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Overview

• Discrete and continuous random variables

• Expectation and variance

• Important discrete random variables

• Important continuous random variables

• Central limit theorem

• Confidence intervals

• Gradient of a function
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Random Variables

• A random variable is a function whose value is 

determined by the outcome of a random 

experiment

• More technically, a random variable is a 

function from the set of outcomes of a random 

experiment to the real numbers

• E.g. for the random experiment of rolling a die, 

define the random variable X as

X =

{
1 if we get an even number

0 if we get an odd number



25 January 2007 Huseyin Topaloglu 4

Discrete Random Variables

• Discrete random variables take on countably

many (discrete) values

• A discrete random variable X is characterized 

by its probability mass function p(.)

p(x)

x
1 2 3 4 5

0.1

0.2

0.3 p(x) = P{X = x}



25 January 2007 Huseyin Topaloglu 5

Discrete Random Variables

• A discrete random variable X can also be 

characterized by its cumulative distribution 

function F(.)

F (x) = P{X ≤ x}

F(x)

x
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Discrete Random Variables

• Knowledge of p(.) and knowledge of F(.) are 

equivalent to each other

F (x) = P{X ≤ x}

=

x∑

i=−∞

P{X = i} =

x∑

i=−∞

p(i)

p(x) =

x∑

i=−∞

p(i)−

x−1∑

i=−∞

p(i)

= P{X ≤ x} − P{X ≤ x− 1}

= F (x)− F (x− 1)
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Discrete Random Variables

• Also note that

P{a ≤ X ≤ b} =

b∑

i=a

p(i)

=
b∑

i=−∞

p(i)−
a−1∑

i=−∞

p(i)

= F (b)− F (a− 1)
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Continuous Random Variables

• Continuous random variables take on values on 

a continuum

• E.g. closing price of a stock next day, lifetime of 

a light bulb

• A continuous random variable X is characterized 

by its probability density function f(.)

f(x)

x
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Continuous Random Variables

• It is not true that

• In fact, for any value x,

• But we have 

f(x)

x

f(x) = P{X = x}

P{X = x} = 0

P{a ≤ X ≤ b} =

∫ b

a

f(x) dx

a b
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Continuous Random Variables

• The cumulative distribution function of a random 

variable X is defined as

F (x) = P{X ≤ x} = P{−∞ ≤ X ≤ x}

=

∫ x

∞

f(u) du

• If f(.) is continuous in an interval containing x,

f(x) = F ′(x)
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Continuous Random Variables

• Also note that

P{a ≤ X ≤ b} =

∫ b

a

f(u) du

=

∫ b

−∞

f(u) du−

∫ a

−∞

f(u) du

= F (b)− F (a)
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Expectation

• If X is a discrete random variable with p.m.f. p(.)

• If X is a continuous random variable with p.d.f. f(.)

E{X} =

∞∑

x=−∞

x p(x)

E{X} =

∫
∞

−∞

x f(x) dx
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Expectation

• For any two random variables X and Y, 

Linearity of expectation

E{aX} =

∫
∞

−∞

a x f(x) dx

a

∫
∞

−∞

x f(x) dx = aE{X}

E{aX + b Y } = aE{X}+ bE{Y }
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Variance

• The variance of a random variable X is 

• Also note that 

V ar(X) = E{[X − E{X}]2}

= E
{
X2 − 2X E{X}+ [E{X}]2

}

= E{X2} − 2E {X E{X}}+ [E{X}]2

= E{X2} − 2E{X}E{X}+ [E{X}]2

= E{X2} − [E{X}]2

V ar(X) = E{[X − E{X}]2}



25 January 2007 Huseyin Topaloglu 15

Variance

• If X is a discrete random variable with p.m.f. p(.) 

and g(.) is a real valued function, then

• If X is a continuous random variable with p.d.f. f(.) 

and g(.) is a real valued function, then

E{g(X)} =

∞∑

x=−∞

g(x) p(x)

E{g(X)} =

∫
∞

−∞

g(x) f(x) dx
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Variance

• Assume that X is a continuous random variable 

with p.d.f.

• Compute c.d.f. of X, E{X}, E{X2} and Var(X)

f(x) =

{
x2/9 if 0 ≤ x ≤ 3

0 otherwise
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Variance

• For two independent random variables X and Y 

V ar(aX) = a2 V ar(X)

V ar(aX + b Y ) = a2 V ar(X) + b2 V ar(Y )

V ar(aX) = E{[aX]2} − [E{aX}]2

= E{a2X2} − [aE{X}]2

= a2
{
E{X2} − E{X}2

}
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Bernoulli Random Variable

• For some p in [0,1], if we have 

P{X = 1} = p and P{X = 0} = 1− p

then X has Bernoulli distribution with parameter p

E{X} =

V ar(X) =

• If X has Bernoulli distribution with parameter p, 

then
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Geometric Random Variable

• For some p in [0,1], if we have 

then X has geometric distribution with parameter p

• X takes values 1, 2, 3,…

• If X has geometric distribution with parameter p, 

then

P{X = k} = (1− p)k−1 p

E{X} = 1/p

V ar(X) = [1− p]/p2
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Geometric Random Variable

• Imagine making successive independent trials

• Each trial is a success with probability p and is 

failure with probability 1-p

• Let X be the number of trials to get the first 

success 

P{X = k} = (1− p) (1− p) . . . (1− p) p

k-1 times

• So a geometric random variable can be 

visualized as the number of trials to get the first 

success
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Uniform Random Variable

• For some interval [a,b], if a random variable X 

has the p.d.f.

then X is has uniform distribution over [a,b]

• If X has uniform distribution over [a,b], then

E{X} = [a+ b]/2

V ar(X) = [b− a]2/12

f(x) =

{
1

b−a if a ≤ x ≤ b

0 otherwise
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Exponential Random Variable

• For some λ > 0, if a random variable X has the 

p.d.f.

then X has exponential distribution with 

parameter λ

f(x) = λ e−λx

E{X} = 1/λ

V ar(X) = 1/λ2

• If X has exponential distribution with parameter 

λ, then
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Exponential Random Variable

• If X has exponential distribution with parameter 

λ, then the c.d.f of X is 

F (x) =

∫ x

0

λ e−λu du = 1− e−λx
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Normal Random Variable

• For some µ and σ > 0, if a random variable X 

has the p.d.f.

then X has normal distribution with mean µ and 

standard deviation σ

• If X has normal distribution with mean µ and 

standard deviation σ, then
E{X} = µ

V ar(X) = σ2

f(x) =
1

[2 π]1/2 σ
e−

1
2 [

(x−µ)
σ ]

2
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Normal Random Variable

• The probability density function is symmetric 

around the mean µ

µ - a µ + a

P{X ≤ µ− a} = P{X ≥ µ+ a}

• If X~N(µ,σ2), then
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Normal Random Variable

• If X~N(µ,σ2), then

• If X~N(µ1,σ1
2), Y~N(µ2,σ2

2), and X and Y are 

independent of each other, then

X + Y ∼ N(µ1 + µ2, σ
2

1
+ σ2

2
)

aX + b ∼ N(a µ+ b, a2 σ2)

X − µ

σ
∼

1

σ
X −

µ

σ

∼ N

(
1

σ
µ−

µ

σ
,
1

σ2
σ2
)
∼ N(0, 1)
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Normal Random Variable

• If X~N(µ,σ2), then

P{X ≤ x} = P

{
X − µ

σ
≤
x− µ

σ

}

= P

{
N(0, 1) ≤

x− µ

σ

}

• Therefore, if we know the cumulative distribution 

function for N(0,1), then we can compute the 

cumulative distribution function for any normal 

random variable
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Central Limit Theorem

• Let X1, X2, X3,… be independent random 

variables each having mean µ and variance σ2

• Define Sn as

• What does the distribution of Sn look like?

• Distribution of Sn should depend on the 

distributions of X1, X2, X3,…

Sn = X1 + . . .+Xn

E{Sn} = E{X1 + . . .+Xn}

= E{X1}+ . . .+ E{Xn} = nµ

V ar(Sn) = nσ
2
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Central Limit Theorem

• Simulation results indicate that the distribution of 

Sn looks like the normal distribution as n 

becomes large

• This is the essence of the central limit theorem

• Let X1, X2, X3,… be independent random 

variables each having mean µ and variance σ2

• Define

• When n is large, the distribution of Sn is 

approximately normal

Sn = X1 + . . .+Xn

Sn ≈ N(nµ, n σ2)
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Building a Confidence Interval for the 

Expected Value of a Random Variable

• Central limit theorem can be used to build 

confidence intervals for the expected value of a 

random variable

• Let X1, X2, X3,… be independent random 

variables each having mean µ and variance σ2

• Assume that we do not know µ and want to 

estimate it

• Define

X̄n =
1

n
[X1 + . . .+Xn] =

Sn
n
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Building a Confidence Interval for the 

Expected Value of a Random Variable

• When n is large

• From the cumulative distribution of standard 

normal random variable, we have

X̄n =
Sn
n
≈ N

(
nµ

n
,
n σ2

n2

)
= N(µ, σ2/n)

P{−1.96 ≤ N(0, 1) ≤ 1.96} = 0.95
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Building a Confidence Interval for the 

Expected Value of a Random Variable

P{−1.96 ≤ N(0, 1) ≤ 1.96} = 0.95

P

{
−1.96

σ

n1/2
≤

σ

n1/2
N(0, 1) ≤ 1.96

σ

n1/2

}
= 0.95

P

{
µ− 1.96

σ

n1/2
≤ µ+

σ

n1/2
N(0, 1) ≤ µ+ 1.96

σ

n1/2

}
= 0.95

P

{
µ− 1.96

σ

n1/2
≤ N(µ, σ2/n) ≤ µ+ 1.96

σ

n1/2

}
= 0.95

P

{
µ− 1.96

σ

n1/2
≤ X̄n ≤ µ+ 1.96

σ

n1/2

}
≈ 0.95
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Building a Confidence Interval for the 

Expected Value of a Random Variable

• Therefore, we obtain the following interval that 

includes unknown µ with 0.95 probability

• This computation requires knowing σ2

• When σ2 is not known, we estimate it by the 

sample standard deviation

s2n =
1

n− 1

n∑

i=1

(Xi − X̄n)
2

P

{
X̄n − 1.96

σ

n1/2
≤ µ ≤ X̄n + 1.96

σ

n1/2

}
= 0.95
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Building a Confidence Interval for the 

Expected Value of X

1.Select a sample size n

2.Generate n independent samples of X

3.Let these samples be X1,…,Xn

4.Compute

X̄n =
1

n

n∑

i=1

Xi, s
2

n =
1

n− 1

n∑

i=1

(Xi − X̄n)
2
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Building a Confidence Interval for the 

Expected Value of X

6.Look up the value of zα/2 such that

7.E{X} lies in the interval

approximately with probability 1-α

P
{
−zα/2 ≤ N(0, 1) ≤ zα/2

}
= 1− α

X̄n ∓ zα/2
sn
n1/2
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Gradient

• Let f(x1,…,xn) be a function from R
n to R

• The gradient of f(x1,…,xn) is the n-dimensional 

vector

• Gradient points towards the direction of steepest 

ascent

∇f(x1, . . . , xn) =

[
∂f(x1, . . . , xn)

∂x1
, . . . ,

∂f(x1, . . . , xn)

∂xn

]
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Gradient

• Gradient points towards the direction of steepest 

ascent

• Let the point [y1,…,yn] be obtained by

• If we choose α small enough, then

• Therefore, we can increase the value of the 

function by moving towards the gradient

[y1, . . . , yn] = [x1, . . . , xn] + α∇f(x1, . . . , xn)

f(y1, . . . , yn) ≥ f(x1, . . . , xn)
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Gradient

• Consider the function f(x,y) = 10 - x2 - 4xy - 3y2

• If we start from point [1,1] and move in direction  

[-6,-10] for a step size of 0.1, then we reach point

• If we start from point [1,1] and move in direction 

[-6,-10] for a step size of 0.5, then we reach point

∇f(x, y) = [−2x− 4y,−4x− 6y]

f(1, 1) = 2 ∇f(1, 1) = [−6,−10]

[1, 1] + 0.1 [−6,−10] = [0.4, 0] f(0.4, 0) = 9.84

[1, 1] + 0.5 [−6,−10] = [−2,−4] f(−2,−4) = −74


