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Abstract

We propose the use of sequences of separable, piecewise linear approximations for solving
nondifferentiable stochastic optimization problems. The approximations are constructed
adaptively using a combination of stochastic subgradient information and possibly sample
information on the objective function itself. We prove the convergence of several versions
of such methods when the objective function is separable and has integer break points, and
we illustrate their behavior on numerical examples. We then demonstrate the performance
on nonseparable problems that arise in the context of two-stage stochastic programming
problems, and demonstrate that these techniques provide near optimal solutions with a very
fast rate of convergence compared to other solution techniques.
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1 Introduction

We consider the following stochastic programming problem

max
x∈X

Ef(x, ω), (1)

where f : Rn × Ω → R, (Ω,F , P) is a probability space, and E denotes the expected value.
We assume that the function f is concave with respect to the first argument, and such that

F (x) = Ef(x, ω)

is finite for every x ∈ X. We assume that for almost all ω, all i = 1, . . . ,m, and for all feasible
integer values of xj for j 6= i, the function f(x1, . . . , xi−1, ·, xi+1, . . . , xn, ω) is piecewise linear
with integer break points. We also assume that the set X is closed, and

X ⊆ {x ∈ Rn : 0 ≤ xi ≤ Mi, i = 1, . . . , n}.

Problems of this type arise in a variety of resource allocation problems. In the car distribution
problem of railroads, for example, planners often face the problem of having to reposition
empty cars before a customer order has been realized. Truckload carriers have to assign
drivers to loads before knowing the opportunities available to the driver at the destination.
The air mobility command needs logic for their simulators that will reposition aircraft back
to locations where they might be needed, before actual demands are known.

All of these problems can be modeled as multistage stochastic linear programming prob-
lems. Experimental research (see, for example, Godfrey & Powell (2001)) has demonstrated
that the recourse function for these problems can be well approximated by sequences of
piecewise linear, separable functions. These scalar functions can be approximated by tech-
niques that use sample gradients, where the challenge is to maintain the concavity of the
approximations. As a result of the need to use Monte Carlo samples, it is necessary to in-
troduce steps which maintain the concavity after every update. This paper explores a class
of such techniques and establishes conditions under which these approximations converge to
the true function.

An important case is what is referred to as the two-stage stochastic program:

max 〈c, x〉+ E Q(x, ω) (2)

subject to: Ax = b,

x ≥ 0,

where

Q(x, ω) = max 〈q, y〉
subject to: Wy = h(ω)− Tx,

y ≥ 0.

A special case of (2) is the two-stage stochastic program with network recourse, where the
second stage problem is the min-cost network flow problem. If h takes integer values a.s.,
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then this problem is a special case of (1). Another special case occurs when f in (1) is a
separable function of the form

f(x, ω) =
n∑

i=1

fi(xi, ω). (3)

This is the form most often taken in the context of classical resource allocation problems
(Righter (1989)) which involve the allocation of resources to independent activities subject
to a common budget constraint.

In order to obtain the optimal solution to (1), one can consider building sequential
approximations of F , say F k. If the sequence {F k} converges to F in an appropriate sense
then we can claim to have a procedure to solve (1). Alternatively we may solve optimization
problems of the form xk ∈ arg maxx∈X F k(x), constructed in such a way that the sequence
{xk} converges to x∗ ∈ arg maxx∈X F (x). In this case the sequence of functions {F k} does
not necessarily converge to F , but {xk} may converge to an point. Of critical importance
in practical applications is also the speed of convergence, a question that we treat on an
experimental basis.

For our class of applications, it is relatively easy, for a given xk, to sample an elementary
event ωk and to calculate fi(x

k
i , ω

k). Moreover, it is also easy to obtain information about
the slope of fi(·, ωk) at xk

i :

vk
i = fi(x

k
i , ω

k)− fi(x
k
i − 1, ωk). (4)

On the other hand, it is difficult to obtain the exact values of f̄i(x) = E{fi(x, ω)}, since it
involves the calculation of the expected value.

Example 1 Let xi denote the amount of resource allocated to activity i, where i = 1, . . . , n.
These amounts have to be chosen from the set

X =
{

x ∈ Rn : xi ∈ {0, 1, . . . ,Mi}, i = 1, . . . , n,
n∑

i=1

xi ≤ b
}

. (5)

For each activity i there is a nonnegative integer random variable Di representing the de-
mand. The reward associated with activity i is defined as in the newsvendor problem:

fi(xi, Di) = qi min(xi, Di)− cixi,

where qi > ci > 0. Our objective is to allocate the resources in such a way that the expected
reward, F (x) = E

∑n
i=1 fi(xi, Di), is maximized, subject to the constraint x ∈ X. Porteus

(1990) provides a thorough review of the newsvendor problem in the context of stochastic
inventory models. The optimal solution of a single newsvendor problem can be expressed
analytically, but this requires knowing the distribution of demand. An extensive literature
has evolved to solve what is known as the censored newsvendor problem (where you only
see the amount sold, not the actual demand). This literature (see, for example, Ding et al.
(2002)) requires assuming a parametric form for the demand distribution. The algorithm
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provided in this paper does not require any information about the demand distribution
or a set of demand observations from which the demand distribution can empirically be
constructed.

In such a problem we may sample a demand realization Dk = (Dk
1 , . . . , D

k
n) and calculate

vk
i =

{
qi − ci if xk

i ≤ Dk
i ,

−ci if xk
i > Dk

i .
i = 1, . . . , n.

We can also calculate the right slope estimate

vk
i+ =

{
qi − ci if xk

i < Dk
i ,

−ci if xk
i ≥ Dk

i ,
i = 1, . . . , n.

The information our algorithm uses is {xk}, {vk} and {vk
+}, where xk, vk and vk

+ respectively
denote the vectors (xk

1, . . . , x
k
n), (vk

1 , . . . , v
k
n) and (vk

1+, . . . , vk
n+). In order to compute any vk

i

or vk
i+, we only need to know if xk

i ≤ Dk
i . For the newsvendor problem, this translates into

knowing whether the newsvendor has sold all the newspapers or not, rather than observing
the exact value of the demand random variable. This is exactly the same situation addressed
in the censored newsvendor problem. Therefore, the algorithm presented in this paper
provides an asymptotically optimal solution to the censored newsvendor problem without
requiring any particular form for the demand distribution.

Similar estimates can be generated in a slightly more complicated case, with the reward
associated with activity i defined as

fi(xi, Di) = qi(min(xi, Di))− ci(xi),

where qi(·) is a concave piecewise linear function, and ci(·) is a convex piecewise linear
function, both with break points at 0, 1, . . . ,Mi.

There exists a wealth of numerical methods for stochastic programming problems. The
first group are scenario methods, in which a sufficiently rich sample ω1, . . . , ωN is drawn from
the space Ω, and the expectation is approximated by the sample average:

FN(x) =
1

N

N∑
ν=1

f(x, ων).

A discussion of these approaches can be found in Shapiro & Homem-De-Mello (2000), Korf
& Wets (2001) and Kleywegt et al. (2002).

The second group of methods are stochastic subgradient methods , which use the fact that
the random vector vk in (4) satisfies the relation

E{vk|xk} ∈ ∂F (xk),

where ∂F is the subdifferential of F (understood as the negative of the subdifferential of the
convex function −F ). Stochastic subgradient algorithms depend on updates of the form:

xk+1 = xk + αkv
k.
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These methods make very many small updates to the current approximation by using the
stochastic subgradients as directions, achieving convergence almost surely to the optimal
point. A treatment of these methods can be found in Ermoliev (1988). Constraints can
be treated by projection, feasible direction techniques Ruszczyński (1980) or by recursive
linearization Ruszczyński (1987).

Finally, Benders decomposition can be used to solve two-stage stochastic linear programs
by approximating the recourse function E Q(x, ω) with a series of cutting planes (Van Slyke
& Wets (1969), Ruszczyński (1986), Higle & Sen (1991), Ruszczyński (2003), Chen & Powell
(1999)).

Our problem class is motivated by problems that require integer solutions. The intro-
duction of uncertainty often has the effect of destroying the natural integer structure of
many problems. All of the three classes of techniques mentioned above destroy the natural
integrality either by how the recourse function is approximated (scenario methods and Ben-
ders decomposition) or the nature of the algorithm itself (stochastic subgradient methods).
The method proposed in this paper handles integrality requirements very easily (Laporte &
Louveaux (1993) shows how integrality can be incorporated into Benders decomposition).

We propose to solve these problems by adaptively estimating, using sample subgradient
information, sequences of separable approximations which are piecewise linear, concave, and
have integer break points. We use the information gathered in iterations 1, . . . , k to construct
models fk

i (·) of the expected value functions f̄i(·) = E{fi(·, ω)}, i = 1, . . . , n. The next
approximation to the solution is given by:

xk ∈ arg max
x∈X

n∑
i=1

fk
i (xi). (6)

An associated learning step provides information employed to update the models fk
i . Such

an approach is already known to be optimal if the objective function is continuously dif-
ferentiable (Culioli & Cohen (1990), Cheung & Powell (2000)), but there is no comparable
result for nondifferentiable problems. While the relation of stochastic approximation type
methods and learning is well known (see, e.g. Kushner & Yin (1997)), the use of the struc-
ture (separability and concavity) allows here for the construction of particularly efficient
methods.

Our solution strategy extends a line of research in stochastic resource allocation us-
ing separable approximations. This problem class has been most widely studied using the
framework of two-stage stochastic programs with network recourse (Wallace (1986), Wallace
(1987) and Birge & Wallace (1988)). Independently, separable, piecewise linear approxima-
tions have been proposed for discrete resource allocation problems that arise in the context of
fleet management (Powell (1986), Powell (1987) and Powell (1988)). Frantzeskakis & Powell
(1990) suggests a static, piecewise linear separable approximation for specially structured
tree problems, a result that is generalized in Powell & Cheung (1994) and applied to mul-
tistage resource allocation problems in Cheung & Powell (1996). These methods, however,
were not adaptive which limited the quality of the solution. Powell & Carvalho (1998) pro-
vided an adaptive learning algorithm based on linear approximations, which was extended
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in Godfrey & Powell (2001) to an adaptive, piecewise linear approximation based on the
“CAVE” algorithm. The CAVE algorithm provided exceptionally good experimental perfor-
mance, but offered no provable results. Wallace (1987) introduces a piecewise linear upper
bound for networks, a result that is generalized in Birge & Wallace (1988) for stochastic
programs.

In this paper, we introduce and formally study the use of sequences of piecewise linear,
separable approximations as a strategy for solving nondifferentiable stochastic optimiza-
tion problems. As a byproduct, we produce a fast algorithm for problems such as two stage
stochastic programs with network recourse, a topic that was first studied in depth by Wallace
(1986). We establish several important convergence results for the special case of separable
objective functions, and show experimentally that the algorithm provides near-optimal, and
often optimal, solutions for problems when the objective function is not separable, as would
be the case with two-stage stochastic programs. Furthermore, the observed speed of conver-
gence is much faster than techniques such as Benders decomposition, especially for higher
dimensional problems.

The paper is divided into two parts. Sections 2-6 deal exclusively with problems where
the original objective function F (x, ω) is separable. While this problem class enjoys its own
sets of applications (for example, in a variety of budget allocation problems), our interest in
this special problem class arises primarily because we are able to prove some important con-
vergence results. Section 2 presents the basic algorithm for learning piecewise linear, concave
approximations (while maintaining concavity after every update), and proves convergence
to the real function assuming that all points are sampled infinitely often. Section 3 provides
a variation of the algorithm that combines gradient information with sample information on
the function itself. In practical applications, we cannot generally guarantee that we will sam-
ple all points infinitely often, and this is not necessary to find the optimal solution. Section 4
proves convergence when we only sample the points xk generated by equation (6). Section 5
shows how a certain projection required to maintain concavity can be implemented, Section
6 provides the results of a series of experiments that investigate the rate of convergence of
variations of the algorithm.

The second part of the paper, given in section 7, focuses on nonseparable problems
that arise in the context of two-stage stochastic programs. We cannot guarantee that our
algorithm will produce the optimal solution for two-stage problems, but we show that the
right separable approximation can produce the optimal solution, and use this to develop a
bound on our result. Numerical comparisons with Benders decomposition, which is optimal
for non-integer versions of these problems, indicate that our approach may provide much
faster convergence and optimal or very near-optimal results.

2 Learning Concave Functions of One Variable

We start from the description and analysis of the basic learning algorithm for a concave
piecewise linear function of one variable f̄ : [0, M ] → R. We assume that f̄ is linear on the
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intervals [s− 1, s], s = 1, . . . ,M . Let

v̄s = f̄(s)− f̄(s− 1), s = 1, . . . ,M.

Let us note that the knowledge of the vector v̄ = (v̄1, . . . , v̄M) allows us to reconstruct f̄(x),
x ∈ [0, M ], except for the constant term f̄(0):

f̄(x) = f̄(0) +
l∑

s=1

v̄s + v̄l+1(x− l),

where l is such that l ≤ x < l + 1. In the context of our problem (1) with the objective
function (3), f̄(·) represents the expected value of a coordinate function, E{fi(·)}.

The main idea of the algorithm is to recursively update a random vector vk taking values
in RM , k = 1, 2, . . . , in order to achieve convergence of vk to v̄ (in some stochastic sense).
We still denote by (Ω,F , P) the probability space on which this sequence is defined.

Let us note that by the concavity of f̄ the vector v̄ has nonincreasing components:

v̄s+1 ≤ v̄s, s = 1, . . . ,M − 1. (7)

We shall at first assume that there exists a constant B such that

v̄1 ≤ B, v̄M ≥ −B. (8)

Clearly, the set V of vectors satisfying (7)–(8) is convex and closed. We shall ensure that
all our approximate slopes vk are elements of V as well. To this end we shall employ the
operation of orthogonal projection on V

ΠV (z) = arg min{‖v − z‖2 : v ∈ V }. (9)

We show in section 5 that for the set V defined by (7) such a projection can be calculated
in an easy way.

Our learning algorithm, which is called the separable, projective approximation routine
(SPAR), is given in figure 1.

At this moment we shall not specify the way in which sk is defined, except that sk is a
random variable. Specific conditions on it will be formulated later. We use Fk to denote the
σ-subalgebra generated by v1, . . . , vk, s1, . . . , sk−1. We denote

pk
s = P{sk = s | Fk}, s = 1, . . . ,M.

The stepsizes αk employed at step 3 may also be random, but must be Fk-measurable.

Let us denote by ξk the random vector with the components

ξk
s =

{
−ηk + vk

s if s = sk,

0 otherwise.
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Step 0 Set v1 ∈ V , k = 1.

Step 1 Sample sk ∈ {1, . . . ,M}.

Step 2 Observe a random variable ηk such that

E{ηk | v1, . . . , vk; s1, . . . , sk} = v̄sk , a.s.. (10)

Step 3 Calculate the vector zk ∈ RM as follows

zk
s =

{
(1− αk)vk

s + αkηk if s = sk,
vk

s otherwise,
(11)

where αk ∈ (0, 1].

Step 4 Calculate vk+1 = ΠV (zk), increase k by one and go to step 1.

Figure 1: Separable, Projective Approximation Routine (SPAR)

We can now rewrite the method compactly as

vk+1 = ΠV (vk − αkξ
k), k = 1, 2, . . . .

It follows from (10) that

E{ξk
s | Fk} = pk

s(v
k
s − v̄s), s = 1, . . . ,M.

Thus

E{ξk | Fk} = P k(vk − v̄), P k = diag(pk
s)

M
s=1. (12)

We assume that there exists a constant C such that for all k

E{‖ηk‖2 | v1, . . . , vk; s1, . . . , sk} ≤ C, a.s., k = 1, 2, . . . . (13)

We also assume that

∞∑
k=1

αk = ∞, a.s., (14)

∞∑
k=1

Eα2
k < ∞, (15)

lim inf
k→∞

pk
s > 0, a.s., s = 1, . . . ,M. (16)

.

Theorem 1 Assume (10) and (13)–(16). Then SPAR generates a sequence {vk} such that
vk → v̄ a.s..
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Proof. Our proof is standard, but we present it here in order to derive some useful inequal-
ities that will be applied later. By the nonexpansiveness of the projection ΠV (·),

‖vk+1 − v̄‖2 ≤ ‖zk − v̄‖2 = ‖vk − v̄‖2 − 2αk〈vk − v̄, ξk〉+ α2
k‖ξk‖2.

We add and subtract the term 2αk〈vk − v̄, P k(vk − v̄)〉 to obtain:

‖vk+1 − v̄‖2 ≤‖vk − v̄‖2 − 2αk〈vk − v̄, P k(vk − v̄)〉
− 2αk〈vk − v̄, ξk − P k(vk − v̄)〉+ α2

k‖ξk‖2. (17)

Let us consider the sequence

Sm =
m∑

k=1

α2
k‖ξk‖2, m = 1, 2 . . . ,

and let S0 = 0. By the boundedness of V , and by (13) there exists a constant C1 such that
E{α2

m‖ξm‖2 | Fm} ≤ C1α
2
m a.s., for all m. Therefore, in view of the Fm-measurability of αm,

Sm−1 ≤ E{Sm | Fm} ≤ Sm−1 + C1α
2
m, m = 1, 2, . . . .

Taking the expected value we obtain that E{Sm} ≤ E{Sm−1}+C1E{α2
m} for all m, and thus

E{Sm} ≤ C1E
{ m∑

k=1

α2
k

}
.

The last two displayed relations and assumption (15) imply that the sequence {Sm} is a
submartingale, which is convergent a.s., by virtue of (Doob 1953, Thm. 4.1).

Consider now the series

Um =
m∑

k=1

αk〈vk − v̄, ξk − P k(vk − v̄)〉, m = 1, 2, . . . , (18)

and let U0 = 0. By (12), E{Um | Fm} = Um−1, m = 1, 2, . . . , and thus the sequence {Um} is
a martingale. We can write equation (18) as:

Um = Um−1 + αm〈vm − v̄, ξm − Pm(vm − v̄)〉.

Squaring both sides and taking the expectation yields:

E{U2
m | Fm} = U2

m−1 + E
{[

αm〈vm − v̄, ξm − Pm(vm − v̄)〉
]2

∣∣∣Fm

}
+ E

{
Um−1

(
αm〈vm − v̄, ξm − Pm(vm − v̄)〉

) ∣∣∣Fm

}
(19)

= U2
m−1 + E

{[
αm〈vm − v̄, ξm − Pm(vm − v̄)〉

]2
∣∣∣Fm

}
. (20)
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where the last term in equation (19) is zero due to (12). By the boundedness of V , and by
(13), there exists a constant C2 such that

E
{[

αm〈vm − v̄, ξm − Pm(vm − v̄)〉
]2

∣∣∣Fm

}
≤ C2α

2
m, m = 1, 2, . . . . (21)

Equations (20) and (21) yield:

E{U2
m | Fm} ≤ U2

m−1 + C2α
2
m, m = 1, 2, . . . .

Taking the expected value we conclude that

E{U2
m} ≤ C2E

{ m∑
k=1

α2
k

}
, m = 1, 2, . . . .

Assumption (15) implies that the martingale {Um} is convergent a.s., by virtue of (Doob
1953, Thm. 4.1). Therefore (17) may be rewritten as

‖vk+1 − v̄‖2 ≤ ‖vk − v̄‖2 − 2αk〈vk − v̄, P k(vk − v̄)〉+ Ak. (22)

where Ak = (Sk − Sk−1)− (Uk − Uk−1) and
∑∞

k=1 Ak is finite a.s. This implies that

‖vk+1 − v̄‖2 +
∞∑

j=k+1

Aj ≤ ‖vk − v̄‖2 +
∞∑

j=k

Aj, k = 1, 2, . . . .

The sequence ‖vk − v̄‖2 +
∑∞

j=k Aj, k = 1, 2, . . . is nonincreasing and bounded from below

a.s., hence convergent. Thus the sequence {‖vk − v̄‖2} is convergent a.s. From (22) we get

∞∑
k=1

αk〈vk − v̄, P k(vk − v̄)〉 < ∞, a.s..

Using (14) and (16) we deduce that a.s. there must exist an infinite subset of indices K ⊆ N
and a subsequence {vk}, k ∈ K, such that vk → v̄ for k ∈ K. Since the sequence of distances
‖vk − v̄‖2 is convergent, the entire sequence {vk} converges to v̄. �

If we remove inequalities (8) from the definition of V , only small technical changes are
needed to ensure convergence a.s. Instead of the steps αkξ

k we need to use normalized steps
αkγkξ

k, where the normalizing coefficients have the form:

γk = (max(‖vk‖, B))−1,

for some large constant B. We first prove that both martingales {Sm} and {Um} converge,
due to the damping by the γk’s. Then the corresponding version of (22) yields the bounded-
ness of {vk} a.s. Consequently, the normalizing coefficients are bounded away from 0, a.s.,
and the remaining part of the analysis goes through, as well. In our further considerations we
shall still assume, though, that inequalities (8) are present in the definition of V , in order to
avoid unnecessary notational complications associated with the normalizing coefficients γk.
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In many applications, at a given point sk ∈ {1, . . . ,M − 1} we can observe two random
variables: ηk satisfying (10), and ηk

+ such that

E{ηk
+ | v1, . . . , vk; s1, . . . , sk} = v̄sk+1 (23)

and

E{‖ηk
+‖2 | v1, . . . , vk; s1, . . . , sk} ≤ C, k = 1, 2, . . . . (24)

This was illustrated in example 1.

Our algorithm can be easily adapted to this case, too. The only difference is step 3,
where we use both random observations, whenever they are available:

zk
s =


(1− αk)v

k
s + αkη

k if s = sk,

(1− αk)v
k
s + αkη

k
+ if sk < M and s = sk + 1,

vk
s otherwise,

(25)

The analysis of this version of the method is similar to the basic case. We define

ξk
s =


−ηk + vk

s if s = sk,

−ηk
+ + vk

s if sk < M and s = sk + 1,

0 otherwise.

It follows from (10) and (23) that

E{ξk
s |Fk} =

{
pk

s(v
k
s − v̄s) if s = 1,

(pk
s + pk

s−1)(v
k
s − v̄s) if 1 < s ≤ M .

(26)

Therefore, after replacing the coefficients pk
s by

p̄k
s =

{
pk

s if s = 1

pk
s + pk

s−1 if 1 < s ≤ M ,

we can reduce this version of the method to the basic case analyzed earlier.

3 Using Objective Value Observations

In the applications that we have in mind, our observations provide us with more information
than just the estimate of the slope of the objective function at sk. We also observe the value
of the objective function at sk corresponding to some outcome ωk. We denote this by

θk = f(sk, ωk).
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Step 0 Set v1 ∈ V , k = 1.

Step 1 Sample sk ∈ {1, . . . ,M}.

Step 2 Observe random variables ηk and θk satisfying (10) and (27).

Step 3 Calculate the vector zk ∈ RM as follows

zk
s =



vk
s + αk

(
θk −

sk∑
i=1

vk
i

)
for s = 1, . . . , sk − 1,

(1− αk)vk
s + αkηk + αk

(
θk −

sk∑
i=1

vk
i

)
for s = sk,

vk
s otherwise,

(28)

where αk ∈ (0, 1].

Step 4 Calculate vk+1 = ΠV (zk), increase k by one and go to step 1.

Figure 2: SPAR with objective function updates (SPAR-Obj)

Usually, we know the value f̄(0) and with no loss of generality we assume f̄(0) = 0. We also
assume that θk satisfies

E{θk|v1, . . . , vk; s1, . . . , sk} = f̄(sk) =
sk∑
i=1

v̄i, a.s. (27)

(27) is trivially satisfied when ωk is independent of v1, . . . , vk; s1, . . . , sk but this does not
necessarily have to be the case. We can now use {θk} to facilitate the convergence to v̄. The
algorithm is described in figure 2.

We additionally assume that there exists a constant C such that

E{(θk)2 | v1, . . . , vk; s1, . . . , sk} ≤ C, k = 1, 2, . . . . (29)

We have a result similar to theorem 1.

Theorem 2 Assume (10), (13)–(16) and (27), (29). Then SPAR-Obj generates a sequence
{vk} such that vk → v̄ a.s..

Proof. Let us calculate the conditional expectation of the vector ξk = (vk−zk)/αk. Directly
from (10) and (27) we have

(
E{ξk | Fk}

)
s
=



sk∑
i=1

(vk
i − v̄k

i ) for s = 1, . . . , sk − 1,

vk
sk − v̄k

sk +
sk∑
i=1

(vk
i − v̄k

i ) for s = sk,

0 for s = sk + 1, . . . ,M.

11



Therefore

(E{ξk|Fk})j = pk
j (v

k
j − v̄j) +

M∑
s=j

pk
s

s∑
i=1

(vk
i − v̄k

i )

=

j−1∑
i=1

( M∑
s=j

pk
s

)
(vk

i − v̄k
i ) +

(
pk

j +
M∑

s=j

pk
s

)
(vk

j − v̄k
j )

+
M∑

i=j+1

(
M∑
s=i

pk
s)(v

k
i − v̄k

i ).

Consider the matrix W k of dimension M ×M with the entries

wk
ij =

{∑M
s=j pk

s if i ≤ j,∑M
s=i p

k
s if i > j.

The last two relations yield:

E{ξk|Fk} = (P k + W k)(vk − v̄k), (30)

where P k = diag(pk
j )

M
j=1. We have

W k =
M∑
l=1

W k
l ,

where each of the matrices W k
l has entries

(W k
l )ij =

{
pk

l if i, j ≤ l,

0 otherwise.

Each W k
l is positive semidefinite, and thus W k is positive semidefinite, too. Now we can

proceed as in the proof of theorem 1. We have an inequality similar to (17):

‖vk+1 − v̄‖2 ≤‖vk − v̄‖2 − 2αk〈vk − v̄, (P k + W k)(vk − v̄)〉
− 2αk〈vk − v̄, ξk − (P k + W k)(vk − v̄)〉+ α2

k‖ξk‖2.

Using (30) and (15) we can rewrite it as

‖vk+1 − v̄‖2 ≤ ‖vk − v̄‖2 − 2αk〈vk − v̄, (P k + W k)(vk − v̄)〉+ Ak.

where
∑∞

k=1 Ak is finite a.s. Since W k is positive semidefinite, we can just omit it in the
above inequality and obtain (22) again. The rest of the proof is the same as before. �

SPAR-Obj can be modified to assign different weights to the components of the direction
associated with the observations ηk and θk. In particular, we may set at step 3

zk
s =



vk
s + αk

ρk

(
θk −

sk∑
i=1

vk
i

)
for s = 1, . . . , sk − 1,

(1− αk)v
k
s + αkη

k + αk

ρk

(
θk −

sk∑
i=1

vk
i

)
for s = sk,

vk
s otherwise.

(31)

12



where 0 < ρmin ≤ ρk ≤ ρmax, and ρk is Fk-measurable. The analysis of this version is identical
to the proof of theorem 2. Our numerical experiments reported in section 6 indicate that
the additional scaling in (31) is useful.

4 Multidimensional Problems and Learning While Op-

timizing

Let us now return to problem (1). If the next observation point sk = (sk
1, . . . , s

k
n) is sampled

at random, and if for each coordinate i the probabilities

pk
is = P{sk

i = s | Fk}, s = 1, . . . ,M,

satisfy assumption (16), then all results of the preceding two sections apply component-wise.

The situation is different if we generate the next observation point sk by solving the
approximate problem (6), that is

sk
i = xk

i , i = 1, . . . , n, k = 1, 2, . . . .

If the solution xk is not unique, we choose it at random from the set of optimal solutions of
(6). For each coordinate function fi we observe two random variables: ηk

i satisfying (10), and
ηk

i+ satisfying (23). Then we update the left and right slopes for each function fi according
to (25), and the iteration continues. In this way we define the sequences {vk

i }, k = 1, 2 . . . of
estimates of the slopes of fi, i = 1, . . . , n, and a sequence xk of the solutions of approximate
models (6).

This algorithm is well-defined if the approximate problems (6) have integer solutions
for all concave piecewise linear functions fi having integer break points. This is true, for
example, for models having alternative network representations, as those discussed in Powell
& Topaloglu (2003).

Note that in the previous two sections our convergence proofs depend on the assumption
that lim infk→∞ pk

is > 0 a.s. for s = 1, . . . ,M , i = 1, . . . , n. However, when sk is selected as
sk = arg maxx∈X

∑n
i=1 f̄k

i (xi), this assumption may not satisfied. In this section, we show
that even with this new choice of sk, the sequence {sk} converges to an optimal solution of
maxx∈X

∑n
i=1 f̄i(xi), provided a certain stability condition is satisfied.

Let us note that for a concave, piecewise linear and separable function

F (x) =
n∑

i=1

fi(xi), (32)

where each fi is defined as

fi(xi) =
l∑

s=1

vs + vl+1(x− l) (33)

13



with an integer l such that l ≤ x < l + 1, the subdifferential of F at an integer point x is
given by

∂F (x) = [v1,x1+1, v1,x1 ]× [v2,x2+1, v2,x2 ]× · · · × [vn,xn+1, vn,xn ].

Under the Slater constraint qualification, the necessary and sufficient condition of optimality
for problem

max
x∈X

F (x),

where X is a convex closed set, has the form

0 ∈ ∂F (x)−N(x), (34)

with N(x) being the normal cone to X at x. An optimal point x̂ is called stable if it satisfies

0 ∈ int [∂F (x̂)−N(x̂)]. (35)

It can be seen directly from conditions (34) and (35) that a stable point x̂ is also a solution
to a perturbed problem

max
x∈X

F̃ (x),

provided that dist(∂F (x̂), ∂F̃ (x̂)) < ε and ε is a sufficiently small positive number.

Clearly, the solutions xk of our approximate problems (6) satisfy condition (34) for the
approximate functions fk constructed by the method. Then, by passing to the limit, we
can conclude that each accumulation point (x∗, v∗) of the sequence {(xk, vk)} satisfies the
condition

0 ∈ ∂F ∗(x∗)−N(x∗),

with F ∗ constructed from v∗ as in (32)–(33). We shall show that if such an accumulation
point satisfies the condition of stability, it is optimal for the original problem.

Theorem 3 Assume that for each i = 1, . . . , n the conditions (10), (13)–(15) and (23)–(24)
are satisfied. If an accumulation point (x∗, v∗) of the sequence {(xk, vk)} generated by the
algorithm, satisfies the stability condition:

0 ∈ int [∂F ∗(x∗)−N(x∗)], (36)

then with probability one x∗ is an optimal solution of (1).

Proof. Let us observe that relation (26) holds for each coordinate i. Therefore inequality
(22) is true for each coordinate i:

‖vk+1
i − v̄i‖2 ≤ ‖vk

i − v̄i‖2 − 2αk〈vk
i − v̄i, P

k
i (vk

i − v̄i)〉+ Aik. (37)

14



The matrix P k
i , which is Fk-measurable, is a nonnegative diagonal matrix with positive

entries corresponding to the i-th coordinates of possible solutions to (6). Proceeding ex-
actly as in the proof of theorem 1 we conclude that the series

∑∞
k=1 Aik is convergent a.s.

Furthermore, the sequence {‖vk
i − v̄i‖} is convergent a.s., for every i = 1, . . . , n.

Our proof will analyze properties of sample paths of the random sequence {(vk, xk)} for
all elementary events ω ∈ Ω \ Ω0, where Ω0 is a null set. It will become clear in the course
of the proof what this null set is.

Let us fix ω ∈ Ω and consider a convergent subsequence {(vk(ω), xk(ω))}, k ∈ K(ω),
where K(ω) ⊆ N is some infinite set of indices. Let us denote by (v∗, x∗) the limit of this
subsequence. This limit depends on ω too, but we shall omit the argument ω to simplify
notation.

If the stability condition holds, then there exists ε > 0 such that for all iterations k for
which |vk

i,x∗i
(ω) − v∗i,x∗i | ≤ ε, i = 1, . . . , n, the solution xk of the approximate problem (6) is

equal to x∗. Then the coefficients pk
i,s are equal to 1 for s = x∗i and s = x∗i + 1, and are zero

otherwise, for each function i. Let us fix an arbitrary i and focus our attention on the points
s = x∗i . Inequality (37) implies:

‖vk+1
i (ω)− v̄i‖2 ≤ ‖vk

i (ω)− v̄i‖2 − 2αk(ω)(vk
i,x∗i

(ω)− v̄i,x∗i
)2 + Aik(ω). (38)

The series
∑

k Aik is convergent a.s. Let k ∈ K(ω) be large enough so that |vk
i,x∗i

(ω)−v∗i,x∗i | <
ε/2. Consider j ≥ k such that

|vj
i,x∗i

(ω)− v∗i,x∗i | ≤ ε for all i = 1, . . . , n. (39)

Let us suppose that the ith coordinate of the limit point is not optimal, i.e.,

v∗i,x∗i 6= v̄i,x∗i
. (40)

We shall prove that it leads to a contradiction. The remaining part of our proof has three
stages.

Stage 1

We can always choose a sufficiently small ε > 0 such that |v∗i,x∗i − v̄i,x∗i
| > 2ε. Then for

the iterations j satisfying (39) we have |vj
i,x∗i

(ω)− v̄i,x∗i
| > ε, and inequality (38) implies:

‖vj+1
i (ω)− v̄i‖2 ≤ ‖vj

i (ω)− v̄i‖2 − 2αj(ω)ε2 + Aij(ω). (41)

The series
∑

j αj(ω) is divergent and the series
∑

j Aij(ω) is convergent, unless ω is in a
certain null set. If the set of consecutive j ≥ k for which condition (39) holds was infinite,
inequality (41) would lead to a contradiction. Therefore, for all k ∈ K(ω) and all sufficiently
small ε > 0, the random index

l(k, ε, ω) = inf{j ≥ k : max
1≤i≤n

|vj
i,x∗i

(ω)− v∗i,x∗i | > ε}

15



is finite.

Stage 2

We shall prove that the sum of stepsizes between k ∈ K(ω) and l(k, ε, ω) − 1 is at
least of order ε, if k is large enough. By the definition of l(k, ε, ω) we have, for some i,

|vl(k,ε,ω)
i,x∗i

(ω) − v∗i,x∗i | > ε. Since vk(ω) → v∗, k ∈ K(ω), we also have ‖vl(k,ε,ω)
i − vk

i (ω)‖ > ε/2

for all sufficiently large k ∈ K(ω). Thus

l(k,ε,ω)−1∑
j=k

αj(ω)‖ξj
i (ω)‖ > ε/2. (42)

Let us observe that conditions (13) and (15) imply that for each i the random series

∞∑
k=1

αk

(
‖ξk

i ‖ − E{‖ξk
i ‖ | Fk}

)
is a convergent martingale. Therefore, unless ω is in a certain null set,

l(k,ε,ω)−1∑
j=k

αj(ω)‖ξj
i (ω)‖ =

l(k,ε,ω)−1∑
j=k

αj(ω)κij(ω) + σik(ω),

where κij = E{‖ξj
i ‖ | Fj} and σik(ω) =

∑l(k,ε,ω)−1
j=k αj(ω)(‖ξj

i (ω)‖ − κij(ω)) → 0, as k →∞,
k ∈ K(ω). This combined with (42) implies that for all sufficiently large k ∈ K(ω)

l(k,ε,ω)−1∑
j=k

αj(ω)κij(ω) ≥ ε/3.

From assumption (13) it follows that there exists a constant C such that κij(ω) ≤ C for all
i and j. Using this in the last displayed inequality we obtain

l(k,ε,ω)−1∑
j=k

αj(ω) ≥ ε

3C
, (43)

for all sufficiently small ε > 0 and all sufficiently large k ∈ K(ω).

Stage 3

Summing (41) from k to l(k, ε, ω) − 1, letting δ = 1/3C and combining with (43) gives,
for some coordinate i:

‖vl(k,ε,ω)
i (ω)− v̄i‖2 ≤ ‖vk

i (ω)− v̄i‖2 − 2δε3 +

l(k,ε,ω)−1∑
j=k

Aij(ω).
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Let ∆(ω) be the limit of the entire sequence {‖vj
i (ω)− v̄i‖2}, as j →∞, whose existence has

been established at the beginning of the proof. Passing to the limit with k →∞, k ∈ K(ω),
and using the fact that

∑∞
j=k Aij(ω) → 0, as k →∞, we obtain

∆(ω) ≤ ∆(ω)− 2δε3,

a contradiction. Therefore our assumption (40) must be false, and we have

v∗i,x∗i = v̄i,x∗i
for all i = 1, . . . , n. (44)

Inequality (38) is also true with xk
i replaced by xk

i + 1 (if xk
i < Mi). We can thus apply the

same argument to prove

v∗i,x∗i +1 = v̄i,x∗i +1 for all i = 1, . . . , n. (45)

For x∗i = Mi we take the convention that v∗i,x∗i +1 = v̄i,x∗i +1 = −∞. Consequently,

∂F (x∗) = ∂F ∗(x∗)

and the point x∗ is optimal for (1). �

The assumptions of theorem 3 are stronger than those of theorems 1 and 2. However,
its result is much stronger too. For a general closed convex set X, it may be very costly
to devise a sampling scheme for {sk} satisfying lim infk→∞ pk

is > 0 a.s. for s = 1, . . . ,M ,
i = 1, . . . , n. Theorem 3 saves us from devising such a sampling scheme and lets us pick
sk by simply solving an optimization problem. The stability assumption (36) is difficult to
verify a priori, but it is very easy to check a posteriori, when the accumulation point x∗ and
the approximate function F ∗ have been identified.

In a similar way (and under identical assumptions) we can prove the convergence of the
version that uses function value estimates.

Theorem 4 Assume (10), (13)–(15), (23)–(24), and (27), (29). If an accumulation point
(x∗, v∗) of the sequence {(xk, vk)} generated by SPAR-Obj, satisfies the stability condition
(36) then with probability one x∗ is an optimal solution of (1).

The proof is almost a verbatim copy of the proof of theorem 3, with the modifications as in
theorem 2.

5 Projection

Let us now describe the way the projection v = ΠV (z) can be calculated. Clearly, v is the
solution to the quadratic programming problem

min
1

2
‖v − z‖2 (46)

subject to: vs+1 − vs ≤ 0, s = 0, . . . ,M, (47)
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where for uniformity we denote v0 = B, vM+1 = −B. Associating with (47) Lagrange mul-
tipliers λs ≥ 0, s = 0, . . . ,M , we obtain the necessary and sufficient optimality conditions:

vs = zs + λs − λs−1, s = 1, . . . ,M, (48)

λs(vs+1 − vs) = 0, s = 0, . . . ,M. (49)

If i1, . . . , i2 is a sequence of coordinates such that

vi1−1 > vi1 = vi1+1 = · · · = c = · · · = vi2−1 = vi2 > vi2+1,

then adding the equations (48) from i1 to i2 yields

c =
1

i2 − i1 + 1

i2∑
s=i1

zs.

If i1 = 1, then c is the minimum of the above average and B, and for i2 = M the maximum
of −B and this average has to be taken.

The second useful observation is that vk ∈ V and zk computed by (11) differs from vk

in just one coordinate. If zk 6∈ V , one of two cases must occur: either zk
sk−1

< zk
sk , or

zk
sk+1

> zk
sk .

If zk
sk−1

< zk
sk , we search for the largest 1 < i ≤ sk for which

zk
i−1 ≥

1

sk − i + 1

sk∑
s=i

zk
s . (50)

If such i cannot be found we set i = 1. Then we calculate

c =
1

sk − i + 1

sk∑
s=i

zk
s (51)

and set

vk+1
j = min(B, c), j = i, . . . , sk. (52)

We have λ0 = max(0, c−B), and

λs =


0 s = 1, . . . , i− 1,

λs−1 + zs − vs s = i, . . . , sk − 1,

0 s = sk, . . . ,M.

It is straightforward to verify that the solution found and the above Lagrange multipliers
satisfy conditions (48)–(49).

The procedure in the case when zk
sk < zk

sk+1
is symmetrical: it is the same procedure

applied to the graph of z rotated by π.
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Let us now consider the method which employs two random variables at each iteration,
with step 3 as in (25). Then both zsk and zsk+1 may differ from vsk and vsk+1 (although we
still have zsk > zsk+1). We shall show that algorithm (50)–(52) can easily be adapted to this
case.

Suppose that zsk > zsk−1. We apply (50)–(51) to compute the candidate value for c. Now
two cases may occur.

Case 1. If c ≥ zsk+1, we may apply (52). We can now focus on the points to the right:
zsk+1, zsk+2, . . . . We apply the symmetric analogue of (50)–(52) to these values, and the
projection is accomplished.

Case 2. If c < zsk+1, the value of c is not correct. We need to include zsk+1 into the
averaging procedure. Thus we repeat (50)–(52) but with sk replaced by sk + 1 in (50),
although we still search for 1 < i ≤ sk. After this we apply (52) for j = i, . . . , sk + 1.

If zsk+1 < zsk+2 the situation is symmetrical to the one discussed above (after rotating
the graph of z by π), and an analogous procedure can be applied.

6 Experiments for Separable Problems

To illustrate the behavior of the methods discussed, we consider the problem in example 1:

max
x∈X

E
n∑

i=1

fi(xi, Di), where X is given in (5) and fi(xi, Di) = qi min(xi, Di)− cixi.

Clearly, both SPAR and SPAR-Obj can be applied to this problem componentwise: We
approximate E

∑n
i=1 fi(xi, Di) by

∑n
i=1 fk

i (xi) at iteration k. For a given resource allocation
sk = (sk

1, . . . , s
k
n) among n activities and a sampled demand realization Dk = (Dk

1 , . . . , D
k
n),

we can separately apply the updates of SPAR and SPAR-Obj for each component i =
1, . . . , n. In the description below sk

i plays the role of sk for the i-th component, ρki the role
of ρk, etc. We compare the following methods:

• SPAR - This is the basic learning algorithm with projection.

• SPAR-Obj(a) with ρki = sk
i - This uses objective function estimates to help with the

learning, using weights of 1
sk for the objective function estimates.

• SPAR-Obj(b) with ρk = Mis
k
i - Same as above, but with a much smaller weight on the

objective function.

• The Leveling Method of Topaloglu & Powell (2003) - This algorithm maintains con-
cavity by forcing slopes that violate an updated estimate to be no larger (to the left)
or no smaller (to the right) than the most recently updated cell. This algorithm has
been shown to be convergent.
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• The CAVE Algorithm of Godfrey & Powell (2001) - This was the first algorithm sug-
gested for adaptively estimating piecewise linear functions while maintaining concavity.

In the first series of experiments, the random variable sk is generated from the uniform
distribution over the rectangle [1, M1] × · · · × [1, Mn]. We assume that each component of
the demand variable Dk is independent and Poisson distributed. Having sampled sk

i and Dk
i ,

we compute the left-hand slope of fi(·, Dk
i ) at sk

i as

ηk
i =

{
qi − ci if sk

i ≤ Dk
i

−ci if sk
i > Dk

i .

Having obtained this slope information and the value of sk
i for iteration k, we can obtain

the approximation fk+1
i using any of the methods mentioned above. We call this a learning

step, since in this iteration we are exploring the slope of the function at randomly sampled
points.

In order to estimate the quality of an approximation we find x̄k ∈ arg maxx∈X

∑n
i=1 fk

i (xi)
and compute E

∑n
i=1 fi(x̄i

k, Di). This gives us an idea about the average actual performance
of the solution given by the approximation

∑n
i=1 fk

i .

For each method and coordinate (activity) the sequence of step sizes is αk = 20/(40+k).
We take the number of coordinates to be n = 90. Mi ranges between 20 and 40, ci ranges
between 0.6 and 1.4 for different 90 activities. Dk

i is truncated-Poisson distributed with
mean ranging between 9 and 21 for i = 1, . . . , 90. Finally qi = 2 for all i = 1, . . . , n and
b = 950. We run each method 50 times using 100 demand realizations at each run and figure
3(a) presents the averages over these 50 runs.

We see that our basic learning method, SPAR, performs very well. Its quality can be
slightly improved by using objective function estimates as in SPAR-Obj, but the weight
associated to them must be significantly smaller than the weight associated with the slope
observations, as the comparison of versions SPAR-Obj(a) and SPAR-Obj(b) shows.

The second series of experiments differ from the first by the method we utilized to generate
the random variables sk. Now, sk is chosen to be the maximizer of

∑n
i=1 fk

i , as discussed in
section 4. We call this an optimizing step since this step involves maximizing the current
approximation as opposed to selecting sk randomly over the interval [1, M1]× · · · × [1, Mn].
This version concentrates its efforts around the maximizers of the approximations, and one
might expect that it has a potential of being more efficient. The results are collected in
figure 3(b).

Comparing figures 3(a) and 3(b), all optimizing methods perform worse than the corre-
sponding learning method at the early iterations. Only after about 30-40 iterations did the
versions with optimizing steps take the lead over their learning counterparts. However, the
tail performance of the optimizing methods is much better.

Several conclusions can be drawn from our experiments. First, the application of the
projection operator facilitates the convergence. It provides an update to a range of values
on the basis of the observation obtained at one value. Second, learning is useful especially
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3a: Comparison of methods with learning steps.
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3b: Comparison of methods with optimizing steps.

Figure 3: Comparison of methods with learning (a) and optimizing (b)

at earlier iterations. Instead of trying to shoot at the optimal point for the current model,
it is better to collect information at randomly selected points from time to time. Third, the
indirect use of noisy objective values to correct the subgradients has a positive effect on the
convergence, provided that the weight of the additional modification is small. Finally, the
learning-based methods provide good approximations to the solutions at early iterations,
which makes them attractive candidates for problems where the cost of one experiment is
high.
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7 Application to Nonseparable Resource Allocation Prob-

lems

We now turn our attention to nonseparable problems that arise in the context of two-stage
stochastic resource allocation problems. Section 7.1 shows that there exists a separable ap-
proximation that will produce an optimal first-stage solution, although there is no guarantee
that our algorithm will find this approximation. We also provide a bound on the solution pro-
vided by our algorithm. Then, section 7.2 compares our algorithm, which produces integer
solutions, to the solutions produced by several variations of Benders decomposition.

7.1 Outline of the method

Let us start from the following observation. Consider the problem

max
x∈X

F (x), (53)

where X ⊂ Rn is a closed convex set, and F : Rn → R is a concave function. Suppose that x̂
is the optimal solution of the problem, and that F is subdifferentiable at x̂. Let us construct
a concave separable approximation of F at x̂ in the form

F̄ x̂(x) = F (x̂) +
n∑

i=1

f̄ x̂
i (xi),

where

f̄ x̂
i (xi) =

{
F ′(x̂, ei)(xi − x̂i) if xi ≥ x̂i,

F ′(x̂,−ei)(x̂i − xi) if xi ≤ x̂i.

In the formula above F ′(x̂i, d) denotes the directional derivative of F at x̂ in direction d,
and ei is the i-th unit vector in Rn. We use x̂ as the superscript of F̄ to stress that the
approximation is constructed at x̂.

The point x̂ is also the solution of the deterministic approximate problem

max
x∈X

F̄ x̂(x). (54)

Indeed, each direction d can be represented as

d =
n∑

i=1

diei =
n∑

i=1

(di)+ei +
n∑

i=1

(di)−(−ei).

Since the directional derivative is a concave positively homogeneous function, we have

F ′(x̂, d) ≥
n∑

i=1

(di)+F ′(x̂, ei) +
n∑

i=1

(di)−F ′(x̂,−ei) =
[
F̄ x̂

]′
(x̂, d). (55)
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By the optimality of x̂, the directional derivative F ′(x̂, d) of F at x̂ in any direction d ∈
cone (X − x̂) is non-positive. Therefore

[
F̄ x̂

]′
(x̂, d) ≤ 0 for every feasible direction d, as

required.

Consider an arbitrary point y, at which such a separable approximation F̄ y(x) has been
constructed. We have just proved that if y = x̂ then y is the solution of (54). The converse
statement is not true, in general, and one can easily construct counter-examples in which
the separable approximation F̄ y(·) constructed at some point y achieves its maximum at y,
but F (·) does not.

Then, however, we can derive an upper bound on the optimal value of F (·) in X as
follows. If x̂ is an optimal solution of problem (53), then

F (x̂)− F (y) ≤ F ′(y, x̂− y) ≤ −F ′(y, y − x̂).

In the second inequality above we have used the concavity of F ′(y, ·). Inequality (55) can
be developed at the point y instead of x̂ and reads

F ′(y, d) ≥
[
F̄ y

]′
(y, d).

Setting d = y − x̂ and combining the last two inequalities we obtain

F (x̂)− F (y) ≤ −F ′(y, y − x̂) ≤ −
[
F̄ y

]′
(y, y − x̂).

Thus the following bound on the difference between the optimal value of problem (53) and
the value of F at y holds true:

F (x̂)− F (y) ≤ −min
x∈X

[
F̄ y

]′
(y, y − x). (56)

The quantity at the right hand side can be easily calculated or estimated, given the current
approximate solution y and the piecewise linear separable approximation F̄ y.

For a general stochastic programming problem with a nonseparable recourse function,
our methods do not necessarily converge to the optimal solution. Furthermore, our methods
use samples of the directional derivatives in the directions ei, rather than exact values, so
the error bound will be an estimate, as well.

For solving maxx∈X F (x), when F is a nonseparable function, our method proceeds as
follows: At iteration k, our approximation is

∑n
i=1 fk

i (xi), where each fk
i is a one-dimensional,

piecewise linear, concave function characterized by the slope vector vk
i = (vk

i1, . . . , v
k
iMi

) and
Mi is an upper bound on the variable xi. The point xk is the maximizer of

∑n
i=1 fk

i (xi). We
update our approximation using the slopes gathered at xk. The algorithm is described in
figure 4.

Several remarks are in order. First, as a stopping criterion, one may choose to continue
for a specified number of iterations or until F (xk) does not improve for a certain number of
iterations.

Second, we note that there are two sources of error in this approximate procedure. The
main one is the use of separable approximations, as discussed above. The second one is
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Step 0 Set v1
i ∈ V for all i = 1, . . . , n, k = 1.

Step 1 Find xk ∈ arg maxx∈X

∑n
i=1 fk

i (xi), where each fk
i is defined by the slope vector vk

i .

Step 2 Observe a random variable ηk such that

E{ηk | v1, . . . , vk;x1, . . . , xk} ∈ ∂F (xk), a.s..

Step 3 For each i = 1, . . . , n do the following:

Step 3.1 Calculate the vector zk
i ∈ RMi as follows

zk
is =

{
(1− αk)vk

is + αkηk
i if s = xk

i ,
vk

is otherwise.

Step 3.2 Calculate vk+1
i = ΠV (zk

i ).

Step 4 Increase k by one and go to step 1.

Figure 4: The optimizing version of SPAR

the use of an arbitrary stochastic subgradient ηk rather than estimates of the forward and
backward directional derivatives, as required in section 4. Nevertheless, the method performs
remarkably well on a class of stochastic optimization problems that we discuss below.

Third, many stochastic programming problems lend themselves to compact state variables
and the recourse functions in these problems have considerably fewer dimensions than the
number of decision variables. For example, in (2), the recourse cost EQ(x, ω) depends on
Tx. If the dimension of Tx is less than x, by writing (2) as

max 〈c, x〉+ E Q(s, ω)

subject to: Ax = b,

Tx− s = 0,

x ≥ 0,

where

Q(s, ω) = max〈q, y〉
subject to: Wy = h(ω)− s,

y ≥ 0,

and building separable approximations of E Q(s, ω), we can decrease the number of required
approximations.

In this case, the extension of the algorithm we presented above is straightforward.
The dimension of s is denoted by n. In step 1, we set (xk, sk) ∈ arg max(x,s)∈X〈c, x〉 +∑n

i=1 fk
i (si), where X is the feasible set of the first stage problem. In step 2, ηk has to

satisfy E{ηk | v1, . . . , vk; s1, . . . , sk} ∈ ∂E {Q(sk, ω)} One can choose ηk to be the Lagrange
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multipliers associated with the constraints of the second stage problem for a certain realiza-
tion of ω, say ωk and for a certain value of sk. If ωk is independent of all previously used
realizations of ω, then E{ηk | v1, . . . , vk; s1, . . . , sk} ∈ ∂E{Q(sk, ω)} is easily satisfied.

7.2 Numerical Illustration

We illustrate our method using the following two-stage stochastic programming problem:

max
∑
i∈I

∑
j∈I∪C

cijxij + EQ(s, D)

subject to:
∑

j∈I∪C

xij ≤ pi, i ∈ I,∑
i∈I

xij − sj = 0, j ∈ I ∪ C,

xij, sj ≥ 0,

where Q(s, D) is the optimal value of the second stage problem:

max
∑

i∈I∪C

∑
j∈C

dijyij +
∑
i∈C

∑
l∈L

rl
iz

l
i

subject to:
∑
j∈C

yij ≤ si, i ∈ I ∪ C,∑
i∈I∪C

yij −
∑
l∈L

zl
j ≥ 0, j ∈ C,

zl
j ≤ Dl

j, l ∈ L, j ∈ C,

yij, z
l
j ≥ 0.

The problem above can be interpreted as follows: There is a set of production facilities
(with warehouses) I and a set of customers C. At the first stage, an amount xij is trans-
ported from production facility i to a warehouse or customer location j, before the demand
realizations at the customer locations become known. After the realizations of the demand
at the customer locations are observed, we move an amount yij from location i to customer
location j. At each customer location we face different types of demands, indexed by l ∈ L:
Dl

i is the demand of type l at location j. We serve zl
j units of demand of type l at location

j; the excess demand, if any, is lost. The production capacity of facility i is denoted by pi.

For the first stage costs, we set cij = c0 + c1δij, where δij is the Euclidean distance
between locations i and j, and c0 can be interpreted as the unit production cost and c1 is
the transportation cost applied on a per mile basis. For the second stage costs, we have

dij =

{
d1δij if i ∈ I or i = j

d0 + d1δij if i ∈ C and i 6= j.
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d0 represents the fixed charge for shipping a unit of the product from one customer location
to another customer location, and d1 is the per mile cost of transportation in the second
stage. For every demand type l occurring in location i, we associate a revenue rl

i. Our test
problems differ in cost parameters and |I

⋃
C|, which determines the dimensionality of the

recourse function. They all have 100 possible demand scenarios.

As a benchmark, we use three well-known Benders decomposition-based stochastic pro-
gramming algorithms: L-shaped decomposition (LSD) (Van Slyke & Wets (1969)), stochas-
tic decomposition (SD) (Higle & Sen (1991)), and cutting plane partial sampling (CUPPS)
(Chen & Powell (1999)).

Our focus is on the rate of convergence, measured by the improvement in the objective
function as the number of iterations or the CPU time increases. In order to measure the
rate of convergence of different methods, we ran each algorithm for 25, 100, 500, 1000, 5000
iterations. For our separable approximations, the number of iterations refer to the number
of demand samples used. For LSD, SD and CUPPS, the number of iterations refer to the
number of cuts used to approximate the recourse function. Having constructed a recourse
approximation at iteration k, say Q̂k, we find (xk, sk) ∈ arg max

∑
i,j∈I cijxij + Q̂k(s). Then

we compute
∑

i,j∈I cijx
k
ij + EQ(sk, ω) in order to measure the performance of the solution

(xk, sk) provided by the approximation Q̂k.

The results are summarized in table 1. The numbers in the table represent the percent
deviation between the optimal objective value and the objective value corresponding to the
solution obtained after a certain number of iterations. For all problem instances, we use
LSD to find the optimal solution. Table 1 also gives the CPU time per iteration. We present
results on ten problems. Six of these problems vary in cost parameters and the last four vary
in the dimensionality of the recourse function.

The results indicate that for the problem class we consider, SPAR is able to produce high
quality solutions rather quickly and provides consistent performance over different sets of
problem parameters. In particular, the consistent performance of SPAR over problems with
different numbers of locations may make it appealing for large-scale applications. Neverthe-
less, our numerical results are limited to a specific problem class and one should be cautious
about extending our findings to other problem classes. However, as a result of equation (56),
SPAR provides an estimate of the optimality bound at every point it generates.

Considering all of these, SPAR is a promising approach for allocation of indivisible re-
sources under uncertainty, but more comprehensive numerical work is needed before using
it in a particular problem context. Finally, we note that due to its simplicity and fast run
times, SPAR can be used as an initialization routine for stochastic programming approaches
that can exploit high quality feasible solutions. For example, the recourse approximation
provided by SPAR can be used to initialize that of SD, or LSD and CUPPS can start by
constructing a support of the recourse function at the solution provided by SPAR.
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Problem Method Number of iterations Sec./
25 100 500 1000 5000 iter.

Cost. SPAR 10.18 0.81 0.21 0.15 0.02 0.07
param. LSD 29.88 11.68 0.44 0.03 2.41

I CUPPS 20.74 9.86 5.21 2.39 0 0.37
SD 47.63 15.64 11.42 7.56 2.48 0.46

Cost. SPAR 9.28 0.77 0.23 0.26 0.04 0.06
param. LSD 44.19 8.28 0.49 0.05 2.46

II CUPPS 49.43 13.58 6.17 1.95 0 0.37
SD 24.76 17.8 8.56 8.54 1.62 0.46

Cost. SPAR 10.72 1.64 0.39 0.44 0.1 0.05
param. LSD 37.07 8.16 0.5 0 2.51

III CUPPS 36.36 10.99 6.3 2.25 0 0.37
SD 35.37 17.52 9.14 6.53 2.28 0.45

Cost. SPAR 10.43 2.41 0.67 0.65 0.08 0.04
param. LSD 36.18 6.72 0.46 0 2.03

IV CUPPS 41.79 22.02 9.14 2.94 0 0.64
SD 57.06 25.4 23.11 12.02 4.45 0.45

Cost. SPAR 9.58 3.61 0.53 0.74 0.07 0.04
param. LSD 29.53 11.49 0.33 0 1.68

V CUPPS 36.28 21.34 9.26 2.5 0 0.64
SD 25.37 22 23.89 25.93 3.25 0.44

Cost. SPAR 8.95 4.42 0.75 0.87 0.09 0.04
param. LSD 40.68 1.91 0 0.93

VI CUPPS 38.97 6.02 4.77 0.53 0.64
SD 40.64 11.37 9.22 6.78 1.64 0.43

|I
⋃
C| SPAR 18.65 7.07 0.48 0.28 0.15 0.00

=10 LSD 3.3 0 0.06
CUPPS 5.84 0.5 0 0.07

SD 45.45 11.35 2.3 1.12 0.26 0.10
|I

⋃
C| SPAR 11.73 2.92 0.34 0.13 0.06 0.02

=25 LSD 19.88 2.14 0 0.26
CUPPS 8.27 4.33 1.47 0.16 0.31

SD 40.55 22.22 4.24 4.8 0.95 0.22
|I

⋃
C| SPAR 9.99 1.18 0.26 0.3 0.05 0.06

=50 LSD 42.56 6.07 0.52 0.04 2.51
CUPPS 34.93 19.3 5.09 1.38 0 0.37

SD 43.18 17.94 5.91 6.25 1.02 0.46
|I

⋃
C| SPAR 8.74 1.2 0.16 0.05 0 0.22

=100∗ LSD 74.52 26.21 2.32 0.85 0.02 10.15
CUPPS 54.59 23.99 14.68 14.13 0.91 1.42

SD 62.63 40.73 15.22 17.43 9.42 1.30
∗Optimal solution not found
Figures represent the deviation from the best objective value known

Table 1: Percent error over optimal with different first stage costs.
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tics, in A. Ruszczyński & A. Shapiro, eds, ‘Handbook in Operations Research and Man-
agement Science, Volume on Stochastic Programming’, Elsevier, Amsterdam, pp. 555–635.
13

Righter, R. (1989), ‘A resource allocation problem in a random environment’, Operations
Research 37, 329–338. 2

Ruszczyński, A. (1980), ‘Feasible direction methods for stochastic programming problems’,
Mathematical Programming 19, 220–229. 4
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