
1 Test Problems

Our test problems are drawn from numerous sources in the literature. In order to come up with a
rich set of problems, we also generated additional test problems using the previously published ones
as starting points. We briefly describe our problems below.

Electricity planning – This problem concerns the optimal allocation of limited capacity to different
power terminals. The first stage decisions are the capacities assigned to each power terminal, subject
to certain resource limitations. The second stage variables are how much power is supplied from each
terminal to each demand location. The objective is to maximize the total expected profit, which can
include the capacity installation cost, production cost, transportation cost and revenue from sales.
The problem can be stated as

min
∑

i∈P
ci xi + Q(x)

subject to
∑

i∈P
aik xi ≤ rk for all k ∈ R,

Q(x, ξ) = min
∑

i∈P

∑

j∈C
pij yij

subject to
∑

j∈C
yij ≤ xi for all i ∈ P

∑

i∈P
yij ≤ ξj for all j ∈ C,

where we omit the nonnegativity constraints for brevity. Each unit of capacity allocated to terminal
i uses aik units of resource k, whose availability is limited to rk. ξj is the random demand at demand
location j. A problem with the same structure is given in Louveaux & Smeers (1988).

Bi-weekly fleet size planning – Here, we consider the fleet-sizing problem faced by a freight
carrier over a two-week horizon. The loads for the first week are known. The decisions are for the
first week are the number of vehicles available at each terminal and the number of vehicles moving
between each origin and destination. The decisions for the second week are similar, but the vehicle
supply at each terminal is determined by the decisions of the first week. If the vehicle supply of a
location at the end of the second week is different than what it was at the beginning of the first
week, then a penalty is incurred. We formulate the problem as

min
∑

i∈L
vi zi +

∑

i,j∈L
(rij xij + r̃ij x̃ij) + Q(z, z̃)

subject to
∑

j∈L
(xij + x̃ij)− zi = 0 for all i ∈ L

∑

i∈L
(xij + x̃ij)− z̃j = 0 for all j ∈ L

xij ≤ uij for all i, j ∈ L,

Q(z, z̃, ξ) = min
∑

i,j∈L
(rij yij + r̃ij ỹij) +

∑

j∈L
pj wj

subject to
∑

j∈L
(yij + ỹij) = z̃i for all i ∈ L

∑

i∈L
(yij + ỹij) + wj − w̃j = zj for all j ∈ L

yij ≤ ξij for all i, j ∈ L.
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xij and x̃ij are respectively the number of vehicles moving empty and loaded from terminal i to j
during the first week. zi is the number of vehicles deployed at terminal i. The number of vehicles at
terminal i at the beginning of the second week is z̃i. If the vehicle supply at location j at the end
of the second week is below zj , then this imbalance is penalized by pj per unit shortage. ξij is the
random number of loads that need to be carried from terminal i to j in the second stage.

Weekly fleet size planning – This problem is taken from Mak, Morton & Wood (1999), and it is
very similar to the previous one, except that we try to impose a one-week cycle instead of a two-week
cycle. We also assume that there are multiple vehicle types, which we represent by the set K. The
only decisions in the first stage are the number of vehicles of each type deployed at each terminal.
The problem is

min
∑

i∈L

∑

k∈K
vk
i zk

i + Q(z)

subject to
∑

i∈L
zk
i ≤ fk for all k ∈ K,

Q(z, ξ) = min
∑

i,j∈L

∑

k∈K

(
rk
ij yk

ij + r̃k
ij ỹk

ij

)
+

∑

j∈L

∑

k∈K
pk

j wk
j

subject to
∑

j∈L

(
yk

ij + ỹk
ij

)
= zk

i for all i ∈ L, k ∈ K
∑

i∈L

(
yk

ij + ỹk
ij

)
+ wk

j − w̃k
j = zk

j for all j ∈ L, k ∈ K
∑

k∈K
yk

ij ≤ ξij for all i, j ∈ L,

where fk is the maximum number of vehicles of type k that we can use.

Product distribution – This problem models the operations of a manufacturing company that
ships its production from numerous production plants to numerous warehouses, before seeing the
realization of the random customer demands. We use P, W and C to denote the set of production
plants, warehouses and customer locations, respectively. The problem can be stated as

min
∑

i∈P

∑

j∈W
cij xij + Q(z)

subject to
∑

j∈P
xij = pi for all i ∈ P

∑

i∈P
xij − zj = 0 for all j ∈ W,

Q(z, ξ) = min
∑

j∈W

∑

k∈C
dij yjk −

∑

k∈C
rk wk

subject to
∑

k∈C
yjk ≤ zj for all j ∈ W

∑

j∈W
yjk ≤ ξk for all k ∈ C,

where ξk is the random demand at customer location k.

Telecommunications network design – This problem, due to Sen, Doverspike & Cosares (1994),
arises in the context of allocating limited capacity to different links in a telecommunications network.
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Demand for communication between different nodes in the network randomly arrives into the system.
If there is a path from the origin to the destination node of the demand with sufficient capacity, then
the demand is satisfied. Otherwise, the demand is lost. The objective is to minimize the expected
number of lost demands. We let G = (N ,A) be the underlying network, and Pij be the set of paths
connecting node i to node j. The problem is

min Q(z)

subject to
∑

a∈A
za ≤ c,

Q(z, ξ) = min
∑

i,j∈N
wij

subject to
∑

i,j∈N

∑

p∈Pij

δap yp ≤ za for all a ∈ A
∑

p∈Pij

yp + wij = ξij for all i, j ∈ N ,

where δap is a binary variable that takes value 1 if and only if arc a is in path p. ξij is the random
demand for communication from node i to j.
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