8)

∫ ∞

−∞
. . .

∫ ∞

−∞
Q

(k)
t (x1, . . . , xk)

2 dx1 . . . dxk <∞ for all t ≥ 0;

the verification is standard, if somewhat tedious. It can be easily checked

that, in addition, the kernel Q
(k)
t has also the following properties. For all

0 ≤ s < t and c > 0

(7.9) Q
(k)
t (x1, . . . , xk) −Q(k)

s (x1, . . . , xk) = Q
(k)
t−s(x1 − s, . . . , xk − s) ,

and

(7.10) Q
(k)
ct (cx1, . . . , cxk) = cH−k/2Q

(k)
t (x1, . . . , xk)

for almost all (x1, . . . , xk). Every stochastic process given in the form (7.6)

with the functions (Q
(k)
t , t ≥ 0) satisfying (7.9), has stationary increments,

and every stochastic process given in the form (7.6) with the functions

(Q
(k)
t , t ≥ 0) satisfying (7.10) is self-similar with exponent of self-similarity

H. Both statements are heuristically obvious when one makes the appropri-

ate change of variable in the defining multiple integral in (7.6), and uses the

stationary of the increments of the Brownian motion, and its self-similarity

with exponent 1/2. This argument can be made precise by approximating

the kernel Q
(k)
t by simple symmetric kernels.

Therefore, the stochastic process defined in (7.6) with the kernel given by

(7.7) is SSSI, with the scaling exponent H. As all other multiple Wiener-

Itô integrals with respect to the Brownian motion, it has finite moments

of all orders. It shares with the Fractional Brownian motion its correlation

function, but is not a Gaussian process if k ≥ 2.

It is not difficult to check that the properties (7.9) and (7.10) (with k = 1)

of the kernel Q
(1)
t (x) in the representation (7.5) of the Fractional Brownian
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motion imply that for 0 < H < 1, H 6= 1/2,

(7.11) Q
(1)
t (x) = gt(c1, c2;H;x) := c1

[

(

(t− x)+
)H−1/2 −

(

(−x)+
)H−1/2

]

+c2

[

(

(t− x)−
)H−1/2 −

(

(−x)−
)H−1/2

]

,

where a+ := max(a, 0) is the positive part of a real number a, and a− :=

max(−a, 0) is its negative part, and 0a is interpreted as 0 for all a ∈ R.

Here ci = ci(H, γ), i = 1, 2, are real numbers; in fact, one can start with

choosing c1 and c2 in such a way that Q
(1)
1 (−1) = g1(c1, c2;H;−1) and

Q
(1)
1 (2) = g1(c1, c2;H; 2), and then show that the equality extends to all

t ≥ 0 and x 6= 0, t. For H = 1/2 a similar argument shows that

(7.12) Q
(1)
t (x) = gt(c1, c2; 1/2;x) := c11[0,t](x) + c2

(

log |t− x| − log |x|
)

,

once again for some real ci = ci(γ), i = 1, 2.

In fact, alternative representations of the Fractional Brownian motion (up

to a multiplicative constant) are obtained via

BH(t) =

∫ ∞

−∞
gt(c1, c2;H;x)B(dx), t ≥ 0

for arbitrary real c1, c2. These are the so called moving average representa-

tions of the Fractional Brownian motion, originating with Mandelbrot and

Van Ness (1968); see Section 7.2.1 in Samorodnitsky and Taqqu (1994).

Moving average representations of the Fractional Brownian motion dif-

ferent from the representation (7.5) can themselves be extended to SSSI

processes represented by multiple Wiener-Itô integrals. For example, take

c2 = 0 in (7.11). In the case 1/2 < H < 1 one can rewrite the result-

ing expression in an equivalent form, and extend it, leading to a family of

processes

(7.13) Y (k)(t) =

∫ t

−∞
. . .

∫ t

−∞





∫ t

0

k
∏

j=1

(

(v − xj)+
)−(1/2+(1−H)/k)

dv





B(dx1) . . . B(dxk), t ≥ 0 ,

introduced in Taqqu (1978); it appeared as a limit in a “non-central limit

theorem” in Taqqu (1979) and, in a more general situation, in Surgailis
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(1981a) (see also Avram and Taqqu (1987)). In the case 0 < H < 1/2 a

similar procedure leads to a family of processes

(7.14) Y (k)(t) =

∫ t

−∞
. . .

∫ t

−∞





∫ ∞

t

k
∏

j=1

(v − xj)
−(1/2+(1−H)/k)dv

−1
(

max(x1, . . . , xk) < 0
)

∫ ∞

0

k
∏

j=1

(v − xj)
−(1/2+(1−H)/k)dv





B(dx1) . . . B(dxk), t ≥ 0 .

One can check that in both cases the kernels in the multiple integrals satisfy

(7.8), (7.9) and (7.10) and, hence, the processes defined in (7.13) and (7.14)

are SSSI processes, with the corresponding scaling exponent H. In fact, for

k ≥ 2 the process given in (7.14) is well defined for all 0 < H < 1.

The SSSI processes with representations as in (7.6), (7.13) and (7.14) are

examples of such processes in the kth Gaussian chaos, in the terminology

of Wiener (1938). If, for k ≥ 1, Y(k) has the representation (7.6), with

the kernels Q
(k)
t satisfying, for each k, (7.8), (7.9) and (7.10), then for any

sequence of constants (ak) such that

∞
∑

k=1

a2
k k!

∫ ∞

−∞
. . .

∫ ∞

−∞
Q

(k)
t (x1, . . . , xk)

2 dx1 . . . dxk <∞ ,

the new process

(7.15) Y (t) =

∞
∑

k=1

akYk(t)

=
∞
∑

k=1

ak

∫ ∞

−∞
. . .

∫ ∞

−∞
Q

(k)
t (x1, . . . , xk)B(dx1) . . . B(dxk)

is a well defined second order stochastic process (see Nualart (1995)), and

the previous argument using stationarity of the increments of the Brownian

motion and its self-similarity implies that this process is SSSI, with expo-

nent H of self-similarity. Of course, this process is no longer, in general, a

polynomial-like functional of the Brownian motion.

Yet more representations of the Fractional Brownian motion exist; see e.g.

Decreusefond and Üstünel (1999) and Norros et al. (1999). We mention only

one more, as it has an impact on our discussion of long range dependence.
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Let (B(j)(t), t ≥ 0) for j = 1, 2 be independent standard Brownian motions,

and extend B(1) to the entire real line as an even function, and B(2) as

an odd function. For 0 < H < 1 the following is, up to a multiplicative

constant, a representation of the Fractional Brownian motion:

(7.16) BH(t) =

∫ ∞

−∞

eitx − 1

ix
|x|−(H−1/2) B̃(dx), t ≥ 0 ,

where B̃(t) = B(1)(t) + iB(2)(t), t ∈ R. This is the so called harmonizable

representation of the Fractional Brownian motion; its origins go back to

Kolmogorov (1940) and Yaglom (1955). The harmonizable representation

also has a natural extension to a SSSI process in the kth Gaussian chaos

for k = 2, 3, . . . , appearing (as a limit) in Dobrushin and Major (1979), who

used the techniques introduced in Dobrushin (1979). The obtained processes

have been showed by Taqqu (1979) to coincide, in the case 1/2 < H < 1,

with those defined in (7.13) via a moving average representation.

The above discussion presented a large number of SSSI processes with

a finite variance and exponent of self-similarity H ∈ (0, 1); even more can

be obtained by replacing some of the repeated Brownian motion in the

multiple integrals by independent copies of a Brownian motion, or by more

generally correlated Brownian motions. The increments of each one of them

form a stationary process, whose covariance function coincides with that

of the Fractional Gaussian Noise given in (2.8). One often says that these

stationary processes have long range dependence if 1/2 < H < 1 (and short

memory if 0 < H ≤ 1/2); see e.g. Beran (1994), Willinger et al. (1998) and

Embrechts and Maejima (2002). This is, of course, entirely understandable

from the point of view of the rate of decay of correlations, as in (5.14),

or from the point of view of the behaviour of the spectral density at the

origin, as in (5.15), or from the point of view of the rate of increase of the

variance of the partial sums, as in (5.5). While no further justification seems

to be necessary for the Fractional Gaussian noise, the increment process

of the Fractional Brownian motion; for the other models the second order

measures provides, of course, only partial information. A further important

point is the distributional rate of growth of the partial sums of the increment
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processes: for 1/2 < H < 1 this rate of growth is above what is allowed for

a central limit theorem and convergence to a Brownian motion.

Notice that, if Y is an SSSI process with an exponent H of self-similarity,

and A is a random variable independent of Y, then the process

(7.17) Z(t) = AY (t), t ≥ 0

is also an SSSI process with the same scaling exponent H is Y. If Y is a

finite variance process, and A also has a finite variance, then the resulting

SSSI process in (7.17) will have a finite variance as well. In particular,

its increment process will have exactly the same second order properties as

the Fractional Gaussian noise, and it will have the same distributional rate

of growth of the partial sums as the latter. However, apart from a small

number of degenerate situations, the increments of Z will be non-ergodic

and, hence, will arguably have infinite memory, regardless of the value of

the scaling exponent H.

This is, of course, not the situation with the SSSI processes with a chaos

representation as in (7.15). The increment processes of the latter are always

ergodic because of the property (7.9) and ergodicity of Bernoulli shifts ap-

plied to the increments of the Brownian motion (see Section 1.4 in Krengel

(1985)). However the example of the process (7.17) emphasizes the limited

amount information provided by the scaling exponent alone.

The most common infinite variance SSSI processes are α-stable processes,

0 < α < 2; we refer the reader to Samorodnitsky and Taqqu (1994) for

information on such models. For an α-stable random variable X one has

power-like tails: P (|X| > x) ∼ c x−α as x→ ∞ for some c > 0; this implies

that the mean is finite in the case 1 < α < 2, and infinite if 0 < α ≤ 1. We

will consider here symmetric α-stable (SαS) SSSI processes.

There are many similarities between finite variance Gaussian SSSI models

and processes related to them, and SαS and related SSSI processes, the

most important of which is the fact that both arise in a number of natural

limit theorems. In the finite mean case 1 < α < 2 the exponent of self-

similarity of any SαS SSSI process is still restricted (to avoid trivialities) to

the range 0 < H < 1, while in the infinite mean case 0 < α ≤ 1, the tail
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behaviour of the marginal distributions restricts the scaling exponent of a

SαS SSSI process to the range 0 < H ≤ 1/α. In a significant departure

from the Gaussian case, where the exponent of self-similarity determines

the correlation function and, hence, the law of the SSSI process (up to

a multiplicative constant), for every feasible pair (α,H) of the index of

stability and scaling exponent, there are generally many different SαS SSSI

models; some of them will be discussed below. The only exception is the

case 0 < α < 1, H = 1/α, which corresponds to a single process, the SαS

Lévy motion; see Samorodnitsky and Taqqu (1990). It is common to use the

increments of certain SαS SSSI processes as canonical heavy tailed models

with long range dependence.

A SαS Lévy process (motion) (Y (t), t ≥ 0) is the heavy tailed equivalent

of the Brownian motion, a process with stationary and independent incre-

ments. It is self-similar, and its scaling exponent is H = 1/α. No other

(symmetric) Lévy processes are self-similar; see Sato (1999). When decid-

ing which SαS SSSI processes should be said to have long range dependent

increments, the Gaussian case has been often taken as guidance. This means

using the SαS Lévy motion as the benchmark, and viewing the processes

with H > 1/α as long range dependent, see e.g. Abry et al. (2000), Stoev

and Taqqu (2004) and Kotulska (2007). Unfortunately, this range of the

exponent of self-similarity is only possible when α > 1. A number of limit

theorems in which α-stable SSSI processes appear have been established,

most of them apply to partial sums of linear infinite order moving average

processes; in situations where long memory is believed to be present the

exponent of self-similarity of the resulting SSSI process turned out to be in

the range H > 1/α. See Maejima (1983b), Astrauskas (1983b), Kasahara

et al. (1988) or Levy and Taqqu (2000). A continuous-time version for a

shot noise model is in Giraitis and Surgailis (1991).

Let Y be a SαS SSSI process, and Xn = Y (n)− Y (n− 1) for n = 1, 2, . . .

be its stationary increment process. Since α-stable processes with 0 < α < 2

have infinite variance, it is impossible to relate the case H > 1/α to a slow

decay of correlations of X. However, when H > 1/α, the partial sums
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Sn = X1 + . . . +Xn = Y (n), n = 1, 2, . . ., grow distributionally at the rate

nH , larger that the ”usual” rate of n1/α (times a slowly varying function)

associated with the heavy tailed version of the Functional Central Limit

Theorem, where the limit is the α-stable Lévy motion; see e.g. Durrett

and Resnick (1978) (for interesting topological difficulties that may arise see

Avram and Taqqu (1992)). While for 1 < α < 2 the benchmark H = 1/α

is in the middle of the feasible range 0 < H < 1 of the exponent of self-

similarity, in the case 0 < α ≤ 1 it is its right endpoint. This, of course,

means that the rate of n1/α is the fastest possible rate at which the partial

sums of the increment process of a SαS SSSI process with such an index of

stability α can grow; in fact, the partial sums of any stationary SαS process

with 0 < α ≤ 1 can grow at most at the rate of n1/α. However, it means

that, according to the rule H > 1/α, no SαS SSSI process can have long

range dependent increments. This is, clearly, unfortunate.

Most of SαS SSSI processes discussed in the extensive literature on the

subject are constructed with, once again, guidance from the Gaussian case.

One starts, typically, with a representation of the Fractional Brownian mo-

tion and modifies it appropriately. The best known SαS self-similar process

with stationary increments originates with the moving average representa-

tion (see (7.11)) of the latter. Let (L(t), t ∈ R) be a SαS Lévy motion.

Choose 0 < H < 1 (with H 6= 1/α if 1 < α < 2) and define for real c1, c2

(7.18) Y (t) =

∫ ∞

−∞
Qt(x)L(dx) , t ≥ 0 ,

where

(7.19) Qt(x) = c1

[

(

(t− x)+
)H−1/α −

(

(−x)+
)H−1/α

]

+c2

[

(

(t− x)−
)H−1/α −

(

(−x)−
)H−1/α

]

.

This is a well defined SαS process. The kernel defined by (7.19) satisfies,

for 0 ≤ s < t and c > 0

(7.20) Qt(x) −Qs(x) = Qt−s(x− s)

and

(7.21) Qct(cx) = cH−1/αQt(x)
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for almost all x ∈ R. It is clear that the intuition we used in the Gaussian

case still works here: the properties (7.20) and (7.21) of the kernel imply

that the process in (7.18) has stationary increments and is self-similar (and,

once again, the argument can be made precise). The SSSI process defined

by (7.18) with the kernel given by (7.19) is called Linear Fractional Stable

Motion. This process originates in Taqqu and Wolpert (1983) and Maejima

(1983a). It is a general phenomenon that that the stable integrals are much

more “rigid” than similarly looking Gausssian integrals. Whereas any choice

of the constants c1 and c2 in (7.11) produces, up to a multiplicative constant,

a representation of the same Fractional Brownian motion, different pairs

(c1, c2) in (7.19) will produce different Linear Fractional Stable Motions,

unless these parameters are proportional (see Cambanis and Maejima (1989)

and Samorodnitsky and Taqqu (1989)).

If 1 < α < 2 and H = 1/α, the process corresponding to the Linear

Fractional Stable Motion is given in the form (7.18) with the kernel

(7.22) Q
(1)
t (x) = c11[0,t](x) + c2

(

log |t− x| − log |x|
)

,

for real c1, c2, which is, of course, identical to (7.12). When c2 = 0 this gives

back the SαS Lévy motion, for c1 = 0 we obtain the so called Log-fractional

Stable Motion introduced by Kasahara et al. (1988); it is easily seen not to

have independent increments.

In the case 1 < α < 2 it is also possible to start with the kernel in a

representation of the Fractional Brownian motion as given in (7.5). The

corresponding kernel in the α-stable case is

Qt(x) =

∫ ∞

x
(v − x)−γ

(

|v|H+γ−1−1/α − |v − t|H+γ−1−1/α
)

dv

for 0 < H < 1 and 1/α < γ < 1, γ 6= 1 + 1/α − H. This kernel satisfies

(7.20) and (7.21) and, hence, can be shown to coincide with (7.19) when

H 6= 1/α, and with (7.22) when H = 1/α, in both cases for some c1 and c2

depending on γ.

One can also start with the harmonizable representation (7.16) of the

Fractional Brownian motion and extend it to the α-stable case, 0 < α < 2.

This is usually done by starting with a complex-valued isotropic SαS Lévy
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motion M̃ (see Samorodnitsky and Taqqu (1994) for details) and defining

(7.23) Y (t) = Re
∫ ∞

−∞

eitx − 1

ix
|x|−(H−1+1/α) M̃(dx), t ≥ 0 .

This process is often referred to as Harmonizable Fractional Stable Motion,

and it was introduced in Cambanis and Maejima (1989). The Harmonizable

Fractional Stable Motion is a different process from the Linear Fractional

Stable Motion; in certain cases this follows from Cambanis and Soltani

(1984), more generally for 1 < α < 2 this is in Cambanis and Maejima

(1989), and in full generality with 0 < α < 2 it is in Chapter 7 of Samorod-

nitsky and Taqqu (1994). In fact, the stationary increment process of the

latter is a mixing stationary process (this is implicit in Cambanis et al. (1987)

and explicit in Surgailis et al. (1993)), while the increment process of the

former is not even ergodic (this statement is in Cambanis et al. (1987), and

it also follows from the fact that real stationary harmonizable processes have

a representation as mixtures of stationary Gaussian processes, discovered by

Marcus and Pisier (1984)).

The above classes of SαS SSSI processes can be viewed as linear func-

tionals of SαS Lévy motions in their integral representations. Analogously

to the Gaussian case, new SSSI models can be constructed as polynomial-

type functions of SαS Lévy motions, as multiple stochastic integrals, i.e. as

stochastic processes of the form

(7.24) Y (k)(t) =

∫ ∞

−∞
. . .

∫ ∞

−∞
Q

(k)
t (x1, . . . , xk)L(dx1) . . . L(dxk)

for t ≥ 0, where (L(t), t ∈ R) is a SαS Lévy motion. The conditions on the

kernel Q
(k)
t for the integral in (7.24) to exist are “more complicated” in the

stable case than in the Gaussian case. A sufficient condition for integrability

is
∫ ∞

−∞
. . .

∫ ∞

−∞

∣

∣Q
(k)
t (x1, . . . , xk)

∣

∣

α

(

log+

|Q(k)
t (x1, . . . , xk)|α
ψ(x1) . . . ψ(xk)

)k−1

(7.25) dx1 . . . dxk <∞, t ≥ 0,

for a strictly positive probability density ψ on R, where log+ x = log x for

x > 1, and = 0 otherwise. See Rosiński et al. (1991). Once the process
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is well defined, if the kernel Q
(k)
t also satisfies the condition (7.9) and the

following analog of (7.10): for all c > 0

(7.26) Q
(k)
ct (cx1, . . . , cxk) = cH−k/αQ

(k)
t (x1, . . . , xk)

for almost all (x1, . . . , xk), then the process defined in (7.24) is SSSI, with

exponent H of self-similarity.

A model with these properties was introduced in Surgailis (1981b), and

it is a SαS version of the process in (7.13). Assume that 1 < α < 2 and

H ∈ (1/α, 1). Then the choice

(7.27) Q
(k)
t (x1, . . . , xk) =

∫ t

0

k
∏

j=1

(

(v − xj)+
)−(1/α+(1−H)/k)

dv

leads to a well defined SSSI process, which is, of course, a direct general-

ization of the multiple Wiener-Itô integral process in (7.13). This process

appears as a limit in the “non-central limit theorem” setting (in the case

k = 2), as shown in Astrauskas (1983a). Similarly, the multiple Wiener-Itô

integral process in (7.14) can be generalized to the α-stable multiple integral

situation as well, resulting in another SSSI model with

Q
(k)
t (x1, . . . , xk) = 1

(

max(x1, . . . , xk) < t
)

∫ ∞

t

k
∏

j=1

(v − xj)
−(1/α+(1−H)/k)dv

(7.28) −1
(

max(x1, . . . , xk) < 0
)

∫ ∞

0

k
∏

j=1

(v − xj)
−(1/α+(1−H)/k)dv .

For single integrals this is well defined only if H < 1/α, but for k ≥ 2 this

process is well defined for all 0 < H < 1 (for both (7.27) and (7.28) the

condition (7.25) can be verified with, for example, ψ being the standard

Cauchy density). We are not aware of limit theorems in which the process

with the kernel as in (7.28) appears as the limit.

There is no doubt that other SSSI processes in the form of a finite order

symmetric α-stable chaos can be defined, for example by extending yet other

SαS processes, or by a direct analogy with the Gaussian case. Using the

recipe (7.15) one can construct even more models (even though necessary

and sufficient conditions on the sequence (ak) for the series in (7.15) to

converge when each SSSI process Y(k) is in the kth SαS chaos do not seem
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to be known, it is obvious that the series will converge if the coefficients are

“small enough”). Similarly to the Gaussian case, one can also replace some

of the repeated SαS Lévy motions in a k-tiple integrals by the components

of a k-dimensional SαS Lévy motion (see Sato (1999)). Unlike the Gaussian

case, this last exercise can even be performed on certain SαS SSSI processes

by, for example, integrating each one of the two parts in (7.19) or (7.22) with

respect to different components of a bivariate SαS Lévy motion.

This provides for an even greater variety of SSSI processes with infinite

variance, based on stochastic integrals with respect to SαS Lévy processes

with 0 < α < 2, than of the finite variance models we considered above. In

the case 1 < α < 2 the value H = 1/α is considered to be “the critical value”

for exponent of self-similarity, with the range (1/α, 1) of H corresponding to

long memory of the increment process. This, of course, cannot be justified

any longer by looking at the change in the behaviour of the covariance

function of the increments, which is not defined now. Certain substitutes

have been used, mostly for SSSI processes that are themselves symmetric

α-stable. Two such substitutes have appeared in literature, the covariation

and the codifference.

LetX1 andX2 be jointly SαS random variables. Their joint characteristic

function can be written in the form

(7.29) Ei(θ1X1+θ2X2) = exp

{

−
∫

S2

|θ1s1 + θ2s2|αΓ(ds)

}

for real θ1, θ2, where S2 is the unit circle, and Γ is a uniquely determined

finite symmetric measure on the unit circle, the so called spectral measure of

(X1,X2). See Samorodnitsky and Taqqu (1994). If 1 < α < 2, one defines

the covariation of X1 and X2 by

[X1,X2]α =

∫

S2

s1s
<α−1>
2 Γ(ds) ,

where for real a, b, the notation a<b> stands for the signed power |a|bsign(a).

The covariation can also be defined for α = 1, but it appears to be less

useful in that case; an extension to the case 0 < α < 1 is only partially

possible, and requires restrictions on the spectral measure of (X1,X2). The

covariation is not, generally, symmetric in its arguments. It reduces to
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half the covariance in the Gaussian case α = 2, if one chooses to write

the characteristic function as (7.29) in that case (the spectral measure is

not uniquely defined if α = 2.) The notion of covariation was introduced

in Miller (1978). If (Xn, n = 1, 2 . . .) is a stationary SαS process, its

covariation function can be defined via γ(k) = [Xn+k,Xn]α for k = 0, 1, 2, . . .

(but changing the order of the arguments will lead, in general, to a different

function).

The codifference can be defined for any random variables and stochastic

processes. For a random vector (X1,X2) we define

τ(X1,X2) = logEei(X1−X2) − logEeiX1 − logEeiX2

(where we take the continuous branch of the logarithm equal to zero at

point 1.) The codifference is symmetric in its arguments, and is equal to

the covariance for a Gaussian vector (X1,X2). The term “codifference”

appeared first in Kokoszka and Taqqu (1994), but related notions had been

used many times before. For a a stationary process (Xn, n = 1, 2 . . .) its

codifference function is defined by τ(k) = τ(Xn+k,Xn) for k = 0, 1, 2, . . ..

Both covariation and codifference are equal to zero in the case of indepen-

dence, but the converse is not true. On the other hand, zero covariation does

imply a kind of Banach space orthogonality, the so called James orthogonal-

ity; see Cambanis et al. (1988). Furthermore, it is possible to characterize

independence of infinitely divisible random vectors based on codifference

(see Rosiński and Żak (1997)), and for a certain class of stationary infinitely

processes (including stable processes) mixing is equivalent to convergence

the codifference function to zero at large lags (see Rosiński and Żak (1996)).

Suppose Y is a SSSI process, that is SαS with 1 < α < 2. In order to

understand if there is a significant change in the properties of the increment

process Xn = Y (n) − Y (n − 1), n = 1, 2, . . . at the value H = 1/α of the

exponent of self-similarity, one can try to see if the behaviour of either the

covariation function or codifference function changes significantly at that

point.

The behaviour of the codifference function of the increment process of the

Linear Fractional Stable Motions as in (7.18) with (7.19), was considered in
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Astrauskas et al. (1991). They discovered that

τ(k) ∼
{

Ct−(1+ 1

α
−H) if 0 < H < 1 − 1

α(α−1)

Ct−α(1−H) if 1 − 1
α(α−1) < H < 1, H 6= 1

α

as t → ∞, where C is a constant depending on the parameters in (7.19).

Here a change in the rate of decay of the codifference function does occur,

but at the point 1 − 1(α(α − 1)), and not at the point 1/α. A similar

computation was performed by Kokoszka and Taqqu (1994) for the FARIMA

model with SαS noise, and the results for both the covariation function and

the codifference function were similar (in the case 1 < α < 2) to the above.

It is not easy to evaluate the evidence provided by the behaviour of the

covariation and codifference functions. One expects it to be smaller than

that provided by the covariances for the second order stationary processes.

However, even this available evidence does not necessarily point to a par-

ticular importance of the point H = 1/α when deciding whether or not the

increments of a SαS SSSI processes are long range dependent or not.

In fact, the ergodic theory seems to provide a better guidance to the

memory of the increment process than the rate of decay the covariation

and codifference functions. Recall that the increments of the Harmonizable

Fractional Stable Motions are not ergodic, while the increments of the Linear

Fractional Stable Motions are mixing. This already says that the memory

of the latter is shorter than that of the former, and this is regardless of the

value of the scaling exponent H. In fact, in studying the memory of any

stationary SαS process the ergodic theory enters the picture in yet another,

even more informative way, as will be seen in the next section.

8. Long range dependence as a phase transition

A different point of view on long range dependence was suggested by

Samorodnitsky (2004). Suppose that we are given a family of shift-invariant

probability measures
(

Pθ, θ ∈ Θ
)

on R
Z; that is, each Pθ describes the

finite-dimensional distributions of a two-sided (for convenience) stationary

stochastic process X = (. . . ,X−1,X0,X1,X2, . . .). Assume that, as θ varies

over the parameter space Θ, the one-dimensional marginal distributions of
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the process do not change significantly. This requirements allows, for a

example, a change in scale, or other changes not relevant for the application

of interest. We do not usually want to allow a serious change in the marginal

tails, for instance loss/gain of a finite variance. For example,
(

Pθ, θ ∈ Θ
)

might describe a family of correlations functions of unit variance stationary

Gaussian processes, or a a family of coefficients of an infinite moving average

model. A subset Θ0 of the parameter space corresponds to the choices of

the parameters under which the process X is a sequence of i.i.d. random

variables; sometimes Θ0 is a singleton.

Let φ = φ(X) be a measurable functional of the process; typical examples

are the sequence of the partial sums, for which φ : R
Z → R

∞, φn(x) =
∑n

j=1 xj , and the sequence of the partial maxima, for which also φ : R
Z →

R
∞, but this time φn(x) = maxn

j=1 xj . The behaviour of this functional will,

in general, be different under different probability measures Pθ, θ ∈ Θ.

Suppose that there is a partition Θ = Θ1 ∪ Θ2 of the parameter space

into disjoint parts, with Θ0 ⊂ Θ1, such that the behaviour of the functional

φ changes significantly as the parameter crosses the boundary between Θ1

and Θ2. This means that, as long as the parameter stays within Θ1, the

behaviour of the functional φ does not change much, and it remains the

same as in the i.i.d. case θ ∈ Θ0, perhaps “up to a multiplicative constant”.

Once the parameter θ crosses the boundary into Θ2, there is a change “in

the order of magnitude” in the behaviour of the functional φ. Moreover,

there continue to be significant changes as the parameter θ moves within

Θ2.

Under these conditions we view the part Θ1 of the parameter space as

corresponding to short memory models, and the part Θ2 of the parameter

space as corresponding to long memory models. From this point of view,

the boundary between Θ1 and Θ2 is the boundary between short and long

memory, and it is natural to regard the appearance of long range dependence

as a phase transition.
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This approach has drawbacks. It is “an approach”, and not a rigorous def-

inition. It ties the notion of long range dependence to a particular functional

and, perhaps, to a particular aspect of the behaviour of that functional.

This, however, appears to be inevitable. One of the reasons it has been

so difficult to define long range dependence is that one has tried to give a

single definition to what is, really, a series of phenomena. Moreover, studying

the change in behaviour of a functional relevant in applications is, arguably,

more important than trying to find a single critical parameter. If one adopts

this point of view on long range dependence, the problem reduces to that

of finding critical boundaries. It will undoubtedly turn out that for many

models there will be more than one such boundary.

A functional of major interest, and the one that historically generated

most interest, is the sequence of the partial sums of the process. When

considering stationary processes with a finite second moment, the second-

order approach to long range dependence concentrates on the behaviour of

the variances of the partial sums.

If
(

Pθ, θ ∈ Θ) is the family of laws of all stationary stochastic processes

with marginal variance equal to (say) 1, then for every θ ∈ Θ0 (corresponding

to the law of a sequence of i.i.d. random variables) the variance of the partial

sums grows linearly with the sample size. It is natural then to define Θ1 to

be that subset of Θ such that, under the law Pθ with θ ∈ Θ1, the variance

of the partial sums grows at most linearly fast with the sample size. Then

Θ2, the complement of Θ1 in Θ, is the collection of the laws of finite second

order stationary processes that will be considered as long range dependent,

and the notion relies strictly on the variance of the partial sums growing,

at least along a subsequence, faster than linearly fast. From this point of

view, the various alternative notions of a short memory process discussed in

Section 5: (5.2), (5.6), (5.8) or (5.13) are entirely reasonable when viewed

as sufficient conditions for the law of the stochastic process to be one of Pθ

with θ ∈ Θ1, hence of short memory, but it is quite a bit less reasonable to

view the failure of one of these conditions as an indication of long memory.
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Similarly, the conditions (5.4), (5.5) or those of Proposition 5.2 can very

reasonably be viewed as sufficient conditions for long memory, but their

absence should not be viewed as an indication of short memory.

It is not by any means obvious that the change from situation where the

variance of the partial sums grows at most linearly fast with the sample size,

to the situation where this is not the case, is, by itself, important enough

to justify calling this change a passage from short memory to long memory.

The exception is, of course, the Gaussian case. If
(

Pθ, θ ∈ Θ) is the family

of laws of all stationary Gaussian processes with marginal variance 1, then

the analogous to the above partition of the parameter space Θ into Θ1 and

Θ2 is a natural basis for distinction between short and long memory.

Still concentrating on the behaviour of the partial sums of a stationary

second order process, one can partition the parameter space Θ into two

parts, depending on whether or not the partial sums satisfy the invariance

principle with convergence to the Brownian motion. From this point of view,

the strong mixing conditions in Theorems 4.1 and 4.2 should be viewed

as sufficient conditions for short memory, but their absence should not be

regarded as an indication of long memory. The Fractional Gaussian noise

with any H 6= 1/2 (and not only H > 1/2) will then be considered to be

long range dependent.

In principle, basing the decision on whether or not a given stationary

process has long memory on the order of magnitude of the partial sums of

the process is possible also for infinite variance processes. Even more specif-

ically, suppose
(

Pθ, θ ∈ Θ) is the family of laws of all stationary stochastic

processes whose one dimensional marginal distributions are in the domain of

attraction of an α-stable law with 0 < α < 2. Then for every θ ∈ Θ0 (corre-

sponding to the law of a sequence of i.i.d. random variables in the α-stable

domain of attraction), the partial sums satisfy an invariance principle with

convergence to an α-stable Lévy motion, and one can define a partition of he

parameter space Θ into Θ1 and Θ2 depending on whether such an invariance

principle still holds (an example is in Astrauskas (1983a) or Kasahara and

Maejima (1988)). From this point of view, the stationary increment process
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of any α-stable SSSI process, other than the strictly stable Lévy motion,

has long memory regardless of the value of the Hurst exponent H, which can

even be equal to 1/α if 1 < α < 2; see the example of the Log-fractional

Stable Motion in (7.22).

As the marginal tails of a stationary process become heavier, concentrat-

ing on the partial sums of the process, particularly on their rate of growth,

to draw the boundary between short and long memory becomes less useful.

The following proposition (whose proof will appear elsewhere) shows that,

when the marginal tails are are sufficiently heavy, the partial sums cannot

grow faster than those of an i.i.d. sequence. For simplicity we state it in the

symmetric case, but the statement holds in a much greater generality.

Proposition 8.1. Let X be a symmetric random variable such that E|X|β =

∞ for some 0 < β < 1. Let X = (X1,X2, . . .) be a stochastic process with

each Xi
d
= X, and let Y = (Y1, Y2, . . .) be a sequence of independent copies

of X. Let an ↑ ∞ be a sequence of positive numbers such that

lim sup
n→∞

an+1

an
<∞ .

If

(8.1) lim sup
n→∞

P (|X1 +X2 + . . .+Xn| > an) > 0

then also

(8.2) lim sup
n→∞

P (|Y1 + Y2 + . . . + Yn| > an) > 0 .

When the marginal tails of a stationary process are heavy, extreme values

are, often, important. The partial maxima of the process are a natural

functional to use in this case in order to draw the boundary between short

and long memory. In the case of stationary SαS processes such boundary

was found in Samorodnitsky (2004).

A stationary SαS process has an integral representation

(8.3) Xn =

∫

E
fn(x) M(dx) , n = 1, 2, . . . ,

where M is a SαS random measure on a standard Borel space (E, E) with

a σ-finite control measure m. The functions fn, n = 1, 2, . . . can be chosen
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to be of the form

(8.4) fn(x) = an(x)

(

dm ◦ φn−1

dm
(x)

)1/α

f ◦ φn−1(x) x ∈ E ,

for n = 1, 2, . . ., where φ : E → E is a measurable non-singular map (i.e.

a one-to-one map with both φ and φ−1 measurable, mapping the control

measure m into an equivalent measure),

an(x) =
n−1
∏

j=0

u ◦ φj(x), , x ∈ E ,

for n = 0, 1, 2, . . ., with u : E → {−1, 1} a measurable function and f ∈
Lα(m). See Samorodnitsky and Taqqu (1994) and Rosiński (1995) for the

details.

A basic fact from ergodic theory is the existence of the Hopf decomposition

of the set E with respect to the flow (φn , n = 0, 1, 2, . . .): a decomposition of

E into a disjoint (modulo a null set with respect tom) union E = C∪D, such

that C and D are measurable φ-invariant sets, and the flow is conservative

on C and dissipative on D; we refer the reader to Krengel (1985) for the

details. This allows us to write

(8.5) Xn =

∫

C
fn(x) M(dx) +

∫

D
fn(x) M(dx) := XC

n +XD
n ,

n = 1, 2, . . ., a unique in law decomposition of a stationary symmetric α-

stable process into a sum of two independent such processes, one of which is

generated by a conservative flow, and the other is generated by a dissipative

flow. The i.i.d. SαS sequence is generated by a dissipative flow (i.e. the

component XC in the decomposition (8.5) vanishes). See Rosiński (1995).

Let

(8.6) Mn = max
j=1,2,...,n

|Xj |, n = 1, 2, . . . ,

be the sequence of the partial maxima. The following result was proved in

Samorodnitsky (2004): if the component XD generated by a dissipative flow

in the decomposition (8.5) does not vanish, then

(8.7) n−1/αMn ⇒ C Zα ,
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where C is a finite positive constant, and Zα is the standard Frechét extreme

value random variable with the distribution

(8.8) P
(

Zα ≤ z
)

= e−z−α
, z > 0 .

If, on the other hand, the component XD generated by a dissipative flow

vanishes, then

(8.9) n−1/αMn → 0

in probability as n→ ∞.

This is a phase transition that qualifies as a change from short mem-

ory to long memory. Let us call stationary SαS processes with only one

nondegenerate component in the decomposition (8.5) single component pro-

cesses. We parametrize the family of laws of single component stationary

SαS processes (with the scale fixed to, say, 1) by a space (E, E ,m), a flow

(φn , n = 0, 1, 2, . . .), a function f ∈ Lα(m) and a cocycle (an , n = 0, 1, 2, . . .).

The collection of these parameters forms the parameter space Θ. Then the

set Θ1 of parameters for which the flow is dissipative corresponds to short

memory processes, while the set Θ2 of parameters for which the flow is con-

servative corresponds to short memory processes, and the boundary between

the two is the phase transition boundary.

It is interesting that the partial maxima grow the fastest in the short mem-

ory case (including the i.i.d. case). In particular, if a stationary SαS pro-

cess has both a nondegenerate dissipative component and a nondegenerate

conservative component in (8.5), then the long range dependent conserva-

tive component will be hidden by the faster growing maximum of the short

memory dissipative component. Therefore, if we use the same parameters

as above to parametrize the family of laws of all stationary SαS processes

with the same scale, then the phase transition becomes less interesting, be-

cause in this case the short memory part Θ1 of the parameter space becomes

the set of the parameters in which the flow has a non-vanishing dissipative

component. This will allow for short memory processes with a nondegener-

ate long memory component generated by a conservative flow. This is an
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indication that for certain functionals of a stationary process it is important

to choose the parametrization carefully.

In the light of the present discussion let us revisit the question of short

or long memory in the increments of SSSI SαS processes considered in

Section 7. If Y is the Linear Fractional Stable Motion defined in (7.18)

and (7.19), then its increment process is a single component process gen-

erated by a dissipative flow (see Rosiński (1995)), hence a short memory

process, regardless of the value of index of stability α and Hurst exponent

H. Similarly, if Y is the Harmonizable Fractional Stable Motion defined in

(7.23), then its increment process is a single component process generated

by a conservative flow (see once againRosiński (1995)), hence a long mem-

ory process, once again regardless of the values of α and H. In fact, since

the increment process of the Harmonizable Fractional Stable Motion is not

ergodic, we can view this process as having infinite memory. On the other

hand, Cohen and Samorodnitsky (2006) constructed a family of SSSI SαS

process for which the increment process is also a single component process

generated by a conservative flow, but this time the process is ergodic (even

mixing). Thus we can view it as having finite but long memory.

It is not difficult to see that this classification of the memory of the incre-

ments of SSSI SαS processes is more informative than making a distinction

based on a single critical value of the Hurst exponent or on decay rates of

covariance substitutes such as covariation and codifference.

It is interesting that for stationary Gaussian processes the change in the

rate of increase of the partial maxima occurs “much later”, from the point

of view of the rate of decay of correlations, than what is needed to change

the rate of increase of the partial sums as discussed above. For example, if

the condition

Rn log n→ 0 as n→ ∞

is satisfied by the covariance function of a stationary Gaussian process (i.e.

if the the correlations decay faster than logarithmically fast), then the partial

maxima of the process increase at the same rate as in the i.i.d. case (and

even the constants are preserved!); see Berman (1964).
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More examples of a phase transition of the type discussed above are given

by infinite moving average models. These are models of the form

(8.10) Xn =

∞
∑

j=−∞

ϕn−j εj , n = 1, 2, . . . . ,

where (εn, n = . . . ,−1, 0, 1, 2, . . .) are i.i.d. noise variables, and (ϕn) are de-

terministic coefficients; the latter, clearly, have to satisfy certain conditions

for the series to converge and the process to be well defined. We will as-

sume that the noise variables have a finite mean, in which case the absolute

summability of the coefficients

(8.11)

∞
∑

j=−∞

|ϕj | <∞

guarantees that the series in (8.10) converges (absolutely) a.s., but weaker

assumptions (depending on the noise distribution) will suffice for a.s. con-

vergence as well. Obviously, if the moving average process (8.10) is well

defined, it is automatically a stationary process. It is also known as a linear

process (as is the ARMA model discussed in Section 3, which is a special

case of the infinite moving average model).

Fixing the distribution of the noise variables, the law of the stationary

moving average process is determined by its sequence of coefficients, so in

this case the parameter space Θ is the collection of sequences (ϕn) for which

the series (8.10) converges. Unless the noise variables are Gaussian or α-

stable, different choices of the parameter will affect the one-dimensional

marginal distributions of the moving average process by more than a scale

factor. Still, it makes sense to restrict the parameter space in an appropriate

way to keep the marginal distributions from varying too much.

The part of the parameter space Θ defined by (8.11) is sometimes viewed

as leading to short memory models, often under the additional assumption

(8.12)
∞
∑

j=−∞

ϕj 6= 0 ,

see e.g. Section 13.2 of Brockwell and Davis (1987). (Intuitively, the case of

the zero sum in (8.12) corresponds to negative memory, not dissimilar with

the Fractional Gaussian Noise with 0 < H < 1/2.) Obviously, the laws of
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i.i.d. sequences belong to this part of the parameter space. Is there a phase

transition that occurs when (8.11) breaks down?

Assume first that the noise variables have a finite variance σ2 > 0. Then

the necessary and sufficient condition for convergence of the series in (8.10)

is

(8.13) Sϕ :=

∞
∑

j=−∞

ϕ2
j <∞ .

For the purpose of normalization of the marginal distributions one can de-

fine the parameter space Θ to consist of the sequences of the coefficients

satisfying Sϕ = 1.

As before, a reasonable partition of Θ into two parts, corresponding to

short and long memory processes, is obtained depending on whether or

not the partial sums of the moving average process satisfy the invariance

principle with convergence to the Brownian motion. Moving average pro-

cesses with absolutely summable coefficient have this property (see Hannah

(1979)). However, also every parameter point satisfying, for example, con-

dition (5.37) in Hall and Heyde (1980) guarantees such an invariance prin-

ciple, hence a short memory process, and this condition may be satisfied

even when (8.11) fails. From this point of view, the summability of the

coefficients (8.11) is a sufficient condition for a short memory process, but

its failure does not automatically imply a long memory moving average.

Still concentrating on the partial sums of a stationary process, important

aspects of their behaviour are related to large deviations. Suppose that the

noise random variables satisfy

(8.14) Eeλε0 <∞

for λ ∈ (−ǫ, ǫ), some ǫ > 0, i.e. have exponentially fast decaying tails.

Let X = (X1,X2, . . .) be a stationary process. We say that the large

deviation principle holds for the sample averages of the process for some

speed sequence bn ↑ ∞ and upper and lower rate function Iu(·) and Il(·),
respectively,

(8.15) − inf
x∈A◦

Il(x) ≤ lim inf
n→∞

1

bn
log P

(

X1 + . . . +Xn

n
∈ A

)
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≤ lim sup
n→∞

1

bn
log P

(

X1 + . . . +Xn

n
∈ A

)

≤ − inf
x∈Ā

Iu(x)

for every Borel set A, where A◦ and Ā denote the interior and closure of a

set A, correspondingly. Detailed accounts of large deviations are in Dembo

and Zeitouni (1993) and Deuschel and Stroock (1989). The rate sequence

has the single most important role in the large deviation principle (8.15).

For i.i.d. sequences satisfying (8.14), the classical Cramer theorem says that

the large deviation principle holds with the speed bn = n, n = 1, 2, . . ..

Returning to infinite moving averages with the noise variables satisfying

the exponential tail condition (8.14), define a partition of the parameter

space Θ (consisting of the sequences of the coefficients satisfying Sϕ = 1 in

(8.13)) into parts Θ1 and Θ2 by declaring Θ1 to be that set of parameters

θ for which the large deviation principle holds under Pθ with the speed

bn ≡ n, and Θ2, corresponding to the long memory moving averages, to be

its complement. Similar partitions can be created based on the functional

version of the large deviation principle, known to hold in the i.i.d. case with

the linear speed by the Mogulskii theorem (Mogulski (1976) or Theorem

5.1.2 in Dembo and Zeitouni (1993), assuming that that (8.14) holds for all

λ ∈ R), or on other versions of the large deviation principle.

The fact that, under the assumptions (8.11) and (8.12), the moving av-

erage process satisfies the large deviation principle with the speed bn ≡ n

is well established, albeit under a variety of tail assumptions on the noise

variables: see Burton and Dehling (1990) and Jiang et al. (1995). How-

ever, such large deviation principle also holds under the weaker assumption

(5.13); see Djellout and Guillin (2001) or Wu (2004). (All these authors

establish their large deviation principles at different levels of generality, but

always covering the simplest one-dimensional version formulated in (8.15)).

From this point of view, the assumptions (8.11) and (8.12) are sufficient for

a short memory linear process, but not necessary.

Certain situations where the large deviation principle with a linear rate

no longer holds were presented in Ghosh and Samorodnitsky (2007). Specifi-

cally, they assumed that the coefficients (ϕn) are balanced regularly varying:

there is a regularly varying at infinity with exponent −β, 1/2 < β ≤ 1,



72 G. SAMORODNITSKY

function ψ : [0,∞) → [0,∞) and 0 ≤ p ≤ 1, such that

(8.16) lim
n→∞

φn

ψ(n)
= p and lim

n→∞

φ−n

ψ(n)
= 1 − p.

If β = 1, assume further that (8.11) fails.

Denote Ψn =
∑

1≤i≤n ψ(i), n = 1, 2, . . .. It turns that, under the balanced

regular variation assumption (8.16), the moving average process satisfies the

large deviation principle with the speed bn = n/Ψ2
n, n = 1, 2, . . .. Observe

that (by Karamata’s theorem) this speed sequence is regular varying with

exponent 2β − 1. Even in the case β = 1 the speed sequence has the form

bn = nLn, with a slowly varying function L converging to zero, and so it

grows strictly slower that linearly fast. More general versions of the large

deviation principle also exhibit similar behaviour; see Ghosh and Samorod-

nitsky (2007).

From this point of view, moving average processes with coefficients satis-

fying (8.16) are long range dependent.

Several other large deviation-related ways to look at short and long mem-

ory exist, the better known ones of which are related to ruin probabilities

and long strange segments; a recent extensive account of the former is in As-

mussen (2000), the latter have been analyzed since Erdós and Rényi (1970).

We will look at the behaviour of the long strange segments, defined as fol-

lows. For a Borel set A and n = 1, 2, . . . let

(8.17) Rn(A) = sup
{

j − i : 0 ≤ i < j ≤ n,
Xi+1 + . . .+Xj

j − i
∈ A

}

,

(defined to be equal to zero if the supremum is taken over the empty set).

If the closure of A does not contain the mean of the stationary process

(which we have assumed to be equal to zero), then the long segments over

which the sample mean belongs to A are “strange” because the law of large

numbers seems to break down there. For the i.i.d. sequence under the finite

exponential moment assumption (8.14),

(8.18)
1

infx∈A◦ Il(x)
≤ lim inf

n→∞

Rn(A)

log n
≤ lim sup

n→∞

Rn(A)

log n
≤ 1

infx∈Ā Iu(x)

with probability 1, where Il and Iu are the rate functions in the large devi-

ation principle (8.15); see Theorem 3.2.1 in Dembo and Zeitouni (1993).
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Let Θ1 be that part of the parameter space Θ (still consisting of the

sequences of the coefficients satisfying Sϕ = 1 in (8.13)) where the length of

the long strange segments grows at the logarithmic rate, as in (8.18), and

Θ2 to be its complement. Since the statement (8.18) is set-dependent, one

can restrict the test set A to the form A = {x : |x − EX| > θ} for small

θ > 0. It was shown in Ghosh and Samorodnitsky (2007) that, under the

assumptions (8.11) and (8.12), the logarithmic rate of increase still holds

for the long strange segments (but with a generally different rate functions

in (8.18)), whereas under the assumption (8.16) of the balanced regular

variation assumption, the long strange segments grow at a strictly faster

rate: the rate is now h(log n), where the function h : (0,∞) → (0,∞)

satisfies

h(s)
[

Ψ
(

⌊h(s)⌋
)]2 → 1 as s→ ∞ .

Note that the function h is regularly varying with exponent (2β − 1)−1.

Therefore, also from the point of view of the long strange segments, the

assumptions (8.11) and (8.12) are sufficient for a short memory of the moving

average process, while the balanced regular variation assumption (8.16) is

sufficient for long memory.

In summary, the change from short to long memory in infinite moving

average processes with finite exponential moments as in (8.14) is of a phase

transition nature. Only sufficient conditions for being on either side of the

boundary are known at the moment; future research will undoubtedly tell

us more about the description of the boundary in terms of the coefficients

in the model.

We conclude by briefly looking at related phase transitions for infinite

moving averages, where the noise variables do not have finite exponential

moments. Suppose that the noise variables have, in fact, balanced regularly

varying tails; this is a notion slightly more general than the balanced power

tails in (2.5). Specifically, assume that

(8.19)











P (|ε0| > λ) = L(λ) λ−α ,

limλ→∞
P (ε0 > λ)

P (|ε0| > λ)
= pε, limλ→∞

P (ε0 < −λ)

P (|ε0| > λ)
= qε ,
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as λ→ ∞, for some α > 1 and 0 < pε = 1−qε ≤ 1. Here L is a slowly varying

function at infinity. Note that, if α ≤ 2, then the assumption of the finite

variance of the noise variables may fail, and it certainly does fail if α < 2. If

α > 2, then the variance of the noise variables is still finite, and the square

summability condition (8.13) is still the necessary and sufficient condition

for the linear process (8.10) to be well defined; in the case 1 < α ≤ 2 a

sufficient condition is

(8.20)

∞
∑

j=−∞

|ϕj |α−ǫ <∞ for some ǫ > 0.

In both cases the resulting moving average process is a stationary process

whose 1-dimensional marginal tails are proportional to the tails of the noise

variables; see Mikosch and Samorodnitsky (2000).

Once again, let Θ be the parameter space appropriate to the situation at

hand: this will be the space of the coefficients satisfying (8.13) is α > 2,

or the space of the coefficients satisfying (8.20) if 1 < α ≤ 2. Keeping

the marginal distributions of the process from varying too much as the

parameter changes is desirable; with “power-like” tails it is often a good

idea to control the tails: the normalization
∑

j |ϕj |α = 1 achieves that (see

Mikosch and Samorodnitsky (2000)), and it can be taken as a part of the

description of the parameter space.

Full large deviation principles have not been extended for stochastic pro-

cesses with “power-like” tails far beyond the i.i.d. case (see Nagaev (1979)

and Hult et al. (2005) for what happens in that case), so we will only con-

sider the long strange segments. It turns out that the absolutely summable

coefficients satisfying (8.11) still belong to that part Θ1 of the parameter

space such that, under the law Pθ with θ ∈ Θ1 the long strange segments of

the moving average process behave as in the i.i.d. case, while certain bal-

anced regularly varying coefficients belong to that part Θ2 of the parameter

space such that, under the law Pθ with θ ∈ Θ2 the long strange segments of

the moving average process behave in a drastically different way. We need

to modify the assumption of the balanced regularly varying coefficients in
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(8.16) as follows: assume that (8.16) is satisfied with 1/2 < β < 1 if α > 2,

and with 1/α < β < 1 if 1 < α ≤ 2.

We consider long strange intervals defined in (8.17), with test sets of the

form A = (θ,∞) for θ > 0 (these are “strange” because of the assumption

of zero mean). Let F denote the distribution function of the noise random

variable |ε0|, and for n ≥ 1 define

(8.21) an =

(

1

1 − F

)←

(n) ,

where for a nondecreasing function U , U←(y) = inf{s : U(s) ≥ y}, y > 0, is

the left continuous inverse of U . Clearly (an) is regularly varying at infinity

with exponent 1/α. It was proved by Mansfield et al. (2001) that under the

absolutely summability assumption (8.11),

a−1
n Rn

(

(θ,∞)
)

⇒ M(ϕ)

θ
Zα ,

where Zα is the standard Frechét random variable defined in (8.8), and

M(ϕ) = (pεM+(ϕ)α + qεM−(ϕ)α)1/α ,

with

M+(ϕ) = max







sup
−∞<k<∞





k
∑

j=−∞

ϕj





+

, sup
−∞<k<∞





∞
∑

j=k

ϕj





+







and

M−(ϕ) = max







sup
−∞<k<∞





k
∑

j=−∞

ϕj





−

, sup
−∞<k<∞





∞
∑

j=k

ϕj





−







.

Therefore, under the assumption (8.11), the length of the long strange seg-

ments grows at the rate an (which is regularly varying at infinity with ex-

ponent 1/α); this rate is the same as the rate of growth of the long strange

segments for i.i.d. sequences with the same marginal tails. Note that the

assumption (8.12) is not needed here.

On the other hand, under the assumption (8.16) of the balanced regularly

variation of the coefficients (modified to the present case of the “power-like”

tails), it was shown in Rachev and Samorodnitsky (2001) that

ã−1
n Rn

(

(θ,∞)
)

⇒ p
1/(αβ)
ε

(

p1/β + q1/β
)

(1 − β)1/βθ1/β
Zαβ ,
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where Zαβ is, once again, the standard Frechét random variable, but this

time with the exponent equal to αβ, and the sequence (ãn) satisfies

ψ(ãn)

an
→ 1 as n→ ∞.

Therefore, under the (modified) assumption of the balanced regularly vari-

ation of the coefficients, the length of the long strange segments grows at

the rate ãn, which is regularly varying at infinity with exponent 1/(αβ) and,

hence, faster than in the case of absolutely summable coefficients.

We conclude that the behaviour of long strange segments in the infi-

nite moving average processes with noise variables with balanced regularly

varying tails exhibits a phase transition (similar to that in the case of linear

processes with the “light-tailed” noise variables) that may qualify as a phase

transition that separates between short memory and long memory processes.

The assumption of absolute summability of the coefficients is sufficient for

a short memory process, while the assumption of a certain regular variation

of the coefficients is sufficient for a long memory process.

In summary, it appears that connecting the notion of long range depen-

dence to certain types of phase transitions is promising. It fits well with

our intuition of the term “long memory” describing a model that is out of

the ordinary. Furthermore, it allows us to concentrate on the behaviour of

really important functionals. Much remains to be done to clarify both possi-

ble types of such phase transitions and the relevant boundaries for concrete

families of stochastic processes.
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X:23–31.

R. Dobrushin (1979): Gaussian and their subordinated self-similar random

generalized fields. Ann. Probability 7:1–28.

R. Dobrushin and P. Major (1979): Non-central limit theorems for non-

linear functions of Gaussian fields. Zeitschrift für Wahrscheinlichkeitsthe-

orie und verwandte Gebiete 50:27–52.

R. Douc, F. Roueff and P. Soullier (2006): On the existence of some

ARCH(∞) processes. Preprint.

R. Dudley (1967): The sizes of compact subsets of Hilbert space and



80 G. SAMORODNITSKY

continuity of Gaussian processes. J. Funct. Analysis 1:290–330.

R. Durrett (1996): Probability: Theory and Examples. Duxbury Press,

Belmont, California, 2nd edition.

R. Durrett and S. Resnick (1978): Functional limit theorems for depen-

dent variables. Annals of Probability 6:829–846.

P. Embrechts and M. Maejima (2002): Selfsimilar Processes. Princeton

University Press, Princeton and Oxford.

R. Engle (1982): Autoregressive conditional heteroskedasticity with esti-

mates of the variance of U.K. inflation. Econometrica 50:987–1008.
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