We test the performances of the following methods. The objective value provided by each method is tested with $\mp 1\%$ precision with 95% confidence.

- Deterministic approximation (DA): We replace all random quantities in the problem with their expectations and solve a deterministic linear program to get the first stage decisions. This method illustrates the value of solving an appropriate model that takes randomness into consideration.
- Piecewise-linear recourse function approximations (PL): We approximate the recourse functions with separable piecewise-linear functions and use the sampling-based method proposed by Powell, Ruszczynski & Topaloglu (2004) to update the recourse function approximations iteratively.

You can email me at ht880cornell.edu to obtain the solutions that yield the objective values given in the following table.

Problem	DP	PL
Electricity planning small	-1351.00	-1460.81
Electricity planning medium	-5695.06	-5916.40
Electricity planning large	-1722.62	-1846.08
Bi-weekly fleet-sizing small	-8071.12	-8579.98
Bi-weekly fleet-sizing medium	-701.46	-1481.00
Bi-weekly fleet-sizing large	-6353.51	-7259.32
Weekly fleet-sizing small	-2806.10	-3672.28
Weekly fleet-sizing medium	-500.08	-968.47
Weekly fleet-sizing large	-1750.31	-2535.81
Product distribution small	-17637.20	-18146.60
Product distribution medium	-27837.41	-28479.40
Product distribution large	-29389.04	-30016.40

References

Powell, W. B., Ruszczynski, A. & Topaloglu, H. (2004), 'Learning algorithms for separable approximations of stochastic optimization problems', *Mathematics of Operations Research* 29(4), 814– 836.