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We propose kernel PCA as a method for analyzing the dependence struc-
ture of multivariate extremes and demonstrate that it can be a powerful tool
for clustering and dimension reduction. Our work provides some theoretical
insight into the preimages obtained by kernel PCA, demonstrating that under
certain conditions they can effectively identify clusters in the data. We build
on these new insights to characterize rigorously the performance of kernel
PCA based on an extremal sample, i.e., the angular part of random vectors
for which the radius exceeds a large threshold. More specifically, we focus
on the asymptotic dependence of multivariate extremes characterized by the
angular or spectral measure in extreme value theory and provide a careful
analysis in the case where the extremes are generated from a linear factor
model. We give theoretical guarantees on the performance of kernel PCA
preimages of such extremes by leveraging their asymptotic distribution to-
gether with Davis-Kahan perturbation bounds. Our theoretical findings are
complemented with numerical experiments illustrating the finite sample per-
formance of our methods.

1. Introduction. The study and modeling of the behavior of extremes continues to gen-
erate increasing interest from scientists in a variety of fields including environmental, in-
dustrial, economic and social media related activities. While extremes are reasonably well
understood for univariate and low dimensional data, it remains very challenging to model
multivariate extremes when one or more of rare extreme events may occur simultaneously.
An important recent line of work in multivariate extreme value theory seeks to connect this
literature to ideas from modern statistics and machine learning. This task is not at all triv-
ial since the dependence structure between extreme observations can be very complex and
involve notions of dependence that differ from the typical ones arising in the non-extreme
world. Work in this direction has included adapting various notions of sparsity for extremes
[18, 24, 32], concentration inequalities [17, 8], conditional independence [12, 14], causality
[16, 10] and unsupervised learning [7, 9, 21, 11, 1, 20, 15, 28], to name a few important
examples. See also [13] for a review of recent developments in the literature of multivariate
extremes. Our work is aligned with this direction of research as we propose kernel PCA as a
preprocessing tool that facilitates clustering multivariate extremes.

The covariance matrix plays a central role in non-extremal statistics as it is widely used
to quantify the linear dependence among random variables. The eigen-decomposition of the
covariance matrix is the building block of principal components analysis (PCA), which in
turn is one of the most popular dimension reduction techniques in statistics. It can be used
to find low dimensional projections of p-dimensional data into the linear subspace spanned
by k < p eigenvectors associated with the k largest eigenvalues of the empirical covariance
matrix. This projection corresponds to the best k-dimensional projection in the sense of being
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the one that retains the most variance present in the original data. Kernel PCA is a nonlin-
ear generalization of PCA that first lifts the original data to a space of functions and then
produces low dimensional projections in this function space. This representation can help ex-
tract nonlinear structures in the data [30], can be used for data denoising [25] and extracting
high dimensional features for regression and classification tasks [29, 22, 6]. More extensive
references to kernel methods can be found in the books by [33] and [34].

In this work we use kernel PCA as a denoising tool for multivariate extremes. More specif-
ically, we perform kernel PCA on a subset of observations that is viewed as extremes and we
reconstruct the preimages of the kernel PCA projections of this extremal subsample. While
kernel PCA projections live in a function space, their preimages live in the original space of
the data and constitute our main objects of interest.

In our analysis, we first provide some general insights showing that kernel PCA preimages
naturally cluster in finite subsets of points when there are also some clusters in the kernel
space. We believe these insights are interesting in their own right and complement existing
work on kernel PCA preimages; see [19] for an overview of this literature. We remark that
our analysis also complements existing theoretical results regarding the convergence of the
spectrum of the empirical covariance operator used in the construction of kernel PCA to a
population covariance operator [31, 39, 5].

We then consider the case of an extremal sample and utilize tools from multivariate ex-
treme value theory for analyzing the clustering properties of kernel PCA preimages. In par-
ticular, we use multivariate regular variation as a modeling tool since it is closely connected
to asymptotic characterizations of multivariate extreme value distributions [26, 27]. We pro-
vide a detailed analysis of the clustering properties of kernel PCA preimages for multivariate
extremes generated by the linear factor model recently introduced by [1]. We leverage the
asymptotic distributions and rates of convergence derived in the latter work in out perturba-
tion analysis of kernel PCA. Since the spectral measure of this model is discrete, the kernel
PCA preimages converge to a well separated set of points in this case. We establish rates
of convergence of the kernel matrix defining these preimages and show that they depend on
the tail index of the extremes as well as on the smoothness, around the origin, of the kernel
function used for kernel PCA. In the process of establishing these convergence results, we
obtain an asymptotic characterization of the point process giving rise to the different clusters
of extremes in the linear factor model. We believe this is an interesting side product of our
analysis that is likely to be useful in other contexts.

2. Background on Kernel PCA. Kernel principal component analysis builds on the
framework of Reproducing Kernel Hilbert Spaces (RKHS). We will review some basic no-
tation and concepts that will be needed in order to describe how kernel PCA gets a low
dimensional representation of the data after being lifted to a RKHS.

DEFINITION 1. Let H be a Hilbert space of real-valued functions defined on a space X
with inner product and norm denoted by ⟨⋅, ⋅⟩ and ∥ ⋅ ∥ respectively. A function κ ∶X ×X →R
is called reproducing kernel if (i) for all x ∈X , κ(⋅,x) ∈H and (ii) for all f ∈H, we have
f(x) = ⟨f,κ(⋅,x)⟩ for all x ∈X .

If H admits a reproducing kernel, then it is called a reproducing kernel Hilbert space.

By the Moore-Aronszajn Theorem, each symmetric, non-negative definite kernel function
κ(⋅, ⋅) on X ×X can be identified uniquely with a RKHS of real-valued functions on X for
which it is the reproducing kernel. For simplicity, in what follows let us denote this RKHS
by H.
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The map φ ∶ x↦ κ(⋅,x) from X toH is commonly called the feature map. It follows from
the reproducing kernel property that f(x) = ⟨f,φ(x)⟩ for all f ∈H and

⟨φ(x),φ(y)⟩ = ⟨κ(⋅,x),κ(⋅, y)⟩ = κ(x,y), ∀x,y,∈X .
We are now well equipped to describe the methodology of kernel PCA. Assume that we
have some observed data x1, . . . ,xn ∈ X ⊂Rd and define the empirical covariance operator
Cn ∶H↦H as

Cnf =
1

n

n

∑
i=1

φ(xi)⟨φ(xi), f⟩ =
1

n

n

∑
i=1

f(xi)φ(xi).

The covariance operator1 is positive definite and admits the spectral representation

Cnf =
n

∑
i=1

λi⟨ϕi, f⟩ϕi,

where λ1 ≥ λ2 ≥ ⋅ ⋅ ⋅ ≥ λn ≥ 0 are the eigenvalues of Cn and ϕ1, . . . ,ϕn ∈H are their corre-
sponding normalized eigenfunctions. We are interested in finding the principal components
i.e., a lower dimensional representation of arbitrary functions inH using the firstm < n eigen-
functions of Cn. More specifically, given a function f ∈H, we want to find its projection into
the m-dimensional subspace spanned by {ϕi}mi=1 i.e.

Pmf =
m

∑
j=1

λj⟨ϕj , f⟩ϕj .

The above projection can be computed efficiently in practice as one can avoid working di-
rectly in H by noting that the eigenvalues of Cn coincide with the eigenvalues of the kernel
matrix Cn = 1

n{κ(xi,xj)}
n
i,j=1. If vj = (vj1, . . . , vjn)⊺ denotes the jth eigenvector of Cn,

then the jth (unnormalized) eigenfunction of Cn can be computed by

(1) ϕj =
n

∑
i=1

vjiφ(xi).

From this last formula and the reproducing kernel property we obtain

Pmf =
m

∑
i=1

n

∑
j=1

n

∑
k=1

f(xk)vijvikφ(xj).

In what follows we focus on the properties of the preimages of the lower dimensional projec-
tion of the feature map i.e., Pmφ. Intuitively, we would like to understand the impact of the
steps: a) lifting the data from the original space X to a function space b) choosing a lower
dimensional representation of the lifted data in this richer space, and c) identifying the map
of those projections back to the original data space X .

We finish this section by mentioning a connection between RKHSs and Gaussian random
fields that often provides a convenient and appealing framework to view RKHS and kernel
PCA. Specifically, if κ is a stationary symmetric non-negative definite kernel on Rd (that is,
κ(x,y) depends only on x − y), and G = (G(x), x ∈Rd) is a centered stationary Gaussian
random field, with covariance function κ, then the RKHS corresponding to κ can be identified
with the closure in L2 of the space of finite linear combinations of the values of the field at
different points (here each κ(⋅,x) is identified with G(x)). This RKHS can also be identified

1We note that the covariance operator is sometimes defined using the centered feature map φ̄(xi) = φ(xi) −
1
n ∑

n
j=1φ(xj) instead of the non-centered feature map φ(xi). This leads to minor changes to the expressions

that we give for the eigenfunctions and eigenvalues.
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with the subspace of L2(µ) consisting of functions with even real parts and odd imaginary
parts. Here µ is the spectral measure of the random field G, i.e., a finite symmetric measure
on Rd such that

κ(x) =∫
Rd
ei⟨x,z⟩µ(dz), x ∈Rd

(since κ is stationary, we are using a one-argument notation). Here κ(⋅,x) is identified with
ei⟨⋅,x⟩. See e.g., [36].

3. Some insights into kernel PCA preimages. Let S be a subset of Rd, possibly the
unit sphere in Rd. Let S0 ⊂ S be a small subset of S , potentially of a smaller dimension.
Let T = {t1, . . . ,tn1

,tn1+1, . . . ,tn1+n2
} be a collection of points in S , such that t1, . . . ,tn1

lie in or near S0, while tn1+1, . . . ,tn1+n2
lie at some distance from S0. Assume, further,

that the points tn1+1, . . . ,tn1+n2
are dispersed, and that n2 is not too large in comparison

with n1. In the following we will focus on RKHS defined by stationary kernels of the form
κ(x,y) =R(x − y) for all x,y ∈Rd and some continuous non-negative definite R ∶Rd↦R
(which may be thought of as the covariance function of a stationary Gaussian random field).

3.1. Discrete signal case. Let us first consider a special case. Suppose that n2 = 0 and
that S0 = {s1, . . . ,sK} is a finite collection of points in S . Furthermore, suppose that the
points s1, . . . ,sK are well separated, in the sense that R(0) = 1 while ∣R(si − sj)∣ is small
if i /= j . Let us suppose, further, that m1 of the points t1, . . . ,tn1

equal s1, m2 of the points
t1, . . . ,tn1

equal s2, etc. In particular, n1 =m1+m2+⋯+mK . We will assume for simplicity
that the first m1points t1, . . . ,tm1

equal to s1, the next m2 points are equal to s2, etc. In this
case the matrix Cn = 1

n{R(si − sj)}ni,j=1 becomes a block matrix with K2 blocks. The block
(k1, k2), k1, k2 = 1, . . . ,K has mk1 rows and mk2 columns and mk1mk2 identical entries
equal to

(2)
1

(m1 +⋯+mK)R(sk1 − sk2).

In particular, an eigenvector vj of Cn corresponding to any eigenvalue λj will have the form

(3) vj = (b1, . . . , b1, b2, . . . , b2, . . . , bK , . . . , bK)⊺,

with each bi repeated mi times.

Returning to the general case, let λ1 ≥⋯ ≥ λm ≥ 0 be the m largest eigenvalues of Cn and
let ϕ1, . . . ,ϕm be the corresponding eigenfunctions. Suppose that we now get a new point
w ∈ S . We define its kernel PCA preimage as

(4) T (w) = argminv∈S∥φ(v)−Pmφ(w)∥.

Note that ∥φ(v)∥2 =R(0) is independent of v. Therefore, (4) reduces to

T (w) =argmaxv∈S⟨φ(v),Pmφ(w)⟩

=argmaxv∈S
m

∑
k=1

∑
tj∈T

vkjR(w − tj) ∑
tj∈T

vkjR(v − tj).(5)
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EXAMPLE 1. To get a feeling of what is happening let us consider the case m = 1. In this
case the problem (5) becomes

T (w) = argmaxv∈S ∑
tj∈T

v1jR(w − tj) ∑
tj∈T

v1jR(v − tj).

This means that

T (w) ={argmaxv∈S∑tj∈T v1jR(v − tj), if ∑tj∈T v1jR(w − tj) > 0,
argminv∈S ∑tj∈T v1jR(v − tj), if ∑tj∈T v1jR(w − tj) < 0.

(6)

That is, most of the points w get mapped to one of the two points in S0 that achieve the
minimum and maximum (6). If we return to the special case considered in (2) and (3), then

∑
tj∈T

v1jR(v − tj) =
K

∑
k=1

mkbkR(v − sk).

Since we are assuming that the points s1, . . . ,sK are well separated, it is likely that the
maximum of that expression will be achieved near the point sk with the largest value of
mkbk, and the minumum will be achieved near the point sk with the smallest value of mkbk.
That is, most of the points w are likely to get mapped close to one of these two points in the
set S0.

3.2. Discrete signal with noise. Now we consider the generic case where S0 = {s1, . . . ,sK}
is still a finite collection of well separated points in S . However, now n2 > 0 and the points
tn1+1, . . . ,tn1+n2

lie at some distance from S0, and do not concentrate too much themselves.
Now the points t1, . . . ,tn1

are not necessarily exactly equal to one of the points in S0, but
are only lie nearby. Specifically, we assume that m1 of the points t1, . . . ,tn1

are near s1, m2

of the points t1, . . . ,tn1
are near s2, etc. We still have n1 =m1 +m2 +⋯+mK . This time the

covariance matrix Cn will have 4 distinct parts whose structure we now describe.
Recall that each tj , j = 1, . . . ,n1 is near one of the points in S0. We preserve the numbering

we used in (2) and (3). That is, we write

(7) tj = sk + rj if m1 +⋯+mk−1 < j ≤m1 +⋯+mk−1 +mk,

j = 1, . . . ,n1, k = 1, . . . ,K , and assume that ∥rj∥ is small (rj does not need to lie in S). The
matrix Cn will have an n1 × n1 block matrix in the top left corner with K2 blocks, whose
entries are perturbations of the entries entries described in (2). Specifically, the block (k1, k2),
k1, k2 = 1, . . . ,K in that matrix has mk1 rows and mk2 columns, and the entry in the position
(i, j) within that block can be written as

(8) cij =
1

m1 +⋯+mK
R(sk1 − sk2)+ δij ,

with

δij =
1

n1 +n2
(R(sk1 − sk2 + ri − rj)−R(sk1 − sk2)).(9)

We will view this matrix Cn as resulting from a perturbation of the matrix C(0)n of the same
size as Cn. The matrix C(0)n has an n1×n1 block matrix in the top left corner withK2 blocks,
whose entries are described in (2). The rest of the entries of the matrix C(0)n are equal to zero.
Let

∆ =Cn −C(0)n
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be the perturbation. Then ∆ has an n1×n1 block matrix in the top left corner withK2 blocks,
whose entries are δij in (9). The rest of the entries of the matrix ∆ have the general form

1

n1 +n2
R(ti − tj).

We start by noticing that the non-zero eigenvalues of the matrix C(0)n coincide with the
non-zero eigenvalues of the n1 × n1-matrix in its top left corner. Furthermore, the corre-
sponding eigenvectors of C(0)n result from taking the eigenvectors of the latter matrix and
appending to them n2 zero entries. We note that the n1 × n1-matrix in the top left corner of
C
(0)
n represents the special situation (2) and we have some understanding of why our proce-

dure results in points being mapped close to the set S0.
The true matrix is, of course, Cn and not C(0)n . Our plan is to use the Davis-Kahan theorem

to check that the eigenvectors of Cn corresponding to its top eigenvalues are not far from
the eigenvectors of C(0)n corresponding to its top eigenvalues. If this is the case, then the
eigenfunctions (1) corresponding to the top eigenvalues of the matrix Cn will be close to
the eigenfunctions (1) corresponding to the top eigenvalues of the matrix C(0)n , and so the
algorithm will still map most of the points to lie close to the set S0.

We will use a version of the Davis-Kahan theorem given in [37], which says that, if
λ1,⋯,λm are the top eigenvalues ofCn and λ(0)1 ,⋯,λ(0)m are the top eigenvalues ofC(0)n , then
the corresponding orthonormal eigenvectors v(1), . . . ,v(m) and v(0,1), . . . ,v(0,m) are close in
the following sense. Let V and V (0) be (n1 +n2)×m matrices with columns v(1), . . . ,v(m)

and v(0,1), . . . ,v(0,m), correspondingly. Then there is an orthogonal m ×m matrix O such
that

(10) ∥V O −V (0)∥F ≤
2min(m1/2∥∆∥op, ∥∆∥F)

λ
(0)
m −λ(0)m+1

.

Here ∥A∥F and ∥A∥op are, respectively, the Frobenius norm and the operator norm of a matrix
A. This is Theorem 2 in [37].

Since the orthogonal matrix O in (10) plays no role in the projection onto the subspace
spanned by the eigenfunctions corresponding to the top eigenvectors, we need to check that
the bound in the right hand side of (10) is small. Assuming that the covariance matrix of
the Gaussian random field is nonsingular, in the generic case the matrix C(0)n will have K
nonzero eigenvalues. Furthermore, the size of these K eigenvalues should be comparable to
the size of the entries in the matrix C(0)n , which by (2) are of order 1/n. It is likely that also
the distances between these eigenvalues are of the same order. This, of course, means that
we should choose m ≤K and, ideally, m =K . In this case we expect the denominator in the
right hand side of (10) to be of order 1/n.

Now consider the numerator in the right hand side of (10). One can expect that the norms
appearing there would be comparable to the size of the entries in the matrix ∆. Notice that
the entries in this matrix that are not in the n1 ×n1 block matrix in the top left corner are still
of the order 1/n, but because the points {sk} are well separated, these entries will be small
in comparison with the denominator in the right hand side of (10). Finally, the entries in the
n1 × n1 block matrix in the top left corner of the matrix ∆ will be small if the perturbations
{ri} are small, and this should be established on the case-by-case basis, for different data-
producing mechanisms. In the next section we apply this idea to the extremes of a heavy
tailed linear factor model.
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4. Applications to the linear factor model. Consider the linear factor model

(11) X =AZ,

whereA is a d×pmatrix of non-negative elements and Z is a p-dimensional random vector of
factors consisting of independent and identically distributed non-negative random variables2,
that have asymptotically Pareto tails, i.e.,

(12) P(Z1 > z) ∼ cαz−α, as z→∞,

for some α > 0 and cα > 0. As pointed out in [1], it follows immediately from (11) and (12)
(see, for example, [3], Proposition A.1) that X is a multivariate regularly varying random
vector satisfying

lim
x→∞

P( X

∥X∥ ∈ ⋅ ∣ ∥X∥ > x)⇒Γ(⋅) ,

where ⇒ denotes weak convergence on the unit sphere Sd−1, Γ is the discrete probability
measure on Sd−1 given by

Γ(⋅) =w−1
p

∑
k=1

∥a(k)∥αδ a(k)

∥a(k)∥

(⋅) ,

where δx(⋅) is the Dirac measure that puts unit mass at x, a(k) is the kth column of the matrix
A, k = 1, . . . , p, and

(13) w =
p

∑
k=1

∥a(k)∥α .

Based on a random sample of iid copies of X1, . . . ,Xn of X as above, we expect for large
n, the angular parts Xi/∥Xi∥ of the sample for which ∥Xi∥ is large, to cluster around the
points

sk =
a(k)

∥a(k)∥ , k = 1, . . . , p,

as in Section 3.2.
In order to understand how well the kernel PCA algorithm works for extreme values in this

model, we will analyze the corresponding perturbation matrix ∆. We start with the n1 × n1
block matrix in the top left corner of ∆, whose entries are given by (9). We call this matrix
∆B .

The first result that we will need in the study of ∆B is a characterization of the convergence
of the covariance function evaluated at the difference of directions of extreme observations.
We will assume that for some θ ∈ [1,2] and dθ > 0,

(14) R(0)−R(x) ∼ dθ∥x∥θ as x→ 0.

Common choices of R are the exponential covariance function R(x) = exp{−γ∥x∥} for
which θ = 1, and the Gaussian covariance function R(x) = exp{−γ∥x∥2}, for which θ = 2.

2The results of this section can be extend with simple but tedious modifications to symmetric regularly varying
iid random variables and a real-valued A.
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THEOREM 1. Let (un) be a sequence of levels such that un →∞ and suppose the co-
variance function R satisfies (14) and is continuously differentiable outside of the origin.

(i) Let i /= j belong to a diagonal block (k,k) of the matrix ∆B , k = 1, . . . , p. Then for
any i /= j, computing the law in the left hand side as the conditional law given the event
{∥Xi∥ > un,∥Xj∥ > un, Zik > un/w1/α, Zjk > un/w1/α}, (w defined in (13)),

(15) uθn[R(0)−R(Xi/∥Xi∥−Xj/∥Xj∥)]⇒ dθ∥S(k)1 −S
(k)
2 ∥θ,

where S
(k)
1 ,S

(k)
2 are independent random vectors with the common law defined as the law of

(16)
1

w2
kWα

(S∗1,−k, . . . ,S∗d,−k)
T
,

with wk = ∥a(k)∥. Here, with X as in (11), we set

S∗l,−k =
d

∑
r=1

(a2rkXl,−k − alkarkXr,−k)

with

Xl,−k =Xl − alkZk, l = 1, . . . , d.

Furthermore, Wα is standard Pareto(α) random variable (P(Wα > x) = x−α, x ≥ 1), inde-
pendent of Z1, . . . ,Zp.

(ii) Let (i, j) belong to a block (k1, k2) of the matrix ∆B , k1 /= k2, k1, k2 = 1, . . . , p. Then,
for any i /= j, computing the law in the left hand side as the conditional law given the event
{∥Xi∥ > un,∥Xj∥ > un, Zik1 > un/w1/α, Zjk2 > un/w1/α},

(17) un[R(sk1 − sk2)−R(Xi/∥Xi∥−Xj/∥Xj∥)]⇒ ⟨∇R(sk1 − sk2),S
(k2)
1 −S

(k1)
2 ⟩,

with S
(k1)
1 ,S

(k2)
2 independent and distributed as above.

PROOF. (i) Write

R(0)−R(Xi/∥Xi∥−Xj/∥Xj∥)

=R(0)−R[u−1n (un(Xi/∥Xi∥− sk)− un(Xj/∥Xj∥− sk))] .

By Theorem 4.1 in [1] (which holds under the sole assumption un→∞), we have

(18) un(Xi/∥Xi∥− sk)⇒S
(k)
1

weakly in Rd. The same is true when i is replaced by j and by independence and (14), this
implies (15) using the delta method.

(ii) Write

R(sk1 − sk2)−R(Xi/∥Xi∥−Xj/∥Xj∥)

=R(sk1 − sk2)−R[sk1 − sk2 + u−1n (un(Xi/∥Xi∥− sk1)− un(Xj/∥Xj∥− sk2))].

Now (17) follows from the differentiability of R outside of the origin and (18), once again
using the delta method.
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Recall that we would like to understand the magnitude of the matrix norms appearing in
the numerator of (10). As explained above, we expect the two norms to be of the same order,
so we will consider the Frobenius norm of ∆. We start with the matrix ∆B . Theorems 2, 4
and 5 below constitute the main results regarding the asymptotic behaviour of the Frobenius
norm of ∆B under the linear factor model. These theorems highlight that there are three
different regimes resulting from the tail index of the underlying factors and the smoothness
of the chosen kernel function. In particular, the regime α < 2θ requires us to establish a new
point process convergence result stated in Theorem 3. It serves as an important technical tool
in the proof of Theorems 4 and 5, and we believe that it can be of broader interest.

It will be convenient to introduce some notation used in [1]. For n = 1,2, . . . , we define the
set of indexes corresponding to extreme observations

In = {i = 1, . . . ,n ∶ ∥Xi∥ > un},

and denote its cardinality by Nn = card(In). Now assuming the thresholds (un) satisfy the
standard assumptions

(19) un→∞, n−1/αun→ 0, n→∞ ,

which imply nP(∥X∥ > un) ∼ cα(n−1/αun)−α →∞, it follows from (12) and (19) (see [1])
that the mean and variance of Nn/(nu−αn ) converge to cw and 0, respectively and hence that

(20) Nn/(nu−αn ) P→ cw, as n→∞.

Let I(k)n denote the collection of indexes of extremes caused by the kth factorZk, k = 1, . . . , p.
Formally,

I(k)n = {i = 1, . . . ,n ∶ ∥Xi∥ > un, Zik > un/w1/α}, k = 1, . . . , p

(this is (4.22) in [1]). We denote N (k)n = card(I(k)n ), k = 1, . . . , p. It turns out that with prob-
ability converging to 1, the sets I(1)n , . . . ,I(p)n are disjoint and Nn =N (1)n + ⋯ +N (p)n ; see
Lemma 4.4 in [1]. Furthermore, by (4.24) in [1],

(21) N (k)n /(nu−αn ) P→ cαwαk , k = 1, . . . , p, as n→∞,

where we recall

w =
p

∑
k=1

∥a(k)∥α =
p

∑
k=1

wαk .

Using this notation, we see that

∥∆B∥F =
⎛
⎝
n1

∑
i=1

n1

∑
j=1

δ2ij
⎞
⎠

1/2

=
⎛
⎜
⎝

p

∑
k1=1

p

∑
k2=1

∑
i∈I(k1)n

∑
j∈I(k2)n

δ2ij

⎞
⎟
⎠

1/2

=∶
⎛
⎝

p

∑
k1=1

p

∑
k2=1

Fk1,k2(n)
⎞
⎠

1/2

.(22)

Further note that Fk1,k2(n) can be written as a U -statistic of the form

Fk1,k2(n) =
1

N2
n
∑

i∈I(k1)n

∑
j∈I(k2)n

[R( Xi

∥Xi∥
− Xj

∥Xj∥
)−R(sk1 − sk2)]

2



10

= 1

N2
n

N(k1)n

∑
i=1

N(k2)n

∑
j=1

[R(Y(k1)i −Y
(k2)
j )−R(sk1 − sk2)]

2

=N
(k1)
n N

(k2)
n

N2
n

1

N
(k1)
n N

(k2)
n

N(k1)n

∑
i=1

N(k2)n

∑
j=1

[R(Y(k1)i −Y
(k2)
j )−R(sk1 − sk2)]

2

= ∶ N
(k1)
n N

(k2)
n

N2
n

Gk1,k2(n).(23)

In (23), for each k = 1, . . . , p, we enumerate Xi/∥Xi∥, i ∈ I(k)n as Y
(k)
i , i = 1, . . . ,N

(k)
n , a

sample on Sd−1 of random size N (k)n . We also have that

(24)
N
(k1)
n N

(k2)
n

N2
n

P→
wαk1w

α
k2

w2
as n→∞.

Theorem 1 makes it reasonable to expect that under some assumptions it should be true that

(25) u2θn Gk,k(n)→ d2θE∥S(k)1 −S
(k)
2 ∥2θ,

and that for k1 /= k2,

(26) u2nGk1,k2(n)→E[⟨∇R(sk1 − sk2),S
(k2)
1 −S

(k1)
2 ⟩]2,

at least in probability. At the very least (25) requires E∥S(k)1 ∥2θ <∞, while (26) requires

E∥S(k)1 ∥2 <∞. Since θ ≥ 1, we will assume that

(27) α > 2θ.

The following statement formalizes this intuition and characterizes the behavior of ∥∆B∥F
when the tails are not too heavy i.e., when (27) holds. The proofs of this and the subsequent
theorems in this section are given in the Appendix .

THEOREM 2. Suppose that (27) holds. Then,

u2n∥∆B∥F
P→ 1

w
(
p

∑
k=1

(d∗wαk )2E∥S(k)1 −S
(k)
2 ∥2

+
p

∑
k1=1

p

∑
k2=1

k1/=k2

wαk1w
α
k2E[⟨∇R(sk1 − sk2),S

(k2)
1 −S

(k1)
2 ⟩]2)

1/2

,as n→∞,

(28)

where d∗ = dθ if θ = 1 and d∗ = 0 if θ > 1.

Note that in case θ > 1 (impliying that the covariance function R(⋅) is differentiable at the
origin) only the off-diagonal terms contribute to the asymptotic behavior of the Frobenius
norm. In the scenario

(29) α < 2θ ,

the analysis for the diagonal and off-diagonal terms is different. We will show that under the
following additional assumption on the sequence of levels,

(30) n−1/αu2n→∞, n→∞.
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upon proper rescaling, these terms converge in distribution to α/(2θ)-stable positive random
variables.

We start with a result on convergence of a certain sequence of point processes that may be
of independent interest. For every k = 1, . . . , p and n ≥ 1 we define a point process

M (k)
n =

N(k)n

∑
i=1

δ
u2
nn

−1/α(Y(k)i −sk)
.

THEOREM 3. Suppose that (29) holds, and that the sequence of levels satisfies (19) and
(30). Then,

(31) M (k)
n ⇒M (k)

α , n→∞,

weakly in the vague topology on Rd∖{0}, where M (k)
α is a Poisson point process on Rd with

mean measure

m(k)α (⋅) = (c2αw2
k/2)∑

j/=k

mα,j(⋅),

and for j = 1, . . . , p, j /= k,

mα,j =∫
∞

0
αy−(1+α)δyb(j,k)(⋅)dy.

Here b(j,k) = (b(j,k)1 , . . . , b
(j,k)
d )⊺, and for r = 1, . . . , d,

b(j,k)r =wk (arj −
ark
w2
k

d

∑
m=1

amjamk) .

Moreover, the convergence in (31) is joint in k = 1, . . . , p, i.e.,

(M (1)
n , . . . ,M (p)

n )⇒ (M (1)
α , . . . ,M (p)

α ) , n→∞,

where M (1)
α , . . . ,M

(p)
α are independent Poisson point processes.

The asymptotic behaviour of the Frobenius norm of the perturbation matrix ∆B can be
now expressed via integrals with respect to the limit point processes M (k)

α . We consider two
separate cases.

THEOREM 4. Suppose that α < 2 and that the sequence of levels satisfies (19) and (30).
Then,

(u2−α/2n n−1/α+1/2)∥∆B∥F⇒
⎛
⎝

2d2∗
cα

p

∑
k=1

wαk ∫Rd ∥x∥
2θM (k)

α (dx)

+ 1

w2cα

p

∑
k1=1

p

∑
k2=1

k1/=k2

∫
Rd

[(∇R(sk1 − sk2),x)]
2
(wαk2M

(k1)
α +wαk1M

(k2)
α )(dx)

⎞
⎠

1/2

,

where d∗ = dθ if θ = 1 and d∗ = 0 if θ > 1.

Once again the off-diagonal terms dominate for the case θ > 1.
In the final situation we consider in this section we have, once again, convergence in

probability.
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THEOREM 5. Suppose that 2 < α < 2θ and that the sequence of levels satisfies (19) and
(30). Then

un∥∆B∥F→
1

w

⎛
⎝

p

∑
k1=1

p

∑
k2=1

k1/=k2

k1
αwαk2E[(∇R(sk1 − sk2),S

(k1)
1 −S(k2)1 )]2

⎞
⎠

1/2

in probability.

The theoretical results of this section rigorously establish the precise rate at which the
Frobenius norm of the perturbation matrix vanishes when the sample size tends to infinity,
when performing kernel PCA on data generated from a linear factor model. This explains
why kernel PCA preimages correctly find the underlying clusters of extremes in this model.
Our numerical experiments will show that empirically kernel PCA performs well in many
additional settings, including models where the angular measure is continuous. Our experi-
ments rely on the gradient-based optimization framework discussed next.

5. Computational considerations. Our task is to obtain low-dimensional kernel PCA
representations of the observations in their natural domain (the unit sphere in the case of
extremes), usually referred to as kernel PCA preimages (of the low-dimensional representa-
tion of the observations in the RKHS). There have been numerous proposals for recovering
such kernel PCA preimages, including a fixed point iteration in [25], the multidimensional
scaling-based procedure of [23], and penalized methods of [2, 38], among others; see [19]
for an overview.

We formally define a preimage as a solution to the optimization problem (5), which we
repeat for convenience here:

T (w) = argmaxv∈S
m

∑
k=1

∑
tj∈T

vkjR(w − tj) ∑
tj∈T

vkjR(v − tj).(32)

One can in principle solve the problem above by Monte Carlo up to arbitrary numerical
precision. However, since this involves maximization over a potentially high-dimensional
sphere is involved, computational issues are important.

In our implementation we employed projected gradient descent, which is a standard al-
gorithm for optimizing smooth objective functions under convex constraints. Denoting the
function being maximized in (32) by f(v), the algorithm is defined by the iterates

v(k) =ΠS(v(k−1) − η∇f(v(k−1))),
where η > 0 is a fixed step-size parameter, ∇ is the gradient and the projection operator Π to
S is defined as

ΠS(x) = argmin
y∈S

∥x−y∥2.

In the sequel we use the Gaussian kernel R(x) = exp(−γ∥x∥22), as it is perhaps the most
popular kernel function used in machine learning.

In order to implement this algorithm, one also needs to calculate the Lipschitz constant β
of the function f(v) in order to set a stepsize η ≤ 1/β.

A direct calculation shows that, in the case of the Gaussian kernel, it suffices to set the
stepsize to be

η =
⎛
⎝

2

XXXXXXXXXXXX

m

∑
k=1

∑
tj∈T

vjvkjR(w − tj)
XXXXXXXXXXXX

⎞
⎠

−1

in order to ensure the converge of projected gradient descent. In the last equation vj =
(vj1, . . . , vjd)⊺ denotes the jth eigenvector of the kernel matrix Cn = {R(xi −xj)}ni,j=1.
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6. Empirical study. We have chosen several numerical examples to illustrate the per-
formance of kernel PCA in scenarios that go well beyond the linear factor model studied in
detail in Section 4. In particular, we consider a contaminated linear factor model and three
examples where the spectral measure is continuous. In all the examples considered below we
compute weighted adjacency matrices using the Gaussian kernel κ(x,y) = exp(−γ∥x−y∥2)
with γ = 1 unless explicitly stated otherwise. We select the number m of the largest eigenval-
ues of the covariance operator to use kernel PCA as suggested by the screeplots of the kernel
matrix. In most of the examples with a well-defined true number of clusters of extremes, the
choice ofm suggested by the screeplot matched that number. In all our examples we generate
10,000 observations and take a sample of extremes defined as the 200 observations with the
largest Euclidean norms.

In all the examples below the random vector of interest X is regularly varying, a commmon
assumption in studying heavy-tailed data. This means ∥X∥ is regularly varying with index
α > 0 and the angular part X/∥X∥ is independent of the radius as the radius becomes large.
Formally,

lim
r→∞

P(X/∥X∥ ∈ ⋅ ∣ ∥X∥ > r)⇒Γ(⋅)

and

lim
r→∞

P(∥X∥ > rx)
P(∥X∥ > r)

= x−α

for all x > 0. The limit probability measure Γ is called the angular measure or spectral mea-
sure and describes how likely the extremal observations are to point in different directions. In
other words, the angular measure describes the limiting extremal angle for high threshold ex-
ceedances that correspond to large ∥X∥. The support of this measure is particularly important
since it shows which directions of the extremes are feasible and which are not feasible.

6.1. Contaminated linear factor model. The extremes from the linear factor model (11)
have a discrete spectral measure and we expect kernel PCA applied to these extremes to
concentrate the extremes near the atoms of the spectral measure with the largest masses.
What happens if we“contaminate” this spectral measure by a small continuous component?
We investigate this question empirically by considering the extremes arising from the model

Xi =AZi + σεi, i = 1, . . . ,n,

with {Zi}ni=1 i.i.d. copies of the vector Z in (11), and ε is the “contamination” vector. In
this case σ ≥ 0 regulates the level of contamination. We choose the vector Z to consist of
i.i.d. standard Fréchet3 components and obtain ε by multiplying the element-wise absolute
values of a standard p-dimensional normal random vector by univariate standard Fréchet
random variable (with all random objects independent). The contamination adds a uniform
component to the spectral measure, the weight of which is proportional to σ. In our simulation
we take d = 4, p = 2, and use the matrix

(33) A =
⎛
⎜⎜⎜
⎝

0.1 0.9
0.2 0.8
0.3 0.7
0.4 0.6

⎞
⎟⎟⎟
⎠

and choose σ = 1, which leads to a sample of extremes where approximately half can be
assigned to the signal of the latent factors.

3The standard Fréchet distribution is F (x) = e−x
−1
, x ≥ 0.
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As the screeplot in Figure 1 indicates, we use kernel PCA with m = 2. Notice that the
preimages of the kernel PCA shown on the right panel of Figure 2 show the two-dimensional
nature of the support of the uncontaminated spectral measure much more clearly than the
original extremes do. In particular, we see clearly that the extremes generated from the linear
factor model are mapped close to two points while most of the extremes due to the“noise”
are mapped in between these two points.
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FIG 1. Largest 20 eigenvalues of the kernel matrix used to run kernel PCA on extremes from a contam-
inated linear factor model
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(a) Contaminated linear factor model data
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(b) Preimages

FIG 2. Pairwise scatterplots of the angular part of the extremes generated from a contaminated linear
factor model and their corresponding kernel PCA preimages. The red points denote extremes attributed
to the signal AZi. The black points denote extremes attributed to the noise σεi.
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6.2. Spiked angular Gaussian model. We consider extremes arising from the model

Xi = uiNi + σεi, i = 1, . . . ,n,

where {ui}ni=1 are i.i.d. univariate standard Fréchet random variables, {Ni}ni=1 are i.i.d. d-
dimensional centered normal vectors with covariance matrix of the form

(34) Σ =
p

∑
k=1

λkvkv
⊺
k + σ

2
0Id

for 1 ≤ p ≤ d, where λ1 ≥ λ2 ≥⋯ ≥ λp > 0 and the vectors v1, . . . ,vp are orthonormal, and
the terms {σεi}ni=1 are “contamination” terms of the same type as in the contaminated linear
factor model example. The covariance matrix Σ in (34) is a popular model that received a
lot of attention in the machine learning and high dimensional (but non-extreme) statistics in
recent years.

We note that when σ = 0, the spectral distribution on the d-dimensional sphere is given by

(35) Γ(⋅) =E(∥N∥δ N
∥N∥

(⋅))/C ,

where C = E∥N∥ (see equation (6.4) in [1]). Assuming the model in (34), the spectral dis-
tribution Γ has a spiked angular central Gaussian distribution4 on the d-dimensional sphere
Sd−1 with density function given by

g(ω;Σ) =C−1 2πd/2

Γ(d/2) ∣Σ∣−1/2(ω⊺Σ−1ω)−(d+1)/2, ω ∈ Sd−1 .

Intuitively, this model generates r clusters of extremes corresponding to higher density re-
gions of the angular Gaussian distribution given by the principal directions of Σ.

In our experiment we take d = 4 and p = 2, and use Σ =BB⊺ where

B⊺ = (0.1 0.2 0.3 0.4
0.9 0.8 0.7 0.6

) ,

so that v1 and v2 are the left singular vectors of B. We have chosen σ = 0.1 and σ0 = 1.
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FIG 3. Largest 20 eigenvalues of the kernel matrix used to run kernel PCA for the 4 dimensional
contaminated spiked angular Gaussian model.

According to the screeplot of Figure 3 we use kernel PCA with m = 2. Once again, the
dramatic dimension reduction of the support of the extremes after going through kernel PCA
is clear in Figure 4.

4Note that this is not exactly the same angular Gaussian distribution of [35] because of the exponent −(d+1)/2
due to the presence of ∥N∥ in (35).
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(a) Contaminated spiked angular Gaussian data
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(b) Preimages, γ = 0.5

FIG 4. Pairwise scatterplots of the extremes generated from the spiked angular Gaussian model with
d = 4 and r = 2. The red points denote extremes attributed to the signal uiZi. The black points denote
extremes attributed to the noise σεi.

6.3. Approximate subspace model: regularly varying circle. We also consider a model
where the ambient dimension is 5 but the signal is driven by a 3-dimensional regularly vary-
ing vector with spectral measure supported on a circle. More specifically, we consider the
model

Xi =Zi + σεi, i = 1, . . . ,n,

where Zi ∈R5 is such that its last 2 components are 0 and its first 3 entries are of the form

Zi1 = YiGi1, Zi1 = YiGi2, Zi3 = Yi{(G2
i1 +G2

i2)1/2},

where Yi is an i.i.d. sequence of standard Fréchet random variables and Gi is a sequence
of bivariate standard i.i.d. normal random variables. It follows that Zi is regularly varying,
and its spectral measure is uniform on the circle {(z1, z2, z3) ∶ z21 +z22 = 1/2, z3 = 1/

√
2}. The

constant σ > 0 regulates the signal to noise ratio and εi is noise vector obtained by multiplying
a univariate independent standard Fréchet with an independent p-dimensional composed by
the absolute value of i.i.d. standard normals. In our example we chose σ = 2 which leads to
about about 60 out of 200 extremes generated from the signal of the circle. We see from
Figure 5 that very much like the last two examples, the kernel PCA preimage map the data to
a lower dimensional subspace where distinguished the locations of the signal and the noise
terms. In particular, we observe that the preimages correctly identify the structure of the
subspace, mapping to variables 4 and 5 collapse to one point and identifying the straight
lines of the signal as seen in the original colored data points. The subspace corresponding
to the circle is distorted but the method recognizes seem to recognize that there is lower
dimensional structure in the first 3 coordinates.

6.4. Extremes from time series: ARCH(1) process. When the extremes arise from a
time series model, the independence assumption is, generally, violated. Here we con-
sider the square of a standard integrated ARCH(1) process that follows the recursions,
Yt = (1 + Yt−1)Z2

t , where {Zt} is an i.i.d. sequence of standard Gaussian random variables.
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(a) Noisy subspace data
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(b) Preimages

FIG 5. Pairwise scatterplots of the extremes generated from the noisy circle subspace model. The red
points denote extremes attributed to the subspace signal. The black points denote extremes attributed
to the noise σεi.

There is a unique stationary solution {Yt} to these recursions such that Yt has asymptoti-
cally Pareto tails with α = 1 (see [4] and [3] for more details). Here we consider the two-
dimensional vector Xt = (Yt−1,Yt)⊺, whose tails are asymptotically equivalent to those of
the vector (1,Z2

t )⊺Yt−1. By an application of Breiman’s lemma [4, Proposition A.1], the
spectral distribution of this vector on [0,π/2] is given by

Γ(⋅) =E(∣1+Z4
t ∣1/2δarctan(Z2

t )
(⋅))/E∣1+Z4

t ∣1/2 .

The spectral measure can be shown to be bimodal as is also suggested by a kernel density
estimator obtained from the angles of the empirical sample of extremes displayed in Figure
6. We look for clusters in the extremes of ∥Xt∥2 and note that the spectral measure of this
example is continuous and hence it is less clear what the correct number of clusters should be.
The preimages shown in Figure 7 where obtained with kernel PCA with m = 3, as suggested
by the screeplot. The bottom right plot displays reveals that the distribution of the angles
of the preimages remains bimodal with slightly more pronounced modes with more mass
in between them. This is also reflected in the top right plot where one can perceive a third
cluster of preimages.
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FIG 6. The plot on the left shows the empirical sample of extremes Xt/∥Xt∥. The right hand side
shows two density functions. The solid blue line is the kernel density estimator of the angles of the
extremes fitted with default values of the R function density(⋅) i.e., using the Gaussian kernel with
Silverman’s rule of thumb. The dashed orange line corresponds to the theoretical spectral density.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Preimages

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
2

0.
4

0.
6

0.
8

Preimages

5 10 15 20

0
50

10
0

15
0

Screeplot

 

 

0.2 0.4 0.6 0.8 1.0 1.2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

KDE of angular distribution of preimages

FIG 7. The top plots show the kernel PCA preimages in the original scale of the data and on the scale
of the preimages. The bottom plot shows the screeplot of the kernel matrix and the kernel density
estimator of the angle of the preimages fitted with default values of the R function density(⋅).

SUPPLEMENT.

Proof of Theorem 2. We start by considering the “diagonal terms” in (22) and note that
for k = 1, . . . , p,

Fk,k(n) =
1

N2
n
∑
i∈I(k)n

∑
j∈I(k)n

[R(Xi/∥Xi∥−Xj/∥Xj∥)−R(0)]
2
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= 1

N2
n

N(k)n

∑
i=1

N(k)n

∑
j=1

[R(Y(k)i −Y
(k)
j )−R(0)]

2

= (N (k)n )2
N2
n

Gk,k(n) .

Recall that the law of each Y
(k)
i , i = 1, . . . ,N

(k)
n is the conditional law of X/∥X∥ given

∥X∥ > un, Zk > un/w1/α, different Y(k)i are independent, and also independent of Nn and
N
(k)
n . For a large M > 0 write

Gk,k(n) =
1

(N (k)n )2
N(k)n

∑
i=1

N(k)n

∑
j=1

[R(Y(k)i −Y
(k)
j )−R(0)]

2
1(∥Y(k)i −Y

(k)
j ∥ >Mu−1n )

+ 1

(N (k)n )2
N(k)n

∑
i=1

N(k)n

∑
j=1

[R(Y(k)i −Y
(k)
j )−R(0)]

2
1(∥Y(k)i −Y

(k)
j ∥ ≤Mu−1n )

=∶G>M
k,k (n)+G≤M

k,k (n).

Clearly,

E[u2θn G>M
k,k (n)]

≤ u2θn E{[R(Y(k)1 −Y
(k)
2 )−R(0)]

2
1(∥Y(k)1 −Y

(k)
2 ∥ >Mu−1n )} .

If we can show that

(36) sup
n
u(2+ε)θn E[R(Y(k)1 −Y

(k)
2 )−R(0)]

2+ε

<∞

for some ε > 0 (in which case, u2θn (R(Y(k)1 −Y
(k)
2 )−R(0))

2
is uniformly integrable), it

will follow from Theorem 1 that

(37) limsup
n→∞

E [u2θn G>M
k,k (n)] ≤ d2θE{∥S(k)1 −S

(k)
2 ∥2θ1(∥S(k)1 −S

(k)
2 ∥ >M/dθ)}.

By (14) the bound (36) will follow once we check that

(38) sup
n
u(2+ε)θn E[∥Y(k)1 − sk∥

(2+ε)θ

] <∞.

Using the notation in (4.13) and (4.14) in [1] it suffices to check that for any l = 1, . . . , d,

sup
n

E
⎡⎢⎢⎢⎢⎢⎣

RRRRRRRRRRR
w2
j (

p

∑
m=1

almZm)
2

− a2lj∥X∥2
RRRRRRRRRRR

(2+ε)θ⎤⎥⎥⎥⎥⎥⎦
<∞.

The expectation, however, is independent of n and is finite for ε > 0 sufficiently small since
α > 2θ by assumption. This establishes (37), whence

(39) lim
M→∞

limsup
n→∞

E [u2θn G>M
k,k (n)] = 0.

The same argument shows that for every fixed M > 0,

(40) lim
n→∞

Eu2θn G
≤M
k,k (n) = d2θE{∥S(k)1 −S

(k)
2 ∥2θ1(∥S(k)1 −S

(k)
2 ∥ ≤M/dθ)}.
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Furthermore,

E(u2θn G≤M
k,k (n))

2 =E
⎛
⎝
N
(k)
n − 1

(N (k)n )3
1(N (k)n ≥ 1)

⎞
⎠
E(1)n + 4E

⎛
⎝
(N (k)n − 1)2

(N (k)n )3
1(N (k)n ≥ 1)

⎞
⎠
E(2)n

+E
⎛
⎝
(N (k)n − 1)(N (k)n − 2)(N (k)n − 3)

(N (k)n )3
1(N (k)n ≥ 1)

⎞
⎠
E(3)n ,(41)

where

E(1)n =E{u4θn [R(Y(k)1 −Y
(k)
2 )−R(0)]

4
1(∥Y(k)1 −Y

(k)
2 ∥ ≤Mu−1n )}

E(2)n =E{u4θn [R(Y(k)1 −Y
(k)
2 )−R(0)]

2
[R(Y(k)1 −Y

(k)
3 )−R(0)]

2

⋅1(∥Y(k)1 −Y
(k)
2 ∥ ≤Mu−1n , ∥Y

(k)
1 −Y

(k)
3 ∥ ≤Mu−1n )}

E(3)n = (E{u4θn [R(Y(k)1 −Y
(k)
2 )−R(0)]

2
1(∥Y(k)1 −Y

(k)
2 ∥ ≤Mu−1n )})

2

.

It follows from (14) that, for a fixed M , E(1)n and E(2)n are bounded by an M -dependent
constant, so the first two terms in the right hand side of (41) vanish in the limit. Furthermore,
it follows by (36) that

E(3)n → (d2θE{∥S(k)1 −S
(k)
2 ∥2θ1(∥S(k)1 −S

(k)
2 ∥ ≤M/dθ)})

2

.

Therefore,

lim
n→∞

E(u2θn G≤M
k,k (n))

2 = ( lim
n→∞

Eu2θn G
≤M
k,k (n))

2

and consequently

(42) lim
n→∞

Var(u2θn G≤M
k,k (n)) = 0

It follows from (40) and (42) that

(43) u2θn G
≤M
k,k (n)

P→ d2θE{∥S(k)1 −S
(k)
2 ∥2θ1(∥S(k)1 −S

(k)
2 ∥ ≤M/dθ)}, as n→∞.

Now (25) follows easily from (39) and (43). It follows from (25) and (21) that

(44) u2θn Fk,k(n)
P→ (dθw

α
k

w
)
2

E∥S(k)1 −S
(k)
2 ∥2θ, as n→∞.

We now consider the “off-diagonal terms” in (22) as described in (23). We claim that,
under (27),

(45) u2nGk1,k2(n)
P→E[∇R(sk1 − sk2)(S

(k1)
1 −S

(k2)
1 )]2, as n→∞.

The argument is similar to the argument we used to prove (25). Once again we write for a
large M > 0

Gk1,k2(n) =
1

N
(k1)
n N

(k2)
n

N(k1)n

∑
i=1

N(k2)n

∑
j=1

[R(Y(k1)i −Y
(k2)
j )−R(sk1 − sk2)]

2

⋅ 1(∥Y(k1)i −Y
(k2)
j − (sk1 − sk2)∥ >Mu−1n )
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+ 1

N
(k1)
n N

(k2)
n

N(k1)n

∑
i=1

N(k2)n

∑
j=1

[R(Y(k1)i −Y
(k2)
j )−R(sk1 − sk2)]

2

⋅ 1(∥Y(k1)i −Y
(k2)
j ∥ ≤Mu−1n )

=∶G>M
k1,k2(n)+G

≤M
k1,k2

(n),(46)

and

E [u2nG>M
k1,k2(n)]

= u2nE{[R(Y(k1)1 −Y
(k2)
2 )−R(sk1 − sk2)]

2
⋅ 1(∥Y(k1)1 −Y

(k2)
2 ∥ >Mu−1n )} .

By Theorem 1, if we can show that for some ε > 0,

(47) sup
n
u2+εn E ∣R(Y(k1)1 −Y

(k2)
2 )−R(sk1 − sk2)∣

2+ε
<∞,

then it would follow that

(48) lim
n→∞

E [u2nG>M
k1,k2(n)] =E[∇R(sk1 −sk2)(S

(k1)
1 −S(k2)2 )1(∥S(k1)1 −S(k2)2 ∥ >M/dθ)]

2
.

However, because of the assumed continuous differentiability of R outside of the origin, (47)
follows immediately from (38). Therefore, (48) holds. The rest of the argument for (45) is
the same as for the “diagonal terms”, and it follows from (45) that

(49) u2nFk1,k2(n)
P→
wαk1w

α
k2

w2
E[∇R(sk1 − sk2)(S

(k1)
1 −S

(k2)
2 )]2, as n→∞.

This completes the proof. ◻

Proof of Theorem 3. In order to establish the convergence in (31), it suffices to show
that the corresponding Laplace functionals converge. That is, it is enough to prove that

(50) E [exp{−Mn(f)}]→E [exp{−Mα(f)}] ,

for any nonnegative, bounded continuous function f with support outside a neighborhood of
the origin. Here M(f) is shorthand for ∫Rd∖{0} f(x)M(dx); see Theorem 5.1 in [26] (this
book can be consulted also for more details on Poisson processes and weak convergence to
point processes).

Adapting Theorem 5.3 in [26] to random sums of point measures and using the fact that

N (k)n ∼ cαwαku−αn n in probability as n→∞.,

it suffices to show that the intensity measures converges vaguely, i.e.,

(51) cαw
α
ku

−α
n nP(u2nn−1/αY0) ∈ ⋅)

v→m(k)α (⋅) ,

where
v→ denotes vague convergence of measures on Rp ∖ {0} and Y0 =Y(k)1 − sk. To ease

notation we write Pk,n(⋅) = P( ⋅ ∣ ∥X∥ > un,Zk > un/w1/α) and Ek,n to be the corresponding
conditional expectation. We start by showing that

νn(A×B) ∶= cαwαku−αn nPk,n ((unn−1/αZ−k,u
−1
n Zk) ∈A×B)

v→ cαw
α
k ν(A)µ(B) ,(52)
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for all bounded Borel sets A×B ⊂ ([0,∞)p−1 ∖ {0})× [w−1
k ,∞) that are also continuity sets

of the limit measure, where ν is the measure on [0,∞]p−1 ∖ {0} given by

ν(A) =∑
j≠k
∫

∞

0
1A(j)(x)αx−α−1 dx ,

Z−k is the vector (Z1 . . . ,Zp)⊺ with the kth component omitted,A(j) is the intersection of the
set A with the jth coordinate axis, and µ(x,∞) =w−α

k x−α, x ≥w−1
k . To prove (52), consider

j = 1, A = (x,∞)×Rp−2, B = (y,∞) with y ≥w−1
k and k /= 1. Then

νn(A×B) = cαwαku−αn nPk,n (unn−1/αZ1 > x,u−1n Zk > y)

∼ cαwαku−αn ncαx
−αuαnn

−1w−α
k y−α

→ c2αw
α
kx

−αw−α
k y−α

= c2αwαk ν(A)µ(B) .
The argument for general choices of sets A and B is similar.

We now show how to derive (51) from (52) using the continuous mapping theorem. On
the event ∥X∥ > un,Zk > un/w1/α, it follows that ∥X∥ ∼wk∣Zk∣, so the expression in (4.13)
of [1] corresponding to (V1, . . . ,Vp)⊺ = unY0 can be written as

(53) Vl = un
2alkZkTlk +wkX2

l,−k − a2lk∑
d
i=1X

2
i,−k

2w2
kalkZ

2
k

(1+ o(1)) ,

where

Tlk = w2
kXl,−k − alk

d

∑
i=1

aikXi,−k

= w2
k∑
j≠k

b
(j,k)
l Zj ,

and

b̂
(j,k)
l = alj −

alk
w2
k

d

∑
i=1

aikaij .

Note that for any i = 1, . . . , d, and c > 0 a constant that may change from line to line, we have
by (56) below, with z = cn1/αu−1n ,

u−αn nPk,n
⎛
⎝
un
X2
i,−k

Z2
k

> cn1/αu−1n
⎞
⎠
≤ Cu−αn nu−α/2n n−1/2uα/2n

∼ Cu−αn n1/2→ 0

as n→∞ by (30). Therefore, writing Ṽ = (Ṽ1, . . . , Ṽl)T with

Ṽl =
unTlk
w2
kZk

= un
∑j≠k b̂

(j,k)
l Zj

Zk
, l = 1, . . . , d,

we have

(54) cαw
α
ku

−α
n nP(u2nn−1/αY0 ∈ ⋅) = cαwαku−αn nPk,n(unn−1/αṼ ∈ ⋅)+ o(1) .

So to finish the proof, it suffices to show

(55) cαw
α
ku

−α
n nPk,n(unn−1/αṼ ∈ ⋅) v→m(k)α (⋅) .
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Consider the continuous mapping from E ∶= ([0,∞)p−1 ∖{0})× [w−1
k ,∞) to Rd ∖{0} given

by

T (z−k, y) =
⎛
⎝∑j≠k

b̂
(j,k)
l zj/y , l = 1, . . . , d

⎞
⎠

=∑
j≠k

b̂(j,k)zj/y ,

where b̂(j,k) = (b̂(j,k)1 , . . . , b̂
(j,k)
d )⊺. Since this mapping has the property that for a compact set

K in E, T −1(K) is also compact in E, it follows from Proposition 5.2 in [26] that for any
Borel set A in Rd bounded away from 0 with ν ×µ(∂(T −1(A)) = 0, the left hand side of (55)
is

νn ○T −1(A) = cαwαku−αn nPk,n (T (unn−1/αZ−k,u
−1
n Zk) ∈A)

= cαwαku−αn nPk,n
⎛
⎝
unn

−1/α∑j≠k b̂(j,k)Zj
u−1n Zk

∈A
⎞
⎠

→ c2αw
α
k (ν ×µ) ○T −1(A) .

Finally, by Fubini’s theorem,

c2αw
α
k (ν ×µ) ○T −1(⋅) = c2αwαk ∑

j≠k
∫

∞

w−1
k

(∫
∞

0
αz−α−1δb̂(j,k)z/y(⋅)dz) αw

−α
k y−α−1dy ,

= c2αwαk ∑
j≠k
∫

∞

0
αz−α−1δb̂(j,k)z(⋅)dz ∫

∞

w−1
k

αw−α
k y−2α−1dy ,

= (c2αw2α
k /2)∑

j≠k
∫

∞

0
αz−α−1δb̂(j,k)z(⋅)dz =m

(k)
α (⋅) ,

proving (54).
Finally, the conditional independence of the extremes along with the laws of large numbers

in (20) and (24) show the required joint convergence along with the independence in the limit.
◻

Below is a statement, needed in the sequel. A part of it was already used in the proof of
Theorem 3.

PROPOSITION 1. Under the assumptions of Theorem 3, there is C > 0 independent of n
and k such that for all z > 0,

(56) Pk,n (unX2
i,−k/Z2

k > z) ≤Cu−α/2n z−α/2 ,

(57) Pk,n (un∣Tlk∣/Zk > z) ≤Cz−α,

(58) Ek,n (∣Vl∣2θ1{∣Vl∣ ≤ z}) ≤Cz2θ−α .
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PROOF. Since ∣Xi,−k∣ ≤ a∗∑j≠kZj , where a∗ =max{aij , i = 1, . . . , d; j = 1, . . . , p}, it fol-
lows that

P(Xi,−k > z) ≤∑
j≠k

P(a∗Zj > z/p) ≤Cz−α

for all z and some C > 0 by assumption (12). Thus,

Pk,n (unX2
i,−k/Z2

k > z) ≤
P(X2

i,−k > zu−1n Z2
k ,Zk > un/w1/α)

P(∥X∥ > un,Zk > un/w1/α)

≤
P(Xi,−k > z1/2u1/2n /w1/α)P(Zk > un/w1/α)

P(∥X∥ > un,Zk > un/w1/α)

≤ Cu−α/2n z−α/2 ,

where C may change value from line to line, and we have used the relation, P(Zk >
un/w1/α)/P(∥X∥ > un,Zk > un/w1/α)→w−α

k . This proves (56). The same argument shows
that

Pk,n (un∣Tlk∣/Zk > z) ≤
P(∣Tlk∣ > z/w1/α)P(Zk > un/w1/α)

P(∥X∥ > un,Zk > un/w1/α)

≤ Cz−α ,

for all z ≥ 0, proving (57). Finally, it is straightforward to see from (56), (57) and (53) that

(59) Pk,n(∣Vl∣ > z) ≤Cz−α ,

for some constant C > 0. Therefore,

Ek,n (∣Vl∣2θ1{∣Vl∣ ≤ z}) ≤ 2θ∫
z

0
u2θ−1Pk,n(∣Vl∣ > u)du

≤ C∫
z

0
u2θ−1u−α du =Cz2θ−α .

Proof of Theorem 4. We start with the “diagonal terms”. It follows from (14) and The-
orem 1 that

Fk,k(n) =d2θ
1

N2
n
∑
i∈I(k)n

∑
j∈I(k)n

∥Y(k)i −Y
(k)
j ∥2θ + oP (1).(60)

By (20),

(61) u4θ−αn n1−2θ/αFk,k(n) ∼
d2θ
w2c2α

uαnn
−1∫

Rd×Rd
∥x−y∥2θM (k)

n (dx)M (k)
n (dy) .

Notice that the scaling for Fkk(n) is u4θ−αn n1−2θ/α = (u2nn−1/α)2θu−αn n→∞.
For ε > 0, setBε = {y ∶ ∥y∥ > ε}. Take 0 < ε′ < ε, with ε′ much smaller than ε. By symmetry

we can write

∫
Rd×Rd

∥x−y∥2θM (k)
n (dx)M (k)

n (dy) = 2∫
Bε
∫
Bc
ε′

+2∫
Bε
∫
Bε′∩B

c
ε

+∫
Bε
∫
Bε
+∫

Bcε
∫
Bcε

=∶ T (1)ε,ε′,n +T
(2)
ε,ε′,n +T

(3)
ε,n +T (4)ε,n .
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It will turn out that the asymptotic behaviour of Fkk(n) will be determined by T (1)ε,ε′,n. To

treat T (1)ε,ε′,n, we use a simple fact: if ∥b∥/∥a∥ ≤ δ ∈ (0,1), then

(1− δ)2θ∥a∥2θ ≤ ∥a+b∥2θ ≤ (1+ δ)2θ∥a∥2θ.

By taking δ = ε′/ε, we obtain
(62)

uαnn
−1T

(1)
ε,ε′,n ∈ [(1− ε′/ε)2θ,(1+ ε′/ε)2θ]uαnn−12∫

Bε
∥y∥2θ (∫

Bc
ε′

M (k)
n (dx))M (k)

n (dy) .

Since uαnn
−1M

(k)
n (Bc

ε′) = uαnn−1(N
(k)
n −M (k)

n (Bε′)) and M
(k)
n (Bε′)⇒M

(k)
α (Bε′) <∞

a.s., we conclude that

uαnn
−12∫

Bε
∥y∥2θ (∫

Bc
ε′

M (k)
n (dx))M (k)

n (dy) = 2∫
Bε

∥y∥2θM (k)
n (dy)uαnn−1M (k)

n (Bc
ε′)

⇒ 2cαw
α
k ∫
∥y∥>ε

∥y∥2θM (k)
α (dy) .(63)

From the weak convergence in (31), it follows directly that

2∫
Bε
∫
Bε′∩B

c
ε

∥x−y∥2θM (k)
n (dx)M (k)

n (dy)⇒ 2∫
∥y∥>ε

∫
ε′<∥x∥≤ε

∥x−y∥2θM (k)
α (dx)M (k)

α (dy)

and hence

uαnn
−1T

(2)
ε,ε′,n

P→ 0 .

Combining this result with (63), we obtain,

(64) uαnn
−1(T (1)ε,ε′,n +T

(2)
ε,ε′,n)⇒ 2cαw

α
k ∫
∥y∥>ε

∥y∥2θM (k)
α (dy) .

Turning to T (3)ε,n , we have once again from the point process convergence in (31),

T (3)ε,n =∫
Bε

(∫
Bε

∥y −x∥2θM (k)
n (dx))M (k)

n (dy)⇒∫
Bε

(∫
Bε

∥y −x∥2θM (k)
α (dx))M (k)

α (dy) ,

from which we conclude,

(65) uαnn
−1T (3)ε,n

P→ 0 .

Finally we handle the last term T
(4)
ε,n . We have

(66) uαnn
−1T (4)ε,n ≤ 2∫

Bε
∥y∥2θM (k)

n (dy)(uαnn−1)N (k)n

and, since u−αn n−1N
(k)
n

P→ cαw
α
k , we restrict attention to the integral. By (58) with z =

εu−1n n
1/α,

E(∫
Bε

∥y∥2θM (k)
n (dy)) ∼ wαk cαu2θ−αn n1−2θ/αEk,n (∥V∥2θ1(∥V∥ ≤ εu−1n n1/α))

≤ Cε2θ−α ,

and hence

lim
ε→0

limsup
n→∞

E(∫
Bε

∥y∥2θM (k)
n (dy)) = 0 .
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This, in turn, implies from (66) that for any η > 0,

(67) lim
ε→0

limsup
n→∞

P(uαnn−1T (4)ε,n > η) = 0.

Combining (63), (64), (65), and (67), we obtain

(68) u4θ−αn n1−2θ/αFk,k(n)⇒
2d2θw

α
k

w2cα
∫
∥y∥>0

∥y∥2θM (k)
α (dy) .

The “off-diagonal terms” can be treated in a similar fashion. It follows from the continuous
differentiability of R outside the origin and Theorem 1 that, in the obvious notation,

Fk1,k2(n) =
1

N2
n

N(k1)n

∑
i=1

N(k2)n

∑
j=1

[R(Y(k1)i −Y
(k2)
j )−R(sk1 − sk2)]

2

(69)

= 1

N2
n

N(k1)n

∑
i=1

N(k2)n

∑
j=1

[⟨∇R(sk1 − sk2),(Y
(k1)
i − sk1)− (Y(k2)j − sk2)⟩]

2

+ oP (1) .

Arguing as before (see (61)),

u4−αn n1−2/αFk1,k2(n) ∼
1

w2c2α
uαnn

−1∫
Rd×Rd

[⟨∇R(sk1 − sk2),x−y⟩]2M (k1)
n (dx)M (k2)

n (dy) .

We the same notation, as above we write

∫
Rd×Rd

= ∫
Bε
∫
Bc
ε′

+∫
Bε
∫
Bε′∩B

c
ε

+∫
Bc
ε′

∫
Bε
+∫

Bε′∩B
c
ε

∫
Bε
+∫

Bε
∫
Bε
+∫

Bcε
∫
Bcε

=∶ T (1,1)ε,ε′,n +T
(1,2)
ε,ε′,n +T

(2,1)
ε,ε′,n +T

(2,2)
ε,ε′,n +T

(3)
ε,n +T (4)ε,n .

These six terms are treated in nearly the same way as earlier for the analogous decomposition
for Fkk(n). In this vein, we have for the first term
(70)
uαnn

−1T
(1,1)
ε,ε′,n ∈ [(1−ε′/ε)2,(1+ε′/ε)2]uαnn−1∫

Bε
[⟨∇R(sk1 − sk2),x⟩]

2
M (k1)
n (dx)M (k2)

n (Bc
ε′) .

Since uαnn
−1M

(k2)
n (Bc

ε′) ∼ uαnn−1N
(k2)
n

P→ cαwαk2 , we have by the weak convergence in (31)

uαnn
−1∫

Bε
[⟨∇R(sk1 − sk2),x⟩]

2
M (k1)
n (dx)M (k2)

n (Bc
ε′)

⇒ cαw
α
k2 ∫

Bε
[⟨∇R(sk1 − sk2),x⟩]

2
M (k1)
α (dx) .(71)

Next, a straightforward application of the weak convergence in (31), gives

∫
Bε

(∫
Bε′∩B

c
ε

[⟨∇R(sk1 − sk2),x−y⟩]2M (k2)
n (dy))M (k1)

n (dx)

⇒∫
∥x∥>ε

(∫
ε′<∥y∥≤ε

[⟨∇R(sk1 − sk2),x−y⟩]2M (k2)
α (dy))M (k1)

α (dx)

and hence

(72) uαnn
−1T

(1,2)
ε,ε′,n

P→ 0 .

Interchanging the roles of x and y, the terms T (1,2)ε,ε′,n and T (2,2)ε,ε′,n are handled in exactly the
same way. The same reasoning (see (65)) also shows that

(73) u−αn n−1T (3)ε,n
P→ 0.
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Finally, turning to T (4)ε,n , we have by the Cauchy-Schwarz inequality,

uαnn
−1T (4)ε,n ≤C (∫

Bε
∥y∥2M (k1)

n (dy)(uαnn−1)N (k2)n +∫
Bε

∥y∥2M (k2)
n (dy)(uαnn−1)N (k1)n )

for some constant C > 0. But now the exact same argument leading to (67) (with θ = 1) can
be applied to each of the summands from which it follows that for any η > 0

(74) lim
ε→0

limsup
n→∞

P(uαnn−1T (4)ε,n > η) = 0 .

Combining the results in (70), (71), (72), (73), and (74), we conclude that
(75)

(u4−αn n1−2/α)Fk1,k2(n)⇒
1

w2cα
∫
Rd

[⟨∇R(sk1 − sk2),x⟩]
2
(w2

k2M
(k1)
α +w2

k1M
(k2)
α )(dx).

By Theorem 3 the convergence in (75) and (68) is joint in k1, k2, and the claim of the theorem
follows. Note that if θ = 1, then the scaling for Fk1,k2(n) is the same as that for Fkk. On the

other hand if θ > 1, then (u4−αn n1−2/α)Fk1,k2(n)
P→ 0 so that the diagonal terms are of smaller

order. ◻

Proof of Theorem 5. In this case the order of magnitude of the “diagonal terms” is still
given by (44) while the order of magnitude of the “off-diagonal terms” is given by (49),
because the latter statement requires only that α > 2. We claim that

(76) u−4θ+αn n2θ/α−1 ≪ u−2n .

Indeed, (76) is equivalent to

n≪ u(4θ−α−2)/(2θ/α−1)n ,

which is a true statement due to (30) and the fact that

4θ −α− 2

2θ/α− 1
> 2α

as implied by the condition 2 <α < 2θ. It follows from (76) that the “off-diagonal terms” are
of a larger order of magnitude than the “diagonal terms”. ◻
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