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Overview

• Definition of a linear program

• Geometric interpretation of a linear program and the 

general idea of the simplex algorithm

• Dual of a linear program

• Transportation problem

• Assignment problem

• Network flow problem

• Shortest path problem

• Max flow problem
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Linear Program

• A linear program is an optimization problem 

with linear objective function and linear 

constraints

max

n∑

j=1

cj xj

subject to

n∑

j=1

aij xj ≤ bi i = 1, . . . ,m

xj ≥ 0 j = 1, . . . , n
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Linear Programs

• A common way to write a linear program is to 

use the matrix/vector notation

• x, b and c are vectors and A is a matrix

• The constraints can be of “equality” or “greater 

than or equal to” type

max c x

subject to Ax ≤ b

x ≥ 0
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Why Do We Care about Linear 

Programs?

• We only allow linear objective functions and linear 
constraints in linear programs

• This seems very restrictive

• We care about linear programs because 

• A nonlinear programming problem with a convex 
objective function can be approximated with a linear 
program

• Linear programs are very well-understood

• We have very robust solution algorithms for linear 
programs

• Life is often linear
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A Toy Example

• A paint company produces two types of paints (exterior and 

interior) by using two types of raw materials (material A and 

material B)

• Each ton of exterior paint uses 1 ton of material A and 2 

tons of material B

• Each ton of interior paint uses 2 tons of material A and 1 

ton of material B

• 6 tons of material A and 8 tons of material B are available

• The profit per ton of exterior paint is 3 and the profit per ton

of interior paint is 2

• The company is interested how much of each type of paint 

to produce
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A Toy Example

• The company can sell at most 2 tons of interior paint

• The amount of interior paint produced cannot exceed 

the amount of exterior paint by more than 1 ton

max 3x1 + 2x2

subject to x1 + 2x2 ≤ 6

2x1 + x2 ≤ 8

x2 − x1 ≤ 1

x2 ≤ 2

x1, x2 ≥ 0
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Geometric Interpretation 

1

2

3

4

Feasible set of solutions

x1

x2
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Geometric Interpretation 

x1

x2 Is there a feasible solution that

generates 6 units of profit?
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Geometric Interpretation 

x1

x2 To find the optimal profit,

push the objective function as much as possible

The optimal solution occurs where

the first and second constraints

intersect
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A Toy Example

• To obtain the optimal solution, solve

x1 + 2 x2 = 6  and  2 x1 + x2 = 8

• We obtain x1
* = 10/3 and x2

* = 4/3

• It is not hard to see that the optimal solution always occurs 
at an extreme point (a corner)

• How do we find the extreme points?
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A Toy Example

• How do we find the extreme points?

• Roughly speaking, if the problem has m constraints and n 
decision variables, then take n of the constraints and solve 
for the values of n decision variables

• This gives an extreme point

• To check all extreme points, we need to try (m choose n) 

possible cases, which can be a huge number!

• Simplex algorithm is an efficient way of moving from one 

extreme point to another one so that the value of the 

objective function increases at each move

• Gradient search and penalty functions are not needed 

when solving linear programs
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Dual of a Linear Program

• Try to apply the duality ideas to a linear program

• Associate the Lagrange multipliers λi i = 1,…,m
with the constraints to construct the Lagrange 
function

• Do not relax the nonnegativity constraints

max

n∑

j=1

cj xj

subject to

n∑

j=1

aij xj ≤ bi i = 1, . . . ,m

xj ≥ 0 j = 1, . . . , n
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Dual of a Linear Program

• The dual function is

L(x, λ) =

n∑

j=1

cj xj +

m∑

i=1

λi



bi −
n∑

j=1

aij xj





=

n∑

j=1

[

cj −

m∑

i=1

aij λi

]

xj +

m∑

i=1

bi λi

D(λ) = max
x≥0

L(x, λ)

= max
x≥0

n∑

j=1

[

cj −

m∑

i=1

aij λi

]

xj +

m∑

i=1

bi λi
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Dual of a Linear Program

• Similar to our earlier results, the dual function is 
an upper bound on the optimal objective value of 
the problem

• (Since we are maximizing, the dual function gives 
an upper bound, not a lower bound)

• To obtain the tightest upper bound, we solve the 
problem

min
λ≥0

D(λ)
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Dual of a Linear Program

• Note that the dual function is infinite when

for some j, whereas the dual function is 

when

D(λ) =

m∑

i=1

bi λi

cj −

m∑

i=1

aij λi ≤ 0

cj −

m∑

i=1

aij λi > 0
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Dual of a Linear Program

• Therefore, solving the problem

is equivalent to solving the linear program

min
λ≥0

D(λ)

min

m∑

i=1

bi λi

subject to
m∑

i=1

aij λi ≥ cj j = 1, . . . , n

λi ≥ 0 i = 1, . . . ,m
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Dual of a Linear Program

• It is possible to prove that the optimal objective value of 
the dual linear program is equal to the optimal objective 
value of the original linear program

• The number of constraints in the dual linear program is 
equal to the number of decision variables in the original 
linear program

• The number of decision variables in the  dual linear 
program is equal to the number of constraints in the 
original linear program

• Therefore, instead of solving a linear program with a large 
number of decision variables and a small number of 
constraints, we can solve a linear program with a small 
number of decision variables and a large number of 
constraints
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Transportation Problem

• We have 3 warehouses and 2 retail centers

• It costs cij to ship a unit of product from warehouse i to 
retail center j

• Inventory at warehouse i is si

• Demand at retail center j is dj

• For simplicity, first assume that s1 + s2 + s3 = d1 + d2 so 
that total supply equals total demand

• What is the cheapest way of shipping the products from 
warehouses to the retailers?
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Transportation Problem

• What do we do when we do not have s1 + s2 + s3
= d1 + d2?

• If all supply and demand data are integers, then 
there exists an integer-valued optimal solution to 
the transportation problem
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Assignment Problem

• We have 3 technicians and 3 jobs

• Suitability of technician i for job j is cij

• Each job requires one technician and each technician can 
work at most one job

• What is the best way of assigning technicians to jobs to 
maximize the total suitability?

• What do we do when the number of technicians is not 
equal to the number of jobs?

• There exists an integer-valued optimal solution to the 
assignment problem even if we do not explicitly impose the 
integrality constraints
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Network Flow Problem

• We have a network with 4 nodes and 6 arcs

• The signed numbers next to the nodes are the supplies 
and demands at each node

• Positive numbers are supplies and negative numbers are 
demands

• Cost of shipping a unit of supply over arc (i,j) is cij

• What is the cheapest way of shipping the supplies from the 
supply nodes to the demand nodes?

1

2

3

4

+5 +3

– 4

– 4
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Network Flow Problem

• What do we do when the total supply is not equal 
to total demand?

• There can be upper bounds on how much we can 
ship on the arcs

• If all supply, demand and upper bound data are 
integers, then there exists an integer-valued 
optimal solution to the network flow problem
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0
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2

3

5

4

Shortest Path Problem

• We have a network with 6 nodes and 10 arcs

• Cost of moving over arc (i,j) is cij

• What is the cheapest way to go from node 0 to node 5?

• Rephrase the problem: Node 0 has 1 unit of supply and 
node 5 has one unit of demand

• What is the cheapest way of shipping the supply from the 
supply node to the demand node?
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5
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Maximum Flow Problem

• We have a network with 6 nodes and 10 arcs

• The upper bound over arc (i,j) is uij

• Assume that there is infinite supply available at node 0 and 
there is infinite demand at node 5

• What is the maximum amount of supply that we can ship 
from node 0 to node 5?


