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Abstract

A function, F, on the space of n× n real symmetric matrices is called spectral if it depends
only on the eigenvalues of its argument, that is F(A) = F(UAUT) for every orthogonal U
and symmetric A in its domain. Spectral functions are in one-to-one correspondence with
the symmetric functions on Rn: those that are invariant under arbitrary swapping of their
arguments. In this paper, we show that a spectral function has a quadratic expansion around
a point A if and only if its corresponding symmetric function has quadratic expansion around
λ(A) (the vector of eigenvalues). We also give a concise and easy to use formula for the
‘Hessian’ of the spectral function. In the case of convex functions we show that a positive
definite ‘Hessian’ of f implies positive definiteness of the ‘Hessian’ of F. © 2002 Elsevier
Science Inc. All rights reserved.

Keywords: Spectral function; Matrix analysis; Eigenvalue; Hessian; Quadratic expansion; Unitarily
invariant

1. Introduction

In this work, we investigate a property of functions F on the real vector space of
symmetric matrices that are orthogonally invariant:

F(UTAU) = F(A) for all A symmetric and U orthogonal.

Every such function can be decomposed as
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F(A) = (f ◦ λ)(A),
where λ is the map that gives the eigenvalues of the matrix A and f is a permutation
invariant function. (See Section 2 for more details.) We call such functions F spectral
functions (or just functions of eigenvalues) because de facto they depend only on the
spectrum of the operator A. (All the results we present in this paper have parallel
versions for unitarily invariant functions on the space of Hermitian matrices, with
essentially identical proofs.)

In the past, such functions have been of interest for example to people work-
ing in the field of quantum mechanics [8,15]. With developments in semidefinite
programming, functions of eigenvalues became an inseparable part of mathemati-
cal programming. Optimization problems now often involve spectral functions like
log det(A), the largest eigenvalue of the matrix argument A, or the constraint that A
must be positive definite and so on. Remarkably, many properties of the function f
are inherited by the spectral function F. For example, this holds for differentiabili-
ty and convexity [9], various types of generalized differentiability [10], analyticity
[20], various second-order properties [17–19], and so on. Second-order properties
of matrix functions are of great interest for optimization because the application of
Newton’s method and recent interior point methods [12] requires that we know the
second-order behaviour of the functions involved in the mathematical model.

The standard reference for the behaviour of the eigenvalues of a matrix subject
to perturbations in a particular direction is Ref. [7]. Second-order properties of ei-
genvalue value functions in a particular direction are derived in [19]. What interests
us in this paper is a second-order property of spectral functions subject to perturba-
tion by an arbitrary matrix. Analytical properties subject to matrix perturbations are
discussed in [20]. In some sense our result about spectral functions having quadratic
expansions lies between the results in [9] and the results in [20]. In a parallel paper
[11], we show that F is twice differentiable if and only if f is, and also that F ∈ C2

if and only if f ∈ C2.
Many functions have quadratic expansions. For example a theorem of Alexandrov

[1] states that every finite, convex function on an open subset of Rn has quadratic
expansion at almost every point. Notice that it is not necessary for a function to be
twice differentiable in order to have quadratic expansion. For example, the function

f (x) =
{
x3 sin(1/x) if x �= 0,
0 if x = 0

has quadratic expansion around x = 0 but is not twice differentiable there. On the
other hand being twice differentiable at x implies having quadratic expansion at x.

2. Notation and definitions

Let Sn be the Euclidean space of all n× n symmetric matrices with inner prod-
uct 〈A,B〉 = tr (AB), and for A ∈ Sn denote by λ(A)T = (λ1(A), . . . , λn(A)) the
vector of its eigenvalues ordered in nonincreasing order. (All vectors in this paper
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are assumed to be column vectors unless stated otherwise and Aij will denote the
(i, j)th entry of the matrix A.) For any vector x in Rn, Diag x will denote the diagonal
matrix with the vector x on the main diagonal, and x̄ will denote the vector with the
same entries as x ordered in nonincreasing order, that is x̄1 � x̄2 � · · · � x̄n. Let Rn↓
denote the convex cone of all vectors x in Rn such that x1 � x2 � · · · � xn. The
following definition explains the property that interests us in this paper.

Definition 2.1. We say that a function f : Rn→ R has a weak quadratic expansion
at the point x if there exist a vector ∇f (x) and a symmetric matrix ∇2f (x) such that
for small h ∈ Rn

f (x + h) = f (x)+ 〈∇f (x), h〉 + 1
2 〈h,∇2f (x)h〉 + o(‖h‖2),

and a strong quadratic expansion at the point x if

f (x + h) = f (x)+ 〈∇f (x), h〉 + 1
2 〈h,∇2f (x)h〉 + O(‖h‖3).

The vector h is called a perturbation vector.

A few comments on this definition are necessary. Clearly having a strong quadrat-
ic expansion implies a weak quadratic expansion. We want to alert the reader that
a function may not be twice differentiable at the point x but still possesses a strong
quadratic expansion at this point. (See the example at the end of Section 1.) It is clear
that if the function has quadratic expansion at the point x, then it is differentiable at
x and its gradient is the vector ∇f (x) from the above definition. If the function
has a weak quadratic expansion, then there is a unique vector ∇f (x) and a unique
symmetric matrix ∇2f (x) (the Hessian) for which the expansion holds. There is
a slight abuse of notation when we call ∇2f (x) the Hessian of f, but no danger
of confusion exists, at least when f is twice continuously differentiable around x,
because then consideration of the Taylor expansion shows that the symmetric matrix
∇2f (x) is exactly the Hessian. Finally, another way to write the quadratic expansion
of a function f, consistent with [12], is

f (x + h) = f (x)+ ∇f (x)[h] + 1
2∇2f (x)[h, h] + O(‖h‖3). (1)

We give some less common notation which will be used throughout the paper.
These are taken directly from [19]. We are interested in quadratic expansions of
matrix functions f ◦ λ around a matrix A. (In all of our preliminary results the matrix
A will be a diagonal matrix, Diagµ.) Let H ∈ Sn be the perturbation matrix. Fix a
number m∈N, 1�m�n and let the “block structure” of the vector λ(A) be given by

λ1(A)= · · · = λk1(A) > · · · > λkl−1+1(A) = · · · = λm(A)

= · · · = λkl (A) > · · · λkr (A) (k0 = 0, kr = n).

That is, the eigenvalue λm(A) lies in the lth block of equal eigenvalues. Let X =
[x1, . . . , xn] be an orthogonal matrix such that XTAX = Diag λ(A) (so xi is a unit
eigenvector corresponding to λi(A)) and let
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Xl =
[
xkl−1+1, . . . , xkl

]
.

Let Ul = [v1, . . . , vkl−kl−1] be a (kl − kl−1)× (kl − kl−1) orthogonal matrix such
that

UT
l (X

T
l HXl )Ul = Diag λ(XT

l HXl ).

Set Hl :=XT
l HXl , 1 � l � r , and suppose

λ1(Hl)= · · · = λtl,1(Hl) > · · · > λtl,j−1+1(Hl) = · · · λm−kl−1(Hl) · · ·
= λtl,j (Hl) > · · · λtl,sl (Hl) (tl,0 = 0, tl,sl = kl − kl−1).

Finally let

Ul,j =
[
vtl,j−1+1, . . . , vtl,j

]
.

We should point out that Xl = Xl(A,m), and Ul,j = Ul,j (A,H,X,m) but from
now on we will write only Xl and Ul,j to simplify the notation.

By A† we denote the Moore–Penrose generalized inverse of the matrix A. For
more information on the topic, see [16, p. 102]. But for our needs, because we will
be working only on symmetric matrices, the concept can be quickly explained. First,
(Diag x)†

i,j is equal to 1/xi if i = j and xi �= 0, and is 0 otherwise. Second, for

any orthogonal matrix U that diagonalizes A, we have A† = (UDiag λ(A)UT)† :=
U(Diag λ(A))†UT.

3. Supporting results

Let A be in Sn and its eigenvalues have the following block structure

λ1(A) = · · · = λk1(A) > λk1+1(A) = · · · = λk2(A) > λk2+1(A) · · · λkr (A),
where kr = n. All our results rest on the fact that for every block l = 1, . . . , r , the
following two functions have quadratic expansion at A:

σkl (·) =
kl∑
i=1

λi(·),

Sl(·) =
kl∑

i=kl−1+1

λ2
i (·).

We are going to give three independent justifications of this fact and two of them
will show that these functions are even analytic at A. We call a function of several
real variables analytic at a point if it is given locally by the sum of a power series
expansion: the term holomorphic is the corresponding complex variable notion. For
every index m = 1, . . . , n and every block l = 1, . . . , r define the functions
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fm(x) =
m∑
i=1

x̄i ,

sl(x) =
kl∑

i=kl−1+1

x̄2
i .

The function fm is the sum of the m largest entries in x. The functions fm and sl(x)

are symmetric. (A function f is symmetric if f (x) = f (Px) for any permutation
matrix P. We denote the set of all n× n permutation matrices by P(n).) It is clear
that if the point x is such that x̄m > x̄m+1, then fm is linear near x (by which we mean
that it agrees with some linear function on a neighbourhood of x). In particular, for
points x near λ(A) the functions fkl (x) and sl(x) are both polynomials in the entries
of x. Notice also that

σkl (·) = (fkl ◦ λ)(·),
Sl(·) = (sl ◦ λ)(·).

The first justification comes from the following result in [11, Theorem 3.3].

Theorem 3.1. The symmetric function f : Rn→ R is twice continuously differen-
tiable around the point λ(A) if and only if f ◦ λ is twice continuously differentiable
around the point A.

Since fkl is a symmetric function that is twice continuously differentiable around
λ(A) (being locally linear), the theorem above shows that σkl is twice continuously
differentiable around A. A similar argument applies to Sl .

The second justification is from [20, Theorem 2.1].

Theorem 3.2. Suppose f : Rn→ R is a function analytic at the point λ(A) for
some A in Sn. Suppose also f (Px) = f (x) for every permutation matrix P for which
Pλ(A) = λ(A). Then the function f ◦ λ is analytic at A.

As before, we know that the function fkl is symmetric, and analytic, being locally
linear, so the theorem above shows that σkl is analytic at A. The argument for Sl is
similar.

For the third justification, we use the standard algebraic fact that every symmetric
polynomial in several variables can be written as a polynomial in the elementary
symmetric functions. We also use the following result [2]. Until the end of this sec-
tion only, λi(X) will denote an arbitrary eigenvalue of a matrix X, not necessarily
the ith largest one.

Theorem 3.3 (Arnold [2]). Suppose that A ∈ Cn×n has q eigenvalues λ1(A), . . . ,

λq(A) (counting multiplicities) in an open set � ⊂ C, and the remaining n− q
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eigenvalues not in the closure of �. Then there is a neighbourhood � of A and
holomorphic mappings S : �→ Cq×q and T : �→ C(n−q)×(n−q) such that for all
matrices X ∈ �,

X is similar to

(
S(X) 0

0 T (X)

)
,

and S(A) has eigenvalues λ1(A), . . . , λq(A).

Using Arnold’s theorem we can prove that in fact the functions σkl and Sl are
holomorphic around A.

Theorem 3.4. With the assumptions of Arnold’s Theorem, for every symmetric poly-
nomial p : Cq → C, the function (p ◦ λ)(S(X)) is holomorphic around A.

Proof. It suffices to prove the theorem in the case of an elementary symmetric
polynomial, since any symmetric polynomial is a polynomial in the elementary sym-
metric functions (see for example [6, Proposition V.2.20.(ii)]). By continuity of the
eigenvalues, any matrix X close to A has q eigenvalues in � and the remainder outside
its closure. Thus for every i = 1, . . . , n we can define a function λi : Cn×n→ C

such that for matrices X near A, {λi(X)}ni=1 are the eigenvalues of X, and {λi(X)}qi=1
are the eigenvalues of S(X). So the elementary symmetric functions of λ1(X), . . . ,

λq(X) are the coefficients of the characteristic polynomial det(λI − S(X)) (as can
be seen by writing the characteristic polynomial as a product of linear factors). Since
S(·) is holomorphic, so, for any fixed λ, is the characteristic polynomial det(λI −
S(·)), and hence so is each of its coefficients, as required. �

To deduce the results we need by this approach, we could for example apply it
with the set

� = {z : Re z > 1
2 (λkl (A)+ λkl+1(A))}.

Then the eigenvalues in � are exactly the largest kl , so σkl (X) = trace(S(X)) for all
matrices X close to A. Thus σkl is holomorphic near A. A similar argument applies
to Sl .

4. Quadratic expansion of spectral functions

Our goal in this section is to prove the main result of the paper.

Theorem 4.1 (quadratic expansion). The symmetric function f : Rn→ R has a
strong quadratic expansion at the point x = λ(Y )(Y ∈ Sn) if and only if f ◦ λ has a
strong quadratic expansion at Y, and in this case

∇(f ◦ λ)(Y )[H ] = tr (H̃Diag∇f (µ)),
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∇2(f ◦ λ)(Y )[H,H ] =
n∑

p,q=1

h̃ppf
′′
pq(µ)h̃qq +

∑
p �=q
µp=µq

bph̃
2
pq

+
∑

p,q:µp �=µq

f ′p(µ)− f ′q(µ)
µp − µq

h̃2
pq,

where µ = λ(Y ), H̃ = UTHU, Y = U(Diagµ)UT, U orthogonal, and the vector b
is defined in Lemma 4.8. The analogous result holds for the weak quadratic expan-
sion.

We will only discuss about the strong quadratic expansions in this paper: the
development for the weak version is analogous. We need the following result from
[19, Remark 6].

Lemma 4.2. Every eigenvalue, λm(Y ), of a symmetric matrix, Y, has the following
expansion in the direction of the symmetric matrix H:

λm(Y + tH) = λm(Y )+ tλm−kl−1(X
T
l HXl)

+ 1
2 t

2λm−kl−1−tl,j−1

(
2UT

l,jX
T
l H(λm(Y )I − Y )†HXlUl,j

)
+O(t3), (2)

where the meaning of Xl and Ul,j is explained in the previous section.

Definition 4.3 [10]. We say that the vector µ ∈ Rn block refines the vector b ∈ Rn if
µi = µj implies bi = bj for all i, j ∈ {1, . . . , n}. Equivalently

Pµ = µ ⇒ Pb = b for all P ∈ P(n).

Next we give a technical lemma that will allow us to cut down on the notation.

Lemma 4.4. Let µ ∈ Rn be such that

µ1 = · · · = µk1 > µk1+1 = · · · = µk2 > µk2+1 · · ·µkr (k0 = 0, kr = n),

and let the vector b ∈ Rn be block refined by µ. Let H ∈ Sn be an arbitrary matrix
and Xi = [eki−1+1, . . . , eki ] for every i = 1, . . . , r . Then we have the identities

〈H, bkl (µkl I − Diagµ)†HXlX
T
l 〉 =

kl∑
p=kl−1+1

n∑
q=1

µq �=µp

bp

µp − µq

h2
pq,

〈
H,

r∑
i=1

bki (µki I − Diagµ)†HXiX
T
i

〉
=

∑
p,q:µp>µq

bp − bq

µp − µq

h2
pq.
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Proof. The product XiX
T
i is an n× n matrix with zero entries, except (XlX

T
l )

p,p =
1 for p = ki−1 + 1, . . . , ki . Thus the columns of HXiX

T
i are zero vectors, except

the columns with indices p = ki−1 + 1, . . . , ki which are equal to the corresponding
columns of H. The matrix bki (µki I − Diagµ)† is equal to

Diag

(
bki

µki − µ1
, . . . ,

bki

µki − µki−1

, 0, . . . , 0,
bki

µki − µki+1
, . . . ,

bki

µki − µkr

)
.

Consequently we have

〈H, bki (µki I − Diagµ)†HXiX
T
i 〉

=
ki∑

p=ki−1+1

n∑
q=1

µq �=µp

bki

µki − µq

h2
pq

=
ki∑

p=ki−1+1


ki−1∑
q=1

−bp
µq − µp

h2
pq +

n∑
q=ki+1

bp

µp − µq

h2
pq


 r.

and the first identity follows. The second identity follows by summing over i. �

Our first goal is to find a formula for the Hessian of σkl , 1 � l � r . We denote
the standard basis in Rn by e1, e2, . . . , en. As a byproduct in the following lemma
we derive a formula for the derivative of the function σkl at the point Diagµ. This
formula had appeared many times in the literature: see for example Corollary 3.10
in [5], or the proof of Corollary 3.3 in [9]. The expression for the Hessian is also
known, see Formula (3.28) in [13]. Here we present yet another way of deriving it.

Lemma 4.5. For a real vector µ ∈ Rn, such that

µ1 = · · · = µk1 > µk1+1 = · · · = µk2 > µk2+1 · · ·µkr (k0 = 0, kr = n),

the function

σkl (·) =
kl∑
i=1

λi(·)

is analytic at the matrix Diagµ with first and second derivatives satisfying

∇σkl (Diagµ)[H ] = tr


H Diag

kl∑
i=1

ei


 ,

∇2σkl (Diagµ)[H,H ] = 2
kl∑

p=1

n∑
q=kl+1

h2
qp

µp − µq
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= tr

(
2H

l∑
i=1

(µki I − Diagµ)†HXiX
T
i

)
,

where Xi = [eki−1+1, . . . , eki ].

Proof. The fact that σkl is analytic at the point Diagµ follows from Section 3. Next,
summing Eqs. (2) with Y = Diagµ, for m = 1, . . . , kl and using the fact that X = I

(so Xi = [eki−1+1, . . . , eki ]), we get

σkl (Diagµ+ tH)

=
kl∑
i=1

λi(Diagµ+ tH)

= σkl (Diagµ)+ t

l∑
i=1

tr
(
XT
i HXi

)

+ 1
2 t

2
l∑

i=1

si∑
j=1

ti,j−ti,j−1∑
v=1

λv

(
2UT

i,jX
T
i H(µkI−Diagµ)†HXiUi,j

)
+ O(t3)

= σkl (Diagµ)+ t

〈
Diag

kl∑
i=1

ei, H

〉

+ 1
2 t

2
l∑

i=1

si∑
j=1

tr
(

2UT
i,jX

T
i H(µki I − Diagµ)†HXiUi,j

)
+ O(t3).

We concentrate on the double sum above.

l∑
i=1

si∑
j=1

tr
(

2UT
i,jX

T
i H(µki I − Diagµ)†HXiUi,j

)

=
l∑

i=1

si∑
j=1

tr
(

2XT
i H(µki I − Diagµ)†HXiUi,jU

T
i,j

)

=
l∑

i=1

tr


2XT

i H(µki I − Diagµ)†HXi

si∑
j=1

Ui,jU
T
i,j



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=
l∑

i=1

tr
(

2XT
i H(µki I − Diagµ)†HXi

)

= tr

(
2H

l∑
i=1

(µki I − Diagµ)†HXiX
T
i

)

=
kl∑

p=1

n∑
q=1

µq �=µp

2

µp − µq

h2
qp

= 2
kl∑

p=1

n∑
q=kl+1

h2
qp

µp − µq

.

The next to last equality follows from Lemma 4.4, with b = (2, . . . , 2), and the last
equality after cancelling all terms with opposite signs. By the uniqueness of the
Hessian in the quadratic expansion of a function, we conclude that the last expression
above must be indeed the Hessian. �

Note 4.6. Notice that the Hessian above is a positive semidefinite quadratic form.
This is not a surprise since a well-known result of Fan [4] says that σm is a convex
function for all m = 1, . . . , n.

Lemma 4.7. For a real vector µ ∈ Rn, such that

µ1 = · · · = µk1 > µk1+1 = · · · = µk2 > µk2+1 · · ·µkr (k0 = 0, kr = n),

the function

Sl(·) =
kl∑

m=kl−1+1

λ2
m(·)

is analytic at the matrix Diagµ, with first and second derivatives satisfying

∇Sl(Diagµ)[H ] = 2µkl tr


HDiag

kl∑
i=kl−1+1

ei


 ,

∇2Sl(Diagµ)[H,H ] = 2
kl∑

p,q=kl−1+1

h2
qp + 4

kl∑
p=kl−1+1

n∑
q=1

µp �=µq

µp

µp − µq

h2
qp

= 〈H, 2XlX
T
l HXlX

T
l + 4µkl (µkl I − Diagµ)†HXlX

T
l 〉,

where Xl = [ekl−1+1, . . . , ekl ].
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Proof. The analyticity of S(·) at the point Diagµ follows from Section 3. Next,
summing the squares of Eqs. (2) with A = Diagµ, for m = 1, . . . , kl and using the
fact that X = I (so Xi = [eki−1+1, . . . , eki ]), we get

kl∑
m=kl−1+1

λ2
m(Diagµ+ tH)

=
kl∑

m=kl−1+1

(
µkl + tλm−kl−1(X

T
l HXl )

+ 1
2 t

2λm−kl−1−tl,j−1

(
2UT

l,jX
T
l H(µkl I − Diagµ)†HXlUl,j

)
+ O(t3)

)2

= (kl − kl−1)µ
2
kl
+ t2

kl∑
m=kl−1+1

λ2
m−kl−1

(XT
l HXl )

+2tµkl

kl∑
m=kl−1+1

λm−kl−1(X
T
l HXl)

+t2µkl

sl∑
j=1

tl,j−tl,j−1∑
v=1

λv

(
2UT

l,jX
T
l H(µkl I − Diagµ)†HXlUl,j

)
+ O(t3).

We recall the fact that for every symmetric n× n matrix Q we have
n∑

i=1

λ2
i (Q) = 〈Q,Q〉.

We use this fact to evaluate the second summand in the formula above.
kl∑

m=kl−1+1

λ2
m−kl−1

(XT
l HXl) = 〈XT

l HXl,X
T
l HXl〉 = 〈H,XlX

T
l HXlX

T
l 〉.

Observe as in Lemma 4.5 that for the fourth summand in the formula above, we have

sl∑
j=1

tl,j−tl,j−1∑
v=1

λv

(
2UT

l,jX
T
l H(µkl I − Diagµ)†HXlUl,j

)

=
sl∑

j=1

tr
(

2UT
l,jX

T
l H(µkl I − Diagµ)†HXlUl,j

)

= tr
(

2XT
l H(µkl I − Diagµ)†HXl

)
.

Substituting everything in the original formula we get
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kl∑
m=kl−1+1

λ2
m(Diagµ+ tH)

= (kl − kl−1)µ
2
kl
+ t2

〈
H,XlX

T
l HXlX

T
l

〉
+2tµkl

〈
Diag

kl∑
i=kl−1+1

ei, H

〉

+t2µkl

〈
H, 2(µkl I − Diagµ)†HXlX

T
l

〉+ O(t3)

= (kl − kl−1)µ
2
kl
+ 2tµkl

〈
Diag

kl∑
i=kl−1+1

ei, H

〉

+ 1
2 t

2〈H, 2XlX
T
l HXlX

T
l + 4µkl (µkl I − Diagµ)†HXlX

T
l

〉+ O(t3).

Using Lemma 4.4, with b = 4µ, we conclude that

∇2Sl(Diagµ)[H,H ] = 2
kl∑

p,q=kl−1+1

h2
qp + 4

kl∑
p=kl−1+1

n∑
q=1

µp �=µq

µp

µp − µq

h2
qp.

By the uniqueness of the Hessian in the quadratic expansion of a function, we con-
clude that the last expression above must be indeed the Hessian. �

Lemma 4.8. Let f : Rn→ R be a symmetric function having quadratic expansion
at the point µ ∈ Rn↓, where

µ1 = · · · = µk1 > µk1+1 = · · · = µk2 > µk2+1 · · ·µkr (k0 = 0, kr = n),

and let P be a permutation matrix such that Pµ = P . Then:
(i) ∇f (µ) = P T∇f (µ), and

(ii) ∇2f (µ) = P T∇2f (µ)P .
In particular we can write

∇2f (µ) =



a11E11 + bk1I1 a12E12 · · · a1rE1r

a21E21 a22E22 + bk2I2 · · · a2rE2r
...

...
. . .

...

ar1Er1 ar2Er2 · · · arrRrr + bkr Ir


 ,

where each Euv is a (ku − ku−1)× (kv − kv−1) matrix of all ones, (aij)
r,r
i,j=1 is a

real symmetric matrix, b := (b1, . . . , bn) is a real vector which is block refined by µ,
and Iu is a square identity matrix of the same dimensions as Euu. We also define the
following matrix:

A :=∇2f (µ)− Diag b = (aijEij)
r
i,j=1.
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Before we give the proof, some comments about the above representation are
necessary:
(i) We make the convention that if the ith diagonal block in the above representation

has dimensions 1× 1, then we set aii = 0 and bki = fkiki
′′(µ). Otherwise, the

value of bki is uniquely determined as the difference between a diagonal and an
off-diagonal element of this block.

(ii) Note that the matrix A as well as the vector b depends on the point around which
we form the quadratic expansion (in this case µ) and on the function f.

Proof. We have

f (µ+ h) = f (µ)+ 〈∇f (µ), h〉 + 1
2 〈h,∇2f (µ)h〉 + O(‖h‖3).

Let P be a permutation matrix such that Pµ = µ. Then

f (P (µ+ h))= f (µ)+〈∇f (µ), Ph〉 + 1
2 〈Ph,∇2f (µ)Ph〉 + O(‖Ph‖3)

= f (µ)+〈P T∇f (µ), h〉 + 1
2 〈h, (P T∇2f (µ)P )h〉 + O(‖h‖3).

Using the fact that f is symmetric gives us that f (P (µ+ h)) = f (µ+ h) so ∇f (µ)
= P T∇f (µ). Subtracting the above two equalities we obtain

∇2f (µ) = P T∇2f (µ)P ∀P ∈ P(n) s.t. Pµ = µ. (3)

The claimed block structure of ∇2f (µ) is now easy to check. �

Note 4.9. Observe that Eq. (3) holds for arbitrary µ ∈ Rn.

Lemma 4.10. The vector µ block refines ∇2f (µ)µ.

Proof. Suppose Pµ = µ. Then using twice Eq. (3) and the above note, we get

P∇2f (µ)µ = P(P T∇2f (µ)P )µ = ∇2f (µ)Pµ = ∇2f (µ)µ. �

Lemma 4.11. Let µ ∈ Rn↓ be such that

µ1 = · · · = µk1 > µk1+1 = · · · = µk2 > µk2+1 · · ·µkr (k0 = 0, kr = n).

Suppose µ block refines a vector b ∈ Rn. Then bTλ is analytic at the matrix Diagµ
with quadratic expansion

bTλ(Diagµ+H) = bTµ+ 〈Diag b,H 〉 +
∑

p,q:µp>µq

bp − bq

µp − µq

h2
qp + O(‖H‖3).

Proof. Because the vectorµ block refines the vector b there exist reals b′1, b′2, . . . , b′r
with

bj = b′i whenever ki−1 + 1 � j � ki, i = 1, 2, . . . , r.

We obtain
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bTλ(·) =
r∑

i=1

b′i
ki∑

j=ki−1+1

λj (·) =
r∑

i=1

b′i (σki (·)− σki−1(·)).

Now applying Lemmas 4.5 and 4.4 gives the result. �

Lemma 4.12. Let f : Rn→ R be a symmetric function having quadratic expansion
at the point µ ∈ Rn↓, where

µ1 = · · · = µk1 > µk1+1 = · · · = µk2 > µk2+1 · · ·µkr (k0 = 0, kr = n).

Then the following matrix functions on Sn:
(i) F(·) :=∇f (µ)Tλ(·),

(ii) K(·) :=µT∇2f (µ)λ(·),
(iii) G(·) :=λ(·)T∇2f (µ)λ(·),

have quadratic expansions at the matrix Diagµ.

Proof. Later we will need the formulae, giving the quadratic expansions of these
functions, derived in the following proof. Notice that the first two parts follow im-
mediately from the previous two lemmas. So we can write, up to O(‖H‖3),

F(Diagµ+H)≈ ∇f (µ)Tµ+ 〈Diag∇f (µ),H 〉
+

∑
p,q:µp>µq

f ′p(µ)− f ′q(µ)
µp − µq

h2
qp,

K(Diagµ+H)≈ µT∇2f (µ)µ+ 〈Diag∇2f (µ)µ,H 〉
+

∑
p,q:µp>µq

(µT∇2f (µ))p − (µT∇2f (µ))q

µp − µq

h2
qp.

(iii) Because of the block structure of ∇2f (µ) described in Lemma 4.8, we have

λ(·)T∇2f (µ)λ(·) =
r∑

i,j=1

aij(σki (·)− σki−1(·))(σkj (·)− σkj−1(·))+
r∑

l=1

bkl Sl(·),

where the matrix (aij)
r
i,j=1, vector b, and Sl(·) are defined in Lemmas 4.8 and 4.7.

Now by Lemma 4.5

σkl (Diagµ+H)− σkl−1(Diagµ+H)

=
kl∑

i=kl−1+1

µi +
〈

Diag
kl∑

i=kl−1+1

ei, H

〉

+ 1
2 〈H, 2(µkl I − Diagµ)†HXlX

T
l 〉 + O(‖H‖3)

=
kl∑

i=kl−1+1

µi +
kl∑

i=kl−1+1

hii +
kl∑

i=kl−1+1

〈H, (µkl I − Diagµ)†Hei(ei)T〉
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+ O(‖H‖3).
We can evaluate the first summand in the above representation of the function G(·).

r∑
i,j=1

aij
(
σki (Diagµ+H)− σki−1(Diagµ+H)

)
×(σkj (Diagµ+H)− σkj−1(Diagµ+H)

)
= µTAµ+ (diagH)TA(diagH)+ 2µTA(diagH)

+2

〈
H,

n∑
i,j=1

µiA
ij(µj I − Diagµ)†Hej (ej )T

〉
+ O(‖H‖3)

= µTAµ+ 2〈DiagAµ,H 〉 + 〈H,DiagA(diagH)〉

+2

〈
H,

n∑
i,j=1

µiA
ij(µj I − Diagµ)†Hej (ej )T

〉
+ O(‖H‖3),

where diag : Sn→ Rn defined by diag (H) = (h11, . . . , hnn) is the conjugate opera-
tor of Diag : Rn→ Sn. On the other hand Lemma 4.7 gives us

r∑
l=1

bkl Sl(Diagµ+H)

=
r∑

l=1

bkl

(
(kl − kl−1)µ

2
kl
+ 2µkl

〈
Diag

kl∑
i=kl−1+1

ei, H

〉

+〈H,XlX
T
l HXlX

T
l + 2µkl (µkl I − Diagµ)†HXlX

T
l 〉
)

+O(‖H‖3)

= µT(Diag b)µ+ 2〈Diag(Diag b)µ,H 〉 +
〈
H,

r∑
l=1

bklXlX
T
l HXlX

T
l

〉

+
〈
H, 2

n∑
i,j=1

µi(Diag b)ij(µj I − Diagµ)†Hej (ej )T

〉
+ O(‖H‖3).

Adding these two formulae together we finally get

λ(Diagµ+H)T∇2f (µ)λ(Diagµ+H)

= µT∇2f (µ)µ+ 2〈Diag∇2f (µ)µ,H 〉

+〈H,DiagA(diagH)〉 +
〈
H,

r∑
l=1

bklXlX
T
l HXlX

T
l

〉
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+
〈
H, 2

n∑
j=1

(µT∇2f (µ))j (µj I − Diagµ)†Hej (ej )T

〉
+ O(‖H‖3)

= µT∇2f (µ)µ+ 2〈Diag∇2f (µ)µ,H 〉 + 〈H,DiagA(diagH)〉
+

∑
p,q:µp=µq

bph
2
pq + 2

∑
p,q:µp>µq

(µT∇2f (µ))p − (µT∇2f (µ))q

µp − µq

h2
qp

+O(‖H‖3).
In the last equality we used Lemmas 4.10 and 4.4. �

Now we are ready to prove a preliminary case of Theorem 4.1, namely, that it
holds at X = diagµ, (µ ∈ R↓) and to give a formula for the Hessian of f ◦ λ at this
point. The results for the gradient of f ◦ λ that we will obtain along the way were
first obtained in [10].

Theorem 4.13. Let f : Rn→ R be a symmetric function having quadratic expan-
sion at the point µ ∈ Rn↓, where

µ1 = · · · = µk1 > µk1+1 = · · · = µk2 > µk2+1 · · ·µkr (k0 = 0, kr = n).

Then f ◦ λ has quadratic expansion at the point Diagµ, with

∇(f ◦ λ)(Diagµ)[H ] = tr (HDiag∇f (µ))

∇2(f ◦ λ)(Diagµ)[H,H ] =
n∑

p,q=1

hppf
′′
pq(µ)hqq +

∑
p �=q
µp=µq

bph
2
pq

+
∑

p,q:µp �=µq

f ′p(µ)− f ′q(µ)
µp − µq

h2
pq

(with b defined by Lemma 4.8).

Note 4.14. Corollary 4.15 will show that the requirement that µ ∈ Rn↓ can be omit-
ted. For a matrix representation of the above formula combine Eq. (4) below, and the
first identity in Lemma 4.4.

Proof. We are given that

f (x) = f (µ)+ ∇f (µ)T(x − µ)+ 1
2 (x − µ)T∇2f (µ)(x − µ)

+O(‖x − µ‖3),
so after letting x = λ(Diagµ+H) and using the fact that

λ(Diagµ+H) = λ(Diagµ)+ O(‖H‖)
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we get

(f ◦ λ)(Diagµ+H) = f (µ)+ ∇f (µ)Tλ(Diagµ+H)− ∇f (µ)Tµ

+ 1
2λ(Diagµ+H)T∇2f (µ)λ(Diagµ+H)

−µT∇2f (µ)λ(Diagµ+H)

+ 1
2µ

T∇2f (µ)µ+ O(‖H‖3).
Substituting the three expressions in the proof of Lemma 4.12 we obtain

(f ◦ λ)(Diagµ+H)= (f ◦ λ)(Diagµ)+ 〈Diag∇f (µ),H 〉

+1

2

〈
H,DiagA(diagH)+

r∑
l=1

bklXlX
T
l HXlX

T
l

〉

+
∑

p,q:µp>µq

f ′p(µ)− f ′q(µ)
µp − µq

h2
qp + O(‖H‖3). (4)

Recall that Xl = [ekl−1+1, . . . , ekl ]. In order to obtain the representation given in the
theorem one has to use the definition of A and b = (b1, . . . , bn) given in Lemma 4.8
and the note that follows it. �

Proof of Theorem 4.1. Suppose f has quadratic expansion at the point λ(Y ), and
choose any orthogonal matrix U = [u1 · · ·un] that gives the ordered spectral de-
composition of Y, Y = U(Diag λ(Y ))UT. Here we actually have A = A(λ(Y )) and
bi = bi(λ(Y )). While in formula (4) we had A = A(µ) and bi = bi(µ), to make the
formulae here easier to read we will write again simply A and bi . Then we have,
using formula (4) and some easy manipulations,

(f ◦ λ)(Y +H) = (f ◦ λ)(Diag λ(Y )+ UTHU)

= (f ◦ λ)(Y )+ 〈Diag∇f (λ(Y )), UTHU〉

+1

2

〈
UTHU,DiagA(diagUTHU)+

r∑
l=1

bklXlX
T
l U

THUXlX
T
l

〉

+
∑
p,q

λp(Y )>λq (Y )

f ′p(λ(Y ))− f ′q(λ(Y ))
λp(Y )− λq(Y )

(
(UTHU)qp)2 + O(‖H‖3),

where Xl = [ekl−1+1, . . . , ekl ]. �

Corollary 4.15. Theorem 4.13 holds for arbitrary µ ∈ Rn, where

b(µ) :=Pb(µ̄), (5)

and P is a permutation matrix, such that P Tµ = µ̄.
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Proof. Pick a permutation matrix P such that P Tµ = µ̄ and let π be the permutation
associated with it, that is µ̄ = (µπ(1), . . . , µπ(n)), or in other words Pei = eπ(i). We
have that f has quadratic expansion at the point µ, that is

f (µ+ h) = f (µ)+ 〈∇f (µ), h〉 + 1
2 〈h,∇2f (µ)h〉 + O(‖h‖3).

Using the fact that f is symmetric we obtain

f (µ̄+ PT h)= f (P T(µ+ h))

= f (µ+ h)

= f (µ)+ 〈∇f (µ), h〉 + 1
2 〈h,∇2f (µ)h〉 + O(‖h‖3)

= f (µ̄)+ 〈P T∇f (µ), P Th〉 + 1
2 〈P Th, P T∇2f (µ)PP Th〉

+O(‖P Th‖3).
So f has quadratic expansion at the point µ̄ as well, and we have the relationships

∇f (µ̄) = P T∇f (µ),
∇2f (µ̄) = P T∇2f (µ)P.

(6)

We have Diagµ = P(Diag µ̄)P T. Applying Theorem 4.1 with Y = Diagµ and U =
P , and using Eqs. (6) and (5) we get

∇2(f ◦ λ)(Diagµ)[H,H ]

=
n∑

p,q=1

hπ(p)π(p)f
′′
pq(µ̄)hπ(q)π(q) +

∑
p �=q
µ̄p=µ̄q

bp(µ̄)h
2
π(p)π(q)

+
∑

µ̄p �=µ̄q

f ′p(µ̄)− f ′q(µ̄)
µ̄p − µ̄q

h2
π(p)π(q)

=
n∑

p,q=1

hppf
′′
pq(µ)hqq +

∑
p �=q
µp=µq

bp(µ)h
2
pq +

∑
µp �=µq

f ′p(µ)− f ′q(µ)
µp − µq

h2
pq.

The invariance of the formula for the gradient is shown in a similar manner. See also
[10]. �

5. Strongly convex functions

As we mentioned in Section 1, a symmetric function f is convex if and only if
f ◦ λ is convex. The analogous result also holds for essential strict convexity [9,
Corollary 3.5]. Here we study yet a stronger property.
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In this section, we show that if a symmetric, convex function f has a quadrat-
ic expansion at the point x = λ(Y ), then the symmetric matrix ∇2f (x) is positive
definite, if and only if the same is true for the bilinear operator ∇2(f ◦ λ)(Y ).

Lemma 5.1. If a function f : Rn→ R is symmetric, strictly convex, and differen-
tiable at the point µ

µ1 = · · · = µk1 > µk1+1 = · · · = µk2 > µk2+1 · · ·µkr (kr = n),

then its gradient satisfies

f ′p(µ)− f ′q(µ)
µp − µq

> 0 for all p, q such that µp �= µq.

Proof. Because f is strictly convex and differentiable at µ, for every x ∈ Rn (µ �= x)
we have that (see for example [14, Theorem 2.3.5])

〈∇f (µ), x − µ〉 < f (x)− f (µ).

Suppose µp �= µq . Let P be the permutation matrix that transposes p and q only.
Then we have

(f ′q(µ)− f ′p(µ))(µp − µq) = 〈∇f (µ), Pµ− µ〉 < f (Pµ)− f (µ) = 0.

�

Lemma 5.2. Let f : Rn→ R be a symmetric function having quadratic expansion
at µ, where

µ1 = · · · = µk1 > µk1+1 = · · · = µk2 > µk2+1 · · ·µkr (kr = n).

If the Hessian ∇2f (µ) is positive definite, then the vector b = (b1, . . . , bn), defined
in Lemma 4.8, has strictly positive entries.

Proof. It is well known that every principal minor in a positive definite matrix
is positive definite. Fix an index 1 � i � n. If µi−1 > µi > µi+1, then from the
representation of the matrix ∇2f (µ) in Lemma 4.8 and the note after it, it is clear
that bi > 0. Suppose now that i is in a block of length at least 2. Then some principal
minor of ∇2f (µ) of the form(

a + bi a

a a + bi

)
is positive definite, and the result follows. �

Theorem 5.3. Let f : Rn→ R be a symmetric, strictly convex function having qua-
dratic expansion at µ

µ1 = · · · = µk1 > µk1+1 = · · · = µk2 > µk2+1 · · ·µkr (kr = n).

Then the symmetric matrix ∇2f (µ) is positive definite if and only if the bilinear
operator ∇2(f ◦ λ)(Diagµ) is positive definite.
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Note 5.4. In fact by Alexandrov’s Theorem, if a function is convex it has quadratic
expansion at almost every point of its domain [1].

Proof. Suppose first that the symmetric matrix ∇2f (µ) is positive definite. Take a
symmetric matrix H �= 0. Then we have

n∑
p,q=1

hppf
′′
pq(µ)hqq � 0,

because ∇2f (µ) is positive definite,

2
r∑

l=1

bkl

∑
ki−1<p<q�ki

h2
pq � 0,

follows from Lemma 5.2, and

2
∑

p,q:µp>µq

f ′p(µ)− f ′q(µ)
µp − µq

h2
pq � 0,

which follows from Lemma 5.1. Now because H �= 0 at least one of the above in-
equalities will be strict.

In the other direction the argument is easy: take H = Diag x, for 0 �= x ∈ Rn

in the formula for ∇2(f ◦ λ)(Diagµ) given in Theorem 4.13 to get immediately
xT∇2f (µ)x > 0. �

Theorem 5.5. If f : Rn→ R is a symmetric, strictly convex function having qua-
dratic expansion at the point Y, then ∇2f (λ(Y )) is positive definite if and only if
∇2(f ◦ λ)(Y ) is.

Proof. The proof of this theorem is now clear since∇2(f ◦ λ)(Y ) is positive definite
if and only if ∇2(f ◦ λ)(Diag λ(Y )) is. �

6. Examples

Example 6.1. Let g be a function on a scalar argument. Consider the following
separable symmetric function with its corresponding spectral function

f (x1, . . . , xn) =
n∑

i=1

g(xi),

(f ◦ λ)(Y ) =
n∑

i=1

g(λi(Y )).



A.S. Lewis, H.S. Sendov / Linear Algebra and its Applications 340 (2002) 97–121 117

Then if g has quadratic expansion at the points x1,. . . ,xn so does f at x=(x1, . . . , xn)

and we have

∇f (x) = (g′(x1), . . . , g
′(xn))T,

∇2f (x) = Diag (g′′(x1), . . . , g
′′(xn)),

b(x) = (g′′(x1), . . . , g
′′(xn))T.

Suppose g has quadratic expansion at each entry of the vectorµ ∈ Rn↓, which satisfies

µ1 = · · · = µk1 > µk1+1 = · · · = µk2 > µk2+1 · · ·µkr (kr = n).

Then Theorem 4.13 says that

∇2(f ◦ λ)(Diagµ)[H,H ]

=
n∑

p=1

g′′(µp)h
2
pp +

∑
p /=q
µp=µq

g′′(µp)h
2
pq +

∑
p,q:µp �=µq

g′(µp)− g′(µq)

µp − µq

h2
pq

=
∑

p,q:µp=µq

g′′(µp)h
2
pq +

∑
p,q:µp �=µq

g′(µp)− g′(µq)

µp − µq

h2
pq.

Let us define the following notation consistent with [3, Section V.3]. For any function
h defined on a subset of R define

h[1](α, β) =
{
h(α)−h(β)

α−β if α �= β,

h′(α) if α = β.

If � is a diagonal matrix with diagonal entries α1, . . . , αn, we denote by h[1](�) the
n× n symmetric matrix matrix whose (i, j)-entry is h[1](αi, αj ).

Using this notation, for the function h = g′, we clearly have

∇2(f ◦ λ)(Diagµ)[H,H ] = 〈H, h[1](Diagµ) ◦H 〉,
∇2(f ◦ λ)(Y )[H,H ] = 〈UTHU, h[1](Diag λ(Y )) ◦ (UTHU)

〉
,

(7)

where Y = U(Diag λ(Y ))UT, U orthogonal, and X ◦ Y = (xijyij)
n
i,j=1 is the Had-

amard product of matrices X and Y.
Let us extend the domain of the function h to include a subset of the symmetric

matrices in the following way. If � = Diag (α1, . . . , αn) is a diagonal matrix whose
entries are in the domain of h, we define h(�) = Diag (h(α1), . . . , h(αn)). If Y is
a symmetric matrix with eigenvalues α1, . . . , αn in the domain of h, we choose an
orthogonal matrix U such that Y = U�UT and define h(Y ) = Uh(�)UT. (Notice
that the definition of h(Y ) does not depend on the choice of the orthogonal matrix
U.) In this way we can define h(Y ) for all symmetric matrices with eigenvalues in the
domain of h. Then the formula for the gradient in Theorem 4.1 says that for h = g′
we have

∇(f ◦ λ)(Y ) = h(Y ).
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Thus Eqs. (7) are just the formulae for the derivative ∇h given in Theorem V.3.3 in
[3].

Example 6.2. Now we specialize the above example even more. The following
spectral function finds many applications in semidefinite programming. Consider
the symmetric and strictly convex function and the corresponding spectral function:

f : x ∈ Rn++ �→ −
n∑

i=1

log xi,

f ◦ λ : A ∈ Sn++ �→ − log det(A).

(Here Sn++ denotes the set of all positive definite symmetric matrices.) Then Theo-
rem 4.13 says that for µ ∈ Rn↓ such that

µ1 = · · · = µk1 > µk1+1 = · · · = µk2 > µk2+1 · · ·µkr (kr = n),

we have

∇2(f ◦ λ)(Diagµ)[H,H ] =
n∑

p=1

h2
pp

µ2
p

+
∑
p �=q
µp=µq

h2
pq

µ2
p

+
∑

p,q:µp �=µq

h2
pq

µpµq

=
n,n∑

p,q=1,1

h2
pq

µpµq

= tr ((Diagµ)−1H(Diagµ)−1H).

The last equality may easily be verified. In general, for an arbitrary symmetric matrix
A, we get

∇2(f ◦ λ)(A)[H,H ] = tr (A−1HA−1H).

This agrees with the standard formula for the second derivative of the function
− log det(A). (See for example [12, Proposition 5.4.5].) Moreover, the result in
Section 5 tells us that

A � 0 implies tr (A−1HA−1H) > 0 for all 0 �= H ∈ Sn,
and this result can also be verified directly.

Example 6.3. Consider the following symmetric function and its corresponding
spectral function:

φk(x) = kth largest element of {x1, x2 . . . , xn},
λk(A) = kth largest eigenvalue of A.

The function φk(x) is linear near every point x such that

x̄k−1 > x̄k > x̄k+1,
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since locally we have φk(x) = xm for the index m such that xm is the kth largest
coordinate of x. In particular if x ∈ Rn↓, then k = m. So

∇φk(x) = em, ∇2φk(x) = 0, bφk (x) = 0.

Then Theorem 4.13 says that for µ ∈ Rn↓ such that

µk−1 > µk > µk+1,

we have

∇2λk(Diagµ)[H,H ] = ∇2(f ◦ λ)(Diagµ)[H,H ] = 2
n∑

q=1
q �=k

1

µk − µq

h2
kq.

This agrees with the result in [7, p. 92].

7. The eigenvalues of ∇2(f ◦ λ)

A natural question one may ask is: Is there any relationship between the eigen-
values of ∇2f (λ(Y )) and those of ∇2(f ◦ λ)(Y )? This section shows that local-
ly such a relationship will be quite weak, although more globally they are closely
related. Let Y be a symmetric matrix such that

λ1(Y )= · · · = λk1(Y ) > · · · > λkl−1+1(Y ) = · · · = λm(Y )

= · · · = λkl (Y ) > · · · λkr (Y ) (k0 = 0, kr = n).

Using the representation given in Theorem 4.1 and Corollary 4.15 one can see that
the eigenvalues of ∇2(f ◦ λ)(Y ) are:
• {λi(∇2f (λ(Y ))) | i = 1, . . . , n}.
• bkl is an eigenvalue for every l = 1, . . . , r with multiplicity (kl − kl−1)(kl − kl−1
− 1)/2.

• f ′kl (λ(Y ))−f
′
ks
(λ(Y ))

λkl (Y )−λks (Y ) is an eigenvalue with multiplicity (kl − kl−1)(ks − ks−1) for

every ordered pair (λkl (Y ), λks (Y )) such that λkl (Y ) > λks (Y ).
So we can immediately conclude that

λmax(∇2(f ◦ λ)(Y )) � λmax(∇2f (λ(Y ))),

λmin(∇2f (λ(Y ))) � λmin(∇2(f ◦ λ)(Y )). (8)

We are going to show now that the above inequalities may be strict.

Example 7.1. Consider the convex function

f (x, y) := x2 + y2

4
+ cos 2x + cos 2y

8
,

and the point
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µ = (2π, π) ∈ R2↓.
Then

∇f (x, y) =
(
x
2 − sin 2x

4
y
2 − sin 2y

4

)
, ∇2f (x, y) =

(
sin2 x 0

0 sin2 y

)
.

Using the representation in Theorem 4.13 we get

∇2f (µ) = 0, ∇2(f ◦ λ)(Diagµ)[H,H ] = h2
12,

where

H =
(
h11 h12
h12 h22

)
.

Then clearly

λmax
(∇2(f ◦ λ)(Diagµ)

) = 1 > λmax(∇2f (µ)) = 0.

In order to demonstrate a strict inequality between the smallest eigenvalues one
needs to consider the function −f (x, y) at the same point µ.

Even though we may not have equalities in (8) at a particular matrix Y, if we
consider the eigenvalues of ∇2f (λ(Y )) and ∇2(f ◦ λ)(Y ) as Y varies over an or-
thogonally invariant, convex set we can see that they vary within the same bounds.
More precisely we have the following theorem. To make its proof precise, we need
the main result from [9,11] saying that: A symmetric function f is C2 if and only if
f ◦ λ is, and f is convex if and only if f ◦ λ is.

Theorem 7.2. Let C be a convex and symmetric subset of Rn, and let f : C → R

be symmetric, C2 function. Then

min
y∈C λmin

(∇2f (y)
) = min

Y∈λ−1(C)
λmin

(∇2(f ◦ λ)(Y )). (9)

Proof.

λmin(∇2f (y)) � α ∀y ∈ C
⇔ f − α

2
‖ · ‖2 convex

⇔
(
f − α

2
‖ · ‖2

)
◦ λ convex

⇔ f ◦ λ− α

2
‖ · ‖22 convex

⇔ λmin
(∇2(f ◦ λ)(Y )) � α ∀Y ∈ C. �

Remark 7.3. If we multiply both sides of Eq. (9) by −1 we will get

max
y∈C λmax

(∇2f (y)
) = max

Y∈λ−1(C)
λmax

(∇2(f ◦ λ)(Y )).
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