
Large-Scale Network Revenue Management Models

The only model we have seen thus far that can efficiently handle network revenue management
problems is the virtual nesting model. This model is compatible with the “protection level
viewpoint” of the single-leg revenue management models. In particular, if we use the virtual
nesting model, then the shift from a single-leg revenue management model to a network rev-
enue management model only requires bucketing the different itineraries. After this, we can
use traditional single-leg network revenue management models that either use the optimal
protection levels computed through a dynamic programming formulation or near-optimal pro-
tection levels computed through EMSR-type heuristics. For these reason, the virtual nesting
model is widely used in the airline industry.

We now focus on the bid-price based network revenue models and propose different methods
to compute the bid-prices. The advantages of bid-price based network revenue models are that
they do not require bucketing the itineraries and they usually provide better policies than the
virtual nesting model. However, computing good bid-prices is a research problem that is still
under investigation.

1. Network revenue management setting
We begin by recalling the problem setup and some of the notation that we used earlier. We
have a set of flight legs that can be used to satisfy the itinerary requests that arrive randomly
over time. At each time period, a request for an itinerary arrives. If we accept the itinerary
request, then we generate a revenue and consume the capacities on the relevant flight legs. A
rejected itinerary simply leaves the system. The vocabulary we use here is tailored towards
the airline industry, but generalizations to other industries are obvious.

The problem takes place over the time periods {1, . . . τ}. All flights depart at time period
τ + 1. We have m flights and n itineraries. The initial capacity on flight leg i is ci. If we
accept a request for itinerary j, then we generate a revenue of fj and consume aij units of
capacity on flight leg i. If flight leg i is not in itinerary j, then we have aij = 0. We let A be
the capacity consumption matrix [aij] and use Aj to note the j-th column of A.

At most one itinerary request arrives at each time period. This assumption is reasonable
because we can divide the time interval between now and the time of the departure into very
small time slices so that the probability of having two or more itinerary requests in a time slice
is negligible. In fact, we assume that exactly one itinerary request arrives at each time period.
It is easy to make generalizations to the case where at most one itinerary request arrives at
each time period. The probability that we have a request for itinerary j at time period t is
pjt. Since exactly one itinerary request arrives at each time period, we have

∑n
j=1 pjt = 1.

We let xit be the remaining capacity on flight leg i at time period t. In this case, the
vector xt = {xit : i = 1, . . . , m} gives the state of the system at time period t. We use
yt = {yjt : j = 1, . . . , n} to denote the decisions at time period t, where yjt takes value 1 if we
accept a request for itinerary j at time period t, otherwise it takes value 0.

Given that the capacities on the flight legs at time period t are xt and we observe a re-
quest for itinerary j, the expected revenue obtained over the time periods t, . . . , τ satisfies the
optimality equation
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with the boundary condition that Vτ+1(·, ·) = 0. The summation on the right side above
only depends on xt − Aj yjt and letting

the optimality equation becomes

Vt(xt, j) = max fj yjt + V̄t+1(xt − yjt A
j)

subject to aij yjt ≤ xit i = 1, . . . , m

yjt ∈ {0, 1}.

Taking expectations of both sides, the optimality equation above can be written as

We write the final optimality equation as
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We note that this dynamic program only involves the state variable xt. The state variable in
this dynamic program has m dimensions. If the capacity on each flight is on the order of C,
then the number of possible values of the state variable is on the order of Cm and it is very
difficult to solve this dynamic program by the traditional backward recursion approach that
we use for single-leg revenue management problems.

One important observation from the dynamic programming formulation of the network
revenue management problem is that if the capacities on the flight legs at time period t are
xt and we observe a demand for itinerary j, then

Consequently, if we can approximate V̄t+1(xt) − V̄t+1(xt − Aj) in a tractable manner, then
we can find good policies for the network revenue management problem.

2. Linear programming formulation of the network revenue management problem
Given that the capacities on the flight legs at time period t are xt, the value function V̄t(xt)
exactly gives the expected revenue obtained over the time periods t, . . . , τ . On the other hand,
the linear program

can be used to approximate the expected revenue over the time periods t, . . . , τ , where the
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decision variable wj is the number of requests for itinerary j that we plan to accept to over
the remaining portion of the planning horizon. In this case, letting Lt(xt) be the optimal
objective value of the linear program above, we can use the decision rule

to make the decisions at time period t.

Note that we compare fj with Lt(xt) − Lt(xt − Aj) to decide whether to accept or reject
a request for itinerary j at time period t. More “correct” approach would be to compare fj

with Lt+1(xt)− Lt+1(xt − Aj), but this difference is minor.

3. Computing bid-prices
It is easy to realize that the dynamics of the airline network revenue problem do not work the
way we described above. In particular, the airline does not observe an itinerary request and
decide whether to accept or reject the itinerary request. Instead, the airline decides which
itineraries should stay open and which itineraries should be closed, and if a request for an
open itinerary arrives, then the airline has to accept the itinerary request. (We implicitly
assume that if there is not enough capacity for an itinerary, then the itinerary is closed by
default.)

Therefore, if an airline is to use the approach described above to decide which itineraries
should stay open and which itineraries should be closed, then it has to compute Lt(xt) −
Lt(xt − Aj) for all j = 1, . . . , n. The difficulty here is that

As an alternative approach, we note that V̄t+1(xt) − V̄t+1(xt − Aj) describes how much the
expected revenue over the time periods t + 1, . . . , τ changes if we give away all the seats
consumed by itinerary j. On the other hand, if we let {µ∗it(xt) : i = 1, . . . , m} be the dual
variables associated with the first set of constraints in the linear program, then µ∗it(xt) may be
used to approximate how much the expected revenue over the time periods t, . . . , τ changes if
we give away one seat on flight leg i. Consequently, if we give away the seats on all the flight
legs consumed by itinerary j, then the change in the expected revenue can be approximated
by

In this case, we can use the decision rule
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to decide which itineraries should stay open and which itineraries should be closed.

For the rest of this section, we continue with the “false” dynamics of the airline network
revenue management problem. In particular, we assume that the airline first observes an
itinerary request, and then, decides whether to accept or reject the itinerary request.

4. Connections between the dynamic programming formulation and the linear
programming approximation
Consider dropping the capacity availability constraints at time periods 1, . . . , τ − 1 in the
dynamic programming formulation of the network revenue management problem, which is
given by

V̄t(xt) = max
n∑

j=1

pjt

[
fj yjt + V̄t+1(xt − yjt A

j)
]

subject to aij yjt ≤ xit i = 1, . . . ,m, j = 1, . . . , n

yjt ∈ {0, 1} j = 1, . . . , n.

Furthermore, consider associating the positive Lagrange multipliers {pjτ λi : i = 1, . . . , m, j =
1, . . . , n} with the capacity availability constraints at the last time period τ to add these con-
straints to the objective function. In particular, we solve the optimality equation

for time periods 1, . . . , τ − 1, whereas we solve the optimality equation

for the last time period. The Lagrange multipliers work as a penalty term. If the relaxed
constraint is violated, then they make the objective function smaller. We use the superscript
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λ in the value functions to emphasize that the solution to the optimality equation above de-
pends on the Lagrange multipliers. We scale the Lagrange multipliers by {pjτ : j = 1, . . . , n}
because this makes the arithmetic cleaner. This dynamic programming formulation is by no
means equivalent to the original formulation. However, it can be a good substitute as long as
it can be solved efficiently.

We begin by showing that the Lagrangian relaxation strategy described above gives an
upper bound on the value functions. That is, we have Vt(xt) ≤ V λ

t (xt) for all time periods
and for all capacity levels, as long as the Lagrange multipliers are positive. This result is easy
to show by induction. To see that the result holds for the last time period τ , we have

Similarly, assuming that the result holds for time period t + 1 (that is, Vt+1(xt) ≤ V λ
t+1(xt) for

all capacity levels), we have
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This shows that Vt(xt) ≤ V λ
t (xt).

Another property of the Lagrangian relaxation strategy is that for a fixed value of Lagrange
multipliers, the value function {V λ

t (·) : t = 1, . . . , τ} can easily be computed. In particular,
we have

V λ
t (xt) =

m∑
i=1

λi xit +
n∑

j=1

τ∑

t′=t

pjt′

[
fj −

m∑
i=1

aij λi

]+

.

This result is also easy to show by induction. To see that the result holds for the last time
period τ , we have

Similarly, assuming that the result holds for time period t + 1, we have
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This completes the proof.

The most obvious question is how to choose the Lagrange multipliers. Since the initial
capacities on the flight legs are given by c = {ci : i = 1, . . . .m}, the maximum total expected
revenue over the time periods {1, . . . , τ} is given by V1(c). On the other hand, we know
that the value function that we obtain under the Lagrangian relaxation strategy provides an
upper bound on the exact value function. In particular, we have V1(c) ≤ V λ

1 (c) as long as the
Lagrange multipliers are positive. Therefore, we can solve the problem

min
λ≥0

V λ
1 (c)

to find a good set of Lagrange multipliers. As complicated as it looks, the minimization
problem above can be solved as a linear program.

To see this, we first note that for a fixed value of λ, we have

V λ
1 (c) =

m∑
i=1

λi ci +
n∑

j=1

τ∑
t=1

pjt

[
fj −

m∑
i=1

aij λi

]+

.

The first thing to note is that for a fixed value of λ, V λ
1 (c) is the optimal solution to the

trivial linear program

If we want to solve the problem minλ≥0 V λ
1 (c), then all we need to do is to treat the La-

grange multipliers in the linear program above as decision variables and solve the problem

Therefore, we know how to pick a good set of values for the Lagrange multipliers. Once
we have these Lagrange multipliers, we can compute a good approximation to the value func-
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tion by

V λ
t (xt) =

m∑
i=1

λi xit +
n∑

j=1

τ∑

t′=t

pjt′

[
fj −

m∑
i=1

aij λi

]+

.

A side reason that we do all these computations is to show the link between the dynamic
programming formulation of the network revenue management problem and the linear pro-
graming approximation. We consider the dual of the last linear program that we have above.
Note that this linear program computes minλ≥0 V λ

1 (c). The dual of this linear program is

Therefore, the Lagrangian relaxation strategy is equivalent to the linear programming ap-
proximation.

This observation may not sound too interesting. However, if we face a network revenue
management problem for which we do not have a linear programming approximation, then
we can first write the dynamic programming formulation of the network revenue management
problem. After this, we can relax the capacity availability constraints to see what the linear
programming approximation should look like. For example, we do not have a linear pro-
gramming approximation for the network revenue management problem with cancellations.
However, we know how to formulate the network revenue management problem with cancella-
tions as a dynamic program. In this case, we can use the Lagrangian relaxation strategy to see
what the linear programming approximation should look like in the presence of cancellations.
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