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Abstract

In this paper, we develop a revenue management model for airline alliances. In particular, our model
allows the members of the alliance to decide how to share the revenues from itineraries spanning flight
legs operated by multiple airlines and how to coordinate their capacity allocation decisions. We start
with a deterministic linear programming approximation to the revenue management problem that
takes place over the whole alliance network. This linear program models the decisions made by a
central planner. In the linear program, we relax the constraints that link the decisions for different
airlines by associating dual multipliers with them, in which case, the linear program decomposes by
the airlines into smaller linear programs. We extract a booking control policy from the smaller linear
programs that allows each airline to make its booking control decisions autonomously. Furthermore,
the dual multipliers indicate how to share the revenues from itineraries that span flight legs operated
by multiple airlines. We prove that the revenue sharing scheme provided by our approach has a
number of intuitively appealing features. Computational experiments indicate that our model and
our revenue sharing scheme coordinate the decisions of the alliance members quite well.



1 Introduction

Building alliances represents one of the most vital tactics for increasing market share and ensuring

profitability for airlines. Through codeshare agreements, members of an alliance gain access to the

inventory of seats available on the flight legs operated by the other airlines in the alliance, allowing

them to serve origin destination markets that would be impossible to serve by using only their own

networks. Beside broadening the origin destination markets served by an airline, codeshare agreements

ensure that the flight legs operated by an airline pool the demand from multiple members of the

alliance, resulting in economies of scale. While such benefits of alliances are undeniable, building and

operating an alliance bring a number of challenges from revenue management perspective. When an

airline markets an itinerary that uses flight legs operated by other airlines in the alliance, the alliance

members need to agree on how to share the revenue obtained from the itinerary. Similarly, since an

accepted itinerary request may consume capacities on the flight legs operated by multiple airlines, the

revenue management decisions of the airlines in the alliance interact with each other, creating a need

for the alliance members to coordinate their booking control policies.

In this paper, we develop an alliance revenue management model that allows the airlines to decide

how share the revenues from itineraries that use flight legs operated by multiple airlines and how to

coordinate their capacity allocation decisions. We consider an alliance where each member operates a

set of flight legs and markets a set of itineraries. When an airline accepts a request for an itinerary that

it markets, it generates a revenue and this revenue is shared among the airline marketing the itinerary

and the airlines operating the flight legs used by the itinerary. The goal of each airline is to maximize

its total expected revenue. On the other hand, from a system design perspective, the goal is to ensure

that each airline is content to be a part of the alliance.

The starting point for our model is a deterministic linear programming approximation to the revenue

management problem that takes place over the airline network operated by the whole alliance. This

deterministic linear program models the booking control decisions made by a central planner overseeing

the alliance. In the deterministic linear program, there are decision variables representing the itinerary

acceptance decisions for the itineraries marketed by different airlines. We decompose the deterministic

linear program by associating dual multipliers with the constraints that link the decisions for different

airlines. In this case, we obtain a number of smaller linear programs, each of which corresponds to a

different airline in the alliance. Each one of the smaller linear programs corresponding to a particular

airline involves only the itineraries marketed by this airline and the flight legs operated by this airline. We

show how to extract a booking control policy from the smaller linear programs that allows each airline

to make its capacity allocation decisions autonomously. Furthermore, the dual multipliers that we use

to decompose the original deterministic linear program provide fare allocations, indicating how the

revenue from an itinerary should be shared among the alliance members.

Our model makes several practical and technical contributions. On the practical side, the booking

control policy we propose allows each airline to make its capacity control decisions autonomously, while

considering its impact on the whole alliance. The booking control policy used by our model is a bid price

policy. The idea behind a bid price policy is to associate bid prices with the flight legs, capturing the
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opportunity cost of a seat on different flight legs. In this case, an itinerary request is accepted only if the

revenue associated with the itinerary exceeds the total opportunity cost of the seats consumed by the

itinerary request. In our model, each alliance member can compute its bid prices by using the remaining

capacities only on the flight legs that it operates and the expected demands only for the itineraries that

it markets. This feature is practically useful since airlines recompute bid prices over the selling horizon

in response to changing remaining capacities and changing expected demands and it would be difficult

to frequently access the remaining capacity and expected demand information from other airlines. In

our model, the only time the airlines need to share information is when they reach an agreement on a

revenue sharing scheme at the beginning of the selling horizon. Overall, our computational experiments

indicate that although the alliance members act autonomously, the alliance suffers 2.76% revenue loss

on average when compared with a central planner that can oversee the whole network.

On the technical side, the revenue sharing scheme stipulated by our model has a number of interesting

features. To begin with, we show that if an airline does not market a particular itinerary, then its revenue

share of the itinerary should simply be equal to the total opportunity cost of the seats consumed by

the itinerary on the flight legs operated by this airline (Proposition 1). In the revenue management

literature, the revenue shares are anecdotally linked to the opportunity costs of the seats and there

are some small dynamic programming models that justify this intuition, but our model provides a

justification for this intuition for large airline networks. Furthermore, our revenue sharing scheme

satisfies the natural expectation that if an itinerary is not marketed by a particular airline and does

not use any of the flight legs operated by the airline, then this airline should not generate any revenue

from the sale of the itinerary (Proposition 2). Another interesting aspect of our revenue sharing scheme

appears when we compare the revenue shares of two itineraries. Consider two itineraries that are not

marketed by a particular airline, but they consume the same capacities on the flight legs operated by

this airline. In this case, the revenue shares of these itineraries for the particular airline are identical

(Proposition 3). Therefore, although the original fares associated with the two itineraries can be quite

different, the revenue benefits of the nonmarketing airline from these itineraries are not different at

all. Finally, it turns out that if the airlines compute their bid prices once at the beginning and do

not recompute them during the course of the selling horizon, then the autonomous capacity allocation

decisions made by each airline would be identical to the capacity allocation decisions made by a central

planner (Proposition 4). This result provides theoretical support for the autonomous booking control

policy that we develop for each airline and indicates that the airlines do not have incentive to deviate

from the decisions made by a central planner, at least until they recompute their bid prices.

The rest of the paper is organized as follows. In Section 2, we review the related literature. In

Section 3, we describe the main components of our alliance model and our notation. In Section 4,

we describe the deterministic linear programming approximation that models the capacity allocation

decisions made by a central planner. In Section 5, we show how to decompose the deterministic linear

program by the airlines. The duality idea used in the decomposition process provides a revenue sharing

scheme among the airlines. In Section 6, we show how our model allows each airline to make its booking

control decisions autonomously. In Section 7, we study the properties of the revenue sharing mechanism

from our model. In Section 8, we present computational experiments. In Section 9, we conclude.
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2 Literature Review

Revenue management models for airline alliances form an active area of research. Boyd (1998) describes

a mathematical programming model to allocate the capacities on the flight legs among the different

members of an alliance. His model uses the same deterministic linear program we build on, but he

does not describe how to set up a revenue sharing scheme or how to make alliance revenue management

decisions. Without a mathematical model, Vinod (2005) intuitively hints at the expectation that the

revenue sharing scheme of an alliance should be related to bid prices. Houghtalen et al. (2007) build

coordination mechanism in an airline cargo alliance and use a capacity allocation approach similar to

the one in Boyd (1998). Wright et al. (2010) develop a Markovian game model for an alliance with

two airlines. They study revenue sharing schemes that ensure that the total expected revenue of the

alliance matches the one obtained by a central planner, but it is computationally difficult to implement

their model on large airline networks. Hu et al. (2010) build a game theoretic model of an alliance,

where alliance members use partitioned booking limit policies instead of bid price policies. They setup

a revenue sharing scheme to coordinate the decisions of the airlines. Wright (2011) studies a number of

revenue sharing schemes to coordinate the decisions of alliance members and his work can be interpreted

as an extension of Wright et al. (2010) to deal with realistic airline networks.

Our alliance model uses a deterministic linear programming approximation to the network revenue

management problem as a starting point. This linear program dates back to the work of Simpson

(1989) and Williamson (1992) and it is formulated under the assumption that all itinerary requests take

on their expected values. Airline industry widely uses this deterministic linear program to construct

booking control policies. Since our alliance model rests on such a widely used approximation, we hope

that it will quickly be appealing to practitioners. There are several variants of the deterministic linear

programming approximation. Talluri and van Ryzin (1999) propose a randomized variant that uses

samples of the itinerary requests, rather than expectations. Their goal is to capture the probabilistic

nature of the requests more accurately. Adelman (2007) proposes a dynamic variant of the deterministic

linear program that more accurately captures the dynamic nature of the arrivals of the itinerary requests

over time. Computational experiments indicate that these refinements significantly improve the quality

of the booking control policies obtained from the original deterministic linear program. Although we

do not pursue these extensions here, it turns out that one can follow the same line of reasoning in this

paper to decompose the randomized and dynamic variants of the deterministic linear program by the

airlines and extract booking control policies from these variants in an alliance setting.

Decomposition is a central theme in this paper. Decomposition ideas appear in the optimization

literature dating back to Dantzig and Wolfe (1960). In revenue management, such ideas are generally

motivated by the necessity to decompose large network revenue management problems by the flight legs

so that one can obtain high quality policies in a tractable fashion. Liu and van Ryzin (2008), Topaloglu

(2009), Erdelyi and Topaloglu (2011) and Zhang (2011) are representative decomposition approaches

in network revenue management. In contrast, we decompose the network revenue management problem

by the airlines rather than by the flight legs and our interest in decomposition originates from the fact

that the decomposed problem more accurately reflects the decision environment of the alliance.
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3 Model Primitives

We consider an alliance that includes a number of airlines. Each airline operates a set of flight legs and

markets a set of itineraries. An itinerary marketed by a particular airline may use capacities on flight

legs operated by multiple airlines. Over time, each airline receives requests for the itineraries that it

markets and it needs to decide whether to accept or reject each itinerary request. An accepted itinerary

request uses capacities on one or more flight legs and generates a revenue, which is shared among the

airlines operating the flight legs used by the itinerary. Therefore, an airline may generate revenue not

only from the itineraries that it markets, but also from the itineraries marketed by other airlines as long

as these itineraries use some of the flight legs operated by the airline. From an operational perspective,

the objective of each airline is to maximize its total expected revenue. On the other hand, from a system

design perspective, the objective is to ensure that each airline is content to be a part of the alliance and

their incentives are compatible with each other.

We use K to denote the set of airlines in the alliance. The set of flight legs operated by the alliance

is L and the set of itineraries marketed by the alliance is J . We use Lk to denote the set of flight legs

operated by airline k and J k to denote the set of itineraries marketed by airline k. We assume that

∪k∈KLk = L and Lk ∩ Lℓ = ∅ for k ̸= ℓ so that the sets of flight legs {Lk : k ∈ K} operated by the

airlines partition the set of flight legs L. Similarly, we assume that ∪k∈KJ k = J and J k ∩ J ℓ = ∅ for

k ̸= ℓ. We let aij = 1 if itinerary j uses flight leg i. Otherwise, we let aij = 0. By using the notation

defined so far, we can easily deduce which itineraries use flight legs operated by multiple airlines and

which itineraries use flight legs operated by a single airline. In particular, the set of flight legs used by

itinerary j is given by {i ∈ L : aij = 1} so that itinerary j uses flight legs operated by a single airline

if and only if all of the flight legs in this set are operated by a single airline. We use ci to denote the

total available capacity on flight leg i.

The fare associated with itinerary j is fj . We use pkj to denote the portion of the fare associated

with itinerary j that is allocated to airline k. In other words, if the airline marketing itinerary j

accepts a request for this itinerary, then airline k generates a revenue of pkj . The fare allocations satisfy∑
k∈K p

k
j = fj so that the total fare allocation of itinerary j to all of the airlines is equal to the fare

associated with itinerary j. It is also reasonable to have pkj = 0 whenever itinerary j is not marketed

by airline k and does not use any of the flight legs operated by airline k. Therefore, the airlines that do

not market a particular itinerary and do not operate any of the flight legs used by this itinerary do not

generate any revenue from the sale of the itinerary. We assume that the airline that markets itinerary

j decides whether to accept or reject a request for itinerary j. As long as there is enough capacity on

all of the flight legs used by itinerary j, the other airlines comply with the marketing airline, implying

that they are content with the fare allocations set at the beginning of the booking horizon. This setup

is slightly different than the free sale environment in Boyd (1998), where any of the airlines marketing

itinerary j or operating the flight legs used by itinerary j can veto a sale for this itinerary.

Our development does not depend heavily on the arrival process for the itinerary requests, but we

specify one for concreteness. The requests for itinerary j arrive over the booking horizon [0, τ ] according

to a Poisson process with rate function {Λj(t) : t ∈ [0, τ ]}. In this case, the total expected demand for
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itinerary j is λj =
∫ τ
0 Λj(t) dt. In the next section, we begin by giving a relatively simple but realistic

model of how a central planner overseeing the whole alliance can estimate the total expected revenue of

the alliance and make booking control decisions. It turns out that we can build on this model to come

up with fare allocations {pkj : k ∈ K, j ∈ J }, which ultimately allow each airline to solve a separate

problem to make its own booking control decisions autonomously. The appealing aspect of the problem

solved by each airline k is that this problem requires having access to only the capacities on the flight

legs operated by airline k and the demands for the itineraries marketed by airline k.

4 Total Expected Revenue Estimated by Central Planner

If there is a central planner that oversees the whole alliance, then we can try to solve a dynamic program

to find the optimal booking control policy for the alliance. However, the state variable in this dynamic

program ends up being a high dimensional vector since it has to keep track of the remaining capacity on

each flight leg. As a result, solving a dynamic program to compute the optimal booking control policy

is usually not possible for realistic airline networks. In practice, a common approach to get around

this difficulty is to use a deterministic approximation that is formulated under the assumption that all

itinerary requests take on their expected values. In particular, letting xj be the total number of requests

for itinerary j that a central planner would want to accept, we can estimate the total expected revenue

of the alliance by solving the linear program

Ẑ = max
∑
j∈J

fj xj (1)

subject to
∑
j∈J

aij xj ≤ ci ∀ i ∈ L (2)

xj ≤ λj ∀ j ∈ J (3)

xj ≥ 0 ∀ j ∈ J . (4)

The objective function of the problem above accounts for the total revenue. Constraints (2) ensure that

the capacity allocation decisions of the central planner do not violate the capacities on the flight legs,

whereas constraints (3) ensure that the numbers of requests served for the itineraries do not exceed

the total expected demands. Problem (1)-(4) is referred to as the deterministic linear programming

approximation to the network revenue management problem and it dates back to the work of Simpson

(1989) and Williamson (1992). Letting x̂ = {x̂j : j ∈ J } be an optimal solution to problem (1)-(4), we

can view x̂ as the ideal capacity allocation decisions from the perspective of a central planner, yielding

an estimated total expected revenue of Ẑ.

There are two important uses of the deterministic approximation in problem (1)-(4). First, it is

possible to show that the optimal objective value of problem (1)-(4) is an upper bound on the total

expected revenue collected by any nonanticipatory policy that can be used by a central planner. Such

an upper bound on the optimal total expected revenue serves as a useful benchmark when testing the

performance of suboptimal control policies. Second, we can utilize problem (1)-(4) to derive a booking

control policy that can be used by a central planner. In particular, letting {µ̂i : i ∈ L} be the optimal

values of the dual variables associated with constraints (2), we can use µ̂i to estimate the value of a
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unit of capacity on flight leg i. In network revenue management, µ̂i is called the bid price of flight

leg i. The booking control policy derived from problem (1)-(4) accepts a request for itinerary j if the

revenue from itinerary j exceeds the total value of the capacity consumed by this itinerary and there is

enough capacity to serve the itinerary request. Thus, we serve a request for itinerary j if

fj ≥
∑
i∈L

aij µ̂i (5)

and there is enough capacity to serve a request for itinerary j. The decision rule in (5) is quite popular

in practice. Talluri and van Ryzin (1998) provide theoretical support for this decision rule by showing

that it is asymptotically optimal in a regime where the capacities on the flight legs and the expected

demand for the itineraries grow linearly with the same rate.

Implementing the decision rule above requires solving problem (1)-(4), which uses the capacities

{ci : i ∈ L} on all of the flight legs and the expected demands {λj : j ∈ J } for all of the itineraries

in the alliance. A central planner having access to all of this information generally does not exist in

alliances and each airline makes its own decisions somewhat autonomously. In the next section, we

decompose problem (1)-(4) by the airlines to come up with fare allocations {pkj : k ∈ K, j ∈ J }. Once

we have the fare allocations, we construct a booking control policy for each airline in the alliance by

solving a separate problem that uses only the information available to a particular airline.

5 Computing Fare Allocations

In this section, we decompose problem (1)-(4) by the airlines and the decomposed version of problem

(1)-(4) eventually becomes useful for coming up with fare allocations. We begin by augmenting the set

of airlines by a fictitious airline ψ so that the set of airlines becomes K ∪ {ψ}. We assume that airline

ψ does not operate any flight legs or market any itineraries so that the sets of flight legs and itineraries

remain unchanged. In this case, using the decision variables {xkj : k ∈ K ∪ {ψ}, j ∈ J } instead of

{xj : j ∈ J }, we can equivalently write problem (1)-(4) as

max
∑
j∈J

fj x
ψ
j (6)

subject to
∑
j∈J

aij x
k
j ≤ ci ∀ k ∈ K, i ∈ Lk (7)

xkj ≤ λj ∀ k ∈ K, j ∈ J k (8)

xψj − xkj = 0 ∀ k ∈ K, j ∈ J (9)

xkj ≥ 0 ∀ k ∈ K, j ∈ J . (10)

To see the equivalence between problems (1)-(4) and (6)-(10), we note that we can use constraints (9)

to replace all of the decision variables {xkj : k ∈ K} in problem (6)-(10) with a single decision variable

xψj . In this case, we can drop constraints (9) from problem (6)-(10). Furthermore, since ∪k∈KLk = L
and ∪k∈KJ k = J , constraints (7) and (8) enforce the capacity availability for all of the flight legs and

the demand availability for all of the itineraries. Therefore, problems (1)-(4) and (6)-(10) are equivalent

to each other and recalling the notation in Section 4, the optimal objective value of problem (6)-(10) is
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still Ẑ. It is useful to observe that problem (6)-(10) has the block angular structure that is amenable to

the decomposition method of Dantzig and Wolfe (1960), where the blocks correspond to the different

airlines and constraints (9) play the role of linking the decisions for the different airlines.

To decompose problem (6)-(10) by the airlines, we let {α̂kj : k ∈ K, j ∈ J } be the optimal values

of the dual variables associated with constraints (9) in problem (6)-(10). Dualizing constraints (9) by

associating the multipliers {α̂kj : k ∈ K, j ∈ J } with them, the objective function of problem (6)-(10)

becomes
∑

j∈J [fj −
∑

k∈K α̂
k
j ]x

ψ
j +

∑
k∈K

∑
j∈J α̂

k
j x

k
j . By linear programming duality, it follows that

maximizing the last expression subject to constraints (7), (8) and (10) is equivalent to solving problem

(6)-(10). On the other hand, by the constraint in the dual of problem (6)-(10) associated with the

decision variable xψj , we have
∑

k∈K α̂
k
j = fj , which implies that the term fj −

∑
k∈K α̂

k
j in the last

objective function expression is zero for all j ∈ J . Therefore, the optimal objective value of problem

(6)-(10) is equal to the optimal objective value of the problem

max
∑
k∈K

∑
j∈J

α̂kj x
k
j (11)

subject to (7), (8), (10). (12)

The crucial observation is that the objective function and all of constraints (7), (8) and (10) in the

problem above decomposes by the airlines. This implies that problem (11)-(12) decomposes into |K|
separate problems and the problem for airline k has the form

Ẑk = max
∑
j∈J

α̂kj x
k
j (13)

subject to
∑
j∈J

aij x
k
j ≤ ci ∀ i ∈ Lk (14)

xkj ≤ λj ∀ j ∈ J k (15)

xkj ≥ 0 ∀ j ∈ J . (16)

Summing up the discussion so far, noting that the optimal objective value of the problem above is

denoted by Ẑk, we have
∑

k∈K Ẑ
k = Ẑ and letting x̂k = {xkj : j ∈ J } be the corresponding optimal

solution, we can view x̂k as the ideal capacity allocation decisions from the perspective of airline k.

We interpret α̂kj in problem (13)-(16) as the fare allocation of itinerary j to airline k. Noting

that
∑

k∈K α̂
k
j = fj for all j ∈ J , the total fare allocation of an itinerary to all of the airlines is

indeed equal to the fare associated with the itinerary. We note that the structure of problem (13)-(16)

is similar to that of problem (1)-(4), but the objective function of problem (13)-(16) estimates the

total expected revenue of airline k as given by the fare allocations to this airline, while constraints

(14) enforce the capacity availability only on the flight legs operated by airline k and constraints (15)

enforce the demand availability only for the itineraries marketed by airline k. Thus, problem (13)-(16)

uses only the information that is available to airline k. It is also worthwhile to notice that problem

(13)-(16) is a decomposed version of problem (11)-(12) and the latter problem is equivalent to problem

(1)-(4). Therefore, noting that x̂ is an optimal solution to problem (1)-(4), we obtain an optimal solution

to problem (13)-(16) by letting xkj = x̂j for all j ∈ J . In other words, the fare allocations {α̂kj : j ∈ J }
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of airline k are such that an optimal solution to problem (13)-(16) is also an optimal solution to problem

(1)-(4) solved by a central planner, indicating that the airlines do not have an incentive to deviate from

the centrally optimal capacity allocation decisions.

In the next section, we come up with an autonomous booking control policy for each airline.

6 Booking Control by Each Airline

The discussion in the previous section suggests that if we let {α̂kj : k ∈ K, j ∈ J } be the optimal

values of the dual variables associated with constraints (9) in problem (6)-(10), then it is sensible to

use {α̂kj : j ∈ J } as the fare allocations to airline k. Obtaining these fare allocations requires solving

problem (6)-(10), which, in turn, requires having access to the capacities on all of the flight legs and

the expected demands for all of the itineraries marketed by the alliance. Although not always possible,

access to this information may be reasonable for the purpose of computing the fare allocations since

the fare allocations are computed relatively infrequently. On the other hand, the question we seek to

answer in this section is how each airline makes its own booking control decisions in real time with little

access to up to date capacity and expected demand information from the other airlines.

For given fare allocations {pkj : j ∈ J } to airline k, which may have been obtained by using an

optimal dual solution to problem (6)-(10), problem (13)-(16) motivates making the booking control

decisions for this airline by solving the problem

max
∑
j∈J

pkj x
k
j (17)

subject to
∑
j∈J

aij x
k
j ≤ ci ∀ i ∈ Lk (18)

xkj ≤ λj ∀ j ∈ J k (19)

xkj ≥ 0 ∀ j ∈ J . (20)

The problem above immediately allows us to construct a booking control policy similar to the one in

(5). In particular, if we let {π̂ki : i ∈ Lk} be the optimal values of the dual variables associated with

constraints (18) in problem (17)-(20), then we can use π̂ki to estimate the value of a unit of capacity on

flight leg i that is operated by airline k. In this case, airline k accepts a request for itinerary j if there

is enough capacity to serve a request for this itinerary and

pkj ≥
∑
i∈Lk

aij π̂
k
i . (21)

Comparing the decision rules in (5) and (21), fare allocation pkj essentially serves as the fare associated

with itinerary j when airline k makes its booking control decisions and airline k is concerned only about

the total value of the capacity consumed on the flight legs that it operates.

The appealing aspect of problem (17)-(20) is that once the fare allocations are computed, airline k

can solve problem (17)-(20) by using only the capacity availability on the flight legs it operates and the

expected demands for the itineraries it markets. In practice, as the sales take place and the capacities
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on the flight legs are depleted, it is common to resolve problem (17)-(20) periodically by replacing the

right side of constraints (18) with the current remaining capacities and the right side of constraints (19)

with the current remaining expected demands. Resolving problem (17)-(20) in this fashion significantly

improves the performance of the policy derived from this problem. The fact that problem (17)-(20)

uses only the information available to airline k becomes quite valuable when this problem is resolved

periodically. In particular, airline k can resolve problem (17)-(20) as frequently as it desires without

having access to the remaining capacity or remaining expected demand information from the other

airlines. Once the fare allocations are computed, the airlines in the alliance are decoupled.

Two practical issues about the decision rule in (21) are worth emphasizing. As briefly mentioned

at the beginning of this section, if we use the fare allocations obtained from a dual solution to problem

(6)-(10), then the implicit assumption is that the airlines are willing to share their true expected

demand information at least once at the beginning of the booking horizon when the fare allocations

are computed. The first issue is that it may be advantageous for the airlines to falsify their expected

demand information with the goal of manipulating the fare allocations to their advantage. The second

issue is that our computational experiments demonstrate that the decision rule in (21) is quite effective

in coordinating the decisions of the alliance and allows the alliance to obtain total expected revenues

that are close to those that can be obtained by a central planner. Although the total expected revenue

of the alliance is close to the total expected revenue that can be obtained by a central planner, each

airline may still need to be incentivized in the correct fashion to remain true to the terms of the

alliance. This is particularly the case since we work with fare allocations that are computed at the

beginning of the booking horizon, whereas the capacities on the flight legs change over time as the sales

take place, in which case, the fare allocations may not be aligned with the incentives of the individual

airlines throughout the whole booking horizon. Anupindi et al. (2001) discuss similar coordination

issues within the context of an inventory sharing model with lateral shipments between retailers. Their

approach indeed provides the necessary incentives to make sure that the retailers are coordinated, but

setting up their coordination mechanism also requires truthful information sharing.

In the next section, we establish a number of intuitive properties of the fare allocations that we

obtain by using an optimal dual solution to problem (6)-(10). The last one of these properties provides

additional support for the decision rule in (21) by showing that this decision rule is strongly related to

the decision rule in (5).

7 Properties of Fare Allocations

Our goal in this section is to demonstrate that the fare allocations we obtain by using an optimal

dual solution to problem (6)-(10) satisfy certain intuitive properties. Throughout this section, we use

{µ̂ki : k ∈ K, i ∈ Lk} and {α̂kj : k ∈ K, j ∈ J } to denote the optimal values of the dual variables

respectively associated with constraints (7) and (9) in problem (6)-(10). In this case, we can interpret

µki as the value of a unit of capacity on flight leg i operated by airline k and α̂kj as the fare allocation

of itinerary j to airline k. In the next proposition, we show that if an itinerary is not marketed by a

particular airline, then there is a simple relationship between the fare allocation of the itinerary to this
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airline and the value of the capacities consumed by the itinerary. This result follows by using the dual

of an equivalent reformulation of problem (6)-(10). We defer the proof to the appendix.

Proposition 1 There exists an optimal dual solution to problem (6)-(10) such that if itinerary j is not

marketed by airline k, then we have α̂kj =
∑

i∈Lk aij µ̂
k
i .

Therefore, if itinerary j is not marketed by airline k, then the fare allocation of itinerary j to airline

k is exactly equal to the total value of the capacity consumed by itinerary j on the flight legs operated

by airline k. In the next proposition, we give a natural implication of Proposition 1.

Proposition 2 If itinerary j is not marketed by airline k and does not use any of the flight legs operated

by airline k, then we have α̂kj = 0 in an optimal dual solution to problem (6)-(10).

We observe that if itinerary j does not use any of the flight legs operated by airline k, then we have

aij = 0 for all i ∈ Lk, in which case, the proposition above follows from Proposition 1. Proposition 2

indicates that if itinerary j is not marketed by airline k and does not use any of the flight legs operated

by airline k, then the fare allocation of itinerary j to airline k should be zero. It is important to use fare

allocations that satisfy this property for the booking control policy derived from problem (17)-(20) to

be sensible. In particular, if itinerary j is not marketed by airline k and does not use any of the flight

legs operated by airline k, then the decision variable xkj does not appear in any of the constraints in

problem (17)-(20). Therefore, the fare allocation of itinerary j to airline k has to be zero for problem

(17)-(20) to have a finite optimal objective value.

In the next proposition, we give a comparison between the fare allocations of two itineraries to an

airline that does not market them.

Proposition 3 If itineraries j and j′ are not marketed by airline k and they use the same flight legs

operated by airline k, then we have α̂kj = α̂kj′ in an optimal dual solution to problem (6)-(10).

The proposition above follows from Proposition 1 by noting that if itineraries j and j′ use the

same set of flight legs operated by airline k, then we have aij = aij′ for all i ∈ Lk, in which case, we

obtain α̂kj =
∑

i∈Lk aij µ̂
k
i =

∑
i∈Lk aij′ µ̂

k
i = α̂kj′ by Proposition 1. Proposition 3 has an interesting

implication. The fare associated with itinerary j can be substantially higher than the fare associated

with itinerary j′. However, if airline k does not market any of these itineraries and these itineraries use

the same set of flight legs operated by airline k, then the fare allocations of itineraries j and j′ to airline

k should be identical. In other words, the substantial difference in the fares associated with itineraries

j and j′ becomes irrelevant to airline k as long as airline k does not market these itineraries and these

itineraries use the same set of flight legs operated by airline k. This simply leaves airline k indifferent

between the sale of itineraries j and j′.

In the next proposition, we show that the decision rule in (21) reduces to the one in (5) under the

fare allocations that we obtain by using an optimal dual solution to problem (6)-(10).
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Proposition 4 If itinerary j is marketed by airline k, then there exists an optimal dual solution to

problem (6)-(10) such that we have α̂kj ≥
∑

i∈Lk aij µ̂
k
i if and only if fj ≥

∑
ℓ∈K

∑
i∈Lℓ aij µ̂

ℓ
i .

The proposition above follows from Proposition 1 as well. To see this, if itinerary j is marketed

by airline k, then it follows from Proposition 1 that there exists an optimal dual solution to problem

(6)-(10) that satisfies α̂ℓj =
∑

i∈Lℓ aij µ̂
ℓ
i for all ℓ ∈ K \ {k}. In this case, if itinerary j satisfies the

inequality α̂kj ≥
∑

i∈Lk aij µ̂
k
i , then we can add the last equality for all ℓ ∈ K \ {k} to this inequality to

obtain fj =
∑

ℓ∈K α̂
ℓ
j ≥

∑
ℓ∈K

∑
i∈Lℓ aij µ̂

ℓ
i and the desired result follows.

A useful implication of Proposition 4 is that the decision rules in (5) and (21) are equivalent to each

other when we use the fare allocations {α̂kj : k ∈ K, j ∈ J }. In particular, under these fare allocations,

problem (17)-(20) is identical to problem (13)-(16) and the latter problem is the decomposed version of

problem (6)-(10). This observation implies that {µ̂ki : i ∈ Lk} are the optimal values of the dual variables

associated with constraints (18) in problem (17)-(20), in which case, we can write the inequality in (21)

as α̂kj ≥
∑

i∈Lk aij µ̂
k
i . On the other hand, since problem (6)-(10) is equivalent to problem (1)-(4), if

we let µ̂i = µ̂ki for all k ∈ K and i ∈ Lk, then {µ̂i : i ∈ L} are the optimal values of the dual variables

associated with constraints (2) in problem (1)-(4). Therefore, we can write the inequality in (5) as

fj ≥
∑

ℓ∈K
∑

i∈Lℓ aij µ̂i =
∑

ℓ∈K
∑

i∈Lℓ aij µ̂
ℓ
i . Proposition 4 shows that the last two inequalities are

equivalent, which implies that the decision rules in (5) and (21) are also equivalent.

8 Computational Experiments

In this section, we present computational experiments testing the performance of the decision rule in

(21). In the process, we test the quality of the fare allocations obtained by using an optimal dual

solution to problem (6)-(10). We begin by describing our benchmark methods.

8.1 Benchmark Methods

We compare the performance of three benchmark methods, corresponding to three different levels of

coordination in the alliance.

Centralized Planner (CP) CP corresponds to a centralized planner that makes the decisions for the

whole alliance by using problem (1)-(4). In particular, CP solves problem (1)-(4) to obtain the optimal

values of the dual variables associated with constraints (2) and uses the decision rule in (5) to decide

which itinerary requests to serve. In our practical implementation of CP, we divide the booking horizon

into S segments and resolve problem (1)-(4) periodically at times (s−1) τ/S for s = 1, . . . , S. To do this,

noting
∫ τ
(s−1) τ/S Λj(t) dt gives the expected demand for itinerary j between the beginning of segment s

and the end of the booking horizon, if the remaining capacities on the flight legs at the beginning of

segment s are given by {csi : i ∈ L}, then we replace the right side of constraints (2) with {csi : i ∈ L}
and the right side of constraints (3) with {

∫ τ
(s−1) τ/S Λj(t) dt : j ∈ J } and solve problem (1)-(4). We use

the optimal values of the dual variables associated with constraints (2) in the decision rule in (5) until

we reach the beginning of the next segment and solve problem (1)-(4) again. We use S = 20.
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Coordinated Alliance (CA) CA corresponds to the case where we compute the fare allocations by using

an optimal dual solution to problem (6)-(10), but once the fare allocations are computed, each airline

makes its own booking control decisions for the itineraries that it markets. In particular, we solve

problem (6)-(10) at the beginning of the booking horizon to obtain the optimal values of the dual

variables associated with constraints (9). Using {α̂kj : k ∈ K, j ∈ J } to denote the optimal values of the

dual variables associated with these constraints, airline k uses {α̂kj : j ∈ J } as its fare allocations. To

make its booking control decisions, airline k replaces the fare allocations {pkj : j ∈ J } in problem

(17)-(20) with {α̂kj : j ∈ J } and solves this problem to obtain the optimal values of the dual variables

associated with constraints (18). In this case, airline k uses the decision rule in (21) to decide which of

the requests for the itineraries that it markets to accept. Similar to our practical implementation of CP,

CA divides the booking horizon into S segments and resolves problem (17)-(20) at the beginning of each

segment. Using {csi : i ∈ Lk} to denote the remaining capacities on the flight legs operated by airline

k at the beginning of segment s, airline k replaces the right side of constraints (18) with {csi : i ∈ Lk}
and the right side of constraints (19) with {

∫ τ
(s−1) τ/S Λj(t) dt : j ∈ J k} and solves problem (17)-(20). In

this case, airline k uses the optimal values of the dual variables associated with constraints (18) until

it reaches the beginning of the next segment and solves problem (17)-(20) again. Similar to CP, we use

S = 20 for CA in all of our test problems.

We emphasize that when an airline resolves problem (17)-(20) periodically, it only uses the remaining

capacities on the flight legs it operates and the expected demands for the itineraries it markets. In other

words, airlines need to share the capacity and expected demand information only when computing the

fare allocations at the beginning of the booking horizon, but not during the course of the booking

horizon. If an airline markets an itinerary that uses flight legs operated by multiple airlines and the

airline needs to decide whether to accept a request for this itinerary, then the marketing airline only

needs to know whether there is enough capacity availability on the flight legs used by this itinerary, but

not the exact amount of remaining capacity on the flight legs operated by other airlines.

Fixed Percent Fare Allocations (FP) FP corresponds to the case where the airlines use ad hoc fare

allocations that are based on a fixed percentage. In particular, letting ρ ∈ [0, 1] be the fixed percent

fare allocation parameter, consider an itinerary j that uses flight legs operated by multiple airlines. In

this case, if airline kj is the marketing airline for this itinerary, then the fare allocation of itinerary j

to the marketing airline kj is simply given by p
kj
j = ρ fj , which is a fixed percentage of the total fare

of the itinerary. The other airlines share the remaining portion (1 − ρ) fj of the total fare, prorated

according to the number of flight legs that they operate in this itinerary. In particular, if itinerary

j is not marketed by airline k, then the fare allocation of itinerary j to airline k is given by pkj =

(1 − ρ) fj
∑

i∈Lk aij/
∑

k′∈K\{kj}
∑

i∈Lk′ aij . Note that we have
∑

k∈K\{kj} p
k
j = (1 − ρ) fj so that the

total fare allocation of itinerary j to all of the airlines is fj . On the other hand, considering an itinerary

j that uses flight legs operated only by the marketing airline kj , the fare allocation of this itinerary to

the marketing airline is fj and the fare allocations to the other airlines are zero. In this way, we have

a set of fare allocations {pkj : k ∈ K, j ∈ J } for any given value of ρ. To make its booking control

decisions, airline k uses the fare allocations {pkj : j ∈ J } in problem (17)-(20) and solves this problem

to obtain the optimal values of the dual variables associated with constraints (18). In this case, airline

13



k uses the decision rule in (21) to decide which of the requests for the itineraries that it markets to

accept. The performance of FP naturally depends on the value of ρ. In our computational experiments,

we test the performance of FP for each value of ρ in {0, 0.1, 0.2, . . . , 0.9, 1} and report the performance

corresponding to the best value of ρ. The best value of ρ may be different for different test problems.

Similar to CP and CA, FP divides the booking horizon into S segments and resolves problem (17)-(20)

at the beginning of each segment. We use S = 20 for FP as well.

8.2 Experimental Setup

In our computational experiments, we consider an airline network with one hub serving N spokes. There

is one flight leg that connects each spoke to the hub and another one that connects the hub to each

spoke. Therefore, the number of flight legs is 2N . There is a high fare and a low fare itinerary that

connect each origin destination pair, which implies that the number of itineraries is 2N (N + 1). The

fare associated with a high fare itinerary is κ times the fare associated with the corresponding low fare

itinerary. There are K airlines in the alliance. We divide the spokes into K equal subsets and each

subset of spokes is controlled by a different airline. An airline operates all of the flight legs originating

or terminating at the spokes that it controls. On the other hand, an airline markets the itineraries

originating at the spokes that it controls, but if an itinerary originates at the hub, then this itinerary is

marketed by the airline that controls the destination spoke of the itinerary. Figure 1 shows the structure

of the airline network and the alliance for the case with N = 8 and K = 4.

In all of our test problems, we normalize the total rate with which the itinerary requests arrive into

the system to one. In other words, we have
∑

j∈J Λj(t) = 1 for all t ∈ [0, τ ]. The length of the booking

horizon is τ = 1,200 so that the total expected number of itinerary requests over the whole booking

horizon is 1,200. We calibrate the arrival rate function {Λj(t) : t ∈ [0, τ ]} for the different itineraries

so that low fare itineraries arrive more frequently at the beginning of the booking horizon, whereas the

arrival rates of the high fare itineraries get larger later on. To do this, we generate a sample from the

uniform distribution between zero and one for each origin destination pair in the airline network and

normalize these samples by their sum so that they add up to one. Using Pod to denote this normalized

sample for origin destination pair (o, d) and letting ζ(t) be an increasing function of t, we use Pod ζ(t)

as the arrival rate function for the requests for the high fare itinerary that connects origin destination

pair (o, d). Similarly, we use Pod (1 − ζ(t)) as the arrival rate function for the requests for the low

fare itinerary that connects origin destination pair (o, d). In our computational experiments, we have

ζ(t) = 0 until one third of the booking horizon. After this point, ζ(t) increases linearly to one.

Noting that the expected demand for the capacity on flight leg i is given by
∑

j∈J aij λj , we measure

the tightness of the leg capacities by γ =
∑

i∈L
∑

j∈J aij λj∑
i∈L ci

. We label our test problems by using the tuple

(N,K, κ, γ) and vary (N,K, κ, γ) over {8, 16}×{2, 4, 8}×{4, 6}×{1.0, 1.3, 1.6}. In this way, we obtain

36 test problems for our computational experiments. With this experimental setup, the capacities on

the flight legs range between 30 and 180 depending on the number of flight legs in the airline network

and the tightness of the leg capacities.
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8.3 Computational Results

Table 1 summarizes our main computational results. The left portion of Table 1 focuses on the test

problems with eight spokes in the airline network, whereas the right portion focuses on the test problems

with 16 spokes. The first column in the table shows the characteristics of the test problems by using the

tuple (N,K, κ, γ). The second, third and fourth columns respectively show the total expected revenues

obtained by CP, CA and FP for the whole airline alliance. These total expected revenues are estimated

by simulating the performance of the benchmark methods under common random numbers. The fifth

column shows the percent gaps between the total expected revenues obtained by CP and CA. We also

include a checkmark (X) in this column if the percent gap between the total expected revenues obtained

by CP and CA is statistically significant at 95% level and a dash (−) if there is no statistically significant

difference. The sixth column does the same thing as the fifth column, but it focuses on the percent gaps

between the total expected revenues obtained by CP and FP. CP corresponds to a centralized planner

making the booking control decisions for the whole alliance, whereas CA and FP allow the airlines to

make their booking control decisions autonomously. Our goal in comparing the total expected revenues

obtained by CA and FP with the ones obtained by CP is that we would like to see how much revenue

loss we incur by allowing the airlines to make their booking control decisions autonomously.

The results in Table 1 indicate that CA does a good job of coordinating the decisions of the airlines,

whereas FP can perform poorly. Over the test problems with eight spokes, the average performance gap

between CP and CA is 2.81%. The same average performance gap comes out to be 2.71% over the test

problems with 16 spokes. In other words, if the airlines choose the fare allocations by solving problem

(6)-(10) once at the beginning of the booking horizon, but otherwise make their booking control decisions

autonomously, then the total expected revenues obtained by the alliance deviate from the ones obtained

by a central planner by 2% to 3% on average. There are five test problems where the total expected

revenues obtained by CA and CP deviate from each other by more than 5%. Overall, the revenue

loss of CA incurred by making autonomous booking control decisions is quite reasonable, especially

considering the fact that CA does not require the airlines to share remaining capacity or remaining

expected demand information with each other over the booking horizon. For many test problems the

revenue loss of CA is on the order of 1% to 4%. There are three test problems, where the revenue loss

is on the order of 6% to 7% and we revisit these test problems later in this section.

The ad hoc fare allocations used by FP may not perform well. Over the test problems with

eight spokes, the average performance gap between CP and FP is 12.90%, whereas the same average

performance gap over the test problems with 16 spokes is 13.52%. The smallest performance gap

between CP and FP is on the order of 6% and the performance gap between CP and FP exceeds 10%

in 27 out of 36 test problems. The results indicate that choosing the fare allocations carefully is crucial

to coordinate the decisions of the airlines and to come up with an efficient booking control mechanism

that obtains total expected revenues close to those obtained by a central planner.

CA computes the fare allocations once at the beginning and uses these fare allocations throughout the

booking horizon. Although the airlines in the alliance resolve problem (17)-(20) periodically to adjust

their booking control policies, the fare allocations used in this problem do not change. An interesting
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question is how much the performance of CA improves when the fare allocations are periodically

readjusted based on the remaining capacities on the flight legs and remaining expected demands to

come. To answer this question, we divide the booking horizon into L segments and recompute the fare

allocations at times (l − 1)τ/L for l = 1, . . . , L. In particular, if the remaining capacities on the flight

legs at the beginning of segment l is given by {cli : i ∈ L}, then we replace the right side of constraints (7)

with {cli : k ∈ K, i ∈ Lk} and the right side of constraints (8) with {
∫ τ
(l−1)τ/L Λj(t) dt : k ∈ K, j ∈ J k}

and solve problem (6)-(10). We use the optimal values of the dual variables associated with constraints

(9) as the fare allocations until we reach the beginning of the next segment. Solving this problem

requires the airlines to get together and share remaining capacity and remaining expected demand

information with each other. Therefore, it is sensible to choose a small value for L. We choose L = 2

in our computational experiments, which corresponds to recomputing the fare allocations only at the

beginning and at the middle of the booking horizon.

Table 2 compares the total expected revenues obtained by CP and CA when we recompute the

fare allocations for CA twice over the booking horizon. The second column in this table shows the

total expected revenues obtained by CP and it is identical to the second column in Table 1. The third

column in Table 2 shows the total expected revenues obtained by CA when we recompute the fare

allocations twice over the booking horizon. The fourth column shows the percent gaps between the

total expected revenues in the second and third columns. Comparing the performance gaps between

CP and CA in Table 2 with those in Table 1, we observe that recomputing the fare allocations just

twice makes a noticeable impact on the performance of CA. In Table 2, over the test problems with

eight and 16 spokes, the average performance gaps between CP and CA are respectively 1.82% and

1.49%, whereas the same average performance gaps are respectively 2.81% and 2.71% in Table 1. We

recall that there is a test problem in Table 1, where the total expected revenue obtained by CP exceeds

the one obtained by CA by 7.19%. The performance gap between CP and CA for this test problem

goes down to 2.76% when we recompute the fare allocations twice over the booking horizon. Similar

observations can be made for the other two test problems in Table 1 with more than 6% performance

gap between CP and CA. Therefore, while CA generally does a good job of coordinating the decisions of

the airlines even when the fare allocations are computed once at the beginning, there can be noticeable

value in recomputing the fare allocations as little as twice over the booking horizon. Finally, it is also

worthwhile to point out that there is one test problem in Table 2, where CA performs better than CP

with a statistically significant performance gap. If the centralized planner made the optimal booking

control decisions, then the total expected revenues obtained by CP would always exceed those obtained

by CA. However, given that the booking control policies used by CP and CA are both approximate, it

is indeed possible that CA performs better than CP.

9 Conclusions

In this paper, we developed a revenue management model for airline alliances. The fundamental

idea behind our model is to start with a monolithic deterministic linear programming approximation

that models the decisions made by a central planner for the whole alliance. By associating dual

multipliers with the constraints that link the decisions for different airlines, we relax these constraints
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and decompose the linear program by the airlines. In this case, we can extract a booking control policy

from the relaxed linear program that allows each airline to make its own capacity allocation decisions

autonomously. Furthermore, the dual multipliers indicate how the revenues from different itineraries

should be shared among the airlines. A natural direction for further work is that there are numerous

refinements to the deterministic linear program aimed at capturing the stochastic and dynamic nature

of the itinerary requests more accurately. One can follow the same approach in this paper to use these

refined linear programs in the alliance setting. It would be interesting and practically useful to see what

benefits can be obtained from the refined linear programs. In addition, as we mention in the paper,

computing the fare allocations by using our approach requires the airlines to truthfully share expected

demand and capacity information at least once at the beginning of the booking horizon when the fare

allocations are computed, but this information may be falsified to change the fare allocations to the

advantage of a particular alliance member. Thus, it would be useful to study airline alliance models

that provide incentives for truthful information sharing.
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Comp.
Problem Tot. Exp. Rev. betw.

(N,K, κ, γ) CP CA CP-CA

(8, 2, 4.0, 1.0) 191,624 187,030 2.40 (X)
(8, 2, 4.0, 1.3) 178,871 177,551 0.74 (X)
(8, 2, 4.0, 1.6) 168,862 167,065 1.06 (X)

(8, 2, 6.0, 1.0) 255,923 251,395 1.77 (X)
(8, 2, 6.0, 1.3) 242,819 241,591 0.51 (X)
(8, 2, 6.0, 1.6) 232,426 227,859 1.96 (X)

(8, 4, 4.0, 1.0) 191,624 187,400 2.20 (X)
(8, 4, 4.0, 1.3) 178,871 173,964 2.74 (X)
(8, 4, 4.0, 1.6) 168,862 164,639 2.50 (X)

(8, 4, 6.0, 1.0) 255,923 251,976 1.54 (X)
(8, 4, 6.0, 1.3) 242,819 240,774 0.84 (X)
(8, 4, 6.0, 1.6) 232,426 228,301 1.77 (X)

(8, 8, 4.0, 1.0) 191,624 186,334 2.76 (X)
(8, 8, 4.0, 1.3) 178,871 173,857 2.80 (X)
(8, 8, 4.0, 1.6) 168,862 164,766 2.43 (X)

(8, 8, 6.0, 1.0) 255,923 251,074 1.89 (X)
(8, 8, 6.0, 1.3) 242,819 237,370 2.24 (X)
(8, 8, 6.0, 1.6) 232,426 230,955 0.63 (X)

Average 1.82

Comp.
Problem Tot. Exp. Rev. betw.

(N,K, κ, γ) CP CA CP-CA

(16, 2, 4.0, 1.0) 182,241 177,058 2.84 (X)
(16, 2, 4.0, 1.3) 168,033 165,415 1.56 (X)
(16, 2, 4.0, 1.6) 157,633 156,610 0.65 (X)

(16, 2, 6.0, 1.0) 245,166 240,013 2.10 (X)
(16, 2, 6.0, 1.3) 230,285 229,426 0.37 (X)
(16, 2, 6.0, 1.6) 219,363 219,901 -0.25 (X)

(16, 4, 4.0, 1.0) 182,241 177,366 2.67 (X)
(16, 4, 4.0, 1.3) 168,033 163,916 2.45 (X)
(16, 4, 4.0, 1.6) 157,633 155,455 1.38 (X)

(16, 4, 6.0, 1.0) 245,166 240,991 1.70 (X)
(16, 4, 6.0, 1.3) 230,285 227,882 1.04 (X)
(16, 4, 6.0, 1.6) 219,363 219,395 -0.01 (−)

(16, 8, 4.0, 1.0) 182,241 177,274 2.73 (X)
(16, 8, 4.0, 1.3) 168,033 163,410 2.75 (X)
(16, 8, 4.0, 1.6) 157,633 154,871 1.75 (X)

(16, 8, 6.0, 1.0) 245,166 241,002 1.70 (X)
(16, 8, 6.0, 1.3) 230,285 227,558 1.18 (X)
(16, 8, 6.0, 1.6) 219,363 218,955 0.19 (−)

Average 1.49

Table 2: Total expected revenues obtained by CP and CA when we recompute the fare allocations for
CA twice over the booking horizon.
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Appendix: Proof of Proposition 1

The key observation is that we only need to impose nonnegativity constraints on the decision variables

{xkj : k ∈ K, j ∈ J k} in problem (6)-(10), in which case, problem (6)-(10) equivalently becomes

max
∑
j∈J

fj x
ψ
j (22)

subject to
∑
j∈J

aij x
k
j ≤ ci ∀ k ∈ K, i ∈ Lk (23)

xkj ≤ λj ∀ k ∈ K, j ∈ J k (24)

xψj − xkj = 0 ∀ k ∈ K, j ∈ J (25)

xkj ≥ 0 ∀ k ∈ K, j ∈ J k. (26)

To see the equivalence between problems (6)-(10) and (22)-(26), we choose a decision variable xkj such

that j ̸∈ J k. This decision variable has an explicit nonnegativity constraint in problem (6)-(10), but

not in problem (22)-(26). We proceed to show that this decision variable xkj always takes a nonnegative

value in a feasible solution to problem (22)-(26). We use k′ to denote the airline that markets itinerary

j so that j ∈ J k′ . By constraints (25), we have xkj = xψj = xk
′
j ≥ 0, where the last inequality follows

from constraints (26) and the fact that j ∈ J k′ . This shows that the decision variable xkj always takes

a nonnegative value in a feasible solution to problem (22)-(26). Therefore, all of the decision variables

{xkj : k ∈ K, j ∈ J \ J k} take nonnegative values in a feasible solution to problem (22)-(26), which

implies that problems (6)-(10) and (22)-(26) are equivalent to each other.

To complete the proof of Proposition 1, we observe that if airline k does not market itinerary

j, then we have j ̸∈ J k and the decision variable xkj appears only in constraints (23) and (25) in

problem (22)-(26) with no explicit nonnegativity constraint. We use {µ̂ki : k ∈ K, i ∈ Lk} and

{α̂kj : k ∈ K, j ∈ J } to respectively denote the optimal values of the dual variables associated with

constraints (23) and (25). In this case, the constraint associated with the decision variable xkj in the

dual of problem (22)-(26) implies that
∑

i∈Lk aij µ̂
k
i − α̂kj = 0, which is the desired result.
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