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THE RADIUS OF METRIC REGULARITY

A. L. DONTCHEV, A. S. LEWIS, AND R. T. ROCKAFELLAR

Abstract. Metric regularity is a central concept in variational analysis for the
study of solution mappings associated with “generalized equations”, including
variational inequalities and parameterized constraint systems. Here it is em-
ployed to characterize the distance to irregularity or infeasibility with respect
to perturbations of the system structure. Generalizations of the Eckart-Young
theorem in numerical analysis are obtained in particular.

1. Introduction

Let X and Y be real Banach spaces, with norms both denoted by ‖ ·‖ and closed
unit balls BX and BY . Let F be a mapping from X to Y , by which we will generally
mean a set-valued mapping, indicated by F : X ⇒ Y , having inverse F−1 : Y ⇒ X
with x ∈ F−1(y) ⇔ y ∈ F (x), and having effective graph, domain and range sets
given respectively by

gphF =
{

(x, y)
∣∣ y ∈ F (x)

}
, domF =

{
x
∣∣F (x) 6= ∅

}
, rgeF = domF−1.

Single-valuedness of F on a subset of X is a special case; when the subset is all of
X (implying domF = X), we say F is a single-valued mapping from X to Y and
write F : X → Y .

This terminology is suited for the study of “generalized equations” of the form
F (x) 3 y and their solutions x for fixed y as parameter. When F is single-valued,
such a relation reduces to a true equation, but more broadly it can express a mixture
of inequality and equality conditions on x, interpreted as a constraint system. On
the other hand, the relation F (x) 3 y can stand for a variational inequality or a
system of optimality conditions. Either way, the set of solutions is F−1(y) and is
nonempty if and only if y ∈ rgeF . A central issue is how F−1(y) behaves with
respect to perturbations in y as a parameter, or for that matter, perturbations in
F itself.

It is easy to recognize in this picture two of the abiding themes in numerical
work: bounds on what happens to solutions under perturbations, and estimates of
how large a perturbation can be before good behavior of a solution mapping breaks
down. Our goal is to build on recent work on the first of these topics, using advanced
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tools in variational analysis and convexity to reach a new level of understanding of
the second topic. Far-reaching extensions of the Eckart-Young theorem on matrix
perturbations will be obtained along with insights into the distance to infeasibility
in the perturbation of constraint systems.

In our framework, where neither F nor F−1 needs to be single-valued, we gen-
erally have to focus on a particular ȳ ∈ Y and solution x̄ ∈ F−1(ȳ), being content
with local analysis around the pair (x̄, ȳ) ∈ gphF . A key property of “good behav-
ior” is metric regularity. The mapping F is said to be metrically regular at x̄ for ȳ
when there exists κ ∈ (0,∞) such that

(1.1) d(x, F−1(y)) ≤ κd(y, F (x)) for all (x, y) close to (x̄, ȳ).

Here, d denotes distance: thus d(y,E) = infe∈E ‖y − e‖ for any set E ⊂ Y . (By
convention, infima over the empty set are +∞.) This property gives an estimate of
how far a candidate x can be from the solution set corresponding to y; the distance
is bounded above by a multiple κ of the distance between y and F (x), which is a
sort of “residual” that may be easy to compute. The regularity modulus of F at x̄
for ȳ is the value

(1.2) regF (x̄ | ȳ) := inf
{
κ ∈ (0,∞)

∣∣ (1.1) holds
}
∈ [0,∞]

(cf. Ioffe [13]). The case regF (x̄ | ȳ) = ∞ corresponds to the absence of any κ ∈
(0,∞) satisfying (1.1); thus, in this notation, metric regularity of F at x̄ for ȳ is
signaled by regF (x̄ | ȳ) <∞.

Our main result, formulated below, concerns the extent to which F can be per-
turbed before metric regularity is lost. A measure of this, called the radius of
metric regularity, will be introduced and characterized in terms of regF (x̄ | ȳ). To
appreciate what is thereby achieved, it is important to understand the deep con-
nections between metric regularity and other kinds of “good behavior” of solution
mappings, and to have some sense of the machinery that is already available for
determining regF (x̄ | ȳ).

Metric regularity of F is tied to a fundamental Lipschitz-type property of F−1.
Following [25], we say F−1 has the Aubin property at ȳ for x̄ when there exists
κ ∈ (0,∞) together with a neighborhood O of x̄ such that

(1.3) F−1(y′) ∩O ⊂ F−1(y) + κ‖y′ − y‖BX for all y, y′ close to ȳ.

If F−1 is single-valued around ȳ, this is ordinary Lipschitz continuity with constant
κ, whereas more generally, if F−1 is locally bounded with closed graph, it is such
continuity with respect to the Pompeiu-Hausdorff metric—but (1.3) operates use-
fully without any boundedness requirement on the sets F−1(y). A celebrated fact
is that F−1 has the Aubin property at ȳ for x̄ if and only if F is metrically regular
at x̄ for ȳ, and moreover the constants κ agree, so that the regularity modulus
regF (x̄, ȳ) also has the formula

(1.4) regF (x̄ | ȳ) = inf
{
κ ∈ (0,∞)

∣∣ (1.3) holds
}
.

A full discussion of this relationship and its history, leading even to formulations
in which X and Y are merely metric spaces, has recently been provided by Ioffe
[14]; details in the finite-dimensional case, with many references beyond, are also
available in [25]. In the notation of [25], the right side of (1.4) is lipF−1(ȳ |x̄) and
is called the Lipschitz modulus for F−1 at ȳ for x̄.
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Another way of looking at the regularity modulus regF (x̄ | ȳ) is through the
property of F being linearly open, or locally surjective at x̄ for ȳ, which refers to
the existence of κ ∈ (0,∞) and a neighborhood O of ȳ such that

(1.5) F (x+int κrBX) ⊃
[
F (x)+int rBY

]
∩O for all x close to x̄ and r > 0.

This too is equivalent to metric regularity of F at x̄ for ȳ with the same range of
values for κ, and thus it yields for the regularity modulus a third formula,

(1.6) regF (x̄ | ȳ) = inf
{
κ ∈ (0,∞)

∣∣ (1.5) holds
}
.

Again, details can be found in [14] and [25] and the works they cite.
The meaning of metric regularity is much simpler when F is a single-valued

mapping that is linear. Let L(X,Y ) denote the space of continuous linear mappings
X → Y , and for F ∈ L(X,Y ), let ‖F‖ be the usual operator norm.

Example 1.1 (metric regularity of linear mappings). If F ∈ L(X,Y ), then the
regularity modulus regF (x̄ | ȳ) is the same for all (x̄, ȳ) ∈ gphF , and that common
value, denoted simply by regF , is given by
(1.7)

regF = inf
{
κ ∈ (0,∞)

∣∣κF (BX) ⊃ intBY
}

= sup
{
d(0, F−1(y))

∣∣ y ∈ BY }.
Moreover, regF < ∞ if and only if F is surjective. If in that case F−1 is single-
valued, as must be true when dimX = dimY <∞, then

(1.8) regF = ‖F−1‖.
Thus, metric regularity is equivalent to nonsingularity when dimX = dimY <∞.

Detail. In (1.5), the inclusion can be reduced to κF (BX) ⊃ intBY by subtracting
F (x) from both sides and then dividing by r. This yields the first equation in
(1.7). On the other hand, we can write the inequality for metric regularity in
(1.1) as d(0, F−1(y) − x) ≤ κd(y − F (x), 0) and, by noting that linearity implies
F−1(y) − x = F−1(y − y′) for y′ = F (x), reformulate it as d(0, F−1(y − y′)) ≤
κ‖y − y′‖. To say that this holds for all y sufficiently close to ȳ and y′ such that
y′ = F (x) for an x sufficiently close to x̄ is to say that d(0, F−1(z)) ≤ κ‖z‖ for
all z near 0, and hence then for every z ∈ Y , again by linearity. The regularity
modulus thus is also given by the second expression in (1.7). The assertion about
surjectivity of F follows from (1.7) and the Banach open mapping principle (cf.
[26]); the rest is then immediate. �

For single-valued mappings F that are nonlinear but differentiable, the notion
of metric regularity, if not the term itself, goes back to a basic theorem in analysis,
which is associated with the work of Lusternik [17] and Graves [11]. Here we denote
by DF (x̄) the derivative mapping in L(X,Y ) that is associated with F at x̄.

Theorem 1.2 (Lusternik-Graves). For any continuously Fréchet differentiable
mapping F : X → Y and any (x̄, ȳ) ∈ gphF , one has

(1.9) regF (x̄ | ȳ) = regDF (x̄).

Thus, F is metrically regular at x̄ for ȳ = F (x̄) if and only if DF (x̄) is surjective.

Statements of this theorem have usually revolved around the final assertion, but
the fact that regF (x̄ | ȳ) = regDF (x̄) can be gleaned from the proof of Graves and
the observations in Example 1.1, as transferred to the linear mapping DF (x̄). For
newer work on the Lusternik-Graves theorem, see [6], [2], [3], [5], [7], [14].
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These facts set the stage for studying perturbations and whether they can cause
“irregular behavior”. The starting point is the classical Eckart-Young theorem in
numerical analysis, which is usually presented in terms of n× n matrices (cf. [12])
but, for the sake of enhancing comparisons, is formulated here in terms of linear
mappings. The issue is the extent to which a nonsingular linear mapping F from IRn

to IRn can be perturbed by the addition of a linear mapping G without destroying
the nonsingularity.

Theorem 1.3 (Eckart-Young). For all nonsingular F ∈ L(X,Y ), in the case when
dimX = dimY <∞,

(1.10) min
G∈L(X,Y )

{
‖G‖

∣∣∣F +G singular
}

= 1/‖F−1‖.

Through Example 1.1, we can identify nonsingularity in this result with metric
regularity, and 1/‖F−1‖ with 1/ regF . Thus, the largest radius r such that F +G
is nonsingular for all G ∈ L(X,Y ) satisfying ‖G‖ < r is r = 1/ regF . At the same
time, r = 1/ regF is the largest radius under which metric regularity is preserved.

Results of the type of the Eckart-Young theorem are sometimes called “distance
to ill-posedness theorems” and also “condition number theorems”, the latter since
the standard condition number of a matrix F ∈ L(X,Y ) is the radius value in
equation (1.10) multiplied by the norm of F , thus making it independent of the size
of F . For an extended discussion of distances to ill-posedness of various problems
in numerical analysis, see Demmel [4]. Our aim is to expand this radius idea
beyond linear mappings F : X → Y to general mappings F : X ⇒ Y in order to
measure, with respect to a pair (x̄, ȳ) where metric regularity holds, how far F can
be perturbed before metric regularity may be lost. Perturbation of F to F + G
shifts (x̄, ȳ) to (x̄, ȳ+G(x̄)); so the question is how big G can be before F +G fails
to be metrically regular at x̄ for ȳ +G(x̄). Metric regularity of F at x̄ for ȳ can be
thought of as meaning that the generalized equation F (x) 3 ȳ is well behaved at
its solution x̄, whereas the absence of metric regularity of F +G at x̄ for ȳ +G(x̄)
can be interpreted as saying that the generalized equation (F + G)(x) 3 ȳ + G(x̄)
is irregular at its solution x̄.

Definition 1.4 (radius of metric regularity). For any mapping F : X ⇒ Y and
(x̄, ȳ) ∈ gphF , the radius of metric regularity at x̄ for ȳ is the value
(1.11)
radF (x̄ | ȳ) := inf

G∈L(X,Y )

{
‖G‖

∣∣∣F +G not metrically regular at x̄ for ȳ + G(x̄)
}
.

The value radF (x̄ | ȳ) could equally well be called the distance to irregularity in
the sense suggested before the definition, with respect to adding a linear mapping to
F . Obviously in the Eckart-Young setting of Theorem 1.3, radF (x̄ | ȳ) is the same
for all (x̄, ȳ) ∈ gphF , and this common value equals 1/‖F−1‖, which is 1/ regF
by Example 1.1. We aim at capturing the analogous relationship locally between
radF (x̄, ȳ) and regF (x̄, ȳ) in much wider circumstances.

Of course, for general F : X ⇒ Y there is no reason to restrict perturbations
to the addition of a mapping G : X → Y that belongs to L(X,Y ). An attractive
feature of the radius defined by (1.11) is that it turns out to serve also for a vastly
larger class of perturbation mappings G : X → Y , at least in finite dimensions.
This result is part of our main theorem, stated next. The theorem refers to the
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Lipschitz modulus of a single-valued mapping G at a point x̄, which is

(1.12) lipG(x̄) := lim sup
x,x′→x̄
x,x′ 6=x̄

‖G(x′)−G(x)‖
‖x′ − x‖ .

Obviously lipG(x̄) < ∞ if and only if G is Lipschitz continuous on some neigh-
borhood of x̄. When G is continuously differentiable, lipG(x̄) = ‖DG(x̄)‖. In the
context of the broader notion of the Lipschitz modulus of a set-valued mapping in
[25], lipG(x̄) = lipG(x̄ | ȳ) = regG−1(ȳ |x̄) with respect to ȳ = G(x̄).

We also use in the theorem statement the concept of local closedness of a set at
a point, meaning that some neighborhood of the point has closed intersection with
the set.

Theorem 1.5 (characterization of the radius of metric regularity). For a map-
ping F : X ⇒ Y and any (x̄, ȳ) ∈ gphF at which gphF is locally closed, radF (x̄ | ȳ)
≥ 1/ regF (x̄ | ȳ). In fact,

(1.13) radF (x̄ | ȳ) = 1/ regF (x̄ | ȳ) when dimX <∞, dimY <∞.

Furthermore, in this case, the infimum in the definition of radF (x̄ | ȳ) is un-
changed if taken with respect to G ∈ L(X,Y ) of rank 1, but also is unchanged
when the space of perturbations G is enlarged from linear mappings to locally
Lipschitz continuous mappings:

radF (x̄ | ȳ)

= min
G:X→Y

{
lipG(x̄)

∣∣∣F +G not metrically regular at x̄ for ȳ +G(x̄)
}
.

(1.14)

Thus, although defined for convenience in terms of linear perturbations, radF (x̄ | ȳ)
is also, when X and Y are finite-dimensional, the largest radius r such that for any
G : X → Y that is Lipschitz continuous around x̄ with constant less than r, the
mapping F + G is sure to be metrically regular at x̄ for ȳ + G(x̄). In proving
Theorem 1.5, in Section 3, we actually show in more detail that for X and Y of
arbitrary dimension one always has

min
G:X→Y

{
lipG(x̄)

∣∣∣F +G not metrically regular at x̄ for ȳ +G(x̄)
}

≥ 1/ regF (x̄ | ȳ)
(1.15)

(see Corollary 3.4), while on the other hand, for finite-dimensional X and Y one
can obtain from the calculus of coderivatives that
(1.16)

inf
G∈L(X,Y )
G of rank 1

{
‖G‖

∣∣∣F +G not metrically regular at x̄ for ȳ +G(x̄)
}
≤ 1/ regF (x̄ | ȳ).

These inequalities, and the fact that lipG(x̄) = ‖G‖ when G is linear, furnish the
result.

Note that it is not necessary to assume in Theorem 1.5 that F itself is metrically
regular at x̄ for ȳ, since if this were not true we would have regF (x̄ | ȳ) =∞ and the
formula would be correct under the convention that 1/∞ = 0. Likewise, in the case
of regF (x̄ | ȳ) = 0 the formula should be interpreted as giving radF (x̄ | ȳ) =∞.

Groundwork will be laid in Section 2 by studying mappings that are positively
homogeneous. Graphical derivative and coderivative mappings are a prime target
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among positively homogeneous mappings, for use in Section 3 in establishing the
inequality in (1.16), but the results in Section 2 also are of interest in themselves.
They include a different kind of generalization of the Eckart-Young theorem based
on an extended definition of “nonsingularity” (see Theorem 2.6). They also estab-
lish that for sublinear mappings with closed graph, the equation in Theorem 1.5
holds at the origin even when X and Y are not finite-dimensional (see Theorem
2.9).

In Section 4, we apply our results to convex constraint systems, i.e., to the solu-
tion set F−1(ȳ) when gphF is convex. The question then is how far both F and
ȳ can be perturbed without encountering infeasibility in the sense of the solution
set becoming empty. Working with systems of certain types where F is positively
homogeneous, Renegar [20] introduced a notion of the distance to infeasibility. A
bridge between that notion and metric regularity is provided by the following re-
sult of Robinson [21], [22], and Ursescu [27], which generalizes the Banach open
mapping principle in a direction different from that taken by the Lusternik-Graves
theorem. (This statement omits, as unneeded for present purposes, some accompa-
nying information about the growth of the metric regularity constant κ as (x̄, ȳ) is
varied.)

Theorem 1.6 (Robinson-Ursescu). For a mapping F : X ⇒ Y and (x̄, ȳ) ∈ gphF ,
if F has closed convex graph, then F is metrically regular at x̄ for ȳ if and only if
ȳ ∈ int rgeF .

According to Theorem 1.6, metric regularity corresponds to “strict feasibility” of
a convex constraint system—where ȳ, at least, can be perturbed by some amount
before feasibility is lost. Making use of this, we prove in Section 4 that Renegar’s
distance to infeasibility is, in fact, the radius of metric regularity for a mapping F̄
derived from F and ȳ by a process of “homogenization”. The theory of infeasibility
is thereby reconfigured as a branch of the theory of metric regularity and opened
up to the many resources in that wider theory, while at the same time it is extended
from homogeneous to possibly inhomogeneous systems.

Section 5 specializes the “generalized equation” F (x) 3 ȳ to a variational in-
equality and applies our radius theory to that important context, bringing out a
connection with a property of strong metric regularity in which the inverse mapping
F−1 has a single-valued localization.

2. Homogeneous Mappings and Nonsingularity

A mapping F : X ⇒ Y is positively homogeneous when 0 ∈ F (0) and F (λx) ⊃
λF (x) for λ > 0, or equivalently, when gphF is a cone in X × Y . It is sublinear
when, in addition, F (x + x′) ⊃ F (x) + F (x′), or equivalently, when gphF is a
convex cone in X × Y . Sublinear mappings are also called convex processes [24]
and have been the subject of extensive development. Linear mappings are sublinear
mappings in particular. Graphical derivative or coderivative mappings that are
defined by way of tangent or normal cones to the graphs of other mappings are
always positively homogeneous, but may or may not be sublinear, depending on
the circumstances. Obviously, F−1 is positively homogeneous if and only if F is
positively homogeneous, and likewise with sublinearity.
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For a positively homogeneous mapping F : X ⇒ Y , the outer norm and the
inner norm are, respectively,

(2.1) ‖F‖+ = sup
x∈BX

sup
y∈F (x)

‖y‖ and ‖F‖− = sup
x∈BX

inf
y∈F (x)

‖y‖,

either of which might be∞. When F is single-valued on domF , its outer and inner
norms agree and can be written as ‖F‖; this reduces to the operator norm of F
when F ∈ L(X,Y ). Of course, these expressions are not true “norms” apart from
the single-valued case, because general set-valued mappings do not form a vector
space.

Inner and outer norms can be applied to F−1 as well as to F , and that will
dominate our use of them. Indeed, the expression on the right of (1.7), character-
izing regF for a linear mapping F , can be identified with ‖F−1‖−. An analogous
characterization is available for sublinear mappings F where, however, the focus is
on regF (0 |0) instead of a regularity modulus that is the same at all points of the
graph of F .

Example 2.1 (metric regularity of sublinear mappings). For a sublinear mapping
F : X ⇒ Y and any (x̄, ȳ) ∈ gphF ,

(2.2) regF (x̄ | ȳ) ≤ regF (0 |0) = ‖F−1‖−.

Thus, F is metrically regular everywhere when it is metrically regular at 0 for 0.
In fact,

regF (0 |0)

= inf
{
κ ∈ (0,∞)

∣∣∣F (x+ κrBX) ⊃ F (x) + rBY for all x ∈ X, r > 0
}
.

(2.3)

Moreover, regF (0 |0) <∞ if and only if F is surjective.

Detail. Recall from the introduction that regF (x̄ | ȳ) can be described as the in-
fimum of all κ ∈ (0,∞) for which (1.5) holds relative to some neighborhood O of
ȳ. This property of κ holding for (x̄, ȳ) = (0, 0) clearly implies F (κBX) ⊃ intBY ;
intersection with a neighborhood O is superfluous because of positive homogene-
ity. On the other hand, just from knowing that F (κBX) ⊃ intBY for a certain
κ > 0, we obtain for arbitrary (x, y) ∈ gphF and r > 0 through the sublinearity
of F that F (x + κrBX) ⊃ F (x) + rF (κBX) ⊃ y + int rBY . This establishes that
regF (x̄ | ȳ) ≤ regF (0 |0) for all (x̄, ȳ) ∈ gphF and, appealing again to positive
homogeneity, that

(2.4) regF (0 |0) = inf
{
κ ∈ (0,∞)

∣∣F (κBX) ⊃ BY
}
.

By definition, ‖F−1‖− = inf
{
κ ∈ (0,∞)

∣∣ y ∈ BY ⇒ F−1(y) ∩ κBX 6= ∅
}

. Hence
‖F−1‖− equals the right side of (2.4) as well. The fact that the finiteness of the
value in (2.4) corresponds to F being surjective is an immediate consequence of
the Robinson-Ursescu result in Theorem 1.6, but it was actually proved earlier by
Robinson in [21]. �

Next, as a basis for generalizing the Eckart-Young theorem, we use outer norms
of inverses to extend the definition of nonsingularity from linear mappings X → Y
with dimX = dim Y < ∞ to general positively homogeneous mappings X ⇒ Y
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without any dimensionality restrictions. Later, when we return to metric regular-
ity, such nonsingularity will be important as a dual property applied to adjoint
mappings or coderivative mappings.

Definition 2.2 (extended nonsingularity). A positively homogeneous mapping F :
X ⇒ Y will be called singular if ‖F−1‖+ =∞, nonsingular if ‖F−1‖+ <∞.

For linear F : X → Y , nonsingularity in this sense coincides with the traditional
notion when dimX = dim Y < ∞, but it means in general that F−1 is single-
valued and continuous relative to rgeF , its domain. For positively homogeneous
mappings that are not linear, nonsingularity implies F−1(0) = {0} but does not
necessitate single-valuedness elsewhere.

Example 2.3 (extended nonsingularity in finite dimensions). When dimX <∞,
dimY <∞, a positively homogeneous F : X ⇒ Y with closed graph is nonsingular
if and only if F−1(0) = {0}.

Example 2.4 (extended nonsingularity of sublinear mappings). A mapping F :
X ⇒ Y that is sublinear is both nonsingular and surjective if and only if F = L−1

for a continuous linear mapping L : Y → X .

Detail. The assumptions imply that F−1 is a sublinear mapping L with domL = Y
and L(0) containing only 0. Then for any y ∈ Y we have both L(y) and L(−y)
nonempty with L(0) = L(y − y) ⊃ L(y) + L(−y), so that L must be single-valued
everywhere with L(−y) = L(y). In combination with positive homogeneity, this
yields L(λy) = λL(y) for all real λ. Single-valuedness in the sublinearity rule
L(y+y′) ⊃ L(y)+L(y′) requires L(y+y′) = L(y)+L(y′), and so L must be linear.
Furthermore, ‖L‖ = ‖F−1‖+ <∞. �

The following characterization of ‖F−1‖+ will help to elucidate the meaning of
extended nonsingularity more generally.

Proposition 2.5 (inverse norm formula). For a positively homogeneous mapping
F : X ⇒ Y ,
(2.5)

‖F−1‖+ = inf
{
κ ∈ (0,∞)

∣∣x ∈ F−1(y) ⇒ ‖x‖ ≤ κ‖y‖
}

= sup
‖x‖=1

1
d(0, F (x))

.

Proof. By the definition of the outer norm in (2.1) as applied to F−1, we know that
‖F−1‖+ is the supremum of ‖x‖ over all pairs (y, x) ∈ gphF−1 with ‖y‖ ≤ 1. Thus,
it is the infimum of all κ ∈ (0,∞) such that F−1(BY ) ⊂ κBX . That translates
through positive homogeneity to the middle expression in (2.5). There we observe
that the infimum is unchanged when x is restricted to have ‖x‖ = 1, in which
case the expression can be identified with the infimum of all κ ∈ (0,∞) such that
κ ≥ 1/‖y‖ whenever y ∈ F (x) and ‖x‖ = 1. (It is correct in this to interpret
1/‖y‖ = ∞ if y = 0.) This shows that the middle expression in (2.5) agrees with
the final expression in (2.5). �

Theorem 2.6 (extended Eckart-Young). For any F : X ⇒ Y that is positively
homogeneous,

(2.6) inf
G∈L(X,Y )

{
‖G‖

∣∣∣F +G singular
}

= 1/‖F−1‖+.
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Moreover, the infimum is the same if restricted to mappings G ∈ L(X,Y ) of rank
one. (Indeed, if X = Z∗ for a Banach space Z, the additional restriction can be
made that G is weak*-to-norm continuous.)

Proof. If F is singular, (2.6) holds with 0 on both sides; so we can assume that
‖F−1‖+ <∞. We can also assume that ‖F−1‖+ > 0, because having ‖F−1‖+ = 0
corresponds to having domF = {0}, and that implies for any G that dom(F+G) =
{0}; hence ‖(F +G)−1‖+ = 0. In that case, (2.6) holds with ∞ on both sides.

Suppose G ∈ L(X,Y ) and F + G is singular. Then by definition there is a
sequence of elements (xk, yk) ∈ gph(F+G) with ‖yk‖ ≤ 1 and 0 < ‖xk‖ → ∞. From
yk ∈ (F+G)(xk) we have xk ∈ F−1(yk−G(xk)); hence ‖xk‖ ≤ ‖F−1‖+‖yk−G(xk)‖
and consequently,

1/‖F−1‖+ ≤ (‖yk‖+ ‖G(xk)‖)/‖xk‖ ≤ (1/‖xk‖) + ‖G‖.
Taking the limit as k→∞, we get 1/‖F−1‖+ ≤ ‖G‖. Thus “≥” holds in (2.6).

We have to show now that “≤” holds as well. Consider any finite r > 1/‖F−1‖+.
We have 1/r < ‖F−1‖+; so there must exist (x̂, ŷ) ∈ gphF with ‖ŷ‖ = 1 and
‖x̂‖ > 1/r. In the dual space X∗ it is possible to find x̂∗ with 〈x̂, x̂∗〉 = ‖x̂‖ and
‖x̂∗‖ = 1. Define the rank-one mapping Ĝ ∈ L(X,Y ) by Ĝ(x) = −‖x̂‖−1〈x, x̂∗〉ŷ.
Then Ĝ(x̂) = −ŷ, so that (F + Ĝ)(x̂) = F (x̂) + Ĝ(x̂) = F (x̂) − ŷ 3 0. Therefore
x̂ ∈ (F + Ĝ)−1(0), and F + Ĝ must be singular. On the other hand, ‖Ĝ‖ =
‖ŷ‖/‖x̂‖ = 1/‖x̂‖ < r. Hence the infimum in (2.6) is less than r. Appealing to the
choice of r, we confirm that the infimum in (2.6) cannot be more than 1/‖F−1‖+.

When X = Z∗, the latter argument can be refined by taking x̂∗ to be an element
in the unit ball BZ that satisfies 〈x̂, x̂∗〉 > 1− δ for small δ > 0, and the proof goes
much as before. �

The infimum in Theorem 2.6 would likewise be unaffected if taken over all pos-
itively homogeneous G : X → Y , even set-valued G : X ⇒ Y as long as ‖G‖ is
replaced by ‖G‖+. Only the first part of the proof requires adjustment, and all that
is needed is to replace G(x̄) by a general element z̄ ∈ G(x̄).

Outer and inner norms are elegantly related by duality under a generalized notion
of adjoint mappings, and this leads to further insights into metric regularity. With
respect to the spaces X∗ and Y ∗ dual to X and Y , the upper adjoint of a positively
homogeneous mapping F : X ⇒ Y is the mapping F ∗+ : Y ∗ ⇒ X∗ defined by

(2.7) (y∗, x∗) ∈ gphF ∗+ ⇔ 〈x∗, x〉 ≤ 〈y∗, y〉 for all (x, y) ∈ gphF,

whereas the lower adjoint is the mapping F ∗− : Y ∗ ⇒ X∗ defined by

(y∗, x∗) ∈ gphF ∗− ⇔ 〈x∗, x〉 ≥ 〈y∗, y〉 for all (x, y) ∈ gphF.

The graphs of both F ∗+ and F ∗− correspond to the closed convex cone in X∗× Y ∗
that is polar to gphF , except for permuting (x∗, y∗) to (y∗, x∗) and introducing
certain changes of sign. In particular, both F ∗+ and F ∗− are always sublinear with
closed graph; furthermore, gphF ∗− = − gphF ∗+. The interesting fact is that when
F itself is sublinear with closed graph, one has (see [1] or [25, 11.29]):

(2.8) (F ∗+)∗− = (F ∗−)∗+ = F,

and moreover,

(2.9) ‖F‖+ = ‖F ∗+‖− = ‖F ∗−‖− and ‖F‖− = ‖F ∗+‖+ = ‖F ∗−‖+.
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Proposition 2.7 (adjoint formula for metric regularity). For a sublinear mapping
F : X ⇒ Y with closed graph, the characterizations of regF (0 |0) in Example 2.1
are supplemented by

(2.10) regF (0 |0) = ‖(F ∗+)−1‖+.

Proof. We know from Example 2.1 that regF (0 |0) = ‖F−1‖−. However, ‖F−1‖− =
‖(F−1)∗−‖+ by (2.9) (as applied to F−1 instead of F ). Also, (F−1)∗− = (F ∗+)−1

by the adjoint formulas. This leads to (2.10). �

The relations between adjoints and their norms also induce a duality between
the properties of surjectivity and nonsingularity.

Proposition 2.8 (Borwein [1]). For sublinear F : X ⇒ Y with closed graph, F is
surjective if and only if F ∗+ is nonsingular. Likewise, F is nonsingular if and only
if F ∗+ is surjective.

Proof. This is immediate from Example 2.1, Definition 2.2 and the relations in
(2.9). �

Theorem 2.9 (radius of metric regularity for sublinear mappings). For a sublinear
mapping F : X ⇒ Y with closed graph,

(2.11) radF (0 |0) = 1/ regF (0 |0) = inf
G∈L(X,Y )

{
‖G‖

∣∣∣F +G not surjective
}
.

Moreover, the infimum is the same if restricted to G of rank one.

Proof. For any G ∈ L(X,Y ), the mapping F + G is sublinear with closed graph
and has (F +G)∗+ = F ∗+ +G∗. Thus by Proposition 2.8, F +G is surjective if and
only if F ∗+ +G∗ is nonsingular. It follows that
(2.12)

inf
G∈L(X,Y )

{
‖G‖

∣∣∣F +G not surjective
}

= inf
G∈L(X,Y )

{
‖G∗‖

∣∣∣F ∗+ +G∗ singular
}
.

The right side of (2.12) can be identified through Theorem 2.6 with

(2.13) inf
H∈L(Y ∗,X∗)

{
‖H‖

∣∣∣F ∗+ +H singular
}

= 1/‖(F ∗+)−1‖+

by the observation that any H ∈ L(Y ∗, X∗) of rank one that is weak*-to-norm
continuous has the form G∗ for some G ∈ L(X,Y ) of rank one. Consequently, the
left side of (2.12) equals the right side of (2.13), and from (2.10) we then get the
equality between the second and third expressions in (2.11). The third expression
in (2.11) equals the first by Definition 1.4 and the assertion at the end of Example
2.1. �

Note that since regF (0 |0) = ‖F−1‖− (cf. Example 2.1), the second part of
(2.12) can be written equivalently as

inf
G∈L(X,Y )

{
‖G‖

∣∣∣F +G not surjective
}

= 1/‖F−1‖−.

This relation was recently established by Lewis [15, Thm. 4.8], but here it has been
deduced from broader facts about generalized nonsingularity, as well as placed in a
context of metric regularity.

In line with the observation after Theorem 2.6, the infimum in (2.11) would be
unaffected if taken over sublinear G : X ⇒ Y such that domG = X and F + G
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has closed graph, as long as ‖G‖ is replaced by ‖G‖+. The proof still works, with
G∗ replaced by G∗+.

Remark. Once we have established Theorem 1.5, it will be possible to regard The-
orem 2.9 as a special case of that result (by way of Theorem 1.6) when X and Y
are finite-dimensional, and then the additional information in Theorem 1.5 about
nonlinear perturbations could be brought in. Theorem 1.5 does not cover Theorem
2.9 for infinite-dimensional X or Y , however.

Corollary 2.10 (adjoint formula for the radius). For any sublinear mapping F :
X ⇒ Y with closed graph,

(2.14) radF (0 |0) = inf
‖y∗‖=1

d(0, F ∗+(y∗)).

Proof. The left side of (2.14) is 1/ regF (0 |0) by Theorem 2.9, but the right side
is 1/‖(F ∗+)−1‖+ by Proposition 2.5. The two sides are therefore equal by the
observation in Proposition 2.7. �

3. Coderivatives and the Radius Characterization

Graphical differentiation of set-valued mappings provides a powerful tool for
dealing with metric regularity. Our use of this tool will be limited to a finite-
dimensional context, for reasons to be explained, and we therefore tailor the de-
scription of graphical differentiation to such spaces as well. Details beyond what
we say here can be found in [25].

Let dimX < ∞ and dimY < ∞, and consider a mapping F : X ⇒ Y . The
graphical derivative of F at x̄ for an element ȳ ∈ F (x̄) is the mapping DF (x̄ | ȳ)
having as its graph the tangent cone to gphF at (x̄, ȳ):

gphDF (x̄ | ȳ) = lim sup
λ↘ 0

1
λ

[gphF − (x̄, ȳ)
]
.

Thus, DF (x̄ | ȳ) is a positively homogeneous mapping X ⇒ Y with closed graph.
On the basis of the definitions reviewed in the preceding section, it has an upper
adjoint DF (x̄ | ȳ)∗+ : Y ∗ ⇒ X∗ and also a lower adjoint. The coderivative of F at
x̄ for ȳ is defined by taking limits of the graphs of the upper adjoints at nearby
points (x, y):

gphD∗F (x̄ | ȳ) = lim sup
(x,y)→(x̄,ȳ)

gphDF (x|y)∗+,

where (x, y) ∈ gphF . Therefore, D∗F (x̄ | ȳ) is a positively homogeneous mapping
Y ∗ ⇒ X∗ with closed graph.

The value of coderivative mappings comes from the extensive calculus that is
available for determining them from the structure of a given mapping F (cf. Chap.
10 of [25]) and from the following result of Mordukhovich; for the somewhat com-
plicated story of this result, in which Ioffe also had a role, see p. 418 of [25].

Theorem 3.1 (Mordukhovich criterion). For F : X ⇒ Y and any (x̄, ȳ) ∈ gphF
at which gphF is locally closed, if dimX <∞ and dimY <∞, then

(3.1) regF (x̄ | ȳ) = ‖D∗F (x̄ | ȳ)−1‖+.

This can be translated through our Definition 2.2 into an equivalence between
metric regularity and coderivative nonsingularity.
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Corollary 3.2 (coderivative nonsingularity). Under the theorem’s assumptions, F
is metrically regular at x̄ for ȳ if and only if the coderivative mapping D∗F (x̄ | ȳ) is
nonsingular.

Coderivative mappings can be defined in a similar manner when X and Y are
infinite-dimensional, but the question of exactly what kind of set limit to take is
more subtle and can depend on the “smoothness” of these spaces. Anyway, formula
(3.1) can fail in the more general setting. See Mordukhovich [18] for more on this
matter, including certain substitutes for (3.1) in terms of limits. The validity of (3.1)
itself will be crucial to our argument for establishing equation (1.3) of Theorem 1.5,
and is the reason why that equation is asserted only for finite-dimensional spaces.

Another ingredient of our proof of Theorem 1.5 will be the following estimate.
This estimate can be deduced in various ways from the literature on the Lusternik-
Graves theorem, such as Dmitruk, Milyutin and Osmolovskĭı [5]; analogous devel-
opments appear in Theorem 1.4 of Dontchev [6] or Section 1 of the more recent
paper by Ioffe [14], for example. We express the estimate here in the notation of
regF and lipG and, for completeness, supply a direct proof which is in line with
the original arguments of Lusternik and Graves.

Theorem 3.3 (estimate for Lipschitz perturbations). Consider any mapping F :
X ⇒ Y and any (x̄, ȳ) ∈ gphF at which gphF is locally closed. Consider also a
mapping G : X → Y . If regF (x̄ | ȳ) < κ <∞ and lipG(x̄) < λ < κ−1, then

(3.2) reg(F +G)(x̄ | ȳ +G(x̄)) < (κ−1 − λ)−1 =
κ

1− λκ.

Proof. With the notation Ba(x̄) = x̄ + aBX and Ba(ȳ) = ȳ + aBY , let a > 0 be
small enough that gphF is closed relative to Ba(x̄) × Ba(ȳ), G is Lipschitz with
constant λ on Ba(x̄), and

d(x, F−1(y)) ≤ κd(y, F (x)) for all (x, y) ∈ Ba(x̄)×Ba(ȳ).

In particular, this implies that d(x̄, F−1(y)) ≤ κd(y, F (x̄)) ≤ κ‖y − ȳ‖ when y ∈
Ba(ȳ), and therefore

(3.3) F−1(y) 6= ∅ for all y ∈ Ba(ȳ).

Choose α such that

(3.4) 0 < α < 1
4a(1− κλ) min{1, κ} .

Let x ∈ Bα/4(x̄) and y ∈ Bα/(4κ)(ȳ). Then, from the choice of α in (3.4), we have

(3.5) ‖y −G(x) +G(x̄)− ȳ‖ ≤ λ‖x− x̄‖+ ‖y − ȳ‖ ≤ (λα/4) + (α/4κ) ≤ a.
Fix ε such that

(3.6) 0 < ε <
1
4
a(1− κλ) min{1, 1/λ} .

Then, through (3.3) and (3.5), there exists z1 ∈ F−1(y −G(x) +G(x̄)) such that

(3.7) ‖z1 − x‖ ≤ d(x, F−1(y −G(x) +G(x̄))) + ε.

We obtain from metric regularity that

‖z1 − x‖ ≤ ‖x− x̄‖+ d(x̄, F−1(y −G(x) +G(x̄))) + ε

≤ ‖x− x̄‖+ κd(y −G(x) +G(x̄), F (x̄)) + ε

≤ ‖x− x̄‖+ κ‖y − ȳ‖+ κλ‖x− x̄‖+ ε

≤ (α/4) + (κα/4κ) + (κλα/4) + ε ≤ (3α/4) + ε.
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Then we have ‖z1 − x̄‖ ≤ ‖z1− x‖+ ‖x− x̄‖ ≤ (3α/4) + ε+ (α/4) ≤ α+ ε ≤ a.
By induction now, we construct an infinite sequence of vectors zj , j = 1, 2, . . ., such
that

zj+1 ∈ F−1(y −G(zj) +G(x̄)) and ‖zj+1 − zj‖ ≤ (κλ)j‖z1 − x‖.
Suppose that we have generated such z2, . . . , zn from z1. Then for j = 1, 2, . . . , n−1
we have

‖zj − x̄‖ ≤
j−1∑
i=1

‖zi+1 − zi‖+ ‖z1 − x̄‖ ≤
j−1∑
i=0

(κλ)i‖z1 − x‖+ ‖z1 − x̄‖

≤ 1
1− κλ‖z1 − x‖+ ‖z1 − x̄‖ ≤

1
1− κλ(3α/4 + ε) + α+ ε ≤ a

according to the choice of the constants α in (3.4) and ε in (3.6). Also,

‖y −G(zj) +G(x̄)− ȳ‖ ≤ ‖y − ȳ‖+ λ‖zj − x̄‖

≤ α

4κ
+

λ

1− κλ(3α/4 + ε) + λ(α + ε) ≤ a.

The metric regularity of F yields the existence of zn+1 ∈ F−1(y − G(zn) + G(x̄))
such that

‖zn+1 − zn‖ ≤ κd(y −G(zn) +G(x̄), F (zn)).

Since zn ∈ F−1(y −G(zn−1) +G(x̄)), this implies

‖zn+1 − zn‖ ≤ κ‖G(zn)−G(zn−1)‖ ≤ κλ‖zn − zn−1‖,
and the induction step is complete.

The sequence zn satisfies the Cauchy condition, hence is convergent to some z,
which, from the local closedness of gphF , satisfies z ∈ F−1(y−G(z) +G(x̄)), that
is, z ∈ (F +G)−1(y +G(x̄)). Moreover,

d(x, (F +G)−1(y +G(x̄)) ≤ ‖z − x‖ ≤ lim
n→∞

n∑
i=1

‖zi+1 − zi‖+ ‖z1 − x‖

≤ lim
n→∞

n∑
i=0

(κλ)i‖z1 − x‖ ≤
1

1− κλ‖z1 − x‖

≤ κ

1− κλ

[
d(y +G(x̄), (F +G)(x)) + ε

]
,

the final inequality being obtained from (3.7). Since the left side does not depend
on ε, which can be arbitrary small, this tells us that F +G is metrically regular at
x̄ for ȳ +G(x̄). �

Corollary 3.4 (general perturbation inequality). If the mapping F : X ⇒ Y is
locally closed at (x̄, ȳ) ∈ gphF , then

inf
G:X→Y

{
lipG(x̄)

∣∣∣F +G not metrically regular at x̄ for ȳ +G(x̄)
}

≥ 1/ regF (x̄ | ȳ).
(3.8)

Proof. If lipG(x̄) < 1/ regF (x̄ | ȳ), there exist λ > lipG(x̄) and κ > regF (x̄ | ȳ)
such that λ < 1/κ, and then F + G must be metrically regular at x̄ for ȳ + G(x̄)
by the theorem. �
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Proof of Theorem 1.5. It is obvious from the definition of radF (x̄ | ȳ) in (1.11) that

radF (x̄ | ȳ)

≥ inf
G:X→Y

{
lipG(x̄)

∣∣∣F +G not metrically regular at x̄ for ȳ +G(x̄)
}
.

(3.9)

The double inequality obtained by combining (3.8) and (3.9) holds without any
restriction on the dimensions of X and Y . It reduces our task to demonstrating
that radF (x̄ | ȳ) = 1/ regF (x̄ | ȳ) when dimX < ∞ and dimY < ∞, along with
verifying that the infimum in the definition of radF (x̄ | ȳ) also is unchanged when
restricted to mappings G ∈ L(X,Y ) of rank one.

In this finite-dimensional setting, we have Theorem 3.1 and Corollary 3.2 at our
disposal. With these results we can restate the targeted equation as

(3.10) inf
G∈L(X,Y )

{
‖G‖

∣∣∣D∗(F +G)(x̄ | ȳ +G(x̄)) singular
}

= 1/‖D∗F (x̄ | ȳ)−1‖+.

It is elementary from the calculus of coderivatives (cf. 10.43 of [25]) that

D∗(F +G)(x̄ | ȳ +G(x̄)) = D∗F (x̄ | ȳ) +G∗.

Also, ‖G∗‖ = ‖G‖ <∞. Hence (3.10) can be identified with

(3.11) inf
G∈L(X,Y )

{
‖G∗‖

∣∣∣D∗F (x̄ | ȳ) +G∗ singular
}

= 1/‖D∗F (x̄ | ȳ)−1‖+.

Furthermore, again by finite-dimensionality, every H ∈ L(Y ∗, X∗) is the adjoint G∗

of some G ∈ L(X,Y ). Therefore (3.11) is valid, being the special case of Theorem
2.6 as applied to the mapping D∗F (x̄ | ȳ) : Y ∗ ⇒ X∗, and on the basis of that
theorem, the infimum is unchanged if taken over G ∈ L(X,Y ) of rank one. �

Theorem 1.5 also gives information on what happens to the radius of metric
regularity under perturbations.

Corollary 3.5 (perturbed radius of metric regularity). For any F : X ⇒ Y with
dimX < ∞ and dimY < ∞, and any (x̄, ȳ) ∈ gphF at which gphF is locally
closed, one has
(3.12)
rad(F +G)(x̄ | ȳ +G(x̄)) ≥ radF (x̄ | ȳ)− lipG(x̄) when lipG(x̄) < radF (x̄ | ȳ).

Proof. For such F andG, supposeH : X → Y has lipH(x̄) < radF (x̄ | ȳ)−lipG(x̄).
Is (F + G) + H sure to be metrically regular at x̄ for (ȳ + G(x̄)) + H(x̄)? Yes,
because in terms of G′ = G+H , this is the same as F +G′ being metrically regular
at x̄ for ȳ + G′(x̄), and that is true by (1.14) of Theorem 1.5 since lipG′(x̄) ≤
lipG(x̄) + lipH(x̄) < radF (x̄, ȳ). �

A further conclusion can be drawn. Recall that a mapping F ′ : X ⇒ Y is said
to give a first-order approximation to a mapping F : X ⇒ Y around (x̄, ȳ) ∈ gphF
if on some neighborhood O of x̄, there is a mapping G : O → Y with G(x̄) = 0,
lipG(x̄) = 0, and F ′ = F +G.

Corollary 3.6 (radius stability under first-order approximation). When dimX <
∞ and dimY < ∞, if F : X ⇒ Y has graph locally closed at (x̄, ȳ) ∈ gphF , and
Φ : X ⇒ Y is any mapping that furnishes a first-order approximation to F around
(x̄, ȳ), then

(3.13) radF (x̄ | ȳ) = rad Φ(x̄ | ȳ).
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Proof. Consider G : O → Y as in the preceding definition of first-order approx-
imation, and extend G in any way to a mapping X → Y . Since Φ agrees with
F + G around x̄, and G(x̄) = 0, we have rad Φ(x̄ | ȳ) = rad(F + G)(x̄ | ȳ). On the
other hand, since lipG(x̄) = 0 we have rad(F +G)(x̄ | ȳ) ≥ radF (x̄ | ȳ) by Corollary
3.5. Therefore rad Φ(x̄ | ȳ) ≥ radF (x̄ | ȳ). To say that Φ gives a first-order approx-
imation of F is to say equally, however, that F gives a first-order approximation
of Φ; the relationship is symmetric, with −G replacing G. Hence the inequality
radF (x̄ | ȳ) ≥ rad Φ(x̄ | ȳ) must hold as well. �

An example of a first-order approximation to which Corollary 3.6 can be applied
is seen when F (x) = F0(x) + f(x) for a mapping f : X → Y that is strictly
differentiable at x̄, and Φ(x) = F0(x) + g(x) for g(x) = f(x̄) + 〈∇f(x̄), x − x̄〉.
In this case, Φ = F + G for a mapping G that is strictly differentiable at x̄ with
G(x̄) = 0 and Jacobian ∇G(x̄) = 0 and thus has lipG(x̄) = 0.

4. Application to Constraint Systems

In this section, fully back in the context of possibly infinite-dimensional spaces
X and Y , we interpret the “generalized equation” F (x) 3 ȳ as a constraint system
on x, focusing on the case where F has convex graph. Such a system is called
feasible if F−1(ȳ) 6= ∅, i.e., ȳ ∈ rgeF , and strictly feasible if actually ȳ ∈ int rgeF .

Recall that any closed, convex cone K ⊂ Y induces a partial ordering “≤K”
under the rule that y0 ≤K y1 means y1 − y0 ∈ K. Correspondingly, y0 <K y1

means y1 − y0 ∈ intK.

Example 4.1 (convex constraint systems). Let C ⊂ X be a closed convex set, let
K ⊂ Y be a closed convex cone, and let A : C → Y be a continuous mapping that
is convex with respect to the partial ordering in Y induced by K:

A((1 − θ)x0 + θx1) ≤K (1− θ)A(x0) + θA(x1) for x0, x1 ∈ C when 0 < θ < 1.

Define the mapping F : X ⇒ Y by

F (x) =

{
A(x) +K if x ∈ C,
∅ if x /∈ C.

Then F has closed, convex graph, and feasibility of the system F (x) 3 ȳ refers to

∃ x̄ ∈ C such that A(x̄) ≤K ȳ,

while, as long as intK 6= ∅, strict feasibility refers to

∃ x̄ ∈ C such that A(x̄) <K ȳ.

Detail. Only the final claim needs a comment. When intK 6= ∅, we have K =
cl intK, so that the convex set rgeF = A(C) + K is the closure of the open set
O := A(C) + intK. Also, O is convex. If follows then that int rgeF = O. �
Example 4.2 (linear-conic constraint systems). Add to Example 4.1 the assump-
tion that A is linear and C is a cone, so that the condition x̄ ∈ C can be written
equivalently as x̄ ≥C 0. Then F is sublinear. Furthermore, its adjoint F ∗+ : Y ∗ ⇒
X∗ is given in terms of the adjoint A∗ of A and the dual cones K+ = −K∗ and
C+ = −C∗ (where ∗ denotes polar) by

F ∗+(y∗) =

{
A∗(y∗)− C+ if y ∈ K+,
∅ if y /∈ K+,
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so that F ∗+(y∗) 3 x∗ if and only if y∗ ≥K+ 0 and A∗(y∗) ≥C+ x∗.

In general, for the system F (x) 3 ȳ, we will be interested in perturbations in
which F is replaced by F + G and ȳ by ȳ + g with G ∈ L(X,Y ) and g ∈ Y . Such
a perturbation, the magnitude of which is quantified with

(4.1) ‖(G, g)‖ = max
{
‖G‖, ‖g‖

}
,

transforms the condition F (x) 3 ȳ to (F + G)(x) 3 ȳ + g and the solution set
F−1(ȳ) to (F + G)−1(ȳ + g), creating infeasibility if (F + G)−1(ȳ + g) = ∅, i.e., if
ȳ + g /∈ rge(F +G).

Such perturbations in the linear-conic context of Example 4.2 were studied by
Renegar [20]. For that case, he introduced a measure of how large (G, g) can be
before the system (F + G)(x) 3 ȳ + g becomes infeasible, and a sizable literature
has since grown around this; see e.g. [10], [9], [19]. We extend Renegar’s definition
to general convex systems as follows.

Definition 4.3 (distance to infeasibility). For F : X ⇒ Y with convex graph and
ȳ ∈ rgeF , the distance to infeasibility of the system F (x) 3 ȳ is the value

(4.2) inf
G∈L(X,Y ), g∈Y

{
‖(G, g)‖

∣∣∣ ȳ + g /∈ rge(F +G)
}
.

It will be essential to our approach in analyzing this value that there would be
no difference if feasibility were replaced by strict feasibility in the definition.

Lemma 4.4 (infeasibility versus strict infeasibility). The distance to infeasibility in
the sense of Definition 4.3 is the same as the distance to strict infeasibility, namely
the value

(4.3) inf
G∈L(X,Y ), g∈Y

{
‖(G, g)‖

∣∣∣ ȳ + g /∈ int rge(F +G)
}
.

Proof. Let S1 denote the set of (G, g) over which the infimum is taken in (4.2) and
let S2 be the corresponding set in (4.3). Obviously S1 ⊂ S2; so the first infimum
cannot be less than the second. We must show that it also cannot be greater. This
amounts to demonstrating that for any (G, g) ∈ S2 and any ε > 0, we can find
(G′, g′) ∈ S1 such that ‖(G′, g′)‖ ≤ ‖(G, g)‖ + ε. In fact, we can get this with
G′ = G simply by noting that when ȳ + g /∈ int rge(F +G) there must exist g′ ∈ Y
with ȳ + g′ /∈ rge(F +G) and ‖g′ − g‖ ≤ ε. �
Corollary 4.5 (reduction to metric regularity). The distance to infeasibility of the
system F (x) 3 ȳ, as in Definition 4.3, is also the value

(4.4) inf
(G,g)∈L(X,Y )×Y

{
‖(g,G)‖

∣∣∣F+G not metrically regular at any x̄ for ȳ + g
}
.

Proof. This is now immediate from Theorem 1.6 (Robinson-Ursescu) and Definition
1.4 of the radius of metric regularity. �

Although Corollary 4.5 expresses the distance to infeasibility in terms of metric
regularity, it does not tie in with our theory of the radius of metric regularity. For
that, we have to pass from F to a special mapping F̄ constructed as a “homoge-
nization” of the convex system F (x) 3 ȳ. We will then be able to apply to F̄ the
result on distance to metric regularity in Theorem 2.9.

Following [25], we denote by F∞ the horizon mapping associated with F , the
graph of F∞ in X × Y being the horizon cone of the graph of F . When F has
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closed, convex graph, this is the same as gphF∞ being the recession cone of gphF
in the sense of convex analysis:

(x′, y′) ∈ gphF∞ ⇔ gphF + (x′, y′) ⊂ gphF.

Definition 4.6 (homogenization). For F : X ⇒ Y and ȳ ∈ rgeF , the homog-
enization of the constraint system F (x) 3 ȳ is the system F̄ (x, t) 3 0, where
F̄ : X × IR ⇒ Y is defined by

(4.5) F̄ (x, t) =


tF (t−1x)− tȳ if t > 0,
F∞(x) if t = 0,
∅ if t < 0,

and the solution sets to the two systems are related by

(4.6) x ∈ F−1(ȳ) ⇔ (x, 1) ∈ F̄−1(0).

Note that if F is positively homogeneous with closed graph, then tF (t−1x) =
F (x) = F∞(x) for all t > 0, so that we simply have F̄ (x, t) = F (x) − tȳ for t ≥ 0
but F̄ (x, t) = ∅ for t < 0.

In what follows, we adopt the norm

(4.7) ‖(x, t)‖ = ‖x‖+ |t| for (x, t) ∈ X × IR.

The case of the next theorem in which the mapping F is sublinear reduces to the
main result of Lewis [16, Thm. 4.5], and further specialization to Example 4.2 then
captures Renegar’s result [20, Thm. 1.3].

Theorem 4.7 (radius characterization of the distance to infeasibility). Let F : X
⇒ Y have closed, convex graph and let ȳ ∈ rgeF . Then in the homogenized system
F̄ (t, x) 3 0, the mapping F̄ is sublinear with closed graph, and

(4.8) ȳ ∈ int rgeF ⇔ 0 ∈ int rge F̄ ⇔ F̄ is surjective.

Furthermore, for the given constraint system F (x) 3 ȳ, one has

(4.9) distance to infeasibility = rad F̄ (0, 0 |0) = 1/ reg F̄ (0, 0 |0).

Proof. The definition of F̄ corresponds to gph F̄ being the closed convex cone in
X×IR×Y that is generated by

{
(x, 1, y−ȳ)

∣∣ (x, y) ∈ gphF
}

. Hence F̄ is sublinear,
and also, rge F̄ is a convex cone. We have (rgeF ) − ȳ = F (X)− ȳ = F̄ (X, 1). So
it is obvious that if ȳ ∈ int rgeF , then 0 ∈ int rge F̄ . Since rge F̄ is a convex cone,
the latter is equivalent to having rge F̄ = Y , i.e., surjectivity.

Conversely now, suppose F̄ is surjective; Theorem 1.6 (Robinson-Ursescu) in-
forms us that in this case, 0 ∈ int F̄ (W ) for every neighborhood W of the ori-
gin in IR × X . It must be verified, however, that ȳ ∈ int rgeF . In terms of
C(t) = F̄ (BX , t) ⊂ Y , it will suffice to show that 0 ∈ intC(t) for some t > 0. Note
that the sublinearity of F̄ implies that

(4.10) C((1− θ)t0 + θt1) ⊃ (1− θ)C(t0) + θC(t1) for 0 < θ < 1.

Our assumption that ȳ ∈ rgeF ensures that F−1(ȳ) 6= ∅. Choose τ ∈ (0,∞) small
enough that 1/(2τ) > d(0, F−1(ȳ)). Then

(4.11) 0 ∈ C(t) for all t ∈ [0, 2τ ],
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whereas, because [−2τ, 2τ ]×BX is a neighborhood W of the origin in IR ×X , we
have

(4.12) 0 ∈ int F̄ (BX , [−2τ, 2τ ]) = int
⋃

0≤t≤2τ

C(t).

We will use this to show that actually 0 ∈ intC(τ). For y∗ ∈ Y ∗ define

σ(y∗, t) := sup
y∈C(t)

〈y, y∗〉, λ(t) := inf
‖y∗‖=1

σ(y∗, t).

The property in (4.10) makes σ(y∗, t) concave in t, and the same then follows for
λ(t). As long as 0 ≤ t ≤ 2τ , we have σ(y∗, t) ≥ 0 and λ(t) ≥ 0 by (4.11). On the
other hand, the union in (4.12) includes some ball around the origin. Therefore,

(4.13) ∃ ε > 0 such that sup
0≤t≤2τ

σ(y∗, t) ≥ ε for all y∗ ∈ Y ∗ with ‖y∗‖ = 1.

We argue next that λ(τ) > 0. If not, then since λ is a nonnegative concave
function on [0, 2τ ], we would have to have λ(t) = 0 for all t ∈ [0, 2τ ]. Supposing
that to be the case, choose δ ∈ (0, ε/2) and, in the light of the definition of λ(τ), an
element ŷ∗ with σ(ŷ∗, τ) < δ. The nonnegativity and concavity of σ(ŷ∗, ·) on [0, 2τ ]
imply then that σ(ŷ∗, t) ≤ (δ/τ)t when τ ≤ t ≤ 2τ and σ(ŷ∗, t) ≤ 2δ− (δ/τ)t when
0 ≤ t ≤ τ . But that gives us σ(ŷ∗, t) ≤ 2δ < ε for all t ∈ [0, 2τ ], in contradiction to
the property of ε in (4.13). Therefore, λ(τ) > 0, as claimed.

We have σ(y∗, τ) ≥ λ(τ) when ‖y∗‖ = 1, and hence by positive homogeneity
σ(y∗, τ) ≥ λ(τ)‖y∗‖ for all y∗ ∈ Y ∗. In this inequality, σ(·, τ) is the support
function of the convex set C(τ), or equivalently of clC(τ), whereas λ(τ)‖ · ‖ is the
support function of λ(τ)BY . It follows therefore that clC(τ) ⊃ λ(τ)BY , so that at
least 0 ∈ int clC(τ).

We invoke next a result of Robinson [22, Lemma 1.1]: If D is a closed convex
subset of X × Y with projections DX and DY on X and Y , and if DX is bounded,
then int clDY = intDY . In taking D =

{
(x, t, y) ∈ gph F̄

∣∣x ∈ BX , t = τ
}

, we
have DX ⊂ BX×{τ} and DY = C(τ). So this allows us to pass from the knowledge
that 0 ∈ int clC(τ) to having 0 ∈ intC(τ), as desired.

We have established (4.8), and turn now to (4.9). The first thing to observe is
that every Ḡ ∈ L(X × IR, Y ) can be identified with a pair (G, g) ∈ L(X,Y ) × Y
under the formula Ḡ(x, t) = G(x)− tg. Moreover, under this identification, we get
‖Ḡ‖ equal to the expression in (4.1), due to the choice of norm in (4.7). The next
thing to observe is that

(F̄ + Ḡ)(x, t) =


t(F +G)(t−1x)− t(ȳ + g) if t > 0,
(F +G)∞(x) if t = 0,
∅ if t < 0,

so that F̄ +Ḡ gives the homogenization of the perturbed system (F +G)(x) 3 ȳ+g.
Therefore, on the basis of what has so far been proved, we have

ȳ + g ∈ int rge(F + G) ⇔ F̄ + Ḡ surjective.

Hence, through Lemma 4.4, the distance to infeasibility for the system F (x) 3 ȳ is
the infimum of ‖Ḡ‖ over all Ḡ ∈ L(X × IR, Y ) such that F̄ + Ḡ is not surjective.
Theorem 2.9 then furnishes the conclusion we wanted in (4.9). �
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Theorem 4.8 (elaborated distance formula). Let F : X ⇒ Y have a closed,
convex graph and let ȳ ∈ rgeF . Define the convex, positively homogeneous function
h : X∗ × Y ∗ → (−∞,∞] by

h(x∗, y∗) = sup
x,y

{
〈x, x∗〉 − 〈y, y∗〉

∣∣ y ∈ F (x)
}
.

Then, for the system F (x) 3 ȳ,
(4.14)

distance to infeasibility = inf
‖y∗‖=1, x∗

max
{
‖x∗‖, h(x∗, y∗) + 〈ȳ, y∗〉

}
.

Proof. By Theorem 4.7, the distance to infeasibility is 1/ reg F̄ (0, 0 |0). On the other
hand, reg F̄ (0, 0 |0) = ‖(F̄ ∗+)−1‖+ for the adjoint mapping F̄ ∗+ : Y ∗ ⇒ X∗× IR; cf.
Proposition 2.7. By definition, (x∗, s) ∈ F̄ ∗+(y∗) if and only if (x∗, s,−y∗) belongs
to the polar cone (gph F̄ )∗. Because gph F̄ is the closed convex cone generated by{

(x, 1, y − ȳ)
∣∣ (x, y) ∈ gphF

}
, this condition is the same as

s+ 〈x, x∗〉 − 〈y − ȳ, y∗〉 ≤ 0 for all (x, y) ∈ gphF,

and can be expressed as s+ h(x∗, y∗) + 〈ȳ, y∗〉 ≤ 0. Hence

(4.15) ‖(F ∗+)−1‖+ = sup
{
‖y∗‖

∣∣∣ ‖(x∗, s)‖ ≤ 1, s+ h(x∗, y∗) + 〈ȳ, y∗〉 ≤ 0
}
,

where the norm ‖(x∗, s)‖ on X∗ × IR dual to the one in (4.7) is ‖(x∗, s)‖ =
max

{
‖x∗‖, |s|

}
. The distance to infeasibility, being the reciprocal of the quan-

tity in (4.15), can be expressed therefore (through the positive homogeneity of h)
as

(4.16) inf
‖y∗‖=1, x∗, s

{
max

{
‖x∗‖, |s|

} ∣∣∣ s+ h(x∗, y∗) + 〈ȳ, y∗〉 ≤ 0
}
.

(In converting from (4.15) to an infimum restricted to ‖y∗‖ = 1 in (4.16), we need
to be cautious about the possibility that there might be no elements (x∗, s, y∗) ∈
gph(F̄ ∗+)−1 with y∗ 6= 0, in which case the infimum in (4.16) is ∞. Is it correct
then that the expression in (4.15) is 0? Yes.) Observe next that, in the infimum
in (4.16), s will be taken to be as near to 0 as possible while maintaining −s ≥
h(x∗, y∗) + 〈ȳ, y∗〉. Thus, |s| will be the max of 0 and h(x∗, y∗) + 〈ȳ, y∗〉, and
max

{
‖x‖, |s|

}
will be the max of these two quantities and ‖x‖—but then the 0 is

superfluous, and we end up with (4.16) equaling the expression on the right side of
(4.14). �

Corollary 4.9 (homogeneous systems). Let F : X ⇒ Y be sublinear with closed
graph and let ȳ ∈ rgeF . Then, for the system F (x) 3 ȳ,

distance to infeasibility = inf
‖y∗‖=1

max
{
d
(
0, F ∗+(y∗)

)
, 〈ȳ, y∗〉

}
.

Proof. In this case, the function h in Theorem 4.8 has h(x∗, y∗) = 0 when x∗ ∈
F ∗+(y∗), but h(x∗, y∗) =∞ otherwise. �

Example 4.10 (linear-conic case). For any constraint system of type x ≥C 0,
A(x) ≤K ȳ, with respect to a continuous linear mapping A : X → Y and closed,
convex cones C ⊂ X and K ⊂ Y ,

distance to infeasibility = inf
y∗∈K+, ‖y∗‖=1

max
{
d(A∗(y∗), C+), 〈ȳ, y∗〉

}
.
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Detail. This specializes to the mapping F in Example 4.2, using the formula for
F ∗+ furnished there. We have d(0, A∗(y∗)− C+) = d(A∗(y∗), C+). �

5. Application to Variational Inequalities

In this section, we let Y = X∗ and consider a continuous mapping f : X → X∗

along with a nonempty, closed, convex set C ⊂ X . We take

(5.1) F (x) := f(x)+NC(x), where NC(x) =

{
normal cone to C at x if x ∈ C,
∅ if x /∈ C.

The normal cone is the usual one of convex analysis, so that

(5.2) x̄ ∈ F−1(ȳ) ⇔ x̄ ∈ C and 〈x− x̄, f(x̄)− ȳ〉 ≥ 0 for all x ∈ C.
In this case, therefore, solving F (x) 3 ȳ amounts to solving the variational inequal-
ity for C and f with “forcing term” ȳ.

The concepts and results in Sections 1–3 can be applied in this framework of
variational inequalities to gain information on how the solution set F−1(ȳ) behaves
with respect to perturbations in ȳ, or perturbations that replace F by F +G, which
amount to replacing f by f +G. Note that F is positively homogeneous when f is
positively homogeneous and C is a cone, but F is sublinear only when f is linear
and C is a subspace of X .

If actually C = X , the variational inequality turns into the equation f(x) = ȳ and
we are back in the context of the Lusternik-Graves theorem, where the derivative
mapping Df(x̄) : X → X∗ enters. Our aim now is to develop results about metric
regularity for more general C in which Df(x̄) and its adjoint Df(x̄)∗ likewise have
a role. Our technique will be to rely on coderivatives, utilizing the Mordukhovich
criterion in Theorem 3.1. So it will be necessary to restrict our analysis to finite-
dimensional X .

Coderivatives of the normal cone mapping NC : x 7→ NC(x) will be needed.
Clearly, when (x̄, ȳ) ∈ gphF we have ȳ − f(x̄) ∈ NC(x̄) and can work with the
coderivative mapping D∗NC(x̄ | ȳ − f(x̄)) : X ⇒ X∗.

Theorem 5.1 (regularity radius for variational inequalities). Suppose dimX <
∞, and let f be continuously differentiable. Then, for the mapping F in (5.1) and
any (x̄, ȳ) ∈ gphF ,

(5.3) radF (x̄ | ȳ) = inf
‖u‖=1

d
(
−Df(x̄)∗(u), D∗NC(x̄ | v̄)(u)

)
, where v̄ = ȳ − f(x̄).

Proof. Because F = f + NC , we have D∗F (x̄ | ȳ) = Df(x̄)∗ + D∗NC(x̄ | v̄) for
v̄ = ȳ−f(x̄) through the coderivative calculus in [25, 10.43(b)]. Hence by Theorem
3.1, regF (x̄ | ȳ) equals ‖(Df(x̄)∗+D∗NC(x̄ | v̄))−1‖+. Proposition 2.5 then gives us

regF (x̄ | ȳ)−1 = inf
‖u‖=1

d
(
0, Df(x̄)∗(u) +D∗NC(x̄ | v̄)(u)

)
.

Since d
(
0, Df(x̄)∗(u) + D∗NC(x̄ | v̄)(u)

)
= d

(
− Df(x̄)∗(u), D∗NC(x̄ | v̄)(u)

)
and

radF (x̄ | ȳ) = 1/ regF (x̄ | ȳ) by Theorem 1.5, we get (5.3). �

Corollary 5.2 (effect of first-order approximations). Under the assumptions in
the theorem about F = f +NC, one has

radF (x̄ | ȳ) = rad Φ(x̄ | ȳ) for Φ = ϕ+NC
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whenever ϕ : IRn → IRn is continuously differentiable with ϕ(x̄) = f(x̄) and
DΦ(x̄) = Df(x̄). In particular, this holds for the linearization ϕ(x) = f(x̄) +
Df(x̄)(x− x̄).

Proof. The radius formula in the theorem depends on f only through Df(x̄). �
Especially worthy of attention here is a connection with the following property,

which we define in general although planning for now to use it only for F of the
type in (5.1).

Definition 5.3 (strong metric regularity). A mapping F : X ⇒ Y will be called
strongly metrically regular at x̄ for ȳ, where (x̄, ȳ) ∈ gphF , if it is metrically regular
and neighborhoods X0 of x̄ and Y0 of ȳ exist such that for each y ∈ Y0 there is only
one x ∈ X0 in F−1(y).

Through the characterization in (1.4) of metric regularity by way of the Aubin
property, this means equivalently that F−1 has a single-valued localization around
(ȳ, x̄) that is Lipschitz continuous. (To say that a mapping has a single-valued
localization around a point in its graph is to say that the intersection of the graph
with some neighborhood of the point is the graph of a single-valued mapping defined
on a neighborhood of the domain-projection of that point.)

The next theorem underscores the importance of this concept for variational
inequalities

(5.4) g(w, x) +NC(x) 3 y
having not only y but possibly an additional element w as parameters. The proof re-
lies on results about polyhedral variational inequalities in the Dontchev-Rockafellar
paper [8].

Theorem 5.4 (strong metric regularity from polyhedral convexity). Let dimX <
∞, and let F be of the form (5.1) with f continuously differentiable and C polyhe-
dral. Then at any (x̄, ȳ) ∈ gphF , metric regularity implies strong metric regularity.
Moreover, radF (x̄ | ȳ) is in this case the largest radius r > 0 such that for any con-
tinuously differentiable mapping g : IRd × IRn → IRn (any d) and any w̄ ∈ IRd

satisfying

(5.5) g(w̄, x̄) = f(x̄), ‖Dxg(w̄, x̄)−Df(x̄)‖ < r,

the solution mapping for the parameterized variational inequality in (5.4), namely

(5.6) S : (y, w) 7→
{
x
∣∣ g(w, x) +NC(x) 3 y

}
,

has a single-valued localization at (ȳ, w̄, x̄) that is Lipschitz continuous.

Proof. For g : IRd × IRn → IRn continuously differentiable and w̄ ∈ IRd, consider
the partial linearization

(5.7) fg(x) = g(w̄, x̄) +Dxg(w̄, x̄)(x− x̄).

By [8, Theorems 1 and 3], the solution mapping S in (5.6) has a single-valued
localization at (ȳ, w̄, x̄) that is Lipschitz continuous if and only if the mapping
y 7→

{
x
∣∣ fg(x) +NC(x) 3 y

}
has the Aubin property at ȳ for x̄, or in other words,

Fg = fg +NC is metrically regular at x̄ for ȳ. Here Fg = F +Gg for Gg = [fg − f ]
and lipGg(x̄) = ‖Dxg(w̄, x̄)−Df(x̄)‖. We know from Theorem 1.5 that radF (x̄ | ȳ)
is the largest radius r > 0 such that for any G : X → Y with lipG(x̄) < r, F +G
is metrically regular at x̄ for ȳ + G(x̄). It follows that radF (x̄ | ȳ) is the largest
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radius r > 0 such that the conditions in (5.5) guarantee a single-valued Lipschitzian
localization in (5.6).

When g(w, x) ≡ f(x), we have S(y, w) = F−1(y). From this special case, we
deduce, in particular, that if F is metrically regular at x̄ for ȳ, then it is strongly
metrically regular there. �

The single-valued Lipschitzian localization property of solution mappings S of
the kind in (5.6), as implied by the corresponding property of Fg = fg + NC with
fg as in (5.7), is what Robinson, that topic’s pioneer, called in [23] the strong
regularity of the parameterized variational inequality in (5.4). Theorem 5.4 reveals
that the notion of strong metric regularity that we have introduced in Definition
5.3, although posed in a different context, resonates closely with Robinson’s notion.

The results in [8] also furnish for polyhedral C a description of coderivatives of
the mapping NC , which can be brought into the formula in Theorem 5.4.

Proposition 5.5 (coderivative formula). Let dimX < ∞ and let C ⊂ X be
a nonempty, convex set that is polyhedral. Let v̄ ∈ NC(x̄) and let K(x̄, v̄) be the
associated critical cone to C, which is the polyhedral convex cone given by K(x̄, v̄) ={
u ∈ TC(x̄)

∣∣ 〈u, v̄〉 = 0
}
, where TC(x̄) is the tangent cone to C at x̄. Let K be the

(finite) collection of all polyhedral (convex) cones K such that K = K ′ − K ′′ for
closed faces K ′ and K ′′ of K(x̄, v̄) with K ′ ⊃ K ′′. Then

(5.8) w ∈ D∗NC(x̄ | v̄)(u) ⇔ ∃K ∈ K with− u ∈ K, w ∈ K∗,
and, in particular, domD∗NC(x̄ | v̄) = K(x̄, v̄) − K(x̄, v̄), this being the subspace
generated by K(x̄, v̄) and also the largest of the cones K ∈ K.

Proof. Although not explicit in [8], this is the chief content of the proof of Theorem
2 there. �
Theorem 5.6 (radius formula from polyhedral convexity). Let dimX < ∞, and
let F be of form (5.1) with f continuously differentiable and C polyhedral. Let F be
metrically regular at x̄ for ȳ, and let K be defined as in Proposition 5.5 with respect
to v̄ = ȳ − f(x̄). Then

(5.9) radF (x̄ | ȳ) = min
K∈K

ρK
(
Df(x̄)∗

)
, where ρK(A) = min

u∈K, ‖u‖=1
d
(
A(u),K∗

)
.

Proof. This simply combines the coderivative description in Proposition 5.5 with
the formula in Theorem 5.1. �

The challenges in applying the formula in Theorem 5.6 are to identify the cone
collectionK and to compute the quantities ρK(A) for A = Df(x̄)∗. When C is a box
(a product of nonempty, closed intervals, not necessarily bounded), the collection
K is easy to determine and the cones K it contains are very simple, being boxes
themselves and thus the product of intervals of the form (−∞,∞), [0,∞), (−∞, 0]
or [0, 0] (singleton); cf. [8]. The nature of ρK(A), on the other hand, is illuminated
by the following fact.

Proposition 5.7 (cone restrictions). Let X be a Euclidean space (finite-dimen-
sional with a Euclidean norm), and identify X∗ with X. Let K be a closed convex
cone in X, and let PK be the (nearest point) projection mapping from X onto K.
Then for any A ∈ L(X,X), the quantity ρK(A) defined in (5.9) has the alternative
expression

(5.10) ρK(A) = 1/‖A−1
K ‖+,
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where AK is the positively homogeneous mapping defined on X by

(5.11) AK(u) =

{
PK(A(u)) if u ∈ K,
∅ if u /∈ K.

In particular, ρK(A) > 0 if and only if AK is nonsingular.

Proof. It is enough to observe that d(w,K∗) = ‖PK(w)‖ in this Euclidean setting.
The formula then follows from Proposition 2.5 as applied to AK , with reference
also to Definition 2.2. �

Corollary 5.8 (subspace restrictions). In the case of the proposition where K is a
subspace of X, so that the mapping AK : K → K is linear,

(5.12) ρK(A) = radAK =

{
1/‖A−1

K ‖ if AK is nonsingular,
0 if AK is singular.

Example 5.9 (radius in the nondegenerate case). Suppose in Theorem 5.6 that X
is Euclidean and the variational inequality

F (x) 3 ȳ for F (x) = f(x) +NC(x)

is nondegenerate at its solution x̄, in the sense that the critical cone K(x̄, v̄) is a
subspace. Then

(5.13) radF (x̄ | ȳ) = radAK for A = Df(x̄)∗ and K = K(x̄, v̄).

Detail. In this case, the collectionK in Proposition 5.5 has only one element, namely
K = K(x̄, v̄). We specialize (5.9) to this case and apply the formula in Corollary
5.8. �

The nondegenerate case in Example 5.9 is generic for polyhedral variational
inequalities. All the complications in (5.9) not covered by the simple formula (5.13)
are thus associated with various types of degeneracy.

As a more specific illustration of how the formula in Theorem 5.6 might be used
to calculate the radius of metric regularity, consider the nonlinear programming
problem

(5.14) minimize ψ0(z) subject to ψi(z)

{
= 0 for i ∈ [1, r],
≤ 0 for i ∈ [r + 1,m],

where ψi : IRn → IR, i = 0, 1, . . . ,m, are C2 functions. In terms of the Lagrangian
function

L(z, λ) = ψ0(z) +
m∑
i=1

λiψi(z),

the first-order (Karush-Kuhn-Tucker) optimality condition for the problem (5.14)
at a point z̄ concerns the existence of a multiplier vector λ̄ satisfying

∇zL(z̄, λ̄) = 0, ∇λL(z̄, λ̄) ∈ NΛ(λ̄), where Λ = IRr × IRm−r+ .

This gradient condition is the variational inequality (5.1) with respect to x = (z, λ)
for

f(x) = (∇xL(z, λ),−∇λL(z, λ)), C = IRn × Λ, x̄ = (z̄, λ̄), ȳ = (0, 0).
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To compute the radius of the metric regularity of F := f+NC at x̄ for ȳ, we appeal
to (5.9). The cone collection K has been described in [8, Theorem 5] as follows.
Define the index sets

I1 = {i ∈ [r + 1,m] | ψi(z̄) = 0, λ̄i > 0} ∪ {1, · · · , r},
I2 = {i ∈ [r + 1,m] | ψi(z̄) = 0, λ̄i = 0},
I3 = {i ∈ [r + 1,m] | ψi(z̄) < 0}.

Then every cone K in the collection K is defined by a partition I of {1, 2, · · · ,m}
into index sets I ′1, I ′2, I ′3 with the property I1 ⊂ I ′1 ⊂ I1 ∪ I2 and I3 ⊂ I ′3 ⊂ I2 ∪ I3
in the following way:

(z′, λ′) ∈ K ⇐⇒


z′ free,
λ′i free for i ∈ I ′1,
λ′i ≥ 0 for i ∈ I ′2,
λ′i = 0 for i ∈ I ′3.

Then

(z′′, λ′′) ∈ K∗ ⇐⇒


z′′ = 0,
λ′′i = 0 for i ∈ I ′1,
λ′′i ≤ 0 for i ∈ I ′2,
λ′′i free for i ∈ I ′3.

Using this particular form of the cone K and its polar, and taking the norm to be
the canonical Euclidean norm, we see that for a given x′ = (z′, λ′) ∈ K a simple
rearrangement gives

d(Df(x̄)∗(x′),K∗)2 = ‖∇2
zzL(z̄, λ̄)z′ −

∑
i∈I′1∪I′2

λ′i∇ψi(z̄)‖2

+
∑
i∈I′1

〈∇ψi(z̄), z′〉2 +
∑
i∈I′2

max{0, 〈∇ψi(z̄), z′〉}2.

This expression can in principle be utilized in (5.9). Further simplifications may be
available here and in other special cases, but we leave that for future investigation.
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