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CLUSTERING OF LARGE DEVIATIONS IN MOVING
AVERAGE PROCESSES: THE LONG MEMORY REGIME
By ARIJIT CHAKRABARTY AND GENNADY SAMORODNITSKY *
Indian Statistical Institute, Kolkata and Cornell University

We investigate how large deviations events cluster in the frame-
work of an infinite moving average process with light-tailed noise and
long memory. The long memory makes clusters larger, and the asymp-
totic behaviour of the size of the cluster turns out to be described
by the first hitting time of a randomly shifted fractional Brownian
motion with drift.

1. Introduction. We consider an infinite moving average process of
the form

oo
(1.1) X0 =Y iZni, n>0,
=0

where the noise variables (Z, : n € 7Z) are assumed to bef ii.d. non-
degenerate random variables. The noise distribution F; is assumed have
finite exponential moments:

(1.2) / e Fz(dz) < oo for all t € R.
R

Furthermore, assuming that the noise is centred:

(1.3) /RZFZ(dZ) =0,

the series defining the process in (1.1) converges if and only if the coefficients
ag, ai, as . . . satisfy

o0
(1.4) Zaf» < 00.
=0
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2 CHAKRABARTY AND SAMORODNITSKY

In this case (X,,) is a zero mean stationary ergodic process. For ¢ > 0 we
consider the sequence of large deviation events

n+j—1
Y Xizegp, j20.

1=

1
1.5 Ei(n,e) =< —
(15) s =14
By stationarity, each event F;(n,¢) is equally rare, and we are interested in
the cluster of these events that occur given that the event Ey(n,e) occurs.
In Chakrabarty and Samorodnitsky (2022) the short memory case was
considered. In this context, “short memory” corresponds to the case

(1.6) Z |an| < oo and Zan # 0.

n=0 n=0

In this short memory case the conditional on Ey(n,e) law of the sequence
(l(Ej(n,e),j = 1,2,...) converges weakly, as n — oo, to the law of a
sequence with a.s. finitely many non-zero entries. the total number D, of
the non-zero entries turns out to scale as e 2, and £2D, has an interesting
weak limit as € — 0. We refer the reader to Chakrabarty and Samorodnitsky
(2022) for details, and a minor technical condition required for the above
statements.

In the present paper we are interested in the long memory case. For the
moving average processes (1.1) “long memory” refers to the case when the
coeflicients (a;) satisfy the square summability assumption (1.4) but not the
absolute summability assumption in (1.6). A typical assumption in this is

(1.7) (ay) is regularly varying with exponent — o, 1/2 < o < 1;

see Samorodnitsky (2016). It turns out that, in this case (under certain
technical assumptions, an example of which is below), the conditional on
Ey(n,e) law of the sequence (1(Ej(n,€), j = 1,2,...) converges weakly, as
n — oo, to the degenerate probability measure d(; ;). That is, once the
event Ey(n,e) occurs, the events (Ej(n,e)) become very likely. In order to
understand their structure we concentrate on the random variables

(1.8) In(e) =inf{j > 1: Ej(n,e) does not occur}, n > 1

and establish a weak limit theorem for this sequence under a proper scaling.
Interestingly, the limit turns out to be the law of the first hitting time of a
randomly shifted fractional Brownian motion with drift.

The main result containing the above limit theorem and the technical
assumptions it requires are in Section 2. The proof of the main theorem
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CLUSTERING OF LARGE DEVIATIONS 3

requires a long sequence of preliminary results, all of which are presented in
that section. Finally, some useful facts needed for the proofs are collected in
Section 3.

2. The assumptions and the main result. Our result on clustering
of large deviation events in the long memory case will require a number of
assumptions that we state next. First of all, we will replace the assumption
of regular variation (1.7) by the asymptotic power function assumption

(2.1) ap ~n~ % 1/2 <a <1, and is eventually monotone.

There is no doubt that the results of the paper hold under the more general
regular variation assumption as well. The extra generality will, however,
require making an already highly technical argument even more so. The
potentially resulting lack of clarity makes the added generality less valuable.
The same is true about the eventual monotonicity assumption.

We will need additional assumptions on the distribution of the noise vari-
ables. We will assume that some 6y > 0,

o oo .
(2.2) |§|1£ / t2 / W02 py(dz)| dt < .
<bp J —o0 —00
Next, let
(2.3) 0% = / 22 Fz(dz)
R
be the variance of the noise. Denote
4o — 1
(2.4) k = the smallest integer > 20: 50

In other words, k = [(1 + 2a)/(2 — 2c)]. We assume that a generic noise
variable Z satisfies

(2.5) EZ'=EG! for 1 <i <k,
where G ~ N(0,0%).

REMARK 2.1. It is standard to verify that (2.2) implies that the noise
distribution has a twice continuously differentiable density fz. One the other
hand, a sufficient condition for (2.2) is that the noise distribution has a four
times continuously differentiable density fz such that

(o)
/ ol
— o
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4 CHAKRABARTY AND SAMORODNITSKY

The moment equality assumption (2.5) restricts how far the the noise
distribution can be from a normal distribution. Note that in the range 1/2 <
a < 5/8 we have k = 2, in which case the assumption is vacuous. Since k > 2
for all a« € (1/2,1), (1.3) is implied by (2.5).

To state our main result, we need to introduce several key quantities. Let

4 — 4o
(2.6) 5 = 3_ 2a € (07 1)
and
(2.7) H=3/2—a¢c(1/2,1).

We denote by (Bg(t) : t > 0) the standard fractional Brownian motion with
Hurst index H, i.e. a zero mean Gaussian process with continuous paths and
covariance function

(2.8) FE (By(s)Bg(t)) = % (s?H + 27 —|s —t*") 5,6 > 0.

If Ty is a standard exponential random variable independent of the frac-
tional Brownian motion, then

(2.9)
7. = inf {t > 0: By(t) < (2C4) Y2et?H — (Ca/2)1/2a%s—1To} , e >0,

is an a.s. finite and strictly positive random variable. Here 0% is the variance
of the noise in (2.3) and

B(1 —a,2a—1)
(1-—a)(3-2a)’

(2.10) Cy =

with B(+,-) the standard Beta function.
We are now in a position to state the main result of this paper.

THEOREM 2.1. Assume the finite exponential moment condition (1.2),
the power-type condition (2.1) on the coefficients, the regularity condition
(2.2) and the moment equality condition (2.5). Then for every ¢ > 0 the
first non-occurrence times (1.8) satisfy

(2.11) P (n*BIn(E) = -\Eo(n,g)) = P(r.€),n— 0.
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CLUSTERING OF LARGE DEVIATIONS 5

REMARK 2.2. It is worthwhile to observe that the limit law obtained
in Theorem 2.1 depends on the noise distribution only through its vari-
ance O'%. This can be understood by noticing that in the long memory case
considered in this paper we have Var(X;+- -+ X,,) > n; see Lemma 2.1 be-
low. Therefore, the events Ej(n, ) should be viewed as moderate deviation
events, not large deviation events. It has been observed in many situations
that moderate deviation events are influenced by the Gaussian weak limit
of the quantities of interest. At the intuitive level, this explains why it is the
variance of the process that appears in the limit.

For comparison, in the short memory case (1.6), we have Var(X; +--- +
Xy,) ~ cn for some ¢ > 0, the events F;(n,e) should be viewed as large
deviation events, and their behaviour depends on much more than just the
variance of the noise. See Chakrabarty and Samorodnitsky (2022) for details.

We start on the road to proving Theorem 2.1 by establishing certain basic
estimates that will be used throughout the paper. Denote

j
(2.12) Aj=> ai, jET,
=0

with the convention that a sum (or an integral) is zero if the lower limit
exceeds the upper limit (so that A; =0 for j < —1, for example). Let

n—1

(2.13) Sn=> Xin>1,
i=0

and denote

(2.14) 02 = Var(S,), n > 1.

In the sequel we use the following notation. We will denote by

(2.15) o7 (1) = log </R et FZ(dz)> teR

the log-Laplace transform of a noise variable. We will frequently use the
obvious facts

(2.16) ¢ is convex and pz(x) ~ 2%0%/2, © — 0,
and

(2.17) ¢, is continuous, nondecreasing and ¢’ (z) = zo + O(z?), = — 0.
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6 CHAKRABARTY AND SAMORODNITSKY

We will write Gy for the probability measure obtained by exponentially
tilting the law Fz by 6 € R. That is,

(2.18) Go(dz) = (Ee"?) e Fy(d2).
It is clear that, as 6§ — 0,
(2.19)

/ 2 Go(dz) ~ 0%, = 0(#%) and = O(|0)®) if >3,
R

/ 2 Go(dz) — 0%

R
/ |2|* Gy(dz) — / 12|F F(dz), k=1,2,....
R R

LEMMA 2.1.  Asymptotically we have

(2.20) Aj~(1—a) il j =
and
(2.21) 02 ~ Caozn® 2% n — co.

Furthermore, for anyt > 0, as n — oo,

[nP1]
(2.22) ST (Ai = Arn)? ~ g2t
i=0
and
n n+[nﬁt}
(223) Y (A=A~ Y (Ai-Aig)?~ (1—a) 2 20t
i=n—[nft]+1 i=n-+1
with
(2.24) Ki=(1-a)%3-2a)"".

Finally, for anyt > 0, as n — oo,

(2.25)
2

0% —204,3—2a
—ZN (A A ) (Ai+[n5t] - Ai+[nﬁt}—n> =1—n'2% 721+ 0(1)) .
=0

oy =
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CLUSTERING OF LARGE DEVIATIONS 7

ProOOF. The claim (2.20) is, of course, an immediate consequence of the
assumption (2.1). For (2.21), first note that

R,, = Cov(Xq, Xy NO’ZZJ (j+n) @

00
7112&0%/ x*a(l + 1,)701 dx
0
= Cho2(1 —a)(3 = 2a)n' ™2

as n — oo. Therefore,

n—1 n—1
02 = Z n— [i[)Ry ~ 2Ca0%(1 — a)(3 —2a) Y (n—1d)i' ™2
=—(n-1) i=0

1
~2C,0%(1 —a)(3 - 2a)n3_2°‘/ (1—2z)z' 2% dx = Cuozn32e,
0

which is (2.21). Next, for a fixed ¢ > 0 and large n, by (2.20) and the fact
that 8 < 1,

[nP1] [n71] 1] 3—2a
D (A — Aiy)? ZAQ Z“C“NKl( ) :
1=0

proving (2.22). Similarly,

n n

Z (Ai — Ain)® ~ Z A2 ~ (1 — ) 2P P22

=n—[nft]+1 i=n—[nft]+1

showing the first equivalence in (2.23) and the second equivalence can be
shown in the same way.
For (2.25), we start by writing

(2.26) A AJ n n 1_]‘,77,21,
7=0
so that
(2.27) o2=0%) (Aj—Aj_n)?,n>1.
7=0
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8 CHAKRABARTY AND SAMORODNITSKY

Therefore, for large n,

2 o

Un

P D (Ai = Ain)(Ag i — Aippns—n)
A

=0
1 [nft]-1 o 9
= 5 (AZ — Ai- n 2 + Z ( i+[nft] — z+[n5t}fn — A + Az—n)
=0 =0
(2.28)
n—1
= 5|2 (4= i)
=0
+ ) (Ai+[n6t} — A ms—n — Ai + Az‘—n) 2] .
i=n—[nht]
By (2.20),
Z( Ay ~(1=0) QZ(M— )’
=0

—4day3—2a - > —a —a12
n44t32(1_a) 2/0 [yl _(y_l)}r ] dy

as n — oo. By (3.1) with H = 3/2 — q,

oo . on?
(2:29) /0 ' = (-1 ] dy
— 13- 20)(1— ) ) pon _)r@ - o)
T
_ l—«o B B Y
- 3_2aB(2a L1l-a)=(1-a)C,,
SO
n—1 9
(230) (A,L — Ai—[nﬂt}) ~ Cfat37204n474a7 n— 00,
i=0
Since
(2.31)
o0 9 0o
Z <A,~ — Ai_[nﬁt]> -0 (nzﬁ Zi2a> _ O(n2,3+172a) _ O(n474a),
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CLUSTERING OF LARGE DEVIATIONS 9

we conclude also that

o0

(2.32) Z (Ai - Ai—[nﬁt]>2 ~ Cptd3 729t 5 0.,
i=0

It follows from (2.31) and (2.32) that

Bt
- > [_Aj + Aj ey + (Aj+n - Aj*ﬂ*[nﬂq)r e
j=0

In combination with (2.28) and (2.30) we obtain

o9
Cat372an4f4a )

qu‘ Q.

A Az n z+[nﬁt} Ai+[n5t}fn) ~
=0

(2

Dividing both sides by o,%¢2 and appealing to (2.21), (2.25) follows. O

We now consider certain large deviations of the partial sum .S,, under a
change of measure. With an eye towards a subsequent application, we allow
the partial sum, given in the form (2.26), to be “corrupted”. For n > 1 and
t > 0 we define

nBt]
(2.33) )= (Ai—Ain) Zni,
1

.

n—1

(2.34) Gt)= > (Ai—-Ain)Znia,

i=n—[nht]
n+[nPt]

(2.35) W)= > (Ai—Ain)Zni.

1=n+1

LEMMA 2.2.  Fiz ty,t2,t3 > 0 and denote

(2.36) S, =Sy —Zgn ,n>1.

Let (), (0,) and (n,) be real sequences satisfying
T =0 (”3/27(1) , On=0 (”417&)) 1< <02,
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10 CHAKRABARTY AND SAMORODNITSKY

If S,, is a random variable with the law
- = \—1 _
(2.37) P (sn c dw) - (E(eens")) P (S, € dr),n>1,

then for all x € R and h > 0,
(2.38)

P (1ot (Sn = B(Sa) + ) € a2+ h]) ~ 12 (2m) 2, n — oo
Furthermore,

(2.39) sup 1, P (nnaglgn € [z,x + 1]) < 00.
n>1,z€R

PROOF. Let (Zm, n>1i> 0) be a collection of independent random
variables such that the law of Z,; is G(4,—4, ), in the notation of (2.18).
Then for large n,

(2.40)
n—[nfts]—1 00

S L AgZno+ (Ap— A0) Zyn + Z AiZpi+ Z (Ai—Aip) Zni -
i=[nft1]+1 i=n+[nft3]+1

The proof applies to (2.40) the bound (3.2) in the appendix, with n = occ.
For any z € R

(2.41) 'P (Sn — E(S,) < Z\/Var(gn)> — ®(2)

<c, (V;M(SR))_?’/2 i A = AP B (1Z0i — BZuil*) 02 1.
=0

It is immediate from (2.1) that

(2.42) sup|A; — A;i_p| = O(n'™®),
>0

so that
lim 6, sup|A; — A;—,| =0.
It follows from (2.19) that
- - - - o
(2.43) EZp; — 0, Var(Zni) — 0%, E (\Zm- —EZm-|3) —>/ 28| Fiz (d)

—0o0
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CLUSTERING OF LARGE DEVIATIONS 11

uniformly in ¢ as n — co. Since it is an elementary conclusion from Lemma
2.1 that for any k > 1/a,

(2.44) D A = Ayt = O(nSTE),
=0

it follows from (2.41) that
sup

e |” (S” ~ B(5h) < zM) — a(2)
-0 <n4_30‘ (var(5.)) 2) ,

Using (2.43) again we see that

3
(2.45) Var(Sy) ~ ap = > Var (&,(t;)) ~ Caogn® >,
i=1
with the second equivalence following from various claims in Lemma 2.1.
Thus,
(2.46)
sup | P <§n — E(S,) < Z\/V&I‘(Sn)> —®(z)| =0n?) =0 (nn 1)
z€R

Therefore, for z € R and h > 0, as n — oo,
P (nnarjl <§n — E(S,) + %L) € [z,x + h])
—o(m?)+ [ 1[Var(S)VEan o~ 9 < 5
< Var(8,) "2 (2 + h)ny 0w — )] 6(2) dz,

where ¢ is the standard normal density. The assumptions on 7, and 7, along
with (2.45) imply that the integration interval shrinks towards the origin.
Thus, the integral above is asymptotically equivalent to 7, '¢(0)h, and (2.38)
follows. Boundedness of ¢ in the above integral establishes (2.39). O

We now look more closely at the processes defined in (2.33), (2.34) and

(2.35). The next lemma describes the limiting distribution of their incre-
ments under the same change of measure as in the previous lemma.
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12 CHAKRABARTY AND SAMORODNITSKY

LEMMA 2.3.  Suppose that 0, € R satisfies 0,, = o(n_(l_“)). Fiz 0 <
s < t and consider random variables with the laws

P(Up; € dz) = cpie™™P (€5(t) — € (s) € dx),i=1,2,3,n>1,
with appropriate c,;. Then, as n — oo,
(2.47) n= 72 (U — BE(Un)) = N(0, Kio% (372 — 5729))
where Ky is given in (2.24), and for i = 2,3,
(2.48) n~(=0t82) (U, — B(U,)) = N(0,(1 — o) 20%(t - 5)).

ProOF. For large n,

[Pt
d
Unl = Z A; Zm
i=[nfs]+1
with (Zm) as in the previous lemma. That is, U, — E(Up1) is the sum of
independent zero mean random variables. By (2.43) and (2.22),
[nf1]
Var(Up1) ~ 0% Z AF ~ Kyopntie (9720 — 3720 |
i=[nfs]+1

and a similar calculation using the third moment bound in (2.43) verifies
the Lindeberg conditions of the central limit theorem. Hence (2.47) follows,
and the calculations for (2.48) are similar. O

Consider the overshoot defined by
(2.49) T =5S,—ne,n>1.

Conditionally on the event Ey = Ey(n,¢) in (1.5) the overshoot is nonnega-
tive. The next lemma is a joint weak limit theorem for the joint law of the
overshoot and the processes defined in (2.33), (2.34) and (2.35). The joint
law is computed conditionally on Ej.

LEMMA 2.4. Let

(2.50) Co=mnefo2, n>1,
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CLUSTERING OF LARGE DEVIATIONS 13

Conditionally on Ey, as n — oo,

[nPe]
(gnT;;, n2e- ZA/ 2Geoa,(d2) |, t>0],

n—1

A PO S / 2Geoa(d2) | £20),
i=n—[nht] >
n+[nPt] 00

(na_ﬁ/Q_l 52(75) - Z (A; — Azn)/ ZGCn(Ai—Ai—n)(dZ) iz 0)>
i=n+1 >

:><T0, (K12o2By(£72), ¢ > 0),
(1= ) ozBa(t), t > 0), (1 — a) ‘oz Bs(t), t > o)) ,

in finite dimensional distributions, where Ty is a standard exponential ran-
dom wvariable independent of independent standard Brownian motions B,
By, and Bs, K is the constant in (2.24) and Gy is the exponentially tilted
law in (2.18).

PROOF. Denote
(2.51)
o2

uls) = T3 108 foxp (57 )]—Zio (o2n(A; — A;0)s) |

where the second equality follows from (2.26). By (2.16), (2.21) and (2.42)
we see that

(2.52) lim v, (s) = s2/2

n—oo

uniformly for s in a compact set. Furthermore, the sum in (2.51) can be
differentiated term by term, and it follows by (2.17), (2.21) and (2.42) that

(2.53) lim ¢y, (s) = s,

n—oo

also uniformly on compact sets. Since 1], is increasing and continuous, for
large n there exists a unique 7, > 0 such that

(2.54) P () = €.
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14 CHAKRABARTY AND SAMORODNITSKY

It is immediate that 7,, — € as n — oco. Denoting

(2.55) 0, =0, ’nmy, n>1,
we have
(2.56) (E (e‘)nSn))_l E (Sn69”5"> = ne.

Fix kK > 1 and for each i = 1,2,3 fix points 0 = t;0 < tj1 < ... < t.
Denote

3
Sn =S5, - Z&;(tzk% n>1.
i=1

Let Upij,n > 1,4 =1,2,3,j =1,...,k, S,, n > 1 be independent ran-
dom variables, with

P (Um] S dl‘)
0n (€3 (i)~ ti 1)) ) T fnz p (g i
= (E (6 nisn b T b )) " P (&, (tij) — &u(tij—1) € dz)
and
N =\ —1 _
P (8, € dz) = (B (%)) " eP (S, ¢ da)
forn>1,t=1,2,3and j=1,...,k. Let
It follows from (2.56) that
3k
(2.58) M + Z Z Wnij =ne, n > 1.
i=1 j=1
Let t > 0 and (a;5) C R. We have

k
P({Tﬁ‘ > to? /ne} 0 ({0272 (64 (0) = Eh(tri1) — ) > o })

J=1

(N ) — €tig) — ) > aiﬁ))

2<i<3,1<5<k
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CLUSTERING OF LARGE DEVIATIONS 15

3k
= 1(z> to /ne — "
/}Rsk+1 <:z: ne + to; /ne ZZS”>

i=1 j=1
1 (s1; > n°*Yayj + pp1j, 1 < j < k)
1 (Sij >n1_a+ﬁ/2aij+unij,i =2,3,j= 1,...,k:)

3 k

P(S, € da) [T T] P(€.(tis) — & tij—1) € dsij)

i=1j=1

3 k
= 1( 2 > ne +toz/ne — ij
/Rskﬂ (:L‘ ne + to;. /n ZZ‘S’J>

i=1 j=1
1 (Slj > n2_2°‘a1j + Unij, 1< < k)

1 (s > ' = 205 + g i = 2,3,1< 5 < k)

exp<—0na; — 0, 23: Zk: sij>P (S’n S dx)

i=1 j=1
3k
E (66"5"> [T PWni; € dsis)
i=1j=1
k
= cn / . L(min(ui; —aij) > 0) [1 P (n* 72 (Unsj — pn1j) € dusy)
R3* G e
3k
H H P (no‘_ﬁ/g_l (Unij — bnij) € duij)
i=2 j—=1

/ e_zl(z > tﬁnoi/ns)P@n(gn — pn + Yn(u11, - - - ,U3k)) S dz) ,
R

with

(2.59) cp=e g (69"S">

and

k 3 k
’yn(un, . ,’U,gk) = n2_20‘ Z Ulj + nl_"”“g/? Z Z uij .
j=1

i=2 j=1
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16 CHAKRABARTY AND SAMORODNITSKY
Let 6,, be as above and 7, = 0,0,,. For n > 1, we introduce the notation
fn(ulla o 7u3k)
m ~
:'r]n/ e_z]_(z > t@nO'?L/TLE)P(Qn(Sn — tn + ’yn(ull, ce ,ng)) S dZ) .
0

Fix (u;j) and let ugl) — u;; as n — oo for all 4,j. Let us denote v, =

Yn (uﬁl), .. u:(;,z)) With 6,, and n,, already defined, we use Lemma 2.2 with

this ~y. It is elementary to check that the hypothesis of the lemma are
satisfied. Since t0,02 /ne — t, it follows from (2.38) that for all fixed T > t,

/ e_zl(tenai/ne <z< T)P(Hn(gn — Uy + Vn) € dz)
R

T
~ 77;1(27r)_1/2/ e *dz,
t

and if follows from (2.39) that

hm hmsupnn/ 1(z >T)P(9n(5'n —un—i-’yn) € dz) =0,
R

T—00 p—oo

showing that
hm fn (“11 b ué,ﬁ) = (2m) /27t

Another application of (2.39) implies that

sup  fn(u11, ..., usg) < o0
{uij}CR

It follows immediately from Lemma 2.3 and bounded convergence theorem
that

(2.60) E[f(n2“_2(Un11 — 1)y - PP Uy, — pinsk))

1<n2a_2(Un1j — pn1j) > arj, 0PN Uiy = pngg) > iy, i = 2,3,

j:1,...,/~c,)}

with Tj standard exponential and (Gj; : @ = 1,2,3, j = 1,...,k) indepen-
dent zero mean Gaussian random variables, independent of Tj, with

—>(27T)_1/2P (TO > t7Gz_7 > (0771 for all Za]) )

Var(G1;) = K10% (t5 2o _ ti’]?‘{) ,1<j<k,
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CLUSTERING OF LARGE DEVIATIONS 17

and for i = 2, 3,
Var(Gij) = (1 — a) 205 (tij — ti j-1), 1 < j < k.

A simple way to verify the convergence above is to appeal to the Skorohod
representation and replace the weak convergence in Lemma 2.3 by the a.s.
convergence.

Notice that using (2.60) with t = 0 and «;; = —oo for all 4, j tells us that

(2.61)  P(Eo) ~ (21)"V2ep /i = (27) M2~ ”E( b Sn) /(006n).

Dividing (2.60) by (2.61) gives us the statement of the lemma apart from
a possibly different centring. In order to complete the proof, it suffices to
show that as n — oo, for j =1,...,k,

(2.62)
[nﬁtlj]
fnlj = Z / z2Ge, A, dz)+0( 2= 20‘),
i=[nft1;_1]+1
(2.63)
nf[nﬁtnjfl] 0
Hn2j = Z Az/ z ngAi(dZ) +o0 (n1+5/2*0‘> s
i=n—[nBty;] -
(2.64)
n+[n5tn]-] o
Pn3j = Z (A; — Ai—n)/ 2Ge(A—a;_n)(dz) +0 (”1+B/2_a> :
i=n+[nft,;_1] -
For simplicity of notation we prove these statements for j = 1. For 6,, as
n (2.55), let (Zm-, n > 1,47 > 0) be a collection of independent random
variables such that the law of Z,; is G(4;—4,_,)6,- Since both 6, A; and ¢, A;
converge to zero uniformly in i < nft;1, we can use (2.19) to write

[nﬁtu [nﬁtu
fhn1l = Z AE( ) Z A/ z G, 4,(dz)
nﬁtn [nPt11]

ZA/ 2 G, a,(dz) + OQ}LZAQ

It follows from (2.21) and (2.22) that

nﬂtlﬂ

CnZA2—0 2204)7
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18 CHAKRABARTY AND SAMORODNITSKY

and we obtain (2.62) (for j = 1).
For (2.63) with j = 1 we notice that by (2.17),

(265) E (Zn> = 0n(Ai — Ai_n)o% + O (02(A; — Ai_p)?)

uniformly in ¢ > 0, as n — oo. Thus,

n—1 n—1
lin21 = 050, *nT, Z A2 +0 |62 Z A3

:n—[nﬁtgl] i:n—[nﬁtzﬂ
It follows from Lemma 2.1 that
n—1
62 Z A =0 (na+ﬁ—1> — 0 (nl—a+,ﬁ/2> ‘
i:nf[nﬂtgﬂ

Therefore,

n—
(2.66) fin21 = 050, *nTy, Z A? 4o (nl—a+5/2>

i:nf[nﬁtm]

and, similarly,

Z / 2Geoa,(dz) = a'Z(:n Z A2 _|_O( 1— a+@/2)

i=n—[nfta] i=n—[nfta]

Another appeal to Lemma 2.1 shows that for (2.63) we only need to argue
that

(2.67) Tn:&?—l—o(nl_a_ﬁﬂ) , T — 00.
However, by (2.19),
[e.e]
P(s)=s5+0 no’n4ZA Ain) |,
7=0
uniformly for s in compact sets. Using this and (2.44), we obtain
e = Yp(Tn)
oo
=7, +0 nan4ZA Ajn
7=0
=7, +0Mn* Y =7,40 (nl_o‘_Bm) .

This establishes (2.67) and, hence, (2.63) with j = 1. The proof of (2.64) is
similar. O
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CLUSTERING OF LARGE DEVIATIONS 19

None of the statements proved so far required the additional assumptions
stated at the beginning of this section. These assumptions start to play a
role now.

The next several lemmas require additional notation designed to focus on
the contribution of individual noise variables on S,,. For n > 1 and ¢,5 > 0,
i #£ j, we set

S (i) = Sn — (Ai — Ai—n) Zp—i—1,

Si(i,5) =Sn — (Ai — Aien) Zp—ic1 — (Aj — Aj_p) Zn—j—1,

and, with ¢, given by (2.50), we let Sy S S'n(i,j) be random variables
with distributions R
P(S, € ds) x e*P(S, € ds),

P(S,(i) € ds) o e*P(S! (i) € ds),
P(S,(i,7) € ds) o e*P(S! (i,7) € ds) .

Denote the characteristic functions of o, (S, — ne), o, (S (i) — ne) and

U;I(S’n(i,j) —ne) by ¢n, ¢ni and ¢p;j, respectively. For 4 € R and o > 0

we denote by ¢ (p; 02;-) the characteristic function of N(u,0?).

LEMMA 2.5. Let k be given by (2.4) and assume that (2.5) holds. Then
the following statements hold uniformly in t € R:

(2:68)  [9n(t) = 66 (0; i) = O (n'/20)(1 4 )"+

(2.69)
sup ‘¢m-(t) — o¢ (Uglm-:()\m- —1); A\ t)| =0 (n1/2_“(1_°‘)(1 + |t|)”+1) ,

i>0

(2.70) SUp [Gnij () = 66 (07" ne(Anig = 13 Anisi )|
gor
—-0 (nl/Zfﬁ(lfa)(l T ‘t‘)n+1> ?

where forn > 1 and i,5 > 0, i # j, we set
oy 2 oy 2 2
Ani =1-— 0_7%(142' —Ain)% Ay =1-—5 [(Ai = Ain)? + (45 — Aj-n)7]

n

PROOF. It is an elementary conclusion from (2.5) that, for each 1 < i < &,
(2.71)

e F.(dz) B 2" F,(dz) = 0% E [(G+b607)'] + O (|s*7*1)
(ferr)
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20 CHAKRABARTY AND SAMORODNITSKY

as § — 0, where G is a standard Gaussian random variable.

Let (Z,; : n>1,i > 0) be a family of independent random variables with
each Zn; ~ G(a,_4,_,)c,» 50 that for n > 1 and i,j > 0, i # j we have

A d o A
Sn = E (Ak - Ak—n) an )

@)L Y (Ar— Arn) Zur,
ke{0,1,2,.. }\{i}

Sut) S DT Ak ) Zur
k€{0,1,2,.. \{4,5}

Let now (Gni : n > 1,9 > 0) be a collection of independent random
variables, also independent of (Z,; : n > 1,i > 0), where G,,; follows
N ((AZ — Ai,n)CnJ% ,0%), for all n > 1,7 > 0. It follows from Lemma 2.1

and (2.42) that (2.71) can be reformulated as
(2.72) E (Zﬁ]> — E (G%j) =0 (IA]- _ Aj_n‘nfiJrlnf?(lfa)(Hfl#l))

uniformly in 7 > 0 and 1 <7 < k. For a fixed ¢t € R we use telescoping to
write

(2.73)
Eexp{i|to,! Z(Aj — Aj_p)Grj — Eexp {z (ta;1§n> }
§=0
00 j—1 . 00
< Z Eexpl{i|to,! (Aj — Aj_n)Zn; + Z(AJ Aj_n)Grj
7=0 k=0 k=j
J R o)
—Eexpi[to, ' | D (Aj = Ajn)Znj+ > (Aj — Aj_n)Gyy
k=0 k=j+1
Fix j > 0 and denote
7j—1 0
U=to," | Y (A= Ajn)Znj+ Y (A= Aj )Gy |,
k=0 k=j+1

V = tO‘;l(Aj — Aj,n)an s
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CLUSTERING OF LARGE DEVIATIONS 21

so that by expanding in the Taylor series around U,

—1 e’}
Eexp{i|to;* (Aj = Ajn)Znj + Y (Aj = Aj_p)Grj
k=j

Q

B
Il

0
K ’im .
_ Eez(UJrV v m er + Ry,

l
m:
m=0

with |R1| < E(|[V[*T1)/(k + 1)!. Similarly,

J o)
Eexp? i IS - A ) Ze D (A= Aj )Gy
k=0 k=j+1
=N L EW™ Ee 4 Ry,
m=0 m

with |Re| < E(JW|*+1)/(k 4+ 1)!, where
W = (A) — Ajn)Zn;

We conclude that

j—1

Eexp{i|to,! Z(A Aj_p) ZA — Aj—n)Ghrj
k=0 k=j

J &)
—Eexpqi|to," [ D (Aj— Ajin)Znj+ > (Aj — Aj_p)Ghrj
k=0 k=j+1
Z W

(2.74)

(4= Ajn) o, E (2, —G’)’

’t’HJrl
(k+1)!
Note that by (2.44) and Lemma 2.1,

_l’_

|A A] n|f~i+1 r-c-i-l)E (‘G ‘n—i- +|Z ‘n-i-l).

0TS Ay = Ayl T E (|G | Zag )
j=0

_0 (n_(”_l)/2) — 0 <n1/2—n(1—a)) '
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22 CHAKRABARTY AND SAMORODNITSKY

For 1 < i < k we use, in addition. (2.72) to write
ot 30|45 - 4B (2, - 6|
J
—0 (n—n(l—a)+a—i(a—1/2)> -0 (n1/2_ﬁ(1_a)) '
Putting these bounds into (2.74) we obtain

E <6Lta;1§n) — o (U#ne; 1) + 0 (nl/2—ﬁ(1—o¢) (1+ |t|“+1))

uniformly for ¢ € R, which is equivalent to (2.68). The argument for (2.69)
and (2.70) is the same. O

By the assumption (2.2), for large n, the random variables o*gl(gn —ne),
—1(8,(i) — ne) and 0,1 (S, (i,5) — ne) have densities which we denote by

fny, fni and fn;j, correspondingly.

g

LEMMA 2.6. Suppose that (2.5) and(2.2) hold. Then for large n, the
densities fn; and fni; are twice differentiable. Furthermore, as n — oo,

(2.75) Fri(0) = 2m) % 0 (n'72) |
(2.76) 11il0) = o (n¥/272)

uniformly in i, and for some ng € N,

(2.77) sup {|fri(@)| :n >ngp, i >0,z € R} < c0.

All three statements also hold if frn; is replaced by fnij, i < j. Finally, as
n — oo,

(2.78) sup
zeR

fu(z) — (27)_1/%—“32/2‘ = o(ni %) |

PRrROOF. We start with the proof of (2.78) which would follow from the
inversion formula for densities once it is shown that

/OO |pn () — D (0;15¢)| dt = o (nl_%‘) )

By Lemma 2.5 and (2.4),

logn
/ ) |on(t) — (05 158)| dt = O (n1/2—f<(1—a) (log n)’““) = o (nt %) |

—logn
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CLUSTERING OF LARGE DEVIATIONS 23

Furthermore,
/ oc(0;1;t)dt = O (ef(logn)2/2> -0 (n1—2a) 7
[* log n,log n]c
Thus, (2.78) will follow once we show that

(2.79) / 6u(0)] dt = 0 (') .
[—logn,log n]¢

With (Z,; : n > 1,i > 0) as above, we set

Uni = 03 (A = Ain) | Zui = B(Zui) |, 0 21,0 2 0,

so that
(o]

(2.80) o) =] |E (") ,n>1,t €R.
=0

Set

0o -1 ,o00
H(a:,w:( / e“fz<z>dz> | e ey e, ) e 2

—00 —00

which is a characteristic function for any fixed x. A consequence of that is
O|H (z,t)|/0t|1=0 < 0 for any = € R. Furthermore,

82

o

and by continuity of the second partial derivative we conclude that there is
do > 0 such that

82
@\H(w,t)\‘ < 0 whenever 0 < |¢], || < dp.
That means we also have
0
(2.81) E\H(:r,t)\’ < 0 whenever 0 < |¢], 2] < d.

We may and will choose §p € (0,6y], with 6y as in (2.2). By (2.2) we can
appeal to (3.3) to conclude that

lim sup |H(z,t)]=0.

t—o0 |$\§50
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24 CHAKRABARTY AND SAMORODNITSKY
Thus, there is M > 0 large enough so that

sup |H(z,t)] < 1.
t> M, || <8

Since by continuity of H and compactness we have

sup |H(z,t)] <1,
Jo<t<M,|z|<do

it follows that

n= sup |H(z,t)]<1.
t>60,|z|<do

The continuity argument also shows that there is §; € (0, do] such that

in |H(z,61)|>n.
|§?§1g10! (z,01)] > n

Therefore, for |z| < dp and 0 < ¢ < ¢y, (2.81) implies that

|H(z,t)| = |H(z,61)| = n = sup |H(z,s)|.
s>do

Since by (2.81) we also have

|H(z,t)| = sup |H(z,s)|,

sE€|t,00]
we conclude that
(2.82) |H(x,t)| =sup |H(x,s)|, |z] < dp, 0 <t <6
s>t
By (2.80)
n—1
[on(O] < [EE) T B
i=[n/2]
n—1
(2.83) =B T |H (Gndi, o, Ait)] -
i=[n/2]

It follows from Lemma 2.1 that there exists sg > 0 such that for all n
large enough,
A > soopn 2 [n)2] <i<n-—1.
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25
Thus, for n large enough and ¢t > logn, (2.82) implies that
n—1 n—1
H ‘H (CnAz‘,UﬁlAit)‘ < H ‘H (CnAi,son_l/Q logn)‘ )
i=[n/2] i=[n/2)

Since any partial derivative of H is bounded on a compact set, we can use
the bound (3.4) to conclude that there exists s; > 0 such that

sup |H(z,t)| < (1—s1t2)V2, 0<t<1.

|z <do

n—1

IT 15 (¢ndiso

glAit)‘ < (1 — sgsln_
i=[n/2]

Thus, there is s5 > 0 such that for all large n and all t > logn we have

Hlogn)?)"'* = O (emsaosm?)

Using this bound in (2.83), and appealing to (2.2) we obtain
/ [6n (D) dt = O (es2lloam)’) / |E (U | dt
logn logn
-0 (nl/Qe—sg(logn)2> —0 (n1—2a) .
Since we can switch from ¢ to —¢, (2.79) follows, which establishes (2.78).
A similar calculation with the aid of (2.69) shows that

fni(0) = (271')\,11-)71/2 exp (—052n252()\m- — 1)2/2)\m) +o (nl_%‘) ,
uniformly in ¢ > 0. Since A\,; — 1 = O(1/n) uniformly in ¢ > 0, it follows
that

)\7;-1/2 exp (=0, 2n%e*(A\ni — 1)%/2)ni) =1+ 0 (n™! +0,,?)
=1+o (nl_QO‘) ,

uniformly for ¢ > 0, which proves (2.75). For (2.77) we write
(o) = ~zm 2 [

e T2 (t) dt

—0o0

and repeat the arguments used above in the proof of (2.78), applying (2.69)
and the full force of the assumption (2.2).

Finally, for (2.76) we use the identity

F1.(0) = —i(2m)~1/2 / h thni(t) dt.
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26 CHAKRABARTY AND SAMORODNITSKY

Since
’/ t g (0'771716()\”;9 —1); Ak t) dt‘ -0 (ng) -0 (n1/2_0‘> ’

uniformly in & > 0, (2.76) follows.
The arguments with fp;; replacing f,; are similar. This completes the
proof. O

The next lemma tackles certain expectations conditionally on Ep; its
statement should be compared to (2.61).

LEMMA 2.7.  Suppose that (2.5) and(2.2) hold. Then
(2.84)
B (Zoia1(Ey)) = Ko, [/

[e.9]

2Ge (-, (d2) +0 (¢ 0y %A — Ainl)

and

(2.85) E(Zn—i-1Zn—j—11(Ep))

o0 o0
=K, </ 21 ng(Ai—Ai_n)(dzl)/ 22 Ge,(A— A (d22)

+ o0 (O'T:2|(AZ — Alfn)(A] — Ajn)|)>a n — oo,

uniformly for i,j > 0 with © # j, where
(2.86) K, = (2n) V2 o e (eCnSn> n>1.

PROOF. We only prove (2.85); the proof of (2.84) is similar and easier.
Write

E(Zp—i—1Zn—j-11(Ep))

— ooleZ(dzl) oozzFZ(dZ2)
/ /

—0o0 —0o0

P (S;L(Z,j) > ne — (Az - Ai_n)zl — (A] — Aj_n)ZQ)

— o E <e<n5;<z',j>) /°°

—00

/OO frij (s — ne)/an)e_cns ds.

E—(Ai—Ai,n)Zl—(Aj—Aj,n)ZQ

o0

Z1 Fz(dzl)/ Z9 Fz(dZQ)

—0o0
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We adopt the convention f; = — [/, and denote
tnij = G lote ™0 E (ecnsa(z‘,j)>

0o 0o -1
= K, (2r)/? </ eCn(Ai_Ain)ZFZ(dz)/ eCn(Aj_AJ'")ZFZ(dz)> )

—0o0

Changing the variable and using the fact that £Z = 0, we obtain
E(Zn—i-1Zn—j—11(Ep))

Zij/ 21 FZ(dzl)/ 22 Fz(dz2)

Cn(Ai—Ai—n)z14+Cn(Aj—Aj_n)22
/ & Fis (—2/(0nCo)) de

0
(2.87) = Cpij / 21 FZ(dzl)/ 29 Fz(dz2)

—0o0 —0o0

Cn(Ai7Ai7n)zl+4n(Aj7Ajfn)22
/ e fnij (—2/(0nCn)) dx

0

Cn(Ai—Ai—n)z1

- /0 e fuij (=2 /(00nCn)) da
Cn(Aj—Aj_n)z2

-/ & g (— 2/ (0nGn) d

For fixed z1,29 € R, the expression inside the square brackets can be
rewritten as

n(A;i—A;_,)z
(eCn(Ai_Ai—n)zl _ 1) /C ( ! ’ ) 2 ea)
0
f”lij(_(x + CN<AZ - Al—n)zl>/(0n<n)) dx

Cn(Aj—Ajn)z2
+ / e’
0

[fnij (—(CU + Cn(Ai — Ai*n)zl)/(gnCn)) - fnij(_x/(o'ngn)) dz.

By Taylor’s theorem,

Fois <_ T+ Gu(di — Ain)z

onln

T+ (A — Aisn)z1

onln

) = fnij(0) — fni;(0)
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28 CHAKRABARTY AND SAMORODNITSKY

n Az _Ai—n
+o<<“< ( - ) mjuoo) |

Using this and (2.42), straightforward algebra gives us

Cn(Aj—Aj—n)z2
/0 € Fris (—(@ + CalAi — Ai—n)21)/ (0nCn)) d
= £4i;(0) (eﬁn(Aj—Ajfn)Zz - 1)

+0 (e%f“f—Af—"'@' (17255 Ol Gun 2145 = Ayl (2] + [22])
g lloo0 G2 s — Aj-alleal(121] + |22]) )).

The obvious inequality |e* — 1| < |z|el®! for z € R along with Lemma 2.6
now show that

n A'_A'—n
<e§n(Ai—Ai_n)z1 _1> /C (Aj=Aj—n)z2 -
0

fm’j(_(x + Cn(Az - Az—n)zl)/(JnCn))
— fnij(o) (ecn(Ai—Ai—n)Zl _ 1) (eCn(Aj—Aj—n)ZQ 1

+o(072 (A4 — Aia)(4) — Aj_n)azal (2] + |2))?

6<n<|Ai—Ai_n||z1\+|Aj—Aj_n\\zzn) ,

uniformly for ¢,j > 0 with ¢ £ j and 21, 29 € R.
Treating in a similar manner the second term, we conclude that the ex-
pression inside the square brackets in the right hand side of (2.87) equals

fnij(o) (€<n(Ai_Ai—n)Zl _ 1) (€<n(Aj_Aj_n)22 _ 1)
+ 0( 22 (Ai = Ain) (A — Ajn) (L |20 ) (1 + |22)

eCn‘(Ai_Ai—n)le‘f'Cnl(Aj _Aj—n)z2|) ,

uniformly for ¢, 5 > 0 with ¢ # j and z1, z2 € R, and substitution into (2.87)
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gives us

FE (Zn—i—IZn—j—ll(EO))

[e o]

= Cnij [fnij (0)/ Zlegn(Ai*Aifn)Zl Fy(dz) / ZQGCH(Aj?Ajin)ZQFZ(dZQ)

—00

+ 0(052 [(Ai — Ai—n) (45 — Aj—n)\)]

(2.88)
— K (2m) 2 £,55(0) /

—0o0

+ cugo(0 [(Ai = Ain)(4) = Ayl )

o0 o0

“1 GCn(Ai_Ai—n) (le) / %2 GCn(Aj _Aj—n) (de)

— 00

as n — oo, uniformly for 7, j > 0 with 7 # j. Recalling that FZ = 0, we see
that

/ 21 Gepai—a,_ ) (d21) = O (Gu(Ai — Ain))

and likewise for the second integral in (2.88). Since K,, = O(cp;5), the claim
(2.85) follows from Lemma 2.6. O

The next lemma is an important step in the proof of the main result; the
previous lemmas 2.5, 2.6 and 2.7 are needed for this lemma. We denote

(2.89) Y= Zp—io1— (14 4520;2)/ 2Geya—n; )(dz), i€ Z,n>1.

LEMMA 2.8.  Suppose that (2.5) and(2.2) hold. Then

(2.90) sup E (Y,LQZ-‘EO) < 00,
n>1,i>0

and
(291)  E (YniYaj|Eo) = —0,%07 (Ai — Ain) (45 — Aj—n) (1 + 0o(1))
as n — 0o, uniformly in t,j > 0 with i # j.

PROOF. We prove (2.91); the proof of (2.90) is similar (and much easier).
We write

P(E0) = Kn(2m) [ e o/ (Guor) o
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with K, as in (2.86). By (2.78) and simple integration,
(2.92)

P(Ey) :Kn(27r)1/2 [0 (C;QJ;Q) + (27r)_1/2/ exp(—:r — x2/(2Cia%)) dx
0
=K, [1- ¢ o2 (1 +0(1))], n — 0.
In combination with (2.85) this means that
E(Zn—i-1Zn-j—11(Eo)) P(Ep)
=K} ((1 — (. %0,7) / z1 Gcn(AiAin)(dzl)/ 22 Ge(a;—A;_ ) (d22)

— 00 —0o0

+o (0'7;2‘(‘41 - Ai—n)(Aj - Aj—n)‘))? n — 00,

uniformly in 4,7 > 0 with ¢ # j. Since by (2.84),
E(Zp-i-11(Ey)) E (Zn—j-11(Ep))

:K?z/ 21 G(ﬂ,(Ai—Ai_n)(dzl)/ 22 G, (a,-4;_)(d22)

+o (K20, %A — Ainl|Aj — Aj_y))
we conclude that

E(Zn-i-1Zn—j—11(Eo)) P(Eo) — E(Zn—i—11(Eo)) E (Zn-j-11(Ey))

= _K721C7:20;2/ 21 GCn(Ai_Ai—n)(dzl)/ 29 GQL(AJ'—Aj_n)(dZ?)

+o0 (K20'72|A' - Az—nHA — Aj_n’)
~KZ20, 205 (A — Ai_n)(Aj — Aj_) (1 +0(1))

as n — 0o, uniformly in 4,7 > 0 with i # j. Dividing both sides by P(Ep)?
and using (2.92), we obtain

(2.93) E [(Zn—i—l = B(Zn-i-1|E0)) (Zn—j-1 = E(Zn—j-1| o)) ‘EO]
=0, GZ(A — Ain)(4j — Aj—n) (1 +0(1)) ,

as n — oo, again uniformly for i,7 > 0 with ¢ # j. Since by (2.92) with
(2.84)

E( n—i— I‘EO (1+Cn n )/ zGCn(Az_Azfn)(dz)

+0( oA — A n|)
with a similar statement for Z,_;_1, (2.93) implies (2.91). O
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We proceed with establishing conditional distributional limits of certain
truncated sums.

LEMMA 2.9.  Suppose that (2.5) and(2.2) hold. For 0 < 6 < L denote

[nﬁL]fl n—1

(2.94) Sn(j,6,L) = > (Airj— A)Yni+ Y (Aipj — Aigjon — Ai)Yns
i=[nB§] 1=n—j
n+[nPL)

+ Z (AiJrj - Ai+jfn — A + Aifn)Ym;, n>1,7>0.
i=n

With the overshoot T as in (2.49), we have, conditionally on Ey,
(6T, (25,6, L), t 2 0) )
(2.95)
L
= <T0, <(1 — a)_laz (/ [(s + t)l_a — 81_0‘} dBi(s)
)

+ /Ot(t — 5)17dBy(s) + /OL (s — (s +1)'7¢] ng(s)> > 0))

mn finite dimensional distributions as n — oo, where Ty is a standard ex-
ponential random variable independent of independent standard Brownian
motions Bi, Bs, Bs,

PROOF. For n > 1 and ¢ > 0 we write

[nﬁt] n—1
W=D AV, GO = D AV,
i=1 i=n—[nft]

n+[nft]
Y= ) (A= Ain) Y
i=n+1

It follows from Lemma 2.4 that, conditionally on Fy,

(2.96) (gnT;, (n?*72gko(t) 1t > 0), (na*5/2*1§§°(t) > 0) ,
<nafﬁ/271§n0(t) - 2 O))
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32 CHAKRABARTY AND SAMORODNITSKY
= (To, ({202 B1(£72) 1 £ 2 0), (1= @) "o By(t) : ¢ > 0),

(1- o) toyBs(t) : t > 0))
because the difference between the two processes vanishes in the limit. For
example,

[nP1]

n?02( g2 Z Ai/ 2Ge,a,(dz) = O (nl_Qa) =o0(1),

0
i=1 —o©

and similarly with the other two components. Furthermore, for large n,

S, ([n°t],6,L)
[nPL]—1 n—1

= > Ay — A Y+ D> (Aiipsg — Airpsgn — Ai) Yo
i=[nh3s] i=n—[nft]

n+[nL)

+ Y (Aisg = Aippsgon — Ai + Ain) Yo = Vo (8) + V2() + VE().

Starting with V3, we write

[n°1)
(297) Vi) =0 00D ST g (07%8) (Ansi = A2 Yo
i=1

where for 0 < s < L,

(1-a)(1-) Antns 09 ~ Ao no) ~ Antfnos] + Apis)

fa(s,t) =n
AnJr[nBs] - A[nﬂs]

It is elementary that for fixed s, t, as n — oo,
An—l—[nﬁs]—l—[nﬂt] - An—i—[nﬂs} < A[nﬁs}—l—[nﬁt} - A[nﬁs]
~ (1 . a)flnﬁ(lfa) [(8 _’_t)lfa - 817(1] ’
while A, 1,54 — Apsg ~ (1 — a)~tnl=% Therefore,

(2.98) nh—>Holo fals,t) = 7% — (s + )17 = f(s,1),

and the limit is easily seen to be uniform in 0 < s < L and ¢ in a compact
interval. We will show that, conditionally on Ej,

(2.99) (n**2V3(t), t > 0)

N <az(1 _ )t /OL (51— (s 4 £)17%] dBs(s), t > o)
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in finite-dimensional distributions, as n — oo. To this end, set

g (k1) = inf W(st), k> 1,1<j<k,
= g ) ’

and
eni(k,t) = fo(n Pit) = ¢, rp-1p-ppi (k1) >0, k> 1,1 < i < [nPL].
By (2.98) and monotonicity,
(2.100) lim ek, t) = f(( - DE'Lit), 1< <k.
A standard continuity argument shows that

(2.101) lim limsupsup max ep;(k,t) =0
k—oo pnooco teA 1<i<[nfL]

for any compact set A. We have

1)
Z Cn,[L=1n=Bki) (ka t)( nti — A )Yn n+i

/

= Cﬂj(k’ t) Z (AnJrz - Ai)Yn,nJr'i
j=1 i€ (k=1Lnf (j— 1),k Lnf 5] Nz
k:/

= > ensh ) (62 (W' Lg) = €X (KL — 1)) ) = Wan(?)
7j=1

where k' = [L™'n"Pk[nPL]]. This, together with (2.96) and (2.100), implies
that for fixed k, as n — oo,

(2.102)

(n=02"1w, () t>0)

(1—a asz (j = DE'L,t) (Bs(k™'jL) = Bs(k™'(j — 1)L))

t20>
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34 CHAKRABARTY AND SAMORODNITSKY

in finite-dimensional distributions. We have

P 1)
Z Fa(nPi,t) (Anyi — Ai) Yo — Wan(t)
i1

™

[nPL]
= eni(ka t) (An+z - Az) Yn,nJr'i .
1

<.
Il

It follows from (2.91) that, for large n,

sup  (A; — Aipn) (Aj — Aj_n) E (YniYnj|Eo) < 0.
1,5 >0:i#£]

This, along with (2.90) and the non-negativity of each e,;, implies that for

large n,

[P L]

E Z eni(kyt) (Apti — Ai) Yo n+i
i=1

Ey

nPL]
< Z leni(kyt) (Apti — Ai)]° E(Y,?,i|Eo)
i1

P L)
_ . 2 A2
=0 19%?50(“] enj(k,t) ; (Apti — Aj)

=0 <n2_2°‘+5 max enj(k:,t)2> .

1<5<[PL]

Invoking (2.101) we conclude that for any compact set A,

(2.103)  lim limsupn?*#~2sup E (Wnk(t)
k—oo p—oco teA

[P L]

2
Z Fa(n7Pi,t) (Apys — Ay) Yn,n+z‘> Ey| =0.
=1

As k — oo, the process in the right hand side of (2.102) converges in finite-
dimensional distributions to the process in the right-hand side of (2.99).
Since (2a—2) — (1 —a)(1 — ) = a— /2 —1, the claim (2.99) follows from
(2.97) and (2.103) by the “convergence together” argument; see Theorem
3.2 in Billingsley (1999).
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A nearly identical argument shows that, conditionally on Fj,

(2.104)

(R**2V2(t), t > 0) = (—oz(l —a)™! /Ot(t —5)'"%dBy(s), t = 0>

4 (02(1 —a)! /Ot(t — 5)'"%dBy(s), t > 0)

in finite-dimensional distributions.
The situation with the term V! is, once again, similar, with a small twist.

Since

iy Asrinty = Apes) (s + 1) — 5170

n—00 A[nﬁs} gl—a

uniformly for § < s < L and ¢, our argument now shows that, conditionally
on E(),

L l-a _ Jd—«
(TL—(Q—QO()V;%7 t Z 0) = <O'ZK11/2/ (8 + t) S
é

Slfa

M(ds), t > 0)

in finite-dimensional distributions, where M is a centred Gaussian ran-
dom measure with the variance measure with the density (3 — 2a)s?72%,
s > 0. Since the centred Gaussian random measures (1 — a)~!Bs(ds) and

Kll/ M (ds)/s'~ have the same variance measure, this means that, condi-
tionally on Ej,

(2.105) (n®2V2(t), t > 0)
L
= (az(l — 04)1/(S ((s+t)'7* —s'7*)dBs(s), t > O)

in finite-dimensional distributions.

Since (2.99), (2.104) and (2.105) are all consequences of (2.96), the con-
vergence statements they contain hold jointly, and jointly with (, T = Tp.
The claim (2.95) follows. O

The next lemma treats the sequence of shifts appearing due to condition-
ing on Ej.

LEMMA 2.10. Define

fin (1)

= n2a—2 Z (Ai—&—[nﬁt] — Aﬁ-[nﬁt}_n — A + Az—n) /
=0

o0

2 Ge,(a-a;_ ) (d2),
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36 CHAKRABARTY AND SAMORODNITSKY

fort >0 andn > 1. Then p, — jieo as n — 00, in D([0,00)) equipped with
the Skorohod Jy topology, where jiso(t) = —t372% ¢ > 0.
ProoFr. Writing

[e.9]

pn () =072, > (Ai+[n6t] — Aiypmpen — Ai + Ai—n) (Ai — Ain)
=0

n QZ( 1m0 = Arspuotn — Ai+ Ain)

[/Oo 2 G a—a, ) (dz) = Gu(Ai — Ai n)}

—00

= D) + P (1), t >0,

the claim of the lemma will follow once we prove that

(2.106) ) = poe in D([0,00))
and
(2.107) 12 (t) = 0 uniformly on compact intervals.

We start by proving (2.107). Fix L > 0 so that 0 < ¢ < L. Suppose first
that 1/2 < a < 5/6. By (2.19)

|1 (1)]

=0 (nQa_QCg Z ‘Ai—f—[nﬁt] - Ai+[nﬁt]—n —Ait+Ain

(4; — Ai—n)2>
( 20— ZCQ BZZ A A n) > —0 (nM*?ggnﬁn?’*?’a) 50

uniformly in 0 < t < L, showing (2.107). On the other hand, if « > 5/6,
then k > 3 in (2.5), so by (2.19)

|1 (1)

=0 (nQa_QCS{ > ‘Ai-f—[nﬁt] — Ay mpn — Ai + Ain

(A; — Ain)3>
i=0
( 2a— QCn ﬁZz A Ai_ n) ) =0 (nQa_2C2nﬁn4_4a) — 0
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uniformly in 0 < ¢ < L, again showing (2.107).
We now prove (2.106). The pointwise convergence is clear: for fixed ¢,

Mg)(t) = ng ~2,,2a~1 Z ( i+t — AiHnﬁﬂ_n) (A; — Ai—p) — n2a—1,

—€t3 2a

as n — oo, where we have used (2.25). Next, as in (2.28) we can write for
t>0,

n20—2 n—1

(1)( - n (Ai — Az‘—[nﬁt})2

+ Z (Ai—i—[nﬁt] — Ay mpn — Ai + Ai—n) 2]

1=0

The claim (2.106) will follow once we show that both u%ll) and ,ugz) converge
in D([0,00)) to continuous limits (both constant factors of p..). The fact

that ,uq(zn) converges pointwise to a constant factor of of the pointwise limit of
uq(@l) is an intermediate step in the proof of (2.25). Since u,gl) is a monotone
function, its convergence in D([0,00)) follows.

We already know that u%m converges pointwise to a continuous limit. Let

1p be such that a; is monotone for ¢ > ig. Write for ¢ > 0

20—2 o0
N7(112)(t) :n2<n[ Z (AiJr[nﬁt] — Ai+[n5t]fn . Az + Az‘_n>2
i=n—+1
n+i00—1 )
- Z (AiJr[nﬁt] — Ay inpt)—n — Ai)
i=n—[nft]

= 120 (1) — 122 (0),

(121) and (122)

so it is enough to show that both sy, wn  converge in D([0,00)) to
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continuous limits. Splitting further, we write for ¢t > 0,

n2e=2¢ ntip-1
122 n 2
M% )(t) - 9 Z Ai+[n6t]—n
i=n—[nbt]
n+ig—1
+ Z (Ai - AH_[nﬂt}) (Ai - Az‘+[nl3t] - 2Ai+[n5t]—n)
i=n—[nft]
., (1221) (1222)
=ty (8) A+ g, ()
Clearly,
n2a-2¢ [nPt]+io—1
Mgzzl)@) _ Tn Z A?
i=0
converges pointwise to a constant factor of . Since ,u7(11221) is monotone, we
conclude that M,(}m) converges in D([0,00)) to a continuous limit. In order
(122) (1222)

to prove that so does p, ~~’, we will show that py, ““*(t) — 0 uniformly on
compact intervals. Considering once again 0 <t < L, we have

‘/%9222) (t)‘
n20¢72gn n+io—1
< 9 Z (Ai+[n5t] - Ai) [(Aiﬂn@t] - Ai) + 2Az’+[nﬁt]—n]
i=n—[nft]
n4+ig—1
=0 | n**72%, Z nfn=%(n’n=* + nﬁ(l_o‘))
i=n—[nft]

=0 <n0‘_2Cnn35_Ba) —0

uniformly over 0 < ¢ < L, as required.

Finally, we already know that u7(1121) converges pointwise to a continu-

ous limit. Furthermore, by the choice of i, p}}?” is a monotone function.

Therefore, it converges in D([0,00)), and the proof is complete. O
The following is the final lemma before we prove Theorem 2.1.

LEMMA 2.11.  Suppose that (2.5) and(2.2) hold. Let

j+n—1
(2.108) Su()= > Xij=0,n>1

i=j
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As n — oo, conditionally on Ey,

(n*Ha) (Sn([nﬁt]) - ns) t> o)
= ((2C)Y?By(t) + e 'CaoTh — et 2 t > 0
( )

in finite-dimensional distributions, where (Bg(t) : t > 0) is the standard
fractional Brownian motion (2.8) with the Hurst exponent H given in (2.7),
Cy, is the constant defined in (2.10), and Ty is a standard exponential random
variable independent of the fractional Brownian motion.

ProOF. It follows from (2.91) and the eventual monotonicity of the se-
quence (A;) that there is ig > 0 such that for all large n,

(2.109) sup E (YmYnﬂEo) <0.
19 <i<j

For fixed L,t > 0 this and (2.90) imply that

n—[nft]—1 2
E Z (AiJr[nﬂt] - Az) Yo Ep
i=[nPL]
> 2
=0 | X (g —4)
i=[nPL]
) o 2
o 3 (b)) =)
j=[nPL]

<0 <n4_4°‘ /L Tt 0o = 2t dx) .

Therefore, for fixed t,

n—[nft]—1 2
(2.110) lim limsupE | {022 Y (Ai+[nﬁt]—Ai) Yo

L—oo n—oo =[P L]
i=[n

Ey| =0.

Since the sequence (a;,) is eventually monotone, we can increase, if nec-
essary, ip to guarantee that A, — A; < Aj1p — A; for all ig <@ < j and
k > 0. By (2.109), for fixed L,t > 0, large n and i, j > n + [n°L],

<A¢+[nﬁt] — Aipnsy—n — Ai + Ai—n)

<Aj+[nﬁt] —Ajimpg—n — Aj + Ajfn) E (Ym‘Ynj‘EO) <0,
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and the same argument as above implies that

(2.111) lim limsup E (nQa—Q
L—oo p—oo
> 2
Z (Ai+[n5t] _Ai+[n5t]— —Ai+ A n) m) Ey| =0.
i=n+[nfL]+1
Similarly, for a fixed t > 0,
[nP8]—1 2
(2.112) %i_l}l})liglﬁ\s;ipE n2e—2 ; ( it [nft] — Ai) Y] |[Eo| =0,
0
and it is elementary that for a fixed ¢ > 0,
i0—1 2

(2.113) lim E ( 2a= 22( i+t — ) Ym'> Ey| =0.

It follows from (2.110), (2.111), (2.112), (2.113) and Lemma 2.9 that,
conditionally on FEj,

(2.114)

CnT:;7 (n(22a) (AiJr[nﬁt] — AZ-Jr[nﬁt]f A + Al n) ni, t > O)]
=0

= [To, <(1 —a) oy (/OOO [(s+1)'7 = s dBi(s)
+ /Ot(t — 5)17*dBy(s) + /OOO [(s+ ) —s'7] ng(s)> > 0)} ,

in finite-dimensional distributions, as n — oo. Furthermore, one can easily
check the Lindeberg conditions of the central limit theorem to see that

(2.115) n~ (272 Z Ai g Zn-1—i, t >0
i=—[nft]
t
= <(1 — a)laz/ (t —s)'"*dBy(s), t > 0)
0

in finite-dimensional distributions, as n — oo, where By is a standard Brow-
nian motion. Note that the random variables in the left hand side of (2.115)
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are independent of the the random variables in the left hand side of (2.114)
and, in particular, independent of Ej.

Using (2.26) we conclude by (2.114) and (2.115) that, in the notation of
Lemma 2.10, conditionally on Ejp,

(G, (772 (Su(1n0) = 80 ) = (14 G203 ) pa(8), £ 2 0) |
= [To, <(1 —a)loy (/Ot(t — 5)17*dBy(s)

+ /OOO [(s+ ) —s'] dBy(s)

+ /Ot(t — 8)1dBy(s) + /OOO (s + )7 —s179] ng(s)> > 0)]
L0 (220 ) oy [ [(0- 91 - (o) aws) e 20

—0o0

in finite-dimensional distributions as n — 0o, where at the intermediate step
the four standard Brownian motions, By, Bi, By and B3 are independent
(and independent of Tp), and in the final expression (W (s), s € R) is a two-
sided standard Brownian motion, independent of Ty. By (2.29), this can be
restated as saying that, conditionally on FEj,

[T (n= 7% (Su([n8) = Su) = pa(8), £ 2 0)]
= [To, ((2Ca)1/2BH(t), t> 0)} :
and by Lemma 2.10 also
(G, (@72 (Su(in?t)) = S0 ) s 2 0)]
= [TD, ((2(}&)1/23,1,@) — 372t > 0)}
in finite-dimensional distributions, as n — co. Since
n~ 729 (8, ([nt]) — ne) = n= B2 (S, (1)) — Sp) + (n2*72¢ 1) G T,
the claim of the lemma follows from the definition (2.50) of ¢, and (2.22). O
Now we are in a position to prove Theorem 2.1.

PrROOF OF THEOREM 2.1. We will prove that
(2.116) {P [(n_(Q_QO‘) (Sn([nﬁt]) - ns) L0<t< oo) € ‘EO} n> 1}
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is a tight family of probability measures on D([0,00)) equipped with the
Skorohod J; topology. Assuming for a moment that this is true, it would
follow from Lemma 2.11 that, conditionally on FEj,

(n_(2_2°‘) (sn([nﬁt]) - ng) 1> 0)
= ((2Ca)1/ZBH(t) + e 1005 Ty — et 2 1t > 0)

weakly in D([0,00)), as n — oo. Since the functional x — inf{t > 0: z(t) <
0} on D([0, 00)) is, clearly, a.s. continuous with respect to the law induced on
that space by the limiting process, the continuous mapping theorem would
imply that, conditionally on Ej,

nBI,(e) = inf {t >0 p=(2-2) (sn([nﬁt]) - ne) <o}
= inf {t >0: (QCa)1/2BH(t) + 6_1CQJ%T0 — a3 < O} =T

as n — o0. Therefore, establishing tightness of the family (2.116) suffices
to complete the proof of Theorem 2.1, and by Lemma 2.10 it is enough to
prove that the family

(2.117)

{P [(n*@*?a) (sn([nﬁt]) - ns) (), 0< t < oo) € ‘EO} n> 1}
is a tight family of probability measures on D([0, c0)).

We have to prove tightness of the restriction of the family (2.117) to the
interval [0, L] for any L > 0, so fix L. We start by showing that

E [(sn ([nﬂt]) — 202 (4) — S, ([nﬁs]) + n2a—2un(s))2

(2.118) =0 <([n5t] - [nﬂs])“a) ,

uniformly for 0 < s <t < L. We write

:

= 2. (Ai+[nf8t] - Ai+[nﬁs]) Zn—i-1

i=—[nft

+ Z (Ai—&-[nﬁt] - Ai-i—[nﬁt}—n - Ai—f—[nﬁs] + Ai+[n53]—n) Yoi.
=0
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Since Z,, Zn41, - . . are independent of Ey, by Lemma 2.8,

E [(sn (Wﬂ) — 272 (1) — S, ([nﬁs]) + nQO‘_Q,un(s))Q Eo]
[nPt]—1 5
=0 z;) (AJ - Ajﬂnﬁs]f[nﬂt])

© 2
+ Z (Ai+[nﬁt] — Aiypnpg—n — Aigpnss T Ai+[nﬁs}—n> ]
i=0

—0 (([nﬁt] _ [nﬁs])32a>

uniformly for 0 < s <t < L by (2.71) with x = 2, and (2.118) follows.
Let now 0 <r <s<t<L. Ift—rgn_ﬁ,then

E

Sul[ns]) = tin(s) = Su(In’1]) + (1)

Sullnt]) = 11n(t) = Su([0s]) + pins)| | Bo

vanishes. On the other hand, if t—r > n~?, then by (2.118) and the Cauchy-
Schwarz inequality, the conditional expectation can be bounded by

O (([nﬁt] — [nﬁrD?’—?a) = O (ni(t — )3=2)

uniformly for 0 < r < s <t < L. Since 3 — 2a > 1, the required tightness of
the family in (2.117) follows, which completes the proof of Theorem 2.1. [

3. Some useful facts. We collect in this section for easy reference a
number of known or easily derivable results.

The following integral evaluation follows from (2), (6) and (51) in Pickard
(2011). If H € (0,1), H # 1/2, then
(3.1)

> _ H-1/21%2 ,  cos(mH)I'(2 - 2H)
/0 [xH 1/2*(13*1)+ 1217 40 3 T(H +1/2)%.

Next, we will need the following version of the Berry-Essen theorem
valid for independent not necessarily identically distributed summands; see
Batirov et al. (1977).
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Let X1,..., X, be independent zero mean random variables with finite
third moments. Denote

n
A=) E|X}, B=
=1

Assuming B > 0 we have

P <§n: X; < Bz> — ®(2)
=1

with C, a universal constant, and ® the standard normal CDF. The fact
that the constant is universal means that (3.2) remains valid for n = oo as
long the series in the left hand side converges and A, B are finite.

(3.2) < C,AB73, zeR,

The following generalization of the Riemann-Lebesgue lemma can be
proven in the same way as the original statement. If f : R — R is a measur-
able function such that for some § > 0,

/ 2| f(2)|da < oo for all 8 € [6,4],

then
(3.3) tlim sup / Ttz £ () da| = 0.
T19|<6 |/ —o0

We will use a simple bound on the characteristic function ¢ of a random
variable X with a finite third moment. Let X’ be an independent copy of
X and Y = X — X’. Using the bound cost < 1 —2/2+ [t|3/6 for t € R, we
have

Ee™ <1-#*E(Y?)/2+ [t|*E|Y]?/6
<1—t*Var(X) +4[tPE|X3/3.

This implies that

1/2

(3.4) lp(t)] < (1 —#*Var(X) + 4tPE|X|*/3) /", t € R.
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