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Abstract

In a surprising result, Korupolu, Plaxton, and Rajaraman [13] showed that a simple local
search heuristic for the capacitated facility location problem (CFLP) in which the service costs
obey the triangle inequality produces a solution in polynomial time which is within a factor of
8+ ε of the value of an optimal solution. By simplifying their analysis, we are able to show that
the same heuristic produces a solution which is within a factor of 6(1 + ε) of the value of an
optimal solution. Our simplified analysis uses the supermodularity of the cost function of the
problem and the integrality of the transshipment polyhedron.

Additionally, we consider the variant of the CFLP in which one may open multiple copies
of any facility. Using ideas from the analysis of the local search heuristic, we show how to turn
any α-approximation algorithm for this variant into a polynomial-time algorithm which, at an
additional cost of twice the optimum of the standard CFLP, opens at most one additional copy
of any facility. This allows us to transform a recent 2-approximation algorithm of Mahdian, Ye,
and Zhang [17] that opens many additional copies of facilities into a polynomial-time algorithm
which only opens one additional copy and has cost no more than four times the value of the
standard CFLP.

1 Introduction

We consider the capacitated facility location problem (CFLP). In this problem, we are given a set
of facilities F and a set of clients D. Each client j ∈ D has a demand dj that must be serviced
by one or more open facilities. There is a cost fi for opening facility i ∈ F , and it costs cij for
facility i to service one unit of demand from client j. We call the first type of cost facility cost and
the second service cost. Furthermore, no facility may service more than U units of demand. We
wish to service all clients at minimum total cost. The capacitated facility location problem and
variations of it have been well-studied in the literature (see, for example, the book of Mirchandani
and Francis [18]) and arise in practice (see, for example, the paper of Barahona and Jensen [4] for
an instance of a parts warehousing problem from IBM).

The CFLP is NP-hard even in the case that U =∞, sometimes called the uncapacitated facility

location problem (UFLP) [10]. Thus we turn our attention to approximation algorithms. We say
we have an α-approximation algorithm for the CFLP if the algorithm runs in polynomial time and
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returns a solution of value no more than α times the value of an optimal solution. The value α is
sometimes called the performance guarantee of the algorithm.

It is possible to express any instance of the well-known set cover problem as an instance of the
UFLP of the same cost, which implies that unless P = NP , there is no approximation algorithm for
the UFLP with performance guarantee better than c ln |D|, where c is some constant [15, 11, 21, 2].
Thus we turn to special cases of the CFLP. In particular, we assume that for any k, l ∈ F ∪ D
a service cost ckl is defined, and the service costs are symmetric and obey the triangle inequality.
This is a natural assumption, since service costs are often associated with the distance between
points in Euclidean space representing facilities and clients. From now on, when we refer to the
CFLP or UFLP, we refer to this metric case.

Korupolu, Plaxton, and Rajaraman (KPR) gave the first approximation algorithm for the
CFLP with constant performance guarantee [13]. Surprisingly, KPR show that a simple local
search heuristic is guaranteed to run in polynomial time and to terminate with a solution of value
no more than (8 + ε) times optimum, for any ε > 0. The central contribution of our paper is to
simplify and improve their analysis of the heuristic, showing that it is a 6(1 + ε)-approximation
algorithm for the CFLP. Although our proof follows theirs closely at many points, we show that
some case distinctions (e.g. “cheap” versus “expensive” facilities) are unnecessary and some proofs
can be simplified and strengthened by using standard tools from mathematical programming. For
example, using the supermodularity of the cost function of the CFLP reduces a five page proof to
a half page, and using the notion of a transshipment problem and the integrality of its polyhedron
allows us to get rid of the extraneous concept of a “refined β-allocation,” which in turn leads to
the improved performance guarantee.

We are also able to use a concept translated from KPR to get an improved approximation
algorithm for a variant of the CFLP. The variant we consider is the one in which a solution may
open up to k copies of facility i, each at cost fi and having capacity U , and we denote this problem
the k-CFLP (so that the ordinary CFLP is the same as the 1-CFLP). Shmoys, Tardos, and Aardal
[22] give a polynomial-time algorithm for the 7

2 -CFLP which produces a solution of value no more
than 7 times the optimal value of the 1-CFLP. Chudak and Shmoys [8], building on previous
work [6, 7] for the UFLP, give a 3-approximation algorithm for the ∞-CFLP. Mahdian, Ye, and
Zhang [16] give a 2.89-approximation algorithm, and the same authors [17] recently developed a
2-approximation algorithm. Here we show how to take any solution for the ∞-CFLP and produce
from it a solution for the 2-CFLP adding cost no more than twice the optimal value of the 1-CFLP.
Thus by using the algorithm of Mahdian et al., we are able to produce solutions in polynomial
time for the 2-CFLP of cost no more than 4 times the optimal value of the 1-CFLP, improving the
previous result of Shmoys et al. [22].

The recent work on approximation algorithms for facility location problems was started by
the paper of Shmoys, Tardos, and Aardal [22], who gave a 3.16-approximation algorithm for the
UFLP, the first approximation algorithm for this problem with a constant performance guarantee.
There has been a substantial amount of research since then on the UFLP; the best currently known
approximation algorithm for the problem has a performance guarantee of 1.52 [16]. An observation
of Sviridenko [23], combined with a result of Guha and Khuller [12] implies that no approximation
algorithm for the UFLP with performance guarantee 1.46 is possible, unless P = NP .

Following the appearance of an extended abstract of this paper [9], Charikar and Guha [5] have
shown how to modify our algorithm slightly to obtain a performance guarantee of 3 + 2

√
2 + ε ≈

5.83 + ε. Pál, Tardos, and Wexler [20] give a 9-approximation algorithm for the case when the
capacity of each facility is allowed to vary from facility to facility (that is, the capacity of facility i
is Ui).

The rest of the paper is structured as follows. We begin in Section 2, where we introduce the
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local search algorithm of KPR, define some notation, and prove some preliminary lemmas. We then,
in Section 3, define the concept of a “swap graph”, analogous to the concept of the β-allocation
problem in KPR, and show how it leads to our algorithm for the 2-CFLP. Finally, we show how to
obtain an improved analysis of the local search algorithm using the swap graph in Section 4.

2 The local search algorithm

2.1 Preliminaries

In this section, we define some notation and give some preliminary lemmas that will be needed
in subsequent discussion. Given a set S ⊆ F of facilities to open, it is easy to determine the
minimum service costs for that set of facilities by solving the following transportation problem: for
each facility i ∈ F we have a supply node i with supply U , and for each client j ∈ D we have
a demand node j with demand dj ; the unit shipping cost from i to j is cij . When discussing
the k-CFLP, we will let S be a multiset of facilities (here l copies of i ∈ F in S corresponds to
opening l facilities at location i). We let x(S, i, j) denote the amount of demand of client j serviced
by facility i in the solution given by S. We will denote the overall cost of the location problem
given by opening the facilities in S by c(S). Furthermore, we let cf (S) denote the facility costs
of the solution S (i.e., cf (S) =

∑
i∈S fi) and cs(S) denote the service costs of the solution S (i.e.,

cs(S) =
∑

i∈S,j∈D cijx(S, i, j)). Let S∗ denote the set of facilities opened by some optimal solution;
it will always be a solution to the 1-CFLP and hence not a multiset. Let n = |F |.

The local search algorithm given by KPR for the CFLP is the following: given a current solution
S, perform any one of three types of operations that improve the value of the solution by at least
c(S)/p(n, ε), where p(n, ε) is a suitably chosen polynomial in n and 1/ε, and continue doing so
until none of these operations results in an improvement of at least that much (We will show later
that p(n, ε) = 8n/ε is a suitable choice). The operations are: adding a facility i ∈ F − S to S
(i.e., S ← S + i); dropping a facility i ∈ S (i.e., S ← S − i); or swapping a facility i ∈ S for
a facility i′ ∈ F − S (i.e., S ← S − i + i′). We call any operation that improves the solution
by at least c(S)/p(n, ε) an admissible operation; thus the algorithm runs until there are no more
admissible operations. This heuristic runs in polynomial time, as KPR argued: start with some
arbitrary feasible solution (for instance, setting S = F ). Since in each step, the value of the
solution improves by a factor of (1 − 1

p(n,ε)), after p(n, ε) operations the value of the solution
will have improved by a constant factor. Since the value of the solution can’t be smaller than
c(S∗), after O(p(n, ε) log c(F )

c(S∗)) operations the algorithm will terminate. Each local search step can

be implemented in polynomial time, and O(p(n, ε) log c(F )) is a polynomial in the input size, so
overall the algorithm takes polynomial time.

We now turn to proving some preliminary lemmas. These lemmas use the fact that the cost
function c is supermodular; that is, if A, B ⊆ F , we have that

c(A) + c(B) ≤ c(A ∩B) + c(A ∪B).

(See Babayev [3], Propositions 3.3 and 3.4 of Nemhauser, Wolsey, and Fisher [19].) In particular,
cs is supermodular, while cf is modular (that is, cf (A) + cf (B) = cf (A∩B) + cf (A∪B)). We will
use the fact that supermodularity holds even for multisets.

We will show the following three lemmas:

Lemma 2.1 If c(S) ≥ (1 + ε)c(S∗) and S ⊆ S∗, then there is an admissible add operation.

Lemma 2.2 If c(S) ≥ (1 + ε)c(S∗) and S ⊇ S∗, then there is an admissible drop operation.
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Lemma 2.3 If for all u ∈ V − S, c(S + u)− c(S) > −βc(S), then cs(S) ≤ c(S∗) + nβ.

From the last lemma we derive the following corollary, previously shown in KPR.

Corollary 2.4 [KPR [13], Lemma 9.3] If there is no admissible add operation, then cs(S) ≤ c(S∗) +
n·c(S)
p(n,ε) .

Proof. Use β = 1/p(n, ε).

In addition, in Section 4, we show the following theorem.

Theorem 2.5 If neither S ⊆ S∗ nor S ⊇ S∗ and there are no admissible drops or swaps, then

cf (S − S∗) ≤ 3cf (S∗ − S) + 2cs(S) + 2cs(S
∗) + n · c(S)/p(n, ε).

2.2 The main theorem

Before proving the lemmas, we show how they lead to the 6(1+ ε)-approximation algorithm for the
CFLP.

Theorem 2.6 If there are no admissible operations, then

c(S) ≤ 6(1 + ε)c(S∗).

Proof. If there are no admissible operations and if S ⊆ S∗ or S ⊇ S∗, then by Lemmas 2.1 and
2.2 we know that c(S) ≤ (1 + ε)c(S∗). If there are no admissible operations and neither S ⊆ S∗

nor S ⊇ S∗ then

cf (S − S∗) ≤ 3cf (S∗ − S) + 2cs(S) + 2cs(S
∗) + n · c(S)/p(n, ε),

by Theorem 2.5. Adding cf (S ∩ S∗) + cs(S) to both sides, we obtain

c(S) ≤ 2cf (S∗ − S) + cf (S∗) + 3cs(S) + 2cs(S
∗) + n · c(S)/p(n, ε)

≤ 3c(S∗) + 3c(S∗) + 4n · c(S)/p(n, ε),

using Corollary 2.4. Then

c(S)

(
1− 4n

p(n, ε)

)
≤ 6c(S∗),

or

c(S) ≤ 6

1− 4n
p(n,ε)

c(S∗).

This gives that c(S) ≤ 6(1 + ε)c(S∗) for p(n, ε) ≥ 8n
ε

and ε < 1.
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2.3 Proofs of preliminary lemmas

We start by proving somewhat more general forms of Lemmas 2.1 and 2.2, and deriving those
Lemmas as corollaries.

Lemma 2.7 Let f : V → < be any supermodular function. If S ⊂ S∗ ⊆ V , then there exists
u ∈ S∗ − S such that

f(S + u)− f(S) ≤ 1

|S∗ − S| (f(S∗)− f(S)) .

Proof. Let W = S∗ − S = {u1, u2, . . . , uk}. Let Wi = {u1, . . . , ui}. The statement certainly
holds if |S∗ − S| = 1, so assume that |S∗ − S| ≥ 2. Then by the supermodularity of f we know
that:

f(S + Wk−1) + f(S + uk) ≤ f(S∗) + f(S)

f(S + Wk−2) + f(S + uk−1) ≤ f(S + Wk−1) + f(S)

...

f(S + W2) + f(S + u3) ≤ f(S + W3) + f(S)

f(S + u1) + f(S + u2) ≤ f(S + W2) + f(S).

Summing the inequalities and subtracting
∑k−1

i=2 f(S + Wi) from both sides, we obtain

k∑

i=1

f(S + ui) ≤ f(S∗) + (k − 1)f(S),

so that there exists some i such that

f(S + ui)− f(S) ≤ 1

k
(f(S∗)− f(S)).

Proof of Lemma 2.1: It follows from Lemma 2.7 that if c(S) ≥ (1 + ε)c(S∗), then there exists

an add operation that changes the cost by no more than 1
n
(c(S∗) − c(S)) ≤ 1

n

(
1

1+ε
− 1

)
c(S) ≤

−c(S)/p(n, ε), for p(n, ε) ≥ n(1+ε)
ε

. For our choice of p(n, ε) = 8n
ε

this statement holds (assuming
ε < 1). So there is an admissible add operation.

Proof of Lemma 2.3: We prove the contrapositive. Suppose it is the case that cs(S) > c(S∗)+nβ.
Then by adding cf (S) to the left-hand side of this inequality and cf (S−S∗) to the right-hand side,
we have that

c(S) > cs(S
∗) + cf (S ∪ S∗) + nβ.

Observing that cs(S ∪ S∗) ≤ cs(S
∗), we obtain

c(S) > c(S∗ ∪ S) + nβ.

Applying Lemma 2.7 to the sets S ⊆ S∗ ∪ S gives us that there is an add operation that changes
the cost by no more than 1

n
(c(S∗ ∪ S)− c(S)) ≤ −βc(S).
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Lemma 2.8 Let f : V → < be any supermodular function. If S ⊃ S∗ then there exists u ∈ S − S∗

such that

f(S − u)− f(S) ≤ 1

|S − S∗| (f(S∗)− f(S)) .

Proof. The following proof was given by an anonymous referee. Define g(S) = f(V − S). Then
by assumption, g is supermodular and V −S ⊆ V −S∗ ⊆ V satisfy the assumptions of Lemma 2.7.
By Lemma 2.7, there exists u ∈ (V − S∗)− (V − S) = S − S∗ such that

g(V − S + u)− g(V − S) ≤ 1

|(V − S∗)− (V − S)| (g(V − S∗)− g(V − S)) .

This implies the lemma statement.

Proof of Lemma 2.2: It follows from Lemma 2.8 that if c(S) ≥ (1 + ε)c(S∗), then there exists

a drop operation that changes the cost by no more than 1
n
(c(S∗) − c(S)) ≤ 1

n

(
1

1+ε
− 1

)
c(S) ≤

−c(S)/p(n, ε), for p(n, ε) ≥ n(1+ε)
ε

, which holds for our choice of p(n, ε) = 8n
ε

(assuming ε < 1). So
there is an admissible drop operation.

3 Path decompositions and the swap graph

3.1 A path decomposition

In this section, we define a path decomposition and a concept called the swap graph which will be
useful in both of our results. The path decomposition is more or less equivalent to the “difference
graph” of KPR [13], while the swap graph roughly corresponds to their “β-allocation problem”.
The path decomposition is useful in comparing the value of our current solution with the optimal
solution. The swap graph will be used in the analysis of the local search algorithm (in the proof of
Theorem 2.5) and will be used in the algorithm and analysis of our result for the 2-CFLP.

To obtain the path decomposition, we start with some current solution S and the optimal
solution S∗. We construct the following directed graph: we include a node j for each client j ∈ D,
and a node i for each facility i ∈ S ∪ S∗. We include an arc (j, i) of weight w(j, i) = x(S∗, i, j)
for all i ∈ S∗, j ∈ D when x(S∗, i, j) > 0, and an arc (i, j) of weight w(i, j) = x(S, i, j) for all
i ∈ S, j ∈ D when x(S, i, j) > 0. See Figure 1 for an example. Observe that by the properties of
x, the total weight of all arcs incoming to a node j for j ∈ D is dj , as is the total weight of all
outgoing arcs. The total weight of arcs incoming to any node i for i ∈ S∗ is at most U , and the
total weight of arcs going out of any node i for i ∈ S is also at most U . Furthermore, notice that∑

cijw(i, j) = cs(S
∗) + cs(S).

By standard path-stripping arguments (see, for example, Section 3.5 of Ahuja, Magnanti, and
Orlin [1]), we can decompose this graph into a set of weighted paths and cycles. The paths start
at nodes in S and end at nodes in S∗. The cycles must be on nodes in S ∩S∗; we will ignore them,
since they play no role in our results. We now introduce some notation that we will use to discuss
the paths.

Notation 3.1

• Let P denote the set of weighted paths from nodes in S to nodes in S∗ obtained by applying
path-stripping to the graph defined above.
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Facilities

Clients

U = 1

d=2 d=1

Figure 1: A sample of the path decomposition. The dashed lines are the assignment of the current
solution S, while the solid lines are the assignment of the optimal solution S∗. Each line represents
one unit of demand.

• Let w(P ) denote the weight of path P ∈ P.

• Let c(P ) denote the cost of path P ∈ P; that is, c(P ) =
∑

(i,j)∈P cij .

• For any subset of paths P ′ ⊆ P:

– let P ′(A, ·) denote the set of paths in P ′ starting at nodes i ∈ A for A ⊆ S;

– let P ′(·, B) denote the set of paths in P ′ ending at nodes i′ ∈ B for B ⊆ S∗;

– let P ′(A, B) denotes the set of paths in P ′ from i ∈ A ⊆ S to i′ ∈ B ⊆ S∗;

– let w(P ′) =
∑

P∈P ′ w(P );

– let val(P ′) =
∑

P∈P ′ w(P )c(P ).

Observe that
∑

P∈P c(P )w(P ) ≤ cs(S) + cs(S
∗). Thus val(P) ≤ cs(S) + cs(S

∗).

3.2 The swap graph

The swap graph simply corresponds to a transshipment problem from a specified subset S ′ of nodes
of a current solution S (possibly a multiset) to a subset of facilities F ′ ⊂ F . We place demands of
1 on the nodes of S ′ and integer supplies on the facilities F ′, and set the cost of an edge ĉkl from
k ∈ S′ to l ∈ F −S to be Uckl + fl− fk. When using a swap graph, we use the path decomposition
to prove that a fractional solution of some value β exists to the transshipment problem. Then by
the integrality of the transshipment polyhedra, we know that there exists an integral solution to
the transshipment problem of cost no more than β such that one unit of flow is shipped from each
node in S′ to exactly one node in F ′.

We then observe that in the integral solution to the transshipment problem, each unit of flow
from k ∈ S′ to l ∈ F ′ corresponds to a swap operation in our current solution that can be performed
while increasing the cost of the current solution by no more than ĉkl: each unit of demand assigned
from client j to k ∈ S ′ in the current solution can be assigned to l ∈ F ′ at a change in cost of

clj − ckj ≤ clk + ckj − ckj ≤ ckl.

There are at most U units of demand assigned to k ∈ S ′, so the total change in cost of transferring
the demand assigned to k to l is at most Uckl, and the change in cost of closing facility k and opening
facility l is fl − fk. Thus the overall cost of performing the swap is at most Uckl + fl − fk = ĉkl.
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3.3 An algorithm for the 2-CFLP

To illustrate the use of the swap graph, we give an algorithm such that given any solution to the
k-CFLP, for k > 2, the algorithm returns a solution to the 2-CFLP at additional cost no more
than twice the cost of an optimal solution to the 1-CFLP. Given a solution S to the k-CFLP (a
multiset), the algorithm works as follows. As long as there exists an add operation that reduces
the cost, we add facilities from F − S to S one at a time. Let S̃ be the solution when there are
no longer add operations that improve the cost of the solution. We then solve a transshipment
problem via the swap graph between nodes in S ′ ⊆ S̃ and F , where S ′ consists of all the copies of
facilities that are used at full capacity; let S̃1 = S̃ − S′ be the remainder copies of facilities in S.
We put demands of 1 on the nodes in S ′, and supplies of 1 on the nodes in F , so that we have the
following problem:

Min
∑

k∈S′,l∈F

ĉklxkl

subject to: ∑

l∈F

xkl = 1 ∀k ∈ S′

∑

k∈S′

xkl ≤ 1 ∀l ∈ F

xkl ≥ 0 ∀k ∈ S′, l ∈ F.

Given the integral solution xkl to the transshipment problem, whenever xkl = 1, we obtain a new
solution Ŝ by swapping k ∈ S ′ for l ∈ F at change in cost ĉkl. It is easy to verify that in solution
Ŝ we open at most 2 facilities for each i ∈ F , one possibly from the assignment problem, and one
from S̃1, so that we have a solution to the 2-CFLP.

Certainly the algorithm runs in polynomial time. We can now prove that this algorithm does
not increase the cost of the original solution by much.

Theorem 3.2 Suppose there exists a feasible solution to the 1-CFLP. The algorithm above, given a
solution S to the k-CFLP, produces a solution Ŝ to the 2-CFLP at additional cost at most twice the
optimal value of a solution to the 1-CFLP.

Proof. We start with the solution S and apply add operations, each of which does not increase
the cost of the solution. Given the solution S̃ (after we have applied all add operations to S that
improve the cost of the solution), let P be the path decomposition giving paths from facilities in S̃
to an optimal 1-CFLP solution S∗. We use the path decomposition to give a fractional solution to
the transshipment problem of cost no more than

cs(S̃) + cs(S
∗)− cf (S′) + cf (S∗) ≤ cs(S̃) + c(S∗).

By applying Lemma 2.3 with β = 0, we know that we must have cs(S̃) ≤ c(S∗). Since the cost of
the solution Ŝ obtained after swapping is at most the cost of c(S̃) plus the cost of the solution to
the transshipment problem, we know that

c(Ŝ) ≤ c(S̃) + 2c(S∗).

To obtain a feasible fractional solution x̃ to the transshipment problem, we set x̃kl to be 1/U
times the total weight of paths from k ∈ S ′ to l ∈ S∗ (that is, x̃kl = w(P(k, l))/U). Clearly x̃ is a
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feasible solution for the transshipment problem, since the total weight of paths leaving any k ∈ S ′

is U , and the total weight of paths entering any l ∈ S∗ is at most U . The cost of the solution x̃ is
∑

k∈S′,l∈S∗

ĉklx̃kl =
∑

k∈S′,l∈S∗

(Uckl − fk + fl)(1/U)
∑

P∈P(k,l)

w(P )

≤
∑

k∈S′,l∈S∗

∑

P∈P(k,l)

w(P )ckl − cf (S′) + cf (S∗)

≤
∑

P∈P

c(P )w(P )− cf (S′) + cf (S∗)

≤ cs(S̃) + cs(S
∗)− cf (S′) + cf (S∗),

where the inequality ckl ≤ c(P ) follows from the triangle inequality.

Corollary 3.3 There is a polynomial-time algorithm that finds a solution to the 2-CFLP of cost at
most 4 times the optimal value of a 1-CFLP solution.

Proof. We apply the 2-approximation algorithm of Mahdian, Ye, and Zhang [17] for the ∞-
CFLP to obtain our initial solution S. Since the cost of the optimal solution for ∞-CFLP is at
most the cost of the optimal solution for the 1-CFLP, the corollary follows.

4 Analysis of the local search algorithm

We now use the path decomposition and swap graph tools from the previous section to complete
our analysis of the local search algorithm, and prove Theorem 2.5. The lemmas we derive below are
roughly similar to those of KPR [13]: Lemma 4.5 corresponds to their Claim 9.8, and Lemma 4.6
to their Claims 9.9 and 9.10. However, we do not need an analogue of their “refined β-allocation”,
which gives us an improvement in the analysis in Lemma 4.5.

The basic strategy of the proof is as follows. We need to bound the cost of the facilities in S−S∗

in order to prove Theorem 2.5. To do this, we will demonstrate a set of swap and drop moves that
could be performed on the current solution, such that: (1) each facility in S −S∗ occurs in exactly
one of these moves; (2) the total cost of these moves is bounded by 3cf (S∗−S)+2cs(S)+2cs(S

∗)−
cf (S−S∗). By hypothesis, none of these moves is admissible, so we also know that each move costs
at least −c(S)/p(n, ε), so that the total cost is at least −|S − S∗|c(S)/p(n, ε). Thus,

3cf (S∗ − S) + 2cs(S) + 2cs(S
∗)− cf (S − S∗) ≥ −|S − S∗|c(S)/p(n, ε),

and rearranging terms gives the desired inequality. We emphasize that the set of swap and drop
moves we construct are solely for the purpose of analysis and constructing a bound on the cost of
the facilities in S − S∗; the moves are not used in the algorithm. In particular, the set of moves
could contain multiple swaps for the same facility in S∗ − S; since this is for the purpose of the
analysis, it is not problematic.

We begin by defining some notation we will need. Let S be a solution meeting the conditions
of Theorem 2.5; namely, neither S ⊆ S∗ nor S ⊇ S∗ and there are no admissible drops or swaps.
Let P be the path decomposition for S and an optimal solution S∗ as defined in Notation 3.1. We
will be particularly interested in three subsets of paths from P, and we define them as follows.

Definition 4.1 Define T = P(S − S∗, S ∩ S∗); that is, the set of all paths from nodes in S − S∗ to
S ∩ S∗ (if any). We call these the transfer paths.

9



The basic idea of the transfer paths in the proof is that for any path P ∈ T , we claim we can
transfer w(P ) of the demand assigned to the start node of the path to the end node of the path at
a cost of c(P )w(P ) without violating the capacity constraints. We establish this claim later.

Definition 4.2 Define S = P(S − S∗, S∗ − S); that is, the set of all paths from S − S∗ to S∗ − S.
We call these the swap paths.

We use the swap paths to get a fractional feasible solution for a transshipment problem from
S − S∗ to S∗ − S in the swap graph, and get an integral solution of swap moves whose cost is a
simple expression in terms of cs(S), cs(S

∗), cf (S − S∗), and cf (S∗ − S). Thus, as argued above, if
no swap is admissible, this implies a bound on cf (S − S∗).

This idea does not quite work as stated because we might not get a good bound on the total
cost of the swap/drop moves in this way. Thus, as in KPR [13], we split the nodes of S − S∗ into
two types.

Definition 4.3 We define heavy nodes H ⊆ S −S∗ such that the weight of the swap paths from any
i ∈ H to S∗ − S is at least U/2 (i.e., H = {i ∈ S − S∗ : w(S(i, ·)) ≥ U/2}). We define light nodes to
be all other nodes in S − S∗: L = S − S∗ −H.

We will be able to set up a transshipment problem for the nodes in H, which will give us a set
of swap moves for H and thus a bound on cf (H). To get a bound on cf (L), we will have to set up
a transshipment problem in a different manner and use the observation that we can transfer the
demand assigned from one light node to another light node without violating capacity constraints.

To build towards our proof of Theorem 2.5, we now formalize the statements above in a series
of lemmas.

Lemma 4.4 Given the current assignment, a new assignment can be created in which weight w(T (i, ·))
of the demand assigned to facility i ∈ S − S∗ is transferred to nodes in S ∩ S∗. The new assignment
has cost at most that of the current assignment plus val(T (i, ·)).

Proof. To prove the lemma, consider a path P ∈ T (i, ·), with start node i and end node i′.
We observe that the first edge (i, j) in path P corresponds to a demand w(P ) assigned to i by
client j in the current assignment. We reassign this demand to i′ ∈ S ∩ S∗; the increase in cost
is at most (ci′,j − ci,j)w(P ) ≤ c(P )w(P ) by the triangle inequality. We now must show that such
a reassignment does not violate the capacity constraints at i′. To see this, observe that by the
properties of path-stripping, the total weight of paths in T ending at any node i′ ∈ S∗ ∩ S is the
difference between the total weight of arcs coming into node i′ and the total weight of arcs going
out of node i′. Since the total weight of arcs coming into node i′ corresponds to the total amount
of demand assigned to i′ by the optimal solution, and the total weight of arcs going out of node i′

corresponds to the total amount of demand assigned to i′ by the current solution, and the optimal
solution must be feasible, we can increase the demand serviced by i′ by this difference and still
remain feasible.

Lemma 4.5 If there is not an admissible swap operation, then

cf (H) ≤ 2cf (S∗ − S) + 2val(S(H, ·)) + val(T (H, ·)) + |H|c(S)/p(n, ε).
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Proof. As suggested in the exposition, we set up a transshipment problem from H to S∗ − S,
as follows:

Min
∑

k∈H,l∈S∗−S

ĉklxkl

subject to: ∑

l∈S∗−S

xkl = 1 ∀k ∈ H

∑

k∈H

xkl ≤ 2 ∀l ∈ S∗ − S

xkl ≥ 0 ∀k ∈ H, l ∈ S∗ − S.

As stated in the exposition, we will give a fractional solution to this LP of relatively low cost and
derive from it an integral solution of no greater cost corresponding to swaps for the nodes in H.
The first set of constraints of the LP indicates that each node in H will be involved in exactly one
swap. The second set of constraints indicates that each node in S∗−S will be in no more than two
swaps. The number of swaps in which nodes in S∗ − S are involved determines the factor in front
of the term cf (S∗− S) in the lemma statement; we would like it to be as small as possible, and we
show below that two is feasible.

We claim that we can give a fractional solution to the transshipment problem of cost no more
than 2val(S(H, ·)) + 2cf (S∗ − S) − cf (H). Thus there exists an integral solution of no greater
cost. Given an integral solution x, when xkl = 1, we can swap facility k ∈ H for l ∈ S∗ − S and
transfer the demand w(S(k, ·)) assigned to k at change in cost at most ĉkl. By Lemma 4.4, we can
transfer the remaining demand w(T (k, ·)) assigned to k to nodes in S ∩ S∗ at change in cost at
most val(T (k, ·)). By the hypothesis of the lemma, we know that any swap for a facility results in
a change in cost of at least −c(S)/p(n, ε). Summing over all swaps for k ∈ H given by the solution
to the transshipment problem, we have that

2val(S(H, ·)) + 2cf (S∗ − S)− cf (H) + val(T (H, ·)) ≥ −|H|c(S)

p(n, ε)
.

Rearranging terms gives us the lemma.
To complete the proof, we give a fractional solution x̃ for this transshipment problem by setting

x̃kl =
w(S(k, l))

w(S(k, ·)) .

Certainly the constraints
∑

l∈S∗−S x̃kl = 1 are obeyed for all k ∈ H. The constraints
∑

k∈H x̃kl ≤ 2
are also obeyed since

∑

k∈H

x̃kl =
∑

k∈H

w(S(k, l))

w(S(k, ·)) ≤
∑

k∈H

w(S(k, l))

U/2
≤ 2,

where the first inequality follows by the definition of H and the second since the total weight of
paths adjacent to any node is at most U . The cost of this fractional solution is

∑

k∈H,l∈S∗−S

ĉklx̃kl =
∑

k∈H,l∈S∗−S

(Uckl + fl − fk)
w(S(k, l))

w(S(k, ·))

≤
∑

k∈H,l∈S∗−S

[
(Uckl + fl)

w(S(k, l))

U/2
− fk

w(S(k, l))

w(S(k, ·))

]

≤
∑

k∈H,l∈S∗−S

2cklw(S(k, l)) + 2cf (S∗ − S)− cf (H)

≤ 2val(S(H, ·)) + 2cf (S∗ − S)− cf (H).
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Lemma 4.6 [KPR [13], Claims 9.9 and 9.10] If there are no admissible drop and swap operations,
then

cf (L) ≤ cf (S∗ − S) + 2val(T (L, ·)) + 2val(S(L, ·)) + |L|c(S)/p(n, ε).

Proof. The proof of this lemma is similar to the proof of the previous lemma, although here
we will have to set up a transshipment problem to capture both swap and drop operations. One
difficulty with translating the previous proof to this case is ensuring that one can find a feasible
fractional solution such that each facility in S∗ − S is in no more than a small constant number
swap/drop operations. As in the previous lemma, the number of times each facility in S∗ − S
is involved in a swap/drop operation implies the factor in front of the term cf (S∗ − S) and thus
we would like it to be as small as possible. We keep the number small by choosing exactly one
“primary” facility k in L that can be swapped for a given facility l in S∗−S; i.e. xkl > 0 for exactly
one k ∈ L. We make a careful choice of this facility k so that any other facility i to which we might
otherwise normally make a fractional assignment xil > 0, we can drop i and reassign its demand
to k, the primary facility of l, at not much more cost.

In order to set up the needed transshipment problem, we first need to define a cost function
θ(k) on nodes k ∈ L. In words, the cost θ(k) is the cost per unit capacity for making U/2
units of capacity available at node k, either through the unused capacity at k (which incurs zero
cost per unit), or through transferring demand via the transfer paths T (k, ·) (which incurs cost
val(T (k, ·))/w(T (k, ·)) per unit).1 Note that since k ∈ L, w(S(k, ·)) ≤ U/2, and thus the unused
capacity at node k plus w(T (k, ·)) is at least U/2. Let Nk denote the amount of unused capacity
at k. If Nk ≥ U/2 then θ(k) = 0, otherwise

θ(k) =

(
0 ·Nk +

val(T (k, ·))
w(T (k, ·)) (U/2−Nk)

)
/(U/2).

Note that U
2 θ(k) ≤ val(T (k, ·)).

We can now define the needed transshipment problem from L to (F − S) ∪ L by setting cost
ĉkl = w(S(k, ·))ckl + fl − fk for l ∈ F − S, ĉkl = w(S(k, ·))(ckl + θ(l)) − fk for l ∈ L, l 6= k, and
ĉkk =∞. The transshipment problem is then:

Min
∑

k∈L,l∈(F−S)∪L

ĉklxkl

subject to: ∑

l∈(F−S)∪L

xkl = 1 ∀k ∈ L

∑

k∈L

xkl ≤ 1 ∀l ∈ F − S

xkl ≥ 0 ∀k ∈ L, l ∈ (F − S) ∪ L.

The first set of LP constraints ensures that each k ∈ L is in exactly one drop or swap operation;
the second set of constraints ensures that the facilities in F −S are in no more than one drop/swap
operation. We claim that we can give a fractional solution to the transshipment problem of cost
no greater than 2val(S(L, ·)) + val(T (L, ·)) − cf (L) + cf (S∗ − S). Thus there exists an integral

1The same cost function, including the definition of θ, was used by KPR [13].
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solution of no greater cost. Given an integral solution x, when xkl = 1 for k ∈ L, l ∈ F − S, we
can swap facility k ∈ L for l ∈ F − S and transfer the demand w(S(k, ·)) assigned to k at change
in cost at most ĉkl. By Lemma 4.4, we can transfer the remaining demand w(T (k, ·)) assigned to
k to nodes in S ∩ S∗ at change in cost at most val(T (k, ·)). When xki = 1 for k ∈ L, i ∈ L, k 6= i,
we can drop facility k from S and transfer the demand w(S(k, ·)) assigned to k to i at change
in cost ĉki = w(S(k, ·))(cki + θ(i)), as this cost covers transferring these units of demand to i
and transferring the same amount of demand from i to nodes in S ∩ S∗. By Lemma 4.4, we can
transfer the remaining demand w(T (k, ·)) assigned to k to nodes in S ∩ S∗ at change in cost at
most val(T (k, ·)). By the hypothesis of the lemma, we know that any swap or drop of a facility
results in a change in cost of at least −c(S)/p(n, ε). Summing over all swaps and drops for k ∈ L
given by the solution to the transshipment problem, we have that

2val(S(L, ·)) + 2val(T (L, ·))− cf (L) + cf (S∗ − S) ≥ −|L|c(S)

p(n, ε)
.

Rearranging terms gives us the lemma.
To complete the proof, we give a fractional solution x̃ for this transshipment problem. For

each l ∈ S∗ − S we find k ∈ L that minimizes ckl + θ(k) and designate k as the primary node
π(l) for l. We then set x̃kl as follows. For each l ∈ S∗ − S, if k is the primary node for l, we set
x̃kl = w(S(k, l))/w(S(k, ·)), otherwise x̃kl = 0. For each i ∈ L, we set

x̃ki =
∑

l∈S∗−S:i=π(l),k 6=π(l)

w(S(k, l))

w(S(k, ·)) .

In other words, the fractional solution is constructed by rerouting the swap paths S(k, l) to l’s
primary node if k is not l’s primary; x̃ki gets the corresponding fraction of the paths S(k, ·) rerouted
to i. This solution is feasible since certainly

∑
l∈F xkl = 1 for all k ∈ L. Also, since for at

most one k ∈ L is x̃kl > 0 for l ∈ F − S,
∑

k∈L xkl ≤ 1. Observe that when x̃ki > 0 for
k ∈ L, i = π(l), l ∈ S∗ − S, then

ĉki = w(S(k, ·))(cki + θ(i))− fk

≤ w(S(k, ·))(ckl + cil + θ(i))− fk

≤ w(S(k, ·))(2ckl + θ(k))− fk, (1)

since cil + θ(i) ≤ ckl + θ(k) by the definition of primary nodes. Then the cost of this fractional
solution is

∑

k∈L,l∈F

ĉklx̃kl =
∑

k∈L,l∈S∗−S,k=π(l)

ĉkl

w(S(k, l))

w(S(k, ·)) +
∑

k∈L,i∈L

ĉki

∑

l∈S∗−S:i=π(l),k 6=π(l)

w(S(k, l))

w(S(k, ·)) (2)

≤
∑

k∈L,l∈S∗−S,k=π(l)

ĉkl

w(S(k, l))

w(S(k, ·)) +
∑

k∈L,l∈S∗−S,i=π(l),k 6=i

ĉki

w(S(k, l))

w(S(k, ·)) (3)

≤
∑

k∈L,l∈S∗−S,k=π(l)

[w(S(k, ·))ckl + fl − fk]
w(S(k, l))

w(S(k, ·))

+
∑

k∈L,l∈S∗−S,k 6=π(l)

[w(S(k, ·))(2ckl + θ(k))− fk]
w(S(k, l))

w(S(k, ·)) (4)

≤
∑

k∈L,l∈S∗−S

[w(S(k, ·))(2ckl + θ(k))− fk]
w(S(k, l))

w(S(k, ·)) + cf (S∗ − S) (5)
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≤
∑

k∈L,l∈S∗−S

2cklw(S(k, l)) +
∑

k∈L

val(T (k, ·))− cf (L) + cf (S∗ − S) (6)

≤ 2val(S(L, ·)) + val(T (L, ·))− cf (L) + cf (S∗ − S).

Equation (2) follows from separating the sum into two types of non-zero terms according to the
definition of x̃kl. Inequality (3) follows from rewriting the double sum. Inequality (4) follows from
expanding the definition of ĉkl and from inequality (1). Inequality (5) follows by collecting common
terms of the two sums in (4) and bounding the summation over fl in the first sum by cf (S∗ − S).
Inequality (6) follows since the definition of L and θ implies that

∑
l∈S∗−S w(S(k, l))θ(k) ≤ U

2 θ(k) ≤
val(T (k, ·)).

We can now complete the proof of Theorem 2.5.
Proof of Theorem 2.5: Lemma 4.5 implies that

cf (H) ≤ 2cf (S∗ − S) + 2val(S(H, ·)) + val(T (H, ·)) + |H|c(S)/p(n, ε).

Lemma 4.6 implies that

cf (L) ≤ cf (S∗ − S) + 2val(T (L, ·)) + 2val(S(L, ·)) + |L|c(S)/p(n, ε).

Summing the two together yields

cf (S − S∗) = cf (H) + cf (L)

≤ 3cf (S∗ − S) + 2val(S(S − S∗, ·)) + 2val(T (S − S∗, ·)) + |S − S∗|c(S)/p(n, ε)

≤ 3cf (S∗ − S) + 2(cs(S) + cs(S
∗)) + |S − S∗|c(S)/p(n, ε),

which gives Theorem 2.5.

5 Conclusion

Most approximation algorithms compare the solution obtained against a polynomial-time com-
putable bound on the value of the optimal solution. This bound is sometimes implicit, but it
usually not too hard to discover. One surprising facet of the KPR result is that it is not at all clear
what the bound is. A typical bound is a linear programming relaxation of the problem. However,
this bound can be quite weak for CFLP (see Section 3 of [22] for the relaxation and a bad example).
Thus an interesting open question is to determine a stronger lower bound for the CFLP. The fact
that a 6(1 + ε)-approximation algorithm exists for the problem seems to imply that such a bound
must exist.
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