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Abstract

This paper studies a joint stocking and product offer problem. We have access to a number of
products to satisfy the demand over a finite selling horizon. Given that customers choose among
the set of offered products according to the multinomial logit model, we need to decide which sets
of products to offer over the selling horizon and how many units of each product to stock so as to
maximize the expected profit. We formulate the problem as a nonlinear program, where the decision
variables correspond to the stocking quantity for each product and the duration of time that each
set of products is offered. This nonlinear program is intractable due to its large number of decision
variables and its nonseparable and nonconcave objective function. We use the structure of the
multinomial logit model to formulate an equivalent nonlinear program, where the number of decision
variables is manageable and the objective function is separable. Exploiting separability, we solve the
equivalent nonlinear program through a dynamic program with a two dimensional and continuous
state variable. Since the solution of the dynamic program requires discretizing the state variable,
we study other approximate solution methods. Our equivalent nonlinear program and approximate
solution methods yield insights for good offer sets.
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In many retail environments, companies offer a set of products that can serve as substitutes of each

other and customers make a choice among the set of offered products. Due to substitution possibilities

among the products, picking the right set of products to offer and choosing their stocking quantities pose

interesting challenges. To begin with, the demand for each product depends on what set of products

are actually offered, implying that the demand may not be modeled accurately as an exogenous random

variable, as is done in most operational models. Furthermore, the stocking decisions for different

products interact with each other so that it may not be appropriate to make the stocking decisions

for each product individually. Finally, offering a large set of products ensures that customers are more

likely to find what they need, increasing their tendency to make a purchase. However, offering a large

set of products also splits the demand among a large number of products, effectively increasing the

variability of the demand for each product and resulting in increased safety stocks.

In this paper, we study a joint stocking and product offer problem that tries to address the challenges

described above. We have access to a set of products to satisfy the demand from customers that arrive

over a finite selling horizon. We need to decide which sets of products to offer and how many units of

each product to stock. Over the selling horizon, customers arrive into the system according to a Poisson

process and they either make a purchase within the set of offered products or leave without purchasing

anything. The choices of customers are governed by the multinomial logit model. The objective is to

decide which sets of products to offer over the selling horizon and how many units of each product to

stock so as to maximize the expected profit.

We formulate the problem as a nonlinear program, where the decision variables correspond to the

stocking quantity for each product and the duration of time that each set of products is offered to

customers. There are two difficulties associated with this nonlinear program. First, the number of

decision variables is on the order of the number of sets of products, which grows exponentially with the

number of products. Second, the objective function is not separable by the products and not necessarily

concave. We resolve these difficulties by exploiting the structure of the multinomial logit model. In

particular, we show how to formulate an equivalent nonlinear program, where the number of decision

variables grows only linearly with the number of products and the objective function is separable by

the products. The decision variables in the equivalent nonlinear program correspond to the fractions of

customers that choose the different products. Surprisingly, although the decision variables are linked to

individual products rather than sets of products, we are still able to capture the substitution possibilities

as dictated by the multinomial logit model. Furthermore, since the objective function of the equivalent

nonlinear program is separable by the products, we can solve the equivalent nonlinear program by using

a dynamic programming formulation with a two dimensional and continuous state variable.

Since the dynamic program that can be used to solve the equivalent nonlinear program has only

a two dimensional state variable, we can obtain approximate solutions to it in a tractable fashion by

discretizing the state variable. We show that the dynamic program is well behaved in the sense that

as we use finer discretizations of the state variable, the loss of precision converges to zero. For a given

discretization of the state variable, we give an upper bound on the loss of precision. Despite these positive

results for the dynamic program, the necessity to discretize the state space and the lack of intuition into
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the form of the optimal offer sets motivate us to look for alternative approximate methods for solving our

equivalent nonlinear program. Our first approximate method is based on a deterministic approximation

to the problem that is formulated under the assumption that the number of customer arrivals takes

on its expected value. We give a performance bound for the solution obtained from the deterministic

approximation and show that this solution becomes asymptotically optimal as the expected number

of customer arrivals gets large. In addition, the solution from the deterministic program always gives

priority to products with the largest margins, where margin is computed as the difference between the

unit revenue and unit cost. This observation prompts us to work with sets that include a certain number

of products with the largest margins. Such sets, noting the asymptotic optimality of the solutions from

the deterministic approximation, perform quite well when the expected number of customer arrivals

is large, but they may not be satisfactory when working with a small customer volume. Our second

approximate method is based on approximating the distribution of the demand for a product with

the normal distribution. Our computational experiments demonstrate that the normal approximation

perform well over a range of problem parameters. Obtaining solutions under the normal approximation

also requires solving a dynamic program with a two dimensional and continuous state variable. To

circumnavigate the issues associated with discretizing the state variable of the dynamic program, we

finally show how to formulate an integer program that can closely track the solutions to our normal

approximation. We bound the gap between the normal approximation and the integer program.

The model in this paper assumes that we can offer different sets of products over the selling horizon

and the durations of time over which we offer different sets of products are decision variables. An

interesting variant of this problem occurs when we need to choose only one set of products to offer

over the whole selling horizon. This variant is significantly more difficult than the one considered in

this paper as it is of combinatorial nature. Although the variant with a single offer set is not the main

focus of our paper, a welcome feature of the normal approximation described above is that its optimal

solution offers a single set over the whole selling horizon. In other words, we can show that one set of

products is offered over the whole selling horizon and the other sets are not offered at all in the optimal

solution to the normal approximation. The same property also holds for the optimal solution to the

integer program approximation described above.

Our paper has strong ties with two streams of work. The model that we study bears resemblance

to the one in van Ryzin and Mahajan (1999), where the authors build a joint stocking and product

offer model with the stipulation that only one set of products should be offered over the whole selling

horizon. Their model essentially corresponds to the variant described in the previous paragraph. In

contrast, we allow offering different sets of products over the selling horizon. By doing so, our model

avoids the combinatorial aspects of the product offer problem and enables us to extend the work of van

Ryzin and Mahajan (1999) in a crucial direction. In particular, to be able to solve their model, the

authors in van Ryzin and Mahajan (1999) assume that all of the products have the same unit revenue

to cost ratios. This assumption is reasonable in some settings, but it clearly limits the applicability of

the model. In this paper, we do not make any assumptions on the cost parameters, extending the work

of van Ryzin and Mahajan (1999) to arbitrary cost structures. It is also interesting that although our

model allows offering different sets of products over the selling horizon, we can show that if there are n
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products under consideration, then it is optimal to offer at most n + 1 different sets, which is a small

fraction of all 2n possible product sets. Furthermore, these n+1 sets are nested in the sense that one of

the sets is included in another one, naturally with the exception of the largest set. Therefore, changing

the offer sets over time does not require making drastic modifications in the offered assortment.

Our work is also related to the paper by Gallego, Ratliff and Shebalov (2011), where the

authors consider linear programming formulations for network revenue management problems under

customer choice behavior. These linear programs have one decision variable for each set of itineraries,

corresponding to the number of time periods over which a set of itineraries remains open for

purchase. The authors show how to formulate an equivalent linear program with fewer decision variables

when the choices of customers follow the multinomial logit model. The equivalent nonlinear program

that we give in this paper is initiated by their work. Gallego et al. (2011) use linear programming

duality to show the equivalence between their linear programs. In this paper, we deal with nonlinear

programs, but we are able to use relationships between primal solutions, avoiding linear programming

duality. Therefore, our paper extends the work done by Gallego et al. (2011) to nonlinear programs.

It is also important to note that our equivalent nonlinear program not only has smaller number of

decision variables than the original one, but it also has a separable objective function. The separability

allows us to pursue algorithmic approaches based on dynamic or integer programming, which are not

possible for the original nonlinear program. Ultimately, our paper and the work done by Gallego et al.

(2011) collectively point out that the multinomial logit model possesses a special structure that can be

exploited to build tractable operational models. Our hope is that other researchers pursue the results

in this paper and in Gallego et al. (2011) in new settings.

To sum up, we make the following research contributions in this paper. 1) Building on van

Ryzin and Mahajan (1999), we formulate a joint stocking and product offer model. An important

differentiating aspect of our model is that it allows products with arbitrary unit revenues and costs. A

naive formulation of our model has a large number of decision variables and a nonseparable objective

function, but we give an equivalent formulation with a small number of decision variables and a separable

objective function. 2) We show how to exploit the separability of the objective function to solve

our model by using a dynamic program with a two dimensional and continuous state variable. The

numerical solution of the dynamic program requires discretizing the state variable. We bound the

loss in precision due to discretization. 3) We show that if there are n products under consideration,

then the optimal solution of our model offers at most n + 1 different sets of products over the selling

horizon. 4) We study approximate solution methods for our model. The first approximate method is

based on a deterministic approximation. We bound the performance of the solutions obtained from the

deterministic approximation. Furthermore, this approximation method motivates using sets that include

a certain number of products with the largest margins. 5) We investigate a second approximate solution

method that is based on approximating the demand distributions with the normal distribution. The

solution to the normal approximation requires solving a dynamic program, but we formulate an integer

program that closely tracks the solution to the normal approximation. We establish that the solutions

from the normal and integer programming approximations naturally offer a single set over the whole

selling horizon, even though we do not explicitly impose this requirement. 6) We provide computational
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experiments that test the performance of our approximation methods and demonstrate that the normal

approximation and the associated integer programming formulation perform remarkably well.

The paper is organized as follows. Section 1 reviews the related literature. Section 2 formulates our

joint stocking and product offer model. Section 3 transforms the model into a more tractable equivalent

formulation. Section 4 uses a dynamic program to solve the equivalent formulation. The next three

sections focus on approximations of the equivalent formulation. Section 5 focuses on a deterministic

approximation, Section 6 provides the normal approximation and Section 7 gives an approximation by

using an integer program. Section 8 presents computational experiments. Section 9 concludes.

1 Literature Review

It is customary to differentiate between static and dynamic substitution when building joint stocking

and product offer models. In static substitution, customers make a choice among the set of offered

products without observing the availability of stock. If a customer chooses a product for which no stock

is available, then the customer does not attempt to make a second choice. In other words, the choices

of customers are influenced by the set of offered products, but not by the availability of stock. Static

substitution is applicable when customers make a choice from a catalogue or a floor display. The model

in van Ryzin and Mahajan (1999) and our model in this paper focus on static substitution under the

multinomial logit model. Smith and Agrawal (2000) study a static substitution model that can penalize

and limit the number of offered products. In dynamic substitution, customers observe the availability

of stock and make a choice only among the products for which stocks are available. Mahajan and

van Ryzin (2001) use stochastic approximation algorithms to compute stocking levels under dynamic

substitution. Gaur and Honhon (2006) analyze a product offer problem under the choice model of

Lancaster (1966) and build on their results for static substitution to suggest heuristics for dynamic

substitution. Kok and Fisher (2007) study dynamic substitution under the multinomial logit model and

propose methods for estimating choice model parameters and making stocking decisions. Honhon, Gaur

and Seshadri (2010) analyze a dynamic substitution model, where customers are classified into types

depending on their orders of preference for different products. Goyal, Levi and Segev (2009) develop

approximation algorithms under a fixed preference order and dynamic substitution.

Customer choice is an active area of research in revenue management. In revenue management, it

is common to assume that stocking decisions are fixed, as in the case for fixed seating capacities on

flight legs. Assuming that customers choose between the offered itineraries according to a particular

choice model, the focus is on how to dynamically adjust the set of offered itineraries as a function of

the remaining seat inventory and time left in the selling horizon. Talluri and van Ryzin (2004) study

revenue management problems over a single flight leg and characterize the structure of the optimal

policy. Gallego, Iyengar, Phillips and Dubey (2004) formulate a linear programming approximation for

revenue management problems with customer choice behavior over a network of flight legs. Liu and van

Ryzin (2008) give a dynamic programming formulation for network revenue management problems and

approximately solve the dynamic program by decomposing it by the flight legs. The paper by van Ryzin

and Vulcano (2008) uses stochastic approximation algorithms to compute protection level policies. For
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the linear program proposed by Gallego et al. (2004), Bront, Diaz and Vulcano (2009) consider the case

where there are multiple customer types that make a choice according to multinomial logit models with

different parameters. Gallego et al. (2011) focus on the same linear program and show how to reduce

the number of decision variables from exponential in the number of possible itineraries to linear when

there is a single customer type making a choice according to the multinomial logit model. Zhang and

Cooper (2005) study revenue management problems where customers choose between parallel flight legs

between a fixed origin destination pair. They point out that the problem is computationally difficult

and give bounds on the optimal expected revenue. If the stocking quantities are fixed and we are

interested in finding a policy to dynamically adjust the set of offered products as a function of the

remaining inventories and the remaining time in the selling horizon, then the problem in this paper and

the problem in Zhang and Cooper (2005) are equivalent. Thus, even if the stocking quantities are fixed

in our problem, finding the optimal policy to dynamically adjust the offered products is difficult.

The ideas in this paper may help develop more intricate network revenue management models. Under

the assumption that customers arrive into the system with the intention of purchasing a fixed itinerary,

there are two approaches for building approximations to network revenue management problems. Using

Di to denote the total demand for itinerary i, the first approach, known as the deterministic linear

program, assumes that the demand for itinerary i is equal to the expected value of Di. The decision

variable xi in the deterministic linear program corresponds to the number of tickets sold for itinerary

i, satisfying the constraint xi ≤ E{Di}. The second approach, known as the probabilistic nonlinear

program, uses the number of tickets made available for itinerary i as the decision variable. If we make

yi tickets available for itinerary i, then the expected sales for itinerary i is E{min{yi, Di}}, which

is nonlinear in yi. We refer the reader to Talluri and van Ryzin (2005) for deterministic linear and

probabilistic nonlinear programs. For the case where customers choose between the offered itineraries,

the linear programming approximations in Gallego et al. (2004) and Liu and van Ryzin (2008) are

analogues of the deterministic linear program. This paper shows that solving nonlinear optimization

problems under the multinomial logit model is tractable. Thus, our approach may allow formulating

analogues of the probabilistic nonlinear program under customer choice behavior.

2 Problem Formulation

Customers arrive according to a Poisson process with rate λ. For brevity, we normalize the length of

the selling horizon to one. There are n products indexed by 1, . . . , n. The unit purchasing cost and

revenue of product i are respectively ci and pi with pi ≥ ci. We let xi be the number of units of product

i that we stock at the beginning of the selling horizon. Since customers choose among the set of offered

products, we can influence the demand by adjusting the set of products that we offer over the selling

horizon. If we offer the set of products S ⊆ {1, . . . , n}, then the probability that a customer chooses

product i is denoted by Pi(S). We assume that the choice probability Pi(S) follows the multinomial

logit model. Under the multinomial logit model, each customer associates the preference weight vi with

product i and the preference weight v0 with the no purchase option. We use V (S) to denote the total

preference weight of the available options when we offer the set S so that V (S) = v0+
∑

i∈S vi. According

to the multinomial logit model, if we offer the set of products S, then each customer chooses product
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i ∈ S with probability Pi(S) = vi/V (S); see McFadden (1980). We have Pi(S) = 0 when i ̸∈ S. With

the remaining probability P0(S) = 1−
∑n

i=1 Pi(S) = v0/V (S), each customer leaves without purchasing

anything. We use a static policy to adjust the set of offered products over the selling horizon, where

we offer the set of products S for y(S) time units. The policy is static in the sense that we choose the

values of the decision variables {y(S) : S ⊆ {1, . . . , n}} at the beginning of the selling horizon.

We offer the set of products S during a time period of length y(S) time units. The number of

customer arrivals during this time period has a Poisson distribution with mean λy(S). Furthermore,

each customer that arrives during this time period chooses product i with probability Pi(S). In this

case, if we assume that the choice of each customer is independent of the others, then the demand for

product i during the time period that we offer the set of products S has a Poisson distribution with

mean λPi(S)y(S). Using Pois(α) to denote a Poisson random variable with mean α, we can maximize

the expected profit by solving the problem

max
n∑

i=1

piE
{
min

{
Pois

(∑
S⊆{1,...,n} λPi(S)y(S)

)
, xi

}}
−

n∑
i=1

ci xi (1)

subject to
∑

S⊆{1,...,n}

y(S) = 1 (2)

y(S), xi ≥ 0 S ⊆ {1, . . . , n}, i = 1, . . . , n, (3)

where the first term in the objective function is the expected revenue from the choices of customers

and the second term is the stocking cost of the products. There are several difficulties associated with

the problem above. First, the number of decision variables is n + 2n, growing exponentially with the

number of products. Second, it is possible to show that the objective function is concave in the decision

variables y = {y(S) : S ⊆ {1, . . . , n}} and x = (x1, . . . , xn) separately, but it is not necessarily jointly

concave in (y, x). Third, the decisions for the different products interact with each other through the

decision variables y and we cannot concentrate on each product individually.

In the next section, we give a tractable solution approach for problem (1)-(3). Before doing so,

however, it is useful to briefly elaborate on the implications of using a static policy to decide how to

adjust the set of products that we offer for purchase. As we offer the set of products S for y(S) units of

time, we may run out of stock for a product in the set S. The implicit assumption in problem (1)-(3) is

that if this situation happens to be the case, then we continue offering the set of products S and when a

customer chooses a product in the set S for which we do not have any stock, the customer simply leaves

the system without purchasing anything. This is the standard static substitution assumption that we

mention in Section 1 and the model in van Ryzin and Mahajan (1999) makes the same assumption. This

assumption can be justified in several ways. If the customer chooses a product for which we do not have

any stock, then we may replenish the stock with an emergency procurement at a cost and it is simple

to incorporate the cost of such an emergency procurement into our model. In this case, van Ryzin and

Mahajan (1999) interpret the set of offered products as a floor display, among which customers make a

choice without paying attention to the stock. Another option is to solve our model once again whenever

we run out of stock for a certain product and recompute a new static policy to decide how to adjust

the set of offered products over the remaining portion of the selling horizon.
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3 Equivalent Formulation

In this section, we give an equivalent formulation for problem (1)-(3) whose objective function

decomposes by the products, in which case, we can solve problem (1)-(3) by using a dynamic program. In

the equivalent formulation, we let wi be the fraction of customers that choose product i and w0 be the

fraction of customers that choose to leave without purchasing anything. Naturally, these decision

variables have to satisfy the constraint
∑n

i=1wi + w0 = 1. During the time period that we offer the set

of products S, the fraction of customers that choose product i is Pi(S) = vi/V (S) whenever i ∈ S and

zero otherwise. On the other hand, the fraction of customers that choose to leave without purchasing

anything is P0(S) = v0/V (S). Therefore, we always have Pi(S)/vi ≤ P0(S)/v0 for all S ⊆ {1, . . . , n},
i = 1, . . . , n and it is reasonable to impose the constraint wi/vi ≤ w0/v0 for all i = 1, . . . , n. In this

case, we propose maximizing the expected profit by solving the problem

max
n∑

i=1

piE
{
min

{
Pois(λwi), xi

}}
−

n∑
i=1

ci xi (4)

subject to
n∑

i=1

wi + w0 = 1 (5)

wi

vi
− w0

v0
≤ 0 i = 1, . . . , n (6)

wi, w0, xi ≥ 0 i = 1, . . . , n. (7)

We observe that the objective function of the problem above decomposes by the products and there are

2n + 1 decision variables in this problem, as opposed to the n + 2n decision variables in problem

(1)-(3). Furthermore, if we fix the value of the decision variable w0, then the decision variables

w = (w1, . . . , wn) interact only through constraint (5). Constraints (6) are the only part where the

multinomial logit model plays a role and it turns out that these constraints are adequate to capture the

choice behavior of customers. The next theorem shows that problems (1)-(3) and (4)-(7) are equivalent

to each other. We note that this equivalence is dependent on the structure of the multinomial logit

model and it does not necessarily hold under other choice models.

Theorem 1 Problems (1)-(3) and (4)-(7) are equivalent to each other. In other words, given an optimal

solution to one problem, we can construct a feasible solution to the other one that provides the same

objective value.

Proof. We give the main idea of the proof, but defer the details to Appendix A.1. First, we assume

that (y∗, x∗) is an optimal solution to problem (1)-(3) providing the objective value Z∗. We define the

solution (w∗, w∗
0, x

∗) to problem (4)-(7) by letting

w∗
0 =

∑
S⊆{1,...,n}

P0(S)y
∗(S) and w∗

i =
∑

S⊆{1,...,n}

Pi(S)y
∗(S) (8)

for all i = 1, . . . , n. In this case, we verify in Appendix A.1 that the solution (w∗, w∗
0, x

∗) satisfies all

of the constraints in problem (4)-(7) and provides the objective value Z∗. Second, we assume that
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(w∗, w∗
0, x

∗) is an optimal solution to problem (4)-(7) providing the objective value Z∗. Without loss

of generality, we order the products so that w∗
1/v1 ≥ w∗

2/v2 ≥ . . . ≥ w∗
n/vn. Noting constraints (6), we

also have w∗
0/v0 ≥ w∗

1/v1. We label the sets S0 = ∅ and Si = {1, . . . , i} for all i = 1, . . . , n. In this case,

we define the solution (y∗, x∗) to problem (1)-(3) by letting

y∗(Si) =

[
w∗
i

vi
−

w∗
i+1

vi+1

]
V (Si) (9)

for all i = 0, . . . , n with the convention that y∗(Sn) = [w∗
n/vn]V (Sn). We set y∗(S) = 0 whenever

S ̸∈ {S0, S1, . . . , Sn}. In Appendix A.1, we verify that the solution (y∗, x∗) satisfies all of the constraints

in problem (1)-(3) and provides the objective value Z∗. 2

The proof of Theorem 1 shows how to use problem (4)-(7) and the transformation in (9) to obtain

an optimal solution to problem (1)-(3). The decision variables in problem (4)-(7) represent fractions

and have nothing to do with the choices of customers, but constraints (6) are adequate to capture

the choices stipulated by the multinomial logit model. Gallego et al. (2011) establish a similar result

by considering a linear programming formulation for network revenue management problems under

customer choice behavior. Assuming that the choices of customers are governed by the multinomial logit

model, the authors transform this linear program into an equivalent linear program with fewer decision

variables. Their proof of equivalence for the two linear programs uses linear programming duality. The

objective functions of problems (1)-(3) and (4)-(7) are nonlinear and not necessarily concave, prohibiting

the use of duality. Therefore, we work with primal solutions in the proof of Theorem 1.

To gain more insight into the equivalence between problems (1)-(3) and (4)-(7), we note that if we

offer the set of products S, then under the multinomial logit model, the fraction Pi(S) of customers that

choose product i satisfies Pi(S)/vi = 1/V (S) = P0(S)/v0 for all i ∈ S, and Pi(S)/vi = 0 ≤ P0(S)/v0

for all i ̸∈ S. In the last two chains of equalities and inequalities, we use the fact that Pi(S) = vi/V (S)

when i ∈ S and Pi(S) = 0 when i ̸∈ S. Therefore, we always have Pi(S)/vi ≤ P0(S)/v0 and it is

sensible that the fraction of customers that choose product i and the fraction of customers that leave

without choosing anything satisfy constraints (6). Similarly, the fractions of customers that choose a

product and that leave without choosing anything should add up to one, justifying constraint (5). Thus,

if (w1, . . . , wn) are the fractions of customers that choose the different products under the multinomial

logit model and w0 is the fraction of customers that leave without choosing anything, then (w,w0) must

satisfy the constraints in problem (1)-(3).

Conversely, if we consider (w,w0) that satisfies the constraints in problem (1)-(3), then it must be

the case that wi corresponds to a fraction of customers that choose product i under the multinomial logit

model. To see that this is indeed the case, the critical observation is that if (w̃, w̃0) is an extreme point

of the set of feasible solutions to problem (4)-(7), then there exists a set of products S̃ associated with

this extreme point such that w̃i = Pi(S̃) for all i = 0, . . . , n. This observation follows from an immediate

corollary to the proof of Theorem 1 and we provide the corollary in Appendix A.2. So, any extreme

point of the set of feasible solutions to problem (4)-(7) is associated with a set of products. On the other

hand, any feasible solution (w,w0) to problem (4)-(7) can be written as (w,w0) =
∑K

k=1 α
k (w̃k, w̃k

0),

where (w̃k, w̃k
0) is an extreme point and we have

∑K
k=1 α

k = 1 with αk ≥ 0 for all k = 1, . . . ,K. Using S̃k
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to denote the set of products associated with the extreme point (w̃k, w̃k
0) and using the fact that w̃k

i =

Pi(S̃
k) as discussed at the beginning of this paragraph, the last equality can be written componentwise

as wi =
∑K

k=1 α
k Pi(S̃

k) for all i = 0, . . . , n. Thus, if we consider (w,w0) that is feasible to problem

(4)-(7), then wi should be the fraction of customers that choose product i under the multinomial logit

model when we offer the set S̃k associated with the extreme point (w̃k, w̃k
0) with frequency αk. To sum

up, the discussion in the previous paragraph indicates that if (w,w0) gives the fractions of customers

that choose the different products and that leave without choosing anything under the multinomial logit

model, then (w,w0) must satisfy the constraints in problem (4)-(7). Conversely, the discussion in this

paragraph indicates that if (w,w0) satisfies the constraints in problem (4)-(7), then wi corresponds to a

fraction of customers that choose product i under the multinomial logit model. These two statements

ensure that problems (1)-(3) and (4)-(7) are equivalent to each other.

We can use Theorem 1 to show that we actually do not offer too many different sets of products

when we follow the static policy suggested by the optimal solution to problem (1)-(3). In particular, the

next proposition shows that if we follow the static policy suggested by the optimal solution to problem

(1)-(3), then we offer at most n + 1 different sets and these sets are nested in the sense that each one

of the sets is included in another one, with the exception of the largest one of them.

Proposition 2 There exists an optimal solution (y∗, x∗) to problem (1)-(3) with at most n + 1 of the

decision variables y∗ taking nonzero values. Furthermore, if we let y∗(S0), y
∗(S1), . . . , y

∗(Sn) be the n+1

of the decision variables y∗ that can take nonzero values, then we have S0 ⊆ S1 ⊆ . . . ⊆ Sn.

Proof. The proof follows from the second half of the proof of Theorem 1. If we let (w∗, w∗
0, x

∗) be an

optimal solution to problem (4)-(7), define the sets S0, S1, . . . , Sn as in the proof of Theorem 1 and

construct the solution (y∗, x∗) as in (9), then it follows from Theorem 1 that (y∗, x∗) is an optimal

solution to problem (1)-(3). Furthermore, the definition of Si implies that we have S0 ⊆ S1 ⊆ . . . ⊆ Sn

and only y∗(S0), y
∗(S1), . . . , y

∗(Sn) among the decision variables y∗ can take nonzero values. 2

Proposition 2 provides a practically appealing approach for implementing the static policy that we

obtain from problem (1)-(3). In particular, we can start by offering the largest set of products Sn for

y∗(Sn) time units and switch to the next smaller set as time progresses. Each switch from the current

set to the next smaller one requires taking one product out of the current set, avoiding the need to

drastically change the set of products that we offer.

4 Solution Approach

Problem (4)-(7) has fewer decision variables than problem (1)-(3), but this problem can still be

difficult to solve directly since its objective function is not necessarily jointly concave in (w,w0, x). To

overcome this difficulty, we observe that the objective function of problem (4)-(7) decomposes by the

products. Furthermore, if we fix the value of the decision variable w0, then problem (4)-(7) has a

knapsack structure. The decision variable wi represents the number of units of product i that we put

into the knapsack. Noting constraint (5), the capacity of the knapsack is 1 − w0 and we have to fill

10



the knapsack exactly up to its capacity. Constraints (6) imply that we cannot put more than viw0/v0

units of product i into the knapsack. If we put wi units of product i, then we generate a utility of

piE{min{Pois(λwi), xi}} − ci xi, where the decision variable xi is chosen to maximize this utility from

product i. Viewing problem (4)-(7) as a knapsack problem allows us to use a dynamic program to

solve this problem for a fixed value of w0. The decision epochs correspond to the products. The action

variables in decision epoch i are (wi, xi). We use zi to denote the state variable in decision epoch i,

corresponding to the total capacity used by the earlier products. Therefore, we can obtain the optimal

objective value of problem (4)-(7) for a fixed value of w0 by solving the optimality equation

Θi(zi |w0) = max piE
{
min

{
Pois(λwi), xi

}}
− ci xi +Θi+1(zi + wi |w0) (10)

subject to wi ≤ 1− w0 − zi (11)
wi

vi
≤ w0

v0
(12)

wi, xi ≥ 0, (13)

where the boundary condition is Θn+1(zn+1 |w0) = 0 if zn+1 = 1 − w0 and Θn+1(zn+1 |w0) = −∞
if zn+1 < 1 − w0. This boundary condition ensures that it is optimal to terminate at the states that

consume all of the capacity of the knapsack. In this case, we can solve the problem maxw0∈[0,1]Θ1(0 |w0)

to obtain the optimal objective value of problem (4)-(7). The state variable in the optimality equation

in (10)-(13) appears to be single dimensional, but since this dynamic program needs to be solved for

all values of w0, its state variable is effectively (zi, w0). We observe that it is straightforward to find

the best value of the action variable xi corresponding to each value of wi by solving the problem

maxxi≥0 piE{min{Pois(λwi), xi}} − ci xi. The last problem is a newsvendor problem and its optimal

solution is given by the smallest xi that satisfies P{Pois(λwi) ≤ xi} ≥ 1 − ci/pi. Therefore, the only

crucial action variable in the optimality equation is wi.

In the optimality equation in (10)-(13), the state variable (zi, w0) and the action variable wi are

continuous. Thus, the numerical solution of this optimality equation requires discretizing the state

and action variables, in which case, it is natural to ask about the loss of precision when we solve the

discretized version of the optimality equation. To answer this question, we begin by studying problem

(4)-(7) when the decision variables in this problem are discretized. In particular, we let Xi(wi) be the

smallest xi that satisfies P{Pois(λwi) ≤ xi} ≥ 1 − ci/pi, in which case, Xi(wi) is the best value of

the decision variable xi in problem (4)-(7) for a given value of wi. Noting the objective function of

problem (4)-(7), we define Gi(wi) = piE{min{Pois(λwi), Xi(wi)}}− ciXi(wi) so that problem (4)-(7) is

equivalent to maximizing
∑n

i=1Gi(wi) over (w,w0) ≥ 0 subject to constraints (5) and (6). In the next

proposition, we bound the derivative of Gi(·). The proof is deferred to Appendix A.3.

Proposition 3 The directional derivative of Gi(·) at any point is bounded by (pi − ci)λ.

Proposition 3 allows us to bound the loss of precision when we solve problem (4)-(7) after discretizing

the decision variables. To see this, assume that the optimal solution to the original version of problem

(4)-(7) is (w∗, w∗
0, X(w∗)), where we let X(w) = (X1(w1), . . . , Xn(wn)). On the other hand, letting L

11



be an integer, we discretize the interval [0, 1] by using the set of points L = {k/L : k = 0, 1, . . . , L} and

consider the discretized version of problem (4)-(7) where each one of the decision variables (w,w0) is

restricted to take a value in the set L. Since the successive points in L are separated by 1/L, we can

obtain a solution (ŵ, ŵ0, X(ŵ)) to the discretized version of problem (4)-(7) by letting

ŵi =
1

L
⌊Lw∗

i ⌋ i = 1, . . . , n and ŵ0 = 1−
n∑

i=1

ŵi, (14)

where we use ⌊·⌋ to denote the round down function. We can check that the solution (ŵ, ŵ0, X(ŵ)) is

feasible to the discretized version of problem (4)-(7). In particular, we have ŵi ∈ L for all i = 0, . . . , n

by the construction in (14). Similarly, by construction,
∑n

i=1 ŵi + ŵ0 = 1 ensuring that the solution

(ŵ, ŵ0, X(ŵ)) satisfies constraint (5) in problem (4)-(7). Also, we have ŵi = 1
L⌊Lw∗

i ⌋ ≤ w∗
i for all

i = 1, . . . , n, in which case, noting that (w∗, w∗
0, X(w∗)) is feasible to problem (4)-(7), it follows that

w∗
0 = 1 −

∑n
i=1w

∗
i ≤ 1 −

∑n
i=1 ŵi = ŵ0. Once more, using the fact that (w∗, w∗

0, X(w∗)) is feasible to

problem (4)-(7) and noting that ŵi ≤ w∗
i for all i = 1, . . . , n and w∗

0 ≤ ŵ0, we obtain ŵi/vi ≤ w∗
i /vi ≤

w∗
0/v0 ≤ ŵ0/v0 for all i = 1, . . . , n, establishing that the solution (ŵ, ŵ0, X(ŵ)) satisfies constraints

(6) in problem (4)-(7) as well. Thus, (ŵ, ŵ0, X(ŵ)) is feasible to the discretized version of problem

(4)-(7). To bound the loss of precision by using the solution (ŵ, ŵ0, X(ŵ)), we note that

|w∗
i − ŵi| =

∣∣∣ 1
L
Lw∗

i −
1

L
⌊Lw∗

i ⌋
∣∣∣ ≤ 1

L

by (14). In this case, Proposition 3 implies that
∑n

i=1Gi(w
∗
i )−

∑n
i=1Gi(ŵi) ≤ 1

L

∑n
i=1(pi− ci)λ. Since∑n

i=1Gi(w
∗
i ) is the optimal objective value of problem (4)-(7), the last inequality shows that if we solve

the discretized version of problem (4)-(7) instead of the original version, then the loss of precision is no

larger than 1
L

∑n
i=1(pi − ci)λ. The loss of precision converges to zero as L goes to infinity.

The discussion in the previous paragraph bounds the loss of precision when we solve a discretized

version of problem (4)-(7), where each one of the decision variables (w,w0) is restricted to take a value

in L. On the other hand, we observe that the solution to this discretized version of problem (4)-(7)

can be obtained precisely by solving the optimality equation in (10)-(13) with the state variable (zi, w0)

taking values in L2 and the action variable wi taking values in L. Therefore, by solving a dynamic

program with n decision epochs, (L + 1)2 possible values for the state variable at each decision epoch

and L + 1 possible values for the action variable at each state, we can obtain a solution to problem

(4)-(7) and the objective value provided by this solution would deviate from the optimal objective value

of problem (4)-(7) by at most an additive factor of 1
L

∑n
i=1(pi − ci)λ.

5 Deterministic Approximation

In this section, we study a deterministic approximation to our model that is formulated under the

assumption that the number of customer arrivals takes on its expected value. We have two goals

when studying this deterministic approximation. First, we would like to bound the performance of the

solutions that we obtain from the deterministic approximation. In this way, we can characterize the

situations where we can expect such an approximation to work well. Second, by using the solution

to the deterministic approximation, we would like to characterize structural properties of good offer
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sets. The deterministic approximation we consider in this section is obtained by replacing the random

variable Pois
(∑

S⊆{1,...,n} λPi(S)y(S)
)
in the objective function of problem (1)-(3) with its expectation∑

S⊆{1,...,n} λPi(S)y(S). In this case, we can follow precisely the same line of reasoning followed

in Section 3 to show that this deterministic version of problem (1)-(3) is equivalent to maximizing∑n
i=1 pi min{λwi, xi} −

∑n
i=1 ci xi over (w,w0, x) ≥ 0 subject to constraints (5) and (6). Furthermore,

since pi ≥ ci, the optimal value of the decision variable xi in the last problem is always λwi, in which

case, the objective function of the last problem becomes
∑n

i=1(pi − ci)λwi. Thus, the deterministic

version of problem (1)-(3) that we study in this section is equivalent to the problem

max

n∑
i=1

(pi − ci)λwi (15)

subject to

n∑
i=1

wi + w0 = 1 (16)

wi

vi
− w0

v0
≤ 0 i = 1, . . . , n (17)

wi, w0 ≥ 0 i = 1, . . . , n. (18)

By the same argument in the proof of Theorem 1, we can show that if (w∗, w∗
0) is an optimal solution

to problem (15)-(18), then defining the solution (y∗, x∗) such that x∗i = λw∗
i and y∗ is as in (9), (y∗, x∗)

is an optimal solution to the deterministic version of problem (1)-(3).

In the next proposition, we bound the performance of the solution that we obtain from problem

(15)-(18). To this end, we let Qi(wi, xi) = piE{min{Pois(λwi), xi}}−ci xi so that the objective function

of problem (4)-(7) is
∑n

i=1Qi(wi, xi). We let (w∗, w∗
0, X(w∗)) be an optimal solution to problem (4)-(7)

and (wD, wD
0 ) be an optimal solution to problem (15)-(18), where we use X(w) as defined in the previous

section. We have
∑n

i=1Qi(w
D
i , Xi(w

D
i ))/

∑n
i=1Qi(w

∗
i , Xi(w

∗
i )) ≤ 1 since (wD, wD

0 , X(wD)) is a feasible

but not necessarily an optimal solution to problem (4)-(7). The next proposition gives a lower bound on∑n
i=1Qi(w

D
i , Xi(w

D
i ))/

∑n
i=1Qi(w

∗
i , Xi(w

∗
i )), bounding the relative loss in the expected profit by using

the solution (wD, wD
0 , X(wD)) in problem (4)-(7) instead of the optimal solution (w∗, w∗

0, X(w∗)). We

defer the proof of this proposition to Appendix A.4. In this proposition and throughout the rest of

this section, we assume that the products are indexed according to their margins so that we have

p1 − c1 > p2 − c2 > . . . > pn − cn.

Proposition 4 It holds that

∑n
i=1Qi(w

D
i , Xi(w

D
i ))∑n

i=1Qi(w∗
i , Xi(w∗

i ))
≥ 1−

√∑n
i=1 p

2
i

2
√
λ (p1 − c1)

v1
v0+v1

. (19)

In Proposition 4, as the arrival rate λ increases or the preference weight of the no purchase option v0

decreases, the right side of (19) increases. When λ is large, the expected number of customer arrivals is

large and when v0 is small, a large fraction of customers actually make a choice within the offered set of

products. Thus, Proposition 4 indicates that the solution obtained from the deterministic approximation

should perform better when the expected number of customers who make a choice within the offered set

13



of products is larger. Also, as p1− c1 gets larger, the right side of (19) increases as well, indicating that

the solution obtained from the deterministic approximation may not perform well when the margins

of the products are too small. Our computational experiments confirm these expectations. To get a

feel for the performance bound in Proposition 4, consider the case where the unit revenues are in the

range [0, δ] and the largest margin product is the most expensive one with a relative margin of 50% so

that p1 − c1 = δ/2. For simplicity, assume that all customers choose a product so that v0 = 0. In this

case, the right side of (19) exceeds 1 −
√

n/λ. This is to say that the solution from the deterministic

approximation obtains at least 100(1−
√

n/λ)% of the optimal expected profit.

Performance bounds of the form in (19) are common in the revenue management literature, dating

back to the work of Gallego and van Ryzin (1994) and Gallego and van Ryzin (1997), where the authors

give performance bounds for policies obtained from deterministic approximations of dynamic pricing

problems. Talluri and van Ryzin (1998) extend this work to network revenue management problems. For

revenue management problems with reusable resources, Levi and Radovanovic (2010) give performance

bounds for policies obtained from deterministic approximations. Perhaps more interestingly, we can

use the deterministic approximation in (15)-(18) to characterize the structure of potentially good offer

sets. In particular, noting that p1 − c1 > p2 − c2 > . . . > pn − cn, the next proposition shows that the

solutions from the deterministic approximation only use sets of the form {1, 2, . . . , i}.

Proposition 5 There exists an optimal solution (w∗, w∗
0) to problem (15)-(18) such that if we define

the solution (y∗, x∗) as x∗i = λw∗
i and y∗ is as in (9), then the following three statements hold. First,

the solution (y∗, x∗) is optimal to the deterministic version of problem (1)-(3) that is obtained by

replacing the random variable Pois
(∑

S⊆{1,...,n} λPi(S)y(S)
)
in the objective function with its expectation∑

S⊆{1,...,n} λPi(S)y(S). Second, the solution (y∗, x∗) has only one set S′ ⊆ {1, . . . , n} such that

y∗(S′) ≥ 0 and we have y∗(S) = 0 for all other sets S ⊆ {1, . . . , n}. Third, the set S′ satisfies

S′ = {1, 2, . . . , j} for some j = 0, . . . , n.

Proof. The first statement holds by the discussion that follows the formulation of problem (15)-(18).

Assuming that (w∗, w∗
0) is an extreme point solution to problem (15)-(18), we focus on the last two

statements. By Corollary 8 in Appendix A.2, for the extreme point (w∗, w∗
0) of the set of feasible

solutions to problem (15)-(18), there exists a set of products S̃ ⊆ {1, . . . , n} such that w∗
i = Pi(S̃) for

all i = 0, . . . , n. By the definition of Pi(S), we have Pi(S̃)/vi = P0(S̃)/v0 if i ∈ S̃ and Pi(S̃)/vi = 0 if

i ̸∈ S̃, implying that the extreme point (w∗, w∗
0) satisfies w

∗
i /vi = w∗

0/v0 for all i ∈ S̃ and w∗
i /vi = 0 for

all i ̸∈ S̃. Noting that p1 − c1 > p2 − c2 > . . . > pn − cn, we claim that S̃ has to be a set of the form

{1, 2, . . . , j}. To see the claim, if the claim does not hold, then we have k ̸∈ S̃ and i ∈ S̃ for some k < i,

in which case, pk − ck > pi − ci, w
∗
k/vk = 0 and w∗

i /vi = w∗
0/v0. So, we can increase the value of the

decision variable wk by a small amount and decrease the value of the decision variable wi by the same

small amount to obtain a solution to problem (15)-(18) that provides a strictly better objective value

than the solution (w∗, w∗
0). Thus, our claim holds and we get

w∗
0

v0
=

w∗
1

v1
= . . . =

w∗
j

vj
≥

w∗
j+1

vj+1
=

w∗
j+2

vj+2
= . . . =

w∗
n

vn
= 0

14



for some j = 0, . . . , n. Using the chain of inequalities above, since y∗(S) is defined as in (9), the solution

y∗ satisfies y∗({1, 2, . . . , j}) ≥ 0 and we have y∗(S) = 0 for all other sets of products. 2

Proposition 5 motivates working with sets that include a certain number of products with the

largest margins. We call such sets as margin ordered sets. we note that there are only 1 + n possible

margin ordered sets and if we focus only on such sets, then problem (1)-(3) has 1 + 2n decision

variables. Proposition 4 indicates that such sets can perform well especially when the expected number

of customer arrivals is large. Our computational experiments confirm this expectation.

6 Normal Approximation

Although the deterministic approximation we study in the previous section may perform well when the

customer volume is large, its performance may not be quite satisfactory when we deal with a small

number of customer arrivals. In this section, we develop a different approximate method for problem

(4)-(7) that is based on approximating the random variable Pois(λwi) with a normal random variable

with mean λwi and standard deviation
√
λwi.

For brevity, we use Norm(λwi) to denote the normal random variable with mean λwi and standard

deviation
√
λwi. We begin with a few manipulations in the objective function of problem (4)-(7) when

we replace Pois(λwi) with Norm(λwi). In this problem, the best value of the decision variable xi for a

given wi is obtained by maximizing piE{min{Norm(λwi), xi}} − ci xi over xi. The optimal solution to

the last problem is xi = λwi+Φ−1(1− ci/pi)
√
λwi, where Φ

−1(·) is the inverse of the standard normal

distribution function. Letting ρi = Φ−1(1− ci/pi) for notational brevity and N be the standard normal

random variable, replacing the Poisson random variable in the objective function of problem (4)-(7)

with the corresponding normal random variable and using the best value of xi, we have

piE
{
min

{
Norm(λwi), λwi + ρi

√
λwi

}}
− ci (λwi + ρi

√
λwi)

= piE
{
min

{
λwi +N

√
λwi, λwi + ρi

√
λwi

}}
− ci (λwi + ρi

√
λwi)

= (pi − ci)λwi + pi
√

λwiE
{
min{N, ρi}

}
− ci ρi

√
λwi.

For the third term on the right side of the chain of equalities above, using Φ(·) and ϕ(·) to respectively

denote the standard normal distribution and density functions, a well-known computation shows that

E{min{N, ρi}} = ρi (1 − Φ(ρi)) − ϕ(ρi) = ρi (1 − Φ(Φ−1(1 − ci/pi))) − ϕ(ρi) = ρi ci/pi − ϕ(ρi); see

Johnson and Montgomery (1974). Thus, the expression on the right side of the chain of equalities above

is (pi − ci)λwi + pi
√
λwi (ρi ci/pi − ϕ(ρi)) − ci ρi

√
λwi = (pi − ci)λwi − piϕ(ρi)

√
λwi. So, when we

approximate the Poisson random variable with the corresponding normal random variable, problem

(4)-(7) is equivalent to

max

n∑
i=1

{
(pi − ci)λwi − piϕ(ρi)

√
λwi

}
(20)

subject to (5), (6), (w,w0) ≥ 0. (21)

Similar to problem (4)-(7), the objective function of the problem above decomposes by the products

and we can obtain an optimal solution by using a dynamic program. As we show in our computational
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experiments, the solution obtained from the problem above can perform remarkably well even when the

deterministic approximation given in the previous section turns out to be unsatisfactory.

One of the welcome features of the normal approximation is that its optimal solution offers a single

set over the whole selling horizon. This is to say that although our model allows offering different

sets over the selling horizon and the durations of time over which the different sets are offered are

decision variables, the optimal solution to the normal approximation chooses one set and offers this set

throughout whole selling horizon. We focus on this result in the next proposition.

Proposition 6 There exists an optimal solution (w∗, w∗
0) to problem (20)-(21) such that if we define

the solution (y∗, x∗) as x∗i = λw∗
i + ρi

√
λw∗

i and y∗ is as in (9), then the following two statements

hold. First, the solution (y∗, x∗) is optimal to the version of problem (1)-(3) that is obtained by

replacing the Poisson random variable Pois
(∑

S⊆{1,...,n} λPi(S)y(S)
)
in the objective function with the

normal random variable Norm
(∑

S⊆{1,...,n} λPi(S)y(S)
)
. Second, the solution (y∗, x∗) has only one set

S′ ⊆ {1, . . . , n} such that y∗(S′) ≥ 0 and we have y∗(S) = 0 for all other sets S ⊆ {1, . . . , n}.

Proof. The first statement can be shown by using the same argument in the proof of Theorem 1. We

focus on the second statement. By Corollary 8 in Appendix A.2, for any extreme point (w̃, w̃0) of the

set of feasible solutions to problem (20)-(21), there exists a set of products S̃ ⊆ {1, . . . , n} such that

w̃i = Pi(S̃) for all i = 0, . . . , n. As mentioned in the proof of Proposition 5, we have Pi(S̃)/vi = P0(S̃)/v0

if i ∈ S̃ and Pi(S̃)/vi = 0 if i ̸∈ S̃, implying that any extreme point (w̃, w̃0) of the set of feasible

solutions to problem (20)-(21) satisfies w̃i/vi ∈ {0, w̃0/v0} for all i = 1, . . . , n. Since problem (20)-(21)

is maximizing a convex function, its optimal objective value is achieved at an extreme point. Therefore,

we can assume that the optimal solution (w∗, w∗
0) to problem (20)-(21) satisfies w∗

i /vi ∈ {0, w∗
0/v0} for

all i = 1, . . . , n. Without loss of generality, reindexing the products, for some j = 0, . . . , n, we have

w∗
i /vi = w∗

0/v0 for all i = 1, . . . , j and w∗
i /vi = 0 for all i = j + 1, . . . , n. We write the last fact as

w∗
0

v0
=

w∗
1

v1
= . . . =

w∗
j

vj
≥

w∗
j+1

vj+1
= . . . =

w∗
n

vn
= 0.

Since y∗(S) is defined as in (9), noting the chain of inequalities above, the solution y∗ satisfies

y∗({1, 2, . . . , j}) ≥ 0 and y∗(S) = 0 for all other sets S ⊆ {1, . . . , n}. 2

As mentioned above, the normal approximation has remarkably good numerical performance. Given

that the normal approximation also offers a single set, it can be practically attractive.

7 Integer Programming Approximation

Due to the nonlinear and convex objective function of problem (20)-(21), solving this problem directly

can be difficult and it is essential to use a dynamic program instead, which comes with the necessity

of discretizing the state and action variables and creating custom code. In this section, we develop a

simple integer program that can obtain quite good solutions to problem (20)-(21). By solving this integer

problem through commercial integer programming packages, we can altogether avoid the necessity to
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use a dynamic program to solve problem (20)-(21). To formulate the integer program, we let gi(wi) =

(pi − ci)λwi − piϕ(ρi)
√
λwi so that the objective function of problem (20)-(21) is

∑n
i=1 gi(wi). The

function gi(·) is convex and it satisfies g(wi) = 0 at wi = 0 and at wi = Ki, where Ki is defined as

Ki =
1
λ

(pi ϕ(ρi)
pi−ci

)2
. For wi ∈ [0,Ki], we have gi(wi) ≤ 0. This behavior of gi(·) is shown in Figure 1.a,

where we plot this function for different choices of λ, pi and ci.

We make two observations. The first observation is that an optimal solution (w∗, w∗
0) to problem

(20)-(21) would never have gi(w
∗
i ) < 0 for some i = 1, . . . , n. To see this claim, if we have gi(w

∗
i ) < 0,

then we can decrease the value of w∗
i to zero and increase the value of w∗

0 by w∗
i to obtain a new

solution. The new solution is still feasible to problem (20)-(21). Furthermore, since gi(0) = 0 but

gi(w
∗
i ) < 0, the new solution provides a strictly better objective value to problem (20)-(21) than does

the solution (w∗, w∗
0), establishing the claim. Note that problem (20)-(21) maximizes

∑n
i=1 gi(wi) over

(w,w0) ≥ 0 subject to constraints (5) and (6). Thus, since an optimal solution (w∗, w∗
0) to problem

(20)-(21) would never have gi(w
∗
i ) < 0, problem (20)-(21) is equivalent to maximizing

∑n
i=1[gi(wi)]

+

over (w,w0) ≥ 0 subject to constraints (5) and (6). We use [a]+ to denote max{a, 0}.

The second observation is that the derivative of gi(·) at Ki is
1
2 (pi − ci)λ. So, since gi(·) is convex

and gi(Ki) = 0, the hockey stick function 1
2 (pi − ci)λ [wi − Ki]

+ lower bounds [gi(wi)]
+. In Figure

1.b, we plot [gi(·)]+ and 1
2 (pi − ci)λ [· −Ki]

+ for a particular choice of λ, pi and ci. The hockey stick

function 1
2 (pi − ci)λ [· −Ki]

+ is a good approximation to [gi(·)]+ especially when the behavior of gi(·)
to the right of Ki is linear. In this case, we propose solving the problem

max
n∑

i=1

1

2
(pi − ci)λ [wi −Ki]

+ (22)

subject to (5), (6), (w,w0) ≥ 0 (23)

as an approximation to problem (20)-(21). The problem above maximizes the sum of n piecewise

linear convex functions. So, it can be formulated as an integer program. Since there is only one

point of nondifferentiability in the piecewise linear convex functions, this requires using n additional

binary decision variables. Although integer programming is NP-hard in general, our experience is that

commercial solvers, such as Gurobi 4.5, can solve instances of problem (22)-(23) quite fast.

In our computational experiments, we demonstrate that problem (22)-(23) can obtain quite accurate

solutions to problem (20)-(21) over a range of parameter values. An important observation is that if

we replace [wi − Ki]
+ in the objective function of problem (22)-(23) with [wi − Ki], then problem

(22)-(23) has the same optimal solution as the deterministic approximation in (15)-(18). However, the

solutions obtained from problem (22)-(23) generally perform significantly better than those obtained

from problem (15)-(18). Thus, it is interesting that the presence of the [·]+ operator makes such a drastic

change in the quality of the solutions obtained from problem (22)-(23).

As mentioned a moment ago, our computational work indicates that problem (22)-(23) can obtain

quite accurate solutions to problem (20)-(21). A natural question is whether we can make this empirical

observation more precise. In the next proposition, we indeed show that if we solve problem (22)-(23)

and use this solution as a possible solution to problem (20)-(21), then we do not suffer a loss in the
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expected profit by more than 50%. We emphasize that while this proposition bounds the loss by 50%,

the loss in the expected profit turns out to be far less than 50% in our computational work.

Proposition 7 Recalling that
∑n

i=1 gi(·) is the objective function of problem (20)-(21), if we let (w∗, w∗
0)

be an optimal solution to problem (20)-(21) and (ŵ, ŵ0) be an optimal solution to problem (22)-(23),

then we have 2
∑n

i=1 gi(ŵi) ≥
∑n

i=1 gi(w
∗
i ) ≥

∑n
i=1 gi(ŵi).

Proof. The second inequality in the proposition follows from the fact that (ŵ, ŵ0) is a feasible but

not necessarily an optimal solution to problem (20)-(21). We focus on the first inequality. The

sets of feasible solutions to problems (20)-(21) and (22)-(23) are the same and we use W to

denote this common set. In this case, problem (20)-(21) is equivalent to max(w,w0)∈W
∑n

i=1 gi(wi) =

max(w,w0)∈W
∑n

i=1[gi(wi)]
+, where the equality follows from the first observation above right before

formulating problem (22)-(23). On the other hand, the derivative of gi(·) is given by (pi−ci)λ− pi ϕ(ρi)
√
λ

2
√
wi

,

which is always smaller than (pi− ci)λ. This implies that the hockey stick function (pi− ci)λ [wi−Ki]
+

upper bounds [gi(wi)]
+. Thus, we obtain

n∑
i=1

gi(w
∗
i ) = max

(w,w0)∈W

{
n∑

i=1

gi(wi)

}
= max

(w,w0)∈W

{
n∑

i=1

[gi(wi)]
+

}

≤ max
(w,w0)∈W

{
n∑

i=1

(pi − ci)λ [wi −Ki]
+

}
= 2 max

(w,w0)∈W

{
n∑

i=1

1

2
(pi − ci)λ [wi −Ki]

+

}

= 2

n∑
i=1

1

2
(pi − ci)λ [ŵi −Ki]

+ ≤ 2

n∑
i=1

gi(ŵi),

where the last equality is by the fact that (ŵ, ŵ0) is an optimal solution to problem (22)-(23). The last

inequality follows by the fact 1
2 (pi − ci)λ [wi −Ki]

+ lower bounds [gi(wi)]
+ and if gi(ŵi) < 0, then it

must be the case that ŵi < Ki so that we can decrease the value of ŵi to zero without changing the

objective value provided by the solution (ŵ, ŵ0) for problem (22)-(23). 2

We note that the analysis in the proof above is not completely tight. In particular, the derivative of

gi(·) is given by (pi− ci)λ− piϕ(ρi)
√
λ/(2

√
wi). Since wi ∈ [0, 1], this derivative can be upper bounded

by (pi − ci)λ− piϕ(ρi)
√
λ/2. By using the latter upper bound on the derivative of gi(·) instead of the

upper bound (pi−ci)λ used in the proof, we can repeat the analysis. In the end, we get a tighter bound

than two, but this bound depends on the problem parameters and it is not as clean as two.

Finally, since problem (22)-(23) maximizes a convex objective function, we can repeat the proof of

Proposition 6 to show that an optimal solution from problem (22)-(23) offers a single set over the whole

selling horizon, similar to the optimal solution from the normal approximation.

8 Computational Experiments

In this section, we test the performance of the stocking and product offer decisions that we obtain by

solving problem (1)-(3) and by solving various approximations to this problem.
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Figure 1: The function gi(·) in (a) and the functions [gi(·)]+ and 1
2(pi − ci)λ [· −Ki]

+ in (b).

8.1 Benchmark Strategies

If the product offer decisions that we make over the selling horizon are characterized by the decision

variables y = {y(S) : S ⊆ {1, . . . , n}}, then we can choose the stocking quantities by solving

maxxi≥0 piE{min{Pois
(∑

S⊆{1,...,n} λPi(S)y(S)
)
, xi}} − ci xi for all i = 1, . . . , n. All of our benchmark

strategies choose the stocking quantities by solving the last problem, but they differ in the way they

choose the values of the decision variables y. We test the performance of five benchmark strategies.

Stochastic Model (STO). This benchmark strategy corresponds to the model that we study in this

paper. STO solves problem (1)-(3) by using the dynamic programming formulation in (10)-(13) and

uses the optimal values of the decision variables y to decide which sets of products to offer over the

selling horizon. Noting that the state variable (zi, w0) in the dynamic program takes values over [0, 1]2

and the action variable wi takes values over [0, 1], we divide the interval [0, 1] into 1,000 subintervals

and solve the dynamic program approximately by using the discrete state and action variables.

Deterministic Approximation (DET). This benchmark strategy solves the deterministic approximation

given in problem (15)-(18) to obtain the optimal values of the decision variables (w,w0), which we

denote by (w∗, w∗
0). In this case, DET uses the transformation in (9) to figure out the duration of time

over which each set of products should be offered.

Margin Ordered Sets (MOR). This benchmark strategy is motivated by Proposition 5, which shows that

the solution to the deterministic approximation uses only margin ordered sets. Thus, the idea behind

MOR is to offer the best margin ordered set. In particular, MOR orders the products such that we

have p1 − c1 ≥ p2 − c2 ≥ . . . ≥ pn − cn and considers offering the set of products Si = {1, 2, . . . , i} over

the whole selling horizon by setting y(Si) = 1 and y(S) = 0 for all S ̸= Si. For all i = 1, . . . , n, MOR

checks the expected profit obtained by offering only the set Si and chooses the set that provides the

largest expected profit.
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Normal Approximation (NAX). This benchmark strategy builds on the normal approximation given

in problem (20)-(21). Similar to DET, once NAX obtains the optimal values of the decision variables

(w,w0), denoted by (w∗, w∗
0), it uses the transformation in (9) to figure out the duration of time over

which each set of products should be offered.

Integer Programming Approximation (INP). This benchmark strategy uses problem (22)-(23) to obtain

the optimal values of the decision variables (w,w0). As mentioned in Section 7, since problem

(22)-(23) maximizes the sum of piecewise linear functions, this problem can be formulated as an integer

program. Similar to DET and NAX, using (w∗, w∗
0) to denote an optimal solution to problem (22)-(23),

INP uses the transformation in (9) to compute the duration of time over which each set of products

should be offered.

8.2 Experimental Setup

In our experimental setup, we enrich the cost structure of our model to generate test problems with

a variety of attributes. The cost components in problem (1)-(3) correspond to the expected revenue

from the sales and the stocking cost. In our computational experiments, we assume that if a customer

chooses a product for which we do not have any stock, then we incur an additional cost, which can be

visualized as the cost associated with making an emergency procurement or the cost associated with

the loss of goodwill. Letting c̄i be the such cost of making an emergency procurement for product i, we

incorporate the new cost component by subtracting the expression

n∑
i=1

c̄iE
{
max

{
Pois

(∑
S⊆{1,...,n} λPi(S)y(S)

)
− xi, 0

}}
from the objective function of problem (1)-(3). Noting that max{Pois(

∑
S⊆{1,...,n} λPi(S)y(S))−xi, 0} =

Pois(
∑

S⊆{1,...,n} λPi(S)y(S))−min{Pois(
∑

S⊆{1,...,n} λPi(S)y(S)), xi}, subtracting the cost component

above from the objective function of problem (1)-(3) does not complicate our model and all of our results

continue to hold. In particular, we can obtain a solution to our model by using the transformation in

Theorem 1 and the deterministic approximation still uses margin ordered sets. It is also possible to

incorporate another cost component for the salvage values of the products that are unsold at the end

of the selling horizon and this cost component can be handled in a similar fashion.

In our test problems, we have n = 20 products, among which we need to choose sets to offer to

our customers. Letting Ui be a sample from the uniform distribution, we set the preference weight of

product i as vi = 1 + 9Ui so that the preference weights are uniformly distributed over the interval

[1, 10]. On the other hand, we set the unit revenue of product i as pi = 100 + 400(1 − Ui)
2. Due to

the presence of Ui in both the preference weight and unit revenue, the preference weight of product

i is negatively correlated with its unit revenue, indicating that more expensive products tend to be

less attractive to customers. This setup allows to generate more interesting test problems in the sense

that expensive products are not trivially the most desirable ones to include in the offer set and one

should carefully weigh the attractiveness of a product against its unit revenue to figure out whether a

product should be offered. Squaring the term 1− Ui in the unit revenue of product i ensures that the

unit revenues of the products have a skewed distribution. In other words, due to the term (1 − Ui)
2,
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we have few products with large unit revenues and many products with small unit revenues. To come

up with the unit costs of the products, we sample χi from the uniform distribution over the interval

[0.3, 0.7] and set the unit cost of product i as ci = χi pi. To come up with the emergency procurement

cost of product i, we sample ζi from the uniform distribution over the interval [ζ̄ − 0.5, ζ̄ + 0.5] and

set c̄i = ζi pi. Thus, larger values of ζ̄ imply larger emergency procurement costs. We vary ζ̄ in our

computational experiments. Finally, we choose the preference weight v0 associated with the no purchase

option such that P0 = v0/(v0 +
∑n

i=1 vi). In other words, even if we offer all of the products, then the

no choice probability is equal to P0. Similar to ζ̄, we vary P0 in our computational experiments.

Recalling that λ is the arrival rate of customers, we vary λ over {50, 100, 250}, P0 over {0.05, 0.1}
and ζ̄ over {1, 2, 3}. We use the triplet (λ, P0, ζ̄) to denote each combination of these parameters. For

each parameter combination, we generate 50 individual problem instances and test the performance of

the five benchmark strategies described above on each problem instance.

8.3 Computational Results

Table 1 compares the expected profits corresponding to the five benchmark strategies for each parameter

combination. The first column in this table shows the parameter combination in consideration. The

second column shows the average expected profit obtained by STO, where average is taken over all

50 problem instances that we generate for a particular parameter combination. In other words, using

ProfkSTO to denote the expected profit obtained by STO for problem instance k, the second column

gives 1
50

∑50
k=1 Prof

k
STO. The third, fourth, fifth and sixth columns follow a similar approach to show the

average expected profits corresponding to DET, MOR, NAX and INP. The seventh column in Table 1

shows the average percent gap between the expected profits obtained by STO and DET, where average

is, again, taken over all 50 problem instances in a particular parameter combination. So, letting ProfkDET

be the expected profit obtained by DET for problem instance k, the seventh column gives

1

50

50∑
k=1

100
ProfkSTO − ProfkDET

ProfkSTO

.

In a similar fashion, the eighth, ninth and tenth columns compare the expected profits obtained by STO

and the remaining three benchmark strategies, MOR, NAX and INP. The eleventh column in Table 1

shows the 90th percentile of the performance gaps between STO and DET. In particular, this column

gives the 90th percentile of the data {100 (ProfkSTO − ProfkDET)/Prof
k
STO : k = 1, . . . , 50}. The goal of

this column is to give an indication of how large the performance gaps between STO and DET can

get in worst problem instances. Similarly, the twelfth, thirteenth and fourteenth columns give the 90th

percentiles of the performance gaps between STO and the remaining benchmark strategies.

The results in Table 1 indicate that STO can provide significant improvements over DET, especially

when the arrival rate of customers is small or the emergency procurement cost is large. The coefficient

of variation of a Poisson random variable with mean λ is 1/
√
λ. Therefore, the parameter combinations

with small arrival rates correspond to cases where the coefficient of variation for customer arrivals is

large. DET ignores the uncertainty in customer arrivals and it is not surprising that the performance gap
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between STO and DET gets larger as λ decreases and the coefficient of variation gets larger. Considering

the effect of emergency procurement cost, as this cost decreases, we are more likely to use emergency

procurements, rather than purchasing at the beginning of the selling horizon. Indeed, if the emergency

procurement cost is smaller than the purchasing cost, then it is optimal to satisfy the demand only

through emergency procurements and the stocking decisions become trivial. Thus, it is understandable

that using a sophisticated method such as STO provides significant improvements over DET when

emergency procurements are more costly. Also, for all of the parameter combinations, the average

performance gap between STO and DET gets larger as P0 increases. We note that the preference weight

associated with the no purchase option gets larger as P0 increases. If the preference weight associated

with the no purchase option is larger, then customers have larger tendency to leave without purchasing

anything and it is desirable to offer a larger set of products to counteract this tendency. When we offer a

larger set of products, the total stock has to be split among a larger number of products and the stocking

level for each product decreases. When dealing with small stocking levels, stocking and product offer

decisions become more delicate and STO tends to provide larger improvements over DET. Overall, for

the parameter combinations with large arrival rates, small emergency procurement costs and small no

purchase preference weights, the average performance gap between STO and DET is smaller than 3%,

but the average performance gap between the two benchmark strategies can still exceed 60% on the

other side of the spectrum. The performance of MOR is significantly better than that of DET. Despite

the fact that both DET and MOR work with margin ordered sets, the deterministic approximation used

by DET is not able to pinpoint the best margin ordered set. By making an exhaustive check over all

possible margin ordered sets, MOR can perform significantly better than DET. Still, MOR can suffer

from the same shortcomings as DET in the sense that the performance of MOR can deteriorate when

the arrival rate of customers gets small or the emergency procurement cost gets large. For the parameter

combinations with small arrival rates and large emergency procurement costs, MOR may lag behind

STO by more than 20%.

The performance is NAX is substantially more satisfactory than that of DET or MOR. In all

of the parameter combinations, the average performance gap between NAX and STO is less than a

percent. Similar to DET and MOR, the performance gap between NAX and STO increases as the

arrival rate of customers gets smaller, or the emergency procurement cost gets larger, or the preference

weight of the no purchase option gets larger, but NAX is far less sensitive to these problem parameters

when compared with DET or MOR. Even for the worst parameter combination, the performance gap

between NAX and STO is less than half a percent. Finally, we observe that NIP can perform quite well,

yielding average performance gaps with STO that are less than 2%. Even for the most problematic

parameter combination, when DET and MOR give average performance gaps respectively on the order

of 60% and 20%, the average performance gap of INP is 1.65%.

A tempting approach for solving problem (4)-(7) involves assuming that the stocking quantities x are

fixed and finding the best values of the decision variables (w,w0) for the fixed stocking quantities. The

objective function of problem (4)-(7) is concave in (w,w0) so that we can solve this problem for the fixed

stocking quantities by using standard convex optimization tools. In this case, we can try to use marginal

analysis to choose products whose stocking quantities should be increased or decreased to improve the
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Params. Expected Profit Avg. Gap with STO 90th Perc. Gap with STO
(λ, P0, ζ̄) STO DET MOR NAX INP DET MOR NAX INP DET MOR NAX INP

(50, 0.05, 1) 4,424 3,623 4,192 4,420 4,370 18.54 5.51 0.10 1.21 33.71 13.56 0.33 3.27
(50, 0.05, 2) 4,127 2,963 3,804 4,124 4,069 28.99 8.24 0.09 1.35 49.81 20.53 0.35 4.00
(50, 0.05, 3) 3,948 2,529 3,557 3,942 3,869 36.99 10.39 0.17 1.93 67.05 25.85 0.62 4.86

(50, 0.10, 1) 3,061 2,212 2,751 3,058 3,035 28.52 10.58 0.07 0.88 47.24 22.06 0.24 2.99
(50, 0.10, 2) 2,773 1,497 2,345 2,769 2,726 47.36 16.16 0.13 1.68 77.64 34.63 0.28 4.88
(50, 0.10, 3) 2,606 1,023 2,098 2,598 2,562 62.67 20.36 0.31 1.65 ∗100.17 43.00 1.10 3.50

(100, 0.05, 1) 10,066 9,244 9,833 10,064 9,974 8.31 2.42 0.02 0.92 15.92 7.16 0.06 2.51
(100, 0.05, 2) 9,568 8,352 9,236 9,564 9,457 13.00 3.64 0.04 1.14 22.85 10.81 0.12 3.14
(100, 0.05, 3) 9,262 7,766 8,862 9,256 9,137 16.59 4.57 0.06 1.35 29.07 11.57 0.25 3.07

(100, 0.10, 1) 7,298 6,459 6,980 7,295 7,247 11.76 4.53 0.04 0.71 23.29 11.59 0.12 2.16
(100, 0.10, 2) 6,806 5,501 6,331 6,801 6,736 19.69 7.33 0.08 1.06 35.58 16.05 0.39 2.52
(100, 0.10, 3) 6,503 4,871 5,936 6,497 6,425 25.83 9.17 0.11 1.24 45.73 20.09 0.41 3.20

(250, 0.05, 1) 28,287 27,473 28,097 28,287 28,100 2.90 0.68 0.00 0.66 5.04 2.36 0.01 1.82
(250, 0.05, 2) 27,359 26,123 27,052 27,358 27,143 4.59 1.16 0.00 0.81 7.81 3.77 0.01 2.45
(250, 0.05, 3) 26,795 25,242 26,395 26,793 26,549 5.91 1.56 0.01 0.96 10.10 4.91 0.02 2.53

(250, 0.10, 1) 21,344 20,615 21,146 21,341 21,180 3.44 0.95 0.02 0.80 8.48 2.94 0.07 2.15
(250, 0.10, 2) 20,389 19,167 19,988 20,384 20,250 6.09 2.06 0.03 0.74 13.46 5.22 0.13 2.49
(250, 0.10, 3) 19,815 18,228 19,258 19,813 19,678 8.16 2.95 0.01 0.70 16.74 7.32 0.02 1.94

Table 1: Expected profits obtained by STO, DET, MOR, NAX and INP. (∗A performance gap more
than 100% indicates that the benchmark strategy obtains a negative expected profit.)

objective value of problem (4)-(7). Due to nontrivial interactions between the decision variables x and

(w,w0), this approach does not yield satisfactory results. To give an example, we consider the case

with a single product, λ = 100, p1 = 130, c1 = 60, c̄1 = 220, v0 = 32 and v1 = 8. Given that we

fix the stocking quantity of the product at x1, we let F (x1) be the optimal objective value of problem

(4)-(7). Figure 2 plots F (x1) as a function of x1, indicating that F (x1) immediately decreases as x1

increases starting from zero. Thus, if we start with a zero stocking quantity and use marginal analysis

to find the best stocking quantity, then we get stuck at zero. This is not an uncommon occurrence. For

many of our test problems, we get stuck at zero stocking quantities by using marginal analysis starting

from zero. We tried initializing our stocking quantities at larger values, but even in this case, we got

stuck at stocking quantities that are less satisfactory than the ones provided by NAX or INP.

Table 2 provides summary statistics for the decisions made by the five benchmark strategies. The first

column in this table shows the parameter combination in consideration. The second to sixth columns

show the total stocking quantities for the benchmark strategies. Letting x be the stocking decisions

made by a benchmark strategy, the total stocking quantity is simply
∑n

i=1 xi. The seventh to eleventh

columns show the total expected demand induced by the product offer decisions of STO, DET, MOR,

NAX and INP. Using y to denote the product offer decisions made by a benchmark strategy, the total

expected demand is given by λ
∑

S⊆{1,...,n}[1−P0(S)]y(S), where the summation can be interpreted as

the probability that a customer chooses a product. The twelfth to sixteenth columns show the average

number of products offered, which is computed as
∑

S⊆{1,...,n} |S|y(S). Similar to Table 1, Table 2 gives

the results averaged over all 50 problem instances in a particular parameter combination.

From Table 2, we observe that as P0 increases, the no purchase preference weight gets larger and

customers are more likely to leave without making a choice. The benchmark strategies counteract
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Figure 2: Optimal objective value of problem (4)-(7) for given stocking quantities.

this tendency by increasing the average number of offered products so that customers are more likely

to make a purchase within a larger set. Despite the fact that we offer a larger set of products, the

expected demand induced by the benchmark strategies still decreases when the preference weight of the

no purchase option gets larger. Following the decrease in the expected demand, the stocking quantities

also get smaller. As the cost of emergency procurement increases, it is more preferable to purchase the

products at the beginning of the selling horizon and the total stocking quantities increase. Comparing the

benchmark strategies among each other, DET stands out as an outlier as it tries to induce noticeably

larger total expected demand and uses larger stocking quantities. The average number of products

offered by DET is also significantly larger than the other benchmark strategies. Finally, the total

expected demand induced and the average number of products offered by DET do not depend on the

emergency procurement cost. Since DET uses only the expected values of the demand, it does not plan

for emergency procurements at all by trying to serve the total expected demand exactly.

Overall, our results indicate that the solution strategies inspired by deterministic approximations

can work reasonably well when we have a large volume of customers arriving into the system and

the cost of correcting an error in the stocking decisions is not prohibitive. This is evidenced by the

respectable performance of DET and MOR with large values of λ and small values of ζ̄. However,

as the demand variability and the emergency procurement cost increase, we see significant gaps

between a deterministic and a stochastic model. As demonstrated by NAX, over a range of parameter

combinations, approximating the number of customer arrivals by using a normal distribution works

quite well. In addition, the solutions provided by NAX can be particularly attractive since they offer a

single set over the whole selling horizon. Noting that solving the model with the normal approximation

still requires working with a dynamic program, it turns out that we can formulate a simple integer

program, as in INP, that can closely track the solutions to the dynamic program. We can solve this

integer program directly by using commercial integer programming packages. Similar to the normal

approximation, the solutions from the integer program also offer a single set.
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9 Conclusion and Discussion

We studied a joint stocking and product offer problem under the multinomial logit model. Our model

builds on the one in van Ryzin and Mahajan (1999), but by allowing different sets of products being

offered over the selling horizon, we avoid the combinatorial aspects of the product offer problem

and accommodate products with arbitrary unit revenues and costs. Although a naive formulation

of our model results in a difficult nonlinear program, we transformed this nonlinear program into an

equivalent one that is more tractable. We developed a solution approach that exploits the separability

of the objective function by using dynamic programming. Furthermore, we developed a number of

approximations to our model. While the deterministic approximation builds the intuition of offering

margin ordered sets, the normal and integer programming approximations allow us to offer a single set

over the whole selling horizon.

There are several interesting directions for future research. It would be useful to further study the

version of the problem where only one set of products is offered over the whole selling horizon. We were

fortunate in the sense that our normal and integer programming approximations ended up offering a

single set, but one can a priori try to impose the requirement that one set of products should be offered

in problem (1)-(3). If we need to offer a single set, then we can capture this situation by imposing the

constraints y(S) ∈ {0, 1} for all S ⊆ {1, . . . , n} in problem (1)-(3). Even when we have such binary

constraints in problem (1)-(3), we can still formulate an equivalent nonlinear integer program to this

problem simply by replacing the constraints wi/vi − w0/v0 ≤ 0 for all i = 1, . . . , n in problem (4)-(7)

with the constraints wi/vi ∈ {0, w0/v0} for all i = 1, . . . , n. By following precisely the same argument

in the proof of Theorem 1, we can show that the version of problem (1)-(3) with binary constraints

on the decision variables y is equivalent to the version of problem (4)-(7) with constraints (6) replaced

with wi/vi ∈ {0, w0/v0} for all i = 1, . . . , n. However, it turns out that if we replace constraints (6) in

problem (4)-(7) with wi/vi ∈ {0, w0/v0} for all i = 1, . . . , n, then the dynamic programming approach

in Section 4 does not work any more. The difficulty is that for an arbitrary value of w0, by choosing

wi/vi ∈ {0, w0/v0} for all i = 1, . . . , n, we are not guaranteed to have
∑n

i=1wi + w0 = 1. In fact,

the only possible values of w0 that allow us to choose wi/vi ∈ {0, w0/v0} for all i = 1, . . . , n and still

have
∑n

i=1wi + w0 = 1 are those that satisfy w0 +
∑

i∈S viw0/v0 = 1 for some S ⊆ {1, . . . , n}. The

computational effort for finding all such possible values of w0 grows exponentially with n. Therefore,

although our normal and integer programming approximations provide useful approximate methods, it

is still difficult to accurately solve the variant of problem (1)-(3) with the constraint y(S) ∈ {0, 1} for all

S ⊆ {1, . . . , n}. Another possible direction for future research is that we can look for ways of imposing

additional constraints on offered sets. Finally, it is useful to see whether our results can be extended

under customer choice models that are more complicated than the multinomial logit model.
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A Appendix: Omitted Proofs

A.1 Proof of Theorem 1

First, assuming that (y∗, x∗) is an optimal solution to problem (1)-(3) providing the objective value

Z∗, we define the solution (w∗, w∗
0, x

∗) to problem (4)-(7) as in (8) in the first part of the proof of

Theorem 1 in the main text. By the definition of the multinomial logit model, we have Pi(S)/vi =

1/V (S) if i ∈ S and Pi(S)/vi = 0 otherwise. Similarly, we have P0(S)/v0 = 1/V (S). In this case,

letting 1(·) be the indicator function and using the definitions of w∗ and w∗
0 in (8), it follows that

w∗
i /vi =

∑
S⊆{1,...,n} Pi(S)y

∗(S)/vi =
∑

S⊆{1,...,n} 1(i ∈ S)y∗(S)/V (S) ≤
∑

S⊆{1,...,n} y
∗(S)/V (S) =∑

S⊆{1,...,n} P0(S)y
∗(S)/v0 = w∗

0/v0 for all i = 1, . . . , n. Furthermore, we observe that

n∑
i=1

w∗
i + w∗

0 =

n∑
i=1

∑
S⊆{1,...,n}

Pi(S)y
∗(S) +

∑
S⊆{1,...,n}

P0(S)y
∗(S)

=
∑

S⊆{1,...,n}

[
n∑

i=1

Pi(S) + P0(S)

]
y∗(S) =

∑
S⊆{1,...,n}

y∗(S) = 1,

where the third equality follows by noting that
∑n

i=1 Pi(S) +P0(S) = 1 and the fourth equality follows

from constraint (2). Therefore, the solution (w∗, w∗
0, x

∗) is feasible to problem (4)-(7). Noting that we

have λw∗
i =

∑
S⊆{1,...,n} λPi(S)y

∗(S) by (8), the objective value provided by the solution (w∗, w∗
0, x

∗)

for problem (4)-(7) is also Z∗.

Second, assuming that (w∗, w∗
0, x

∗) is an optimal solution to problem (4)-(7) providing the objective

value Z∗, we define the solution (y∗, x∗) to problem (1)-(3) as in (9) in the second part of the proof of

Theorem 1 in the main text. Since the products are ordered so that w∗
1/v1 ≥ w∗

2/v2 ≥ . . . ≥ w∗
n/vn

and we have w∗
0/v0 ≥ w∗

1/v1 by constraints (6), the definition of y∗ in (9) implies that y∗ ≥ 0. By the

definition of y∗, only the decision variables y∗(S0), y
∗(S1), . . . , y

∗(Sn) among {y∗(S) : S ⊆ {1, . . . , n}}
can possibly take nonzero values and we obtain

∑
S⊆{1,...,n}

y∗(S) =

n∑
i=0

y∗(Si) =

n−1∑
i=0

[
w∗
i

vi
−

w∗
i+1

vi+1

]
V (Si) +

w∗
n

vn
V (Sn)

=
w∗
0

v0
V (S0) +

n∑
i=1

w∗
i

vi
[V (Si)− V (Si−1)] =

w∗
0

v0
v0 +

n∑
i=1

w∗
i

vi
vi = 1, (24)

where the fourth equality uses the fact that V (S0) = v0 and V (Si) − V (Si−1) = vi by definition and

the fifth equality follows from constraint (5). Therefore, the solution (y∗, x∗) is feasible to problem

(1)-(3). To see that the solution (y∗, x∗) provides the objective value Z∗ for problem (1)-(3), we note

that only the sets Si, Si+1, . . . , Sn among S0, S1, . . . , Sn include product i so that we obtain∑
S⊆{1,...,n}

λPi(S)y
∗(S) = λPi(Si)y

∗(Si) + λPi(Si+1)y
∗(Si+1) + . . .+ λPi(Sn)y

∗(Sn)

= λvi

[
w∗
i

vi
−

w∗
i+1

vi+1

]
+ λvi

[
w∗
i+1

vi+1
−

w∗
i+2

vi+2

]
+ . . .+ λvi

w∗
n

vn
= λw∗

i ,

where the second equality follows from the definition of y∗(S) in (9) and the fact that vi = Pi(S)V (S)

for all i ∈ S by the definition of Pi(S) in the multinomial logit model. 2
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A.2 Extreme Points of the Set of Feasible Solutions to Problem (4)-(7)

The next corollary is used in the discussion in Section 3 and in the proofs of Propositions 5 and 6.

Corollary 8 For any S ⊆ {1, . . . , n}, define the point (w̃(S), w̃0(S)) ∈ ℜn+1 such that w̃i(S) = Pi(S)

for all i = 0, . . . , n. Any extreme point of the set of feasible solutions to problem (4)-(7) is one of the

points {(w̃(S), w̃0(S)) : S ⊆ {1, . . . , n}}.

Proof. The ideas we use are very similar to those in the proof of Theorem 1. Choose any point (w′, w′
0)

that is in the set of feasible solutions to problem (4)-(7). We want to show that (w′, w′
0) can be written

as a convex combination of the points in {(w̃(S), w̃0(S)) : S ⊆ {1, . . . , n}}. We order the products so

that w′
1/v1 ≥ w′

2/v2 ≥ . . . ≥ w′
n/vn. Since (w′, w′

0) is feasible to problem (4)-(7), constraints (6) also

imply that w′
0/v0 ≥ w′

1/v1. We label the sets S0 = ∅ and Si = {1, . . . , i} for all i = 1, . . . , n. For all

S ⊆ {1, . . . , n}, we define α′(S) as follows. For all i = 0, . . . , n, we let

α′(Si) =

[
w′
i

vi
−

w′
i+1

vi+1

]
V (Si)

with the convention that α′(Sn) = [w′
n/vn]V (Sn). For all other sets S, we let α′(S) = 0. By using the

same argument that we follow in (24), we have
∑

S⊆{1,...,n} α
′(S) = 1 and α′(S) ≥ 0, in which case,

{α′(S) : S ⊆ {1, . . . , n}} are convex weights. For any k = 0, . . . , n, we focus on the kth components of

the points {(w̃(S), w̃0(S)) : S ⊆ {1, . . . , n}} to write

∑
S⊆{1,...,n}

α′(S) w̃k(S) =
n∑

i=0

α′(Si) w̃k(Si) =
n∑

i=0

[
w′
i

vi
−

w′
i+1

vi+1

]
V (Si)Pk(Si)

=
n∑

i=0

[
w′
i

vi
−

w′
i+1

vi+1

]
V (Si)

1(k ∈ Si)vk
V (Si)

=
n∑

i=k

[
w′
i

vi
−

w′
i+1

vi+1

]
vk = w′

k,

where the first equality uses the fact that α′(S) = 0 whenever S is not one of the sets S0, . . . , Sn, the

second equality is by noting that w̃k(Si) = Pk(Si) by definition, the third equality follows from the

definition of Pi(S) and the fourth equality is by noting that k ∈ Si only for i = k, k+ 1, . . . , n. For any

k = 0, . . . , n, the chain of equalities above show that the kth component of (w′, w′
0) can be written as a

convex combination of the kth components of the points {(w̃(S), w̃0(S)) : S ⊆ {1, . . . , n}} by using the

convex weights {α′(S) : S ⊆ {1, . . . , n}}. Thus, (w′, w′
0) can be written as a convex combination of the

points in {(w̃(S), w̃0(S)) : S ⊆ {1, . . . , n}} and we obtain the desired result. 2

A.3 Proof of Proposition 3

Fix wi and let x̂i be the smallest xi that satisfies P{Pois(λwi) ≤ xi} ≥ 1 − ci/pi. This is to say that

Xi(wi) = x̂i. In the first part of the proof, we assume that P{Pois(λwi) ≤ x̂i} > 1 − ci/pi. Since the

distribution function of a Poisson random variable is continuous in its mean, for ϵ > 0 small enough,

the smallest xi that satisfies P{Pois(λ (wi + ϵ)) ≤ xi} ≥ 1− ci/pi is also x̂i so that Xi(wi + ϵ) = x̂i. In
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this case, using a ∧ b to denote min{a, b}, the definition of Gi(·) implies that

Gi(wi + ϵ)−Gi(wi) = piE
{
(Pois(λ (wi + ϵ)) ∧ x̂i)− (Pois(λwi) ∧ x̂i)

}
= piE

{
[(Pois(λwi) + Pois(λϵ)) ∧ x̂i]− (Pois(λwi) ∧ x̂i)

}
, (25)

where Pois(λwi) and Pois(λϵ) are independent of each other. For the Poisson random variable Pois(λϵ),

we have P{Pois(λϵ) = 1} = λϵ+o(ϵ), where o(ϵ) denotes any function h(·) that satisfies limϵ→0 h(ϵ)/ϵ =

0. Conditioning on Pois(λϵ), the last expectation in (25) can be written as

E
{
[(Pois(λwi) + Pois(λϵ)) ∧ x̂i]− (Pois(λwi) ∧ x̂i)

}
= E

{
[(Pois(λwi) + 1) ∧ x̂i]− (Pois(λwi) ∧ x̂i) |Pois(λϵ) = 1

}
(λϵ+ o(ϵ))

+ E
{
[(Pois(λwi) + Pois(λϵ)) ∧ x̂i]− (Pois(λwi) ∧ x̂i) |Pois(λϵ) ≥ 2

}
P
{
Pois(λϵ) ≥ 2

}
. (26)

Working with the first conditional expectation on the right side above, we observe that we can drop

the condition since Pois(λwi) and Pois(λϵ) are independent of each other. Furthermore, we have

[(Pois(λwi) + 1) ∧ x̂i] − (Pois(λwi) ∧ x̂i) = 1 whenever Pois(λwi) + 1 ≤ x̂i. Otherwise, the last

difference is equal to zero. Therefore, the first conditional expectation on the right side of (26) is

equal to P{Pois(λwi) + 1 ≤ x̂i}. Focusing on the second term on the right side of (26), we claim that

this term is o(ϵ). To see this claim, note that (a ∧ c)− (b ∧ c) ≤ |a− b|. Thus, we have

0 ≤ E
{
[(Pois(λwi) + Pois(λϵ)) ∧ x̂i]− (Pois(λwi) ∧ x̂i) |Pois(λϵ) ≥ 2

}
≤ E

{
Pois(λϵ) |Pois(λϵ) ≥ 2

}
,

which implies that the claim follows if we can show that E{Pois(λϵ) |Pois(λϵ) ≥ 2}P{Pois(λϵ) ≥ 2} =

o(ϵ). Noting the identity, which can be obtained by conditioning on Pois(λϵ),

λϵ = E
{
Pois(λϵ)

}
= e−λ ϵ λϵ+ E{Pois(λϵ) |Pois(λϵ) ≥ 2}P{Pois(λϵ) ≥ 2},

we have E{Pois(λϵ) |Pois(λϵ) ≥ 2}P{Pois(λϵ) ≥ 2} = λϵ (1 − e−λ ϵ) = o(ϵ), where the second equality

holds since limϵ→0 λϵ (1 − e−λ ϵ)/ϵ = 0. This establishes the claim that the second term on the right

side of (26) is o(ϵ). Since the first conditional expectation on the right side of (26) has been shown

to be P{Pois(λwi) + 1 ≤ x̂i}, (26) implies that E
{
[(Pois(λwi) + Pois(λϵ)) ∧ x̂i] − (Pois(λwi) ∧ x̂i)

}
=

P{Pois(λwi) + 1 ≤ x̂i} (λϵ+ o(ϵ)) + o(ϵ). Using this equality in (25), we have

lim
ϵ↓0

Gi(wi + ϵ)−Gi(wi)

ϵ
= pi lim

ϵ↓0

P{Pois(λwi) + 1 ≤ x̂i}λϵ+ o(ϵ)

ϵ

= piP{Pois(λwi) + 1 ≤ x̂i}λ ≤ pi(1− ci/pi)λ = (pi − ci)λ,

where the inequality above follows by noting the fact that x̂i is the smallest value of xi that satisfies

P{Pois(λwi) ≤ xi} ≥ 1− ci/pi so that we must have P{Pois(λwi) ≤ x̂i− 1} < 1− ci/pi. Thus, the right

derivative of Gi(·) at wi is bounded by (pi − ci)λ. To bound the left derivative of Gi(·) at wi, we write

Gi(wi) − Gi(wi − ϵ) = piE
{
[(Pois(λ (wi − ϵ)) + Pois(λϵ)) ∧ x̂i] − (Pois(λ (wi − ϵ)) ∧ x̂i)

}
and the same

line of reasoning above shows that the left derivative of Gi(·) at wi is bounded by (pi − ci)λ.

In the second part of the proof, we assume that P{Pois(λwi) ≤ x̂i} = 1 − ci/pi. In this case, we

have P{Pois(λ (wi + ϵ)) ≤ x̂i} < 1 − ci/pi so that for small enough ϵ > 0, it must be the case that
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Xi(wi + ϵ) = x̂i + 1. Similar to (25), the definition of Gi(·) implies that

Gi(wi + ϵ)−Gi(wi) = piE
{
(Pois(λ (wi + ϵ)) ∧ (x̂i + 1))− (Pois(λwi) ∧ x̂i)

}
− ci

= piE
{
[(Pois(λwi) + Pois(λϵ)) ∧ (x̂i + 1)]− (Pois(λwi) ∧ x̂i)

}
− ci. (27)

For the Poisson random variable Pois(λϵ), we have P{Pois(λϵ) = 0} = 1 − λϵ + o(ϵ). Conditioning on

Pois(λϵ), we write the expectation on the right side above as

E
{
[(Pois(λwi) + Pois(λϵ)) ∧ (x̂i + 1)]− (Pois(λwi) ∧ x̂i)

}
= E

{
[Pois(λwi) ∧ (x̂i + 1)]− (Pois(λwi) ∧ x̂i)

}
(1− λϵ+ o(ϵ))

+ E
{
[(Pois(λwi) + 1) ∧ (x̂i + 1)]− (Pois(λwi) ∧ x̂i)

}
(λϵ+ o(ϵ))

+ E
{
[(Pois(λwi) + Pois(λϵ)) ∧ (x̂i + 1)]− (Pois(λwi) ∧ x̂i) |Pois(λϵ) ≥ 2

}
P
{
Pois(λϵ) ≥ 2

}
. (28)

For the first expectation on the right side of (28), we have [Pois(λwi)∧ (x̂i + 1)]− (Pois(λwi) ∧ x̂i) = 1

whenever Pois(λwi) ≥ x̂i + 1. Otherwise, the last difference is zero. Thus, the first expectation on the

right side of (28) is P{Pois(λwi) ≥ x̂i + 1}. For the second expectation on the right side of (28), we

have [(Pois(λwi) + 1) ∧ (x̂i + 1)] − (Pois(λwi) ∧ x̂i) = 1, so that the second expectation is one. Using

the same line of reasoning in the first part of the proof, it is possible to show that the third term on

the right side of (28) is o(ϵ). If we use these observations in (28), then (27) implies that

Gi(wi + ϵ)−Gi(wi) = piP{Pois(λwi) ≥ x̂i + 1} (1− λϵ+ o(ϵ)) + pi (λϵ+ o(ϵ)) + pi o(ϵ)− ci

= pi (ci/pi) (1− λϵ+ o(ϵ)) + pi (λϵ+ o(ϵ)) + pi o(ϵ)− ci = (pi − ci)λϵ+ o(ϵ),

where the second equality is by the fact that P{Pois(λwi) ≤ x̂i} = 1 − ci/pi. Dividing the chain of

equalities above by ϵ and taking the limit as ϵ goes to zero, we see that the right derivative of Gi(·) at
wi is exactly (pi − ci)λ. By following the same argument, it is possible to check that the left derivative

of Gi(·) at wi is bounded by (pi − ci)λ and we obtain the desired result. 2

A.4 Proof of Proposition 4

Noting that min{a, b} is a concave function of a, Jensen’s inequality implies that
∑n

i=1 pi min{λwi, xi}−∑n
i=1 ci xi ≥

∑n
i=1 piE{min{Pois(λwi), xi}} −

∑n
i=1 ci xi. Since problem (15)-(18) is equivalent to

maximizing
∑n

i=1 pi min{λwi, xi} −
∑n

i=1 ci xi over (w,w0, x) ≥ 0 subject to constraints (5) and

(6), the optimal objective value of problem (15)-(18) is an upper bound on the optimal objective

value of problem (4)-(7). Thus, using ZD to denote the optimal objective value of problem (15)-

(18) and noting that
∑n

i=1Qi(w
∗
i , Xi(w

∗
i )) is the optimal objective value of problem (4)-(7), we have

ZD ≥
∑n

i=1Qi(w
∗
i , Xi(w

∗
i )). On the other hand, Xi(wi) is defined as the maximizer of Qi(wi, xi) =

piE{min{Pois(λwi), xi}} − ci xi over xi. Thus, Qi(wi, Xi(wi)) ≥ Qi(wi, xi) for any stocking quantity

xi. These observations imply that∑n
i=1Qi(w

D
i , Xi(w

D
i ))∑n

i=1Qi(w∗
i , Xi(w∗

i ))
≥

∑n
i=1Qi(w

D
i , Xi(w

D
i ))

ZD
≥

∑n
i=1Qi(w

D
i , λwD

i )

ZD
,
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in which case, the result follows if we can show that the expression on the right side of the chain of

inequalities above upper bounds the expression on the right side of (19). We have∑n
i=1Qi(w

D
i , λwD

i )

ZD
=

∑n
i=1 piE

{
min{Pois(λwD

i ), λwD
i }

}
−

∑n
i=1 ci λw

D
i

ZD

=

∑n
i=1 pi λw

D
i −

∑n
i=1 piE

{
max{λwD

i − Pois(λwD
i ), 0}

}
−

∑n
i=1 ci λw

D
i

ZD

=
ZD −

∑n
i=1 piE

{
max{λwD

i − Pois(λwD
i ), 0}

}
ZD

≥ 1−

∑n
i=1 pi

√
λwD

i

2ZD
,

where the third equality uses the fact that (wD, wD
0 ) is an optimal solution to problem (15)-(18) and the

inequality follows since as shown by Gallego and Moon (1993), we have E{[W ]+} ≤ σ/2 for a random

variable W with mean zero and standard deviation σ.

We have
∑n

i=1w
D
i ≤ 1. A simple exercise in nonlinear programming shows that the maximum of∑n

i=1 pi
√
wi subject to the constraints

∑n
i=1wi ≤ 1 and w ≥ 0 is

√∑n
i=1 p

2
i . Thus,

√∑n
i=1 p

2
i λ upper

bounds the numerator of the last fraction above. To get a crude lower bound on ZD that appears in

the denominator of the same fraction, we let w1 = v1/(v0 + v1), w0 = v0/(v0 + v1) and set all of the

other decision variables to zero to get a feasible solution to problem (15)-(18). In this case, ZD is lower

bounded by (p1−c1)λ
v1

v0+v1
. Using these bounds on the numerator and denominator of the last fraction

above, it follows that

∑n
i=1Qi(w

D
i , λwD

i )

ZD
≥ 1−

∑n
i=1 pi

√
λwD

i

2ZD
≥ 1−

√∑n
i=1 p

2
i λ

2(p1 − c1)λ
v1

v0+v1

. 2
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