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CLUSTERING OF LARGE DEVIATIONS IN MOVING
AVERAGE PROCESSES: THE SHORT MEMORY REGIME

By Arijit Chakrabarty and Gennady Samorodnitsky ∗

Indian Statistical Institute, Kolkata and Cornell University

We describe the cluster of large deviations events that arise when
one such large deviations event occurs. We work in the framework
of an infinite moving average process with a noise that has finite
exponential moments.

1. Introduction. A very crude classification of how we analyse random
systems might split the work into distributional analysis and large deviations
analysis. The distributional analysis deals with the “usual” deviations of a
system from its “average” state, while the large deviations analysis deals the
“unusually large” deviations, that are, by necessity, rare (but may have a
major impact). Separately, the idea of clustering is also a major idea in how
we look at random systems. Clustering typically means that certain related
events occur “in proximity to each other” and, when it happens, the impact
of the events may be magnified. Clustering is interesting because it may
shed light on certain structural elements in a random system. Clustering is
most frequently studied in distributional analysis; an important example is
clustering of extreme values; see e.g. Embrechts et al. (2003).

In this work we are interested in clustering of large deviations events.
From a different point of view, we would like to understand whether or
not a (rare) large deviations event is likely to cause a cascade of additional
large deviations events and, if so, what does this cascade look like. Litera-
ture on large deviations analysis is vast, and the nature of large deviations
turns out to be different in stochastic systems with “light tails” and with
“heavy tails”. The texts such as Dembo and Zeitouni (1998) or Deuschel
and Stroock (1989) describe large deviations of light-tailed systems, while
Mikosch and Nagaev (1998) will give the reader an idea how large devia-
tions occur in heavy-tailed systems. Large deviations are affected not only
by the “tails” in a random system, but also the “memory” in that system,
in particular by whether the memory is “short” or “long”. The change from
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short to long memory in a system can be viewed as a phase transition (see
Samorodnitsky (2016)), and it affects large deviations as well. In this work
we study clustering of large deviations in a light-tailed system, but we will
consider both short memory and long memory situations.

Let us now be more specific about the class of stochastic models we will
consider. We will consider centred infinite moving average processes

(1.1) Xn =

∞∑
i=0

aiZn−i , n ≥ 0 ,

where (Zn : n ∈ Z) is a collection of i.i.d. non-degenerate random variables
(the noise) with distribution FZ satisfying

(1.2)

∫
R
etz FZ(dz) <∞ for all t ∈ R ,

and

(1.3)

∫
R
z FZ(dz) = 0 .

For future reference we denote

(1.4) σ2
Z =

∫
R
z2 FZ(dz).

Let a0, a1, a2 . . . be real numbers satisfying

(1.5)

∞∑
j=0

a2
j <∞ .

Since the assumption (1.2) implies that the noise variables have a finite
second moment, the zero mean property assumed in (1.3) and the square
integrability of the coefficients (1.5) imply that the infinite sum in the right
hand side of (1.1) converges in L2 and a.s. and defines a zero mean stationary
ergodic process. Therefore, for ε > 0 the event

E0(n, ε) =

{
1

n

n−1∑
i=0

Xi ≥ ε

}
is, for large n, a rare, large deviations, event. We would like to understand
whether occurrence of this event may cause a cascade of related events.
Specifically, for j ≥ 0 we denote

(1.6) Ej(n, ε) =

 1

n

n+j−1∑
i=j

Xi ≥ ε

 ,
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so that each event Ej(n, ε) is equally rare, and we would like to know how
many of the events for j “reasonably close to j = 0” occur if E0(n, ε) occurs
(the reason for the qualifier “reasonably close to j = 0” is that by ergodicity,
the events Ej(n, ε) will keep recurring eventually, regardless of the structure
of the system).

The difference between short memory infinite moving average processes
and long memory infinite moving average processes lies in the rate the coef-
ficients (an) converge to zero (subject to the square summability, of course).
This will lead to markedly different cascading of the events Ej(n, ε), condi-
tionally on the event E0(n, ε) occurring. In this paper we consider the short
memory memory processes, while leaving the long memory case to another
paper. Specifically, we describe the limiting distribution of the large devia-
tion cluster caused by the rare event E0(n, ε) as well as the behaviour of the
size of that cluster as the overshoot ε becomes small. It turns out that for
such ε the size of the cluster is of the order ε−2.

Our main results on the cluster of large deviations for short memory
infinite moving average processes are in Section 2. The concluding Section
3 contains a discussion of the results we obtain and connects them to what
one may expect when the memory becomes long.

2. Short memory moving average processes. We follow the com-
mon terminology and say that the infinite moving average process (1.1) has
short memory if

(2.7)
∞∑
n=0

|an| <∞ and
∞∑
n=0

an 6= 0.

We investigate the clustering of the rare events (Ej(n, ε)) in the following
way. We will show that the conditional law of the process of occurrences of
the large deviation events,

(2.8)
(
1(Ej(n, ε), j = 1, 2, . . .)

)
,

given E0(n, ε) has a non-degenerate weak limit and describe that limit. This
will show, in particular, that for a fixed K ∈ Z the conditional law of the
total number of occurrences among the first K of the events (Ej(n, ε))

(2.9) νn(K, ε)(·) = P

 K∑
j=1

1(Ej(n, ε)) ∈ ·
∣∣∣E0(n, ε)


has a weak limit. That weak limit itself converges weakly, as K → ∞, to
an a.s. finite random variable that we interpret as the size of the cluster
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of large deviation events caused by a large deviation event at time zero.
An interesting regime is that of a small ε > 0, and we show a properly
normalized size of the cluster of large deviation events converges weakly,
as ε → 0, to an (interesting) limit. As we have explained above, the limits
should be taken in this specific order.

To state the main results of this section we need to introduce some nota-
tion first. Denote

(2.10) A =

∞∑
n=0

an.

In the sequel we will assume that A > 0. Note that, in view of (2.7), this
introduces no real loss of generality because, if the sum is negative, we
simply multiply both (Zn) and (an) by −1 and reduce the situation to the
case A > 0 we are considering. Further, for n = 0, 1, 2, . . . we write

(2.11) An =
n∑
j=0

aj .

Next, we let

(2.12) ϕZ(t) = log

(∫
R
etz FZ(dz)

)
, t ∈ R

to be the log-Laplace transform of a noise variable. For θ ∈ R we denote
by Gθ the probability measure on R obtained by exponentially tilting FZ as
follows:

(2.13) Gθ(dx) = e−ϕZ(θ)+θxFZ(dx), x ∈ R .

Further, let
s0 = sup{x ∈ R : FZ(x) < 1} ∈ (0,∞]

be the right endpoint of the support of a noise variable. We will consider
the events (Ej(n, ε)) for ε satisfying

(2.14) 0 < ε/A < s0 .

The function ϕZ is infinitely differentiable, and its first derivative ϕ′Z strictly
increases from 0 at t = 0 to s0 as t→∞. Therefore, for ε satisfying (2.14),
we can unambiguously define τ(ε) > 0 by

(2.15) ϕ′Z (τ(ε)) = ε/A .
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We now introduce a collection {Zuj : j ∈ Z, u = + or −} of independent
random variables with the following laws:

(2.16)

Z−−j ∼ G(1−A−1Aj−1)τ(ε) , j ≥ 1 ,

Z−j ∼ Gτ(ε) , j ≥ 0 ,

Z+
−j ∼ GA−1Aj−1τ(ε) , j ≥ 1 ,

Z+
j ∼ FZ , j ≥ 0 .

Finally, let T ∗ be an exponential random variable with parameter τ(ε)/A,
independent of the family (2.16).

It is elementary to check that for any j ≥ 0 and u = + or −,

E
(
|Zuj |

)
≤
∫
R
|x|GA−1Āτ(ε)(dx) +

∫
R
|x|G−A−1Āτ(ε)(dx) <∞ ,

where

Ā =
∞∑
n=0

|an|.

Therefore, the infinite series

U−n =

∞∑
i=0

aiZ
−
n−i, n ≥ 0 ,(2.17)

U+
n =

∞∑
i=0

aiZ
+
n−i, n ≥ 0

converge in L1 and a.s. Finally, we define

(2.18) Vj(ε) = 1

(
T ∗ ≥

j−1∑
i=0

(U−i − U
+
i )

)
, j ≥ 1.

We are now ready to state the main theorems of this section. They rely
on a technical assumption, excluding the case of a lattice-valued noise. We
assume that

(2.19)

∣∣∣∣∫
R
eitz FZ(dz)

∣∣∣∣ < 1 for any t 6= 0 where i =
√
−1.

Our first result describes the behaviour of the sequence of conditional laws
of the process of occurrences of the large deviation events (2.8) and of the
sequence (2.9) of the total number of occurrences among the first K of the
events (Ej(n, ε)).
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Theorem 1. Assume that (2.7) holds and A > 0 in (2.10). Assume,
further, that the characteristic function of the noise variables satisfies (2.19).
Let ε be as in (2.14). Then, as n→∞,
(2.20)

P
((

1(Ej(n, ε), j = 1, 2, . . .)
)
∈ ·
∣∣∣E0(n, ε)

)
⇒ P

((
Vj(ε), j = 1, 2, . . .

)
∈ ·
)

in {0, 1}∞. In particular, for every fixed K ≥ 1, the conditional laws (νn(K, ε))
in (2.9) satisfy

νn(K, ε)(·)⇒ P

 K∑
j=1

Vj(ε) ∈ ·

 as n→∞ .(2.21)

It is natural to interpret the statement of Theorem 1 as saying that a
large deviation event E0(n, ε), upon occurring, leads to a random cluster of
large deviation events, and the limiting (as n→∞) total size of this cluster
has the law of

(2.22) Dε =
∞∑
j=1

Vj(ε), ε > 0 .

Our second result of this section shows that this total cluster size is a.s.
finite and describes its limiting behaviour as the overshoot ε becomes small.

Theorem 2. Under the assumptions of Theorem 1, the total cluster size
Dε is a.s. finite. Further, as ε→ 0,

ε2Dε ⇒ A2σ2
Z

∫ ∞
0

1
(
T0 ≥ (

√
2Bt + t)

)
dt,

where A is the sum of the coefficients (2.10) and σ2
Z is the noise variance

(1.4). Furthermore, T0 is a standard exponential random variable indepen-
dent of a standard Brownian motion (Bt : t ≥ 0).

We prove Theorem 1 first, and so ε > 0 (satisfying (2.14)) is for now fixed.
The proof is via several lemmas. To simplify the notation we will write Ej
instead of Ej(n, ε) throughout.

Lemma 2.1. Denote

(2.23) Sn =

n−1∑
i=0

Xi, n ≥ 1 ,
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and let

(2.24) ψn(t) = n−1 logE
(
etSn

)
, t ∈ R, n ≥ 1 .

Then for all large enough n there exists a unique θn > 0 such that

ψ′n(θn) = ε .

Furthermore,

P (E0) ∼ C√
n

exp
(
−n
(
θnε− ψn(θn)

))
, n→∞ ,

with

C =
1

τ(ε)
√

2πϕ′′Z(τ(ε))
,

and ϕZ and τ(ε) defined, respectively, in (2.12) and (2.15).

Proof. We write

Sn =

n−1∑
j=0

An−1−jZj +

∞∑
j=1

(Aj+n−1 −Aj−1)Z−j ,(2.25)

with An defined by (2.11) and check the conditions of Theorem 3 in the
appendix. As a first step we show that

(2.26) lim
n→∞

ψ′′n(t) = A2ϕ′′Z(At)

locally uniformly in t ∈ R. Indeed, by (2.25),

ψn(t) =
1

n

n−1∑
j=0

ϕZ(Ajt) +
∞∑
j=1

ϕZ ((Aj+n−1 −Aj−1)t)

 ,
and taking the Cesaro limits shows that

lim
n→∞

1

n

n−1∑
j=0

A2
jϕ
′′
Z(Ajt) = A2ϕ′′Z(At) .
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Furthermore, since ϕ′′Z is locally bounded,

∞∑
j=1

(Aj+n−1 −Aj−1)2ϕ′′Z ((Aj+n−1 −Aj−1)t) = O

 ∞∑
j=1

(Aj+n−1 −Aj−1)2


= O

 ∞∑
j=1

j+n−1∑
i=j

|ai|


= O

 n∑
i=1

∞∑
j=i

|aj |

 = o(n), n→∞ .

Since all these steps are locally uniform in t ∈ R, (2.26) follows. Since this
argument also shows that ψ′′n is, uniformly in n, locally bounded, and the
values of ψn, ϕZ and their respective first derivatives at 0 are 0, we also
conclude that ψ′n is, uniformly in n, locally bounded and for every t ≥ 0,

lim
n→∞

ψ′n(t) = Aϕ′Z(At) ,(2.27)

lim
n→∞

ψn(t) = ϕZ(At) .(2.28)

The assumption (2.14) together with (2.27) implies that for large n there
exists a unique θn > 0 such that ψ′n(θn) = ε, and that

(2.29) lim
n→∞

θn = A−1τ(ε) .

We choose n1 so large that for n ≥ n1, θn is well defined, A/2 ≤ An ≤
√

2A
and θn ≤

√
2τ(ε)/A.

We claim next that for fixed δ, λ > 0 there exists η ∈ (0, 1) such that

(2.30) sup
δ≤|t|≤λθn

∣∣∣∣ 1

E(eθnSn)
E
(
e(θn+it)Sn

)∣∣∣∣ = O (ηn) , n→∞,

with the convention that the supremum of the empty set is zero. To see this,
note that φ : R2 → C defined by

φ(θ, t) =
1

E(eθZ)
E
(
e(θ+it)Z

)
,

is continuous. For a fixed θ ∈ R, φ(θ, ·) is the characteristic function of the
distribution Gθ in (2.13). By (2.19), Gθ is not a lattice distribution and,
hence, for any fixed λ, δ > 0 and θ,

sup
Aδ/2≤|t|≤2λτ(ε)

|φ(θ, t)| < 1 .
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A standard compactness argument and (2.29) imply that

η := sup
n≥n1, Aδ/2≤|t|≤2λτ(ε)

|φ(θn, t)| < 1 ,

while the choice of n1 implies that for n > j ≥ n1 and δ ≤ |t| ≤ λθn,

Aδ/2 ≤ |Ajt| ≤ 2λτ(ε) .

Therefore, by (2.25) and the triangle inequality,

1

E(eθnSn)

∣∣∣E(e(θn+it)Sn)
∣∣∣ ≤ n−1∏

j=n1

|φ(θn, Ajt)| ≤ ηn−n1 ,(2.31)

establishing (2.30).
We have now verified all conditions of Theorem 3 for Tn = Sn, an = n,

mn = ε and τn = θn, and (1.63) gives us the statement of the lemma.

We proceed with showing uniform boundedness of conditional moments
of all noise variables.

Lemma 2.2. We have

(2.32) sup
n≥1, j∈Z

E
(
|Zj |

∣∣E0

)
<∞ .

Proof. Fix j ∈ Z and define

Sn,j = Sn − βn,jZj , n ≥ 1,

where

βn,j =

{
0, 1 ≤ n ≤ j
An−1−j , n ≥ j + 1

if j ≥ 0 and
βn,j = An−1−j −A−j−1, n ≥ 1

if j ≤ −1, with Sn is as in (2.23). It follows from (2.25) that Sn,j and Zj are
independent. We define

(2.33) ψ̃n,j(t) = n−1 logE
(
etSn,j

)
, t ∈ R .

Since the numbers (βn,j) are bounded uniformly in j and n, it follows that
the functions in (2.24) and (2.33) satisfy

ψ′n(θ) = ψ̃′n,j(θ) +O(1/n) ,
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with O(1/n) uniform over j and θ in a compact interval. The same argument
as in Lemma 2.1 shows that for large n there exists a unique θ̃n,j > 0 such
that

ψ̃′n,j(θ̃n,j) = ε .

Since ϕ′Z is locally bounded away from zero, it follows from (2.27) that

(2.34) θ̃n,j = θn +O(1/n)

with O(1/n) uniform over j. This also implies that

(2.35) ψn(θ̃n,j) = ψn(θn) +O(1/n) .

For large n we can write

E (|Zj |1(E0)) =

∫
R
|z|P (Zj ∈ dz)

∫
R
1(s+ βn,jz ≥ nε)P (Sn,j ∈ ds)

= exp
{
−n
(
θ̃n,jε− ψn(θ̃n,j)

)}∫
R
|z|e−θ̃n,jβn,jzP (Z∗n,j ∈ dz)∫

[nε−βn,jz,∞)
exp

(
−θ̃n,j(s− nε)

)
P (S∗n,j ∈ ds) ,

where S∗n,j and Z∗n,j are independent random variables with Z∗n,j having
distribution Gθ̃n,jβn,j

and

P (S∗n,j ∈ ds) =
1

E
(

exp(θ̃n,jSn,j)
)eθ̃n,jsP (Sn,j ∈ ds) .

It follows from (2.34) and (2.35) that, uniformly over j,

exp
{
−n
(
θ̃n,jε− ψn(θ̃n,j)

)}
= O

(
exp

(
−n
(
θnε− ψn(θn)

)))
= O

(√
nP (E0)

)
,

with the second line implied by Lemma 2.1. Therefore, to complete the proof
it suffices to show that, uniformly in j,

∫
R
|z|e−θ̃n,jβn,jzP (Z∗n,j ∈ dz)

∫
[nε−βn,jz,∞)

exp
(
−θ̃n,j(s− nε)

)
P (S∗n,j ∈ ds)

(2.36)

= O
(
n−1/2

)
.
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This will follow from the following claim: there is C ′ > 0 such that for all n
large,

(2.37) P (y ≤ S∗n,j ≤ y + 1) ≤ C ′n−1/2 , y ∈ R ,

uniformly in j. Indeed, suppose that this is the case. Then for large n and
every z ∈ R,∫

[nε−βn,jz,∞)
exp

(
−θ̃n,j(s− nε)

)
P (S∗n,j ∈ ds)

≤
∞∑
j=1

e−θ̃n,j(j−1−βn,jz)P
(
S∗n,j − nε− βn,jz ∈ [j − 1, j)

)
≤ C ′n−1/2eθ̃n,jβn,jz

(
1− e−θ̃n,j

)−1
,

which shows (2.36).
It remains to prove (2.37). We start by observing that for M > 0

P (S∗n,j > nM) ≤ exp
{
n
[
ψ̃n,j(θ̃n,j + 1)− ψ̃n,j(θ̃n,j)−Mθ̃n,j

]}
.

Since the values of both ψ̃n,j(θ̃n,j + 1) and ψ̃n,j(θ̃n,j) remain with a compact
set independent of n and j, while θn,j converges, uniformly in j, to A−1τ(ε) >
0, we see that by choosing M large enough we can ensure that there is c > 0
such that for all n large enough,

P (S∗n,j > nM) ≤ e−cn for all j.

An identical argument shows that, if M > 0 is large enough, then here is
c > 0 such that for all n large enough,

P (S∗n,j < −nM) ≤ e−cn for all j.

That means that it suffices to prove that (2.37) holds for all |y| ≤ nM ,
uniformly in j.

Notice that by part (b) of Theorem 3, for any h > 0 there is C ′h > 0 such
that

(2.38) P (y ≤ S∗n ≤ y + h) ≤ C ′hn−1/2 , y ∈ R,

where S∗n is a random variable with the law

P (S∗n ∈ ds) =
1

E (exp(θnSn))
eθnsP (Sn ∈ ds) .
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Write

P (y ≤ S∗n ≤ y + h) =
E
(

exp(θ̃n,jSn,j)
)

E (exp(θnSn))

1

E
(

exp(θ̃n,jSn,j)
)

∫
[y,y+h]

exp
{

(θn − θ̃n,j)s
}
eθ̃n,jsP (Sn ∈ ds).

By (2.34), the factor exp{(θn − θ̃n,j)s} above is uniformly bounded away
from zero over s ∈ [y, y + h], |y| ≤ nM and j. Furthermore,

E
(

exp(θ̃n,jSn,j)
)

E (exp(θnSn))
= exp

{
−n
[
ψn(θn)− ψn(θ̃n,j)

]
− φZ(θ̃n,jβn,j)

}
,

and it follows from (2.35) and uniform boundedness of the argument of φZ
that the ratio above is bounded away from zero over n and j. We conclude
that for some c > 0, for all n large enough and |y| ≤ nM ,

P (y ≤ S∗n ≤ y + h) ≥c 1

E
(

exp(θ̃n,jSn,j)
) ∫

[y,y+h]
eθ̃n,jsP (Sn ∈ ds)

≥cP (0 ≤ βn,jZ ≤ h− 1)P (y ≤ S∗n,j ≤ y + 1).

Since βn,j is uniformly bounded, we can choose h large enough such that
P (0 ≤ βn,jZ ≤ h − 1) is uniformly bounded away from zero, and (2.37)
follows from (2.38).

The next, final, lemma is a major ingredient in the proof of Theorem 1.

Lemma 2.3. For a fixed k ≥ 1, the conditional law of (Sn−nε, Z−k, . . . , Zk, Zn−k, . . . , Zn+k)
given E0 converges weakly, as n→∞, to the law of(

T ∗, Z−−k, . . . , Z
−
k , Z

+
−k, . . . , Z

+
k

)
.

Proof. Since Zn, . . . , Zn+k are independent both of E0 and of the rest
of the components of the vector whose weak convergence we need to prove,
it suffices to show that as n→∞,
(2.39)
(Sn − nε, Z−k, . . . , Zk, Zn−k, . . . , Zn−1)⇒ (T ∗, Z−−k, . . . , Z

−
k , Z

+
−k, . . . , Z

+
−1) ,

with the law in the left hand side being conditional on E0. Consider the
following truncated version of Sn:

S̄n =
n−k−1∑
j=k+1

An−1−jZj +
∞∑

j=k+1

(Aj+n−1 −Aj−1)Z−j , n ≥ 2(k + 1) .
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We claim that there exists cn > 0 such that for any x ∈ R any any sequence
xn → x,

(2.40) P (S̄n ≥ nε+ xn) ∼ cne−xτ(ε)/A .

To show this we proceed as in the proof of Lemma 2.1. Let

ψ̄n(t) = n−1E
(
etS̄n

)
, t ∈ R .

Repeating the argument in Lemma 2.1 shows that

(2.41) lim
n→∞

ψ̄′′n(t) = A2ϕ′′Z(At)

locally uniformly in t ∈ R, and that for large n there exists θ̄n > 0 such that

(2.42) ψ̄′n(θ̄n) = ε ,

lim
n→∞

θ̄n = A−1τ(ε) ,

and

(2.43) P (S̄n ≥ nε) ∼
C√
n

exp
(
−n(θ̄nε− ψ̄n(θ̄n))

)
, n→∞ ,

with C as in Lemma 2.1. The same argument shows that, if xn → x, then
for large n there exists θ̄n,x > 0 such that

(2.44) ψ̄′n(θ̄n,x) = ε+ n−1xn ,

lim
n→∞

θ̄n,x = A−1τ(ε) ,

and
(2.45)

P (S̄n ≥ nε+ xn) ∼ C√
n

exp
(
−n(θ̄n,x(ε+ n−1xn)− ψ̄n(θ̄n,x))

)
, n→∞ .

The mean value theorem applied to (2.42) and (2.44), together with (2.41)
implies that

A2ϕ′′Z(τ(ε))(θ̄n,x − θ̄n) = n−1xn + o(n−1) = n−1x+ o(n−1) .

This, another application of the mean value theorem, together with (2.42)
and locally uniform boundedness of the second derivative implied by (2.41),
shows that

ψ̄n(θ̄n,x)− ψ̄n(θ̄n) =
1

n

εx

A2ϕ′′Z(τ(ε))
+ o(n−1) .
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Putting together the above two displays, we see that(
θ̄n,x − θ̄n

)
ε− ψ̄n(θ̄n,x) + ψ̄n(θ̄n) = o(n−1) ,

which in conjunction with (2.45) establishes (2.40) with cn given by the
right-hand side of (2.43).

Finally, for t > 0 and a compact rectangle R ⊂ R3k+1,

P ([Sn − nεn ≥ t, (Z−k, . . . , Zk, Zn−k, . . . , Zn−1) ∈ R] ∩ E0)

=P (Sn − nε ≥ t, (Z−k, . . . , Zk, Zn−k, . . . , Zn−1) ∈ R)

=

∫
(x−k,...,xk,y−k,...,y−1)∈R

P

(
S̄n ≥ nε+ t−

k∑
j=0

An−1−jxj −
k∑
j=1

(Aj+n−1 −Aj−1)x−j

−
k∑
j=1

Aj−1y−j

)
FZ(dx−k) . . . FZ(dxk)FZ(dy−k) . . . FZ(dy−1)

(2.46)

∼cne−τ(ε)t/A

∫
(x−k,...,xk,y−k,...,y−1)∈R

exp

{
τ(ε)

A

(
A

k∑
j=0

xj +
k∑
j=1

(A−Aj−1)x−j

+
k∑
j=1

Aj−1y−j

)}
FZ(dx−k) . . . FZ(dxk)FZ(dy−k) . . . FZ(dy−1)

as n → ∞. In order to justify the asymptotic equivalence above, note that
for each fixed x−k, . . . , xk, y−k, . . . , y−1, c−1

n times the integrand of (2.46)
converges, by (2.40), to

exp

{
τ(ε)

A

(
−t+A

k∑
j=0

xj +

k∑
j=1

(A−Aj−1)x−j +

k∑
j=1

Aj−1y−j

)}
.

Moreover, replacing each of the variables x−k, . . . , xk, y−k, . . . , y−1 by their
upper bounds implies by the rectangle R and using (2.40) once again, pro-
vides a bound to use in the dominated convergence theorem.

We claim that, as n→∞,

P (E0) ∼ cn
∫
R3k+1

exp

{
τ(ε)

A

(
A

k∑
j=0

xj +

k∑
j=1

(A−Aj−1)x−j +

k∑
j=1

Aj−1y−j

)}(2.47)

FZ(dx−k) . . . FZ(dxk)FZ(dy−k) . . . FZ(dy−1).
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Once this has been established, (2.39) will follow from (2.46) and (2.47),
completing the argument. To prove (2.47), we notice that by (2.40) and
Fatou’s lemma,

lim inf
n→∞

c−1
n P (E0) ≥

∫
R3k+1

exp

{
τ(ε)

A

(
A

k∑
j=0

xj +
k∑
j=1

(A−Aj−1)x−j +
k∑
j=1

Aj−1y−j

)}(2.48)

FZ(dx−k) . . . FZ(dxk)FZ(dy−k) . . . .FZ(dy−1).

By Lemma 2.2 the sequence of the conditional laws of (Z−k, . . . , Zk, Zn−k, . . . , Zn−1)
given E0 is tight in R3k+1. Let ν be a subsequential limit of this sequence.
It follows from the above inequality and (2.46) with t = 0 that

ν(R) ≤ P
(
(Z−−k, . . . , Z

−
k , Z

+
−k, . . . , Z

+
−1) ∈ R

)
for any compact rectangle R in R3k+1, which can only happen if ν is, in
fact, the law of the random vector (Z−−k, . . . , Z

−
k , Z

+
−k, . . . , Z

+
−1). Therefore,

(2.48) must hold as an equality.

We are now ready to prove the first of our main theorems.

Proof of Theorem 1. We start with showing that for every fixed k ≥
1, conditionally on E0 as n→∞,
(2.49)

(Sn − nε,X0, . . . , Xk, Xn, . . . , Xn+k)⇒ (T ∗, U−0 , . . . , U
−
k , U

+
0 , . . . , U

+
k ) ,

with (U−k ) and (U+
k ) defined in (2.17). For all i ≥ 1 let

X(i)
n =

i∑
j=0

ajZn−j , n ≥ 0 .

Lemma 2.3 implies that for a fixed i,(
Sn − nε,X(i)

0 , . . . , X
(i)
k , X(i)

n , . . . , X
(i)
n+k

)
converges weakly as n→∞, conditionally on E0, to

(T ∗, U
−(i)
0 , . . . , U

−(i)
k , U

+(i)
0 , . . . , U

+(i)
k ) ,

where

U±(i)
m =

i∑
j=0

ajZ
±
m−j , m ≥ 0 .
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Note that by Lemma 2.2, for every δ > 0,

sup
n≥1

sup
m∈Z

P
(∣∣∣X(i)

m −Xm

∣∣∣ > δ|E0

)
≤ 1

δ

[
sup

n≥1,m∈Z
E(|Zm||E0)

] ∞∑
j=i+1

|aj | → 0

as i → ∞. Since the two series in (2.17) converge in probability, in proba-
bility, the claim (2.49) follows from Theorem 3.2 in Billingsley (1999).

Notice that for any j ≥ 1,

1(Ej) = 1

j+n−1∑
i=j

Xi ≥ nε


= 1

(
n−1∑
i=0

Xi − nε ≥
j−1∑
i=0

Xi −
n+j−1∑
i=n

Xi

)

= 1

(
Sn − nε−

j−1∑
i=0

Xi +

n+j−1∑
i=n

Xi ≥ 0

)
.

We conclude by (2.49) and the continuous mapping theorem that for
K ≥ 1,

(
1(Ej), j = 1, . . . ,K

)
⇒

(
1

(
T ∗ −

j−1∑
i=0

U−j +

j−1∑
i=0

U+
j ≥ 0

)
, j = 1, . . . ,K

)
=
(
Vj(ε), j = 1, . . . ,K

)
as n→∞, where the law of the vector in the left hand side is computed con-
ditionally on E0. Indeed, the continuity of the exponential random variable
T ∗ means that the boundary of the K-dimensional set above has limiting
probability zero. This proves (2.20).

Finally, we prove our second main result.

Proof of Theorem 2. We start with some variance calculations. For a
large m,

Var

(
m∑
i=0

U−i

)
=Var

(
m∑
i=0

−1∑
k=−∞

ai−kZ
−
k

)
+ Var

(
m∑
i=0

i∑
k=0

ai−kZ
−
k

)

=

∞∑
k=1

(
m+k∑
i=k

ai

)2

Var(Z−−k) +
m∑
k=0

A2
m−kVar(Z−k ).
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It is elementary that
Var(Z−k )→ σ2

Z as ε→ 0

uniformly in k ∈ Z. Therefore,

m∑
k=0

A2
m−kVar(Z−k ) ∼ σ2

Z

m∑
k=0

A2
k ∼ mσ2

ZA
2

as ε→ 0, m→∞. Furthermore,

∞∑
k=1

(
m+k∑
i=k

ai

)2

Var(Z−−k) ∼ σ
2
Z

∞∑
k=1

(
m+k∑
i=k

ai

)2

= o(m)

as ε → 0, m → ∞, with the last statement an easy consequence of the
absolute summability of (ai). The same argument shows that we also have

m∑
k=0

A2
m−kVar(Z+

k ) ∼ σ2
Z

m∑
k=0

A2
k ∼ mσ2

ZA
2

∞∑
k=1

(
m+k∑
i=k

ai

)2

Var(Z+
−k) ∼ σ

2
Z

∞∑
k=1

(
m+k∑
i=k

ai

)2

= o(m)

as ε→ 0, m→∞.
We define

Wε(t) =
τ(ε)

A

[tε−2]∑
i=0

(U−i − U
+
i )(2.50)

=

τ(ε)

A

[tε−2]∑
i=0

−1∑
k=−∞

ai−kZ
−
k +

τ(ε)

A

[tε−2]∑
i=0

−1∑
k=−∞

ai−kZ
+
k


+

τ(ε)

A

[tε−2]∑
i=0

i∑
k=0

ai−kZ
−
k +

τ(ε)

A

[tε−2]∑
i=0

i∑
k=0

ai−kZ
+
k


=: W (1)

ε (t) +W (2)
ε (t), ε > 0, t ≥ 0.

The assumption EZ = 0 and (2.15) imply that, as ε→ 0,

(2.51) ε/A ∼ τ(ε)ϕ′′Z(0) = σ2
Zτ(ε) .

We have, therefore, verified that Var
(
W

(1)
ε (t)

)
→ 0 as ε→ 0 for every t, so

(2.52) W (1)
ε (t)− E

(
W (1)
ε (t)

)
→ 0 in probability as ε→ 0.
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Furthermore, for every t, as ε→ 0,

Var(W (2)
ε (t))→ 2t

A2σ2
Z

.

A similar calculation shows that for 0 ≤ s ≤ t,

lim
ε→0

Cov(W(2)
ε (s),W(2)

ε (t)) =
2s

A2σ2
Z

.

Observe next that the third absolute moment of both (Z−k ) and (Z+
k ) is

bounded uniformly in ε and k. Therefore, the Lindeberg condition is satisfied
by the triangular array defined by any finite linear combination of the type

θ1W
(2)
ε (t1)+. . .+θdW

(2)
ε (td). Applying the Lindeberg Central Limit Theorem

(see e.g. Theorem 27.2 in Billingsley (1995)) and the Cramér-Wold device

we conclude that the finite dimensional distributions of W
(2)
ε (t)−E(W

(2)
ε (t))

converge to those of (AσZ)−1
√

2Bt, where Bt is a standard Brownian motion.
It follows from (2.52) that the finite dimensional distributions of Wε(t) −
E(Wε(t)) converge to the same limit.

Next, let 0 ≤ s < t. If ε2 > (t− s), then for any s ≤ r ≤ t either

Wε(t)− E(Wε(t)) = Wε(r)− E(Wε(r)) a.s.

or
Wε(s)− E(Wε(s)) = Wε(r)− E(Wε(r)) a.s.,

so that

E

[(
Wε(t)−Wε(r)− E

(
Wε(t)−Wε(r)

))2(
Wε(r)−Wε(s)− E

(
Wε(r)−Wε(s)

))2
]

= 0.

Suppose now that ε2 ≤ (t− s). We have

E

[(
Wε(t)−Wε(s)− E

(
Wε(t)−Wε(s)

))4
]

≤ 8E

[(
W (1)
ε (t)−W (1)

ε (s)− E
(
W (1)
ε (t)−W (1)

ε (s)
))4
]

+8E

[(
W (2)
ε (t)−W (2)

ε (s)− E
(
W (2)
ε (t)−W (2)

ε (s)
))4
]
.

For a positive constant C independent of ε, s, t, that may change from ap-
pearance to appearance, since the fourth moments of (Z−k ) are bounded
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uniformly in ε and k, and the coefficients (ai) are absolutely summable,

E

τ(ε)

A

[tε−2]∑
i=[sε−2]+1

i∑
k=0

ai−k
(
Z−k − E(Z−k )

)4

≤Cε4

[tε−2]∑
k=0

E
(
Z−k − E(Z−k )

)4 [tε−2]∑
i=max(k,[sε−2]+1)

ai−k

4

+

Cε2

[tε−2]∑
k=0

E
(
Z−k − E(Z−k )

)2 [tε−2]∑
i=max(k,[sε−2]+1)

ai−k

22

≤Cε4
∞∑
k=0

[tε−2]∑
i=max(k,[sε−2]+1)

|ai−k|+

Cε2
∞∑
k=0

[tε−2]∑
i=max(k,[sε−2]+1)

|ai−k|

2

.

Since

∞∑
k=0

[tε−2]∑
i=max(k,[sε−2]+1)

|ai−k| ≤
(
[tε−2]− [sε−2]

) ∞∑
i=0

|ai|

≤
(
tε−2 − (sε−2 − 1)

) ∞∑
i=0

|ai| ≤ 2(t− s)ε−2
∞∑
i=0

|ai|,

we conclude that

E

τ(ε)

A

[tε−2]∑
i=[sε−2]+1

i∑
k=0

ai−k
(
Z−k − E(Z−k )

)4

≤ C(t− s)2.

A similar argument shows that

E

τ(ε)

A

[tε−2]∑
i=[sε−2]+1

i∑
k=0

ai−k
(
Z+
k − E(Z+

k )
)4

≤ C(t− s)2,

so that

E

[(
W (2)
ε (t)−W (2)

ε (s)− E
(
W (2)
ε (t)−W (2)

ε (s)
))4
]
≤ C(t− s)2.

In the same way we can check that

E

[(
W (1)
ε (t)−W (1)

ε (s)− E
(
W (1)
ε (t)−W (1)

ε (s)
))4
]
≤ C(t− s)2,
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so we conclude that

(2.53) E

[(
Wε(t)−Wε(s)− E

(
Wε(t)−Wε(s)

))4
]
≤ C(t− s)2

if ε2 ≤ (t− s). By the Cauchy-Schwarz inequality, for any 0 ≤ s ≤ r ≤ t we
have

E

[(
Wε(t)−Wε(r)− E

(
Wε(t)−Wε(r)

))2(
Wε(r)−Wε(s)− E

(
Wε(r)−Wε(s)

))2
]

≤C(t− s)2

if ε2 ≤ (t− s). Appealing to Theorem 13.5 of Billingsley (1999) we conclude
that for any fixed T , the family

{(Wε(t)− E(Wε(t)) : 0 ≤ t ≤ T ) : ε > 0}

is tight in D[0, T ] endowed with the Skorohod J1 topology. Therefore,, as
ε→ 0,

(2.54) (Wε(t)− E(Wε(t)) : 0 ≤ t ≤ T )⇒
(

(AσZ)−1
√

2Bt : 0 ≤ t ≤ T
)
,

in D[0, T ]. Furthermore,

E (Wε(t)) =
τ(ε)

A

[
[tε−2]∑
i=0

−1∑
k=−∞

ai−kEZ
−
k +

[tε−2]∑
i=0

i∑
k=0

ai−kEZ
−
k

−
[tε−2]∑
i=0

−1∑
k=−∞

ai−kEZ
+
k −

[tε−2]∑
i=0

i∑
k=0

ai−kEZ
+
k

]
.

The fourth double sum vanishes. Clearly, |EZ±k | = O(τ(ε)) uniformly in ε
and k ∈ Z. Therefore,∣∣∣∣∣∣

[tε−2]∑
i=0

−1∑
k=−∞

ai−kEZ
−
k

∣∣∣∣∣∣ ≤ O(τ(ε))

[tε−2]∑
i=0

∞∑
k=i+1

|ak| = o
(
τ(ε)ε−2

)
uniformly in t in a compact set. Similarly,∣∣∣∣∣∣

[tε−2]∑
i=0

−1∑
k=−∞

ai−kEZ
+
k

∣∣∣∣∣∣ = o
(
τ(ε)ε−2

)
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uniformly in t in a compact set. Finally, EZ−0 ∼ τ(ε)σ2
Z as ε→ 0, so

[tε−2]∑
i=0

i∑
k=0

ai−kEZ
−
k = EZ−0

[tε−2]∑
i=0

Ai ∼ τ(ε)σ2
Ztε
−2

uniformly in t in a compact set. We conclude by (2.51) that for all ε > 0
small enough,

E (Wε(t)) ≥
t

2A2σ2
Z

, t ≥ 1(2.55)

and

E (Wε(t))→
t

A2σ2
Z

, ε→ 0,

uniformly in t in a compact set. Since the addition in D[0, T ] is continuous
at continuous functions, this along with (2.54) shows that

(Wε(t) : 0 ≤ t ≤ T )⇒
(

(AσZ)−1
√

2Bt + (AσZ)−2t : 0 ≤ t ≤ T
)
, ε→ 0 ,

in D[0, T ].
For any real λ the function ϕ : D[0, T ]→ R defined by

ϕ(f) =

∫ T

0
1
(
λ ≥ f(t)

)
dt

is continuous at any continuous f that takes value λ only on a set of measure
0. Therefore, for any such λ, by the continuous mapping theorem,∫ T

0
1
(
λ ≥Wε(t)

)
dt⇒

∫ T

0
1
(
λ ≥ (AσZ)−1

√
2Bt + (AσZ)−2t

)
dt

d
=

∫ T

0
1
(
λ ≥
√

2B(AσZ)−2t + (AσZ)−2t
)
dt = A2σ2

Z

∫ (AσZ)2T

0
1
(
λ ≥
√

2Bt + t
)
dt .

Noticing that we can write

Vj(ε) = 1

(
T0 ≥

τ(ε)

A

j−1∑
i=0

(U−i − U
+
i )

)
, j ≥ 1,

where T0 is a standard exponential random variable independent of the
collection (Zuj : j ∈ Z, u = + or −), we conclude that for any T > 0,

ε2

[Tε−2]∑
j=0

Vj(ε) =

∫ T

0
1
(
T0 ≥Wε(t)

)
dt− V[Tε−2]

(
T − ε2[Tε−2]

)
⇒ A2σ2

Z

∫ (AσZ)2T

0
1
(
T0 ≥

√
2Bt + t) dt.
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It is clear that the latter integral converges a.s. to the integral prescribed
in the theorem. Therefore, we can appeal to Theorem 3.2 in Billingsley
(1999) and complete the proof once we show that for any δ > 0,

(2.56) lim
T→∞

lim sup
ε→0

P

ε2
∞∑

j=[Tε−2]+1

Vj(ε) > δ

 = 0 .

However, by Markov’s inequality

P

ε2
∞∑

j=[Tε−2]+1

Vj(ε) > δ

 ≤ ε2δ−1
∞∑

j=[Tε−2]+1

P
(
T0 ≥Wε((j − 1)ε2)

)
≤ε2δ−1

∞∑
j=[Tε−2]+1

P

(
Wε((j − 1)ε2) ≤ (j − 1)ε2

4A2σ2
Z

)
+ ε2δ−1

∞∑
j=[Tε−2]+1

exp

{
−(j − 1)ε2

4A2σ2
Z

}
.

By (2.55) and (2.53) we have for some positive constant C,

P

(
Wε((j − 1)ε2) ≤ (j − 1)ε2

4A2σ2
Z

)
≤ Cε−4(j − 1)−2

for all j > [Tε−2], T ≥ 1 and ε > 0 small enough. This estimate suffices to
establish (2.56) and so the proof is complete.

3. Discussion. As is usually the case with large deviations, the limiting
distributions obtained in (2.20) and (2.21) of Theorem 1 depend largely on
the underlying model through the distribution of the noise variables FZ and
the coefficients (ai). This dependence largely disappears in Theorem 2 where
the limiting distribution depends only on the noise variance σ2

Z and the sum
of the coefficients A. This can be understood by viewing the case of a small
overshoot ε as approaching the regime of moderate deviations. Indeed, in
the case of moderate deviations one expects that the central limit behaviour
becomes visible and leads to a collapse of the model ingredients necessary to
describe the limit to a bare minimum consisting of second order information.

This naturally leads to the question of a difference of how large devia-
tions cluster between the short memory moving average processes and long
memory moving average processes. It is common to say that the coefficients
of the moving average process (1.1) with long memory are square summable
but not absolutely summable. Assuming certain regularity of the coefficients
(ai) (e.g. their regular variation), one can show that for any fixed j ≥ 1 and
ε > 0,

lim
n→∞

P
(
Ej(n, ε)

∣∣E0(n, ε)
)

= 1 ,
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so one expects infinitely many events (Ej(n, ε)) to happen once E0(n, ε)
does. This necessitates different limiting procedures when studying large
deviations clustering of such long memory processes. It is important to note
that for these long memory moving average processes, in the notation of
(2.23), n = o(Var(Sn)), so one can view the events (Ej(n, ε)) as moderate
deviation events and not large deviation events. Indeed, it turns out that a
natural limiting procedure leads to a collapse in the amount of information
about the model needed to describe the limit, which is similar to the situation
with Theorem 2 in the present, short memory case. We will describe the
details in a subsequent work.

APPENDIX A: SOME USEFUL FACTS

The following non-logarithmic version of a large deviation statement and
a related estimate are from Chaganty and Sethuraman (1983).

Theorem 3. Let {Tn} be a sequence of random variables with

E
(
ezTn

)
<∞ for any z ∈ R, n ≥ 1 .

For a sequence {an} of positive numbers with

(1.57) lim
n→∞

an =∞

we denote
ψn(z) = a−1

n logE
(
ezTn

)
, z ∈ R, n ≥ 1 .

Let {mn} be a bounded sequence of real numbers. Assume that there exists
a bounded positive sequence {τn} satisfying

(1.58) ψ′n(τn) = mn, n ≥ 1 ,

(1.59) a−1/2
n = o(τn), n→∞ ,

and such that for all fixed δ, λ > 0,

(1.60) sup
δ≤|t|≤λτn

∣∣∣∣ 1

E (eτnTn)
E
(
e(τn+it)Tn

)∣∣∣∣ = o
(
a−1/2
n

)
, n→∞ ,

(with the supremum of the empty set defined as zero). Furthermore, assume
that

(1.61) sup
n≥1, z∈[−a,a]

|ψn(z)| <∞ for any a > 0
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and that

(1.62) inf
n≥1

ψ′′n(τn) > 0 .

(a) Under the above assumption,
(1.63)

P
(
a−1
n Tn ≥ mn

)
∼ 1

τn
√

2πanψ′′n(τn)
exp {−an (mnτn − ψn(τn))} , n→∞.

(b) Let
bn = τn

√
anψ′′n(τn),

and let T ∗n be a random variable with the law

P (T ∗n ∈ du) =
1

E(eτnTn)
euτnP (Tn ∈ du) .

Then
sup

n≥1, y∈R
bnP (y ≤ τnT ∗n ≤ y + 1) <∞.

Proof. The first part of the theorem is Theorem 3.3 in Chaganty and
Sethuraman (1983). Furthermore, Lemmas 3.1 and 3.2 ibid. show that the
hypotheses (2.7) and (2.8) of Theorem 2.3 therein hold, and the second part
of Theorem 3 follows from (2.9) of that paper.
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