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CLUSTERING OF LARGE DEVIATIONS IN MOVING
AVERAGE PROCESSES: THE LONG MEMORY REGIME

By Arijit Chakrabarty and Gennady Samorodnitsky ∗

Indian Statistical Institute, Kolkata and Cornell University

We investigate how large deviations events cluster in the frame-
work of an infinite moving average process with light-tailed noise and
long memory. The long memory makes clusters larger, and the asymp-
totic behaviour of the size of the cluster turns out to be described
by the first hitting time of a randomly shifted fractional Brownian
motion with drift.

1. Introduction. We consider an infinite moving average process of
the form

(1.1) Xn =

∞∑
i=0

aiZn−i , n ≥ 0 ,

where the noise variables (Zn : n ∈ Z) are assumed to bef i.i.d. non-
degenerate random variables. The noise distribution FZ is assumed have
finite exponential moments:

(1.2)

∫
R
etz FZ(dz) <∞ for all t ∈ R .

Furthermore, assuming that the noise is centred:

(1.3)

∫
R
z FZ(dz) = 0 ,

the series defining the process in (1.1) converges if and only if the coefficients
a0, a1, a2 . . . satisfy

(1.4)

∞∑
j=0

a2
j <∞ .
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2 CHAKRABARTY AND SAMORODNITSKY

In this case (Xn) is a zero mean stationary ergodic process. For ε > 0 we
consider the sequence of large deviation events

(1.5) Ej(n, ε) =

 1

n

n+j−1∑
i=j

Xi ≥ ε

 , j ≥ 0.

By stationarity, each event Ej(n, ε) is equally rare, and we are interested in
the cluster of these events that occur given that the event E0(n, ε) occurs.

In Chakrabarty and Samorodnitsky (2022) the short memory case was
considered. In this context, “short memory” corresponds to the case

(1.6)
∞∑
n=0

|an| <∞ and

∞∑
n=0

an 6= 0.

In this short memory case the conditional on E0(n, ε) law of the sequence(
1(Ej(n, ε), j = 1, 2, . . .) converges weakly, as n → ∞, to the law of a

sequence with a.s. finitely many non-zero entries. the total number Dε of
the non-zero entries turns out to scale as ε−2, and ε2Dε has an interesting
weak limit as ε→ 0. We refer the reader to Chakrabarty and Samorodnitsky
(2022) for details, and a minor technical condition required for the above
statements.

In the present paper we are interested in the long memory case. For the
moving average processes (1.1) “long memory” refers to the case when the
coefficients (aj) satisfy the square summability assumption (1.4) but not the
absolute summability assumption in (1.6). A typical assumption in this is

(1.7) (an) is regularly varying with exponent − α, 1/2 < α < 1;

see Samorodnitsky (2016). It turns out that, in this case (under certain
technical assumptions, an example of which is below), the conditional on
E0(n, ε) law of the sequence

(
1(Ej(n, ε), j = 1, 2, . . .) converges weakly, as

n → ∞, to the degenerate probability measure δ(1,1,...). That is, once the
event E0(n, ε) occurs, the events (Ej(n, ε)) become very likely. In order to
understand their structure we concentrate on the random variables

(1.8) In(ε) = inf {j ≥ 1 : Ej(n, ε) does not occur} , n ≥ 1

and establish a weak limit theorem for this sequence under a proper scaling.
Interestingly, the limit turns out to be the law of the first hitting time of a
randomly shifted fractional Brownian motion with drift.

The main result containing the above limit theorem and the technical
assumptions it requires are in Section 2. The proof of the main theorem
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CLUSTERING OF LARGE DEVIATIONS 3

requires a long sequence of preliminary results, all of which are presented in
that section. Finally, some useful facts needed for the proofs are collected in
Section 3.

2. The assumptions and the main result. Our result on clustering
of large deviation events in the long memory case will require a number of
assumptions that we state next. First of all, we will replace the assumption
of regular variation (1.7) by the asymptotic power function assumption

(2.1) an ∼ n−α, 1/2 < α < 1, and is eventually monotone.

There is no doubt that the results of the paper hold under the more general
regular variation assumption as well. The extra generality will, however,
require making an already highly technical argument even more so. The
potentially resulting lack of clarity makes the added generality less valuable.
The same is true about the eventual monotonicity assumption.

We will need additional assumptions on the distribution of the noise vari-
ables. We will assume that some θ0 > 0,

(2.2) sup
|θ|≤θ0

∫ ∞
−∞

t2
∣∣∣∣∫ ∞
−∞

e(it+θ)z FZ(dz)

∣∣∣∣ dt <∞ .

Next, let

(2.3) σ2
Z =

∫
R
z2 FZ(dz)

be the variance of the noise. Denote

(2.4) κ = the smallest integer >
4α− 1

2− 2α
.

In other words, κ =
[
(1 + 2α)/(2 − 2α)

]
. We assume that a generic noise

variable Z satisfies

(2.5) EZi = EGi for 1 ≤ i ≤ κ,

where G ∼ N(0, σ2
Z).

Remark 2.1. It is standard to verify that (2.2) implies that the noise
distribution has a twice continuously differentiable density fZ . One the other
hand, a sufficient condition for (2.2) is that the noise distribution has a four
times continuously differentiable density fZ such that∫ ∞

−∞
eθ0|x|

∣∣∣∣ didxi fZ(x)

∣∣∣∣ dx <∞ for i = 1, 2, 3, 4.
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4 CHAKRABARTY AND SAMORODNITSKY

The moment equality assumption (2.5) restricts how far the the noise
distribution can be from a normal distribution. Note that in the range 1/2 <
α < 5/8 we have κ = 2, in which case the assumption is vacuous. Since κ ≥ 2
for all α ∈ (1/2, 1), (1.3) is implied by (2.5).

To state our main result, we need to introduce several key quantities. Let

(2.6) β =
4− 4α

3− 2α
∈ (0, 1)

and

(2.7) H = 3/2− α ∈ (1/2, 1).

We denote by (BH(t) : t ≥ 0) the standard fractional Brownian motion with
Hurst index H, i.e. a zero mean Gaussian process with continuous paths and
covariance function

(2.8) E (BH(s)BH(t)) =
1

2

(
s2H + t2H − |s− t|2H

)
, s, t ≥ 0 .

If T0 is a standard exponential random variable independent of the frac-
tional Brownian motion, then
(2.9)

τε = inf
{
t ≥ 0 : BH(t) ≤ (2Cα)−1/2εt2H − (Cα/2)1/2σ2

Zε
−1T0

}
, ε > 0,

is an a.s. finite and strictly positive random variable. Here σ2
Z is the variance

of the noise in (2.3) and

(2.10) Cα =
B(1− α, 2α− 1)

(1− α)(3− 2α)
,

with B(·, ·) the standard Beta function.
We are now in a position to state the main result of this paper.

Theorem 2.1. Assume the finite exponential moment condition (1.2),
the power-type condition (2.1) on the coefficients, the regularity condition
(2.2) and the moment equality condition (2.5). Then for every ε > 0 the
first non-occurrence times (1.8) satisfy

(2.11) P
(
n−βIn(ε) ∈ ·

∣∣E0(n, ε)
)
⇒ P (τε ∈ ·) , n→∞ .
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CLUSTERING OF LARGE DEVIATIONS 5

Remark 2.2. It is worthwhile to observe that the limit law obtained
in Theorem 2.1 depends on the noise distribution only through its vari-
ance σ2

Z . This can be understood by noticing that in the long memory case
considered in this paper we have Var(X1 + · · ·+Xn)� n; see Lemma 2.1 be-
low. Therefore, the events Ej(n, ε) should be viewed as moderate deviation
events, not large deviation events. It has been observed in many situations
that moderate deviation events are influenced by the Gaussian weak limit
of the quantities of interest. At the intuitive level, this explains why it is the
variance of the process that appears in the limit.

For comparison, in the short memory case (1.6), we have Var(X1 + · · ·+
Xn) ∼ cn for some c > 0, the events Ej(n, ε) should be viewed as large
deviation events, and their behaviour depends on much more than just the
variance of the noise. See Chakrabarty and Samorodnitsky (2022) for details.

We start on the road to proving Theorem 2.1 by establishing certain basic
estimates that will be used throughout the paper. Denote

(2.12) Aj =

j∑
i=0

ai, j ∈ Z ,

with the convention that a sum (or an integral) is zero if the lower limit
exceeds the upper limit (so that Aj = 0 for j ≤ −1, for example). Let

(2.13) Sn =
n−1∑
i=0

Xi, n ≥ 1 ,

and denote

(2.14) σ2
n = Var(Sn), n ≥ 1 .

In the sequel we use the following notation. We will denote by

(2.15) ϕZ(t) = log

(∫
R
etz FZ(dz)

)
, t ∈ R

the log-Laplace transform of a noise variable. We will frequently use the
obvious facts

(2.16) ϕ is convex and ϕZ(x) ∼ x2σ2
Z/2, x→ 0,

and

(2.17) ϕ′Z is continuous, nondecreasing and ϕ′Z(x) = xσ2
Z +O(x2), x→ 0.
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6 CHAKRABARTY AND SAMORODNITSKY

We will write Gθ for the probability measure obtained by exponentially
tilting the law FZ by θ ∈ R. That is,

(2.18) Gθ(dz) =
(
EeθZ

)−1
eθzFZ(dz).

It is clear that, as θ → 0,

∫
R
z Gθ(dz) ∼ θσ2

Z ,

∣∣∣∣∫
R
z Gθ(dz)− θσ2

Z

∣∣∣∣ = O(θ2) and = O(|θ|3) if κ ≥ 3,

(2.19)

∫
R
|z|kGθ(dz)→

∫
R
|z|k F (dz), k = 1, 2, . . . .

Lemma 2.1. Asymptotically we have

(2.20) Aj ∼ (1− α)−1j1−α, j →∞

and

(2.21) σ2
n ∼ Cασ2

Zn
3−2α, n→∞ .

Furthermore, for any t > 0, as n→∞,

(2.22)

[nβt]∑
i=0

(Ai −Ai−n)2 ∼ K1t
3−2αn4−4α ,

and

(2.23)
n∑

i=n−[nβt]+1

(Ai−Ai−n)2 ∼
n+[nβt]∑
i=n+1

(Ai−Ai−n)2 ∼ (1−α)−2n2−2α+βt ,

with

(2.24) K1 = (1− α)−2(3− 2α)−1 .

Finally, for any t > 0, as n→∞,
(2.25)

σ2
Z

σ2
n

∞∑
i=0

(Ai −Ai−n)
(
Ai+[nβt] −Ai+[nβt]−n

)
= 1− n1−2αt3−2α(1 + o(1)) .
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CLUSTERING OF LARGE DEVIATIONS 7

Proof. The claim (2.20) is, of course, an immediate consequence of the
assumption (2.1). For (2.21), first note that

Rn = Cov(X0,Xn) ∼ σ2
Z

∞∑
j=1

j−α(j + n)−α

∼ n1−2ασ2
Z

∫ ∞
0

x−α(1 + x)−α dx

= Cασ
2
Z(1− α)(3− 2α)n1−2α

as n→∞. Therefore,

σ2
n =

n−1∑
i=−(n−1)

(n− |i|)R|i| ∼ 2Cασ
2
Z(1− α)(3− 2α)

n−1∑
i=0

(n− i)i1−2α

∼ 2Cασ
2
Z(1− α)(3− 2α)n3−2α

∫ 1

0
(1− x)x1−2α dx = Cασ

2
Zn

3−2α ,

which is (2.21). Next, for a fixed t > 0 and large n, by (2.20) and the fact
that β < 1,

[nβt]∑
i=0

(Ai −Ai−n)2 =

[nβt]∑
i=0

A2
i ∼ (1− α)−2

[nβt]∑
i=1

i2−2α ∼ K1

(
nβt
)3−2α

,

proving (2.22). Similarly,

n∑
i=n−[nβt]+1

(Ai −Ai−n)2 ∼
n∑

i=n−[nβt]+1

A2
n ∼ (1− α)−2nβ+2−2αt ,

showing the first equivalence in (2.23) and the second equivalence can be
shown in the same way.

For (2.25), we start by writing

(2.26) Sn =
∞∑
j=0

(Aj −Aj−n)Zn−1−j , n ≥ 1 ,

so that

σ2
n = σ2

Z

∞∑
j=0

(Aj −Aj−n)2 , n ≥ 1 .(2.27)
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8 CHAKRABARTY AND SAMORODNITSKY

Therefore, for large n,

σ2
n

σ2
Z

−
∞∑
i=0

(Ai −Ai−n)(Ai+[nβt] −Ai+[nβt]−n)

=
1

2

[nβt]−1∑
i=0

(Ai −Ai−n)2 +
∞∑
i=0

(
Ai+[nβt] −Ai+[nβt]−n −Ai +Ai−n

)2



=
1

2

[
n−1∑
i=0

(
Ai −Ai−[nβt]

)2

(2.28)

+
∞∑

i=n−[nβt]

(
Ai+[nβt] −Ai+[nβt]−n −Ai +Ai−n

)2
]
.

By (2.20),

n−1∑
i=0

(
Ai −Ai−[nβt]

)2
∼ (1− α)−2

n−1∑
i=1

(
i1−α − (i− [nβt])1−α

+

)2

∼ n4−4αt3−2α(1− α)−2

∫ ∞
0

[
y1−α − (y − 1)1−α

+

]2
dy

as n→∞. By (3.1) with H = 3/2− α,∫ ∞
0

[
y1−α − (y − 1)1−α

+

]2
dy(2.29)

= [(3− 2α) (1− α)]−1 sin(πα)

π
Γ(2α− 1)Γ(2− α)2

=
1− α
3− 2α

B (2α− 1, 1− α) = (1− α)2Cα,

so

(2.30)
n−1∑
i=0

(
Ai −Ai−[nβt]

)2
∼ Cαt3−2αn4−4α, n→∞ .

Since

∞∑
i=n

(
Ai −Ai−[nβt]

)2
= O

(
n2β

∞∑
i=n

i−2α

)
= O

(
n2β+1−2α

)
= o
(
n4−4α

)
,

(2.31)
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CLUSTERING OF LARGE DEVIATIONS 9

we conclude also that

(2.32)
∞∑
i=0

(
Ai −Ai−[nβt]

)2
∼ Cαt3−2αn4−4α, n→∞ .

It follows from (2.31) and (2.32) that

∞∑
i=n−[nβt]

(
Ai+[nβt] −Ai+[nβt]−n −Ai +Ai−n

)2

=
∞∑
j=0

[
−Aj +Aj−[nβt] +

(
Aj+n −Aj+n−[nβt]

)]2
∼ Cαt3−2αn4−4α .

In combination with (2.28) and (2.30) we obtain

σ2
n

σ2
Z

−
∞∑
i=0

(Ai −Ai−n)(Ai+[nβt]Ai+[nβt]−n) ∼ Cαt3−2αn4−4α .

Dividing both sides by σ−2
Z σ2

n and appealing to (2.21), (2.25) follows.

We now consider certain large deviations of the partial sum Sn under a
change of measure. With an eye towards a subsequent application, we allow
the partial sum, given in the form (2.26), to be “corrupted”. For n ≥ 1 and
t ≥ 0 we define

ξ1
n(t) =

[nβt]∑
i=1

(Ai −Ai−n)Zn−i−1 ,(2.33)

ξ2
n(t) =

n−1∑
i=n−[nβt]

(Ai −Ai−n)Zn−i−1 ,(2.34)

ξ3
n(t) =

n+[nβt]∑
i=n+1

(Ai −Ai−n)Zn−i−1 .(2.35)

Lemma 2.2. Fix t1, t2, t3 > 0 and denote

(2.36) S̄n = Sn −
3∑
i=1

ξin(ti), n ≥ 1 .

Let (γn), (θn) and (ηn) be real sequences satisfying

γn = o
(
n3/2−α

)
, θn = o

(
n−(1−α)

)
, 1� ηn � n1/2 .
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10 CHAKRABARTY AND SAMORODNITSKY

If S̃n is a random variable with the law

(2.37) P
(
S̃n ∈ dx

)
=
(
E(eθnS̄n)

)−1
eθnxP

(
S̄n ∈ dx

)
, n ≥ 1 ,

then for all x ∈ R and h > 0,
(2.38)

P
(
ηnσ

−1
n

(
S̃n − E(S̃n) + γn

)
∈ [x, x+ h]

)
∼ η−1

n (2π)−1/2h, n→∞.

Furthermore,

(2.39) sup
n≥1, x∈R

ηnP
(
ηnσ

−1
n S̃n ∈ [x, x+ 1]

)
<∞ .

Proof. Let (Z̃ni, n ≥ 1, i ≥ 0) be a collection of independent random
variables such that the law of Z̃ni is G(Ai−Ai−n)θn in the notation of (2.18).
Then for large n,
(2.40)

S̃n
d
= A0Z̃n0 +(An−A0)Z̃nn+

n−[nβt2]−1∑
i=[nβt1]+1

AiZ̃ni+

∞∑
i=n+[nβt3]+1

(Ai−Ai−n)Z̃ni .

The proof applies to (2.40) the bound (3.2) in the appendix, with n =∞.
For any z ∈ R∣∣∣∣P (S̃n − E(S̃n) ≤ z

√
Var(S̃n)

)
− Φ(z)

∣∣∣∣(2.41)

≤ Cu
(

Var(S̃n)
)−3/2

∞∑
i=0

|Ai −Ai−n|3E
(
|Z̃ni − EZ̃ni|3

)
, n ≥ 1 .

It is immediate from (2.1) that

(2.42) sup
i≥0
|Ai −Ai−n| = O(n1−α) ,

so that
lim
n→∞

θn sup
i≥0
|Ai −Ai−n| = 0 .

It follows from (2.19) that

(2.43) EZ̃ni → 0, Var(Z̃ni)→ σ2
Z , E

(
|Z̃ni − EZ̃ni|3

)
→
∫ ∞
−∞
|z3|FZ(dz)
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CLUSTERING OF LARGE DEVIATIONS 11

uniformly in i as n→∞. Since it is an elementary conclusion from Lemma
2.1 that for any κ > 1/α,

∞∑
i=0

|Ai −Ai−n|κ = O
(
nκ+1−κα),(2.44)

it follows from (2.41) that

sup
z∈R

∣∣∣∣P (S̃n − E(S̃n) ≤ z
√

Var(S̃n)

)
− Φ(z)

∣∣∣∣
= O

(
n4−3α

(
Var(S̃n)

)−3/2
)
.

Using (2.43) again we see that

Var(S̃n) ∼ σ2
n −

3∑
i=1

Var
(
ξin(ti)

)
∼ Cασ2

Zn
3−2α,(2.45)

with the second equivalence following from various claims in Lemma 2.1.
Thus,
(2.46)

sup
z∈R

∣∣∣∣P (S̃n − E(S̃n) ≤ z
√

Var(S̃n)

)
− Φ(z)

∣∣∣∣ = O(n−1/2) = o
(
η−1
n

)
.

Therefore, for x ∈ R and h > 0, as n→∞,

P
(
ηnσ

−1
n

(
S̃n − E(S̃n) + γn

)
∈ [x, x+ h]

)
= o

(
η−1
n

)
+

∫
R
1
[
Var(S̃n)−1/2(xη−1

n σn − γn) ≤ z

≤ Var(S̃n)−1/2((x+ h)η−1
n σn − γn)

]
φ(z) dz,

where φ is the standard normal density. The assumptions on γn and ηn along
with (2.45) imply that the integration interval shrinks towards the origin.
Thus, the integral above is asymptotically equivalent to η−1

n φ(0)h, and (2.38)
follows. Boundedness of φ in the above integral establishes (2.39).

We now look more closely at the processes defined in (2.33), (2.34) and
(2.35). The next lemma describes the limiting distribution of their incre-
ments under the same change of measure as in the previous lemma.
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12 CHAKRABARTY AND SAMORODNITSKY

Lemma 2.3. Suppose that θn ∈ R satisfies θn = o
(
n−(1−α)

)
. Fix 0 ≤

s < t and consider random variables with the laws

P (Uni ∈ dx) = cnie
θnxP

(
ξin(t)− ξin(s) ∈ dx

)
, i = 1, 2, 3, n ≥ 1 ,

with appropriate cni. Then, as n→∞,

(2.47) n−(2−2α) (Un1 − E(Un1))⇒ N
(
0,K1σ

2
Z

(
t3−2α − s3−2α

))
,

where K1 is given in (2.24), and for i = 2, 3,

(2.48) n−(1−α+β/2) (Uni − E(Uni))⇒ N
(
0, (1− α)−2σ2

Z(t− s)
)
.

Proof. For large n,

Un1
d
=

[nβt]∑
i=[nβs]+1

AiZ̃ni

with (Z̃ni) as in the previous lemma. That is, Un1 − E(Un1) is the sum of
independent zero mean random variables. By (2.43) and (2.22),

Var(Un1) ∼ σ2
Z

[nβt]∑
i=[nβs]+1

A2
i ∼ K1σ

2
Zn

4−4α
(
t3−2α − s3−2α

)
,

and a similar calculation using the third moment bound in (2.43) verifies
the Lindeberg conditions of the central limit theorem. Hence (2.47) follows,
and the calculations for (2.48) are similar.

Consider the overshoot defined by

(2.49) T ∗n = Sn − nε, n ≥ 1 .

Conditionally on the event E0 = E0(n, ε) in (1.5) the overshoot is nonnega-
tive. The next lemma is a joint weak limit theorem for the joint law of the
overshoot and the processes defined in (2.33), (2.34) and (2.35). The joint
law is computed conditionally on E0.

Lemma 2.4. Let

(2.50) ζn = nε/σ2
n, n ≥ 1 ,
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Conditionally on E0, as n→∞,(
ζnT

∗
n ,

n2α−2

ξ1
n(t)−

[nβt]∑
i=1

Ai

∫ ∞
−∞

z GζnAi(dz)

 , t ≥ 0

 ,

(
nα−β/2−1

ξ2
n(t)−

n−1∑
i=n−[nβt]

Ai

∫ ∞
−∞

z GζnAi(dz)

 , t ≥ 0
)
,

(
nα−β/2−1

ξ3
n(t)−

n+[nβt]∑
i=n+1

(Ai −Ai−n)

∫ ∞
−∞

z Gζn(Ai−Ai−n)(dz)

 , t ≥ 0
))

⇒
(
T0,

(
K

1/2
1 σZB1(t3−2α), t ≥ 0

)
,(

(1− α)−1σZB2(t), t ≥ 0
)
,
(
(1− α)−1σZB3(t), t ≥ 0

))
,

in finite dimensional distributions, where T0 is a standard exponential ran-
dom variable independent of independent standard Brownian motions B1,
B2, and B3, K1 is the constant in (2.24) and Gθ is the exponentially tilted
law in (2.18).

Proof. Denote
(2.51)

ψn(s) =
σ2
n

n2
logE

[
exp

(
s
n

σ2
n

Sn

)]
=
σ2
n

n2

∞∑
j=0

ϕZ
(
σ−2
n n(Aj −Aj−n)s

)
,

where the second equality follows from (2.26). By (2.16), (2.21) and (2.42)
we see that

(2.52) lim
n→∞

ψn(s) = s2/2

uniformly for s in a compact set. Furthermore, the sum in (2.51) can be
differentiated term by term, and it follows by (2.17), (2.21) and (2.42) that

(2.53) lim
n→∞

ψ′n(s) = s,

also uniformly on compact sets. Since ψ′n is increasing and continuous, for
large n there exists a unique τn > 0 such that

(2.54) ψ′n(τn) = ε .
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14 CHAKRABARTY AND SAMORODNITSKY

It is immediate that τn → ε as n→∞. Denoting

(2.55) θn = σ−2
n nτn, n ≥ 1 ,

we have (
E
(
eθnSn

))−1
E
(
Sne

θnSn
)

= nε.(2.56)

Fix k ≥ 1 and for each i = 1, 2, 3 fix points 0 = ti0 < ti1 < . . . < tik.
Denote

S̄n = Sn −
3∑
i=1

ξin(tik), n ≥ 1 .

Let Unij , n ≥ 1, i = 1, 2, 3, j = 1, . . . , k, S̃n, n ≥ 1 be independent ran-
dom variables, with

P (Unij ∈ dx)

=
(
E
(
eθn(ξin(tij)−ξin(ti j−1))

))−1
eθnxP

(
ξin(tij)− ξin(ti j−1) ∈ dx

)
,

and

P
(
S̃n ∈ dx

)
=
(
E
(
eθnS̄n

))−1
eθnxP

(
S̄n ∈ dx

)
for n ≥ 1, i = 1, 2, 3 and j = 1, . . . , k. Let

(2.57) µnij = E (Unij) , µn = E(S̃n).

It follows from (2.56) that

(2.58) µn +

3∑
i=1

k∑
j=1

µnij = nε, n ≥ 1 .

Let t > 0 and (αij) ⊂ R. We have

P

({
T ∗n > tσ2

n/nε
}
∩
( k⋂
j=1

{
n2α−2

(
ξ1
n(t1j)− ξ1

n(t1 j−1)− µn1j

)
> α1j

})
∩
( ⋂

2≤i≤3, 1≤j≤k

{
nα−β/2−1

(
ξin(tij)− ξin(ti j−1)− µnij

)
> αij

}))
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CLUSTERING OF LARGE DEVIATIONS 15

=

∫
R3k+1

1

(
x > nε+ tσ2

n/nε−
3∑
i=1

k∑
j=1

sij

)
1
(
s1j > n2−2αα1j + µn1j , 1 ≤ j ≤ k

)
1
(
sij > n1−α+β/2αij + µnij , i = 2, 3 , j = 1, . . . , k

)
P (S̄n ∈ dx)

3∏
i=1

k∏
j=1

P
(
ξin(tij)− ξin(ti j−1) ∈ dsij

)

=

∫
R3k+1

1

(
x > nε+ tσ2

n/nε−
3∑
i=1

k∑
j=1

sij

)
1
(
s1j > n2−2αα1j + µn1j , 1 ≤ j ≤ k

)
1
(
sij > n1−α+β/2αij + µnij , i = 2, 3 , 1 ≤ j ≤ k

)
exp

(
−θnx− θn

3∑
i=1

k∑
j=1

sij

)
P
(
S̃n ∈ dx

)

E
(
eθnSn

) 3∏
i=1

k∏
j=1

P (Unij ∈ dsij)

= cn

∫
R3k

1
(
min
i,j

(uij − αij) > 0
) k∏
j=1

P
(
n2α−2

(
Un1j − µn1j

)
∈ du1j

)
3∏
i=2

k∏
j=1

P
(
nα−β/2−1

(
Unij − µnij

)
∈ duij

)
∫
R
e−z1

(
z > tθnσ

2
n/nε

)
P
(
θn
(
S̃n − µn + γn(u11, . . . , u3k)

)
∈ dz

)
,

with

(2.59) cn = e−θnnεE
(
eθnSn

)
and

γn(u11, . . . , u3k) = n2−2α
k∑
j=1

u1j + n1−α+β/2
3∑
i=2

k∑
j=1

uij .
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16 CHAKRABARTY AND SAMORODNITSKY

Let θn be as above and ηn = σnθn. For n ≥ 1, we introduce the notation

fn(u11, . . . , u3k)

=ηn

∫ ∞
0

e−z1
(
z > tθnσ

2
n/nε

)
P
(
θn
(
S̃n − µn + γn(u11, . . . , u3k)

)
∈ dz

)
.

Fix (uij) and let u
(n)
ij → uij as n → ∞ for all i, j. Let us denote γn =

γn
(
u

(n)
11 , . . . , u

(n)
3k

)
. With θn and ηn already defined, we use Lemma 2.2 with

this γn. It is elementary to check that the hypothesis of the lemma are
satisfied. Since tθnσ

2
n/nε→ t, it follows from (2.38) that for all fixed T > t,∫

R
e−z1

(
tθnσ

2
n/nε < z ≤ T

)
P
(
θn
(
S̃n − µn + γn

)
∈ dz

)
∼ η−1

n (2π)−1/2

∫ T

t
e−z dz,

and if follows from (2.39) that

lim
T→∞

lim sup
n→∞

ηn

∫
R
e−z1

(
z > T

)
P
(
θn
(
S̃n − µn + γn

)
∈ dz

)
= 0 ,

showing that

lim
n→∞

fn

(
u

(n)
11 , . . . , u

(n)
3k

)
= (2π)−1/2e−t .

Another application of (2.39) implies that

sup
{uij}⊂R

fn(u11, . . . , u3k) <∞ .

It follows immediately from Lemma 2.3 and bounded convergence theorem
that

E
[
f
(
n2α−2(Un11 − µn11), . . . , nα−β/2−1(Un3k − µn3k)

)
(2.60)

1
(
n2α−2(Un1j − µn1j) > α1j , n

α−β/2−1(Unij − µnij) > αij , i = 2, 3,

j = 1, . . . , k,
)]

→(2π)−1/2P (T0 > t ,Gij > αij for all i, j) ,

with T0 standard exponential and (Gij : i = 1, 2, 3, j = 1, . . . , k) indepen-
dent zero mean Gaussian random variables, independent of T0, with

Var(G1j) = K1σ
2
Z

(
t3−2α
1j − t3−2α

1 j−1

)
, 1 ≤ j ≤ k ,

imsart-aop ver. 2012/04/10 file: LDclustersLMrevised0401.tex date: January 4, 2023



CLUSTERING OF LARGE DEVIATIONS 17

and for i = 2, 3,

Var(Gij) = (1− α)−2σ2
Z(tij − ti ,j−1), 1 ≤ j ≤ k .

A simple way to verify the convergence above is to appeal to the Skorohod
representation and replace the weak convergence in Lemma 2.3 by the a.s.
convergence.

Notice that using (2.60) with t = 0 and αij = −∞ for all i, j tells us that

(2.61) P (E0) ∼ (2π)−1/2cn/ηn = (2π)−1/2e−θnnεE
(
eθnSn

)
/(σnθn).

Dividing (2.60) by (2.61) gives us the statement of the lemma apart from
a possibly different centring. In order to complete the proof, it suffices to
show that as n→∞, for j = 1, . . . , k,

µn1j =

[nβt1j ]∑
i=[nβt1j−1]+1

Ai

∫ ∞
−∞

z GζnAi(dz) + o
(
n2−2α

)
,

(2.62)

µn2j =

n−[nβtnj−1]∑
i=n−[nβtnj ]

Ai

∫ ∞
−∞

z GζnAi(dz) + o
(
n1+β/2−α

)
,

(2.63)

µn3j =

n+[nβtnj ]∑
i=n+[nβtnj−1]

(Ai −Ai−n)

∫ ∞
−∞

z Gζn(Ai−Ai−n)(dz) + o
(
n1+β/2−α

)
.

(2.64)

For simplicity of notation we prove these statements for j = 1. For θn as
in (2.55), let (Z̃ni, n ≥ 1, i ≥ 0) be a collection of independent random
variables such that the law of Z̃ni is G(Ai−Ai−n)θn . Since both θnAi and ζnAi
converge to zero uniformly in i ≤ nβt11, we can use (2.19) to write

µn11 =

[nβt11]∑
i=1

AiE
(
Z̃ni

)
=

[nβt11]∑
i=1

Ai

∫ ∞
−∞

z GθnAi(dz)

=

[nβt11]∑
i=1

Ai

∫ ∞
−∞

z GζnAi(dz) + o

ζn [nβt11]∑
i=1

A2
i

 .

It follows from (2.21) and (2.22) that

ζn

[nβt11]∑
i=1

A2
i = o

(
n2−2α

)
,
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18 CHAKRABARTY AND SAMORODNITSKY

and we obtain (2.62) (for j = 1).
For (2.63) with j = 1 we notice that by (2.17),

(2.65) E
(
Z̃ni

)
= θn(Ai −Ai−n)σ2

Z +O
(
θ2
n(Ai −Ai−n)2

)
,

uniformly in i ≥ 0, as n→∞. Thus,

µn21 = σ2
Zσ
−2
n nτn

n−1∑
i=n−[nβt21]

A2
i +O

θ2
n

n−1∑
i=n−[nβt21]

A3
i

 .

It follows from Lemma 2.1 that

θ2
n

n−1∑
i=n−[nβt21]

A3
i = O

(
nα+β−1

)
= o

(
n1−α+β/2

)
.

Therefore,

(2.66) µn21 = σ2
Zσ
−2
n nτn

n−1∑
i=n−[nβt21]

A2
i + o

(
n1−α+β/2

)
and, similarly,

n−1∑
i=n−[nβt21]

Ai

∫ ∞
−∞

z GζnAi(dz) = σ2
Zζn

n−1∑
i=n−[nβt21]

A2
i + o

(
n1−α+β/2

)
.

Another appeal to Lemma 2.1 shows that for (2.63) we only need to argue
that

(2.67) τn = ε+ o
(
n1−α−β/2

)
, n→∞ .

However, by (2.19),

ψ′n(s) = s+O

nσ−4
n

∞∑
j=0

(Aj −Aj−n)3

 ,

uniformly for s in compact sets. Using this and (2.44), we obtain

ε = ψ′n(τn)

= τn +O

nσ−4
n

∞∑
j=0

(Aj −Aj−n)3


= τn +O(nα−1) = τn + o

(
n1−α−β/2

)
.

This establishes (2.67) and, hence, (2.63) with j = 1. The proof of (2.64) is
similar.
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CLUSTERING OF LARGE DEVIATIONS 19

None of the statements proved so far required the additional assumptions
stated at the beginning of this section. These assumptions start to play a
role now.

The next several lemmas require additional notation designed to focus on
the contribution of individual noise variables on Sn. For n ≥ 1 and i, j ≥ 0,
i 6= j, we set

S′n(i) = Sn − (Ai −Ai−n)Zn−i−1 ,

S′n(i, j) = Sn − (Ai −Ai−n)Zn−i−1 − (Aj −Aj−n)Zn−j−1 ,

and, with ζn given by (2.50), we let Ŝn, Ŝni, Ŝn(i, j) be random variables
with distributions

P (Ŝn ∈ ds) ∝ eζnsP (Sn ∈ ds) ,

P (Ŝn(i) ∈ ds) ∝ eζnsP (S′n(i) ∈ ds) ,

P (Ŝn(i, j) ∈ ds) ∝ eζnsP (S′n(i, j) ∈ ds) .

Denote the characteristic functions of σ−1
n (Ŝn−nε), σ−1

n (Ŝn(i)−nε) and
σ−1
n (Ŝn(i, j) − nε) by φn, φni and φnij , respectively. For µ ∈ R and σ ≥ 0

we denote by φG(µ;σ2; ·) the characteristic function of N(µ, σ2).

Lemma 2.5. Let κ be given by (2.4) and assume that (2.5) holds. Then
the following statements hold uniformly in t ∈ R:

(2.68) |φn(t)− φG(0; 1; t)| = O
(
n1/2−κ(1−α)(1 + |t|)κ+1

)
,

(2.69)

sup
i≥0

∣∣φni(t)− φG (σ−1
n nε(λni − 1);λni; t

)∣∣ = O
(
n1/2−κ(1−α)(1 + |t|)κ+1

)
,

sup
i,j≥0
i6=j

∣∣φnij(t)− φG (σ−1
n nε(λnij − 1);λnij ; t

)∣∣(2.70)

= O
(
n1/2−κ(1−α)(1 + |t|)κ+1

)
,

where for n ≥ 1 and i, j ≥ 0, i 6= j, we set

λni = 1−
σ2
Z

σ2
n

(Ai −Ai−n)2, λnij = 1−
σ2
Z

σ2
n

[
(Ai −Ai−n)2 + (Aj −Aj−n)2

]
.

Proof. It is an elementary conclusion from (2.5) that, for each 1 ≤ i ≤ κ,
(2.71)(∫

R
eδz Fz(dz)

)−1 ∫
R
zieδz Fz(dz) = σiZE

[
(G+ δσZ)i

]
+O

(
|δ|κ−i+1

)
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20 CHAKRABARTY AND SAMORODNITSKY

as δ → 0, where G is a standard Gaussian random variable.
Let (Ẑni : n ≥ 1, i ≥ 0) be a family of independent random variables with

each Ẑni ∼ G(Ai−Ai−n)ζn , so that for n ≥ 1 and i, j ≥ 0, i 6= j we have

Ŝn
d
=

∞∑
k=0

(Ak −Ak−n) Ẑnk ,

Ŝn(i)
d
=

∑
k∈{0,1,2,...}\{i}

(Ak −Ak−n) Ẑnk ,

Ŝn(i, j)
d
=

∑
k∈{0,1,2,...}\{i,j}

(Ak −Ak−n) Ẑnk .

Let now (Gni : n ≥ 1, i ≥ 0) be a collection of independent random
variables, also independent of (Ẑni : n ≥ 1, i ≥ 0), where Gni follows
N
(
(Ai −Ai−n)ζnσ

2
Z , σ

2
Z

)
, for all n ≥ 1, i ≥ 0. It follows from Lemma 2.1

and (2.42) that (2.71) can be reformulated as

(2.72) E
(
Ẑinj

)
− E

(
Ginj

)
= O

(
|Aj −Aj−n|κ−i+1n−2(1−α)(κ−i+1)

)
uniformly in j ≥ 0 and 1 ≤ i ≤ κ. For a fixed t ∈ R we use telescoping to
write

∣∣∣∣∣∣E exp

i
tσ−1

n

∞∑
j=0

(Aj −Aj−n)Gnj

− E exp
{
i
(
tσ−1
n Ŝn

)}∣∣∣∣∣∣
(2.73)

≤
∞∑
j=0

∣∣∣∣∣∣E exp

i
tσ−1

n

j−1∑
k=0

(Aj −Aj−n)Ẑnj +
∞∑
k=j

(Aj −Aj−n)Gnj


−E exp

i
tσ−1

n

 j∑
k=0

(Aj −Aj−n)Ẑnj +
∞∑

k=j+1

(Aj −Aj−n)Gnj


∣∣∣∣∣∣ .

Fix j ≥ 0 and denote

U = tσ−1
n

j−1∑
k=0

(Aj −Aj−n)Ẑnj +
∞∑

k=j+1

(Aj −Aj−n)Gnj

 ,

V = tσ−1
n (Aj −Aj−n)Gnj ,
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so that by expanding in the Taylor series around U ,

E exp

i
tσ−1

n

j−1∑
k=0

(Aj −Aj−n)Ẑnj +
∞∑
k=j

(Aj −Aj−n)Gnj


= Eei(U+V ) =

κ∑
m=0

im

m!
E (V m)EeiU +R1 ,

with |R1| ≤ E(|V |κ+1)/(κ+ 1)!. Similarly,

E exp

i
tσ−1

n

 j∑
k=0

(Aj −Aj−n)Ẑnj +
∞∑

k=j+1

(Aj −Aj−n)Gnj


=

κ∑
m=0

im

m!
E (Wm)EeiU +R2 ,

with |R2| ≤ E(|W |κ+1)/(κ+ 1)!, where

W = (Aj −Aj−n)Ẑnj .

We conclude that∣∣∣∣∣∣E exp

i
tσ−1

n

j−1∑
k=0

(Aj −Aj−n)Ẑnj +
∞∑
k=j

(Aj −Aj−n)Gnj


−E exp

i
tσ−1

n

 j∑
k=0

(Aj −Aj−n)Ẑnj +

∞∑
k=j+1

(Aj −Aj−n)Gnj


∣∣∣∣∣∣

≤
κ∑
i=1

|t|i

i!

∣∣∣(Aj −Aj−n)iσ−in E
(
Ẑinj −Ginj

)∣∣∣
+
|t|κ+1

(κ+ 1)!
|Aj −Aj−n|κ+1 σ−(κ+1)

n E
(
|Gnj |κ+1 + |Ẑnj |κ+1

)
.

(2.74)

Note that by (2.44) and Lemma 2.1,

σ−(κ+1)
n

∞∑
j=0

|Aj −Aj−n|κ+1E
(
|Gnj |κ+1 + |Z̃nj |κ+1

)
= O

(
n−(κ−1)/2

)
= o

(
n1/2−κ(1−α)

)
.
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For 1 ≤ i ≤ κ we use, in addition. (2.72) to write

σ−in

∞∑
j=0

∣∣∣(Aj −Aj−n)iE
(
Z̃inj −Ginj

)∣∣∣
= O

(
n−κ(1−α)+α−i(α−1/2)

)
= O

(
n1/2−κ(1−α)

)
.

Putting these bounds into (2.74) we obtain

E
(
eιtσ

−1
n S̃n

)
= φG

(
σ−1
n nε; 1; t

)
+O

(
n1/2−κ(1−α)

(
1 + |t|κ+1

))
uniformly for t ∈ R, which is equivalent to (2.68). The argument for (2.69)
and (2.70) is the same.

By the assumption (2.2), for large n, the random variables σ−1
n (Ŝn−nε),

σ−1
n (Ŝn(i) − nε) and σ−1

n (Ŝn(i, j) − nε) have densities which we denote by
fn, fni and fnij , correspondingly.

Lemma 2.6. Suppose that (2.5) and(2.2) hold. Then for large n, the
densities fni and fnij are twice differentiable. Furthermore, as n→∞,

fni(0) = (2π)−1/2 + o
(
n1−2α

)
,(2.75)

f ′ni(0) = o
(
n1/2−α

)
(2.76)

uniformly in i, and for some n0 ∈ N,

(2.77) sup
{∣∣f ′′ni(x)

∣∣ : n ≥ n0, i ≥ 0, x ∈ R
}
<∞ .

All three statements also hold if fni is replaced by fnij, i < j. Finally, as
n→∞,

(2.78) sup
x∈R

∣∣∣fn(x)− (2π)−1/2e−x
2/2
∣∣∣ = o

(
n1−2α

)
.

Proof. We start with the proof of (2.78) which would follow from the
inversion formula for densities once it is shown that∫ ∞

−∞
|φn(t)− φG(0; 1; t)| dt = o

(
n1−2α

)
.

By Lemma 2.5 and (2.4),∫ logn

− logn
|φn(t)− φG(0; 1; t)| dt = O

(
n1/2−κ(1−α)(log n)κ+2

)
= o

(
n1−2α

)
.
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Furthermore,∫
[− logn,logn]c

φG(0; 1; t) dt = O
(
e−(logn)2/2

)
= o

(
n1−2α

)
,

Thus, (2.78) will follow once we show that

(2.79)

∫
[− logn,logn]c

|φn(t)| dt = o
(
n1−2α

)
.

With (Ẑni : n ≥ 1, i ≥ 0) as above, we set

Uni = σ−1
n (Ai −Ai−n)

[
Ẑni − E(Ẑni)

]
, n ≥ 1, i ≥ 0 ,

so that

(2.80) |φn(t)| =
∞∏
i=0

∣∣E (eιtUni)∣∣ , n ≥ 1, t ∈ R .

Set

H(x, t) =

(∫ ∞
−∞

exzfZ(z) dz

)−1 ∫ ∞
−∞

e(x+ιt)zfZ(z) dz, (x, t) ∈ R2 ,

which is a characteristic function for any fixed x. A consequence of that is
∂|H(x, t)|/∂t|t=0 ≤ 0 for any x ∈ R. Furthermore,

∂2

∂t2
|H(0, t)|

∣∣∣
t=0

= −σ2
Z < 0

and by continuity of the second partial derivative we conclude that there is
δ0 > 0 such that

∂2

∂t2
|H(x, t)|

∣∣∣ < 0 whenever 0 ≤ |t|, |x| ≤ δ0.

That means we also have

(2.81)
∂

∂t
|H(x, t)|

∣∣∣ ≤ 0 whenever 0 ≤ |t|, |x| ≤ δ0.

We may and will choose δ0 ∈ (0, θ0], with θ0 as in (2.2). By (2.2) we can
appeal to (3.3) to conclude that

lim
t→∞

sup
|x|≤δ0

|H(x, t)| = 0 .
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Thus, there is M > 0 large enough so that

sup
t>M,|x|≤δ0

|H(x, t)| < 1.

Since by continuity of H and compactness we have

sup
δ0≤t≤M,|x|≤δ0

|H(x, t)| < 1,

it follows that
η = sup

t≥δ0,|x|≤δ0
|H(x, t)| < 1 .

The continuity argument also shows that there is δ1 ∈ (0, δ0] such that

min
|x|≤δ0

|H(x, δ1)| ≥ η .

Therefore, for |x| ≤ δ0 and 0 ≤ t ≤ δ1, (2.81) implies that

|H(x, t)| ≥ |H(x, δ1)| ≥ η ≥ sup
s≥δ0
|H(x, s)| .

Since by (2.81) we also have

|H(x, t)| = sup
s∈[t,δ0]

|H(x, s)| ,

we conclude that

(2.82) |H(x, t)| = sup
s≥t
|H(x, s)|, |x| ≤ δ0, 0 ≤ t ≤ δ1 .

By (2.80)

|φn(t)| ≤
∣∣E(eιtUnn)

∣∣ n−1∏
i=[n/2]

∣∣E(eιtUni)
∣∣

=
∣∣E(eιtUnn)

∣∣ n−1∏
i=[n/2]

∣∣H (ζnAi, σ−1
n Ait

)∣∣ .(2.83)

It follows from Lemma 2.1 that there exists s0 > 0 such that for all n
large enough,

Ai ≥ s0σnn
−1/2, [n/2] ≤ i ≤ n− 1 .
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Thus, for n large enough and t ≥ log n, (2.82) implies that

n−1∏
i=[n/2]

∣∣H (ζnAi, σ−1
n Ait

)∣∣ ≤ n−1∏
i=[n/2]

∣∣∣H (ζnAi, s0n
−1/2 log n

)∣∣∣ .
Since any partial derivative of H is bounded on a compact set, we can use
the bound (3.4) to conclude that there exists s1 > 0 such that

sup
|x|≤δ0

|H(x, t)| ≤ (1− s1t
2)1/2, 0 ≤ t ≤ 1 .

Thus, there is s2 > 0 such that for all large n and all t ≥ log n we have

n−1∏
i=[n/2]

∣∣H (ζnAi, σ−1
n Ait

)∣∣ ≤ (1− s2
0s1n

−1(log n)2
)n/4

= O
(
e−s2(logn)2

)
.

Using this bound in (2.83), and appealing to (2.2) we obtain∫ ∞
logn
|φn(t)| dt = O

(
e−s2(logn)2

)∫ ∞
logn

∣∣E (eitUnn)∣∣ dt
= O

(
n1/2e−s2(logn)2

)
= o

(
n1−2α

)
.

Since we can switch from t to −t, (2.79) follows, which establishes (2.78).
A similar calculation with the aid of (2.69) shows that

fni(0) = (2πλni)
−1/2 exp

(
−σ−2

n n2ε2(λni − 1)2/2λni
)

+ o
(
n1−2α

)
,

uniformly in i ≥ 0. Since λni − 1 = O(1/n) uniformly in i ≥ 0, it follows
that

λ
−1/2
ni exp

(
−σ−2

n n2ε2(λni − 1)2/2λni
)

= 1 +O
(
n−1 + σ−2

n

)
= 1 + o

(
n1−2α

)
,

uniformly for i ≥ 0, which proves (2.75). For (2.77) we write

f ′′nk(x) = −(2π)−1/2

∫ ∞
−∞

e−itxt2φnk(t) dt

and repeat the arguments used above in the proof of (2.78), applying (2.69)
and the full force of the assumption (2.2).

Finally, for (2.76) we use the identity

f ′nk(0) = −i(2π)−1/2

∫ ∞
−∞

tφnk(t) dt.
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Since ∣∣∣∣∫ ∞
−∞

t φG
(
σ−1
n nε(λnk − 1);λnk; t

)
dt

∣∣∣∣ = O
(
σ−1
n

)
= o

(
n1/2−α

)
,

uniformly in k ≥ 0, (2.76) follows.
The arguments with fnij replacing fni are similar. This completes the

proof.

The next lemma tackles certain expectations conditionally on E0; its
statement should be compared to (2.61).

Lemma 2.7. Suppose that (2.5) and(2.2) hold. Then

E (Zn−i−11(E0)) = Kn

[∫ ∞
−∞

z Gζn(Ai−Ai−n)(dz) + o
(
ζ−1
n σ−2

n |Ai −Ai−n|
)](2.84)

and

E (Zn−i−1Zn−j−11(E0))(2.85)

= Kn

(∫ ∞
−∞

z1Gζn(Ai−Ai−n)(dz1)

∫ ∞
−∞

z2Gζn(Ai−Ai−n)(dz2)

+ o
(
σ−2
n |(Ai −Ai−n)(Aj −Aj−n)|

))
, n→∞,

uniformly for i, j ≥ 0 with i 6= j, where

(2.86) Kn = (2π)−1/2ζ−1
n σ−1

n e−nεζnE
(
eζnSn

)
, n ≥ 1 .

Proof. We only prove (2.85); the proof of (2.84) is similar and easier.
Write

E (Zn−i−1Zn−j−11(E0))

=

∫ ∞
−∞

z1 FZ(dz1)

∫ ∞
−∞

z2 FZ(dz2)

P
(
S′n(i, j) ≥ nε− (Ai −Ai−n)z1 − (Aj −Aj−n)z2

)
= σ−1

n E
(
eζnS

′
n(i,j)

)∫ ∞
−∞

z1 FZ(dz1)

∫ ∞
−∞

z2 FZ(dz2)∫ ∞
nε−(Ai−Ai−n)z1−(Aj−Aj−n)z2

fnij
(
s− nε)/σn

)
e−ζns ds.
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We adopt the convention
∫ b
a ≡ −

∫ a
b , and denote

cnij = ζ−1
n σ−1

n e−nεζnE
(
eζnS

′
n(i,j)

)
= Kn(2π)1/2

(∫ ∞
−∞

eζn(Ai−Ai−n)zFZ(dz)

∫ ∞
−∞

eζn(Aj−Aj−n)zFZ(dz)

)−1

.

Changing the variable and using the fact that EZ = 0, we obtain

E (Zn−i−1Zn−j−11(E0))

= cnij

∫ ∞
−∞

z1 FZ(dz1)

∫ ∞
−∞

z2 FZ(dz2)∫ ζn(Ai−Ai−n)z1+ζn(Aj−Aj−n)z2

0
exfnij

(
−x/(σnζn)

)
dx

= cnij

∫ ∞
−∞

z1 FZ(dz1)

∫ ∞
−∞

z2 FZ(dz2)(2.87) [∫ ζn(Ai−Ai−n)z1+ζn(Aj−Aj−n)z2

0
exfnij

(
−x/(σnζn)

)
dx

−
∫ ζn(Ai−Ai−n)z1

0
exfnij

(
−x/(σnζn)

)
dx

−
∫ ζn(Aj−Aj−n)z2

0
exfnij

(
−x/(σnζn)

)
dx

]
.

For fixed z1, z2 ∈ R, the expression inside the square brackets can be
rewritten as(

eζn(Ai−Ai−n)z1 − 1
)∫ ζn(Aj−Aj−n)z2

0
ex

fnij
(
−(x+ ζn(Ai −Ai−n)z1)/(σnζn)

)
dx

+

∫ ζn(Aj−Aj−n)z2

0
ex[

fnij
(
−(x+ ζn(Ai −Ai−n)z1)/(σnζn)

)
− fnij

(
−x/(σnζn)

)]
dx.

By Taylor’s theorem,

fnij

(
− x+ ζn(Ai −Ai−n)z1

σnζn

)
= fnij(0)− x+ ζn(Ai −Ai−n)z1

σnζn
f ′nij(0)
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+O

(
(x+ ζn(Ai −Ai−n)z1)2

σ2
nζ

2
n

‖f ′′nij‖∞
)
.

Using this and (2.42), straightforward algebra gives us∫ ζn(Aj−Aj−n)z2

0
exfnij

(
−(x+ ζn(Ai −Ai−n)z1)/(σnζn)

)
dx

= fnij(0)
(
eζn(Aj−Aj−n)z2 − 1

)
+O

(
eζn|Aj−Aj−n||z2|

(
|f ′nij(0)|σ−1

n ζnn
1−α|Aj −Aj−n||z2|

(
|z1|+ |z2|

)
+ ‖f ′′nij‖∞σ−2

n ζnn
2−2α|Aj −Aj−n||z2|

(
|z1|+ |z2|

)2))
.

The obvious inequality |ex − 1| ≤ |x|e|x| for x ∈ R along with Lemma 2.6
now show that(

eζn(Ai−Ai−n)z1 − 1
)∫ ζn(Aj−Aj−n)z2

0
ex

fnij
(
−(x+ ζn(Ai −Ai−n)z1)/(σnζn)

)
dx

= fnij(0)
(
eζn(Ai−Ai−n)z1 − 1

)(
eζn(Aj−Aj−n)z2 − 1

)
+ o
(
σ−2
n |(Ai −Ai−n)(Aj −Aj−n)z1z2| (|z1|+ |z2|)2

eζn(|Ai−Ai−n||z1|+|Aj−Aj−n||z2|)
)
,

uniformly for i, j ≥ 0 with i 6= j and z1, z2 ∈ R.
Treating in a similar manner the second term, we conclude that the ex-

pression inside the square brackets in the right hand side of (2.87) equals

fnij(0)
(
eζn(Ai−Ai−n)z1 − 1

)(
eζn(Aj−Aj−n)z2 − 1

)
+ o
(
σ−2
n |(Ai −Ai−n)(Aj −Aj−n)| (1 + |z1|3)(1 + |z2|3)

eζn|(Ai−Ai−n)z1|+ζn|(Aj−Aj−n)z2|
)
,

uniformly for i, j ≥ 0 with i 6= j and z1, z2 ∈ R, and substitution into (2.87)
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gives us

E (Zn−i−1Zn−j−11(E0))

= cnij

[
fnij(0)

∫ ∞
−∞

z1e
ζn(Ai−Ai−n)z1FZ(dz1)

∫ ∞
−∞

z2e
ζn(Aj−Aj−n)z2FZ(dz2)

+ o
(
σ−2
n |(Ai −Ai−n)(Aj −Aj−n)|

)]

= Kn(2π)1/2fnij(0)

∫ ∞
−∞

z1Gζn(Ai−Ai−n)(dz1)

∫ ∞
−∞

z2Gζn(Aj−Aj−n)(dz2)

(2.88)

+ cnijo
(
σ−2
n |(Ai −Ai−n)(Aj −Aj−n)|

)
,

as n→∞, uniformly for i, j ≥ 0 with i 6= j. Recalling that EZ = 0, we see
that ∫ ∞

−∞
z1Gζn(Ai−Ai−n)(dz1) = O (ζn(Ai −Ai−n)) ,

and likewise for the second integral in (2.88). Since Kn = O(cnij), the claim
(2.85) follows from Lemma 2.6.

The next lemma is an important step in the proof of the main result; the
previous lemmas 2.5, 2.6 and 2.7 are needed for this lemma. We denote

(2.89) Yni = Zn−i−1−
(
1 + ζ−2

n σ−2
n

) ∫ ∞
−∞

z Gζn(Ai−Ai−n)(dz), i ∈ Z, n ≥ 1 .

Lemma 2.8. Suppose that (2.5) and(2.2) hold. Then

(2.90) sup
n≥1,i≥0

E
(
Y 2
ni

∣∣E0

)
<∞ ,

and

E
(
YniYnj

∣∣E0

)
= −σ−2

n σ4
Z (Ai −Ai−n) (Aj −Aj−n) (1 + o(1))(2.91)

as n→∞, uniformly in i, j ≥ 0 with i 6= j.

Proof. We prove (2.91); the proof of (2.90) is similar (and much easier).
We write

P (E0) = Kn(2π)1/2

∫ ∞
0

e−xfn
(
x/(ζnσn)

)
dx,
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with Kn as in (2.86). By (2.78) and simple integration,

P (E0) =Kn(2π)1/2

[
o
(
ζ−2
n σ−2

n

)
+ (2π)−1/2

∫ ∞
0

exp
(
−x− x2/(2ζ2

nσ
2
n)
)
dx

](2.92)

=Kn

[
1− ζ−2

n σ−2
n (1 + o(1))

]
, n→∞ .

In combination with (2.85) this means that

E (Zn−i−1Zn−j−11(E0))P (E0)

= K2
n

((
1− ζ−2

n σ−2
n

) ∫ ∞
−∞

z1Gζn(Ai−Ai−n)(dz1)

∫ ∞
−∞

z2Gζn(Aj−Aj−n)(dz2)

+ o
(
σ−2
n |(Ai −Ai−n)(Aj −Aj−n)|

))
, n→∞,

uniformly in i, j ≥ 0 with i 6= j. Since by (2.84),

E (Zn−i−11(E0))E (Zn−j−11(E0))

= K2
n

∫ ∞
−∞

z1Gζn(Ai−Ai−n)(dz1)

∫ ∞
−∞

z2Gζn(Aj−Aj−n)(dz2)

+ o
(
K2
nσ
−2
n |Ai −Ai−n||Aj −Aj−n|

)
,

we conclude that

E (Zn−i−1Zn−j−11(E0))P (E0)− E (Zn−i−11(E0))E (Zn−j−11(E0))

= −K2
nζ
−2
n σ−2

n

∫ ∞
−∞

z1Gζn(Ai−Ai−n)(dz1)

∫ ∞
−∞

z2Gζn(Aj−Aj−n)(dz2)

+ o
(
K2
nσ
−2
n |Ai −Ai−n||Aj −Aj−n|

)
= −K2

nσ
−2
n σ4

Z(Ai −Ai−n)(Aj −Aj−n) (1 + o(1))

as n → ∞, uniformly in i, j ≥ 0 with i 6= j. Dividing both sides by P (E0)2

and using (2.92), we obtain

E
[(
Zn−i−1 − E(Zn−i−1|E0)

)(
Zn−j−1 − E(Zn−j−1|E0)

)∣∣∣E0

]
(2.93)

= −σ−2
n σ4

Z(Ai −Ai−n)(Aj −Aj−n) (1 + o(1)) ,

as n → ∞, again uniformly for i, j ≥ 0 with i 6= j. Since by (2.92) with
(2.84)

E (Zn−i−1|E0) =
(
1 + ζ−2

n σ−2
n

) ∫ ∞
−∞

z Gζn(Ai−Ai−n)(dz)

+ o
(
ζ−1
n σ−2

n |Ai −Ai−n|
)
,

with a similar statement for Zn−j−1, (2.93) implies (2.91).
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We proceed with establishing conditional distributional limits of certain
truncated sums.

Lemma 2.9. Suppose that (2.5) and(2.2) hold. For 0 < δ < L denote

Sn(j, δ, L) =

[nβL]−1∑
i=[nβδ]

(Ai+j −Ai)Yni +
n−1∑
i=n−j

(Ai+j −Ai+j−n −Ai)Yni(2.94)

+

n+[nβL]∑
i=n

(Ai+j −Ai+j−n −Ai +Ai−n)Yni, n ≥ 1, j ≥ 0.

With the overshoot T ∗n as in (2.49), we have, conditionally on E0,(
ζnT

∗
n ,
(
n2α−2Sn([nβt], δ, L), t ≥ 0

))

⇒
(
T0,

(
(1− α)−1σZ

(∫ L

δ

[
(s+ t)1−α − s1−α] dB1(s)

(2.95)

+

∫ t

0
(t− s)1−αdB2(s) +

∫ L

0

[
s1−α − (s+ t)1−α] dB3(s)

)
, t ≥ 0

))
in finite dimensional distributions as n → ∞, where T0 is a standard ex-
ponential random variable independent of independent standard Brownian
motions B1, B2, B3,

Proof. For n ≥ 1 and t ≥ 0 we write

ξ1◦
n (t) =

[nβt]∑
i=1

AiYni, ξ2◦
n (t) =

n−1∑
i=n−[nβt]

AiYni,

ξ3◦
n (t) =

n+[nβt]∑
i=n+1

(Ai −Ai−n)Yni.

It follows from Lemma 2.4 that, conditionally on E0,(
ζnT

∗
n ,
(
n2α−2ξ1◦

n (t) : t ≥ 0
)
,
(
nα−β/2−1ξ2◦

n (t) : t ≥ 0
)
,(2.96)

(
nα−β/2−1ξ3◦

n (t) : t ≥ 0
))
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⇒
(
T0,
(
K

1/2
1 σZB1(t3−2α) : t ≥ 0

)
,
(
(1− α)−1σZB2(t) : t ≥ 0

)
,(

(1− α)−1σZB3(t) : t ≥ 0
))

because the difference between the two processes vanishes in the limit. For
example,

n2α−2ζ−2
n σ−2

n

[nβt]∑
i=1

Ai

∫ ∞
−∞

z GζnAi(dz) = O
(
n1−2α

)
= o(1) ,

and similarly with the other two components. Furthermore, for large n,

Sn([nβt], δ, L)

=

[nβL]−1∑
i=[nβδ]

(Ai+[nβt] −Ai)Yni +
n−1∑

i=n−[nβt]

(Ai+[nβt] −Ai+[nβt]−n −Ai)Yni

+

n+[nβL]∑
i=n

(Ai+[nβt] −Ai+[nβt]−n −Ai +Ai−n)Yni =: V 1
n (t) + V 2

n (t) + V 3
n (t).

Starting with V 3
n , we write

(2.97) V 3
n (t) = n−(1−α)(1−β)

[nβL]∑
i=1

fn

(
n−βi, t

)
(An+i −Ai)Yn,n+i ,

where for 0 ≤ s ≤ L,

fn(s, t) = n(1−α)(1−β)
An+[nβs]+[nβt] −A[nβs]+[nβt] −An+[nβs] +A[nβs]

An+[nβs] −A[nβs]

.

It is elementary that for fixed s, t, as n→∞,

An+[nβs]+[nβt] −An+[nβs] � A[nβs]+[nβt] −A[nβs]

∼ (1− α)−1nβ(1−α)
[
(s+ t)1−α − s1−α] ,

while An+[nβs] −A[nβs] ∼ (1− α)−1n1−α. Therefore,

(2.98) lim
n→∞

fn(s, t) = s1−α − (s+ t)1−α =: f(s, t),

and the limit is easily seen to be uniform in 0 ≤ s ≤ L and t in a compact
interval. We will show that, conditionally on E0,(

n2α−2V 3
n (t), t ≥ 0

)
(2.99)

⇒
(
σZ(1− α)−1

∫ L

0

[
s1−α − (s+ t)1−α] dB3(s), t ≥ 0

)
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in finite-dimensional distributions, as n→∞. To this end, set

cnj(k, t) = inf
(j−1)L/k≤s≤jL/k

fn(s, t), k ≥ 1, 1 ≤ j ≤ k ,

and

eni(k, t) = fn
(
n−βi, t

)
− cn,dL−1n−βkie(k, t) ≥ 0, k ≥ 1, 1 ≤ i ≤ [nβL] .

By (2.98) and monotonicity,

(2.100) lim
n→∞

cnj(k, t) = f
(
(j − 1)k−1L, t

)
, 1 ≤ j ≤ k .

A standard continuity argument shows that

(2.101) lim
k→∞

lim sup
n→∞

sup
t∈A

max
1≤i≤[nβL]

eni(k, t) = 0

for any compact set A. We have

[nβL]∑
i=1

cn,dL−1n−βkie(k, t)(An+i −Ai)Yn,n+i

=
k′∑
j=1

cnj(k, t)
∑

i∈
(
k−1Lnβ(j−1),k−1Lnβj

]
∩Z

(An+i −Ai)Yn,n+i

=
k′∑
j=1

cnj(k, t)
(
ξ3◦
n

(
k−1Lj

)
− ξ3◦

n

(
k−1L(j − 1)

))
=: Wnk(t) ,

where k′ = dL−1n−βk[nβL]e. This, together with (2.96) and (2.100), implies
that for fixed k, as n→∞,

(
nα−β/2−1Wnk(t), t ≥ 0

)(2.102)

⇒

(
(1− α)−1σZ

k∑
j=1

f
(
(j − 1)k−1L, t

) (
B3(k−1jL)−B3(k−1(j − 1)L)

)
,

t ≥ 0

)
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in finite-dimensional distributions. We have

[nβL]∑
i=1

fn
(
n−βi, t

)
(An+i −Ai)Yn,n+i −Wnk(t)

=

[nβL]∑
i=1

eni(k, t) (An+i −Ai)Yn,n+i .

It follows from (2.91) that, for large n,

sup
i,j≥0:i 6=j

(Ai −Ai−n) (Aj −Aj−n)E (YniYnj |E0) ≤ 0 .

This, along with (2.90) and the non-negativity of each eni, implies that for
large n,

E


[nβL]∑
i=1

eni(k, t) (An+i −Ai)Yn,n+i

2∣∣∣∣∣E0


≤

[nβL]∑
i=1

[eni(k, t) (An+i −Ai)]2E(Y 2
n,n+i|E0)

= O

 max
1≤j≤[nβL]

enj(k, t)
2

[nβL]∑
i=1

(An+i −Ai)2


= O

(
n2−2α+β max

1≤j≤[nβL]
enj(k, t)

2

)
.

Invoking (2.101) we conclude that for any compact set A,

lim
k→∞

lim sup
n→∞

n2α−β−2 sup
t∈A

E

[(
Wnk(t)(2.103)

−
[nβL]∑
i=1

fn
(
n−βi, t

)
(An+i −Ai)Yn,n+i

)2∣∣∣∣∣E0

]
= 0 .

As k →∞, the process in the right hand side of (2.102) converges in finite-
dimensional distributions to the process in the right-hand side of (2.99).
Since (2α− 2)− (1−α)(1− β) = α− β/2− 1, the claim (2.99) follows from
(2.97) and (2.103) by the “convergence together” argument; see Theorem
3.2 in Billingsley (1999).
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A nearly identical argument shows that, conditionally on E0,

(
n2α−2V 2

n (t), t ≥ 0
)
⇒
(
−σZ(1− α)−1

∫ t

0
(t− s)1−αdB2(s), t ≥ 0

)(2.104)

d
=

(
σZ(1− α)−1

∫ t

0
(t− s)1−αdB2(s), t ≥ 0

)
in finite-dimensional distributions.

The situation with the term V 1
n is, once again, similar, with a small twist.

Since

lim
n→∞

A[nβs]+[nβt] −A[nβs]

A[nβs]

=
(s+ t)1−α − s1−α

s1−α

uniformly for δ ≤ s ≤ L and t, our argument now shows that, conditionally
on E0,(

n−(2−2α)V 1
n , t ≥ 0

)
⇒
(
σZK

1/2
1

∫ L

δ

(s+ t)1−α − s1−α

s1−α M(ds), t ≥ 0

)
in finite-dimensional distributions, where M is a centred Gaussian ran-
dom measure with the variance measure with the density (3 − 2α)s2−2α,
s > 0. Since the centred Gaussian random measures (1 − α)−1B3(ds) and

K
1/2
1 M(ds)/s1−α have the same variance measure, this means that, condi-

tionally on E0,(
n2α−2V 2

n (t), t ≥ 0
)

(2.105)

⇒
(
σZ(1− α)−1

∫ L

δ

(
(s+ t)1−α − s1−α)dB3(s), t ≥ 0

)
in finite-dimensional distributions.

Since (2.99), (2.104) and (2.105) are all consequences of (2.96), the con-
vergence statements they contain hold jointly, and jointly with ζnT

∗
n ⇒ T0.

The claim (2.95) follows.

The next lemma treats the sequence of shifts appearing due to condition-
ing on E0.

Lemma 2.10. Define

µn(t)

= n2α−2
∞∑
i=0

(
Ai+[nβt] −Ai+[nβt]−n −Ai +Ai−n

)∫ ∞
−∞

z Gζn(Ai−Ai−n)(dz),
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for t ≥ 0 and n ≥ 1. Then µn → µ∞ as n→∞, in D([0,∞)) equipped with
the Skorohod J1 topology, where µ∞(t) = −εt3−2α, t ≥ 0.

Proof. Writing

µn(t) =n2α−2ζn

∞∑
i=0

(
Ai+[nβt] −Ai+[nβt]−n −Ai +Ai−n

) (
Ai −Ai−n

)
+n2α−2

∞∑
i=0

(
Ai+[nβt] −Ai+[nβt]−n −Ai +Ai−n

)
[∫ ∞
−∞

z Gζn(Ai−Ai−n)(dz)− ζn
(
Ai −Ai−n

)]
=: µ(1)

n (t) + µ(2)
n (t), t ≥ 0,

the claim of the lemma will follow once we prove that

(2.106) µ(1)
n → µ∞ in D([0,∞))

and

(2.107) µ(2)
n (t)→ 0 uniformly on compact intervals.

We start by proving (2.107). Fix L > 0 so that 0 ≤ t ≤ L. Suppose first
that 1/2 < α < 5/6. By (2.19)∣∣µ(2)

n (t)
∣∣

=O

(
n2α−2ζ2

n

∞∑
i=0

∣∣∣Ai+[nβt] −Ai+[nβt]−n −Ai +Ai−n

∣∣∣ (Ai −Ai−n)2)

=O

(
n2α−2ζ2

nn
β
∞∑
i=1

i−α
(
Ai −Ai−n

)2)
= O

(
n2α−2ζ2

nn
βn3−3α

)
→ 0

uniformly in 0 ≤ t ≤ L, showing (2.107). On the other hand, if α ≥ 5/6,
then κ ≥ 3 in (2.5), so by (2.19)∣∣µ(2)

n (t)
∣∣

=O

(
n2α−2ζ3

n

∞∑
i=0

∣∣∣Ai+[nβt] −Ai+[nβt]−n −Ai +Ai−n

∣∣∣ (Ai −Ai−n)3)

=O

(
n2α−2ζ3

nn
β
∞∑
i=1

i−α
(
Ai −Ai−n

)3)
= O

(
n2α−2ζ3

nn
βn4−4α

)
→ 0
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uniformly in 0 ≤ t ≤ L, again showing (2.107).
We now prove (2.106). The pointwise convergence is clear: for fixed t,

µ(1)
n (t) = σ2

Zσ
−2
n n2α−1ε

∞∑
i=0

(
Ai+[nβt] −Ai+[nβt]−n

)
(Ai −Ai−n)− n2α−1ε

→ −εt3−2α

as n → ∞, where we have used (2.25). Next, as in (2.28) we can write for
t ≥ 0,

µ(1)
n (t) =

n2α−2ζn
2

[
n−1∑
i=0

(
Ai −Ai−[nβt]

)2

+

∞∑
i=n−[nβt]

(
Ai+[nβt] −Ai+[nβt]−n −Ai +Ai−n

)2
]

=: µ(11)
n (t) + µ(12)

n (t).

The claim (2.106) will follow once we show that both µ
(11)
n and µ

(12)
n converge

in D([0,∞)) to continuous limits (both constant factors of µ∞). The fact

that µ
(11)
n converges pointwise to a constant factor of of the pointwise limit of

µ
(1)
n is an intermediate step in the proof of (2.25). Since µ

(11)
n is a monotone

function, its convergence in D([0,∞)) follows.

We already know that µ
(12)
n converges pointwise to a continuous limit. Let

i0 be such that ai is monotone for i ≥ i0. Write for t ≥ 0

µ(12)
n (t) =

n2α−2ζn
2

[ ∞∑
i=n+i0

(
Ai+[nβt] −Ai+[nβt]−n −Ai +Ai−n

)2

−
n+i0−1∑
i=n−[nβt]

(
Ai+[nβt] −Ai+[nβt]−n −Ai

)2
]

=: µ(121)
n (t)− µ(122)

n (t),

so it is enough to show that both µ
(121)
n and µ

(122)
n converge in D([0,∞)) to
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continuous limits. Splitting further, we write for t ≥ 0,

µ(122)
n (t) =

n2α−2ζn
2

[
n+i0−1∑
i=n−[nβt]

A2
i+[nβt]−n

+

n+i0−1∑
i=n−[nβt]

(
Ai −Ai+[nβt]

)(
Ai −Ai+[nβt] − 2Ai+[nβt]−n

)]
=: µ(1221)

n (t) + µ(1222)
n (t).

Clearly,

µ(1221)
n (t) =

n2α−2ζn
2

[nβt]+i0−1∑
i=0

A2
i

converges pointwise to a constant factor of µ∞. Since µ
(1221)
n is monotone, we

conclude that µ
(1221)
n converges in D([0,∞)) to a continuous limit. In order

to prove that so does µ
(122)
n , we will show that µ

(1222)
n (t) → 0 uniformly on

compact intervals. Considering once again 0 ≤ t ≤ L, we have∣∣µ(1222)
n (t)

∣∣
≤ n2α−2ζn

2

n+i0−1∑
i=n−[nβt]

(
Ai+[nβt] −Ai

)[(
Ai+[nβt] −Ai

)
+ 2Ai+[nβt]−n

]

= O

n2α−2ζn

n+i0−1∑
i=n−[nβt]

nβn−α
(
nβn−α + nβ(1−α)

)
= O

(
nα−2ζnn

3β−βα
)
→ 0

uniformly over 0 ≤ t ≤ L, as required.

Finally, we already know that µ
(121)
n converges pointwise to a continu-

ous limit. Furthermore, by the choice of i0, µ
(121)
n is a monotone function.

Therefore, it converges in D([0,∞)), and the proof is complete.

The following is the final lemma before we prove Theorem 2.1.

Lemma 2.11. Suppose that (2.5) and(2.2) hold. Let

(2.108) Sn(j) =

j+n−1∑
i=j

Xi, j ≥ 0, n ≥ 1.
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As n→∞, conditionally on E0,(
n−(2−2α)

(
Sn([nβt])− nε

)
, t ≥ 0

)
⇒
(

(2Cα)1/2BH(t) + ε−1Cασ
2
ZT0 − εt3−2α, t ≥ 0

)
in finite-dimensional distributions, where (BH(t) : t ≥ 0) is the standard
fractional Brownian motion (2.8) with the Hurst exponent H given in (2.7),
Cα is the constant defined in (2.10), and T0 is a standard exponential random
variable independent of the fractional Brownian motion.

Proof. It follows from (2.91) and the eventual monotonicity of the se-
quence (An) that there is i0 ≥ 0 such that for all large n,

(2.109) sup
i0≤i<j

E (YniYnj |E0) ≤ 0 .

For fixed L, t > 0 this and (2.90) imply that

E


n−[nβt]−1∑

i=[nβL]

(
Ai+[nβt] −Ai

)
Yni

2∣∣∣∣∣E0


=O

 ∞∑
i=[nβL]

(
Ai+[nβt] −Ai

)2


=O

 ∞∑
j=[nβL]

((
j + [nβt]

)1−α
− j1−α

)2


≤O
(
n4−4α

∫ ∞
L

[
(x+ t)1−α − x1−α]2 dx) .

Therefore, for fixed t,

(2.110) lim
L→∞

lim sup
n→∞

E


n2α−2

n−[nβt]−1∑
i=[nβL]

(
Ai+[nβt] −Ai

)
Yni

2∣∣∣∣∣E0

 = 0 .

Since the sequence (an) is eventually monotone, we can increase, if nec-
essary, i0 to guarantee that Aj+k − Aj ≤ Ai+k − Ai for all i0 ≤ i ≤ j and
k ≥ 0. By (2.109), for fixed L, t > 0, large n and i, j ≥ n+ [nβL],(

Ai+[nβt] −Ai+[nβt]−n −Ai +Ai−n

)
(
Aj+[nβt] −Aj+[nβt]−n −Aj +Aj−n

)
E
(
YniYnj

∣∣E0

)
≤ 0 ,
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and the same argument as above implies that

lim
L→∞

lim sup
n→∞

E

[(
n2α−2(2.111)

∞∑
i=n+[nβL]+1

(
Ai+[nβt] −Ai+[nβt]−n −Ai +Ai−n

)
Yni

)2
∣∣∣∣∣E0

]
= 0 .

Similarly, for a fixed t > 0,

(2.112) lim
δ→0

lim sup
n→∞

E


n2α−2

[nβδ]−1∑
i=i0

(
Ai+[nβt] −Ai

)
Yni

2∣∣∣∣∣E0

 = 0 ,

and it is elementary that for a fixed t > 0,

(2.113) lim
n→∞

E

(n2α−2
i0−1∑
i=0

(
Ai+[nβt] −Ai

)
Yni

)2∣∣∣∣∣E0

 = 0 .

It follows from (2.110), (2.111), (2.112), (2.113) and Lemma 2.9 that,
conditionally on E0,

[
ζnT

∗
n ,

(
n−(2−2α)

∞∑
i=0

(
Ai+[nβt] −Ai+[nβt]−n −Ai +Ai−n

)
Yni, t ≥ 0

)](2.114)

⇒
[
T0,

(
(1− α)−1σZ

(∫ ∞
0

[
(s+ t)1−α − s1−α] dB1(s)

+

∫ t

0
(t− s)1−α dB2(s) +

∫ ∞
0

[
(s+ t)1−α − s1−α] dB3(s)

)
, t ≥ 0

)]
,

in finite-dimensional distributions, as n → ∞. Furthermore, one can easily
check the Lindeberg conditions of the central limit theorem to see thatn−(2−2α)

−1∑
i=−[nβt]

Ai+[nβt]Zn−1−i, t ≥ 0

(2.115)

⇒
(

(1− α)−1σZ

∫ t

0
(t− s)1−α dB0(s), t ≥ 0

)
in finite-dimensional distributions, as n→∞, where B0 is a standard Brow-
nian motion. Note that the random variables in the left hand side of (2.115)
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are independent of the the random variables in the left hand side of (2.114)
and, in particular, independent of E0.

Using (2.26) we conclude by (2.114) and (2.115) that, in the notation of
Lemma 2.10, conditionally on E0,[
ζnT

∗
n ,
(
n−(2−2α)

(
Sn([nβt])− Sn

)
−
(
1 + ζ−2

n σ−2
n

)
µn(t), t ≥ 0

)]
⇒
[
T0,

(
(1− α)−1σZ

(∫ t

0
(t− s)1−α dB0(s)

+

∫ ∞
0

[
(s+ t)1−α − s1−α] dB1(s)

+

∫ t

0
(t− s)1−α dB2(s) +

∫ ∞
0

[
(s+ t)1−α − s1−α] dB3(s)

)
, t ≥ 0

)]
d
=

[
T0,

(
21/2(1− α)−1σZ

∫ ∞
−∞

[
(t− s)1−α

+ − (−s)1−α
+

]
dW (s), t ≥ 0

)]
in finite-dimensional distributions as n→∞, where at the intermediate step
the four standard Brownian motions, B0, B1, B2 and B3 are independent
(and independent of T0), and in the final expression (W (s), s ∈ R) is a two-
sided standard Brownian motion, independent of T0. By (2.29), this can be
restated as saying that, conditionally on E0,[

ζnT
∗
n ,
(
n−(2−2α)

(
Sn([nβt])− Sn

)
− µn(t), t ≥ 0

)]
⇒
[
T0,
(

(2Cα)1/2BH(t), t ≥ 0
)]
,

and by Lemma 2.10 also[
ζnT

∗
n ,
(
n−(2−2α)

(
Sn([nβt])− Sn

)
, t ≥ 0

)]
⇒
[
T0,
(

(2Cα)1/2BH(t)− εt3−2α, t ≥ 0
)]

in finite-dimensional distributions, as n→∞. Since

n−(2−2α)
(
Sn([nβt])− nε

)
= n−(2−2α)

(
Sn([nβt])− Sn

)
+
(
n2α−2ζ−1

n

)
ζnTn∗,

the claim of the lemma follows from the definition (2.50) of ζn and (2.22).

Now we are in a position to prove Theorem 2.1.

Proof of Theorem 2.1. We will prove that

(2.116)

{
P
[(
n−(2−2α)

(
Sn([nβt])− nε

)
, 0 ≤ t <∞

)
∈ ·
∣∣∣E0

]
, n ≥ 1

}
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is a tight family of probability measures on D([0,∞)) equipped with the
Skorohod J1 topology. Assuming for a moment that this is true, it would
follow from Lemma 2.11 that, conditionally on E0,(

n−(2−2α)
(
Sn([nβt])− nε

)
: t ≥ 0

)
⇒
(

(2Cα)1/2BH(t) + ε−1Cασ
2
ZT0 − εt3−2α : t ≥ 0

)
weakly in D([0,∞)), as n→∞. Since the functional x 7→ inf{t ≥ 0 : x(t) ≤
0} on D([0,∞)) is, clearly, a.s. continuous with respect to the law induced on
that space by the limiting process, the continuous mapping theorem would
imply that, conditionally on E0,

n−βIn(ε) = inf
{
t ≥ 0 : n−(2−2α)

(
Sn([nβt])− nε

)
≤ 0
}

⇒ inf
{
t ≥ 0 : (2Cα)1/2BH(t) + ε−1Cασ

2
ZT0 − εt3−2α ≤ 0

}
= τε

as n → ∞. Therefore, establishing tightness of the family (2.116) suffices
to complete the proof of Theorem 2.1, and by Lemma 2.10 it is enough to
prove that the family
(2.117){

P
[(
n−(2−2α)

(
Sn([nβt])− nε

)
− µn(t), 0 ≤ t <∞

)
∈ ·
∣∣∣E0

]
, n ≥ 1

}
is a tight family of probability measures on D([0,∞)).

We have to prove tightness of the restriction of the family (2.117) to the
interval [0, L] for any L > 0, so fix L. We start by showing that

E

[(
Sn

(
[nβt]

)
− n2α−2µn(t)− Sn

(
[nβs]

)
+ n2α−2µn(s)

)2
∣∣∣∣E0

]
= O

((
[nβt]− [nβs]

)3−2α
)
,(2.118)

uniformly for 0 ≤ s ≤ t ≤ L. We write

Sn

(
[nβt]

)
− n2α−2µn(t)− Sn

(
[nβs]

)
+ n2α−2µn(s)

=

−1∑
i=−[nβt]

(
Ai+[nβt] −Ai+[nβs]

)
Zn−i−1

+

∞∑
i=0

(
Ai+[nβt] −Ai+[nβt]−n −Ai+[nβs] +Ai+[nβs]−n

)
Yni.
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Since Zn, Zn+1, . . . are independent of E0, by Lemma 2.8,

E

[(
Sn

(
[nβt]

)
− n2α−2µn(t)− Sn

(
[nβs]

)
+ n2α−2µn(s)

)2
∣∣∣∣E0

]

=O

[
[nβt]−1∑
j=0

(
Aj −Aj+[nβs]−[nβt]

)2

+
∞∑
i=0

(
Ai+[nβt] −Ai+[nβt]−n −Ai+[nβs] +Ai+[nβs]−n

)2
]

=O

((
[nβt]− [nβs]

)3−2α
)

uniformly for 0 ≤ s ≤ t ≤ L by (2.71) with κ = 2, and (2.118) follows.
Let now 0 ≤ r ≤ s ≤ t ≤ L. If t− r ≤ n−β, then

E

[∣∣∣Sn([nβs])− µn(s)− Sn([nβr]) + µn(r)
∣∣∣

∣∣∣Sn([nβt])− µn(t)− Sn([nβs]) + µn(s)
∣∣∣∣∣∣E0

]

vanishes. On the other hand, if t−r > n−β, then by (2.118) and the Cauchy-
Schwarz inequality, the conditional expectation can be bounded by

O

((
[nβt]− [nβr]

)3−2α
)

= O
(
n4−4α(t− r)3−2α

)
uniformly for 0 ≤ r ≤ s ≤ t ≤ L. Since 3− 2α > 1, the required tightness of
the family in (2.117) follows, which completes the proof of Theorem 2.1.

3. Some useful facts. We collect in this section for easy reference a
number of known or easily derivable results.

The following integral evaluation follows from (2), (6) and (51) in Pickard
(2011). If H ∈ (0, 1), H 6= 1/2, then
(3.1)∫ ∞

0

[
xH−1/2 − (x− 1)

H−1/2
+

]2
dx =

cos(πH)Γ(2− 2H)

πH(1− 2H)
Γ(H + 1/2)2 .

Next, we will need the following version of the Berry-Essen theorem
valid for independent not necessarily identically distributed summands; see
Batirov et al. (1977).

imsart-aop ver. 2012/04/10 file: LDclustersLMrevised0401.tex date: January 4, 2023



44 CHAKRABARTY AND SAMORODNITSKY

Let X1, . . . , Xn be independent zero mean random variables with finite
third moments. Denote

A =

n∑
i=1

E|X3
i |, B =

√√√√ n∑
i=1

E(X2
i ).

Assuming B > 0 we have

(3.2)

∣∣∣∣∣P
(

n∑
i=1

Xi ≤ Bz

)
− Φ(z)

∣∣∣∣∣ ≤ CuAB−3, z ∈ R ,

with Cu a universal constant, and Φ the standard normal CDF. The fact
that the constant is universal means that (3.2) remains valid for n = ∞ as
long the series in the left hand side converges and A,B are finite.

The following generalization of the Riemann-Lebesgue lemma can be
proven in the same way as the original statement. If f : R→ R is a measur-
able function such that for some δ > 0,∫ ∞

−∞
eθx|f(x)|dx <∞ for all θ ∈ [−δ, δ] ,

then

(3.3) lim
t→∞

sup
|θ|≤δ

∣∣∣∣∫ ∞
−∞

e(θ+it)xf(x) dx

∣∣∣∣ = 0 .

We will use a simple bound on the characteristic function φ of a random
variable X with a finite third moment. Let X ′ be an independent copy of
X and Y = X −X ′. Using the bound cos t ≤ 1− t2/2 + |t|3/6 for t ∈ R, we
have

EeitY ≤ 1− t2E(Y 2)/2 + |t|3E|Y |3/6
≤ 1− t2Var(X) + 4|t|3E|X|3/3 .

This implies that

(3.4) |φ(t)| ≤
(
1− t2Var(X) + 4|t|3E|X|3/3

)1/2
, t ∈ R .
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